
Journal of Arti�cial Intelligence Research 7 (1997) 83-124 Submitted 6/97; published 9/97Towards Flexible TeamworkMilind Tambe tambe@isi.eduInformation Sciences Institute and Computer Science DepartmentUniversity of Southern California4676 Admiralty WayMarina del Rey, CA 90292, USA AbstractMany AI researchers are today striving to build agent teams for complex, dynamicmulti-agent domains, with intended applications in arenas such as education, training,entertainment, information integration, and collective robotics. Unfortunately, uncertain-ties in these complex, dynamic domains obstruct coherent teamwork. In particular, teammembers often encounter di�ering, incomplete, and possibly inconsistent views of their en-vironment. Furthermore, team members can unexpectedly fail in ful�lling responsibilitiesor discover unexpected opportunities. Highly
exible coordination and communication iskey in addressing such uncertainties. Simply �tting individual agents with precomputedcoordination plans will not do, for their in
exibility can cause severe failures in teamwork,and their domain-speci�city hinders reusability.Our central hypothesis is that the key to such
exibility and reusability is providingagents with general models of teamwork. Agents exploit such models to autonomously rea-son about coordination and communication, providing requisite
exibility. Furthermore,the models enable reuse across domains, both saving implementation e�ort and enforc-ing consistency. This article presents one general, implemented model of teamwork, calledSTEAM. The basic building block of teamwork in STEAM is joint intentions (Cohen &Levesque, 1991b); teamwork in STEAM is based on agents' building up a (partial) hierar-chy of joint intentions (this hierarchy is seen to parallel Grosz & Kraus's partial Shared-Plans, 1996). Furthermore, in STEAM, team members monitor the team's and individualmembers' performance, reorganizing the team as necessary. Finally, decision-theoretic com-munication selectivity in STEAM ensures reduction in communication overheads of team-work, with appropriate sensitivity to the environmental conditions. This article describesSTEAM's application in three di�erent complex domains, and presents detailed empiricalresults.1. Introductionteamwork: cooperative e�ort by the members of a team to achieve a commongoal. { American Heritage DictionaryTeamwork is becoming increasingly critical in many multi-agent environments, such as,virtual training (Tambe et al., 1995; Rao et al., 1993), interactive education (for instance, invirtual historical settings, Pimentel & Teixeira, 1994), internet-based information integra-tion (Williamson, Sycara, & Decker, 1996), RoboCup robotic and synthetic soccer (Kitanoet al., 1995, 1997), interactive entertainment (Hayes-Roth, Brownston, & Gen, 1995; Reilly,1996), and potential multi-robotic space missions. Teamwork in such complex, dynamicdomains is more than a simple union of simultaneous coordinated activity. An illustrativec
1997 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Tambeexample provided by Cohen and Levesque (1991b) | worth repeating, given that the di�er-ence between simple coordination and teamwork is often unacknowledged in the literature| focuses on the distinction between ordinary tra�c and driving in a convoy. Ordinarytra�c is simultaneous and coordinated by tra�c signs, but it is not considered teamwork.Driving in a convoy, however, is an example of teamwork. The di�erence in the two situ-ations is that while teamwork does involve coordination, in addition, it at least involves acommon team goal and cooperation among team members.This article focuses on the development of a general model of teamwork to enable ateam to act coherently, overcoming the uncertainties of complex, dynamic environments.In particular, in these environments, team members often encounter di�ering, incompleteand possibly inconsistent views of the world and (mental) state of other agents. To actcoherently, team members must
exibly communicate to avoid miscoordination. Further-more, such environments can often cause particular team members to unexpectedly failin ful�lling responsibilities, or to discover unexpected opportunities. Teams must thus becapable of monitoring performance, and
exibly reorganizing and reallocating resources tomeet any contingencies. Unfortunately, implemented multi-agent systems often fail to pro-vide the necessary
exibility in coordination and communication for coherent teamwork insuch domains (Jennings, 1994, 1995). In particular, in these systems, agents are suppliedonly with preplanned, domain-speci�c coordination. When faced with the full brunt of un-certainties of complex, dynamic domains, the in
exibility of such preplanned coordinationleads to drastic failures | it is simply di�cult to anticipate and preplan for all possible con-tingencies. Furthermore, in scaling up to increasingly complex teamwork situations, thesecoordination failures continually recur. In addition, since coordination plans are domainspeci�c, they cannot be reused in other domains. Instead, coordination has to be redesignedfor each new domain.The central hypothesis in this article is that providing agents with a general modelof teamwork enables them to address such di�culties. Such a model enables agents toautonomously reason about coordination and communication, providing them the requisite
exibility in teamwork. Such general models also allow reuse of teamwork capabilitiesacross domains. Not only does such reuse save implementation e�ort, but it also ensuresconsistency in teamwork across applications (Rich & Sidner, 1997). Fortunately, recenttheories of teamwork have begun to provide the required models for
exible reasoning aboutteamwork, e.g., joint intentions (Cohen & Levesque, 1991b; Levesque, Cohen, & Nunes,1990), SharedPlan (Grosz, 1996; Grosz & Kraus, 1996; Grosz & Sidner, 1990) and jointresponsibility (Jennings, 1995), are some of the prominent ones among these. However,most research e�orts have failed to exploit such teamwork theories in building practicalapplications (Jennings, 1994, 1995).This article presents an implemented general model of teamwork, called STEAM (sim-ply, a Shell for TEAMwork).1 At its core, STEAM is based on the joint intentions theory(Levesque et al., 1990; Cohen & Levesque, 1991b, 1991a); but it also parallels and in somecases borrows from the SharedPlans theory (Grosz, 1996; Grosz & Kraus, 1996; Grosz &Sidner, 1990). Thus, while STEAM uses joint intentions as the basic building block of team-work, as in the SharedPlan theory, team members build up a complex hierarchical structureof joint intentions, individual intentions and beliefs about others' intentions. In STEAM,1. STEAM code (with documentation/traces) is available as an online Appendix.84

