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Abstract In exploratory data analysis and data mining in the very common setting

of a data set X of vectors from R
d , the search for important features and artifacts of

a geometrical nature is a leading focus. Here one must insist that such discoveries

be invariant under selected changes of coordinates, at least within some specified

equivalence relation on geometric structures. Otherwise, interesting findings could

be merely artifacts of the coordinate system. To avoid such pitfalls, it is desirable

to transform the data X to an associated data cloud X
∗ whose geometric structure

may be viewed as intrinsic to the given data X but also invariant in the desired sense.

General treatments of such “invariant coordinate system” transformations have been

developed from various perspectives. As a timely step, here we formulate a more

structured and unifying framework for the relevant concepts. With this in hand, we

develop results that clarify the roles of so-called transformation-retransformation

transformations. We illustrate by treating invariance properties of some outlyingness

functions. Finally, we examine productive connections with maximal invariants.

1 Introduction

In exploratory data analysis and data mining in the very common setting of a data

set X of vectors from R
d , a leading focus is the search for important features and

artifacts of a geometrical nature. Here one should insist that such discoveries be

invariant under selected changes of coordinates, or at least be invariant under such

changes up to a particular equivalence relation on geometric structures. Otherwise,

what appears to be interesting geometric structure could be nothing but an artifact of

the particular coordinate system adopted. To avoid such a pitfall, the data X can be
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2 Robert Serfling

transformed to an associated new data cloud X
∗ having geometric structure that is

intrinsically related to X but also invariant in the desired sense. General treatments

of such “invariant coordinate system” transformations have been developed from

various perspectives. As a timely next step, here we introduce a more structured and

unifying framework for the relevant concepts, develop results that clarify the use of

transformation-retransformation transformations, illustrate by treating invariance of

some popular outlyingness functions, and productively examine connections with

maximal invariants.

The topic of transformation to an “invariant coordinate system (ICS)” is treated

broadly in the seminal paper of Tyler, Critchley, Dümbgen, and Oja (2009), and

further general treatments are provided in Ilmonen, Nevalainen, and Oja (2010),

Serfling (2010), and Ilmonen, Oja, and Serfling (2012). See also Nordhausen (2008)

for useful results. Collectively, these sources treat two quite different approaches

toward construction of “ICS” transformations and discuss a diversity of interesting

practical applications.

However, the various treatments to date are not completely coherent and precise

with respect to what is actually meant by “ICS”. Indeed, for many of the examples

and applications, the desired invariance is achieved only within some equivalence

relation defined on the geometric structures of data sets. For example, for a data

set X, when we seek to identify its geometric structure that is invariant under affine

transformation, it might be the case for the given application that differences due

to homogeneous scale changes, coordinatewise sign changes, and translations may

be ignored. That is, for any affine transformation of the given data cloud X to Y,

we might require only that the corresponding invariant coordinate systems X
∗ and

Y
∗ agree only within such a specified equivalence. To accommodate a variety of

such practical applications, the notions and terminology of “ICS” have evolved very

productively but in somewhat loose fashion.

It is now timely and useful to have a more structured conceptual framework that

draws together the various “ICS” results and adds perspective. For this purpose, we

introduce and study in Section 2 a precise notion of “invariant within equivalence

coordinate system (IWECS)” transformation: M(X) such that the transformed data

M(X)X is invariant under transformation of X relative to a transformation group G ,

subject to equivalence relative to another transformation group F . That is, for g ∈
G , M(X)X and M(gX)gX need not be equal but must fall in the same equivalence

class. Specifically, M(X)X is to be G -invariant within F -equivalence.

It is seen in Serfling (2010) that the ICS transformations of practical interest

fall within the class of transformation-retransformation (TR) transformations, which

are essentially inverse square roots of covariance matrices. The chief purpose of

TR transformations is standardization of data, so that estimators, test statistics, and

other sample statistics become affine invariant or equivariant when defined on the

standardized data. However, in some such cases a strong type of TR transformation

is needed, namely an ICS transformation. Also, it is of interest to know when a TR

transformation may directly play the role of an ICS transformation. Here we note

that, to serve additionally as an ICS transformation, a TR matrix must be rather

atypical, since the “usual” ICS transformations cannot be symmetric or triangular
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(Serfling, 2010). In Section 3 we provide further clarifications on TR versus ICS

transformations, as follows. Theorem 2 provides the narrowest equivalence (i.e., the

smallest F ) for which TR transformations can serve as IWECS transformations

relative to linear or affine invariance. Theorem 3 exhibits a key special class of TR

transformations for which the corresponding IWECS are affine invariant relative

to the smallest possible nontrivial choice of F . As illustrations of the application

of these theorems, we treat affine invariant TR versions of the spatial outlyingness

function and of the projection outlyingness function when the number of projections

used is finite.

