Sgstems |

Introduction to Computer Sgstems

Don Fussell
Spring 2011
Topics:
® Theme

® Five great realities of computer systems
®m How this fits within CS curriculum

o EEmmImEEZ

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

Course Theme

Abstraction is goocl, but don’t Forget rcalitg!

B Courses to date emphasize abstraction
® Abstract data types
B Asymptotic analysis

B These abstractions have limits

m Especially in the presence of bugs
® Need to understand underlying implementations

m Useful outcomes

®m Become more effective programmers
m Able to find and eliminate bugs efficiently
m Able to tune program performance
m Prepare for later “systems” classes in CS
®m Compilers, Operating Systems, Networks, Computer Architecture, etc.

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

Great Reality #1

Int’s are not Integers, Float’s are not Reals

Examples
Is x2>0?
Float’s: Yes!
Int’s:
40000 * 40000 --> 1600000000
50000 * 50000 -->??

[s(x+y)+z =x+(y+2)?
Unsigned & Signed Int’s: Yes!

Float’s:
(1€20 + -1€20) + 3.14 --> 3.14
1€20 + (-1e20 + 3.14) --> 27

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 3

Computer Arithmetic

® Does not generate random values

B Arithmetic operations have important mathematical properties

B Cannot assume “usual” properties
® Due to finiteness of representations
® Integer operations satisfy “ring” properties
® Commutativity, associativity, distributivity
® Floating point operations satisfy “ordering” properties
® Monotonicity, values of signs

m Observation

® Need to understand which abstractions apply in which contexts

® Important issues for compiler writers and serious application
programmers

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

Great Reality #2

Youve got to know assembly

® Chances are, you’ll never write program 1n assembly

® Compilers are much better & more patient than you are

® Understanding assembly key to machine-level execution
model
® Behavior of programs in presence of bugs
®m High-level language model breaks down
® Tuning program performance
® Understanding sources of program inefficiency
® Implementing system software

®m Compiler has machine code as target
® Operating systems must manage process state

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

Assembly Code Example

B Time Stamp Counter
® Special 64-bit register in Intel-compatible machines
® Incremented every clock cycle

m Read with rdtsc instruction
®m Application

®m Measure time required by procedure
® In units of clock cycles

double t;

start counter() ;

P();

t = get _counter();

printf ("P required %f clock cycles\n"”, t);

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 6

Code to Read Counter

® Write small amount of assembly code using GCC’s asm facility

® Inserts assembly code into machine code generated by compiler

static unsigned cyc hi 0,
static unsigned cyc lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/

void access_counter (unsigned *hi, unsigned *10)

{

asm("rdtsc, movl %$%edx, %0, movl $%$%eax, 31"
Ne=p" (*hl) , Ne=p" (*10)

"Sedx" ’ "%eax") ’

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

Code to Read Counter

/* Record the current value of the cycle counter. */
void start counter()

{

access_counter (&cyc hi, &cyc 1lo);

/* Number of cycles since the last call to start counter. */
double get counter()
{
unsigned ncyc_hi, ncyc lo;
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter (&ncyc hi, &ncyc _1lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc lo;
borrow = lo > ncyc lo;
hi = ncyc hi - cyc hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 8

Measuring Time

® Trickier than 1t Might Look

B Many sources of variation

B Example

® Sum integers from 1 to n

100 961 9.61

1,000 8,407 8.41

1,000 8,426 8.43

10,000 82,861 8.29

10,000 82,876 8.29
1,000,000 8,419,907 8.42
1,000,000 8,425,181 8.43
1,000,000,000 8,371,2305,591 8.37

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

9

Great Reality #3

Memory Matters

B Memory 1s not unbounded
® [t must be allocated and managed
® Many applications are memory dominated
B Memory referencing bugs especially pernicious

m Effects are distant in both time and space

B Memory performance 1s not uniform

® Cache and virtual memory effects can greatly affect program
performance

®m Adapting program to characteristics of memory system can lead to
major speed improvements

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 10

Memory Reterencing Bug Example

main ()

{

long int a[2];

double d = 3.14;

a[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);

exit (0) ;

Alpha MIPS Linux
-g 5.30498947741318e-315 3.1399998664856 3.14
-0 3.14 3.14 3.14

(Linux version gives correct result, but
implementing as separate function gives
segmentation fault.)

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 11

Memory Referencing Errors

® C and C++ do not provide any memory protection
® Out of bounds array references
® Invalid pointer values

m Abuses of malloc/free

® Can lead to nasty bugs
® Whether or not bug has any effect depends on system and compiler

B Action at a distance
m Corrupted object logically unrelated to one being accessed
m Effect of bug may be first observed long after it 1s generated

® How can I deal with this?

® Program in Java, Lisp, or ML
®m Understand what possible interactions may occur

m Use or develop tools to detect referencing errors

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

12

Memory Performance Example

® [Implementations of Matrix Multiplication

® Multiple ways to nest loops

/* ijk */ /* jik */
for (i=0; i<n; i++) { for (3=0; j<n; J++) {
for (3j=0; j<n; jJ++) { for (i=0; i<n; i++) {
sum = 0.0; sum = 0.0;
for (k=0; k<n; k++) for (k=0; k<n; k++)
sum += a[i] [k] * b[k][]j]~ sum += a[i] [k] * b[k][]j]~
c[1][]J] = sum; c[1][]J] = sum

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 13

Matmult Performance (Alpha 21164)

Too big for L1 Cache Too big for L2 Cache

mflops (d_p.)