Towards Flexible Teamworkcommunication is driven by commitments embodied in the joint intentions theory | teammembers may communicate to attain mutual belief while building and disbanding jointintentions. Thus, joint intentions provide STEAM a principled framework for reasoningabout communication, providing signi�cant
exibility. STEAM also facilitates monitoringof team performance by exploiting explicit representation of team goals and plans. If in-dividuals responsible for particular subtasks fail in ful�lling their responsibilities, or if newtasks are discovered without an appropriate assignment of team members to ful�ll them,team reorganization can occur. Such reorganization, as well as recovery from failures ingeneral, is also driven by the team's joint intentions.STEAM's operationalization in complex, real-world domains (described in the next sec-tion) has been key in its development to address important teamwork issues discussed above.It has also led STEAM to address some practical issues, not addressed in teamwork the-ories. One key illustration is in STEAM's detailed attention to communication overheadsand risks, which can be signi�cant. STEAM integrates decision theoretic communicationselectivity | agents deliberate upon communication necessities vis-a-vis incoherency inteamwork. This decision theoretic framework thus enables improved
exibility in commu-nication in response to unexpected changes in environmental conditions.Operationalizing general models of teamwork, such as STEAM, necessitates key modi-�cations in the underlying agent architectures. Agent architectures such as Soar (Newell,1990), RAP (Firby, 1987), PRS (Rao et al., 1993), BB1 (Hayes-Roth et al., 1995), andIRMA (Pollack, 1992) have so far focused on individual agent's
exible behaviors via mech-anisms such as commitments and reactive plans. Such architectural mechanisms need to beenhanced for
exible teamwork. In particular, an explicit representation of mutual beliefs,reactive team plans and team goals is essential. Additional types of commitments, suitablefor a team context, may need to be embodied in the architectures as well. Without sucharchitectural moorings, agents are unable to exploit general models of teamwork, and reasonabout communication and coordination. This view concurs with Grosz (1996), who statesthat \capabilities for teamwork cannot be patched on, but must be designed in from thestart".Our operationalization of STEAM is based on enhancements to the Soar architecture(Newell, 1990), plus a set of about 300 domain-independent Soar rules. Three di�erentteams have been developed based on this operationalization of STEAM. These teams havea complex structure of team-subteam hierarchies, and operate in complex environments| in fact, two of them operate in a commercially-developed simulation environment fortraining. This article presents detailed experimental results from these teams, illustratingthe bene�ts of STEAM in their development.STEAM is among just a very few implemented general models of teamwork. Othermodels include Jennings' joint responsibility framework in the GRATE* system (Jennings,1995) (based on Joint Intentions theory), and Rich and Sidner's COLLAGEN (Rich & Sid-ner, 1997) (based on the SharedPlans theory), that both operate in complex domains. WhileSection 7 will discuss these in greater detail, STEAM signi�cantly di�ers from both theseframeworks, via its focus on a di�erent (and arguably wider) set of teamwork capabilitiesthat arise in domains with teams of more than two-three agents, with more complex teamorganizational hierarchies, and with practical emphasis on communication costs.85

