
Conception, Evolution, and Application of Functional Programming
Languages

PAUL HUDAK

Yale University, Department of Computer Science, New Haven, Connecticut 06520

The foundations of functional programming languages are examined from both historical
and technical perspectives. Their evolution is traced through several critical periods: early
work on lambda calculus and combinatory calculus, Lisp, Iswim, FP, ML, and modern
functional languages such as Miranda’ and Haskell. The fundamental premises on which
the functional programming methodology stands are critically analyzed with respect to
philosophical, theoretical, and pragmatic concerns. Particular attention is paid to the
main features that characterize modern functional languages: higher-order functions,
lazy evaluation, equations and pattern matching, strong static typing and type inference,
and data abstraction. In addition, current research areas-such as parallelism,
nondeterminism, input/output, and state-oriented computations-are examined with
the goal of predicting the future development and application of functional languages.

Categories and Subject Descriptors: D.l.l [Programming Techniques]: Applicative
(Functional) Programming; D.3.2 [Programming Languages]: Language
Classifications-applicative languages; data-flow languages; nonprocedural languages; very
high-level languages; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic-lambda calculus and related systems; K.2 [History of Computing]:
Software

General Terms: Languages

Additional Key Words and Phrases: Data abstraction, higher-order functions, lazy
evaluation, referential transparency, types

INTRODUCTION

The earliest programming languages were
developed with one simple goal in mind: to
provide a vehicle through which one could
control the behavior of computers. Not sur-
prisingly, the early languages reflected the
structure of the underlying machines fairly
well. Although at first blush that goal
seems eminently reasonable, the viewpoint
quickly changed for two very good reasons.
First, it became obvious that what was easy
for a machine to reason about was not
necessarily easy for a human being to rea-
son about. Second, as the number of differ-

1 Miranda is a trademark of Research Software Ltd.

ent kinds of machines increased, the need
arose for a common language with which to
program all of them.

Thus from primitive assembly lan-
guages (which were at least a step up from
raw machine code) there grew a plethora of
high-level programming languages, begin-
ning with FORTRAN in the 1950s. The
development of these languages grew so
rapidly that by the 1980s they were best
characterized by grouping them into fami-
lies that reflected a common computation
model or programming style. Debates over
which language or family of languages is
best will undoubtedly persist for as long as
computers need programmers.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0360-0300/89/0900-0359 $01.50

ACM Computing Surveys, Vol. 21, No. 3, September 1989

360 . Paul Hudak

CONTENTS

INTRODUCTION
Programming Language Spectrum
Referential Transparency and Equational

Reasoning
Plan of Study

1. EVOLUTION OF FUNCTIONAL LANGUAGES
1.1 Lambda Calculus
1.2 Lisp
1.3 Iswim
1.4 APL
1.5 FP
1.6 ML
1.7 SASL, KRC, and Miranda
1.8 Dataflow Languages
1.9 Others
1.10 Haskell

2. DISTINGUISHING FEATURES OF MODERN
FUNCTIONAL LANGUAGES
2.1 Higher Order Functions
2.2 Nonstrict Semantics (Lazy Evaluating)
2.3 Data Abstraction
2.4 Equations and Pattern Matching
2.5 Formal Semantics

3. ADVANCED FEATURES AND ACTIVE
RESEARCH AREAS
3.1 Overloading
3.2 Purely Functional Yet Universal I/O
3.3 Arrays
3.4 Views
3.5 Parallel Functional Programming
3.6 Caching and Memoization
3.7 Nondeterminism
3.8 Extensions to Polymorphic-Type Inference
3.9 Combining Other Programming Language

Paradigms
4. DISPELLING MYTHS ABOUT FUNCTIONAL

PROGRAMMING
5. CONCLUSIONS
REFERENCES

The class of functional, or applicative,
programming languages, in which compu-
tation is carried out entirely through the
evaluation of expressions, is one such fam-
ily of languages, and debates over its merits
have been quite lively in recent years. Are
functional languages toys? Or are they
tools? Are they artifacts of theoretical fan-
tasy or of visionary pragmatism? Will they
ameliorate software woes or merely com-
pound them? Whatever answers we might
have for these questions, we cannot ignore

the significant interest current researchers
have in functional languages and the im-
pact they have had on both the theory and
pragmatics of programming languages in
general.

Among the claims made by functional
language advocates are that programs can
be written quicker, are more concise, are
higher level (resembling more closely tra-
ditional mathematical notation), are more
amenable to formal reasoning and analysis,
and can be executed more easily on parallel
architectures. Of course, many of these fea-
tures touch on rather subjective issues,
which is one reason why the debates can be
so lively.

This paper gives the reader significant
insight into the very essence of functional
languages and the programming method-
ology that they support. It starts with a
discussion of the nature of functional lan-
guages, followed by an historical sketch of
their development, a summary of the dis-
tinguishing characteristics of modern func-
tional languages, and a discussion of
current research areas. Through this study
we will put into perspective both the power
and weaknesses of the functional program-
ming paradigm.

A Note to the Reader: This paper as-
sumes a good understanding of the funda-
mental issues in programming language
design and use. To learn more about mod-
ern functional programming techniques,
including the important ideas behind rea-
soning about functional programs, refer to
Bird and Wadler [1988] or Field and Har-
rison [1988]. To read about how to imple-
ment functional languages, see Peyton
Jones [19871 (additional references are
given in Sections 1.8 and 5).

Finally, a comment on notation: Unless
otherwise stated, all examples will be writ-
ten in Haskell, a recently proposed func-
tional language standard [Hudak and
Wadler 19881. Explanations will be given
in square brackets [] as needed.’

‘Since the Haskell Report is relatively new, some
minor changes to the language may occur after this
paper has appeared. An up-to-date copy of the Report
may be obtained from the author.

ACM Computing Surveys, Vol. 21, NO. 3, September 1989

Functional Programming Languages 361

Programming Language Spectrum

Imperative languages are characterized as
having an implicit state that is modified
(i.e., side effected) by constructs (i.e., com-
mands) in the source language. As a result,
such languages generally have a notion of
sequencing (of the commands) to permit
precise and deterministic control over
the state. Most, including the most pop-
ular, languages in existence today are
imperative.

As an example, the assignment state-
ment is a (very common) command, since
its effect is to alter the underlying implicit
store so as to yield a different binding for
a particular variable. The begin . . . end
construct is the prototypical sequencer of
commands, as are the well-known goto
statement (unconditional transfer of con-
trol), conditional statement (qualified se-
quencer), and while loop (an example of a
structured command). With these simple
forms, we can, for example, compute the
factorial of the number X:

n:= x;
a := 1;
while n>O do
begin a := a*n;

n := n-l
end;

After execution of this program, the value
of a in the implicit store will contain the
desired result.

In contrast, declarative languages are
characterized as having no implicit state,
and thus the emphasis is placed entirely on
programming with expressions (or terms).
In particular, functional languages are dec-
larative languages whose underlying model
of computation is the function (in contrast
to, for example, the relation that forms the
basis for logic programming languages).

In a declarative language state-oriented
computations are accomplished by carrying
the state around explicitly rather than im-
plicitly, and looping is accomplished via
recursion rather than by sequencing. For
example, the factorial of x may be computed

in the functional language Haskell by

fat x 1
where fat n a

= if n>O then fat (n-l) (a*n)
else a

in which the formal parameters n and a are
examples of carrying the state around ex-
plicitly, and the recursive structure has
been arranged so as to mimic as closely as
possible the looping behavior of the pro-
gram given earlier. Note that the condi-
tional in this program is an expression
rather than command; that is, it denotes a
value (conditional on the value of the pred-
icate) rather than a sequencer of com-
mands. Indeed the value of the program is
the desired factorial, rather than it being
found in an implicit store.

Functional (in general, declarative) pro-
gramming is often described as expressing
what is being computed rather than how,
although this is really a matter of degree.
For example, the above program may say
less about how factorial is computed than
the imperative program given earlier, but
is perhaps not as abstract as

fat x
where fat n

= if n==O then 1
else n*fac (n-l)

[== is the infix operator for equality],
which appears very much like the mathe-
matical definition of factorial and is indeed
a valid functional program.

Since most languages have expressions,
it is tempting to take our definitions liter-
ally and describe functional languages via
derivation from conventional programming
languages: Simply drop the assignment
statement and any other side-effecting
primitives. This approach, of course, is very
misleading. The result of such a derivation
is usually far less than satisfactory, since
the purely functional subset of most im-
perative languages is hopelessly weak
(although there are important exceptions,
such as Scheme [Rees and Clinger 19861).

Rather than saying what functional lan-
guages don’t have, it is better to character-
ize them by the features they do have. For
modern functional languages, those fea-

ACM Computing Surveys, Vol. 21, No. 3, September 1989

362 . Paul Hudak

tures include higher-order functions, lazy
evaluation, pattern matching, and various
kinds of data abstraction-all of these fea-
tures will be described in detail in this
paper. Functions are treated as first-class
objects, are allowed to be recursive, higher
order, and polymorphic, and in general are
provided with mechanisms that ease their
definition and use. Syntactically, modern
functional languages have an equational
look in which functions are defined using
mutually recursive equations and pattern
matching.

This discussion suggests that what is im-
portant is the functional programming
style, in which the above features are man-
ifest and in which side effects are strongly
discouraged but not necessarily eliminated.
This is the viewpoint taken, for example,
by the ML community and to some extent
the Scheme community. On the other hand,
there is a very large contingency of purists
in the functional programming community
who believe that purely functional lan-
guages are not only sufficient for general
computing needs but are also better because
of their “purity”. At least a dozen purely
functional languages exist along with their
implementations.3 The main property that
is lost when side effects are introduced is
referential transparency; this loss in turn
impairs equational reasoning, as described
below.

Referential Transparency and Equational
Reasoning

The emphasis on a pure declarative style of
programming is perhaps the hallmark of
the functional programming paradigm. The
term referentially transparent is often used
to describe this style of programming, in
which “equals can be replaced by equals”.
For example, consider the (Haskell) expres-
sion

. . . x+x . . .
wherex=fa

The function application (f a) may be sub-
stituted for any free occurrence of x in the

3 This situation forms an interesting contrast with the
logic programming community, where Prolog is often
described as declarative (whereas Lisp is usually not),
and there are very few pure logic programming lan-
guages (and even fewer implementations).

Unlike many developments in computer
science, functional languages have main-
tained the principles on which they were

4 In all fairness, there are logics for reasoning about
imperative programs, such as those espoused by Floyd,
Hoare, Dijkstra, and Wirth. None of them, however,
exploits any notion of referential transparency.

ACM Computing Surveys, Vol. 21, NO. 3, September 1989

scope created by the where expression, such
as in the subexpression x+x. The same
cannot generally be said of an imperative
language, where we must first be sure that
no assignment to x is made in any of the
statements intervening between the initial
definition of x and one of its subsequent
uses.4 In general this can be quite a tricky
task, for example, in the case in which
procedures are allowed to induce nonlocal
changes to lexically scoped variables.

Although the notion of referential trans-
parency may seem like a simple idea, the
clean equational reasoning that it allows is
very powerful, not only for reasoning for-
mally about programs but also informally
in writing and debugging programs. A pro-
gram in which side effects are minimized
but not eliminated may still benefit from
equational reasoning, although naturally
more care must be taken when applying
such reasoning. The degree of care, how-
ever, may be much higher than we might
think at first: Most languages that allow
minor forms of side effects do not minimize
their locality lexically-thus any call to any
function in any module might conceivably
introduce a side effect, in turn invalidating
many applications of equational reasoning.

The perils of side effects are appreciated
by the most experienced programmers in
any language, although most are loathe to
give them up completely. It remains the
goal of the functional programming com-
munity to demonstrate that we can do com-
pletely without side effects, without
sacrificing efficiency or modularity. Of
course, as mentioned earlier, the lack of
side effects is not all there is to the func-
tional programming paradigm. As we shall
soon see, modern functional languages rely
heavily on certain other features, most no-
tably higher-order functions, lazy evalua-
tion, and data abstraction.

Plan of Study

Functional Programming Languages l 363

founded to a surprising degree. Rather than
changing or compromising those ideas,
modern functional languages are best clas-
sified as embellishments of a certain set of
ideals. It is a distinguishing feature of mod-
ern functional languages that they have so
effectively held on to pure mathematical
principles in a way shared by very few other
languages.

Because of this, we can learn a great deal
about functional languages simply by
studying their evolution. On the other
hand, such a study may fail to yield a
consistent treatment of any one feature
that is common to most functional lan-
guages, for it will be fractured into its man-
ifestations in each of the languages as they
were historically developed. For this reason
I have taken a three-fold approach to our
study:

First, Section 1 provides an historical
sketch of the development of functional
languages. Starting with the lambda calcu-
lus as the prototypical functional language,
it gradually embellishes it with ideas
as they were historically developed, lead-
ing eventually to a reasonable technical
characterization of modern functional
languages.

Next, Section 2 presents a detailed
discussion of four important concepts-
higher-order functions, lazy evaluation,
data abstraction mechanisms, and equa-
tions/pattern matching-which are critical
components of all modern functional lan-
guages and are best discussed as indepen-
dent topics.

Section 3 discusses more advanced ideas
and outlines some critical research areas.
Then to round out the paper, Section 4 puts
some of the limitations of functional lan-
guages into perspective by examining some
of the myths that have accompanied their
development.

1. EVOLUTION OF FUNCTIONAL
LANGUAGES

1.1 Lambda Calculus

The development of functional languages
has been influenced from time to time by
many sources, but none is as paramount
nor as fundamental as the work of Church

[1932-1933, 19411 on the lambda calculus.
Indeed the lambda calculus is usually
regarded as the first functional language,
although it was certainly not thought of as
programming language at the time, given
that there were no computers on which to
run the programs. In any case, modern
functional languages can be thought of as
(nontrivial) embellishments of the lambda
calculus.

It is often thought that the lambda cal-
culus also formed the foundation for Lisp,
but this in fact appears not to be the case
[McCarthy 19781. The impact of the
lambda calculus on early Lisp development
was minimal, and it has only been very
recently that Lisp has begun to evolve more
toward lambda calculus ideals. On the other
hand, Lisp had a significant impact on the
subsequent development of functional lan-
guages, as will be discussed in Section 1.2.

Church’s work was motivated by the de-
sire to create a calculus (informally, a syn-
tax for terms and set of rewrite rules for
transforming terms) that captured one’s
intuition about the behavior of functions.
This approach is counter to the considera-
tion of functions as, for example, sets (more
precisely, sets of argument/value pairs),
since the intent was to capture the compu-
tational aspects of functions. A calculus is
a formal way for doing just that.

Church’s lambda calculus was the first
suitable treatment of the computational
aspects of functions. Its type-free nature
yielded a particularly small and simple cal-
culus, and it had one very interesting prop-
erty, capturing functions in their fullest
generality: Functions could be applied to
themselves. In most reasonable theories of
functions as sets, this is impossible, since
it requires the notion of a set containing
itself, resulting in well-known paradoxes.
This ability of self-application is what gives
the lambda calculus its power. It allows
us to gain the effect of recursion without
explicitly writing a recursive definition.
Despite this powerful ability, the lambda
calculus is consistent as a mathematical
system-no contradictions or paradoxes
arise.

Because of the relative importance of the
lambda calculus to the development of
functional languages, I will describe it in

ACM Computing Surveys, Vol. 21, No. 3, September 1989

364 l Paul Hudak

detail in the remainder of this section, using
modern notational conventions.

1.1.7 Pure Untyped Lambda Calculus

The abstract syntax of the pure untyped
lambda calculus (a name chosen to distin-
guish it from other versions developed
later) embodies what are called lambda
expressions, defined by5

x E Id Identifiers
e E Exp Lambda expressions

where e ::= x 1 el e2 I Xx.e

Expressions of the form Xx.e are called
abstractions and of the form (el e,) are
called applications. It is the former that
captures the notion of a function and the
latter that captures the notion of applica-
tion of a function. By convention, applica-
tion is assumed to be left associative, so
that (ei ez e3) is the same as ((ei en) e3).

The rewrite rules of the lambda calculus
depend on the notion of substitution of an
expression ei for all free occurrences of an
identifier x in an expression e2, which we
write as [el/x]e2.6 Most systems, including
both the lambda calculus and predicate cal-
culus, that use substitution on identifiers
must be careful to avoid name conflicts.
Thus, although the intuition behind substi-
tution is strong, its formal definition can
be somewhat tedious.

To understand substitution, we must
first understand the notion of the free vari-
ables of an expression e, which we write as
fu(e) and define by the following simple
rules:

b(x) = 1x1
fu(el e2) = fukl) U fuk2)
fu(Xx.e) = fu(e) - (x)

6 The notation d E D means that d is a typical element
of the set D, whose elements may be distinguished by
subscripting. In the case of identifiers, we assume that
each xi is unique; that is, xi # zj if i # j. The notation
d ::= altl) ah2] . .] altn is standard BNF syntax.
6 In denotational semantics the notation e[u/x] is used
to denote the function e’ that is just like e except that
e’ x = U. Our notation of placing the brackets in front
of the expression is to emphasize that [u/x]e is a
syntactic transformation on the expression e itself.

We say that x is free in e iff x E fu(e).
The substitution [el/x]e2 is then defined
inductively by

Wxlk2 e3) = ([edxle2)([edxl4

hXj.e2, ifi=j

hX,..[edxile2, if i # j and xi $ fu(eJ

hXk.[el/xi]([xklxjle2), otherwise,

where k f i, k # j,

and xk 4 fu (el) U fu (e2)

The last rule is the subtle one, since it is
where a name conflict could occur and is
resolved by making a name change. The
following example demonstrates applica-
tion of all three rules:

[y/x]((Xy.x)(Xx.x)x) = (Xz.y)(Xx.x)y

To complete the lambda calculus, we de-
fine three simple rewrite rules on lambda
expressions:

(1) ol-conversion (renaming): .

Xxi.e H Xxj.[xj/xi]e, where xj 4 fu(e).

(2) p-conversion (application):

0-3 k2 H k2lxh.

(3) q-conversion:

Xx.(e x) H e, if x 4 fu(e).

These rules, together with the standard
equivalence relation rules for reflexivity,
symmetricity, and transitivity, induce a
theory of convertibility on the lambda cal-
culus, which can be shown to be consistent

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages

as a mathematical system.7 The well-
known Church-Rosser theorem [Church
and Rosser 19361 (actually two theorems)
is what embodies the strongest form of
consistency and has to do with a notion of
reduction, which is the same as convertibil-
ity but restricted so that P-conversion
and v-conversion only happen in one
direction:

l 365

sion. Obviously, we would like for that
value to be unique; and we would like to be
able to find it whenever it exists. The
Church-Rosser theorems give us positive
results for both of these desires.

1.1.2 Church-Rosser Theorems

Church-Rosser Theorem I

(1) ,&reduction:

(2) s-reduction:

Xx.(e x) * e, if x 4 fu(e).

We write e, & e2 if e2 can be derived from
zero or more /3- or v-reductions or cu-con-
versions; in other words 5 is the reflex-
ive, transitive closure of + including
a-conversions. Similarly, & is the reflexive,
transitive closure of w. In summary, *
captures the notion of reducibility, and 45
captures the notion of intraconvertibility.

Definition

A lambda expression is in normal form if
it cannot be further reduced using p- or
q-reduction.

Note that some lambda expressions have
no normal form, such as

One consequence of this result is that
how we arrive at the normal form does
not matter; that is, the order of evaluation
is irrelevant (this has important conse-
quences for parallel evaluation strategies).
The question then arises as to whether or
not it is always possible to find the normal
form (assuming it exists). We begin with
some definitions.

(Xx. b x)1 ox. (x x)), Definition

where the only possible reduction leads to
an identical term, and thus the reduction
process is nonterminating.

Nevertheless, the normal form appears
to be an attractive canonical form for a
term, has a clear sense of finality in a
computational sense, and is what we intu-
itively think of as the value of an expres-

A normal-order reduction is a sequential
reduction in which, whenever there is more
than one reducible expression (called a
reder), the leftmost one is chosen first. In
contrast, an applicative-order reduction is a
sequential reduction in which the leftmost
innermost redex is chosen first.

Church-Rosser Theorem II

If e. & el and e, is in normal form, then
there exists a normal-order reduction from
e. to el.

7 The lambda calculus as we have defined it here is
what Barendregt [1984] calls the XKq-calculus and is
slightly more general than Church’s original XK-cal-
culus (which did not include p-conversion). Further-
more, Church originally showed the consistency of the
XI-calculus [Church 19411, an even smaller subset (it
only allowed abstraction of x from e if x was free in
e). We will ignore the subtle differences between these
calculi-our version is the one most often discussed
in the literature on functional languages.

If e. & e, then there exists an e2 such that
e. A e2 and el + e2.’

In other words, if e. and el are intracon-
vertible, then there exists a third term (pos-
sibly the same as e. or el) to which they
can both be reduced.

Corollary

No lambda expression can be converted to
two distinct normal forms (ignoring differ-
ences due to a-conversion).

a Church and Rosser’s original proofs of their theorems
are rather long, and many have tried to improve on
them since. The shortest proof I am aware of for the
first theorem is fairly recent and aptly due to Rosser
119821.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

366 l Paul Hudak

This is a very satisfying result; it says
that if a normal form exists, we can always
find it; that is, just use normal-order reduc-
tion. To see why applicative-order reduc-
tion is not always adequate, consider the
following example:

Applicative-order reduction

(Xx. y)((Xx. x x) (Xx. x x))
4 (Xx. y)((Xx. x x)(Xx. x Lx))
a*

Normal-order reduction

(Xx.y) ((Xxxx) (Xx.xx))

*Y

We will return to the trade-offs between
normal- and applicative-order reduction
in Section 2.2. For now we simply note
that the strongest completeness and con-
sistency results have been achieved with
normal-order reduction.

In actuality, one of Church’s (and oth-
ers’) motivations for developing the lambda
calculus in the first place was to form a
foundation for all of mathematics (in the
way that, for example, set theory is claimed
to provide such a foundation). Unfortu-
nately, all attempts to extend the lambda
calculus sufficiently to form such a foun-
dation failed to yield a consistent theory.
Church’s original extended system was
shown inconsistent by the Kleene-Rosser
paradox [Kleene and Rosser 19351; a sim-
pler inconsistency proof is embodied in
what is known as the Curry paradox [Ros-
ser 19821. The only consistent systems that
have been derived from the lambda calculus
are much too weak to claim as a foundation
for mathematics, and the problem remains
open today.

