
Provably Correct Code Generation: A Case

Study

Qian Wang , Gopal Gupta 1 ,2 ,3

Department of Computer Science
University of Texas at Dallas
Richardson, TX 75083, USA

Abstract

Provably correct compilation is an important aspect in development of high assurance software
systems. In this paper we present an approach to provably correct compilation based on Horn
logical semantics of programming languages and partial evaluation. We also show that continuation
semantics can be expressed in the Horn logical framework, and introduce Definite Clause Semantics.
We illustrate our approach by developing the semantics for the SCR specification language, and
using it to (automatically) generate target code in a provably correct manner.

Keywords: Horn logic, Denotational Semantics. Compilation

1 Introduction

Assuring the correctness of the compilation process is an important considera-
tion in construction of reliable software. If the compiler generates code that is
not faithful to the original program code of a system, then all our efforts spent
in proving the correctness of the system are futile. Proving that target code
is correct w.r.t. the program source is especially important for high assurance
systems, as unfaithful target code can lead to loss of life and/or property.
Considerable research has been done in this area, starting from the work of

1 The authors have been partially supported by NSF grants CCR 9900320, CCR 9820852,
INT 9904063, by the Department of Education and the Environmental Protection Agency.
2 Email: qxw015000@utdallas.edu
3 Email: gupta@utdallas.edu

Electronic Notes in Theoretical Computer Science 118 (2005) 87–109

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.11.008

mailto:qxw015000@utdallas.edu
mailto:gupta@utdallas.edu
http://www.elsevier.com/locate/entcs

McCarthy [19]. Most efforts directed at proving compiler correctness fall into
three categories:

• Those that treat the compiler as just another program and use standard ver-
ification techniques to manually or semi-automatically establish its correct-
ness. These techniques typically employ known mathematical techniques
such as induction proofs, axiomatic semantics, etc. They may also use the-
orem provers or advanced reasoning systems to semi-automate the process.
The weakness of this approach is that part of the process is manual and
may introduce errors. Another weakness is that each compiler developed
for each language has to be separately proved correct.

• Those that generate the compiler automatically from the mathematical se-
mantics of the language. Typically the semantics used is denotational. Con-
siderable research was done in the 70s and 80s to automatically generate
compilers from the semantic definition of a language. The automatically
generated compilers, however, have not been used in practice due to their
slowness and/or complexity of the code generated.

• Those that use program transformation systems to transform source code
into target code. This approach is related to the previous one and expresses
the operational semantics of the language as term rewriting rules. These
term rewriting rules can be treated as a specification for a compiler, and can
be proven correct. Target code is automatically obtained by applying these
term-rewriting rules to the source code. The disadvantage in this approach
is that specifying the compiler operationally can be quite a lengthy process.
Also, the compilation time can be quite large since a term-rewriting system
will be used for executing these rules.

In this paper we develop an approach based on partial evaluation and a
type of semantics called Horn logical semantics. Our approach is similar in
spirit to semantics-based approaches, however, its basis is Horn-logical se-
mantics [5] which possesses both an operational as well as a denotational
(declarative) flavor. In the Horn logical semantics approach, both the syntax
and semantics of a language is specified using Horn logic statements (or pure
Prolog [26]). The semantics can be viewed dually as operational or denota-
tional. Taking an operational view, one immediately obtains an interpreter
of the language L from the Horn-logical semantic description of the language
L. Given a program P written in language L, the interpreter obtained for
L can be used to execute the program. Moreover, given a partial evaluator
for pure Prolog, the interpreter can be partially evaluated w.r.t. the program
P to obtain compiled code for P. Since the compiled code is obtained auto-
matically via partial evaluation of the interpreter, it is faithful to the source

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–10988

of P, provided the partial evaluator is correct. The correctness of the partial
evaluator, however, has to be proven only once. The correctness of the code
generation process for any language can be certified, provided the compiled
code is obtained via partial evaluation.

Given that efficient execution engines have been developed for Horn Logic
(pure Prolog), partial evaluation is relatively fast. Also, the declarative nature
of the Horn logical semantics allows for language semantics to be rapidly
obtained.

In this paper, we further develop the Horn logical semantics approach
and show that continuation semantics can also be expressed in Horn logic.
Moreover, we also show that in Horn logical semantics not only the syntax
but also the semantics can be expressed using the definite clause grammar
notation. The semantics expressed in the DCG notation allows for the store
argument to be naturally hidden. We also show that continuation semantics
expressed as DCGs can be partially evaluated w.r.t. a source program to
obtain target code in a provably correct manner. We illustrate this in the
context of the SCR (software cost reduction) method for specifying embedded
real-time systems. We assume that the reader is familiar with denotational
semantics, partial evaluation, logic programming, Prolog and definite clause
grammars ([25,14,26] are good references for these topics).

2 Horn Logical Semantics

The denotational semantics of a language L has three components: (i) syntax
specification: maps sentences of L to parse trees; it is commonly specified as a
grammar in the BNF format; (ii) semantic algebra: represents the mathemat-
ical objects used for expressing the meaning of a program written in the lan-
guage L; these mathematical objects typically are sets or domains (partially
ordered sets, lattices, etc.) along with associated operations to manipulate
the elements of the sets; (iii) valuation functions: these are functions mapping
parse trees to elements of the semantic algebras.

