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Abstract—Opportunistic networking largely relies on human-
carried devices as relays to move data across the network. Human
altruistic behavior is an important factor in the feasibility and
performance of such a system. In this paper, we study the impact
of different altruism distributions on the system throughput and
delay of opportunistic communications. We evaluate the system
performance by utilizing social network topological models and
experimental human mobility traces with different communica-
tion patterns. We also discuss several observations from the result
of the study. To the best of our knowledge, this is the first study
of the impact of altruism on opportunistic communications.

Index Terms—Opportunistic communication, altruism, social
network, community, simulation.

I. INTRODUCTION

Humans carry an increasing number of small wireless
devices capable of generating, storing, and forwarding in-
formation. As we move through our environments, tempo-
rary opportunities arise for short range connections amongst
these devices, without relying on a network infrastructure.
Hence opportunistic communication largely relies on human-
carried devices to relay messages for others. However, in
wireless environments, especially for small hand-held devices,
resources such as battery or memory is still a major concern,
and relaying messages for others requires altruistic behavior.
Altruism refers to behavior that is “costly to the organism
performing the behavior but benefits other organisms” [20].
Since humans constitute the network, human altruistic behav-
ior inevitably impacts opportunistic communication system. It
is an important metric to assess the feasibility and performance
of opportunistic communication. While in the literature a host
of studies focus on exploiting social context [5] [11] [12] or
mobility patterns [3] [15] [23] in opportunistic communication,
we find the study of this topic conspicuously missing.

In this paper, we intend to give an elementary but systematic
study of the impact of altruism on the communication network,
particularly on opportunistic networks. We expect our result to
be applicable to other social-related networks. In particular, we
look at how robust an opportunistic network is with different
distributions of altruism in the population, and how the differ-
ent altruism distributions affect the system performance. Since
human altruism is closely related to kinship or socialization
(e.g. friends, colleagues, and acquaintances) [20], we generate
social network topologies using several popular social network
models [13] [19] [25], and simulate asynchronous messaging
in the network. To also account for human mobility, we further

evaluate the system throughput using two experimental human
mobility traces gathered in two research projects [1] [6]. We
find that both information dissemination in social networks
and data forwarding in human mobile networks are quite
robust towards altruism distributions, with better performance
in those altruism distributions biased to the class of nodes
that are more responsible for maintaining their underlying
networks.

For the communication model, we utilize different traffic
patterns. We assume each node in the network can generate
messages for others but with different probabilities. For an
ecological community, correlated interaction means that “an
organism of a given type might be more likely to interact
with another organism of the same type than with a randomly
chosen member of the population” [20]. This correlated in-
teraction is also applicable to human communication patterns,
and people in the same community usually talk to each other
more often than to people in other communities [18]. We
believe these community-biased communication patterns also
limit the impact of altruism in the system, and we find that
the community-biased communication could further increase
the system performance.

We proceed in this paper as follows. Related work is
described in Section II, methodology in Section III, altruism
model and communication pattern in Section IV, results dis-
cussion in Section V, and conclusions in Section VI.

II. RELATED WORK

Altruistic behavior has been studied in the literature using
the game theory approach. For example [14] and [16] model
players’ payoff as their own altruism coefficients and also what
they believe their opponents’ coefficients to be. In this paper
we are interested in the system throughput and delay when
the system reaches steady state. Therefore, we assume static
distributions of the altruism for the study and will investigate
the more transient gaming strategies in the future. [4] studies
the price of anarchy of traffic routing under the assumption
that users are partially altruistic. They show that if all users
have a coefficient of altruism β > 0, then the price of
anarchy is bounded by 1/β. The altruism model in this
paper follows an incentive (utility) approach as introduced
by [14]. They assume the utility of each player is a linear
combination of his own a priori payoff and the payoffs of
other players. We do not focus on how a particular distribution
of altruism is induced by a certain kind of incentive of the
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nodes, but study the result of the system with the already
formed altruism distribution. Altruism has also been studied
in cooperative services. The authors in [2] present a general
approach to construct cooperative services, which tolerate
Byzantine, Altruistic, and Rational behavior. Altruistic nodes
in the system are those that follow the suggested protocol
exactly, and hence they are not a challenge in the protocol
design. In P2P research, Piatek et al. have explored the
altruistic behaviors in BitTorrent by measurement [22]. They
found that high capacity peers send much faster than the
minimal rate required for reciprocation, which is similar to one
of our observations from the geometric altruism distribution
that nodes with higher degrees are of more importance in
maintaining the system performance. This paper focuses on
evaluating the performance of information dissemination in
opportunistic networks with nodes of different altruistic states,
and we find this type of study conspicuously missing in the
literature.