These inconsistencies, although disap-
pointing in a foundational sense, did not
slow down research on the lambda calculus,
which turned out to be quite a nice model
of functions and of computation in general.
The Church-Rosser theorem was an ex-
tremely powerful consistency result for a
computation model, and in fact rewrite sys-
tems completely different from the lambda
calculus are often described as “possessing
the Church-Rosser property” or even

anthropomorphically as being Church-
Rosser.

1.1.3 Recursion, X-Definability, and
Church’s Thesis

Another nice property of the lambda cal-
culus is embodied in the following theorem:

Fixpoint Theorem

Every lambda expression e has a fixpoint e’
such that (e e’) & e’.

Proof. Take e ’ to be (Y e), where Y,
known as the Y combinator, is defined by

Y = Xf.(Xx.f (x x))(hx.f (x x))

Then we have

(Ye) = (Xx.e(x x))(Ax.e(x x))
= e((Xx.e(x x))(Xx.e(x x)))
= e(Y e)

This surprising theorem (and equally
surprising simple proof) is what has earned
Y the name “paradoxical combinator”. The
theorem is quite significant-it means that
any recursive function may be written non-
recursively (and nonimperatively)., To see
how, consider a recursive function f defined
by

fF . . . f . . .

This could be rewritten as

f = (Xf. ... f .**)f

where the inner occurrence of f is now
bound. This equation essentially says that
f is a fixpoint of the lambda expression
(Xf. * * * f e. s). But that is exactly what Y
computes for us, so we arrive at the follow-
ing nonrecursive definition for f:

f = Y(Xf. -0. f .**)

As a concrete example, the factorial func-
tion

fat = Xn.
if (n = 0) then 1 else (n * fac(n - 1))

can be written nonrecursively as

fat = Y(hfac. An.
if (n = 0) then 1 else (n * fac(n - 1)))

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 367

The ability of the lambda calculus to
simulate recursion in this way is the key to
its power and accounts for its persistence
as a useful model of computation. Church
recognized this power, and is perhaps best
expressed in his now famous thesis:

Church’s Thesis

Effectively computable functions from posi-
tive integers to positive integers are just
those definable in the lambda calculus.

This is quite a strong claim. Although
the notion of functions from positive inte-
gers to positive integers can be formalized
precisely, the notion of effectively comput-
able cannot; thus no proof can be given for
the thesis. It gained support, however, from
Kleene [1936] who in 1936 showed that
X-definability was precisely equivalent to
Godel and Herbrand’s notions of recursive-
ness. Meanwhile, Turing [1936] had been
working on his now famous Turing ma-
chine, and in 1937 [Turing 19371 he showed
that Turing computability was also pre-
cisely equivalent to X-definability. These
were quite satisfying results.’

The lambda calculus and the Turing
machine were to have profound impacts on
programming languages and computational
complexity,1° respectively, and computer
science in general. This influence was prob-
ably much greater than Church or Turing
could have imagined, which is perhaps not
surprising given that computers did not
even exist yet.

In parallel with the development of the
lambda calculus, Schonfinkel and Curry
were busy founding combinatory logic. It
was Schonfinkel [19241 who discovered the
surprising result that any function could be

‘Much later Post [1943] and Markov [1951] pro-
posed two other formal notions of effective com-
putability; these also were shown to be equivalent
to X-definability.
lo Although the lambda calculus and the notion of h-
definability predated the Turing machine, complexity
theorists latched onto the Turing machine as their
fundamental measure of decidability. This is probably
because of the appeal of the Turing machine as a
machine, giving it more credibility in the emerging
arena of electronic digital computers. See Trakhten-
brot [1988] for an interesting discussion of this issue.

expressed as the composition of only two
simple functions, K and S. Curry 119301
proved the consistency of a pure combina-
tory calculus, and with Feys [Curry and
Feys 19581 elaborated the theory consider-
ably. Although this work deserves as much
attention from a logician’s point of view as
the lambda calculus, and in fact its origins
predate that of the lambda calculus, we will
not pursue it here since it did not contribute
directly to the development of functional
languages in the way that the lambda
calculus did. On the other hand, the com-
binatory calculus was eventually to play
a surprising role in the implementation
of functional languages, beginning with
Turner [1979] and summarized in Peyton
Jones [1987, Chapter 161.

Another noteworthy attribute of the
lambda calculus is its restriction to func-
tions of one argument. That it suffices to
consider only such functions was first sug-
gested by Frege in 1893 [van Heijenoort
19671 and independently by Schonfinkel in
1924. This restriction was later exploited
by Curry and Feys [19581, who used the
notation (f x y) to denote ((f 3~) y), which
previously would have been written f (x, y).
This notation has become known as cur-
rying, and f is said to be a curried function.
As we will see, the notion of currying has
carried over today as a distinguishing syn-
tactic characteristic of modern functional
languages.

There are several variations and embel-
lishments of the lambda calculus. They will
be mentioned in the discussion of the point
at which functional languages exhibited
similar characteristics. In this way we can
clearly see the relationship between the
lambda calculus and functional languages.

1.2 Lisp

A discussion of the history of functional
languages would certainly be remiss if it
did not include a discussion of Lisp, begin-
ning with McCarthy’s seminal work in the
late 1950s.

Although lambda calculus is often con-
sidered as the foundation of Lisp, by
McCarthy’s [19781 own account the lambda
calculus actually played a rather small role.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

368 l Paul Hudak

Its main impact came through McCarthy’s
desire to represent functions anonymously,
and Church’s h-notation was what he
chose: A lambda abstraction written Xx.e in
lambda calculus would be written (lambda
(x) e) in Lisp.

Beyond that, the similarity wanes. For
example, rather than use the Y combinator
to express recursion, McCarthy invented
the conditional expression” with which re-
cursive functions could be defined explicitly
(and, arguably, more intuitively). As an
example, the nonrecursive factorial func-
tion given in the lambda calculus in Section
1.1.3 would be written recursively in Lisp
in the following way:

(define fat (n)
(if (= n 0)

t* n Vat (- n 1)))))

This and other ideas were described in
two landmark papers in the early 1960s
[McCarthy 1960; 19631 that inspired work
on Lisp for many years to come.

McCarthy’s original motivation for de-
veloping Lisp was the desire for an alge-
braic list-processing language for use in
artificial intelligence research. Although
symbolic processing was a fairly radical
idea at the time, his aims were quite prag-
matic. One of the earliest attempts at de-
signing such a language was suggested by
McCarthy and resulted in FLPL (FOR-
TRAN-compiled list processing language),
implemented in 1958 on top of the FOR-
TRAN system on the IBM 704 [Gelernter
et al. 19601. During the next few years
McCarthy designed, refined, and imple-
mented Lisp. His chief contributions dur-
ing this period were the following:

(1) The conditional expression and its use
in writing recursive functions.

(2) The use of lists and higher-order oper-
ations over lists such as mapcar.

(3) The central idea of a cons cell and the
use of garbage collection as a method
of reclaiming unused cells.

I1 The conditional in FORTRAN (essentially the only
other programming language in existence at the time)
was a statement, not an expression, and was for con-
trol, not value-defining, purposes.

(4) The use of S-expressions (and abstract
syntax in general) to represent both
program and data.”

All four of these features are essential in-
gredients of any Lisp implementation to-
day; the first three are essential to
functional language implementations as
well.

A simple example of a typical Lisp defi-
nition is the following one for mapcar:

(define mapcar (fun 1st)
(if (null 1st)

nil
(cons (fun (car 1st))
(mapcar fun (cdr
1st))) 1)

This example demonstrates all of the points
mentioned above. Note that the function
fun is passed as an argument to mapcar.
Although such higher-order programming
was very well known in lambda calculus
circles, it was certainly a radical departure
from FORTRAN and has become one of
the most important programming tech-
niques in Lisp and functional programming
(higher order functions are discussed more
in Section 2.1). The primitive functions
cons, car, cdr, and null are the well-known
operations on lists whose names are still
used today. cons creates a new list cell
without burdening the user with explicit
storage management; similarly, once that
cell is no longer needed a “garbage collec-
tor” will come along and reclaim it, again
without user involvement. For example,
since mapcar constructs a new list from an
old one, in the call

(mapcar fun (cons a (cons b nil)))

the list (cons a (cons b nil)) will become
garbage after the call and will automatically
be reclaimed. Lists were to become the par-
adigmatic data structure in Lisp and early
functional languages.

The definition of mapcar in a modern
functional language such as Haskell would
appear similarly, except that pattern
matching would be used to destructure the

I2 Interestingly, McCarthy [1978] claims that it was
the read and print routines that influenced this
notation most.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages 369

list:

mapcar fun [] = [I
mapcar fun (xxs) = fun x : mapcar fun xs

[[] is the null list and : is the infix operator
for cons; also note that function application
has higher precedence than any infix
operator.]

McCarthy was also interested in design-
ing a practical language, and thus Lisp had
many pragmatic features-in particular,
sequencing, the assignment statement, and
other primitives that induced side effects
on the store. Their presence undoubtedly
had much to do with early experience with
FORTRAN. Nevertheless, in his early pa-
pers, McCarthy emphasized the mathemat-
ical elegance of Lisp, and in a much later
paper his student Cartwright demonstrated
the ease with which one could prove
properties about pure Lisp programs
[Cartwright 19761.

Despite its impurities, Lisp had a great
influence on functional language develop-
ment, and it is encouraging to note that
modern Lisps (especially Scheme) have re-
turned more to the purity of the lambda
calculus rather than the ad hocery that
plagued the Maclisp era. This return to
purity includes the first-class treatment of
functions and the lexical scoping of identi-
fiers. Furthermore, the preferred modern
style of Lisp programming, such as es-
poused by Abelson et al. [19851, can be
characterized as being predominantly side-
effect free. And, finally, note that Hender-
son’s [1980] Lispkit Lisp is a purely func-
tional version of Lisp that uses an infix,
algebraic syntax.

1.2.1 Lisp in Retrospect

Before continuing the historical develop-
ment it is helpful to consider some of the
design decisions McCarthy made and how
they would be formalized in terms of the
lambda calculus. It may seem that condi-
tional expressions, for example, are an ob-
vious feature to have in a language, but that
only reflects our familiarity with modern
high-level programming languages, most of
which have them. In fact the lambda cal-
culus version of the factorial example given

in the previous section used a conditional
(not to mention arithmetic operators), yet
most readers probably understood it per-
fectly and did not object to the departure
from precise lambda calculus syntax.

The effect of conditional expressions can
in fact be achieved in the lambda calculus
by encoding the true and false values as
functions, as well as by defining a function
to emulate the conditional:

true = hx.Ay.x
false = Xx.Ay.y
cond = Xp.Xc.Xa.(p c a)

In other words, (cond p c a) = (if p then c
else a). One can then define, for example,
the factorial function by

fuc = An. cond (= n 0) 1 (* n(fuc (- n 1)))

where = is defined by

(=nn) *true
(= n m) + false, if m # n

where m and n range over the set of integer
constants. However, I am still cheating a
bit by not explaining the nature of the
objects -, *, 0, 1, and so on, in pure lambda
calculus terms. It turns out that they can
be represented in a variety of ways, essen-
tially using functions to simulate the proper
behavior, just as for true, false, and the
conditional (for the details, see Church
[1941]). In fact any conventional data or
control structure can be simulated in the
lambda calculus; if this were not the case,
it would be difficult to believe Church’s
thesis.

Even if McCarthy knew of these ways to
express things in the lambda calculus (there
is reason to believe that he did not), effi-
ciency concerns might have rapidly led him
to consider other alternatives, especially
since FORTRAN was the only high-level
programming language with which anyone
had any experience. In particular, FOR-
TRAN functions evaluated their argu-
ments before entering the body of the
function, resulting in what is often called a
strict, or call-by-value, evaluation policy,
corresponding roughly to applicative-order
reduction in the lambda calculus. With this
strategy extended to the primitives, includ-
ing the conditional, we cannot easily define

ACM Computing Surveys, Vol. 21, No. 3, September 1989

370 l Paul Hudak

recursive functions. For example, in the
above definition of factorial all three argu-
ments to cond would be evaluated, includ-
ingfac (- n l), resulting in nontermination.

Nonstrict evaluation, corresponding to
the normal-order reduction that is essential
to the lambda calculus in realizing recur-
sion, was not very well understood at the
time-it was not at all clear how to imple-
ment it efficiently on a conventional von
Neumann computer-and we would have
to wait another 20 years or so before such
an implementation was even attempted.13
The conditional expression essentially
allowed one to invoke normal-order, or
nonstrict, evaluation selectively. Stated
another way, McCarthy’s conditional,
although an expression, was compiled into
code that essentially controlled the reduc-
tion process. Most imperative program-
ming languages today that allow recursion
do just that, and thus even though such
languages are often referred to as strict,
they all rely critically on at least one
nonstrict construct: the conditional.

1.2.2 Lambda Calculus with Constants

The conditional expression is actually only
one example of very many primitive func-
tions that were included in Lisp. Rather
than explain them in terms of the lambda
calculus by a suitable encoding (i.e., com-
pilation), it is perhaps better to extend the
lambda calculus formally by adding a set of
constants along with a set of what are usu-
ally called &rules, which state relationships
between constants and effectively extend
the basis set of a-, p-, and a-reduction rules.
For example, the reduction rules for = given
earlier (and repeated below) are &rules.
This new calculus, often called the lambda
calculus with constants, can be given a
precise abstract syntax:

x E Id Identifiers
c E Con Constants
e E Exp Lambda expressions

where e ::= x 1 c 1 el e2 1 Xx.e

In On the other hand, the call-by-name evaluation
strategy invented in ALGOL had very much of a
normal-order reduction flavor. See Wadsworth [1971]
and Wegner [1968] for early discussions of these
issues.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

for which various &rules apply, such as the
following:

(= 0 0) + True
(= 0 1) + False

(+ 0 0) * 0
(+ 0 1) * 1

(+ 27 32) + 59

(If True el e2) * e,
(If False el e2) + e2

(Car (Cons el e2)) * el
(Cdr (Cons el e2)) * e2

where =, +, 0, 1, If, True, False, Cons, and
so on, are elements of Con.

The above rules can be shown to be a
conservative extension of the lambda cal-
culus, a technical term that in our context
essentially means that convertible terms in
the original system are still convertible
in the new, and (perhaps more importantly)
inconvertible terms in the original system
are still inconvertible in the new. In gen-
eral, care must be taken when introducing
d-rules, since all kinds of inconsistencies
could arise. For a quick and dirty example
of inconsistency, we might define a primi-
tive function over integers called broken
with the following d-rules:

(broken 0) * 0
(broken 0) 4 1

which immediately implies that more than
one normal form exists for some terms,
violating the first Church-Rosser theorem
(see Section 1.1).

Functional Programming Languages l 371

As a more subtle example, suppose we
define the logical relation Or by

(Or True e) 4 True
(Or e True) 4 True

(Or False False) + Fake

Although these rules form a conservative
extension of the lambda calculus, a com-
mitment to evaluate either of the argu-
ments may lead to nontermination (even if
the other argument may reduce to True).
In fact, it can be shown that with the above
rules there does not exist a deterministic
sequential reduction strategy that will
guarantee that the normal form True will
be found for all terms having such a normal
form, and thus the second Church-Rosser
property is violated. This version of Or is
often called the parallel or, since a parallel
reduction strategy is needed to implement
it properly (and with which the first
Church-Rosser theorem will at least hold).
Alternatively, we could define a sequential
or by

significant syntactic and semantics ideas
[Landin 19661. Iswim, according to Landin,
“can be looked on as an attempt to deliver
Lisp from its eponymous commitment to
lists, its reputation for hand-to-mouth stor-
age allocation, the hardware dependent fla-
vor of its pedagogy, its heavy bracketing,
and its compromises with tradition.” When
all is said and done, the primary contri-
butins of Iswim, with respect to the
development of functional languages, are
the following:

(1) Syntactic innovations

(4

(b)

The abandonment of prefix syntax
in favor of infix.
The introduction of let and where
clauses, including a notion of si-
multaneous and mutually recursive
definitions.

(c)

(Or True e) + True
(Or False e) + e

The use of an off-side rule based
on indentation rather than sepa-
rators (such as commas or semi-
colons) to scope declarations and
expressions. For example (using
Haskell syntax), the program frag-
ment

which can be shown to satisfy both e where f x = x
Church-Rosser theorems. ab=l

1.3 lswim

Historically speaking, Peter Landin’s work
in the mid 1960s was the next significant
impetus to the functional programming
paradigm. Landin’s work was deeply influ-
enced by that of Curry and Church. His
early papers discussed the relationship
between lambda calculus and both ma-
chines and high-level languages (specifi-
cally ALGOL 60). Landin [1964] discussed
how one could mechanize the evaluation of
expressions through an abstract machine
called the SECD machine; in Landin [19651
he formally defined a nontrivial subset of
ALGOL 60 in terms of the lambda calculus.

cannot be confused with

e where f x = x a
b=l

and is equivalent to what might
otherwise be written as

e where {f x = x; a b = 1)

It is apparent from his work that Landin
regarded highly the expressiveness and pu-
rity of the lambda calculus and at the same
time recognized its austerity. Undoubtedly
as a result of this work, in 1966 Landin
introduced a language (actually a family of
languages) called Iswim (for If You See
What I Mean), which included a number of

(2) Semantic innovations

(4 An emphasis on generality. Landin
was half serious in hoping that the
Iswim family could serve as the
“next 700 programming languages.”
Central to his strategy was the idea
of defining a syntactically rich lan-
guage in terms of a very small but
expressive core language.

(b) An emphasis on equational reason-
ing (i.e., the ability to replace equals
with equals). This elusive idea was
backed up with four sets of rules for
reasoning about expressions, dec-
larations, primitives, and problem-
oriented extensions.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

372 . Paul Hudak

(c) The SECD machine as a simple
abstract machine for executing
functional programs.

We can think of Landin’s work as ex-
tending the lambda calculus with constants
defined in the last section so as to include
more primitives, each with its own set of 6-
rules, but more importantly let and where
clauses, for which it is convenient to intro-
duce the syntactic category of declarations:

e E Exp Expressions

where e ::= . + .] e where dl . . . d,
1 let dI . . . d, in e

d E Decl Declarations

where d ::= x = e
1 xx1 --. xn=e

and for which we then need to add some
axioms (i.e., reduction rules) to capture the
desired semantics. Landin proposed special
constructs for defining simultaneous and
mutually recursive definitions, but we will
take a simpler and more general approach
here: We assume that a block of decla-
rations dI -. . d, always is potentially
mutually recursive-if it isn’t, our rules
still work:

(let d, . . . d, in e)
+ (e where dI - - . d,)

(xx1 a.+ x,=e)
* (x = Xx1.Xx2. . . - Xx,.e)

(e where x1 = el)
3 (Xx,.e)(YXxl.el)

(e where (x, = ei) . . . (x, = e,))
=a (Xxl.e)(YXxl.el)
where x2 = (Xxl.ez)(YXrl.e,)

x, = (Xx1. e,)(YXxl.el)

These rules are semantically equivalent to
Landin’s, but they avoid the need for a
tupling operator to handle mutual recur-
sion and they use the Y combinator (de-
fined in Section 1.1) instead of an iterative
unfolding step.

We will call this resulting system the
recursive lambda calculus with constants, or
just recursive lambda calculus.

Landin’s emphasis on expressing what
the desired result is, as opposed to saying
how to get it, and his claim that Iswim’s
declarative14 style of programming was bet-
ter than the incremental and sequential
imperative style were ideas to be echoed by
functional programming advocates to this
day. On the other hand, it took another 10
years before interest in functional lan-
guages was to be substantially renewed.
One of the reasons is that there were no
decent implementations of Iswim-like lan-
guages around; this reason, in fact, was to
persist into the 1980s.

1.4 APL

Iverson’s [1962] APL, although not a
purely functional programming language,
is worth mentioning because its functional
subset is an example of how we could
achieve functional programming without
relying on lambda expressions. In fact,
Iverson’s design of APL was motivated out
of his desire to develop an algebraic pro-
gramming language for arrays, and his orig-
inal work used an essentially functional
notation. Subsequent development of APL
resulted in several imperative features, but
the underlying principles should not be
overlooked.

APL was also unique in its goal of suc-
cinctness, in that it used a specially de-
signed alphabet to represent programs-
each letter corresponding to one operator.
That APL became popular is apparent in
the fact that many keyboards, both for
typewriters and computer terminals, car-
ried the APL alphabet. Backus’ FP, which
came after APL, was certainly influenced
by the APL philosophy, and its abbreviated
publication form also used a specialized
alphabet (see the example in Section 1.5).
In fact FP has much in common with APL,
the primary difference being that FP’s fun-
damental data structure is the sequence,
whereas APL’s is the array.

It is worth noting that recent work on
APL has revived some of APL’s purely
functional foundations. The most notable

I4 Landin actually disliked the term “declarative,”
preferring instead “denotative.”

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 373

work is that of Tu [Tu 1986; Tu and Perlis
19861, who designed a language called FAC,
for Functional Array Calculator (presum-
ably a take off on Turner’s KRC, Kent
Recursive Calculator). FAC is a purely
functional language that adopts most of the
APL syntax and programming principles
but also has special features to allow pro-
gramming with infinite arrays; naturally,
lazy evaluation plays a major role in the
semantics of the language. Another inter-
esting approach is that of Mullin [1988].

1.5 FP

Backus’ FP was one of the earliest func-
tional languages to receive widespread at-
tention. Although most of the features in
FP are not found in today’s modern func-
tional languages, Backus’ [19781 Turing
Award lecture was one of the most influ-
ential and now most-often cited papers
extolling the functional programming par-
adigm. It not only stated quite eloquently
why functional programming was “good”
but also quite vehemently why traditional
imperative programming was Ubad,?.15

Backus’ coined the term “word-at-a-time
programming” to capture the essence of
imperative languages, showed how such
languages were inextricably tied to the von
Neumann machine, and gave a convincing
argument why such languages were not
going to meet the demands of modern soft-
ware development. That this argument was
being made by the person who is given the
most credit for designing FORTRAN and
who also had significant influence on the
development of ALGOL led substantial
weight to the functional thesis. The expo-
sure given to Backus’ paper was one of the
best things that could have happened to the
field of functional programming, which at
the time was certainly not considered main-
stream.