TambeThe rest of the article begins with a concrete motivation for our research via a descriptionof key teamwork problems in real-world domains (Section 2). Section 3 discusses theories ofteamwork and sketches their implications for STEAM. Section 4 next describes STEAM, ourimplemented model of teamwork. Section 5 discusses STEAM's selective communication.Section 6 presents a detailed experimental evaluation. Section 7 discusses related work.Finally, Section 8 presents summary and future work.2. Illustrative Domains and MotivationsThis investigation focuses on three separate domains. Two of the domains are based on areal-world distributed, interactive simulator commercially developed for military training(Calder et al., 1993). The simulator enables | via networking of several computers |creation of large-scale, 3D synthetic battle�elds, where humans, as well as hundreds or eventhousands of intelligent and semi-intelligent agents can co-participate (Tambe et al., 1995).The �rst domain, Attack (Figure 1), involves pilot agents for a company of (up to eight)synthetic attack helicopters. The company starts at the home-base, where the commanderpilot agent �rst sends orders and instructions to the company members. The companyprocesses these orders and then begins
ying towards their speci�ed battle position, i.e.,the area from which the company will attack the enemy. While enroute to the battle-position, depending on the orders, the company members may
y together or dynamicallysplit into pre-determined subteams. Once the company reaches a holding point, it halts.One or two scout helicopters
y forward and �rst scout the battle position. Based oncommunication from the scouts, other company members
y forward to the battle position.Here, individual pilots repeatedly mask(hide) their helicopters and unmask to shoot missilesat enemy targets. Once the attack completes, the helicopters regroup and return to theirhome-base. While enroute to the home-base (or initially towards the battle-position), ifany company member spots enemy vehicles posing a threat to the company, it alerts others.The company then evades and bypasses the enemy vehicles, while also protecting itselfusing guns. When the company returns safely to home-base, it rearms and refuels, readyingitself for the next mission. An overview of the overall research and development e�ort inthis domain, simulation infrastructure, milestones, and agent behaviors is presented in (Hillet al., 1997).
HOLDING
POINT

BATTLE
POSITION

RIDGE

ENEMY
VEHICLES

HOME
BASE Figure 1: Attack domain: company
ying in subteamsIn the second domain, Transport (Figure 2), synthetic transport helicopters protectedby escort helicopters
y synthetic troops to land. In a typical mission, two or four escorthelicopters and four to twelve transport helicopters take o� from separate ships at sea torendezvous at a link-up point. The escorts then provide a protective cover to the transporthelicopters during the entire
ight to and from their pre-speci�ed landing zone (where the86