Traditional denotational definitions express syntax as BNF grammars, and
the semantic algebras and valuation functions using λ-calculus. In Horn Log-
ical semantics, Horn-clauses (or pure Prolog) and constraints are used instead
to specify all the components of the denotational semantics of programming
languages [5]. There are three major advantages of using Horn clauses and
constraints for coding denotational semantics.

First, the syntax specification trivially yields an executable parser. The
BNF specification of a language L can be quite easily transformed to a Definite
Clause Grammar (DCG) [26]. The syntax specification written in the DCG

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 89

notation serves as a parser for L. This parser can be used to parse programs
written in L and obtain their parse trees (or syntax trees). Thus, the syntactic
BNF specification of a language is easily turned into executable syntax (i.e.,
a parser). Note that the syntax of even context sensitive languages can be
specified using DCGs [6].

Second, the semantic algebra and valuation functions of L can also be
coded in Horn-clause Logic. Since Horn-clause Logic or pure Prolog is a
declarative programming notation, just like the λ-calculus, the mathemati-
cal properties of denotational semantics are preserved. Since both the syntax
and semantic part of the denotational specification are expressed as logic pro-
grams, they are both executable. These syntax and semantic specifications
can be loaded in a logic programming system and executed, given a program
written in L. This provides us with an interpreter for the language L. In
other words, the denotation 4 of a program written in L is executable. This
executable denotation can also be used for many applications, including au-
tomated generation of compiled code.

Third, non-deterministic 5 semantics can be given to a language w.r.t. re-
sources (e.g., time, space, battery power) consumed during execution. For
example, some operations in the semantic algebra may be specified in mul-
tiple ways (say in software or in hardware) with each type of specification
resulting in different resource consumption. Given a program and bounds on
the resources that can be consumed, only some of the many possible seman-
tics may be viable for that program. Resource bounded partial evaluation [1]
can be used to formalize resource conscious compilation (for example, energy
aware compilation) [28] via Horn Logical semantics.

Horn-logical semantics can also be used for automatic verification and con-
sistency checking [5,7]. We do not elaborate any further since we are not
concerned with verification in this paper.

In [5] we show how both the syntax and semantics of a simple impera-

4 We refer to the denotation of a program under the Horn-logical semantics as its Horn
logical denotation.
5 Non-deterministic in the logic programming sense.

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–10990

Program ::= C.

C ::= C1;C2 |

loop while B C end while |

if B then C1 else C2 endif |

I := E

E ::= N | Identifier | E1 + E2 |

E1 - E2 | E1 * E2 | (E)

N ::= 0 | 1 | 2 | ... | 9

Identifier ::= w | x | y | z

Fig. 1: BNF grammar

tive language (a simple subset of
Pascal whose grammar is shown
in Figure 1) can be given in Horn
Logic. The Horn logical seman-
tics automatically yields an in-
terpreter. Given a program P ,
the interpreter can be partially
evaluated w.r.t. P to obtain P ’s
compiled code.

A program and its correspond-
ing code generated via partial
evaluation is shown below. Note

that the semantics is written un-
der the assumption that the program takes exactly two inputs (found in vari-
ables x and y) and produces exactly one output (placed in variable z).

w = x; main(X,Y,A) :-

loop while w > 0 initialize_store(B),

z = z * y ; update(a,X,B,C),

w = w - 1 update(b,Y,C,D),

end while. update(z,1,D,E),

access(x,E,F),

update(w,F,E,G),

commandwhile(G,H),

access(z,H,A).

commandwhile(A,B) :-

access(w,A,C),

(0<C ->

access(z,A,D),

access(y,A,E),

F is D*E,

update(z,F,A,G),

access(w,G,H),

I is H-1,

update(w,I,G,J),

commandwhile(J,B)

; B=A).

Notice that in the program that results from partial evaluation, only a
series of memory access, memory update, arithmetic and comparison op-
erations are left, that correspond to load, store, arithmetic, and compari-

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 91

son operations of a machine language. The while-loop, whose meaning was
expressed using recursion, will (always) partially evaluate to a tail-recursive
program. These tail-recursive calls are easily converted to iterative structures
using jumps. Though, the compiled code generated is in Prolog syntax, true
machine code is only a few simple steps away. The code generation process
is provably correct, since target code is obtained automatically via partial
evaluation. Of course, we need to ensure that the partial evaluator works
correctly. However, this needs to be done only once. Note that once we prove
the correctness of the partial evaluator, compiled code for programs written
in any language can be generated as long as the Horn-logical semantics of the
language is given.

3 Definite Clause Semantics

Note that in the code generated, the update and access operations are pa-
rameterized on the memory store (i.e., they take an input store and produce an
output store). Of course, real machine instructions are not parameterized on
store. This problem can be solved by using the DCG notation for expressing
the valuation predicates as well.

All valuation predicates take a store argument as input, modify it per the
semantics of the command under consideration and produce the modified store
as output [5]. Because the semantic rules are stated compositionally, the store
argument “weaves” through the semantic sub-predicates called in the rule.
This suggests, we can express the semantic rules in the DCG notation. Thus,
we can view the semantic rules as computing the difference between the output
and the input stores. This difference reflects the effect of the command whose
semantics is being given. Expressed in the DCG notation, the store argument
is hidden away. For example, in the DCG notation the valuation predicate

command(comb(C1,C2),Store,Outstore):-

command(C1,Store,Nstore),command(C2,Nstore,Outstore).

is written as:

command(comb(C1,C2)) --> command(C1), comm(C2).