Despite the great impetus Backus’ paper
gave to functional programming, it is inter-
esting to note that in the same paper
Backus also said that languages based on
lambda calculus would have problems, both

i5 Ironically, the Turing Award was given to Backus
in a large part because of his work on FORTRAN.

in implementation and expressiveness, be-
cause the model was not suitably history
sensitive (more specifically, it did not han-
dle large data structures such as databases
very easily). With regard to implementa-
tion, this argument is certainly understand-
able because it was not clear how to
implement the notion of substitution in an
efficient manner nor was it clear how to
structure data in such ways that large data
structures could be implemented efficiently
(both of these issues are much better under-
stood today). With regard to expressive-
ness, that argument is still a matter of
debate today. In any case, these problems
were the motivation for Backus’ Applica-
tive State Transition (AST) Systems, in
which state is introduced as something on
which purely functional programs interact
with in a more traditional (i.e., imperative)
way.

Perhaps more surprising, and an aspect
of the paper that is usually overlooked,
Backus had this to say about lambda-
calculus based systems: .

An FP system is founded on the use of a fixed set
of combining forms called functional forms. . . In
contrast, a lambda-calculus based system is founded
on the use of the lambda expression, with an asso-
ciated set of substitution rules for variables, for
building new functions. The lambda expression
(with its substitution rules) is capable of defining
all possible computable functions of all possible
types and of any number of arguments. This free-
dom and power has its disadvantages as well as its
obvious advantages. It is analogous to the power of
unrestricted control statements in conventional lan-
guages: with unrestricted freedom comes chaos. If
one constantly invents new combining forms to suit
the occasion, as one can in the lambda calculus, one
will not become familiar with the style or useful
properties of the few combining forms that are
adequate for all purposes.

Backus’ argument, of course, was in the
context of garnering support for FP, which
had a small set of combining forms that
were claimed to be sufficient for most pro-
gramming applications. One of the advan-
tages of this approach is that each of these
combining forms could be named with par-
ticular brevity, and thus programs become
quite compact-this was exactly the ap-
proach taken by Iverson in designing APL

ACM Computing Surveys, Vol. 21, No. 3, September 1989

374 l Paul Hudak

(see Section 1.4). For example, an FP pro-
gram for inner product looks like

Def IP = (/+) 0 (ax) 0 Trans

where /, 0, and LY are combining forms
called insert, compose, and apply-to-all, re-
spectively. In a modern functional language
such as Haskell this would be written with
slightly more verbosity as

ip 11 12 = fold1 (+) 0 (map2 (*) 11 12)

[In Haskell an infix operator such as + may
be passed as an argument by surrounding
it in parentheses.] Here fold1 is the equiv-
alent of insert (/), and map2 is a two-list
equivalent of apply-to-all (a), thus elimi-
nating the need for Trans. These functions
are predefined in Haskell, as they are in
most modern functional languages, for the
same reason that Backus argues-they are
commonly used. If they were not, they could
easily be defined by the user. For example,
we may wish to define an infix composition
operator for functions, the first of which is
binary, as follows:

(f.0.g) XY =f(gxy)

[Note how infix operators may be defined
in Haskell; operators are distinguished lex-
ically by being nonalphabetic.] With this
we can reclaim much of FP’s succinctness
in defining ipp:

lp = fold1 (+) 0 .o. map2 (*)

[Recall that in Haskell, function applica-
tion has higher precedence than infix op-
erator application.] It is for this reason,
together with the fact that FP’s specializa-
tion precluded the generality afforded by
user-defined higher order functions (which
is all that combining forms are), that mod-
ern functional languages did not follow the
FP style. As we shall soon see, certain other
kinds of syntactic sugar became more pop-
ular instead (such as pattern matching, list
comprehensions, and sections).

Many extensions to FP have been pro-
posed over the years, including the inclu-
sion of strong typing and abstract datatypes
[Guttag et al. 19811. In much more recent
work, Backus et al. [1986] have designed
the language FL, which is strongly (al-
though dynamically) typed and in which

higher order functions and user-defined
datatypes are allowed. Its authors still
emphasize the algebraic style of reasoning
that is paramount in FP, although it is
also given a denotational semantics that is
probably consistent with respect to the
algebraic semantics.

1.6 ML

In the mid 197Os, at the same time Backus
was working on FP at IBM, several re-
search projects were underway in the
United Kingdom that related to functional
programming, most notably work at Edin-
burgh. There Gordon et al. [19791 had been
working on a proof-generating system
called LCF for reasoning about recursive
functions, in particular in the context of
programming languages. The system con-
sisted of a deductive calculus called PPX
(polymorphic predicate calculus) together
with an interactive programming language
called ML, for metalanguage (since it
served as the command language for LCF).

LCF is quite interesting as a proof sys-
tem, but its authors soon found that ML
was also interesting in its own right, and
they proceded to develop it as a stand-alone
functional programming language [Gordon
et al. 19781. That it was, and still is, called
a functional language is actually somewhat
misleading, since it has a notion of refer-
ences that are locations that can be stored
into and read from, much as variables are
assigned and read. Its I/O system also in-
duces side effects and is not referentially
transparent. Nevertheless, the style of pro-
gramming that it encourages is still func-
tional, and that is the way it was promoted
(the same is somewhat true for Scheme,
although to a lesser extent).

More recently a standardization effort
for ML has taken place, in fact taking some
of the good ideas of Hope [Burstall et al.
19801 (such as pattern matching) along
with it, yielding a language now being called
Standard ML, or SML [Milner 1984;
Wikstrom 19881.

ML is a fairly complete language-cer-
tainly the most practical functional lan-
guage at the time it appeared-and SML is
even more so. It has higher order functions,

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 375

a simple I/O facility, a sophisticated mod-
ule system, and even exceptions. But by far
the most significant aspect of ML is its
type system, which is manifested in several
ways:

(1)
(2)

(3)

(4)

It is strongly and statically typed.
It uses type inference to determine the
type of every expression, instead of re-
lying on excplicit type declarations.
It allows polymorphic functions and
data structures; that is, functions may
take arguments of arbitrary type if in
fact the function does not depend on
that type (similarly for data struc-
tures) .
It has user-defined concrete and ab-
stract datatypes (an idea actually bor-
rowed from Hope and not present in
the initial design of ML).

ML was the first language to use type in-
ference as a semantically integrated com-
ponent of the language, and at the same
time its type system was richer than
any previous statically typed language in
that it permitted true polymorphism. It
seemed that the best of two worlds had
been achieved-not only is making explicit
type declarations (a sometimes burdensome
task) not required, but in addition a pro-
gram that successfully passes the type in-
ferencer is guaranteed not to have any type
errors. Unfortunately, this idyllic picture is
not completely accurate (although it is
close), as we shall soon see.

We shall next discuss the issue of types
in a foundational sense, thus continuing
our plan of elaborating the lambda calculus
to match the language features being dis-
cussed. This will lead us to a reasonable
picture of ML’s Hindley-Milner type sys-
tem, the rich polymorphic type system that
was mentioned above and that was later
adopted by every other statically typed
functional language, including Miranda
and Haskell. Aside from the type system,
the two most novel features in ML are its
references and modules, which are also cov-
ered in this section. Discussion of ML’s
data abstraction facilities will be postponed
until Section 2.3.

1.6.1 Hindley-Milner Type System

We can introduce types into the pure
lambda calculus by first introducing a do-
main of basic types, say BasTyp, as well as
a domain of derived types, say Typ, and
then requiring that every expression be
tagged with a member of Typ, which we do
by superscripting, as in e’. The derived
type r2 + 71 denotes the type of all func-
tions from values of type 72 to values of
type TV, and thus a proper application will
have the form e;P-r’ eF)T1. Modifying the
pure lambda calculus in this way, we arrive
at the pure typed lambda calculus:

bg Basic types
TE Derived types

where T ::= b 1 71 + 72

xT E Id Typed identifiers
e E Exp Typed lambda expressions

where e ::= x7
e;2-Tle;z)T1

1 ~Xx’2.e’l)‘*-rl

for which we then provide the following
reduction rules:

(1) Typed-oc-conversion:

(xx;1 . eT) w (Xx;l . [x;‘/xi1]e7),

where xi’ 4 fu(e’).

(2) Typed-P-conversion:

((xxrz . e;l)e;l) et3 [e;2/xT2]e;‘.

(3) Typed-s-converson:

Xx” . (e’*x’l) -3 eT*, if x7’ @ fu(e’?).

To preserve type correctness, we assume
that the typed identifiers xrl and x12, where
71 # TV, are distinct identifiers. Note then
how every expression in our new calculus
carries with it its proper type, and thus type
checking is built in to the syntax.

Unfortunately, there is a serious problem
with this result: Our new calculus has lost
the power of X-definability. In fact, every
term in the pure typed lambda calculus can
be shown to be strongly normalizable, mean-
ing each has a normal form, and there
is an effective procedure for reducing each
of them to its normal form [Fortune et al.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

376 l Paul Hudak

19851. Consequently, we can only compute
a rather small subset of functions from
integers to integers-namely, the extended
polynomials [Barendregt 19841 .I6

The reader can gain some insight into
the problem by trying to write the defini-
tion of the Y combinator-that paradoxical
entity that allowed us to express recur-
sion-as a typed term. The difficulty lies
in properly typing self-application (recall
the discussion in Section l.l), since typing
(ee) requires that e have both the type
72 + pi and r2, which cannot be done within
the structure we have given. It can, in fact,
be shown that the pure typed lambda cal-
culus has no fixpoint operator.

Fortunately, there is a clever way to solve
this dilemma. Instead of relying on self-
application to implement recursion, simply
add to the calculus a family of constant
fixpoint operators similar to Y, only typed.
To do this, we first move into the typed
lambda calculus with constants, in which a
domain of constants Con is added as in the
(untyped) lambda calculus with constants.
We then include in Con a typed fixpoint
operator of the form Y, for every type 7,
where

Then for each fixpoint operator Y, we add
the &rule:

Typed- Y-conversion:

(Y7eT+r)T * (e’“(Y,eT’T)T)T

The reader may easily verify that type con-
sistency is maintained by this rule.

By ignoring the type information, we can
see that the above &rule corresponds to the
conversion (Yf) w (f (Yf)) in the untyped
case, and the same trick for implementing
recursion with Y as discussed in Section
1.1 can be used here, thus regaining X-
definability. For example, a nonrecursive
definition of the typed factorial function
would be the same as the untyped version

I6 On the bright side, some researchers view the strong
normalization property as a feature, since it means
that all programs are guaranteed to terminate. Indeed
this property forms the basis of much of the recent
work on using constructive type theory as a foundation
for programming languages.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

given earlier, except that Y, would be used
where 7 = Int + Int.

In addition to this calculus, we can derive
a typed recursive lambda calculus with con-
stants in the same way that we did in the
untyped case, except that instead of the
unrestricted Y combinator we use the typed
versions defined above.

At this point our type system is about on
par with that of a strongly and explicitly
typed language such as Pascal or Ada. We
would, however, like to do better. As men-
tioned in Section 1.6, the designers of ML
extended the state of the art of type systems
in two significant ways:

l They permitted polymorphic functions.
l They used type inference to infer types

rather than requiring that they be de-
clared explicitly.

As an example of a polymorphic function,
consider

map :: (a + b) -3 [a] + [b]

mwf[l=[l
mapf(x:xs) =fx:mapfxs

The first line is a type signature that de-
clares the type of map; it can be read as
“for all types a and b, map is a function
that takes two arguments, a function from
a into b and a list of elements of type a,
and returns a list of elements of type b.”

[Type signatures are optional in Haskell;
the type system is able to infer them auto-
matically. Also note that the type con-
structor + is right associative, which is
consistent with the left associativity of
function application.]

Therefore, map can be used to map
square down a list of integers, or head down
a list of lists, and so on. In a monomorphic
language such as Pascal, one would have to
define a separate function for each of these.
The advantage of polymorphism should be
clear.

One way to achieve polymorphism in our
calculus is to add a domain of type variables
and extend the domain of derived types
accordingly:

b E BasTyp Basic types
v E TypId Type variables

7 E TYP Derived types

where 7 ::= b I u I ~14 72

Functional Programming Languages

Thus, for example, u -+ 7 is a proper type
and can be read as if the type variable was
universally quantified: “for all types u, the
type u + 7.” To accommodate this we must
change the rule for P-conversion to read

377

signatures present. The use of such poly-
morphism however, is limited to the scope
in which map was defined. For example,
the program

(2)
silly map f g
where f :: Int -+ Int

g :: Char ---) Char
map :: (a + 6) + bl + PI
silly m f g = (m f num-list,

m g char-list)

Typed-P-conversion with type vari-
ables:
(a) ((XxTz.ez) @ ([e;a/xrs]e;‘)‘l

(b) ((xx”.e;l)ep)

@ ([~2/ul([e~/x”le;l))‘~

where substitution on type variables is de-
fined in the obvious way. Note that this
rule implies the validity of expressions of
the form (ey+T1e2) TV. Similar changes are
required to accommodate expressions such
as (e ;-“e;) “.

But, alas, now that type variables have
been introduced, it is no longer clear
whether a program is properly typed-it is
not built in to the static syntactic structure
of the calculus. In fact, the type-checking
problem for this calculus is undecideable,
being a variant of a problem known as
partial polymorphic type inference [Boehm
1985; Pfenning 19881.

Rather than trying to deal with the type-
checking problem directly, we might go one
step further with our calculus and try to
attain ML’s lack of a requirement for ex-
plicit typing. We can achieve this by simply
erasing all type annotations and then trying
to solve the seemingly harder problem of
inferring types of completely naked terms.
Surprisingly, it is not known whether an
effective type inference algorithm exists for
this calculus, even though the problem of
partial polymorphic type inference, known
to be undecidable, seems as if it should be
easier.

Fortunately, Hindley [19691 and Milner
[1978] independently discovered a re-
stricted polymorphic type system that is
almost as rich as that provided by our cal-
culus and for which type inference is decid-
able. In other words, there exist certain
terms in the calculus presented above that
one could argue are properly typed but
would not be allowed in the Hindley-
Milner system. The system still allows pol-
ymorphism, such as exhibited by map de-
fined earlier, and is able to infer the type
of functions such as map without any type

[(el, e2) is a tuple] results in a type error,
since map is passed as an argument and
then instantiated in two different ways;
that is, once as type (Int -+ Int) + [Int] +
[Int] and once as type (Char + Char) +
[Char] + [Char]. If map were instantiated
in several ways within the scope in which
it was defined or if m were only instantiated
in one way within the function silly, there
would have been no problem.

This example demonstrates a fundamen-
tal limitation to the Hindley-Milner type
system, but in practice the class of pro-
grams that the system rejects is not large
and is certainly smaller than that rejected
by any existing type-checking algorithm for
conventional languages in that, if nothing
else, it allows polymorphism. Many other
functional languages have since then incor-
porated what amounts to a Hindley-Milner
type system, including Miranda and
Haskell. It is beyond the scope of this ar-
ticle to discuss the details of type inference,
but the reader may find good pragmatic
discussions in Hancock [1987] and Damas
and Milner [1982] and a good theoretical
discussion in Milner [19781.

As a final comment we point out that an
alternative way to gain polymorphism is to
introduce types as values and give them at
least some degree of first-class status (as
we did earlier for functions); for example,
allowing them to be passed as arguments
and returned as results. Allowing them to
be passed as arguments only (and then used
in type annotations in the standard way)
results in what is known as the polymorphic
or second-order typed lambda calculus.
Girard [1972] and Reynolds [1974] discov-
ered and studied this type system indepen-
dently, and it appears to have great
expressive power. It turns out, however, to
be essentially equivalent to the system we

ACM Computing Surveys, Vol. 21, No. 3, September 1989

378 l Paul Hudak

developed earlier and has the same diffi-
culties with respect to type inference. It is,
nevertheless, an active area of current re-
search (see Cardelli and Wegner [19851 and
Reynolds [19851 for good summaries of this
work).

1.6.2 ML ‘s References

A reference is essentially a pointer to a cell
containing values of a particular type; ref-
erences are created by the (pseudo)function
ref. For example, ref 5 evaluates to an
integer reference-a pointer to a cell that
is allowed to contain only integers and in
this case having initial contents 5. The
contents of a cell can be read using the
prefix operator !. Thus if x is bound to ref
5 then !r returns 5.

The cell pointed to by a reference may
be updated via assignment using the infix
operator :=. Continuing with the above ex-
ample, x := 10, although an expression, has
the side effect of updating the cell pointed
to by x with the value 10. Subsequent eval-
uations of !x will then return 10. Of course,
to make the notion of subsequent well-
defined, it is necessary to introduce se-
quencing constructs; indeed ML even has
an iterative while construct.

References in ML amount to assignable
variables in a conventional programming
language and are only notable in that they
can be included within a type structure
such as Hindley-Milner’s and can be rele-
gated to a minor role in a language that is
generally proclaimed as being functional. A
proper treatment of references within a
Hindley-Milner type system can be found
in Tofte [1988].

1.6.3 Modules

Modules in ML are called structures and
are essentially reified environments. The
type of a structure is captured in its signa-
ture and contains all of the static properties
of a module that are needed by some other
module that might use it. The use of one
module by another is captured by special
functions called functors that map struc-
tures to new structures. This capability is
sometimes called a parameterized module
or generic package.

For example, a new signature called SIG
(think of it as a new type) may be declared
by

signature SIG =
sig

val x : int
val succ : int + int

end

in which the types of two identifiers have
been declared, x of type int and succ of type
int + int. The following structure S (think
of it as an environment) has the implied
signature SIG defined above:

structure S =
struct

val n = 5
val succ x = x+1

end

If we then define the following functor F
(think of it as a function from structures to
structures):

functor F(2’: SIG) =
struct

valy= TX+ 1
val add2 x: = T.succ(Z’.su~~(x))

end

then the new structure declaration

structure U = F(S)

is equivalent to having written

structure U =
struct

valy=x+l
val add2 x = succ(succ(~))
val x: = 5
val succ x = x+1

end

except that the signature of U does not
include bindings for x and succ (i.e., they
are hidden).

Although seemingly simple, the ML
module facility has one very noteworthy
feature: Structures are (at least partially)
first class in that functor take them as
arguments and return them as values. A
more conservative design (such as adopted
in Miranda and Haskell) might require all
modules to be named, thus relegating them
to second-class status. Of course, this first-
class treatment has to be ended somewhere
if type checking is to remain effective, and

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 379

in ML that is manifested in the fact that
structures can be passed to functors only
(e.g., they cannot be placed in lists), the
signature declaration of a functor’s argu-
ment is mandatory in the functor declara-
tion, and functors themselves are not first
class.

It is not clear whether this almost-first-
class treatment of structures is worth the
extra complexity, but the ML module facil-
ity is certainly the most sophisticated of
those found in existing functional program-
ming languages, and it is achieved with no
loss of static type-checking ability, includ-
ing the fact that modules may be compiled
independently and later linked via functor
application.

1.7 SASL, KRC, and Miranda

At the same time ML and FP were being
developed, David Turner, first at the Uni-
versity of St. Andrews and later at the
University of Kent, was busy working on
another style of functional languages re-
sulting in a series of three languages that
characterize most faithfully the modern
school of functional programming ideas.
More than any other researcher, Turner
[1981,1982] argued eloquently for the value
of lazy evaluation, higher order functions
and the use of recursion equations as a
syntactic sugaring for the lambda calculus.
Turner’s use of recurrence equations was
consistent with Landin’s argument 10 years
earlier, as well as Burge’s [1975] excellent
treatise on recursive programming tech-
niques and Burstall and Darlington’s
[19771 work on program transformation.
But the prodigious use of higher order func-
tions and lazy evaluation, especially the
latter, was something new and was to be-
come a hallmark of modern functional pro-
gramming techniques.

In the development of SASL (St.
Andrews Static Language) [Turner 19761,
KRC (Kent Recursive Calculator) [Turner
19811, and Miranda17 [Turner 19851,
Turner concentrated on making things eas-
ier on the programmer, and thus he intro-
duced various sorts of syntactic sugar. In

I’ Miranda is one of the few (perhaps the only) func-
tional languages to be marketed commercially.

particular, using SASL’s syntax for equa-
tions gave programs a certain mathematical
flavor, since equations were deemed appli-
cable through the use of guards and
Landin’s notion of the off-side rule was
revived. For example, this definition of the
factorial function

fat n = 1, n=O
= n * fac(n-l), n>O

looks a lot like the mathematical version

fat n =
{

1 ifn=O
n * fac(n - 1) if n > 0

(In Haskell this program would be written
with slightly different syntax as

fat n(n==O= 1
1 C-0 = n*fac(n-1)

More on equations and pattern matching
may be found in Section 2.4.)

Another nice aspect of SASL’s equa-
tional style is that it facilitates the use of
higher order functions through currying.
For example, if we define

addxy=x+y

then “add” 1 is a function that adds 1 to its
argument.