The construction of TR matrices that possess the structural properties requisite

to be ICS (or IWECS) is somewhat challenging. Relative to the linear and affine

transformation groups, connections between a useful strong special case of ICS and

IWECS transformations and the relevant maximal invariant statistics are examined

in Section 4.1. Thus maximal invariant statistics can play a role in constructing ICS

and IWECS transformations in this special case. We provide background references

on two distinctive approaches that have been developed along these lines. Further

exploiting connections with maximal invariant statistics, in Section 4.2 we revisit

classical treatments (Lehmann, 1959) of maximal invariants relative to these groups

and “discover” a competitive third approach, one offering greater simplicity and less

computational burden.

The present paper treats only the case of data from a Euclidean space, as does

all of the literature to date except for extension to complex-valued data (Ilmonen,

2013). However, the concepts we present in fact can have very general extension and

potentially have application in quite diverse contexts. We provide brief discussion

in Section 5.

As the literature we cite in this paper amply portrays, there has been a prominent

guiding influence in developing, studying, and applying ICS transformations. The

contributions of the present paper are dedicated as a tribute to Hannu Oja and his

leadership.

2 A General Framework for Formulation of Invariant Within

Equivalence Coordinate Systems in R
d

2.1 General Framework

Here we draw together and extend recent general treatments of invariant coordinate

system (ICS) transformations (Nordhausen, 2008, Tyler, Critchley, Dümbgen, and

Oja, 2009, Ilmonen, Nevalainen, and Oja, 2010, Serfling, 2010, and Ilmonen, Oja,

and Serfling, 2012). A general framework for describing the inherent geometrical

structure of a data set in R
d via invariant within equivalence coordinate system

representations is defined as follows.
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Definition 1. An invariant within equivalence coordinate system (IWECS) in R
d

consists of three components (G ,M(·),E ),

1. a group G of transformations g on data sets X of observations from R
d ,

2. a data-based d ×d matrix transformation M(X) taking X to M(X)X, and

3. an equivalence relation E on the transformed data sets M(X)X,

such that M(gX)gX, g ∈ G , all lie in the same equivalence class relative to E , i.e.,

are invariant relative to G within E -equivalence. �

Thus the E -orbit to which M(X)X belongs is invariant under transformation of X by

g ∈ G . We call the matrix M(·) an invariant within equivalence coordinate system

(IWECS) transformation, and resulting the transformed data M(X)X is the desired

invariant within equivalence coordinate system.

Whereas G concerns transformations on initial data sets X in R
d and represents

a criterion for invariance, the equivalence relation E concerns the transformed data

sets M(X)X and represents a criterion for equivalent geometric structure. There

are many possibilities for (G ,E ). In the example of Section 1, G consists of affine

transformations and E represents data sets as having equivalent geometric structure

if they differ only with respect to homogeneous scale change, coordinatewise sign

changes, and translation.

For given (G ,E ), the challenge is to find a suitable M(·) satisfying Definition 1.

In the sequel, we consider the special case that E corresponds to invariance under

a group of transformations F and denote the above framework by (G ,M(·),F ).
Then a key criterion for finding a solution is provided by the following result, which

follows immediately from Definition 1.

Theorem 1. For given (G ,F ), a suitable IWECS transformation is given by any

M(·) such that, for any g ∈ G , there exists f0 = f0(g,X)∈ F for which

M(gX)gX = f0 M(X)X. (1)

The following result provides a useful sufficient condition for (1) in the form of a

structural requirement on the matrix M(·) that in practice serves essentially as the

definition of an IWECS transformation. The proof is immediate.

Corollary 1. For given (G ,F ), a suitable IWECS transformation is given by any

M(·) such that, for any g ∈ G , there exists f0 = f0(g,X)∈ F for which

M(gX) = f0 M(X)g−1. (2)

With A the set of all nonsingular d ×d matrices, important choices for G are

G0 = {g : gX = AX, A ∈ A } (nonsingular linear transformation),

G1 = {g : gX = AX+b, A ∈ A , b ∈ R
d} (affine transformation).