The complete semantics of the subset of Pascal considered earlier is shown
below as a DCG.
prog_eval(p(Comm),Vala,Valb,Output)-->update(x,Vala),

update(y,Valb),command(Comm),access(z,Output).
command(comb(C1,C2))-->command(C1),command(C2).
command(while(B,C)) -->bool(B,Bval),

({Bval = true} ->
command(C),command(while(B,C));[]).

command(ce(B,C1,C2))-->bool(B,Bval),
({Bval = true} -> command(C1); command(C2)).

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–10992

command(assign(I,E))-->
expression(E,Val),update(I,Val).

expression(add(E1,E2),Result)-->
expression(E1,Val_E1),
expression(E2, Val_E2),
{Result is Val_E1+Val_E2}.

expression(sub(E1, E2), Result) -->
expression(E1, Val_E1),
expression(E2, Val_E2),
{Result is Val_E1-Val_E2}.

expression(mul(E1, E2), Result) -->
expression(E1, Val_E1),
expression(E2, Val_E2),
{Result is Val_E1*Val_E2}.

expression(id(X), Result) --> access(X, Result).
expression(num(X), X) --> [].
bool(greater(E1, E2), Bval) -->

expression(E1, Eval1),
expression(E2, Eval2),
{(Eval1 > Eval2 -> Bval = true; Bval = false)}.

bool(less(E1, E2), Bval) --> expression(E1, Eval1),
expression(E2, Eval2),
{(Eval1 < Eval2 -> Bval = true; Bval = false)}.

bool(equal(E1, E2), Bval) --> expression(E1, Eval1),
expression(E2, Eval2),
{(Eval1 = Eval2 -> Bval = true; Bval = false)}.

Semantics expressed as a DCG

Expressed in the DCG notation, the semantic rules become more intu-
itively obvious. In fact, these rules have more natural reading; they can
be read as simple rewrite rules. Additionally, now we can partially evalu-
ate this DCG w.r.t. an input program, and obtain compiled code that has
the store argument hidden. The result of partially evaluating this DCG-
formatted semantics is shown in Figure 2. Notice that the store argument
weaving through the generated code shown in the original partially evaluated

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 93

main(X,Y,A) :-
update(a,X),
update(b,Y),
update(z,1),
access(x,F),
update(w,F),
commandwhile,
access(z,A).

commandwhile :-
(access(w,C),
0<C ->

access(z,D),
access(y,E),
F is D*E,
update(z,F),
access(w,H),
I is H-1,
update(w,I),
commandwhile

; true).

Fig. 2: Store eliminated

code is gone. Notice also that the basic opera-
tions (such as comparisons, arithmetic, assign-
ment, etc.) that appear in the target code are
placed in braces in definite clause semantics,
so that the two store arguments are not added
during expansion to Prolog. The constructs
appearing within braces can be regarded as
the “terminal” symbols in this semantic eval-
uation, similar to terminal symbols appearing
in square brackets in the syntax specification.
In fact, the operations enclosed within braces
are the primitive operations left in the resid-
ual target code after partial evaluation. (Note,
however, that these braces can be eliminated
by putting wrappers around the primitive op-
erations; these wrappers will have two redun-

dant store arguments that are identical, per the requirements of the DCG
notation. Note also that the --> arrow of the DCG notation was replaced by
the :- prior to partial evaluation.)

4 Continuation Semantics

So far we have modeled only direct semantics [25] using Horn logic. It is well
known that direct semantics cannot naturally model exception mechanisms
and goto statements of imperative programming languages. To express such
constructs naturally, one has to resort to continuation semantics. Continua-
tion semantics are also easily modeled in Horn Logic in the DCG format. In
the definite clause continuation semantics, semantics of constructs is given in
terms of the differences of parse trees (i.e., difference of the input parse tree
and the continuation’s parse tree) [27]. Each semantic predicate thus relates
an individual construct (difference of two parse trees) to a fragment of the
store (difference of two stores). Thus, semantic rules are of the form:

command(C1, C2, Program, S1, S2) :- ...

where the difference of C1 and C2 (say ∆C) represents the command whose
semantics is being given, and the difference of S1 and S2 represents the store
which reflects the incremental change (∆S) brought about to the store by
the command ∆C. Note that the Program parameter is needed to carry the
mapping between labels and the corresponding command. Each semantic rule
thus is a stand alone rule relating the difference of command lists, ∆C, to
difference of stores, ∆S. If we view a program as a sequence of commands

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–10994

then its semantics can simply be obtained by adding the difference of stores for
each command. That is, if we view a program P as consisting of sequence of
commands:

P = ∆C1 + ∆C2 + . . . + ∆Cn

then its semantics S is viewed as a combination of the corresponding differ-
ences of stores:

S = ∆S1 + ∆S2 + . . . + ∆Sn

and the continuation semantics simply maps each ∆Ci to the correspond-
ing ∆Si. Additionally, continuation semantics allow for cleaner, more in-
tuitive declarative semantics for imperative constructs such as exceptions,
catch/throw, goto, etc. [25]. Finally, note that the above semantic rule can
also be written in the DCG notation causing the arguments S1 and S2 to
become hidden:

command(C1, C2, Program) --> ...