KRC is an embellishment of SASL pri-
marily through the addition of ZF expres-
sions (which were intended to resemble
Zemelo-Frankel set abstraction and whose
syntax was originally suggested by John
Darlington), as well as various other short-
hands for lists (such as [a . . b] to denote
the list of integers from a to b, and [a . .] to
denote the infinite sequence starting with
a). For example (using Haskell syntax),

[x*x 1 x c [l . . loo], odd(x)]

is the list of squares of the odd numbers
from 1 to 100 and is similar to

(x2 1 x E (1, 2, . . . , 100) A odd(x)}

except that the former is a list, the latter is
a set. In fact Turner used the term set
abstraction as synonymous with ZF expres-
sion, but in fact both terms are some-
what misleading since the expressions ac-
tually denote lists, not true sets. The more

ACM Computing Surveys, Vol. 21, No. 3, September 1989

380 l Paul Hudak

popular current term is list comprehen-
sion,” which is what is used in the re-
mainder of this paper. As an example of
the power of list comprehensions, here is
a concise and perspicuous definition of
quicksort:

4s[1 =[I
qs (x:xs) = qs [y 1 ytrs,y<3c] ++ [x] ++

PIY I Y-wY>=xl

[+-t is the infix append operator.]
Miranda is in turn an embellishment of

KRC, primarily in its treatment of types:
It is strongly typed, using a Hindley-Milner
type system, and it allows user-defined con-
crete and abstract datatypes (both of these
ideas were presumably borrowed from ML;
see Sections 1.6 and 1.6.1). One interesting
innovation in syntax in Miranda is its use
of sections (first suggested by Richard
Bird), which are a convenient way to con-
vert partially applied infix operators into
functional values. For example, the expres-
sions (+), (x+), and (+x) correspond to the
functions f, g, and h, respectively, defined
by

fxy=x+y
i?Y = x+y
hy =y+x

In part because of the presence of sections,
Miranda does not provide syntax for
lambda abstractions. (In contrast, the
Haskell designers chose to have lambda
abstractions and thus chose not to have
sections.)

Turner was perhaps the foremost pro-
ponent of both higher-order functions and
lazy evaluation, although the ideas origi-
nated elsewhere. Discussion of both of
these topics is delayed until Sections 2.1
and 2.2, respectively, where they are dis-
cussed in a more general context.

1.8 Dataflow Languages

In the area of computer architecture, begin-
ning predominantly with the work of
Dennis’ and Misuras [1974] the early
1970s there arose the notion of dataflow,
a computer architecture organized solely

” A term popularized by Philip Wadler.

around the data dependencies in a program,
resulting in high degrees of parallelism.
Since data dependencies were paramount
and artificial sequentiality was objectiona-
ble, the languages designed to support such
machines were essentially functional lan-
guages, although historically they have
been called dataflow languages. In fact they
do have a few distinguishing features, typ-
ically reflecting the idiosyncrasies of the
dataflow architecture (just as imperative
languages reflect the von Neumann archi-
tecture): They are typically first order (re-
flecting the difficulty in constructing
closures in the dataflow model), strict (re-
flecting the data-driven mode of operation
that was most popular and easiest to imple-
ment), and in certain cases do not even
allow recursion (reflecting Dennis’ original
static dataflow design, rather than, for ex-
ample, Arvind’s dynamic tagged-token
model [Arvind and Gostelow 1977; Arvind
and Kathail 19811). A good summary of
work on dataflow machines, at least
through 1981, can be found in Treleaven et
al. [1982]; more recently, see Vegdahl
[1989].

The two most important dataflow lan-
guages developed during this era were
Dennis et al.‘s Val [Ackerman and Dennis
1979; McGraw 19821, and Arvind and
Gostelow’s Id [1982]. More recently, Val
has evolved into SISAL [McGraw et al.
19831 and Id into Id Nouveau [Nikhiel
et al. 19861. The former has retained much
of the strict and first-order semantics of
dataflow languages, whereas the latter has
many of the features that characterize
modern functional languages.

Keller’s FGL [Keller et al. 19801 and
Davis’ DDN [Davis 19781 are also notable
developments that accompanied a flurry of
activity on dataflow machines at the Uni-
versity of Utah in the late 70’s. Yet another
interesting dataflow language is Ashcroft
and Wadge’s Lucid [Ashcroft and Wadge
1976a, 197613; Wadge and Ashcroft 19851
[McGraw et al. 19831 whose distinguishing
feature is the use of identifiers to represent
streams of values (in a temporal, dataflow
sense), thus allowing the expression of it-
eration in a rather concise manner. The
authors also developed an algebra for rea-
soning about Lucid programs.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages 381

1.9 Others

In the late 1970s and early 1980s a surpris-
ing number of other modern functional lan-
guages appeared, most in the context of
implementation efforts. These included
Hope at Edinburgh University [Burstall et
al. 19801, FEL at Utah [Keller 19821, Lazy
ML (LML) at Chalmers [Augustsson
19841, Alfl at Yale [Hudak 19841, Ponder
at Cambridge [Fairbairn 19851, Orwell at
Oxford [Wadler and Miller 19881, Daisy at
Indiana [Johnson N.d.] Twentel at the
University of Twente [Kroeze 19871, and
Tui at Victoria University [Boutel 19881.

Perhaps the most notable of these lan-
guages was Hope, designed and imple-
mented by Rod Burstall, David MacQueen,
and Ron Sannella at Edinburgh University
[19801. Their goal was “to produce a very
simple programming language which en-
courages the production of clear and
manipulable programs.” Hope is strongly
typed, allows polymorphism, but requires
explicit type declarations as part of all
function definitions (which also allowed a
useful form of overloading). It has lazy lists
but otherwise is strict. It also has a simple
module facility. But perhaps the most sig-
nificant aspect of Hope is its user-defined
concrete datatypes and the ability to pat-
tern match against them. ML, in fact, did
not originally have these features; they
were borrowed from Hope in the design of
SML.

To quote Bird and Wadler [1988], this
proliferation of functional languages was “a
testament to the vitality of the subject,”
although by 1987 there existed so many
functional languages that there truly was a
Tower of Babel, and something had to be
done. The funny thing was, the semantic
underpinnings of these languages were
fairly consistent, and thus the researchers
in the field had very little trouble under-
standing each other’s programs, so the mo-
tivation within the research community to
standardize on a language was not high.

Nevertheless, in September 1987 a meet-
ing was held at the FPCA Conference in
Portland, Oregon, to discuss the problems
that this proliferation of languages was cre-
ating. There was a strong consensus that
the general use of modern, nonstrict func-

tional languages was being hampered by
the lack of a common language. Thus it was
decided that a committee should be formed
to design such a language, providing faster
communication of new ideas, a stable
foundation for real applications develop-
ment, and a vehicle through which other
people would be encouraged to learn and
use functional languages. The result of that
committee’s effort was a purely functional
programming language called Haskell
[Hudak and Wadler 19881, named after
Haskell B. Curry, and described in
Section 1.10.

1.10 Haskell

Haskell is a general-purpose, purely func-
tional programming language exhibiting
many of the recent innovations in func-
tional (as well as other) programming
language research, including higher order
functions, lazy evaluation, static poly-
morphic typing, user-defined datatypes,
pattern matching, and list comprehensions.
It is also a very complete language in that
it has a module facility, a well-defined func-
tional I/O system, and a rich set of primi-
tive datatypes, including lists, arrays,
arbitrary and fixed precision integers, and
floating-point numbers. in this sense Has-
kell represents both the culmination and
solidification of many years of research on
functional languages-the design was in-
fluenced by languages as old as Iswim and
as new as Miranda.

Haskell also has several interesting new
features; most notably, a systematic treat-
ment of overloading, an orthogonal ab-
stract datatype facility, a universal and
purely functional I/O system, and, by anal-
ogy to list comprehensions, a notion of
array comprehensions.

Haskell is not a small language. The de-
cision to emphasize certain features such
as pattern matching and user-defined da-
tatypes and the desire for a complete and
practical language that includes such things
as I/O and modules necessitates a some-
what large design. The Haskell Report also
provides a denotational semantics for both
the static and dynamic behavior of the lan-
guage; it is considerably more complex than

ACM Computing Surveys, Vol. 21, No. 3, September 1989

382 . Paul Hudak

the simple semantics defined in Section 2.5
for the lambda calculus, but then again one
wouldn’t really want to program in as
sparse a language as the lambda calculus.

Will Haskell become a standard? Will it
succeed as a useful programming language?
Only time will tell. As with any other lan-
guage development, it is not only the qual-
ity of the design that counts but also the
ready availability of good implementations
and the backing from vendors, government
agencies, and researchers alike. At this date
it is too early to tell what role each of these
factors will play.

I will end our historical development of
functional languages here, without elabo-
rating on the details of Haskell just yet.
Those details will surface in significant
ways in the next section, where the most
important features of modern function lan-
guages are discussed, and in the following
section, where more advanced ideas and
active research areas are discussed.

2. DISTINGUISHING FEATURES OF
MODERN FUNCTIONAL LANGUAGES

Recall that I chose to delay detailed dis-
cussion of four distinguishing features of
modernfunctionallanguages-higher-order
functions, lazy evaluation, data abstrac-
tion met hanisms, and equations/pattern
matching. Now that we have completed our
study of the historical development of func-
tional languages, we can return to those
features. Most of the discussion will center
on how the features are manifested in
Haskell, ML, and Miranda.

2.1 Higher Order Functions

If functions are treated as first-class values
in a language-allowing them to be stored
in data structures, passed as arguments,
and returned as results-they are referred
to as higher-order functions. I have not said
too much about the use of higher order
functions thus far, although they exist in
most of the functional languages that I have
discussed, including of course the lambda
calculus. Their use has in fact been argued
in many circles, including ones outside of
functional programming, most notably the
Scheme community [Abelson et al. 19851.

The main philosophical argument for
higher-order functions is that functions are
values just like any others, so why not give
them the same first class status? But there
are also compelling pragmatic reasons for
wanting higher-order functions. Simply
stated, the function is the primary abstrac-
tion mechanism over values; thus facilitat-
ing the use of functions increases the use
of that kind of abstraction.

As an example of a higher-order function,
consider the following:

twicefx=f(fx)

which takes its first argument, a function
f, and applies it twice to its second argu-
ment, X. The syntax used here is important:
twice as written is curried, meaning that
when applied to one argument it returns a
function that then takes one more argu-
ment, the second argument above. For ex-
ample, the function add2.

add2 = twice succ
where succ x = n+l

is a function that will add 2 to its argument.
Making function application associate to
the left facilitates this mechanism, since
(twice succ X) is equivalent to ((twice succ)
x), so everything works out just fine.

In modern functional languages func-
tions can be created in several ways. One
way is to name them using equations, as
above; another way is to create them di-
rectly as lambda abstractions, thus render-
ing them nameless, as in the Haskell
expression

\x + x+1

[in lambda calculus this would be written
Xx.x + 11, which is the same as the successor
function succ defined above. add2 can then
be defined more succinctly as

add2 = twice (Lx + x+1)

From a pragmatic viewpoint, we can un-
derstand the use of higher-order functions
by analyzing the use of abstraction in gen-
eral. As known from introductory program-
ming, a function is an abstraction of values
over some common behavior (an expres-
sion). Limiting the values over which the
abstraction occurs to nonfunctions seems

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages 383

unreasonable; lifting that restriction re-
sults in higher-order functions. Hughes
makes a slightly different but equally com-
pelling argument in Hughes [1984] where
he emphasizes the importance of modular-
ity in programming and argues convinc-
ingly that higher-order functions increase
modularity by serving as a mechanism for
glueing program fragments together. That
glueing property comes not just from the
ability to compose functions but also from
the ability to abstract over functional be-
havior as described above.

A.s an example, suppose in the course of
program construction we define a function
to add together the elements of a list as
follows:

sum [] = 0
sum(x:xs) = add x (sum xs)

Then suppose we later define a function to
multiply the elements of a list as follows:

prod [] = 1
prod(x:xs)= mu1 x (prod xs)

But now we notice a repeating pattern and
anticipate that we might see it again, so we
ask ourselves if we can possibly abstract
the common behavior. In fact, this is easy
to do: We note that add/mu1 and O/l are
the variable elements in the behavior, and
thus we parameterize them; that is, we
make them formal parameters, say f and
init. Calling the new function fold, the
equivalent of sum/prod will be “fold f init”,
and thus we arrive at

(fold f init) [] = init
(fold f init)(x:xs) = f x ((fold f init) xs)

where the parentheses around “fold f init”
are used only for emphasis, and are other-
wise superfluous.

From this we can derive new definitions
for sum and product:

sum = fold add 0
prod = fold mu1 1

Now that the fold abstraction has been
made, many other useful functions can be
defined, even something as seemingly un-
related as append:

append xs ys = fold (:) ys xs

[An infix operator may be passed as an
argument by enclosing it in parentheses;
thus (:) is equivalent to \x y + x : y.] This
version of append simply replaces the [] at
the end of the list xs with the list ys.

It is easy to verify that the new defini-
tions are equivalent to the old using simple
equational reasoning and induction. It is
also important to note that in arriving at
the main abstraction we did nothing out of
the ordinary-we just apply classical data
abstraction principles in as unrestricted a
way as possible, which means allowing
functions to be first-class citizens.

2.2 Nonstrict Semantics (Lazy Evaluation)

2.2.1 Fundamentals

The normal-order reduction rules of the
lambda calculus are the most general in
that they are guaranteed to produce a
normal form if in fact one exists (see
Section 1.1). In other words, they result in
termination of the rewriting process most
often, and the strategy lies at the heart of
the Church-Rosser theorem. Furthermore,
as argued earlier, normal-order reduction
allows recursion to be emulated with the
Y combinator, thus giving the larnbda cal-
culus the most powerful form of effec-
tive computability, captured in Church’s
Thesis.

Given all this, it is quite natural to con-
sider using normal-order reduction as the
computational basis for a programming
language. Unfortunately, normal-order re-
duction, implemented naively, is hopelessly
inefficient. To see why, consider this simple
normal-order reduction sequence:

(Xx. (+ x x))(* 5 4)
* (+ (* 5 4)(* 5 4))
* (+ 20 (* 5 4))
* (+ 20 20)
4 40

Note that the multiplication (* 5 4) is done
twice. In the general case, this could be an
arbitrarily large computation, and it could
potentially be repeated as many times as
there are occurrences of the formal param-
eter (for this reason an analogy is often
drawn between normal-order reduction and
call-by-name parameter passing in Algol).

ACM Computing Surveys, Vol. 21, No. 3, September 1989

384 l Paul Hudak

In practice this can happen quite often,
reflecting the simple fact that results are
often shared.

One solution to this problem is to resort
to something other than normal-order re-
duction, such as applicative-order reduc-
tion, which for the above term yields the
following reduction sequence:

(Ax. (+ x x))(* 5 4)
4 (Xx. (+ x x)) 20
=$ (+ 20 20)
* 40

Note that the argument is evaluated before
the P-reduction is performed (similar to
a call-by-value parameter-passing mecha-
nism), and thus the normal form is reached
in three steps instead of four, with no re-
computation. The problem with this solu-
tion is that it requires the introduction of
a special reduction rule to implement re-
cursion (such as gained through the &rule
for McCarthy’s conditional), and further-
more there are examples for which it does
more work than normal-order reduction.
For example, consider

Applicative order normal order
(Xx. l)(* 5 4) (Xx. l)(* 5 4)

* (Xx. 1) 20 *l
*l

or even worse (repeated from Section 1.1):

Applicative order

(Xx. l)((Xx. x x)(Xx. x x))
- (Xx. l)((Xx. x x)(Xx. x x))
=+

Normal order

(Xx. l)((hr. x x)(Xx. x z))
*l

which in the applicative-order case does not
terminate. Despite these problems, most of
the early functional languages, including
pure Lisp, FP, ML, Hope, and all of the
dataflow languages used applicative-order

semantics.” In addition to overcoming the
efficiency problem of normal-order reduc-
tion, applicative-order reduction could be
implemented with relative ease using the
call-by-value compiler technology that had
been developed for conventional imperative
programming languages.

Nevertheless, the appeal of normal-order
reduction cannot be ignored. Returning to
lambda calculus basics, we can try to get to
the root of the efficiency problem, which
seems to be the following: Reduction in the
lambda calculus is normally described as
string reduction, which precludes any pos-
sibility of sharing. If instead we were to
describe it as a graph reduction process,
perhaps sharing could be achieved. This
idea was first suggested by Wadsworth
in his Ph.D. dissertation in 1971 [1971,
Chapter 41, in which he outlined a graph-
reduction strategy that used pointers to
implement sharing. Using this strategy re-
sults in the following reduction sequence
for the first example given earlier:

which takes the same number of steps as
the applicative-order reduction sequence.

We will call an implementation of
normal-order reduction in which recompu-
tation is avoided lazy evaluation (another
term often used is call by need). Its key
feature is that arguments in function calls
are evaluated at most once. It possesses the
full power of normal-order reduction while

I9 Actually this is not quite true-most implementa-
tions of these languages use an applicative-order re-
duction strategy for the top-level redices only, thus
yielding what is known as a weak head normal form.
This strategy turns out to be easier to implement than
complete applicative-order reduction and also permits
certain versions of the Y combinator to be imple-
mented without special rules. See Burg [1975] for an
example of this using Landin’s SECD machine.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 385

being more efficient than applicative-order
reduction in that “at most once” sometimes
amounts to no computation at all.

Despite the appeal of lazy evaluation and
this apparent solution to the efficiency
problem, it took a good 10 years more for
researchers to discover ways to implement
it efficiently compared to conventional pro-
gramming languages. The chief problem
centered on the difficulty in implementing
lazy graph-reduction mechanisms on con-
ventional computers, which seem to be
better suited to call-by-value strategies.
Simulating the unevaluated portions of
the graph in a call-by-value environment
amounts to implementing closures, or
“thunks” efficiently, which have some in-
herent, nontrivial costs [Bloss et al. 19811.
It is beyond the scope of this paper to
discuss the details of these implementation
concerns; see Peyton-Jones [1987] for an
excellent summary.

Rather than live with conventional com-
puters, we could alternatively build special-
ized graph-reduction or dataflow hardware,
but so far this has not resulted in any
practical, much less commercially avail-
able, machines. Nevertheless, this work is
quite promising, and good summaries of
work in this area can be found in articles
by Treleaven et al. [1982] and Vegdahl
[1984], both of which are reprinted in
Thakkar [19871.

2.2.2 Expressiveness

Assuming that we can implement lazy eval-
uation efficiently (current practice is con-
sidered acceptably good), we should return
to the question of why we want it in the
first place. Previously we argued on philo-
sophical grounds-it is the most general
evaluation policy-but is lazy evaluation
useful to programmers in practice? The
answer is an emphatic yes, which I will
show via a twofold argument.

First, lazy evaluation frees a programmer
from concerns about evaluation order. The
fact is, programmers are generally con-
cerned about the efficiency of their pro-
grams, and thus they prefer not evaluating
things that are not absolutely necessary. As
a simple example, suppose we may need to

know the greatest common divisor of b and
c in some computation involving 2. In a
modern functional language we might write

fax
where a = gcd b c

without worrying about a being evaluated
needlessly-if in the computation of f a n
the value of a is needed, it will be computed;
otherwise it will not. If we were to have
written this program in Scheme, for exam-
ple, we might try

(let ((a kcd b c)) 1
(fax))

which will always evaluate a. Knowing that
f doesn’t always need that value and being
concerned about efficiency, we may decide
to rewrite this as

(let ((a (delay &cd b cl)) 1
(fax))

which requires modifying f so as to force its
first argument. Alternatively, we could just
write (f b c x), which requires modifying f
so as to compute the gcd internally. Both
of these solutions are severe violations of
modularity and arise out of the program-
mer’s concern about evaluation order. Lazy
evaluation eliminates that concern and pre-
serves modularity.

The second argument for lazy evaluation
is perhaps the one more often heard: the
ability to compute with unbounded “infinite”
data structures. The idea of lazily evaluat-
ing data structures was first proposed by
Vuillemin [19741, but similar ideas were
developed independently by Henderson
and Morris [1976] and Friedman and Wise
[1976]. In a later series of papers, Turner
[1981, 19821 provided a strong argument
for using lazy lists, especially when com-
bined with list comprehensions (see Sec-
tion 1.7) and higher order functions (see
Section 2.1). Aside from Turner’s elegant
examples, Hughes [1984] presented an ar-
gument based on facilitating modularity in
programming where, along with higher or-
der functions, lazy evaluation is described
as a way to “glue” pieces of programs
together.

ACM Computing Surveys, Vol. 21, No. 3, September 1939

306 . Paul Hudak

The primary power of lazily evaluated
data structures comes from its use in sep-
arating data from control. The idea is that
a programmer should be able to describe a
specific data structure without worrying
about how it gets evaluated. Thus, for ex-
ample, we could describe the sequence of
natural numbers by the following simple
program:

nats = 0: map succ nats

or alternatively by

numsfrom n = n:numsfrom (n+l)
nats = numsfrom 0

These are examples of “infinite lists”, or
streams, and in a language that did not
support lazy evaluation would cause the
program to diverge. With lazy evaluation
these data structures are only evaluated
as they are needed, on demand. For exam-
ple, we could define a function that filters
out only those elements satisfying a pro-
perty p :

filter p (X : xs)
= if (p X) then (x: rest) else rest

where rest = filter p xs

in which case “filter p nats” could be writ-
ten knowing that the degree of the list’s
computation will be determined by its con-
text-that is, the consumer of the result.
Thus filter has no operational control
within it and can be combined with other
functions in a modular way. For example,
we could compose it with a function to
square each element in a list:

map (\x-+x*x) . filter p

[. is the infix composition operator.] This
kind of modular result, in which data is
separated from control, is one of the key
features of lazy evaluation. Many more ex-
amples of this kind may be found in Hughes
[1984].

2.3 Data Abstraction

Independently of the development of func-
tional languages there has been considera-
ble work on data abstraction in general and
on strong typing, user-defined datatypes

ACM Computing Surveys, Vol. 21, Nq. 3, September 1989

and type checking in particular. Some of
this work has also taken on a theoretical
flavor, not only in foundational mathemat-
ics where logicians have used types to re-
solve many famous paradoxes, but also in
formal semantics where types aid our un-
derstanding of programming languages.

Fueling the theoretical work are two sig-
nificant pragmatic advantages of using data
abstraction and strong typing in one’s
programming methodology. First, data ab-
straction improves the modularity, secu-
rity, and clarity of programs. Modularity is
improved because we can abstract away
from implementation (i.e., representation)
details; security is improved because inter-
face violations are automatically prohib-
ited, and clarity is improved because data
abstraction has an almost self-documenting
flavor.

Second, strong static typing helps in de-
bugging since we are guaranteed that if a
program compiles successfully no error can
occur at run time due to type violations. It
also leads to more efficient implementa-
tions, since it allows us to eliminate the
most run-time tag bits and type testing.
Thus there is little performance penalty for
using data abstraction techniques.