—o— ik
ikj
—A— Jik
jki
—x— kij

—o— Kkji

T T 4 T TRNU S R -5 SN e S - B S S & Y R o S - B
FOLEELLPELL LSS

matrix size (n)

Sa A W
r oy B
b= =

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

14

Blocked matmult perf (Alpha 21164)

mflops (d._p.)

0 i i i t t i i t i t i t i i t t t
50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 15

Great Reality #4

There’s more to performance than asymptotic complexity

®m Constant factors matter too!
m Easily see 10:1 performance range depending on how code written
B Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
B Must understand system to optimize performance
® How programs compiled and executed
® How to measure program performance and identify bottlenecks

® How to improve performance without destroying code modularity
and generality

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

16

Great Reality #5

Computers do more than execute programs

® They need to get data 1n and out

® [/O system critical to program reliability and performance

® They communicate with each other over networks

® Many system-level issues arise in presence of network
m Concurrent operations by autonomous processes
®m Coping with unreliable media
® Cross platform compatibility

®m Complex performance issues

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

17

Course Perspective

B Most Systems Courses are Builder-Centric
® Computer Architecture
® Design pipelined processor in Verilog
® Operating Systems
® Implement large portions of operating system
® Compilers
® Write compiler for simple language
® Networking

® Implement and simulate network protocols

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 18

Course Perspective (Cont.)

B Our Course 1s Programmer-Centric
® Purpose 1s to show how by knowing more about the underlying
system, one can be more effective as a programmer

® Enable you to
®m Write programs that are more reliable and efficient

® Incorporate features that require hooks into OS
m E.g., concurrency, signal handlers

® Not just a course for dedicated hackers
® We bring out the hidden hacker in everyone

® Cover material in this course that you won’t see elsewhere

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

19

Teaching statf

B Instructor - Don Fussell
m Office: ACES 2.120
m Office Hours: MW 11-12
® Email: fussell@cs.utexas.edu
® http://www.cs.utexas.edu/~fussell/

m TA - Christian Miller
m Office: TBD
m Office Hours: TBD

B Email: ckm@cs.utexas.edu

® http://www.cs.utexas.edu/~ckm

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 20

Textbooks

Required
® Randal E. Bryant and David R. O’Hallaron,

® “Computer Systems: A Programmer’s Perspective”, Prentice Hall
2003.

® http://csapp.cs.cmu.edu/

Optional
® Brian Kernighan and Dennis Ritchie,

® “The C Programming Language, Second Edition”, Prentice Hall,
1988

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell

21

Course Components

B | .ectures

®m Higher level concepts

B Recitations

®m Applied concepts, important tools and skills for labs, clarification
of lectures, exam coverage

B Labs
® The heart of the course
m | or 2 weeks
® Provide in-depth understanding of an aspect of systems

B Programming and measurement

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell =~ 22

Getting Help

® Web

® http://www.cs.utexas.edu/~fussell/courses/cs429h/
m Copies of lectures, assignments, etc.

m Clarifications to assignments

® Newsgroup
m TBD

B Personal help

m Office hours or by appointment with either instructor or TA

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell =~ 23

Policies: Assignments

® Work groups
® You must work alone on all labs
® Handins
m Assignments due at 11:59pm on specified due date.
®m Electronic handins only.
® Makeup exams and assignments
® Not normally done, except by prior arrangement with instructor.
® Appealing grades
m Within 7 days of due date or exam date.
m Assignments: Talk to the TA
®m Exams: Talk to instructor.

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 24

Cheating

® What 1s cheating?

m Sharing code: either by copying, retyping, looking at, or supplying
a copy of a file.

® What 1s NOT cheating?

® Helping others use systems or tools.
® Helping others with high-level design issues.
m Helping others debug their code.

® Penalty for cheating:

® Removal from course with failing grade.

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell =~ 25

Policies: Grading

B Exams (50%)

® Three 1n class exams (10% each)

® Final (20%)

m All exams are open book/open notes.
m Labs (50%)

m 7 labs (7-8% each)

B Grading Characteristics

m Lab scores tend to be high
® Serious handicap if you don’t hand a lab in
®m We offer generous redemption programs

m Tests typically have a wider range of scores

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 26

Facilities

B Assignments will use the erstwhile Taylor Ubuntu
lab, now 1n Trailer Hall

® You will need a CS account, if you don’t have one, see the UTCS
webpage for a form and the procedure to apply for a class account.

B Getting help with the cluster machines:

m See course Web page for info

® Please direct questions to your TAs

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell =~ 27

Course Topics

®m Topics
® Data representation
®m Hardware building blocks
® From application programs to machine-level programs
® Processor design
® Pipelining principles
B Memory hierarchies
B Performance programming
B Assignments to include
® [earning to program in C (multiple)
® Lab: Manipulating bits
m Lab: Defusing a binary bomb
m Lab: Hacking a buffer bomb
® Lab: Program optimization

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell =~ 28

Lab Rationale

m Each lab should have a well-defined goal such as solving a puzzle or winning
a contest.

m Defusing a binary bomb.
® Winning a performance contest.
B Doing a lab should result in new skills and concepts
m Data Lab: computer arithmetic, digital logic.
® Bomb Labs: assembly language, using a debugger, understanding the stack
m Perf Lab: profiling, measurement, performance debugging.
m Efc.

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 29

Good Luck!

University of Texas at Austin CS429H - Introduction to Computer Systems Fall 2011 Don Fussell 30