We do not give details due to lack of space. More details can be found else-
where [27]. However, we give below the continuation semantics of the subset of
Pascal considered earlier after extending it with statement labels and a goto

statement. Note that the syntax trees are now represented as a list of com-
mands. Each command is represented in the syntax tree as a pair, whose first
element is a label (possibly null) and the second element is the command itself.
Only the valuation functions for commands are shown (those for expressions,
etc., are similar to the one shown earlier).

prog([], _, _, 0) --> [].
prog(CommList,Val_x,Val_y,Output) -->

initialize_store, update(x, Val_x), update(y, Val_y),
comm_list(CommList,CommList), access(z,Output).

comm_list([],_) --> [].
comm_list(CurrList,Program)-->

comm(CurrList,Rest,Program), comm_list(Rest,Program).
comm([(_,while(B,LoopBody))|T],T,Program)-->

fix(if(B,LoopBody),Program).
comm([(_,ce(B,C1,C2))|T],T,Program) -->

((bool(B)) -> comm_list(C1,Program); comm_list(C2,Program)).
comm([(_,ce(B,C))|T],T,Program) -->

((bool(B)) -> comm_list(C,Program); []).
comm([(_,goto(ID))|_],GotoCont,Program)-->

{find_label(ID,Program,GotoCont)}.
comm([(_,assign(id(I), E))|T],T,_) --> expr(E,Val),update(I,Val).
comm([(_,abort)|_],[],_) --> [].

fix(if(B,LoopBody),Program)-->
((bool(B))-> comm_list(LoopBody,Program),

fix(if(B,LoopBody),Program); []).

The code for find label/3 predicate is not shown. It looks for the program
segment that is a target of a goto and changes the current continuation to
that part of the code. Consider the program shown below to the left: The
result of partially evaluating the interpreter obtained from the semantics w.r.t.

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 95

this program (containing a goto) is shown below to the right.

z = 1; main(A, B, C) :-

w = x; initialize_store,

goto L1; update(x, A),

loop while w > 0 update(y, B),

z = z * y; update(z, 1),

L1: w = w - 1 access(x, D),

endloop while; update(w, D),

z = 8. access(w, E),

F is E-1,

update(w, F),

fix_ifgreatidw1,

update(z, 8),

access(z, C).

fix_ifgreatidw1 :-

(access(w, A),

0<A ->

access(z, B),

access(y, C),

D is B*C,

update(z, D),

access(w, E),

F is E-1,

update(w, F),

fix_ifgreatidw1

; true

).

5 A Case Study in SCR

We have applied our approach to a number of practical applications. These
include generating code for parallelizing compilers in a provably correct man-
ner [5], generating code for controllers specified in Ada [15] and for domain
specific languages [8] in a provably correct manner, and most recently generat-
ing code in a provably correct manner for the Software Cost Reduction (SCR)
framework. In the rest of the paper, we show that Horn logical semantics can
be practically applied; we apply it to the domain specific language of SCR,
discussed next.

The SCR (Software Cost Reduction) requirements method is a software
development methodology introduced in the 80s [9] for engineering reliable

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–10996

software systems. The target domain for SCR is real-time embedded systems.
The SCR method has been extended to describe not only functional require-
ments (the values the system assigns to outputs) but also nonfunctional (e.g.,
timing and accuracy) requirements. A number of automatic tools have been
developed to aid in formal specification, verification and validation of systems
using the SCR method [12]. SCR has been applied to a number of practi-
cal systems, including avionics system (the A-7 Operational flight Program),
a submarine communication system, and safety-critical components of a nu-
clear power plant [12]. The SCR method is scalable and has been applied to
document requirements of the Lockheed’s C-130J Operational Flight Program
which resulted in approximately 100,000 lines of Ada code.

The SCR method describes system behavior by a mathematical relation
between monitored variables and controlled variables. This relation is con-
cisely specified using condition, events and tables. A condition is a predicate
defined on one or more variables in the specification. An event occurs when
any variable changes values. The environment changes monitored values and
causes input events. In response, the system updates the value of one or more
controlled variable according to some relations. Each SCR table specifies the
required value of a variable as a mathematical function defined on conditions
and events. There are three kinds of table used in SCR: condition tables, event
tables, and mode transition tables. The tables facilitate industrial application
of the SCR method since engineers find tables relatively easy to understand
and to develop [12]. In additional, tables can describe large quantities of
requirement information concisely.

5.1 The Four-Variable Model

There are several versions of SCR. One of the most important versions is
the Four Variable Model. The Four Variable Model [3], illustrated in Figure
3, represents requirements as a set of mathematical relations on four sets of
variables (monitored, controlled, input, and output variables). A monitored
variable represents an environmental quantity that influences system behav-
ior, while a controlled variable represents an environmental quantity the sys-
tem controls. A black box specification of required behavior is given as two
relations (REQ and NAT) from the monitored quantities to the controlled
quantities (rather than inputs to outputs). NAT, which defines the set of pos-
sible values, describes the natural constraints on the system behavior, such
as constraints imposed by physical laws and the system environment. REQ
defines the additional constraints on the system to be built as relations the
system must maintain between the monitored and the controlled quantities
[12].