Of course, these issues are true for any
programming language, and for that reason
a thorough treatment of types and data
abstraction is outside the scope of this sur-
vey; the reader may find an excellent sum-
mary in Cardelli and Wegner [1985]. The
basic idea behind the Hindley-Milner type
system was discussed in Section 1.6.1. I will
concentrate in this section on how data
abstraction is manifest in modern func-
tional languages.

2.3.1 Concrete Datatypes

As mentioned earlier, there is a strong ar-
gument for wanting language features that
facilitate data abstraction, whether or not
the language is functional. In fact such
mechanisms were first developed in the
context of imperative languages such as
Simula, Clu, and Euclid. It is only natural
that they be included in functional lan-
guages. ML, as I mentioned, was the first
functional language to do this, but many
others soon followed suit.

Functional Programming Languages l 387

In this section I will describe concrete
(or algebraic) datatypes as well as type
synonyms. I will use Haskell syntax, but
the ideas are essentially identical (at least
semantically) to those used in ML and
Miranda.

New algebraic datatypes may be defined
along with their constructors using data
declarations, as in the following definitions
of lists and trees:

data List a
= Nil / Cons a (List a)

data Tree b
= Empty 1 Node 6 (List (Tree b))

The identifiers List and Tree are called type
constructors, and the identifiers a and b are
called type variables, which are implicity
universally quantified over the scope of the
data declaration. The identifiers Nil, Cons,
Empty, and Node are called data construc-
tors, or just constructors, with Nil and
Empty being nullary constructors. [Note
that both type constructors and data con-
structors are capitalized, so that the latter
can be used without confusion in pattern
matching (as discussed in the next section)
and to avoid confusion with type variables
(such as a and b in the above example).]

List and Tree are called type construc-
tors since they construct types from other
types. For example, Tree Ints is the type of
trees of integers. Reading from the data
declaration for Tree, we see then that a tree
of integers is either Empty or a Node con-
taining an integer and a list of more trees
of integers.

We can now see that the previously given
type signature for map,

map :: (a * b) - [al ---f PI

is equivalent to

map :: (a-+b)+(Lista)-+(Listb)

That is, [. . .] in a type expression is just
syntax for application of the type construc-
tor List. Similarly, we can think of + as an
infix type constructor that creates the type
of all functions from its first argument (a
type) to its second (also a type).

[A useful property to note is the con-
sistent syntax used in Haskell for ex-
pressions and types. Specifically, if Ti is
the type of expression or pattern ci, then

the expressions \e1+e2, [e,], and (e1,e2)
have the types Tl+T2, [T,], and (Tl,T2),
respectively.]

Instances of these new types are built
simply by using the constructors. Thus
Empty is an empty tree, and Node 5 Empty
is a very simple tree of integers with one
element. The type of the instance is in-
ferred via the same type inference mecha-
nism that infers types of polymorphic
functions, as described previously.

Defining new concrete datatypes is fairly
common not only in functional languages
but also in imperative languages, although
the polymorphism offered by modern func-
tional languages makes it all the more
attractive.

Type synonyms are a way of creating new
names for types, such as in the following:

type Intree = Tree Ints
type Flattener = Intree -+ [Ints]

Note that Intree is used in the definition of
Flattener.Type synonyms do not introduce
new types (as data declarations do) but
rather are a convenient way to introduce
new names (i.e., synonyms) for existing
types.

2.3.2 Abstract Datatypes

Another idea in data abstraction originat-
ing in imperative languages is the notion of
an abstract datatype (ADT) in which the
details of the implementation of a datatype
are hidden from the users of that type, thus
enhancing modularity and security. The
traditional way to do this is exemplified
by ML’s ADT facility and emulated in
Miranda. Although the Haskell designers
chose a different approach to ADTs (de-
scribed below), the following example of a
queue ADT is written as if Haskell had
ML’s kind of ADTs, using the keyword
abstype:

abstype Queue a = Q [a]
where first (Q us) = last us

isempty (Q [1) = True
isempty (Q as) = False

The main point is that the functions first,
isempty, and so on, are visible in the scope

ACM Computing Surveys, Vol. 21, No. 3, September 1989

388 l Paul Hudak

of the abstype declaration, but the con-
structor Q, including its type, is not. Thus
a user of the ADT has no idea whether
queues are implemented as lists (as shown
here) or some other data structure. The
advantage of this, of course, is that one is
free to change the representation type with-
out fear of breaking some other code that
uses the ADT.

2.3.3 Haskell’s Orthogonal Design

In Haskell a rather different approach was
taken to ADTs. The observation was made
that the main difference between a concrete
and abstract datatype was that the latter
had a certain degree of information hiding
built into it. So instead of thinking of ab-
stract datatypes and information hiding as
going hand in hand, the two were made
orthogonal components of the language.
More specifically, concrete datatypes were
made the only data abstraction mechanism,
and to that an expose declaration was
added to control information hiding, or
visibility.

For example, to get the effect of the
earlier definition of a queue, we would write

expose Queue, first, isempty
from data Queue a = Q [a]

first (Q as) = last as
isempty (Q [] = True
isempty (Q us) = False

Since Q is not explicitly listed in the expose
declaration, it becomes hidden from the
user of the ADT.

The advantage of this approach to ADTs
is more flexibility. For example, suppose we
also wish to hide isempty or perhaps some
auxiliary function defined in the nested
scope. This is trivially done with the or-
thogonal design but is much harder with
the ML design as described so far. Indeed,
to alleviate this problem the ML designers
provided an additional construct, a local
declaration, with which one can hide local
declarations. Another advantage of the or-
thogonal design is that the same mecha-
nism can be used at the top level of a
module to control visibility of the internals
of the module to the external world. In
other words, the expose mechanism is very

ACM Computing Surveys, Vol. 21, No. 3, September 1989

general and can be nested. Haskell uses a
conservative module system that relies on
this capability.

A disadvantage of the orthogonal ap-
proach is that if the most typical ADT
scenario only requires hiding the represent-
ative type, the user will have to think
through the details in each case rather than
having the hiding done automatically by
using abstype.

2.4 Equations and Pattern Matching

One of the programming methodology at-
tributes that is strongly encouraged in the
modern school of functional programming
is the use of equational reasoning in the
design and construction of programs. The
lack of side effects accounts for the primary
ability to apply equational reasoning, but
there are syntactic features that can facili-
tate it as well. Using equations as part of
the syntax is the most obvious of these, but
along with that goes pattern matching
whereby one can write several equations
when defining the same function, only one
of which is presumably applicable in a given
situation. Thus modern functional lan-
guages have tried to maximize the expres-
siveness of pattern matching.

At first blush, equations and pattern
matching seem fairly intuitive and rela-
tively innocuous. Indeed, we have already
given many examples that use pattern
matching without having said much about
the details of how it works. But in fact
pattern matching can have surprisingly
subtle effects on the semantics of a lan-
guage and thus should be carefully and
precisely defined.

2.4.1 Pattern Matching Basics

Pattern matching should actually be viewed
as the primitive behavior of a case expres-
sion, which has the general form

case e of
pat1 + el
pat2 + e2

patn -+ en

Intuitively, if the structure of e matches
pati, then the result of the case expression

Functional Programming Languages l 389

is ei. A set of equations of the form

fpatl = el
f pat2 = e2

f patn = en

can then be thought of as shorthand for

f=\x+caserof
pat1 -+ el
pat2 ---, e2

patn + en

Despite this translation, for convenience I
will use the equational syntax in the re-
mainder of this section.

The question to be asked first is just what
the pattern-matching process consists of.
For example, what exactly are we pattern
matching against? One idea that seems rea-
sonable is to allow one to pattern match
against constants and data structures.
Thus, fat can be defined by

fat 0 = 1
’ n = n*fac(n-1)

[The tick mark in the second equation is
an abbreviation for fat.] But note that this
relies on a top-to-bottom reading of the
program, since (fat 0) actually matches
both equations. We can remove this ambi-
guity by adding a guard (recall the discus-
sion in Section 1.7), which in Haskell looks
like the following:

fat 0
’

= 1
n] n>O = n*fac(n-1)

As we have already demonstrated through
several examples, it is also reasonable to
pattern match against lists:

length [] = 0
(x: xs) = 1 + length xs

and for that matter any data structure,
including user-defined ones:

data Tree2 a
= Leaf a] Branch (Tree2 a) (Tree2 a)

fringe (Leaf x) = [x]
9 (Branch left right)

= fringe left ++ fringe right

where ++ is the infix append operator.

Another possibility that seems desirable
is the ability to repeat formal parameters
on the left-hand side to denote that argu-
ments in those positions must have the
same value, as in the second line of the
following definition:

member x [] = False
, x (x : xs) = True
, x (y : xs) = member x xs

[This is not legal Haskell syntax, since such
repetition of identifiers is not allowed.]
Care must, however, be taken with this
approach since in something like

alleq [x, x, x] = True
,

Y = False

it is not clear in what order the elements of
the list are to be evaluated. For example, if
they are evaluated left to right then “alleq
[I, 2, bot]“, where bot is any nonterminat-
ing computation, will return False, whereas
with a right to left order the program will
diverge. One solution that would at least
guarantee consistency in this approach is
to insist that all three positions are evalu-
ated so that the program diverges if any of
the arguments diverge.

In general the problem of what gets eval-
uated, and when, is perhaps the most subtle
aspect of reasoning about pattern matching
and suggests that the pattern-matching al-
gorithm be fairly simple so as not to mislead
the user. Thus in Haskell the above repe-
tition of identifiers is disallowed-equa-
tions must be linear-but some functional
languages allow it (e.g., Miranda and Alfl
[Hudak 19841).

A particularly subtle version of this prob-
lem is captured in the following example.
Consider these definitions:

data Silly a = Foo a] Other
bar (Foo x) = 0
’ Other = 1

Then a call “bar bot” will diverge, since bar
must be strict in order that it can distin-
guish between the two kinds of arguments
that it might receive. But now consider this
small modification:

data Silly a = Foo a
bar (Foo x) = 0

ACM Computing Surveys, Vol. 21, No. 3, September 1989

390 l Paul Hudak

Now a call bar bot seems like it should
return 0, since bar need not be strict-it
can only receive one kind of argument and
thus does not need to examine it unless it
is needed in computing the result, which in
this case it does not. In Haskell a mecha-
nism is provided so that either semantics
may be specified.

Two useful discussions on the subject of
pattern matching can be found in Augusts-
son [1985] and Wadler [1987a].

2.4.2 Connecting Equations

Let us now turn to the more global issue of
how the individual equations are connected
together as a group. As mentioned earlier,
one simple way to do this is give the equa-
tions a top-to-bottom priority, so that in

fat 0 = 1
’ n = n * fac(n-1)

the second equation is tried only after the
first one has failed. This is the solution
adopted in many functional languages, in-
cluding Haskell and Miranda.

An alternative method is to insist that
the equations be disjoint, thus rendering
the order irrelevant. One significant moti-
vation for this is the desire to reason about
the applicability of an equation indepen-
dently of the others, thus facilitating equa-
tional reasoning. The question is, HOW can
one guarantee disjointness? For equations
without guards, the disjointness property
can be determined statically; that is, by just
examining the patterns. Unfortunately,
when unrestricted guards are allowed, the
problem becomes undecidable, since it
amounts to determining the equality of ar-
bitrary recursive predicates. This in turn
can be solved by resolving the guard dis-
jointness at run time. On the other hand,
this solution ensures correctness only for
values actually encountered at run time,
and thus the programmer might apply
equational reasoning erroneously to as yet
unencountered values.

The two ideas could also be combined by
providing two different syntaxes for joining
equations. For example, using the hypo-

thetical keyword else (not valid in Haskell):

sameShallowStructure [a] [c] = True
[a&] [c,d] = True

else
7

x Y = False

The first two equations would be combined
using a disjoint semantics; together they
would then be combined with the third
using a top-to-bottom semantics. Thus the
third equation acts as an “otherwise” clause
in the case that the first two fail. A design
of this sort was considered for Haskell early
on, but the complexities of disjointness,
especially in the context of guards, were
considered too great and the design was
eventually rejected.

2.4.3 Argument Order

In the same sense that it is desirable to
have the order of equations be irrelevant,
it is desirable to have the order of argu-
ments be irrelevant. In exploring this pos-
sibility, consider first the functions f and’g
defined by

fll=l
fZx=Z

gll=l
gx2=2

which differ only in the order of their ar-
guments. Now consider to what “f 2 bot”
should evaluate. Clearly the equations for f
are disjoint, clearly the expression matchs
only the second equation, and since we
want a nonstrict language it seems the an-
swer should clearly be 2. For a compiler to
achieve this it must always evaluate the
first argument to f first.

Now consider the expression “g bot 2”-
by the same argument given above the re-
sult should also be 2, but now the compiler
must be sure always to evaluate the second
argument to g first. Can a compiler always
determine the correct order in which to
evaluate its arguments?

To help answer that quation, first con-
sider this intriguing example (due to Berry
[19781):

fOlx=l
flrO=Z
fx01=3

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 391

Clearly these equations are disjoint. So
what is the value of “f 0’1 bot”? The desired
answer is 1. And what is the value of “f 1
bot O”? The desired answer is 2. And what
is the value of “f bot 0 l”? The desired
answer is 3. But now the most difficult
question is In what order should the argu-
ments be evaluated? If we evaluate the
third one first, then the answer to the first
question cannot be 1. If we evaluate the
second one first, then the answer to the
second question cannot be 2. If we evaluate
the first one first, then the answer to the
third question cannot be 3. In fact there is
no sequential order that will allow us to
answer these three questions the way we
would like-some kind of parallel evalua-
tion is required.

This subtle problem is solvable in several
ways, but they all require some kind of
compromise-insisting on a parallel (or
pseudoparallel) implementation, rejecting
certain seemingly valid programs, making
equations more strict than one would like,
or giving up on the independence of
the order of evaluation of arguments. In
Haskell the last solution was chosen-
perform a left-to-right evaluation of the
arguments-because it presented the sim-
plest semantics to the user, which was
judged to be more important than making
the order of arguments irrelevant. Another
way to explain this is to think of equations
as syntax for nested lambda expressions, in
which case one might not expect symmetry
with respect to the arguments anyway.

2.5 Formal Semantics

Simultaneously with work on functional
languages Scott, Strachey, and others were
busy establishing the foundations of deno-
tational semantics, now the most widely
used tool for describing the formal seman-
tics of programming languages. There was
a close connection between this work and
functional languages primarily because the
lambda calculus served as one of the sim-
plest programming languages with enough
useful properties to make its formal seman-
tics interesting. In particular, the lambda
calculus had a notion of self-application,
which implies that certain domains had to
contain their own function spaces. That is,

it required a domain D that was a solution
to the following domain equation:

D=D+D

At first this seems impossible-surely there
are more functions from D into D than
there are elements in D-but Scott [1970]
was able to show that indeed such domains
existed, as long as one was willing to restrict
the allowable functions in certain (quite
reasonable) ways and by treating = as an
isomorphism rather than an equality.
Scott’s work served as the mathematical
foundation for Strachey’s work [Milne and
Stracheg 19761 on the denotational seman-
tics of programming languages; see [Stoy
19791 and [Schmidt 19851 for thorough
treatments.

Denotational semantics and functional
programming have close connections, and
the functional programming community
emphasizes the importance of formal se-
mantics in general. For completeness and
to show how simple the denotational
semantics of a functional language can
be, we give the semantics of the recursive
lambda calculus with constants defined
in Section 2.3.

Bas = Int + Bool + . . . Basic values
D = Bas + (D + D) Denotable values
Env = Id + D Environments

8: Exp -+ Env + D
3: Con + D

gI[xi)enu= enuI[xj
8I[cjenv = 3T[cl
~?(jele2]enu = (271[el J/env)(Z?[epjenv)
BI[Xx.ejenu = Au.Z?[ejenu[u/x]
kF[e where x1 = e,; .‘. . ; X, = e,l)env

= 8I[ejenv’

where

env’ = fix Aenv’.env[(Z[e,Denv’)/xl,

This semantics is relatively simple, but
in moving to a more complex language such
as Miranda or Haskell the semantics can
become significantly more complex due to
the many syntactic features that make the
languages convenient to use. In addition,

ACM Computing Surveys, Vol. 21, No. 3, September 1989

392 l Paul Hudak

one must state precisely the static seman-
tics as well, including type checking and
pattern-matching usage. This complexity is
managed in the Haskell Report by first
translating Haskell into a kernel which is
only slightly more complex than the above.

3. ADVANCED FEATURES AND ACTIVE
RESEARCH AREAS

Some of the most recent ideas in functional
language design are new enough that they
should be regarded as on-going research.
Nevertheless, many of them are sound
enough to have been included in current
language designs. In this section we will
explore a variety of such ideas, beginning
with some of the innovative ideas in the
Haskell design. Some of the topics have a
theoretical flavor, such as extensions of the
Hindley-Milner type system; some have a
pragmatic flavor, such as expressing non-
determinism, efficient arrays, and I/O; and
some involve the testing of new application
areas, such as parallel and distributed com-
putation. All in all, studying these topics
should provide insight into the goals of
functional programming as well as some of
the problems in achieving those goals.

3.1 Overloading

The kind of polymorphism exhibited by
the Hindley-Milner type system is what
Strachey called parametric polymorphism
to distinguish it from another kind that he
called ad hoc polymorp.lzi.sm or overloading.
The two can be distinguished in the follow-
ing way: A function with parametric poly-
morphism does not care what type certain
of its arguments have and thus it behaves
identically regardless of the type. In con-
trast, a function with ad hoc polymorphism
does care and in fact may behave differently
for different types. Stated another way, ad
hoc polymorphism is really just a syntactic
device for overloading a particular func-
tion name or symbol with more than one
meaning.

For example, the function map defined
earlier exhibits parametric polymorphism
and has typing

map :: (a + b) - [a] -+ [b]

Regardless of the kind of list given to map
it behaves in the same way. In contrast,
consider the function +, which we normally
wish to behave differently for integer and
floating point numbers and not at all (i.e.,
be a static error) for nonnumeric argu-
ments. Another common example is the
function == (equality), which certainly be-
haves differently when comparing the
equality of two numbers versus, say, two
lists.

Ad hoc polymorphism is normally (and
I suppose appropriately) treated in an
ad hoc manner. Worse, there is no accepted
convention for doing this; indeed ML,
Miranda, and Hope all do it differently.
Recently, however, a uniform treatment for
handling overloading was discovered inde-
pendently by Kaes [19881 (in trying to gen-
eralize ML’s ad hoc equality types) and
Wadler and Blott [1989] (as part of the
process of defining Haskell). Below I will
describe the solution as adopted in Haskell;
details may be found in Wadler and Blott
[19891.

The basic idea is to introduce a notion of
type classes that capture a collection of
overloaded operators in a consistent way.
A class declaration is used to introduce a
new type class and the overloaded operators
that must be supported by any type that is
an instance of that class. An instance dec-
laration declares that a certain type is an
instance of a certain class, and thus in-
cluded in the declaration are the definitions
of the overloaded operators instantiated on
the named type.

For example, say that we wish to overload
+ and negate on types Int and Float. To do
so, we introduce a new type class called
Num:

class Num a where
(+) :: a+a-+a
negate :: a -3 a

This declaration may be read “a type a
belongs to the class Num if there are (over-
loaded) functions + and negate, of the ap-
propriate types, defined on it.”

We may then declare Int and Float to be
instances of this class, as follows:

instance Num Int where
x+Y = addInt x y
negate x = negateInt x

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages 9 393

instance Num Float where
x+Y = addFloat x y
negate x = negateFloat n

[note how infix operators are defined;
Haskell’s lexical syntax prevents ambigui-
ties] where addInt, negateInt, addFloat,
and negateFloat are assumed in this case
to be predefined functions but in general
could be any user-defined function. The
first declaration above may be read “Int is
an instance of the class Num as witnessed
by these definitions of + and negate.”

Using type classes we can thus treat over-
loading in a consistent, arguably elegant,
way. Another nice feature is that type
classes naturally support a notion of inher-
itance. For example, we may define a class
Eq by

class Eq a where
(==) :: a + a + Boo1

Given this class, we would certainly expect
all members of the class Num, say, to have
== defined on them. Thus the class decla-
ration for Num could be changed to

class Eq a * Num a where
(+I ::a+a+a
negate :: a + a

which can be read as “only members of the
class Eq may be members of the class Num,
and a type a belongs to the class Num if. . .
(as before).” Given this class declaration,
instance declarations for Num must include
a definition of == as in

instance Num Int where
x+Y = addInt x y
negate n = negateInt x
X”Y = eqInt x y

The Haskell Report uses this inheritance
mechanism to define a very rich hierarchi-
cal numeric structure that reflects fairly
well a mathematician’s view of numbers.

The traditional Hindley-Milner type
system is extended in Haskell to include
type classes. The resulting type system is
able to verify that the overloaded operators
do have the appropriate type. It is however,
possible (but not likely) for ambiguous sit-
uations to arise, which in Haskell result in
type error but can be reconciled explicitly
by the user (see Hudak and Wadler [1988]
for the details).

3.2 Purely Functional Yet Universal I/O

To many the notion of I/O conjures an
image of state, side effects, and sequencing.
Is there any hope at achieving purely func-
tional yet universal and of course efficient
I/O? Suprisingly, the answer is yes. Per-
haps even more surprising is that over the
years there have emerged not one but two
seemingly very different solutions:

The lazy stream model, in which temporal
events are modeled as lists, whose lazy
semantics mimics the demand-driven be-
havior of processes.
The continuation model in which tem-
porality is modeled via explicit contin-
uations.

Although papers have been written ad-
voacting both solutions, and indeed they
are very different in style, the two solutions
turn out to be exactly equivalent in terms
of expressiveness; in fact, there is an almost
trivial translation from one to the other.
The Haskell I/O system takes advantage of
this fact and provides a unified framework
that supports both styles. The specific I/O
operations available in each style are iden-
tical-what differs is the way they are ex-
pressed-and thus programs in either style
may be combined with a well-defined se-
mantics. In addition, although certain of
the primitives rely on nondeterministic be-
havior in the operating system, referential
transparency is still retained internal to a
Haskell program.