For F , key choices are
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D0 = { f : f Y = cY, c > 0} (homogeneous rescaling),

D = { f : f Y = diag(c1, . . . ,cd)Y, ci > 0, i = 1, . . . ,d} (heterogeneous rescaling),

J = { f : f Y = diag(c1, . . . ,cd)Y, ci = ±1, i = 1, . . .,d} (heterogeneous sign changing),

P = { f : f Y = PY, P is a permutation matrix} (permutation),

U = { f : f Y = UY, U is an orthogonal matrix} (rotation and/or reflection).

The above G and F arise quite naturally in nonparametric multivariate inference, as

discussed in Ilmonen, Oja, and Serfling (2012), where G1 is especially emphasized.

Their equation (4) corresponds to our equation (2) specialized to G1 and in that form

is given as their definition of what here we call an IWECS transformation. Let us

also note that certain combinations of the above choices of F are of special interest,

for example:

F0 = { f : f Y = cY+b, c > 0, b ∈ R
d}

(translation, homogeneous rescaling),

F1 = { f : f Y = cdiag(c1, . . .,cd)Y+b, c > 0, ci = ±1, i = 1, . . . ,d, b ∈ Rd}
(translation, homogeneous rescaling, heterogeneous sign changing),

F2 = { f : f Y = diag(±c1, . . . ,±cd)Y+b, ci > 0, i = 1, . . . ,d, b ∈ R
d}

(translation, heterogeneous rescaling, heterogeneous sign changing),

F3 = { f : f Y = U(cY+b), c > 0, U orthogonal, b ∈ R
d}

(translation, homogeneous rescaling, rotation, reflection),

F4 = { f : f Y = U(diag(c1, . . . ,cd)Y+b), ci > 0, i = 1, . . .,d, U orthogonal, b ∈ R
d}

(translation, heterogeneous rescaling, rotation, reflection).

In particular, the example discussed in Section 1 concerns G1 and F1.

The property that a transformation is IWECS with respect to (G ,F ) becomes

weaker if F acquires additional transformations. In this respect, let us note that

F0 ⊂ F1 ⊂ F2 and F0 ⊂ F3 ⊂ F4 so that here the strongest case corresponds

to F = F0. Of course, still stronger is the ideal case that the equivalence relation

E (i.e., the group F ) may be omitted and the invariance relative to G is strict: the

transformed sets M(gX)gX, g ∈ G , are identical without qualification and M(·) is

a purely ICS transformation. Generally, however, this aspiration is too stringent and

must be relaxed, adopting an equivalence criterion that is as narrow as possible.

3 TR Matrices as IWECS Transformations

In seeking IWECS transformations relative to the popular affine group G1, one

may inquire whether widely used standardizing transformations such as the inverse

square roots of scatter matrices suffice for this purpose. That is, more precisely,

may a transformation-retransformation (TR) matrix serve as an IWECS matrix? As

shown in Serfling (2010), the answer is negative except for some very special cases

that exclude popular ones. Hence it becomes of interest to explore what “minimal”

F suffices for an arbitrary TR transformation to serve as an IWECS transformation
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relative to (G1,F ). In Section 3.1 we review the definition of TR matrices, and in

Sections 3.2 and 3.3 we develop explicit answers to this question.

3.1 Definition of TR Matrices

A transformation-retransformation (TR) matrix is a positive definite d × d matrix

M(X) (not necessarily symmetric) such that, for Y = AX+b with any nonsingular

A and any b,

A>M(Y)>M(Y)A = k2M(X)>M(X),

with k2 = k2(A,b,X) a positive scalar function of A, b, and X. Such TR matrices

are equivalently given by factorizations of weak covariance (WC) matrices, i.e., via

C(X) = (M(X)>M(X))−1,

where the symmetric positive definite d ×d WC matrix C(X) satisfies

C(Y) = k1AC(X)A>,

with k1 = k1(A,b,X) a positive scalar function of A, b, and X. For k1 = 1, C(X) is a

strict “covariance” matrix. Typical standardizations of data X for various purposes

are given by M(X)X. See Serfling (2010) and Ilmonen, Oja, and Serfling (2012) for

detailed discussion and examples.

3.2 TR Matrices as IWECS Transformations

We now explore whether such an M(·) can be IWECS. In particular, Serfling (2010)

shows, in different notation, that any IWECS transformation relative to (G1,F1)
is TR, but not conversely, one counter-example being the popular Tyler (1987) TR

matrix. But is there a broader F for which any TR matrix is in fact IWECS? The

following result answers this in the affirmative, for both G1 and G0, with F = F3.

Theorem 2. Every TR matrix is IWECS relative to (G1,F3) and also to (G0,F3).