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 97

Monitored

Variables

Controlled

Variables
Env

Data Item Data Item

OUT Relation

REQ Relation

Env
Devices
Input

IN Relation

Input Software Output Output
Devices

NAT Relation

Fig. 3. The Four-Variable Model

A domain specific language [17] has been designed to write SCR specifi-
cations using the four variable model, as well as a large number of tools have
been developed to help in checking consistency of the requirement specifica-
tions [12]. While the consistency of requirement specifications can be checked
using these tools, a hurdle still remains in having absolute confidence in the
final system obtained. This hurdle pertains to ensuring that the compilation
process is provably correct, i.e., after consistency checking, when the SCR
specification is translated into executable code then making sure that the
code generated is faithful to the original specification.

We have applied our method discussed in this paper to overcome this
hurdle. A Horn logical semantics for the SCR domain specific language was
developed. This semantics consists of the syntax specification, semantic al-
gebra and valuation predicates. The semantic algebra consists of operations
for accessing and updating the store (values of variables as well as their type)
and maintaining the various environments. Development of this semantics
required just a few weeks of work (a significant part of this time was spent un-
derstanding the SCR method). The DCG notation was used both for syntax
as well as semantics.

The grammar of SCR consists of five sections (type definitions, constant
definitions, variable declarations, assumptions and assertions, and function
definitions). User-defined data types are listed in the type definitions section.
There are two types of user define data types: (i) enumerated type and (ii)
integer type associated with a range. Variable declarations can include four
types of variables: monitored variables, controlled variables, term variables
and mode classes. The assumptions and assertions section contains predicates
describing relations between variables, i.e., each assumption or assertion is a
logical formula. The violation of an assumption indicates that the input does
not obey the assumed environmental constraints. If an assertion is violated, it
means that the specification does not satisfy a property that is was expected

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–10998

Permitted

Term: Overridden ...
Constants: Low, Permit ...

 Env
Devices

Env
Safety
Injection
Device

Injection
Block

Reset

Water Pres Sensor1

Sensor2

Sensor3

Software
Devices

Input Output

Safety Injection System

Mode
Class

Safety

High
Pressure

TooLow

Fig. 4. Requirements Spec. for Safety Injection

to satisfy. Function in SCR are defined by either a condition or an event table.
Functions are used to update values of dependent variables when a monitored
variable changes. The DCG for SCR has been developed in accordance to the
BNF grammar supplied to us by Naval Research Lab researchers. The seman-
tics of SCR’s DSL is given in terms of the store semantic algebra extended
with type information.

To illustrate generation of code for SCR in a provably correct manner,
we consider a simplified version of the control system for safety injection de-
scribed in [12]. The system uses three sensors to monitor water pressure and
adds coolant to the reactor core when the pressure falls below some threshold.
The system operator blocks safety injection by turning on a “block” switch
and resets the system after blockage by turning on a “reset” switch. Figure 4
shows how SCR constructs could be used to specify the requirements of the
control system. Water pressure and the “block” and “reset” switches are rep-
resented as monitored variables called WaterPres, Block, and Reset. Safety
injection is represented as a controlled variable called SafetyInjection. Each
sensor represents an input. The hardware interface between the control sys-
tem software and the safety injection system serves as output. A mode class
Pressure and a term Overridden help make the specification of the safety
injection system concise. Pressure has three modes: TooLow, Permitted, and
High. A drop in water pressure below a constant Low causes the system to
enter mode TooLow; an increase in pressure above a larger constant Permit

causes the system to enter mode High. The term Overridden is true if safety
injection is blocked, it is false otherwise. An example of a condition in
the specification is WaterPres < Low. Two examples of events are the input
event event@T(Block=on) (the operator turns Block from off to on) and the
conditioned event @T(Block=On) WHEN WaterPres < Low (the operator turns
Block to on when water pressure is below Low). The program corresponding

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 99

to this system written in the SCR domain specific language was also supplied
to us by researchers at the Naval Research Labs and is shown in Appendix I.
More details about SIS can be found elsewhere [12].

The Horn logical semantics developed for SCR immediately provides us
with an interpreter on which the program above can be executed. Further,
the interpreter was partially evaluated w.r.t. this program using the Mixtus
system, and compiled code was obtained. The partially evaluated code gen-
erated that corresponds to the safety injection system is shown in Appendix
II. The whole partial evaluation (using definite clause continuation semantics
of SCR) required 27.1 seconds on a Sun Fire 880 with 150 MHz clock-speed
and 1 CPU and 2 GB memory and generated 367 lines of assembly code
in Prolog syntax (shown in Appendix II). In [17], given the same example
code (Appendix I), a relation-based strategy (that associates C code as an at-
tribute with parse tree nodes) required 20 minutes to generate C code, while a
transformation-based method using the APTS system [21] took four minutes
to generate 293 lines of C code (execution done on a SUN Ultra 450 with 2
UltraSPARC-II 296MHz CPUS and 2GB memory, running Solaris 5.6 [17]).

Even though our respective experiments have been done on different ma-
chines, the machines are comparable in speed. As can be noticed, the time
taken to generate code in our case is considerably better. Note that we did not
optimize the semantics at all to make it more amenable to partial evaluation
as that would have reduced the readability of the semantics.