In this section the two styles will be
described as they appear in Haskell, to-
gether with the translation of one in terms
of the other. Details of the actual Haskell
design may be found in Hudak and Wadler
[1988], and a good discussion of the trade-
offs between the styles, including examples,
may be found in Hudak and Sundaresh
[19881. ML, by the way, uses an imperative,
referentially opaque, form of I/O (perhaps
not surprising given the presence of refer-
ences); Miranda uses a rather restricted
form of the stream model; and Hope uses
the continuation model but with a strict
(i.e., call-by-value) semantics.

To begin, we can paint an appealing
functional view of a collection of programs
executing within an operating system (OS)

ACM Computing Surveys, Vol. 21, No. 3, September 1989

394 l Paul Hudak

as shown in Figure 1. With this view pro-
grams are assumed to communicate with
the OS via messages-programs issue re-
quests to the OS and receive responses from
the OS.

Ignoring for now the OS itself as well as
the merge and split operations, a program
can be seen as a function from a stream
(i.e., list) of responses to a stream of re-
quests. Although the above picture is quite
intuitive, this latter description may seem
counterintuitive-how can a program re-
ceive a list of responses before it has gen-
erated any requests? But remember that we
are using a lazy (i.e., nonstrict) language,
and thus the program is not obliged to
examine any of the responses before it is-
sues its first request. This application of
lazy evaluation is in fact a very common
style of programming in functional lan-
guages.

Thus a Haskell program engaged in I/O
is required to have type Behavior, where

type Behavior = [Response] -+ [Request]

(Recall from Section 2.3 that [Response] is
the type consisting of lists of values of type
Response.) The main operational idea is
that the nth response is the reply of the
operating system to the nth request.

For simplicity, we will assume that there
are only two kinds of requests and three
kinds of responses, as defined below:

data Request
= ReadFile’ Name

1 WriteFile’ Name Contents

data Response
= Success 1 Return Contents

1 Failure ErrorMsg
type Name = String
type Contents = String
type ErrorMsg= String

[This is a subset of the requests available
in Haskell.]

As an example, given this request list,

1 . . . , WriteFile fname sl, Readfile fname,
. . . 1

and the corresponding response list,

[. . . , Success, Return ~2, . . .]

then sl == 52, unless there were some
intervening external effect.

In contrast, the continuation model is
normally characterized by a set of transac-
tions. Each transaction typically takes a
success continuation and a failure contin-
uation as arguments. These continuations
in turn are simply functions that generate
more transactions. For example,

data Transaction
= ReadFile’ Name FailCont RetCont
1 WriteFile’ Name Contents

FailCont SuccCont
type FailCont

= ErrorMsg + Transaction
type RetCont

= Contents + Transaction
Type SuccCont Transaction

[In Haskell the transactions are actually
provided as functions rather than construc-
tors; see below.] The special transaction
Done represents program termination.
These declarations should be compared
with those for the stream model given
earlier.

Returning to the simple example given
earlier, the request and response list are no
longer separate entities since their effect is
interwoven into the continuation structure,
yielding something like this:

WriteFile’ fname sl exit
(ReadFile’ fname exit

(\s2 + . . .))
where exit errmsg = Done

in which case, as before, we would expect
sl == s2 in the absence of external effects.
This is essentially the way I/O is handled
in Hope.

Although these two styles seem very dif-
ferent, there is a simple translation of the
continuation model into the stream model.
In Haskell, instead of defining the new
datatype Transaction, a set of functions is
defined that accomplishes the same task
but that is really stream transformers in

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 395

Stream 01
requests

Stream of
responses

Figure 1. Functional I/O.

the request/response style. In other words, input and output. Because the merge itself
the type Transaction should be precisely is implemented in the operating system,
the type Behavior and should not be a new referential transparency is retained within
datatype at all. Thus we arrive at a Haskell program.

readFile :: Name + FailCont += FailCont ---) RetCont -+ Behavior
writeFile :: Name + Contents ---$ FailCont + SuccCont ---* Behavior
done :: Behavior
type FailCont = ErrorMsg + Behavior
type RetCont = Contents -+ Behavior
type SuccCont = Behavior
readFile name fail succ resps =

(ReadFile name) : case (head resps) of
Return contents --, succ contents (tail resps)
Failure msg -+ fail msg (tail resps)

writeFile name contents fail succ resps =
(WriteFile name contents) : case (head resps) of

Success + succ (tail resps)
Failure msg -+= fail msg (tail resps)

done resps = []

This pleasing and very efficient translation
allows us to write Haskell programs in
either style and mix them freely.

The complete design, of course, includes
a fairly rich set of primitive requests besides
ReadFile and WriteFile, including a set of
requests for communicating through chan-
nels, which include things such as standard

Another useful aspect of the Haskell de-
sign is that it includes a partial (but rigor-
ous) specification of the behavior of the OS
itself. For example, it introduces the notion
of an agent that consumes data on out-
put, channels and produces data on input
channels. The user is then modeled as an
agent that consumes standard output and

ACM Computing Surveys, Vol. 21, No. 3, September 1989

396 l Paul Hudak

produces standard input. This particular
agent is required to be strict in the standard
output, corresponding to the notion that
the user reads the terminal display before
typing at the keyboard. No other language
design that I am aware of has gone this far
in specifying the I/O system with this de-
gree of precision; it is usally left implicit in
the specification. It is particularly impor-
tant in this context however, because the
proper semantics relies critically on how
the OS consumes and produces the request
and response lists.

To conclude this section I will show two
Haskell programs that prompt the user for
the name of a file, read and echo the file
name, and then look up and display the
contents of the file on standard output. The
first version uses the stream model, the
second the continuation model.
[The operator !! is the list selection opera-
tor; thus xs !! n is the nth element in the
list xs.]

translated almost verbatim into a func-
tional language. The main philosophy is to
treat the entire array as a single entity
defined declaratively rather than as a place
holder of values that is updated incremen-
tally. This, in fact, is the basis of the APL
philosophy (see Section 1.4), and some
researchers have concentrated on com-
bining functional programming ideas with
those from APL [Tu 1986; Tu and Perlis
19861. The reader may find good general
discussions of arrays in functional pro-
gramming languages in Wadler [19861,
Hudak [1986a], and Wise [1987]. In the
remainder of this section I will describe
Haskell’s arrays, which originated from
some ideas in Id Nouveau [Nikhil et al.
19861.

Haskell has a family of multidimensional
nonstrict immutable arrays whose special
interaction with list comprehensions pro-
vides a convenient array comprehension
syntax for defining arrays monolithically.

main resps =
[AppendChannel “stdout” “please type a filename\CR\“,

if (resps!!l == Success) then (ReadChannel “stdin”),
AppendChannel “stdout” fname,
if (resps!!3 == Success) then (ReadFile fname),
AppendChannel “stdout” (case resps !! 4 of

Failure msg ---f “can’t open”
Return file-contents -+ file-contents)

] where fname = case resps !! 2 of
Return user-input --+ get-line user-input

main = appendchannel “stdout” “please type a filename\CR\” exit
(readchannel “stdin” exit (\user-input -+

appendchannel “stdout” fname exit
(readFile fname (\msg + appendchannel “stdout” “can’t open” exit done)

(\contents +
appendchannel “stdout” contents exit done))
where fname = get-line user-input))

exit msg = done

3.3 Arrays As an example, here is how to define a

As it turns out, arrays can be expressed
vector of squares of the integers from 1

rather nicely in a functional language, and
to n.

.
in fact all of the arguments about mathe- a = array (1, n) [(i, i*i) 1 i + [l . . n]]
matical elegance fall in line when using
arrays. This is especially true of program The first argument to array is a tuple of
development in scientific computation, bounds, and thus this array has size n
where textbook matrix algebra can often be and is indexed from 1 to n. The second

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 397

argument is a list of index/value pairs and
is written here as a conventional list com-
prehension. The ith element of an array a
is written a ! i, and thus in the above case
we have that a ! i = i*i.

There are several useful semantic prop-
erties of Haskell’s arrays. First, they can be
recursive-here is an example of defining
the first n numbers in the Fibonacci
sequence:

fib = array (0, n)
(I@, 11, (1,1) I ++

[(i, fib!&l)+fib! (i-2)) 1 i c [2 . . n]])

This example demonstrates how we can use
an array as a cache, which in this case turns
an exponentially poor algorithm into an
efficient linear one.

Another important property is that array
comprehensions are constructed lazily, and
thus the order of the elements in the list is
completely irrelevant. For example, we can
construct an m-by-n matrix using a wave-
front recurrence, where the north and west
borders are 1 and each other element is
the sum of its north, northwest, and west
neighbors, as follows:

a = array ((lm), (l,n))
([((1,lM) 1 ++

[((i,l),l) (i c [2.. m]] ++
1 ((l,i),l) lj + 12.. nl I ++
[((i,j), a!(&1,;) + a!(i,j-1)

+ a!(i-l,j-1))
lic[2.. ml,j-P..nl I)

The elements in this result can be accessed
in any order-the demand-driven effect of
lazy evaluation will cause the necessary
elements to be evaluated in an order con-
strained only by data dependencies. It is
this property that makes array comprehen-
sions so useful in scientific computation,
where recurrence equations express the
same kind of data dependencies. In imple-
menting such recurrences in FORTRAN
we must be sure that the elements are eval-
uated in an order consistent with the de-
pendencies-lazy evaluation accomplishes
that for us.

On the other hand, although elegant, ar-
ray comprehensions may be difficult to im-
plement efficiently. There are two main
difficulties: the standard problem of over-
coming the inefficiencies of lazy evaluation

and the problem of avoiding the construc-
tion of the many intermediate lists that the
second argument to array seems to need. A
discussion of ways to overcome these prob-
lems is found in Anderson and Hudak
[19891. Alternative designs for functional
arrays and their implementations may be
found in Aasa et al. [1987], Holmstrom
[19831, Hughes [1985a], and Wise [19871.

Another problem is that array compre-
hensions are not quite expressive enough
to capture all behaviors. The most conspic-
uous example of this is the case in which
an array is being used as an accumulator,
say in building a histogram, and thus one
actually wants an incremental update ef-
fect. Thus in Haskell a function called
accumArray is provided to capture this
kind of behavior in a way consistent with
the monolithic nature of array comprehen-
sions (similar ideas are found in Steele et
al. [1986] and Wadler [1986]). It is not,
however, clear that this is the most general
solution to the problem. An alternative ap-
proach is to define an incremental update
operator on arrays, but then even nastier
efficiency problems arise, since (concep-
tually at least) the updates involve copying.
Work on detecting when it is safe to imple-
ment such updates destructively has
resulted in at least one efficient implemen-
tation [Bloss 1988; Bloss and Hudak N.d.;
Hudak and Bloss 19851, although the
analysis itself is costly.

Nevertheless, array comprehensions
have the potential for being very useful,
and many interesting applications have al-
ready been programmed using them (see
Hudak and Anderson [1988] for some ex-
amples). It is hoped that future research
will lead to solutions to the remaining
problems.

3.4 Views

Pattern matching (see Section 2.4) is very
useful in writing compact and readable pro-
grams. Unfortunately, knowledge of the
concrete representation of an object is nec-
essary before pattern matching can be in-
voked, which seems to be at odds with the
notion of an abstract datatype. To reconcile
this conflict Wadler [1987] introduced a
notion of views.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

398 l Paul Hudak

A view declaration introduces a new
algebraic datatype, just like a data decla-
ration, but in addition establishes an iso-
morphism between the values of this new
type and a subset of the values of an exist-
ing algebraic datatype. For example,

data Complex = Rectangular Float Float
view Complex = Polar Float Float

where toView (Rectangular x y)
= Polar (sqrt (x**2+y**2))

(arctan (y/x 1)
fromview (Polar r t)

= Rectangular (r*(cos t))
(r*(sin t))

[Views are not part of Haskell, but as with
abstract datatypes we will use Haskell syn-
tax, here extended with the keyword view.]
Given the datatype Complex, we can read
the view declaration as, “One view of Com-
plex contains only Polar values; to translate
from a Rectangular to a Polar value, use
the function toView; to translate the other
way, use fromview.”

Having declared this view, we can now
use pattern matching using either the Rec-
tangular constructor or the Polar construc-
tor; similarly, new objects of type Complex
can be built with either the Rectangular or
Polar constructors. They have precisely the
same status, and the coercions are done
automatically. For example,

rotate (Polar r t) angle = Polar r (t+angle)

As the example stands, objects of type
Complex are concretely represented with
the Rectangular constructor, but this deci-
sion could be reversed by making Polar the
concrete constructor and Rectangular the
view, without altering any of the functions
that manipulate objects of type Complex.

Whereas traditionally abstract data
types are regarded as hiding the represen-
tation, with views we can reveal as many
representations (zero, one, or more) as are
required.

As a final example, consider this defini-
tion of Peano’s view of the natural number
subset of integers:

view Integer = Zero 1 Succ Integer
where fromView Zero = 0

’ (Succ n) 1 n>=O =n+l
toView 0 = Zero
’ n 1 n>O = succ (n-l)

With this view, 7 is viewed as equivalent to

succ (Succ (Succ (Succ (Succ (Succ (Succ
Zero))))))

Note that fromView defines a mapping of
any finite element of Peano into an integer,
and toView defines the inverse mapping.
Given this view, we can write definitions
such as

fat Zero = 1
’ (Succ n) = (Succ n) * (fat n)

which is very useful from an equational
reasoning standpoint, since it allows us
to use an abstract representation of inte-
gers without incurring any performance
overhead-the view declarations provide
enough information to map all of the
abstractions back into concrete implemen-
tations at compile time.

On the other hand, perhaps the most
displeasing aspect of views is that an im-
plicit coercion is taking place, which may
be confusing to the user. For example, in

case (Foo a b) of
Fooxy+exp

we cannot be sure in exp that a==x and
b==y. Although views were considered in
an initial version of Haskell, they were
eventually discarded, in a large part be-
cause of this problem.

3.5 Parallel Functional Programming

An often-heralded advantage of functional
languages is that parallelism in a functional
program is implicit; it is manifested solely
through data dependencies and the seman-
tics of primitive operators. This is in con-
trast to more conventional languages,
where explicit constructs are typically used
to invoke, synchronize, and in general co-
ordinate the concurrent activities. In fact,
as discussed earlier, many functional lan-
guages were developed simultaneously with
work on highly parallel dataflow and reduc-
tion machines, and such research continues
today.

In most of this work, parallelism in
a functional program is detected by the
system and allocated to processors auto-
matically. Although in certain constrained

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 399

classes of functional languages the mapping
of process to processor can be determined
optimally [Chen 1986; Delosme and Ipsen
19851, in the general case the optimal strat-
egy is undecidable, so heuristics such as
load balancing are often used instead.

But what if a programmer knows a good
(perhaps optimal) mapping strategy for a
program executing on a particular machine,
but the compiler is not smart enough to
determine it? And even if the compiler is
smart enough, how does one reason about
such behavior? We could argue that the
programmer should not be concerned about
such details, but that is a difficult argument
to make to someone whose job is precisely
to invent such algorithms.

To meet these needs, various researchers
have designed extensions to functional lan-
guages, resulting in what I like to call
parafunctional programming languages.
The extensions amount to a metalanguage
(e.g., annotations) to express the desired
behavior. Examples include annotations to
control evaluation order [Burton 1984;
Darlington and While 1987; Sridharan
19851, prioritize tasks, and map processes
to processors [Hudak 1986c; Hudak and
Smith 1986; Keller and Lindstrom 19851.
Similar work has taken place in the Prolog
community [Shapiro 19841. In addition, re-
search has resulted in formal operational
semantics for such extensions [Hudak
198613; Hudak and Anderson 19871. In
the remainder of this section one kind of
parafunctional behavior will be demon-
strated-that of mapping program to ma-
chine (based on the work in Hudak [1986c]
and Hudak and Smith [1986]).

The fundamental idea behind process-to-
processor mapping is quite simple. Con-
sider the expression el+e2. The strict
semantics of + allows the subexpressions
el and e2 to be executed in parallel-this
is an example of what is meant by saying
that the parallelism in a functional program
is implicit. But suppose now that we wish
to express precisely where (i.e., on which
processor) the subexpressions are to be
evaluated; we may do so quite simply by
annotating the subexpressions which ap-
propriate mapping information. An expres-
sion annotated in this way is called a
mapped expression, which has the following

form:

exp on proc

[on is a hypothetical keyword, and is not
valid Haskell] which intuitively declares
that exp is to be computed on the processor
identified by proc. The expression exp is
the body of the mapped expression and
represents the value to which the overall
expression will evaluate (and thus can
be any of expression. including another
mapped expression). The expression proc
must evaluate to a processor id. Without
loss of generality the processor ids, or pids,
are assumed to be integers, and there is
some predefined mapping from those inte-
gers to the physical processors they denote.

Returning now to the example, we can
annotate the expression (el+e2) as follows:

(el on 0) + (e2 on 1)

where 0 and 1 are processor ids. Of course,
this static mapping is not very interesting.
It would be nice, for example, if we were
able to refer to a processor relative to the
currently executing one. We can do this
through the use of the reserved identifier
self, which when evaluated returns the pid
of the currently executing processor. Using
self we can now be more creative. For ex-
ample, suppose we have a ring of n proces-
sors that are numbered consecutively; we
may then rewrite the above expression as

(el on left self) + (e2 on right self)
where left pid = mod (pid-1) rz

right pid = mod (pid+l) n

[mod x y computes x modulo y.], which
denotes the computation of the two sub-
expressions in parallel on the two neigh-
boring processors, with the sum being
computed on self.

To see that it is desirable to bind self
dynamically, consider that one may wish
successive invocations of a recursive call to
be executed on different processors-this is
not easily expressed with lexically bound
annotations. For example, consider the fol-
lowing list-of-factorials program, again
using a ring of processors:

(map fat [2,3,4]) on 0
where map f [] = [I

f (xxs) = f x : ((map f xs) on
(right self))

ACM Computing Surveys, Vol. 21, No. 3, September 1989

400 ’ Paul Hudak

Note that the recursive call to map is
mapped onto the processor to the right of
the current one, and thus the elements 2,
6, and 24 in the result list are computed on
processors 0, 1, and 2, respectively.

Parafunctional programming languages
have been shown to be adequate in express-
ing a wide range of deterministic parallel
algorithms clearly and concisely [Hudak
1986c; Hudak and Smith 19861. It remains
to be seen, however, whether the pragmatic
concerns that motivate these kinds of lan-
guage extensions persist, and if they do,
whether or not compilers can become smart
enough to perform the optimizations auto-
matically. Indeed these same questions can
be asked about other language extensions,
such as the memoization techniques dis-
cussed in the next section.

3.6 Caching and Memoization

Consider this simple definition of the
Fibonacci function:

fibO=l
’ l=l
’ n = fib (n-l) + fib (n-2)

Although simple, it is hopelessly inefficient.
We could rewrite it in one of the classic
ways, but then the simplicity and elegance
of the original definition is lost. Keller and
Sleep [19861 suggest an elegant alternative:
Provide syntax for expressing the caching
or memoization of selected functions. For
example, the syntax might take the form of
a declaration that precedes the function
definition, as in

memo f’ib using cache
fibO=l
’ l=l
’ n = fib (n-l) + fib (n-2)

which would be syntactic sugar for

fib = cache fib1
where fib1 0 = 1

’ l=l
’ n = fib (n-l) + fib (n-2)

The point is that cache is a user-defined
function that specifies a strategy for cach-
ing values of fib. For example, to cache
values in an array, we might define

cache by

cache fn = \n + (array (0,max)
[(i&z i) 1 it[O..max]]) ! n

where we assume max is the largest argu-
ment to which fib will be applied. Expand-
ing out the definitions and syntax yields

fib n = (array (0,max)
where k$lj i HO..maxll) ! n

’ l=l
’ n = fib (n-1) + fib (n-2)

which is exactly the desired result.” As a
methodology this is very nice, since librar-
ies of useful caching functionals may be
produced and reused to cache many differ-
ent functions. There are limitations to the
approach, as well as extensions, all of which
are described in Keller and Sleep [1986].

One of the limitations of this approach
is that in general it can only be used with
strict functions, and even then the expense
of performing equality checks on, for ex-
ample, list arguments can be expensive. As
a solution to this problem. Hughes intro-
duced the notion of lazy memo-functions,
in which the caching strategy uses an iden-
tity test (EQ in Lisp terminology) instead
of an equality test [Hughes 1985131. Such a
strategy can no longer be considered as
syntactic sugar, since an identity predicate
is not something normally provided as a
primitive in functional languages because
it is implementation dependent. Neverthe-
less, if built into a language lazy memo-
functions provide a very efficient (constant
time) caching mechanism and allow very
elegant solutions to a class of problems not
solved by Keller and Sleep’s strategy: those
involving infinite data structures. For ex-
ample, consider this definition of the infi-
nite list of ones:

ones = 1 : ones

Any reasonable implementation will rep-
resent this as a cyclic list, thus consuming
constant space. Another common idiom is
the use of higher-order functions such as

” This is essentially the same solution as the one given
in Section 3.3.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 401

map:

twos = map (\x+2*x) ones

But now note that only the cleverest of
implementations will represent this as a
cyclic list, since map normally generates a
new list cell on every recursive call. By lazy
memoizing map, however, the cyclic list will
be recovered. To see how, note that the first
recursive call to map will be “map (\x+
2*x) (tail ones)“-but (tail ones) is identi-
cal to ones (remember that ones is cyclic),
and thus map is called with arguments
identical to the first call. Thus the old value
is returned, and the cycle is created. Many
more practical examples are discussed in
Hughes [1985b].

The interesting thing about memoization
in general is that it begins to touch on some
of the limitations of functional languages-
in particular, the inability to side effect
global objects such as caches-and solu-
tions such as lazy memo-functions repre-
sent useful compromises. It remains to be
seen whether more general solutions can be
found that eliminate the need for these
special-purpose features.