III. METHODOLOGY

We use two practical approaches to study the impact of
altruism on opportunistic communication, based on social
network topological models and human mobility traces.

A. Social Network Models
We first study information dissemination on three different

topologies popularly used in modeling human social networks,
referred to as Simple model [25], Newman model [19], and
Kumpula model [13]. We consider this approach because, as
is well known in sociology, altruism is closely dependent on
kinship and social relationship. Whether people would share
their resource to forward messages for others highly depends
on the social links between the requesting and requested nodes.
We use asynchronous messaging on the above generated
topologies, which means the delivery of different messages in
the system are independent. Besides, we set the Time-to-Live
(TTL) value of all messages to the diameter of their underlying
network topology1. The diameter of a network is the longest
shortest-path between any two nodes in the network. In our
system, each node is assigned an altruism value according
to the distributions we will introduce in Section IV. During
the simulation, each source node broadcasts its message to
its neighbors only once. If a node receives a message with
live TTL, and it has not been forwarded by this node before,
the node makes a decision of whether to broadcast this
message according to its altruistic state, and updates the TTL
accordingly. In broadcasting, a message may arrive at the same
node multiple times with different TTLs. To focus on the
effect of altruism on the networks, and isolate the influence of
the message forwarding strategy, we simulate the “best effort”
strategy, such that a message’s replica with greater TTL will
arrive at a node first.

Table I summarizes the characteristics of the three models2.
In order for the topologies to be comparable with each

1This guarantees that when all the nodes in the network are totally altruistic,
the system throughput is 1, which serves as the upper bound of the system.

2For Kumpula model, a community detection algorithm [21] is applied to
split the network into communities by using a 7-clique percolation.

Network model Simple Newman Kumpula
Number of nodes 1000 996 1000
Number of edges 5001 5024 4954

Diameter 6 6 9
Clustering coefficient 0.264 0.092 0.473

Number of communities 50 50 43

Table I
CHARACTERISTICS OF THE THREE SOCIAL TOPOLOGIES
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Figure 1. Degree and community distribution of the social topologies

other, we keep the number of nodes approximately equal to
1,000 and the average number of neighbors of each node
approximately equal to 1% of the total population. Thus, the
difference in their structures results solely from structuring of
links according to different social scenarios. Fig. 1 shows the
degree and community distributions of all the topologies.

B. Human Mobility Traces

The first approach studies the effect of altruism on the
spreading of messages on social networks, and gives an
estimated performance, but it does not consider the mobility
of nodes and cannot fully reflect the performance of a mobile
social network. Then, we utilize human mobility traces to
further validate our observations. We utilize two experimental
datasets gathered in the Reality Mining Project [1] and the
Haggle Project [6]. In these experiments, Bluetooth-enabled
mobile devices ran software logging contacts with each other
by doing Bluetooth device discovery periodically. Table II
summarizes these experiments. The characteristics of these
datasets, such as inter-contact and contact distributions, have
been explored in several studies [8] [12].

We develop a event/contact driven simulator which can
replay the collected mobility traces. To evaluate the forwarding
performance under different distributions of altruism, we use
a complete opportunistic flooding strategy that messages are
duplicated and sent to all mobile nodes encountered, as in

Experimental dataset Reality Cambridge
Device Phone iMote

Duration (days) 246 11
Granularity (seconds) 300 600

No. of experimental devices 97 54
No. of internal contacts 54,667 10,873

Average no. of contacts/pair/day 0.024 0.345

Table II
CHARACTERISTICS OF THE TWO EXPERIMENTAL DATASETS
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epidemic routing [24]. As in Section III-A, a node makes a
decision about whether to relay a message for its neighbor
depending solely on its altruistic state. In the simulation,
we assume that each node asks another node it encounters
for message forwarding. In addition, a node does not record
whether a particular message has already been requested for
forwarding before, unless it has relayed the message. This is
similar to a simple memory-less Markov process. It makes
sense in real life as a mobile device does not have to waste
resource to store information about a message that it refused
to relay.