6 Related Work

Considerable work has been done in manually or semi-mechanically proving
compilers correct. Most of these efforts are based on taking a specific com-
piler and showing its implementation to be correct. A number of tools (e.g., a
theorem prover) may be used to semi-mechanize the proof. Example of such
efforts range from McCarthy’s work in 1967 [19] to more recent ones [22,11,2].
As mentioned earlier, these approaches are either manual or semi-mechanical,
requiring human intervention, and therefore not completely reliable enough
for engineering high-assurance systems. “Verifying Compilers” have also been
considered as one of the grand challenge for computing research [13], although
the emphasis here is more on developing a compiler that can verify the asser-
tions inserted in programs (of course, such a compiler has to be proven correct
first).

Considerable work has also been done on generating compilers automati-
cally from language semantics [25]. However, because the syntax is specified
as a (non-executable) BNF and semantics is specified using λ-calculus, the

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109100

automatic generation process is very cumbersome. The approach outlined in
this paper falls in this class, except that it uses Horn logical semantics which,
we believe and experience suggests, can be manipulated more efficiently.

Considerable work has also been done in using term rewriting systems
for transforming source code to target code. In fact, this approach has been
applied by researchers at NRL to automatically generate C code from SCR
specification using the APTS [21] program transformation system. As noted
earlier, the time taken is considerably more than in our approach. Other
approaches that fall in this category include the HATS system [29] that use
tree rewriting to accomplish transformations. Other transformation based
approaches are mentioned in [17].

Recently, Pnueli at al have taken the approach of verifying a given run
of the compiler rather than a compiler itself [23]. This removes the burden
of maintaining the compiler’s correctness proof; instead each run is proved
correct by establishing a refinement relationship. However, this approach is
limited to very simple languages. As the authors themselves mention, their
approach “seems to work in all cases that the source and target programs each
consist of a repeated execution of a single loop body ..,” and as such is limited.
For such simple languages, we believe that a Horn logical semantics based so-
lution will perform much better and will be far easier to develop. Development
of the refinement relation is also not a trivial task. For general programs and
general languages, the scalability of the approach is not established.

7 Conclusions

In this paper we presented an approach based on denotational semantics, Horn
logic, and partial evaluation for obtaining provably correct compiled code.
We illustrated our approach in the context of the SCR method for specifying
real-time embedded system. The complete syntax and semantic specification
for SCR was developed and used for automatically generating code for SCR
specifications. Our method produces executable code considerably faster than
other transformation based methods for automatically generating code for
SCR specifications.

Acknowledgement

We are grateful to Constance Heitmeyer and Elizabeth Leonard of the Naval
Research Labs for providing us with the BNF grammar of SCR and the safety
injection program as well as for discussions.

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 101

References

[1] S. Debray. Resource bounded partial evaluation. PEPM 1997. pp. 179-192.

[2] A. Dold, T. Gaul, W. Zimmermann Mechanized Verification of Compiler Backends Proc.
Software Tools for Technology Transfer (STTT’98), Aalborg, Denmark, July 12-13, 1998.

[3] S. R. Faulk. State Determination in Hard-Embedded Systems. Ph.D. Thesis, Univ. of NC,
Chapel Hill, NC, 1989.

[4] Y. Futamura. Partial Evaluation of Computer Programs: An approach to compiler-compiler.
J. Inst. Electronics and Comm. Engineers, Japan. 1971.

[5] G. Gupta “Horn Logic Denotations and Their Applications,” The Logic Programming
Paradigm: A 25 year perspective. Springer Verlag. 1999:127-160.

[6] G. Gupta, H-F. Guo, A. Karshmer, E. Pontelli, et al. Semantic-Based Filtering: Logic
Programming’s Killer App? 4th International Symposium on Practical Aspects of Declarative
Languages, LNCS 2257, Springer Verlag, pp. 82-100, Jan. 2002.

[7] G. Gupta, E. Pontelli. A Constraint-based Denotational Approach to Specification and
Verification of Real-time Systems. In Proc. IEEE Real-time Systems Symposium, pp. 230-239.
Dec. 1997.

[8] G. Gupta, E. Pontelli. A Logic Programming Framework for Specification and Implementation
of Domain Specific Languages. In Essays in Honor of Robert Kowalski, 2003, Springer Verlag
LNAI,

[9] K. L. Henninger. Specifying software requirements for complex systems: New techniques and
their application. IEEE Trans. on Software Engineering. SE-5, 1. pp. 2-13.

[10] C. Gunter. Programming Language Semantics. MIT Press. 1992.

[11] J. Hannan, F. Pfenning. Compiler Verification in LF. Proc. Seventh Annual IEEE Symposium
on Logic in Computer Science. pp. 407–418. 1992.

[12] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated Consistency Checking of
Requirements Specifications. ACM Trans. Software Eng. and Methodology 5, 3, July 1996.

[13] C. A. R. Hoare. The Verifying Compiler: A Grand Challenge for Computing Research. J.ACM,
50(1):63-69. Jan 2003.

[14] N. Jones. Introduction to Partial Evaluation. In ACM Computing Surveys. 28(3):480-503.

[15] L. King, G. Gupta, E. Pontelli. Verification of BART Controller: An Approach based
on Horn Logic and Denotational Semantics. In High Integrity Software, V. Winter and S.
Bhattacharya (eds), April 2001, Kluwer Academic.

[16] M. Leuschel, B. Martens, and D. De Schreye. Controlling Generalization and Polyvariance in
Partial Deduction of Normal Logic Programs. ACM Transactions on Programming Languages
and Systems (TOPLAS), 20(1):208-258.