Proof. (i) Let us first consider (G1,F3). Let g ∈ G1 be given by gx = Ax + b for

some nonsingular A and any b. It is shown in Serfling (2010), Lemma 5.1, that, for

any TR matrix M(·), and for Y = AX + b with any nonsingular A and any b, the

matrix

U0 = U0(A,b,X)= k2(A,b,X)1/2(M(Y)>)−1(A>)−1M(X)>

is orthogonal. Then we readily obtain

M(Y) = k
1/2
2 U0M(X)A−1 (3)
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and in turn

M(Y)Y = k
1/2
2 U0[M(X)X+M(X)A−1b] = f0M(X)X, (4)

where f0 = f0(A,b,X) represents translation of M(X)X by the constant M(X)A−1b,

followed by homogeneous scale change by k2(A,b,X) and then rotation/reflection

by orthogonal U0. Thus f0 ∈ F3 and equation (1) in Theorem 1 is satisfied for the

given g ∈ G1.

(ii) For (G0,F3), the proof is similar. ut

Theorem 2 shows explicitly the precise strengths and limitations of TR matrices as

IWECS transformations. We can apply this result through various straightforward

corollaries, for example the following.

Corollary 2. If an R
m-valued statistic Q(X) is invariant with respect to F3, then its

evaluation at a TR-based IWECS M(X)X relative to either (G1,F3) or (G0,F3) is

invariant with respect to G1 or G0, respectively.

Example 1. Invariance of spatial outlyingness function. The spatial outlyingness

function (Serfling, 2010) is defined as

OS(x,X) = ‖RS(x,X)‖, x ∈ R
d ,

where RS(x,X) is the spatial centered rank function (Oja, 2010) in R
d given by

RS(x,X) = n−1
n

∑
i=1

S(x−Xi), x ∈ R
d ,

with S(y) the spatial sign function (or unit vector function) in R
d given by

S(y) =

{

y
‖y‖ , y ∈ R

d ,y 6= 0,

0, y = 0.

It is readily checked that RS(x,X) is translation and homogeneous scale invariant

and orthogonally equivariant:

RS(x−b,X−b) = RS(x,X),

RS(cx,cX) = RS(x,X),

RS(Ux,UX) = URS(x,X).

Then OS(x,X) is translation, homogeneous scale, and orthogonally invariant, i.e.,

invariant with respect to the group F3, but is not affine invariant. However, fully

affine invariant versions are immediately obtained via Corollary 2: For for any TR

matrix M(·), the so-called TR spatial outlyingness function corresponding to M(·),

O
(TR)
S (x,X) = OS(M(X)x,M(X)X), x ∈ R

d ,
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is affine invariant. �

3.3 Special Types of TR Matrix for IWECS Transformations

It would be desirable to have the result of Theorem 2 for a smaller choice of F than

F3. In this vein, we ask: What additional property is required of a TR matrix M(·)
in order for it to serve as an IWECS transformation relative to G1 for a choice of F

narrower than F3?

A clue is given by equation (3) in the proof of Theorem 2. If we simply require

that M(·) satisfy this equation without the factor U0, then equation (4) would hold

without the presence of U0, yielding the following very strong conclusion.

Theorem 3. Let M(·) be a TR matrix such that, for Y = AX+b as above,

M(Y) = k
1/2

2 M(X)A−1, (5)

with k2 = k2(A,b,X) as in the definition of the given TR matrix. Then M(·) is IWECS

relative to (G1,F0) and to (G0,F0).

An analogue of Corollary 2 is

Corollary 3. If an R
m-valued statistic Q(X) is invariant with respect to F0, then

its evaluation at a TR-based IWECS M(X)X for M(·) satisfying (5) is, relative to

either (G1,F0) or (G0,F0), invariant with respect to G1 or G0, respectively.

In comparison with Corollary 2, Corollary 3 requires more of the TR matrix but

yields a stronger conclusion by allowing F0 instead of F3.

Example 2. Invariance of projection outlyingness with finitely many projections.