3.7 Nondeterminism

Most programmers (including the very
idealistic among us) admit the need for
nondeterminism, despite the semantic dif-
ficulties it introduces. It seems to be an
essential ingredient of real-time systems,
such as operating systems and device con-
trollers. Nondeterminism in imperative
languages is typically manifested by run-
ning in parallel several processes that
are side effecting some global state-the
nondeterminism is thus implicit in the
semantics of the language. In functional
languages, nondeterminism is manifested
through the use of primitive operators such
as amb or merge-the nondeterminism is
thus made explicit. Several papers have
been published on the use of such primi-
tives in functional programming, and it
appears quite reasonable to program con-
ventional nondeterministic applications
using them [Henderson 1982; Stoye 19851.
The problem is, once introduced, nondeter-

minism completely destroys referential
transparency, as we shall see.

By way of introduction, McCarthy [19631
defined a binary nondeterministic operator
called amb having the following behavior:

amb(el, I) = el
amb(l., e2) = e2
amb(e,, e2) = either e, or e2,

chosen nondeterministically

The operational reading of amb(e,, e2) is
that e, and e2 are evaluated in parallel, and
the one that completes first is returned as
the value of the expression.

To see how referential transparency is
lost, consider this simple example:

(amb 1 2) + (amb 1 2)

Is the answer 2 or 4? Or is it perhaps 3?
The possibility of the answer 3 indicates
that referential transparency is lost-there
does not appear to be any simple syntactic
mechanism for ensuring that we could not
replace equals for equals in a misleading
way. Shortly, we will discuss possible solu-
tions to this problem, but for now let us ’
look at an example using this style of non-
determinism.

Using amb, we can easily define things
such as merge that nondeterministically
merge two lists, or streams:21

merge as bs = amb
(if (as == [1) then bs else

(head as: merge (tail as) bs))
(if (bs == [1) then as else

(head bs: merge as (tail bs)))

which then can be used, for example, in
combining streams of characters from dif-
ferent computer terminals:

process (merge term1 term2)

” Note that this version of merge:

merge [] bs = bs
merge as [] = as
merge (a:as) (b: bs)

= amb (a : merge as (b:bs)) (b : merge (a:as)
bs)

is not correct, since merge I bs evaluates to I, whereas
we would like it to be bs ++ I, which in fact the
definition in the text yields.

ACM Computing Surveys, Vol. 21, No. 3, September 1989

402 l Paul Hudak

Using this as a basis, Henderson [1982]
show how many operating system problems
can be solved in a pseudofunctional lan-
guage. Hudak [1986a] uses nondetermin-
ism of a slightly different kind to emulate
the parallel updating of arrays.

Although satisfying in the sense of being
able to solve real-world kinds of nondeter-
minism, these solutions are dissatisfying in
the way they destroy referential transpar-
ency. One might argue that the situation is
at least somewhat better than the conven-
tional imperative one in that the nondeter-
minism is at least made explicit, and thus
one could induce extra caution when rea-
soning about those sections of a program
exhibiting nondeterministic behavior. The
only problem with this is that determining
which sections of a program are nondeter-
ministic may be difficult-it is not a lexical
property, but rather a dynamic one, since
any function may call a nondeterministic
subfunction.

At least two solutions have been pro-
posed to this problem. One, proposed by
Burton [1988], is to provide a tree-shaped
oracle as an argument to a program from
which nondeterministic choices may be se-
lected. By passing the tree and its subtrees
around explicitly, referential transparency
can be preserved. ‘The problem with this
approach is that carrying the oracle around
explicitly is cumbersome at best. On the
other hand, functional programmers al-
ready carry around a greater amount of
state to avoid problems with side effects, so
perhaps the extra burden is not too great.

Another (at least partial) solution was
proposed by Stoye [1985] in which all of
the nondeterminism in a program is forced
to be in one place. Indeed to some extent
this was the solution adopted in Haskell,
although for somewhat different reasons.
The problem with this approach is that the
nondeterminism is not eliminated com-
pletely but rather centralized. It allows rea-
soning equationally within the isolated
pieces but not within the collection of
pieces as a whole. Nevertheless, the isola-
tion (at least in Haskell) is achieved syn-
tactically, and thus it is easy to determine
when equational reasoning is valid. A gen-
eral discussion of these issues is found in
Hudak and Sundaresh [1988].

An interesting variation on these two
ideas is to combine them-centralize the
nondeterminism and then use an oracle to
define it in a referentially transparent way.
Thus the disadvantages of both approaches
would seem to disappear.

In any case, I should point out that none
of these solutions makes reasoning about
nondeterminism any easier, they just make
reasoning about programs easier.

3.8 Extensions to Polymorphic-Type
Inference

The Hindley-Milner type system has cer-
tain limitations; an example of this was
given in Section 1.6.1. Some success has
been achieved in extending the type system
to include other kinds of data objects, but
surprisingly little success has been achieved
at removing the fundamental limitations
while still retaining the tractability of the
type inference problem. It is a somewhat
fragile system but is fortunately expressive
enough to base practical languages on it.
Nevertheless, research continues in this
area.

Independently of type inference, consid-
erable research is underway on the expres-
siveness of type systems in general. The
most obvious thing to do is allow types to
be first class, thus allowing abstraction over
them in the obvious way. Through gener-
alizations of the type system it is possible
to model such things as parameterized
modules, inheritance, and subtyping. This
area has indeed taken on a character of its
own; a good summary of current work may
be found in Cardelli and Wegner [1985]
and Reynolds [19851.

3.9 Combining Other Programming Language
Paradigms

A time-honored tradition in programming
language design is to come up with hybrid
designs that combine the best features of
several different paradigms, and functional
programming language research has not
escaped that tradition. I will discuss two
such hybrids here, although others exist.

The first hybrid is combining logic
programming with functional program-
ming. The “logical variable permits” two-
way matching (via unification) in logic

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages e 403

programming languages, as opposed to the
one-way matching (via pattern matching)
in functional languages, and thus seems
like a desirable feature to have in a lan-
guage. Indeed its declarative nature fits well
with the ideals of functional programming.
The integration is, however not easy-
many proposals have been made yet none
are completely satisfactory, especially in
the context of higher order functions
and lazy evaluation. See Degroot and
Lindstrom [1985] for a good summary of
results.

The second area reflects an attempt to
combine the state-oriented behavior of im-
perative languages in a semantically clean
way. The same problems arise here as they
do with nondeterminism-simply adding
the assignment statement means that equa-
tional reasoning must always be qualified,
since it is difficult to determine whether or
not a deeply nested call is made to a func-
tion that induces a side effect. There are,
however, some possible solutions to this,
most notably work by Gifford and Lucassen
[Gifford and Lucassen 1986; Lucassen and
Gifford 19881 in which effects are captured
in the type system. In Gifford’s system it is
possible to determine from a procedure’s
type whether or not it is side-effect free. It
is not currently known, however, whether
such a system can be made into a type
inference system in which type declarations
are not required. This is an active area of
current research.

4. Dispelling Myths About Functional
Programming

To gain further insight into the nature of
functional languages, it is helpful to dis-
cuss, with the hope of dispelling, certain
myths that have arisen over the years.

Myth 1, that functional programming is
the antithesis of conventional imperative
programming, is largely responsible for
alienating imperative programmers from
functional languages. But, in fact, there is
much in common between the two styles of
programming, which I make evident by two
simple arguments.

Consider first that one of the key evolu-
tionary characteristics of high-level imper-
ative programming languages has been the

use of expressions to denote a result rather
than a sequence of statements to put to-
gether a result imperatively and in piece-
meal. Expressions were an important
feature of FORTRAN, had more of a math-
ematical flavor, and freed the programmer
of low-level operational detail (this burden
was of course transferred to the compiler).
From FORTRAN expressions, to functions
in Pascal, to expression oriented program-
ming style in Scheme-these advances are
all on the same evolutionary path. Func-
tional programming can be seen as carrying
this evolution to its logical conclusion-
everything is an expression.

The second argument is based on an
analogy between functional (i.e., side-
effect-free) programming and structured
(i.e., goto-less) programming. The fact is, it
is hard to imagine doing without either
goto’s or assignment statements, until one
is shown what to use in their place. In the
case of goto, one uses instead structured
commands, in the case of assignment state-
ments, one uses instead lexical binding and
recursion.

As an example, this simple program frag-
ment with goto’s

x := init;
i := 0;

loop: x := f(x, i);
i := i+l;
if id0 got0 loop;

can be rewritten in a structured style as

x := init;
i := 0;
while i<lO

being x := f(x, i);
i := i+l

end;

In capturing this disciplined use of goto,
arbitrary jumps into or out of the body of
the block now cannot be made. Although
this can be viewed as a constraint, most
people feel that the resulting disciplined
style of programming is clearer, easier to
maintain, and so on.

More discipline is evident here than just
the judicious use of goto. Note in the orig-
inal program fragment that x and i are
assigned to exactly once in each iteration
of the loop; the variable i, in fact, is only
being used to control the loop termination

ACM Computing Surveys, Vol. 21, No. 3, September 1989

404 l Paul Hudak

criteria, and the final value of x is intended
as the value computed by the loop. This
disciplined use of assignment can be cap-
tured by the following assignment-free
Haskell program:

loop init 0
where loop x i = if i-40

then (loop (fx i) (i+l)
else x

Functions (and procedures) can in fact be
thought of as a disciplined use of goto and
assignment-the transfer of control to the
body of the function and the subsequent
return capture a disciplined use of goto,
and the formal-to-actual parameter binding
captures a disciplined use of assignment.

By inventing a bit of syntactic sugar to
capture the essence of tail recursion, the
above program could be rewritten as

let x = init
i=O

in while i-40

[this syntactic sugar is not found in Has-

begin next x = f(x, i)
next i = i+l

end
result x

kell, although some other functional (es-
pecially dataflow) languages have similar
features, including Id, Val, and Lucid]
where the form “next x = . . .” is a construct
(next is a keyword) used to express what
the value of x will be on the next iteration
of the loop. Note the similarity of this
program to the structured one given earlier.
In order to enforce a disciplined use of
assignment properly, we can constrain the
syntax so that only one next statement is
allowed for each identifier (stated another
way, this constraint means that it is a triv-
ial matter to convert such programs into
the tail recursive form shown earlier). If we
think of “next x” and “next i” as new
identifiers (just as the formal parameters
of loop can be thought of as new identifiers
for every call to loop), then referential
transparency is preserved. Functional pro-
gramming advocates argue that this results
in a better style of programming, in much
the same way that structured programming
advocates argue for their cause.

Thus the analogy between goto-less
programming and assignment-free pro-
gramming runs deep. When Dijkstra first
introduced structured programming, much
of the programming community was
aghast-how could one do without goto?
But as people programmed in the new style,
it was realized that what was being imposed
was a discipline for good programming not
a police state to inhibit expressiveness. Ex-
actly the same can be said of side-effect-
free programming, and its advocates hope
that as people become more comfortable
programming in the functional style, they
will appreciate the good sides of the disci-
pline thus imposed.

When viewed in this way functional lan-
guages can be seen as a logical step in the
evolution of imperative languages-thus, of
course, rendering them nonimperative. On
the other hand, it is exactly this purity to
which some programmers object, and one
could argue that just as a tasteful use of
goto here or there is acceptable, so is a
tasteful use of a side effect. Such small
impurities certainly shouldn’t invalidate
the functional programming style and thus
may be acceptable.

Myth 2 is that functional programming
languages are toys. The first step toward
dispelling this myth is to cite examples of
efficient implementations of functional
languages, of which there now exist several.
The Alfl compiler at Yale, for example,
generates code that is competitive with that
generated by conventional language com-
pilers [Young 19881. Other notable compi-
ler efforts include the LML compiler at
Chalmers University [Augustsson 19841,
the Ponder compiler at Cambridge Univer-
sity [Fairbairn 19851, and the ML compi-
lers developed at Bell Labs and Princeton
[Appel and MacQueen 19871.

On the other hand, there are still in-
herent inefficiencies that cannot be ig-
nored. Higher-order functions and lazy
evaluation certainly increase expressive-
ness, but in the general case the overhead
of, for example, the dynamic storage man-
agement necessary to support them cannot
be eliminated.

The second step toward dispelling this
myth amounts to pointing to real applica-
tions development in functional languages

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 405

including real-world situations involving
nondeterminism, databases, parallelism,
and so on. Atlhough examples of this sort
are not plentiful (primarily because of the
youth of the field) and are hard to cite
(since papers are not usually written about
applications), they do exist. For example,

(1)

(2)

(3)

(4)

(5)

(6)

The dataflow groups at MIT and the
functional programming groups at Yale
have written numerous functional pro-
grams for scientific computation. So
have two national labs: Los Alamos and
Lawrence Livermore.
MCC has written a reasonably large
expert system (EMYCIN) in SASL.
At least one company is currently mar-
keting a commercial product (a CAD
package) that uses a lazy functional
language.
A group at IBM uses a lazy functional
language for graphics and animation.
The LML (lazy ML) compiler at Chal-
mers was written almost entirely in
LML, and the new Haskell compilers
at both Glasgow and Yale are being
written in Haskell.
GEC Hirst Research Lab is using a
program for designing VLSI circuits
that was written by some researchers
at Oxford using a lazy functional
language.

There are other examples. In particular,
there are many Scheme and Lisp programs
that are predominantly side effect free and
could properly be thought of as functional
programs.

Myth 3, that functional languages cannot
deal with state, is often expressed as a
question: How can someone program in a
language that does not have a notion of
state? The answer, of course, is that we
cannot, and in fact functional languages
deal with state very nicely, although the
state is expressed explicitly rather than
implicitly. So the issue is more a matter of
how one expresses state and manipulations
of it.

State in a functional program is usually
carried around explicitly in one of two
ways: (1) in the values of bound variables
of functions, in which case it is updated by

making a recursive call to the function with
new values as arguments, or (2) in a data
structure that is updated nondestructively
so that, at least conceptually, the old value
of the data structure remains intact and
can be accessed later. Although declarative
and referentially transparent, this treat-
ment of state can present problems to an
implementation, but it is certainly not a
problem in expressiveness. Furthermore,
the implementation problems are not as
bad as they first seem, and recent work has
gone a long way toward solving them. For
example, a compiler can convert tail recur-
sions into loops and “single-threaded” data
structures into mutable ones.

It turns out that, with respect to expres-
siveness, one can use higher-order func-
tions not only to manipulate state but also
to make it appear implicit. To see how,
consider the imperative program given
earlier:

x := init;
i := 0;

loop: X := f(x, i);
i := i + 1;
if (i < 10) got0 loop;

We can model the implicit state in this
program as a pair (xval, ival) and define
several functions that update this state
in a way that mimics the assignment
statements:

x (xval, ival) xval’ = (xval’, ival)
i (xval, ival) ival’ = (xval, ival’)
x’(x,i)=x
i’ (x, i) = i
const u s = u

We will take advantage of the fact that
these functions are defined in curried form.

Note how x and i are used to update the
state, and x ’ and i ’ are used to access the
state. For example, the following function,
when applied to the state, will increment i:

\s-+is((i’s)+l)

For expository purposes we would like to
make the state as implicit as possible, and
thus we express the result as a composition
of higher-order functions. To facilitate this
and to make the result look as much like
the original program as possible, we define
the following higher-order infix operators

ACM Computing Surveys, Vol. 21, No. 3, September 1989

406 l Paul Hudak

and functions”:

f:=g =\s-+fs(gs)

f;g =\s-g(fs)
got0 f = f
f+‘g=\s-+fs+gs
f<‘g=\s-+fs<gs
if’ p c = \s + (if (p s) then (c s) else s)

[I am cheating slightly here in that ; is a
reserved operator ‘in Haskell and thus can-
not really be redefined in this way.]

Given these definitions, we can now write
the following functional (albeit contrived)
version of the imperative program given
earlier:

x := const init;
i := const 0;

loop where
loop = x := f;

i := i’ +’ const 1;
if’ (i’ C’ const 10) (got0 loop)

This result is rather disquieting-it looks
very much like the original imperative pro-
gram. Of course, we worked hard to make
it that way, which in the general case is
much harder to do and it is certainly not
the recommended way to do functional pro-
gramming. Nevertheless it exemplifies the
power and flexibility of higher-order func-
tions-note how they are used here both to
manipulate the state and to implement the
goto (where in particular the definition of
loop is recursive, since the goto implements
a loop).

5. Conclusions

This paper presented functional program-
ming in its many shapes and forms. Al-
though it only touched on the surface of
many issues, it is hoped that enough of a
foundation has been given that researchers
can explore particularly interesting topics
in more depth and programmers can learn
to use functional languages in a variety of
applications.

I said little about how to implement
functional languages, primarily because
doing that subject justice would probably

“It is interesting to note that :=, const, and goto
correspond precisely to the combinators S, K, and I,
and ; is almost the combinator B, but is actually CR.

double the size of this paper. The interes-
ted reader can refer to by far the best
single reference to sequential implementa-
tions, Peyton Jones’ [19871, as well as other
techniques that have recently appeared
viable [Bloss et al. 1988; Burn et al. 1988;
and Fairbairn and Wray 19871. Parallel
implementations have taken a variety of
forms. On commercial machines the state
of the art on parallel graph reduction im-
plementations may be found in Goldberg
and Hudak [1988] and Goldberg [1.988a,
1988b]. The latest on special-purpose par-
allel graph reducers can be found in Peyton
Jones et al. [19871 and Watson and Watson
[1987]. For a different kind of implemen-
tation see Hudak and Mohr [1988]. Refer-
ences to dataflow machines were given in
Section 1.8.

ACKNOWLEDGMENTS

Thanks to the Lisp and Functional Programming
Research Group at Yale, which has inspired much of
my work and served as my chief sounding board. A
special thanks is also extended to the Haskell Com-
mittee, through which I learned more than I care to
admit. In addition, the following people provided val-
uable comments on early drafts of the paper: Kei
Davis, Alex Ferguson, John Launchbury, and Phil
Wadler (all from the University of Glasgow); Juan
Guzman, Siau-Cheng Khoo, Amir Kishon, Raman
Sundaresh, and Pradeep Varma (all from Yale); David
Wise (Indiana University); and three anonymous
referees.

I also wish to thank my funding agencies: The
Department of Energy under grant FG0266ER25012,
the Defense Advanced Research Projects Agency un-
der grant N00014-88-K-0573, and the National Sci-
ence Foundation under grant DCR-8451415. Without
their generous support none of this work would have
been possible.

In writing this survey paper I have tried to acknowl-
edge accurately the significant technical contributions
in each of the areas of functional programming that I
have covered. Unfortunately, that is a very difficult
task, and I apologize in advance for any errors or
omissions.

REFERENCES

AMA, A., HOLMSTROM, S., AND NILSSON, C.
1987. An efficiency comparison of some repre-
sentations of purely functional arrays. Tech. Rep.
33. Programming Methodology Group, Chalmers
University of Technology.

ABELSON, H., SUSSMAN, G. J., AND SUSSMAN, J.
1985. Structure and Interpretation of Computer

ACM Computing Surveys, Vol. 21, No. 3, September 1989

Functional Programming Languages l 407

Programs. The MIT Press, Cambridge, Mass.,
and McGraw-Hill New York.

ACKERMAN, W. B., AND DENNIS, J. B. 1979. VAL-
A value-oriented algorithmic language prelimi-
nary reference manual. Laboratory for Computer
Science MIT/LCS/TR-218, MIT.

ANDERSON, S., AND HUDAK, P. 1989. Efficient com-
pilation of Haskell array cqmprehensions. Tech.
Rep. YALEU/DCS/RR693. Yale University,
Department of Computer Science.

APPEL, A. W., AND MACQUEEN, D. B. 1987. A stan-
dard ML compiler. In Proceedings of the 2987
Functional Programming Languages and Com-
puter Architecture Conference (Sept. 1987).
Springer-Verlag LNCS 274, IFIP pp. 301-324.

ARVIND AND GOSTELOW, K. P. 1977. A computer
capable of exchanging processors for time. In
Proceedings IFIP Congress, pp. 849-853.

ARVIND AND GOSTELOW, K. P. 1982. The U-inter-
preter. Computer 15, 2, 42-50.

ARVIND AND KATHAIL, V. 1981. A multiple processor
da.ta flow machine that supports generalized pro-
cedures. In Proceedings of the 8th Annual Sym-
posium on Computer Architecture. Vol. 9, No. 3.
ACM SIGARCH, pp. 291-302.

ASHCROFT, E. A., AND WADGE, W. W. 1976a.
Lucid-A formal system for writing and proving
programs. SIAM J. Comput. 5, 3,336-354.

ASHCROFT, E. A., AND WADGE, W. W. 1976b. Lucid,
a nonprocedural language with iteration.
Commun. ACM 20, 519-526.

AUGUSTSSON, L. 1984. A compiler for Lazy ML. In
Proceedings 1984 ACM Conference on LISP and
Functional Programming (August). ACM, pp.
218-227.

AUGUSTSSON, L. 1985. Compiling pattern-matching.
In Functional Programming Languages and Com-
puter Architecture. Springer-Verlag LNCS 201,
pp. 368-381.

BACKUS, J. 1978. Can programming be liberated
from the von Neumann style? A functional style
and its algebra of programs. Commun. ACM 21,
8,613-641.

BACKUS, J., WILLIAMS, J. H., AND WIMMERS, E. L.
1986. FL language manual (preliminarv ver-
sion). Tech. Rep.-RJ 5339 (54809). Computer
Science, IBM Almaden Research Center. Alma-
den, CA.

BARENDREGT, H. P. 1984. The Lambda Calculus,
Its Syntax and Semantics. Revised ed. North-
Holland, Amsterdam.

BERRY, G. 1978. Sequentialite de l’bvaluation
formelle des X-expressions. In Proceedings 3-e
Colloque International sur la Programmation.

BIRD, R., AND WADLER, P. 1988. Introduction to
Functional Programming. Prentice Hall, Engle-
wood Cliffs, N.J.

BLOSS, A. 1988. Path analysis: Using order-of-
evaluation information to optimize lazy func-
tional languages. Ph.D. Dept. Computer Science,
dissertation, Yale Univ.

BLOSS, A., AND HUDAK, P. 1987. Path semantics. In
Proceedings of Third Workshop on the Mathe-
matical Foundations of Programming Language
Semantics. Springer-Verlag LNCS (Tulane
Univ., April 1987), 298, 476-489.

BLOSS, A., HUDAK, P., AND YOUNG, J. 1988. Code
optimizations for lazy evaluation. Lisp and Sym-
bolic Computation: An International Journal 1,
147-164.