[17] E. I. Leonard and C. L. Heitmeyer. Program Synthesis from Requirements Specifications Using
APTS. Kluwer Academic Publishers, 2002.

[18] K. Marriott and P. Stuckey. Constraint Programming. MIT Press, 1998.

[19] J. McCarthy and J. Painter. Correctness of a Compiler for Arithmetic Expressions. MIT AI
Lab Memo, 1967.

[20] S. P. Miller. Specifying the model Logic of a Flight Guidance Systems in CoRE and SCR.
Pages:44-53 Series Proceeding Article, 1998

[21] R. Paige. Viewing a Program Transformation System at Work. Proc. Programming Language
Implementation and Logic Programming, Springer, LNCS 844. 1994.

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109102

[22] C. Pusch. Verification of Compiler Correctness for the WAM. Proc 9th International Conference
on Theorem Proving in Higher Order Logics (TPHOL’96). Springer-Verlag LNCS 1125, 1996.

[23] A. Pnueli, M. Siegel, E. Singerman. Translation Validation. Proc TACAS’98, Springer Verlag
LNCS, 1998.

[24] D. Sahlin. An Automatic Partial Evaluator for Full Prolog. Ph.D. Thesis. 1994. Royal Institute
of Tech., Sweden. (available at www.sics.se)

[25] D. Schmidt. Denotational Semantics: a Methodology for Language Development. W.C. Brown
Publishers, 1986.

[26] L. Sterling & S. Shapiro. The Art of Prolog. MIT Press, ’94.

[27] Q. Wang, G. Gupta. Horn Logical Continuation Semantics. UTD Technical Report.
Forthcoming.

[28] Q. Wang, G. Gupta. Resource Bounded Compilation via Constrained Partial Evaluation. UTD
Technical Report. Forthcoming.

[29] V. L. Winter. Program Transformation in HATS. Software Transformation Systems Workshop,
’99.

[30] V. Winter et al. Bay Area Rapid Transit District Advance Automated Train Control System:
Case Study Description. In High Integrity Software, V. Winter and S. Bhattacharya (eds),
April 2001, Kluwer Academic.

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 103

Appendix I: Example SCR Code

spec Safety_Injection_System
type definitions
ySwitch: enum in {Off, On};
type_mcPressure: enum in {TooLow, Permitted,High};
yWPres: integer in [0, 2000];

constant definitions
Low=900:integer;
Permit=1000:integer;

monitored variables
mWaterPres: yWPres, initially 0;
mBlock, mReset: ySwitch, initially Off;

controlled variables
cSafety_Injection: ySwitch, initially On;

term variables
tOverridden: boolean, initially false;

mode classes
mcPressure: type_mcPressure, initially TooLow;

assumptions
A1: (mWaterPres’ >= mWaterPres AND mWaterPres’

- mWaterPres <=10)
OR (mWaterPres’ < mWaterPres AND mWaterPres

- mWaterPres’ <= 10)
function definitions
var mcPressure :=
case mcPressure
[] TooLow

ev
[] @T(mWaterPres >= Low) -> Permitted
ve

[] Permitted
ev
[] @T(mWaterPres >= Permit) -> High
[] @T(mWaterPres < Low) -> TooLow
ve

[] High
ev
[] @T(mWaterPres < Permit) -> Permitted
ve

esac
var tOverridden :=

ev
[] @T(mBlock=On) WHEN mReset=Off

AND NOT (mcPressure = High) -> true
[] @T(mReset=On) WHEN NOT (mcPressure = High)

OR @T(mcPressure = High)
OR @T(NOT (mcPressure = High)) -> false

ve
var cSafety_Injection ==

case mcPressure
[] TooLow
if

[] tOverridden -> Off
[] NOT tOverridden -> On

fi
[] Permitted, High
if

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109104

[] true -> Off
[] false -> On
fi
esac

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 105

Appendix II: Generated Code
interpreter(A, B) :-

interpreter1(A, B).
interpreter1(A, _) :-

initialize_store,
set(’Low’, 900),
set(prime_Low, 900),
set(’Permit’,1000),
set(prime_Permit,1000),
set(mWaterPres,0),
set(prime_mWaterPres,0),
set(mReset,’Off’),
set(prime_mReset,’Off’),
set(mBlock,’Off’),
set(prime_mBlock,’Off’),
set(cSafety_Injection,’On’),
set(prime_

cSafety_Injection,’On’),
set(tOverridden, false),
set(prime_

tOverridden,false),
set(mcPressure, ’TooLow’),
set(prime_

mcPressure,’TooLow’),
readInputVar(A),
access(prime_mWaterPres,B),
access(mWaterPres,C),
(C=<B ->

D=true
; D=false
),
access(prime_mWaterPres,E),
access(mWaterPres, F),
G is E-F,
(10<G ->