IV. SYSTEM ASSUMPTIONS

In this paper, we utilize several different altruism models
and communication patterns.

A. Altruism Models

Altruism is observed in many aspects of the modern so-
cieties and also exhibited by hunter-gatherers, who typically
have dense networks of exchange relations, food-sharing, co-
operative hunting, and collective warfare. Human altruism has
been intensively studied [9] [10] [20]. In general, each node
can have different altruism states for different other nodes.
Here we assume several altruism distributions for the whole
population. All the altruism values are distributed between 0
and 1, where 0 stands for totally selfish and 1 stands for totally
altruistic. (In [4] [16], altruism values are also modeled as
between −1 and 1, where −1 stands for totally spiteful, but
we do not consider spiteful behavior in this study.)
• Degree-biased Distribution, relates the altruism to one

characteristic of the network topology, namely, node
degree (in social science, it is also referred to as degree
centrality), as follows:

ai = (
ki − kmin

kmax − kmin
)α with α > 0 (1)

where kmin and kmax are respectively the smallest and
the largest degrees in the network. With this formula,
independently of the value of α, we have ai = 0 for
ki = kmin, and ai = 1 for ki = kmax, that is the node
with lowest degree always has a = 0, while the hub
has a = 1. When α = 1 the value of a grows linearly
with the degree, while α > 1 (0 < α < 1) indicates a
superlinear (sublinear) dependence of a from k. Notice
that, when α = 0 all nodes have the same altruism a = 1.
The scenario for this model is that in the social network,
people become popular and have many friends since they
are more willing to help others. If we want to have ai = 1
for ki = kmin, and ai = 0 for ki = kmax, that is the
node with the lowest degree always has a = 1, while the
hub has a = 0 we need to use instead:

ai = (
kmax − ki

kmax − kmin
)α with α > 0 (2)

The scenario for this is that if a person has too many
friends, he may not have enough resource to help all of
them, while a person with only one friend will probably
be very glad to help out this friend.

• Geometric Distribution, relates the altruism to the dis-
tance of social relationship between people. As the
simplest case, the altruistic values are calculated per
pair of nodes, and each follows a distribution such that
the probability decreases with the social hops, k, as in
P (X = k) = (1− p)(1−k) · p, where p can be considered
as the altruism of a person towards his closest acquain-
tances (i.e. the first social hop). However, increasing p
indicates the increase in the decaying rate of altruism of
nodes farther away from it. The assumption is that all
the acquaintances of a person share a fixed amount of
resource from this person. In order to guarantee that the
maximum altruism value is 1, we normalize the altruism
values by the parameter p. In real life, altruism also
decreases from kinship (first hop) to those peopel who
are farther away on the social graph [17].

• Uniform and Normal Distribution dictates that the altruis-
tic value of the whole population is uniformly distributed
or follows normal3 distribution between 0 and 1. Uniform
and normal distributions are popularly encountered in
nature and society, and can be possibilities for altruism
distribution.

• Community-biased Distribution accounts for the hetero-
geneity of altruism towards different people. It assumes
that people in a community have greater incentives to
carry messages for the other members in the same com-
munity and less incentives to carry messages for people
outside the community. Hence, we model the altruism of
each node using a tuple (a, e), representing a node with
probability a to carry data for intra-community nodes
and e for inter-community nodes. The community-biased
altruism has significant effect on the system performance
of opportunistic communications. But due to space lim-
itations, in this paper, we do not present the result in
Section V, and leave the detailed study as future work.

B. Communication Patterns

In this paper we assume asynchronous communication. In
principle, each node in the network can create messages for
any other nodes, but we study the effect of different com-
munication patterns. At the beginning of the simulation, each
node picks a list of destination nodes to send messages based
on certain communication pattern. We analyze uniform and
community-biased traffic from a source for the communication
scenarios.
• Uniform pattern: The source-destination pairs are uni-

formly distributed throughout the whole population. In
this case, each node has the same probability to commu-
nicate with all other nodes, and there is no bias for the
traffic.