With ν the median and η the MAD (median absolute deviation from the median),

the well-known projection outlyingness function given by

OP(x,X) = sup
‖u‖ = 1

∣

∣

∣

∣

u>x−ν(u>
X)

η(u>X)

∣

∣

∣

∣

, x ∈ R
d , (6)

represents the worst case scaled deviation outlyingness of projections of x onto

lines. It is affine invariant, highly masking robust (Dang and Serfling, 2010), and

does not impose ellipsoidal contours as does the very popular Mahalanobis distance

outlyingness function, which also is affine invariant. However, OP(x,X) is highly

computational, and to overcome this burden Serfling and Mazumder (2013) develop

and study a modified version entailing only finitely many selected projections, say

∆ = {u1, . . .,uK}, i.e.,

O
(∆ )
P (x,X) = sup

u ∈ ∆

∣

∣

∣

∣

u>x−ν(u>
X)

η(u>X)

∣

∣

∣

∣

, x ∈ R
d . (7)
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However, O
(∆ )
P (x,X) with finite ∆ is no longer affine invariant. Nor is it orthogonally

invariant, so Corollary 2 is inapplicable and thus an arbitrary TR version does not

achieve affine invariance. On the other hand, simply using invariance of O
(∆ )
P (x,X)

with respect to F0, it follows by Corollary 3 that any TR version

O
(∆ ,TR)
P (x,X) = O

(∆ )
P (M(X)x,M(X)X), x ∈ R

d ,

with M(·) satisfying (5) is indeed affine invariant. Of course, standardizing by M(·)
introduces a further computational issue, and Serfling and Mazumder (2013) also

develop computationally attractive choices of M(·) satisfying (5). �

Remark 1. A TR matrix satisfying the special condition (5) is distinguished as a

“strong invariant coordinate system” (SICS) transformation in Serfling (2010) and

Ilmonen, Oja, and Serfling (2012), where also other results like Theorem 3 are seen

corresponding to replacement of U0 in (3) by possibilities other than simply the

identity matrix and hence corresponding to F larger than F0. �

Remark 2. Let us compare condition (5) with the somewhat similar condition given

by (2), which in the present setting would be expressed as

M(Y) = f0M(X)g−1 (8)

for any given g ∈ G for some related f0 ∈ F0. For the case G = G1, let g be given by

gx = Ax +b for some nonsingular A and any b. Now it is readily checked that the

transformation g−1 consists of translation by −b followed by application of A−1,

or equivalently application of A−1 followed by translation by −A−1b. Thus (5) is

equivalent to (2) with suitable choice of f0 ∈F0. The argument for G = G0 is similar.

In dealing with G = G1, the use of (5) is more direct and convenient. �

4 Some Connections With Maximal Invariants

A natural “invariance principle” is that artifacts of the data X which are invariant

without qualification relative to a group G of transformations should be functions

of a suitable “maximal invariant” statistic that constitutes a labeling of the orbits

of G . See Lehmann and Romano (2005), §6.2, for elaboration. For a data set X

= {X1, . . .,Xn} of observations in R
d , a maximal invariant is obtained via some

suitable matrix-valued transformation B(X) applied to X, producing B(X)X as the

desired maximal invariant.

In this case, an ICS M(X)X relative to G should be expressible as a function

of B(X)X. However, this need not be true for an IWECS, of course. In Section

4.1, relative to G0 and G1, we exhibit connections between ICS transformations and

the pertinent maximal invariant transformations. These connections are exploited

in Section 4.2 to “discover” from some classical results a new approach toward

construction of ICS and IWECS transformations. In Section 5 the connections are

extended to the case of an arbitrary G .
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4.1 Connections in the Case of Groups G0 and G1

With reference to the groups G0 and G1, the following results of Ilmonen, Oja, and

Serfling (2012), Theorem 3.1, connect maximal invariants with TR matrices M(·)
satisfying a strong special case of equation (5), namely

M(Y) = M(X)A−1, (9)

where Y denotes AX in the case of G0 and AX + b in the case of G1. They show

under (9) that

(i) M(X)X is a maximal invariant under G0,

(ii) M(X)(X−T (X)) is a maximal invariant under G1, for any location statistic T (X).

Of course, in view of (9), M(·) is an IWECS transformation. Also, note that under

(9) we have M(X) = M(X−T (X)), and thus the maximal invariant in (ii) may also

be written as M(X−T (X))(X−T (X)).
In case (i), M(·) is a very strong special case of IWECS transformation, namely

a pure ICS transformation without qualification by an equivalence relation, for

we have M(gX)gX = M(X)X, g ∈ G0. Note that under merely (5) instead of the

strengthening to (9), we have by Theorem 3 that M(·) is an IWECS transformation

relative to (G1,F0), a slightly weaker conclusion although still quite strong, and the

IWECS M(X)X is no longer a maximal invariant.