H=false
; H=true
),
(D==true,

H==true ->
I=true

; I=false
),
access(prime_mWaterPres,J),
access(mWaterPres, K),
(J<K ->

L=true
; L=false
),
access(mWaterPres,M),
access(prime_

mWaterPres,N),
O is M-N,
(10<O ->

P=false
; P=true
),
(L==true,

P==true ->
Q=true

; Q=false
),
(I==false,

Q==false ->
R=false

; R=true
),
set(’A1’, R),
access(mcPressure, S),
(S=’TooLow’ ->

access(prime_
mWaterPres,T),

access(prime_Low,U),
(U=<T ->

V=true
; V=false
),
access(mWaterPres,W),
access(’Low’, X),
(X=<W ->

Y=true
; Y=false
),
(Y==false,

V==true ->
Z=true

; Z=false
),
(Z==true ->

A1=’Permitted’
; A1=none
)

; A1=none
),
(A1==none ->

(S=’Permitted’ ->
access(prime_

mWaterPres,B1),
access(prime_

Permit,C1),
(C1=<B1 ->

D1=true
; D1=false
),
access(mWaterPres,

E1),
access(’Permit’,F1),
(F1=<E1 ->

G1=true
; G1=false
),
(G1==false,

D1==true ->
H1=true

; H1=false
),
(H1==true ->

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109106

I1=’High’
; I1=none
),
(I1==none ->

access(prime_
mWaterPres,J1),

access(prime_Low,
K1),

(J1<K1 ->
L1=true

; L1=false
),
access(mWaterPres,

M1),
access(’Low’,N1),
(M1<N1 ->

O1=true
; O1=false
),
(O1==false,

L1==true ->
P1=true

; P1=false
),
(P1==true ->

Q1=’TooLow’
; Q1=none
)

; Q1=I1
)

; Q1=none
),
(Q1==none ->

(S=’High’ ->
access(prime_
WaterPres,R1),

access(prime_
Permit,S1),

(R1<S1 ->
T1=true

; T1=false
),
access(mWaterPres,

U1),
access(’Permit’,

V1),
(U1<V1 ->

W1=true
; W1=false
),
(W1==false,

T1==true ->
X1=true

; X1=false
),
(X1==true ->

Y1=’Permitted’
; Y1=none
)

; Y1=none
)

; Y1=Q1
)

; Y1=A1
),
(Y1==none ->

access(mcPressure, Z1),
update(prime_

mcPressure, Z1)
; update(prime_

mcPressure, Y1)
),
access(prime_mBlock,A2),
(A2==’On’ ->

B2=true
; B2=false
),
access(mBlock,C2),
(C2==’On’ ->

D2=true
; D2=false
),
(D2==false,

B2==true ->
E2=true

; E2=false
),
access(prime_mReset,F2),
(F2==’Off’ ->

G2=true
; G2=false
),
access(prime_

mcPressure,H2),
(H2==’High’ ->

I2=true
; I2=false
),
(I2==true ->

J2=false
; J2=true
),
(G2==true,

J2==true ->
K2=true

; K2=false
),
(E2==true,

K2==true ->
L2=true

; L2=false
),
(L2==true ->

M2=true
; M2=none
),
(M2==none ->

access(prime

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 107

_mReset,N2),
(N2==’On’ ->

O2=true
; O2=false
),
access(mReset,P2),
(P2==’On’ ->

Q2=true
; Q2=false
),
(Q2==false,

O2==true ->
R2=true

; R2=false
),
access(prime_

mcPressure,S2),
(S2==’High’ ->

T2=true
; T2=false
),
(T2==true ->

U2=false
; U2=true
),
(R2==true,

U2==true ->
V2=true

; V2=false
),
access(prime_

mcPressure,W2),
(W2==’High’ ->

X2=true
; X2=false
),
access(mcPressure,Y2),
(Y2==’High’ ->

Z2=true
; Z2=false
),
(Z2==false,

X2==true ->
A3=true

; A3=false
),
access(prime_

mcPressure,B3),
(B3==’High’ ->

C3=true
; C3=false
),
(C3==true ->

D3=false
; D3=true
),
access(mcPressure,E3),
(E3==’High’ ->

F3=true

; F3=false
),
(F3==true ->

G3=false
; G3=true
),
(G3==false,

D3==true ->
H3=true

; H3=false
),
(A3==false,

H3==false ->
I3=false

; I3=true
),
(V2==false,

I3==false ->
J3=false

; J3=true
),
(J3==true ->

K3=false
; K3=none
)

; K3=M2
),
(K3==none ->

access(tOverridden,L3),
update(prime_

tOverridden,L3)
; update(prime_

tOverridden,K3)
),
access(mcPressure, M3),
(M3=’TooLow’ ->

access(prime_
tOverridden,N3),

(N3==true ->
O3=’Off’

; O3=none
),
(O3==none ->

access(prime_
Overridden,P3),

(P3==true ->
Q3=false ;
Q3=true

),
(Q3==true ->

R3=’On’ ;
R3=none

)
; R3=O3
)

; R3=none
),
(R3==none ->

(M3=’High’ ->

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109108

S3=’Off’
; M3=’Permitted’ ->

S3=’Off’
; S3=none
)

; S3=R3
),
(S3==none ->

access(cSafety_
Injection,T3),

update(prime_cSafety_
Injection,T3)

; update(prime_cSafety_
Injection,S3)

).

Q. Wang, G. Gupta / Electronic Notes in Theoretical Computer Science 118 (2005) 87–109 109

	Introduction
	Horn Logical Semantics
	Definite Clause Semantics
	Continuation Semantics
	A Case Study in SCR
	The Four-Variable Model

	Related Work
	Conclusions
	Acknowledgement
	References