BOEHM, H.-J. 1985. Partial polymorphic type infer-
ence is undecidable. In Proceedings of 26th Symp-
soium on Foundations of Computer Science. IEEE
pp. 339-345.

BOUTEL, B. E. 1988. Tui language manual. Tech.
Rep. CSD-8-021. Victoria University of Welling-
ton, Department of Computer Science.

BURGE, W. H. 1975. Recursive Programming Tech-
niques. Addison-Wesley, Reading, Mass.

BURN, G. L., PEYTON JONES, S. L., AND ROBSON,
J. D. 1988. The spineless G-machine. In Pro-
ceedings 1988 ACM Conference on Lisp and Func-
tional Programming (Salt Lake Citv, Utah). ACM
SIGPLAN/SIGACT;SIGART, 244-258.

BURSTALL, R. M., MACQUEEN, D. B., AND SANNELLA,
D. T. 1980. HOPE: An experimental applicative
language. In The 1980 LISP Conference. Stanford
University, Santa Clara Univ. The USP Co., pp.
136-143.

BURTON, F. W. 1984. Annotations to control paral-
lelism and reduction order in the distributed
evaluation of functional programs. ACM Trans.
Program. Lang. Syst. 6, 2,159-174.

BURTON, F. W. 1988. Nondeterminism with refer-
ential transparency in functional programming
languages. Comput. J. 3I,3,243-247.

CARDELLI, L., AND WEGNER, P. 1985. On under-
standing types, data abstraction, and poly-
morphism. ACM Comput. Surv. 17,4, 471-522.

CARTWRIGHT, R. 1976. A practical formal semantic
definition and verification system for typed Lisp.
Tech. Rep. AIM-296. Stanford Artificial Intelli-
gence Laboratory.

CHEN, M. C. 1986. Transformations of parallel pro-
grams in crystal. In Information Processing ‘86,
Elsevier North-Holland, New York, pp. 455-462.

CHURCH, A. 1932-1933. A set of postulates for the
foundation of logic. Ann. Math. 2, 33-34, 346-
366,839-864.

CHURCH, A. 1941. The Calculi of Lambda Conversion.
Princeton University Press, Princeton, N.J.

CHURCH, A., AND ROSSER, J. B. 1936. Some prop-
erties of conversion. Trans. Am. Math. SOC. 39,
472-482.

CURRY, H. B., AND FEYS, R. 1958. Combinatoty
Logic. Vol. 1. North-Holland, The Netherlands.

DAMAS, L., AND MILNER, R. 1982. Principle type
schemes for functional languages. In 9th ACM
Symposium on Principles of Programming Lan-
guages. ACM.

DARLINGTON, J., AND WHILE, L. 1987. Controlling
the behavior of functional language systems. In

ACM Computing Surveys, Vol. 14, No. 3, September 1989

408

Proceedings of 1987 Functional Programming
Languages and Computer Architecture Confer-
ence. Springer-Verlag LNCS 274, pp. 278300.

DAVIS, A. L. 1978. The architecture and system
method of DDM-1: A recursively structured data
driven machine. In Proceedings 5th Annual Sym-
posium on Computer Architecture. IEEE, ACM.

DEGROOT, D., AND LINDSTROM, G. 1985. Functional
and Logic Programming. Prentice-Hall, Engle-
wood Cliffs, N.J.

DELOSME, J.-M., AND IPSEN, I. C. F. 1985. An illus-
tration of a methodology for the construction of
efficient systolic architectures in VLSI. In Pro-
ceedings 2nd International Symposium on VLSI
Technology, Systems, and Applications, ITRI,
NSC pp. 268-273.

DENNIS, J. B., AND MISUNAS, D. P. 1974. A prelim-
inary architecture for a basic dataflow processor.

GOLDBERG, B., AND HUDAK, P. 1988. Implementing
functional programs on a hypercube multiproces-
sor. In Proceedings of 3rd Conference on Hyper-
cube Concurrent Computers and Applications.
ACM.

GORDON, M. J., MILNER, R., AND WADSWORTH,
C. P. 1979. Edinburgh LCF. Springer-Verlag
LNCS 78, Berlin.

GORDON, M., MILNER, R., MORRIS, L., NEWEY, M.,
AND WADSWORTH, C. 1978. A metalanguage for
interactive proof in LCF. In Conference Record of
the 5th Annual ACM Symposium on Princiules of
Programming Languages. ACM, pp. 119-130.

GUTTAG, J., HORNING, J., AND WILLIAMS, J.
1981. FP with data abstraction and strong typ-
ing. In Proceedings of the 1981 Conference on
Functional Programming Languages and Com-
puter Architecture. ACM, pp. 11-24.

In Proceedings of the 2nd Annual Symposium on HANCOCK, P. 1987. Polymorphic type-checking. In
Computer Architecture. ACM, IEEE, pp. 126-132. The Implementation of Functional Programming

FAIRBAIRN, J. 1985. Design and implementation of Languages, S. L. Peyton Jones, Ed. Prentice-Hall
a simple typed language based on the lambda International, Englewood Cliffs, N.J., Chapters 8
calculus. Ph.D. dissertation, Univ. of Cambridge. and 9.
Available as Computer Laboratory TR No. 75. HENDERSON, P. 1980. Functional Programming:

FAIRBAIRN, J., AND WRAY, S. 1987. Tim: A simple, Application and Implementation. Prentice-Hall,
lazy abstract machine to execute supercombina- Englewood Cliffs, N.J.
tors. In Proceedings of 1987 Functional Program- HENDERSON, P. 1982. Purely functional operating
ming Languages and Computer Architecture systems. In Functional Programming and Its
Conference. Springer Verlag LNCS 274, pp. Applications: An Advance Course. Cambridge
34-45. University Press, pp. 177-192.

FIELD, A. J., AND HARRISON, P. G. 1988. Functional HENDERSON, P. AND MORRIS, L. 1976. A lazy eval-
Programming. Addison-Wesley, Workingham, uator. In 3rd ACM Symposium on Principles of
England. Programming Languages. ACM, pp. 95-103.

FORTUNE, S., LEIVANT, D., AND O’DONNELL, M. HINDLEY, R. 1969. The principle type scheme of an
1985. The expressiveness of simple and second- object in combinatory logic. Trans. Amer. Math.
order type structures. J. ACM 30, 1, 151-185. SOC. 146, 29-60.

FRIEDMAN, D. P., AND WISE, D. S. 1976. Cons HOLMSTROM, S. 1983. How to handle large data
should not evaluate its arguments. In Automata, structures in functional languages. In Proceedings
Languages and Programming, Edinburgh Univer- of SERC/Chalmers Workshop on Declarative Pro-
sity Press, pp. 257-284. gramming Languages. SERC.

GELERNTER, H., HANSEN, J. R., AND GERBERICH, HUDAK, P. 1984. ALFL Reference Manual and Pro-
C. L. 1960. A FORTRAN-compiled list process- grammer’s Guide. 2nd ed. Res. Rep. YALEU/
ing language. J. ACM 7, 2, 87-101. DCS/RR-322. Yale University.

GIFFORD, D. K., AND LUCASSEN, J. M. 1986. HUDAK, P. 1986a. Arrays, non-determinism, side-
Integrating functional and imperative program- effects, and parallelism: a functional perspective.
ming. In Proceedings 1986 ACM Conference on In Proceedings of the Santa Fe Graph Reduction
Lisp and Functional Programming. ACM SIG- Workshop (Los Alamos/MCC). Springer-Verlag
PLAN/SIGACT/SIGART, pp. 28-38. LNCS 279, pp. 312-327.

GIRARD, J.-Y. 1972. Interpretation Fonctionelle et
Elimination des Coupures dans 1’Arithmetique
d’Ordre Superieur. Ph.D. dissertation, Univ. of
Paris.

GOLDBERG, B. 1988a. Buckwheat: Graph reduction
on a shared memory multiprocessor. In Proceed-
ings 1988ACM Conference on Lisp and Functional
Programming (Salt Lake City, Utah, August
1988) ACM SIGPLAN/SIGACT/SIGART.

GOLDBERG, B. 1988b. Multiprocessor execution of

HUDAK, P. 198613. Denotational semantics of a para-
functional programming language. Int. J. Parallel
Program. 15, 2, 103-125.

HUDAK, P. 1986. Para-functional programming.
Computer 19,8, 60-71.

HUDAK, P., AND ANDERSON, S. 1987. Pomset inter-
pretations of parallel functional programs. In
Proceedings of 1987 Functional Programming
Languages and Computer Architecture Confer-
ence. Springer Verlag LNCS 274, pp. 234-256.

functional programs. Ph.D. dissertation, Dept. of HUDAK, P., AND ANDERSON, S. 1988. Haskell solu-
Computer Science, Yale Univ. Available as Tech. tions to the language session problems at the 1988
Rep. YALEU/DCS/RR-618. Salishan high-speed computing conference.

ACM Computing Surveys, Vol. 14, No. 3, September 1989

409

Tech. Rep. YALEU/DCS/RR-627. Department
of Computer Science, Yale University.

HUDAK, P., AND MOHR, E. 1989. Graphinators and
the dualitv of SIMD and MIMD. In Proceedings
1988 ACM Conference on Lisp and Functional
Programming (Salt Lake City, Utah, August).
ACM SIGPLAN/SIGACT/SIGART.

HUDAK, P., AND SUNDARESH, R. 1988. On the ex-
pressiveness of purely functional I/O systems.
Tech. Rep. YALEU/DCS/RR-665. Department
of Computer Science. Yale University.

HUDAK, P., AND SMITH, L. 1986. Para-functional
programming: A paradigm for programming
multiprocessor systems. In 22th ACM Symposium
on Principles of Programming Languages. ACM,
pp. 243-254.

HUDAK, P., AND WADLER, P. Eds. 1988. Report on
the Functional Programming Language Haskell.
Tech. Rep. YALEU/DCS/RR656. Department of
Computer Science, Yale University.

HUGHES, J. 1984. Why functional programming
matters. Tech. Rep. 16. Programming Method-
ology Group, Chalmers University of Technology.

HUGHES, J. 1985a. An efficient implementation of
purely functional arrays. Tech. Rep. Program-
ming Methodology Group, Chalmers University
of Technology.

HUGHES, J. 198513. Lazy memo-functions. In Func-
tional Programming Languages and Computer
Architecture. Springer-Verlag LNCS 201, pp.
129-146.

IVERSON, K. 1962. A Programming Language. Wiley,
New York.

JOHNSON, S. D. 1988. Daisy Programming Manual.
Tech. Rep. Indiana University Computer Science
Department.

KAES, S. 1988. Parametric polymorphism. In Pro-
ceedings of the 2nd Eupropean Symposium on
Programming. Springer-Verlag LNCS 300.

KELLER, R. M. 1982. FEL programmer’s guide.
AMPS TR 7. University of Utah.

KELLER, R. M., AND LINDSTROM, G. 1985.
Approaching distributed database implementa-
tions through functional programming concepts.
In International Conference on Distributed Sys-
tems. IEEE.

KELLER, R. M., AND SLEEP, R. 1986. Applicative
caching. ACM Trans. Program. Lang. Syst. 8, 1,
88-108.

KELLER, R. M., JAYARAMAN, B., ROSE, D., AND
LINDSTROM, G. 1980. FGL programmer’s guide.
AMPS Tech. Memo 1. Department of Computer
Science, University of Utah.

KLEENE, S. C. 1936. X-definability and recursive-
ness. Duke Math. J. 2, 340-353.

KLEENE, S. C., AND ROSSER, J. B. 1935. The incon-
sistency of certain forms of logic. Ann. Math. 2,
36,630-636.

KROEZE, H. J. 198661987. The TWENTEL system
(version 1). Tech. Rep. Department of Computer
Science, University of Twente, The Netherlands.

LANDIN, P. J. 1964. The mechanical evaluation of
expressions. Comput. J. 6, 4, 308-320.

LANDIN, P. J. 1965. A correspondence between
ALGOL 60 and Church’s lambda notation.
Commun. ACM 8,89-101, 158-165.

LANDIN, P. J. 1966. The next 700 programming lan-
guages. Commun. ACM 9, 3, 157-166.

LUCASSEN, J. M., AND GIFFORD, D. K. 1988.
Polymorphic effect systems. In Proceedings of
15th ACM Symposium on Principles of Program-
ming Z,anguages. ACM, pp. 47-57.

MARKOV, A. A. 1951. Teoriya algorifmov (Theory
of algorithms). Trudy Mat. Inst. Steklou 38,
176-189.

MCCARTHY, J. 1960. Recursive functions of symbolic
expressions and their computation by machine,
Part I. Commun. ACM 3,4, 184-195.

MCCARTHY, J. 1963. A basis for a mathematical
theory of computation. In Computer Program-
ming and Formal Systems. North-Holland, The
Netherlands, pp. 33-70.

MCCARTHY, J. 1978. History of Lisp. In Preprints of
Proceedings of ACM SZGPLAN History of Pro-
gramming Languages Conference. SIGPLAN
Notices, Vol. 13, pp. 217-223.

MCGRAW, J. R. 1982. The VAL language: Descrip-
tion and analysis. TOPLAS, 4, 1, 44-82.

MCGRAW, J., ALLAN, S., GLAUERT, J., AND DOBES, I.
1983. SISAL: Streams and Iteration in a Single-
Assignment Language, Language Reference
Manual. Tech. Rep. M-146. Lawrence Livermore
National Laboratory.

MILNE, R. E., AND STRACHEY, C. 1976. A Theory of
Programming Language Semantics. Chapman
and Hall, London, and John Wiley, New York.

MILNER, R. A. 1978. A theory of type polymorphism
in programming. J. Comput. Syst. Sci. 17, 3,
348-375.

MILNER, R. 1984. A proposal for Standard ML. In
Proceedings 1984 ACM Conference on LISP and
Functional Programming. ACM, pp. 184-197.

MULLIN, L. R. 1988. A mathematics of arrays. Ph.D
dissertation, Computer and Information Science
and CASE Center, Syracuse University.

NIKHIL, R. S., PINGALI, K., AND ARVIND. 1986. Id
nouveau. Computation Structures Group Memo
265. Laboratory for Computer Science, Massa-
chusetts Institute of Technology.

PEYTON JONES, S. L. 1987. The Implementation of
Functional Programming Languages. Prentice-
Hall International, Englewood Cliffs, N.J.

PEYTON JONES, S. L., CLACK, C., SALKILD, J., AND
HARDIE, M. GRIP-A high-performance archi-
tecture for parallel graph reduction. In Proceed-
ings of 1987 Functional Programming Languages
and Computer Architecture Conference. Springer-
Verlag LNCS 274, pp. 98-112.

PFENNING, F. 1988. Partial polymorphic type infer-
ence and higher-order unification. In Proceedings
1988 ACM Conference on Lisp and Functional

ACM Computing Surveys, Vol. 14, No. 3, September 1989

410

Programming (Salt Lake City, Utah). ACM SIG-
PLAN/SIGACT/SIGART, pp. 153-163.

POST, E. L. Formal reductions of the general com-
binatorial decision problem. Am. J. Math. 65,
197-215.

REES, J., AND CLINGER, W. Eds. 1986. The revised
report on the algorithmic language Scheme.
SIGPLAN Notices 21, 12, 37-79.

REYNOLDS, J. C. 1974. Towards a theory of type
structure. In Proceedings of Colloque sur la
Programmation. Springer-Verlag LNCS 19, pp.
408-425.

REYNOLDS, J. C. 1985. Three approaches to type
structure. In Mathematical Foundations of Soft-
ware Deuelopment, Springer-Verlag LNCS 185,
pp. 97-138.

ROSSER, J. B. 1982. Highlights of the history of the
lambda-calculus. In Proceedings I982 ACM Con-
ference on LISP and Functional Programming.
ACM, pp. 216-225.

SCHMIDT, ,D. A. 1985. Detecting global variables
in denotational specifications. ACM Trans.
Program. Lung. Syst. 7, 2, 299-310.

SCH~NFINKEL, M. 1924. Uber die bausteine der
mathematischen logik. Muthematische Annalen
92, 305.

SCOTT, D. S. 1970. Outline of a mathematical theory
of computation. Programming Research Group
PRG-2, Oxford University.

SHAPIRO, E. 1989: Systolic Programming: A Para-
digm of Parallel Processing. Department of
Applied Mathematics Tech. Rep. CS84-21, The
Weizmann Institute of Science.

SRIDHARAN, N. S. 1985. Semi-applicative program-
ming: An example. Tech. Rep. BBN Laboratories.

STEELE, JR., L. G., AND HILLIS, D. W. 1986.
Connection machine lisp: Fine-grained parallel
symbolic processing. In Proceedings 1986 ACM
Conference on Lisp and Functional-Programming
(Cambridge. Mass.). ACM SIGPLAN/SIGACT/
SIGART,pp. 279-297.

STOY, J. E. 1977. Denotational Semantics: The Scott-
Strachey Approach to Programming Language
Theory. The MIT Press, Cambridge, Mass.

STOYE, W. 1985. A New Scheme for Writing Func-
tional Operating Systems. Tech. Rep. 56. Com-
puter Laboratory, University of Cambridge.

THAKKAR, S. S. Ed. 1987. Selected Reprints on
Dataflow and Reduction Architectures. The Com-
puter Society Press, Washington, DC.

TOFTE, M. 1988. Operational semantics and poly-
morphic type inference. Ph.D. dissertation, Dept.
Computer Science, Univ. of Edinburgh (CST-52-
88).

TRAKHTENBROT, B. A. 1988. Comparing the Church
and Turing approaches: Two prophetic messages.
Tech. Rep. 98/88. Eskenasy Institute of Com-
puter Science, Tel-Aviv University.

TRELEAVEN, P. C., BROWNBRIDGE, D. R., AND HOP-
KINS, R. P. 1982. Data-driven and demand-

driven computer architectures. Comput. Suru. 14,
1,93-143.

Tu, H-C. 1988. FAC: Functional array calculator
and its application to APL and functional pro-
gramming. Ph.D. dissertation, Dept. Computer
Science, Yale Univ. Available as Res. Rep.
YALEU/DCS/RR-468.

Tu, H-C., AND PERLIS, A. J. 1986. FAC: A functional
APL language. IEEE Software 3, 1, 36-45.

TURING, A. M. 1936. On computable numbers with
an application to the entscheidungsproblem.
Proc. London Math. SOC. 42, 230-265.

TURING, A. M. 1937. Computability and X-defina-
bility. J. Symbolic Logic 2, 153-163.

TURNER, D. A. 1976. SASL language manual. Tech.
Rep. Univ. St. Andrews.

TURNER, D. A. 1979. A new implementation tech-
inque for applicative languages. Softw. Pratt.
Exper. 9,31-49.

TURNER, D. A. 1981. The semantic elegance of ap-
plicative languages. In Proceedings of the 1981
Conference on Functional Programming Lan-
guages and Computer Architecture. ACM, pp.
85-92.

TURNER, D. A., 1982. Recursion equations as a pro-
gramming language. In Functional Programming
and Its Applications: An Advanced Course. Cam-
bridge University Press, New York, pp. l-28.

TURNER, D. A. 1985. Miranda: A non-strict func-
tional language with polymorphic types. In Func-
tional Programming Languages and Computer
Architecture. Springer-Verlag LNCS 201, pp.
1-16.

VAN HEIJENOORT, J. 1967. From Frege to Godel.
Harvard University Press, Cambridge, Mass.

VEGDAHL, S. R. 1984. A survey of proposed archi-
tectures for the execution of functional languages.
IEEE Trans. Comput. C-23,12, 1050-1071.

VUILLEMIN, J. 1974. Correct and optimal implemen-
tations of recursion in a simple programming
language. J. Comput. Syst. Sci. 9, 3.

WADGE, W. W., AND ASHCROFT, E. A. 1985. Lucid,
the Dataflow Programming Language. Academic
Press, London.

WADLER, P. 1986. A new array operation. In Work-
shop on Graph Reduction Techniques, Springer-
Verlag LNCS 279.

WADLER, P. 1987a. Efficient compilation of pattern-
matching. In The Implementation of Functional
Programming Languages, S. L. Peyton Jones, Ed.
Prentice-Hall International, Englewood Cliffs,
N.J., Chapter 5.

WADLER, P. 1987. Views: A way for pattern-match-
ing to cohabit with data abstraction. Tech. Rep.
34. Programming Methodology Group, Chalmers
Univ. of Technology, March 1987. Preliminary
version appeared in-the Proceedings of the 14th
ACM Symposium on Principles of Programming
Languages (January 1987).

ACM Computing Surveys, Vol. 14, No. 3, September 1989

411

WEGNER, P. 1968. Programming Languages, Infor-
mation Structures, and Machine Organization.
McGraw-Hill, New York.

WIKSTR~M, A. 1988. Standard ML. Prentice-Hall,
Englewood Cliffs, N.J.

WISE, D. 1987. Matrix algebra and applicative pro-
gramming. In Proceedings of 1987 Functional Pro-
gramming Languages and Computer Architecture
Conference, Springer Verlag LNCS 274, pp.
134-153.

YOUNG, J. 1988. The Semantic Analysis of Func-
tional Programs: Theory and Practice. Ph.D. dis-
sertation, Dept. Computer Science, Yale Univ.,
130-142.

WADLER, P., AND BLOTT, S. 1989. How to make ad
hoc polymorphism less ad hoc. In Proceedings of
16th ACM Symposium on Principles of Progmm-
ming Languages. ACM, pp. 60-76.

WADLER, P., AND MILLER, Q. 1988. An Introduction
to Orwell. Tech. Rep. Programming Research
Group, Oxford University. (First version, 1985.)

WADSWORTH, C. P. 1971. Semantics and pragmatics
of the lambda calculus. Ph.D. dissertation, Oxford
Univ.

WATSON, P., AND WATSON, I. 1987. Evaluating
functional programs on the FLAGSHIP machine.
In Proceedings of 1987 Functional Programming
Languages and Computer Architecture Confer-
ence. Springer-Verlag LNCS 274, pp. 80-97.

Received May 1988; final revision accepted May 1989.

ACM Computing Surveys, Vol. 14, No. 3, September 1989