In case (ii), and even under merely (5), we have that M(·) is IWECS relative

to (G1,F0), as per Theorem 3. However, the IWECS M(X)X is not a maximal

invariant. Consequently, under (9), M(·) is closely associated with both obtaining an

IWECS and obtaining a maximal invariant, although neither solution directly yields

the other. Since typical TR matrices do not satisfy (9), special types are required.

Particular constructions of M(·) satisfying (9) with reference to G0 and G1 have

been developed and applied to obtain affine invariant multivariate sign and angle

tests and affine equivariant multivariate coordinate-wise and spatial medians, in a

series of papers by Chaudhuri and Sengupta (1993), Chakraborty and Chaudhuri

(1996), and Chakraborty, Chaudhuri, and Oja (1998). Further approaches are treated

in Serfling (2010), Ilmonen, Nevalainen, and Oja (2010), and Ilmonen, Oja, and

Serfling (2012), covering a range of applications and exploring the formal properties

of these transformations. Treatments are carried out in the setting of complex valued

independent component analysis by Ilmonen (2013) and in the setting of supervised

invariant coordinate selection by Liski, Nordhausen and Oja (2014).

4.2 Some Pertinent Classical Results

Maximal invariant statistics relative to G0 and G1 have been treated in detail as early

as Lehmann (1959), and those results are pertinent here. In particular, for X a d ×n

matrix of n column d-vectors, and relative to the group G0, Lehmann (1959) derives
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the maximal invariant

P = X
>(XX

>)−1
X,

which corresponds to M0(X)X with

M0(X) = X
>(XX

>)−1.

We readily find that M0(·) satisfies (9) and hence is both an ICS and a maximal

invariant transformation.

Three noteworthy aspects of the Lehmann maximal invariant P are as follows:

1. M0(X) is more directly computed than existing ICS matrices relative to G1.

2. P has interesting geometric interpretations as discussed in Lehmann (1959).

3. P is n×n rather than d ×n as would be M0(X)X were M0(·) a d×d TR matrix

satisfying (9). However, as easily seen, assuming the rows of M0(X) are linearly

independent as should hold with probability 1, any d rows of M0(X) form a

d×d TR matrix M1(·), say, also satisfying (9) and thus yield what we might call

a minimal dimension maximal invariant P0 = M1(X)X, say.

Remark 3. Note that P0 (a) serves as an ICS relative to G0, (b) serves as a maximal

invariant relative to G1 via

M1(X)(X−T (X)) = M1(X−T (X))(X−T (X)),

and (c) serves as an IWECS relative to (G1,F0). The reduction of the “full” maximal

invariant P to the minimal dimension version P0 gives up some data, but only what

is redundant of that which is retained, as far as a labeling of orbits is concerned. It

should be noted that the computational burden posed by P and P0 is relatively light.

Full investigation of P and P0 is deferred to a future study. �

5 Extensions for General X and General G

In the present paper we have focused on X = R
d and G = G0 and G1. However,

Definition 1 can immediately be formulated more generally, allowing the data X to

be observations from any space X and taking M to be a data based operator on

elements of X .

Also, the connections (i) and (ii) of Section 4.1 regarding maximal invariance

under (9) have a completely general extension, corresponding to a tightening of (2)

in the same way that (9) tightens (5), as follows.

Theorem 4. For any group G of transformations on data sets X from any space X ,

let M(·) be such that M(X) itself belongs to G for any data set X and suppose that

M(gX) = M(X)g−1. (10)

Then M(X)X is both an ICS and a maximal invariant with respect to G .
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Proof. Invariance of M(X)X follows immediately from (10). Now suppose that

M(X)X = M(X∗)X∗ for two data sets X and X
∗. Then X

∗ = [M(X∗)−1M(X)]X
= g∗X, where g∗ = M(X∗)−1M(X) ∈ G . Hence X and X

∗ lie in the same orbit of G ,

establishing maximality. ut

Statistical inference procedures which are invariant or equivariant with respect to

some group G can be obtained by evaluating suitable preliminary versions at some

appropriate functions either of an IWECS or of a maximal invariant, whichever

is more convenient. In light of Theorem 4, these constructions and studies may be

explored in greater generality than for X = R
d . For example, a potential application

of the IWECS framework arises in the study of similarity between time series with

invariance to (various combinations of) the distortions of warping, uniform scaling,

offset, amplitude scaling, phase, occlusions, uncertainty and wandering baseline.

This and other applications are being pursued in separate investigations.
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[15] Tyler, D. E., Critchley, F., Dümbgen, L. and Oja, H. (2009). Invariant

co-ordinate selection. Journal of the Royal Statistical Society, Series B 71

1–27.