• Community-biased pattern dictates that each node tends
to communicate with more nodes inside its community
than those in other communities [18]. This traffic pattern
is determined by two parameters, Pin and Pout, which

3We adopted 5% and 95% of the Cumulative Distribution Function (CDF)
value as two cutoffs in the negative and the positive directions of the normal
distribution function.
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are the probability of generating messages for community
members and that for inter-community communication.
Note that Pin + Pout = 1.

Uniform traffic assumes an equal communication opportu-
nity for each node pair, but in reality a person normally talks to
different people with different frequencies. Community-biased
traffic is more realistic in that it assumes heterogeneity in
communication patterns.

V. RESULT AND EVALUATION

The evaluations in this paper mainly focus on: 1) the
robustness of opportunistic communications under different
altruism distributions, 2) the comparison of effects of different
altruism models on the overall system performance, and 3) the
effect of communication patterns on the system with different
altruism models. We summarize the most general observations
at the end of this section (Section V-D).

A. Performance Metrics

We utilize several metrics for the above analyses:
• System throughput, or delivery ratio, which is the propor-

tion of the number of delivered messages out of the total
number of created messages in the system.

• System delay, or delivery delay, which only takes into
consideration the delivered messages. For the study based
on social topological networks, it is the expected number
of hops that delivered messages traverse divided by the
TTL (set to the diameter of the network). For the study
based on mobility traces, messages in the system are
given a finite life-time, after which they are no longer
considered of interest. By varying this life-time value,
the delivery ratio also reflects the delay of the system.

• System cost, or delivery cost, is the expected number of
message replicas the system takes to deliver a message.
It is an important metric for our study since forwarding
duplicated messages consumes resources, such as battery
and memory. But for brevity of this paper, we leave its
investigation as future work.

The results in this paper are obtained as averages of 20 sim-
ulations. We also compute the 95th percentile with Student’s
t-distribution, but we do not plot it for the results based on
social topological networks since the confidence intervals are
quite trivial.

B. Social topological Networks

Fig. 2 shows the system delivery ratio with the parameter
p for geometric altruism distribution when the communication
pattern is uniform. One interesting observation is that Simple
is less tolerant to p than Newman or Kumpula. This is because
there is no high-degree node (with degree above 20) in Simple
as in the other two networks (see Fig. 1), and nodes with
higher degree are more favorable to spread messages under the
broadcasting case. We observe that for altruism of geometric
distribution, high-degree nodes are more important to maintain
the system performance. We will use this observation for later
analyses. In addition, for the robustness, we can see that if the
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Figure 2. Delivery ratio with p using uniform communication pattern
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Figure 3. Delivery ratio with α using uniform communication pattern

traditional six degree of separation holds in the real world,
the system can still provide over 85% throughput even if each
node shares most of its resource (60%) with its neighbors and
only a small portion (40%) with the rest (on average 99%) of
the population (see Fig. 2 for the Newman model).

Fig. 3 shows the system delivery ratio with the parameter α
for degree-biased altruism distribution when the communica-
tion pattern is uniform. We can see that the system performs
satisfactorily when α < 1. The plot also clearly conveys that
for all three social topologies, the system delivery ratios under
lower-degree biased altruism distribution are greater than those
under high-degree biased scenario. From Fig. 1, we see that the
social topologies we consider comprise more low-degree nodes
than high-degree ones. We conclude that the system performs
better when the altruism distribution favors the class of nodes
that are more responsible for maintaining the network. The
result in the next section will confirm this conclusion.

We have shown in Fig. 2 that high-degree nodes are
more important for maintaining the system performance when
the altruism distribution is geometric. Then we compare the
system performance under geometric and high-degree biased
altruism distribution in Fig. 4 and Fig. 5, when the commu-
nication pattern is community-biased. The x-axis represents
the percentage of traffic targeting the same community with
the source. In order for the two altruism distributions to be
comparable with each other, we choose the values of p and α
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Figure 4. Delivery ratio with community biased communication pattern
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Figure 5. Delivery delay with community biased communication pattern

where the delivery ratios are same in Fig. 2 and Fig. 34. We
can see that for all three underlying networks, the system has
greater throughput with the altruism of geometric distribution
than with high-degree biased scenario, and the former case also
incurs lower system delay than the latter. From the observation
we conclude that for the altruism distributions that favor the
class of nodes with higher degrees, the system prefers the
altruism distribution based on social distance rather than that
based on social degree centrality. The plots also show that the
community-biased communication pattern can further increase
the system performance, and the system throughput and delay
increases and decreases, respectively, with the increase in
percentage of intra-community traffic.

Fig. 6 presents the system delivery ratio for altruism of
Uniform and Normal distributions when the communication
pattern is community-biased. It clearly shows that Uniform
and Normal altruism distribution have quite similar (or the
same) impact on the system performance. Again, we can
observe that the system is quite robust towards any pattern
of communication (with system delivery ratios above 90%).

C. Human Mobility Traces

In this section, we look at whether the major results from
the above simulations can also be observed on the real human
mobile network. Since not all the datasets we can access have

4We choose p = 0.4 and α = 1 for Simple, p = 0.7 and α = 1.6 for
Newman, and p = 0.5 and α = 0.9 for Kumpula.
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Figure 6. Delivery ratio with uniform and normal altruism distribution

a priori community information, which changes dynamically
by nature [26], we leave the study of community-biased
communication as future work.

Fig. 7 and Fig. 8 show the system throughput on the
Reality and Cambridge datasets, respectively. Each graph
shows the throughput under totally altruistic, normal, uniform,
and degree-biased altruism distributions. The x-axis shows the
TTL5 of each message in natural logarithmic scale, which
is the time each message can stay in the system, and hence
also indirectly reflects the delays of the deliveries. From both
figures, we can observe that normal and uniform altruism
distributions yield quite similar delivery ratios (their confi-
dence intervals are almost overlapping), which coincide with
the observation in Section V-B. One interesting observation
is that the system yields greater delivery ratio under altruism
of high-degree biased distribution than that under high-degree
biased scenario. This seems to contradict the observation in
Section V-B that the low-degree biased altruism distribution
favors the system performance more. But the study in [12]
shows that the node betweenness6 are highly correlated with
the node degree in these mobility traces, which indicates
that for these datasets, the nodes with high degree are more
responsible for maintaining the network connectivity (since
they move more actively than other nodes). This is in agree-
ment with the generalized observation in Section V-B that the
system performs better when the altruism distribution favors
the class of nodes that are more responsible for maintaining
the network. In addition we can see that the system throughput
under these altruism distributions are very close to that of
the “Totally altruistic” case, especially for the Cambridge
datasets7. And even for this worst case, the system throughput
is still no less than half of that under “Totally altruistic” for
TTL with small values (68% for the Reality dataset and 87%
for the Cambridge dataset). These results further confirm the
robustness of opportunistic communications towards distribu-
tions of altruism.

5Here, the TTL is different from that in Section V-B, which is the number
of forwarding hops a message can last.

6Betweenness [7] of a node is the total number of shortest paths between
all possible pairs of nodes that pass through this node.

7The delivery ratio of the Reality dataset is generally low even with TTL up
to one week. This is because many participants switched off their Bluetooth
transceivers, which makes the network quite sparse.
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Figure 7. Delivery ratio with uniform traffic on Reality data
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Figure 8. Delivery ratio with uniform traffic on Cambridge data

D. Discussion

Finally we summarize the most general observations from
the above studies both on social network topological models
and experimental human mobility traces.
• Opportunistic communication is quite robust when the

altruism of participating nodes is considered.
• Opportunistic communication prefers the altruism model

biased to the class of nodes that are more responsible for
maintaining its underlying network.

• The uniform and the normal distribution of altruism have
almost the same impact on the system throughput of
opportunistic communications.

• Community-biased communication pattern can further
increase the performance of opportunistic communication
system with different altruism models.

VI. CONCLUSION AND FUTURE WORK

While proposing that human altruism has impact on op-
portunistic communications, this paper presents a primary
investigation on this topic. We elaborate several observations
from the study. In this paper, we only consider the altruism
distribution at the steady state, and it would be interesting to
study the altruism resulting from gaming strategies. Currently,
we assume each user does not keep its rejection history of
message delivery for other nodes. In the future, we can study
variations of this. For example, limiting the number of delivery
requests for users to incur lower system cost. It would also be

interesting to study how much resource a node can save by
being selfish or only helpful within the community.
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