Towards Flexible Teamworksynthetic troops dismount). This domain may involve teams of up to sixteen synthetic pilotagents (the largest team we have encountered); although Figure 2 shows twelve.
LANDING ZONE

LAND

SEA

TRANSPORTS

ESCORT

ESCORT
TRANSPORTS

ESCORT

ESCORTFigure 2: Transport domain with synthetic escort and transport helicopters.Our third domain is RoboCup synthetic soccer (Kitano et al., 1995). RoboCup isan international soccer tournament for robots and synthetic agents, aimed at promotingresearch in multi-agent systems. In the synthetic agent track, over 30 teams will participatein the �rst RoboCup'97 tournament at IJCAI'97 in Japan. The snapshot in Figure 3 showstwo competing teams: CMUnited (Stone & Veloso, 1996) versus our ISI team.2The Attack domain is illustrative of the teamwork challenges. In our initial, pre-STEAMimplementation, the helicopter pilot agents were developed in the Soar integrated agent-architecture (Newell, 1990; Rosenbloom et al., 1991). Each pilot agent was based on aseparate copy of Soar. For each such pilot, an operator hierarchy was de�ned. Figure4 shows a portion of this hierarchy (Tambe, Schwamb, & Rosenbloom, 1995). Operatorsare very similar to reactive plans commonly used in other agent architectures, such asthe architectures described in Section 1. Each operator consists of (i) precondition rulesfor selection; (ii) rules for application (a complex operator subgoals); and (iii) rules fortermination. At any one point, only one path through this hierarchy is active, i.e., it governsan individual's behavior. For teamwork among individuals, domain-speci�c coordinationplans were added, as commonly done in other such e�orts in this type of domain (Rajput &Karr, 1995; Tidhar, Selvestrel, & Heinze, 1995; Laird, Jones, & Nielsen, 1994; Coradeschi,1997), including our own (Tambe et al., 1995). For instance, after scouting the battleposition, a scout executes a plan to inform those waiting behind that the battle position isscouted (not shown in Figure 4).Initially, with two-three pilot agents and few enemy vehicles, limited behaviors and con-trolled agent interaction, carefully preplanned coordination was adequate to demonstratedesired behaviors. However, as the numbers of agents and vehicles increased, their behav-iors were enriched, and domain experts (human pilots) began to specify complex missions,signi�cant numbers of unanticipated agent interactions surfaced. Faced with the full brunt2. Since March 1997, a team of graduate students at the Information Sciences Institute (ISI) has joinedin in further research and maintenance of the ISI team. While the author continues to be responsiblefor the teamwork in the player agents, others have made signi�cant contributions to individual agentbehaviors. 87

Tambe

Figure 3: The Robocup synthetic soccer domain.
High
level

Low
level

Contour
NOE

Mask

Select−
Mask

Unmask

Employ−missilePopup
Dip

Engage

Employ
weapons

Fly−flight−plan

Select
point

Select
route

Fly
cntrl
route

Goto
new−mask
location

Initialize
hover

EXECUTE−MISSION

Maintain
masked
position

Prepare−to
return−to−base

return
to
control
point

............

Initialize
hoverFigure 4: Attack domain: Portion of a pilot agent's operator hierarchy.of the uncertainties in this complex, dynamic environment, the carefully hand-coded, pre-planned coordination led to a variety of teamwork failures in the various demonstrationsand exercises in 1995-96. Figure 5 lists a small sample of the teamwork failures, roughly inthe order they were encountered.One approach to address these failures is a further addition of domain-speci�c coordi-nation plans; and indeed, this was the �rst approach we attempted. However, there areseveral di�culties. First, there is no overarching framework that would enable anticipationof teamwork failures; the teamwork failures just appear to arise unexpectedly. As a result,88

Towards Flexible Teamwork1. Upon abnormally terminating engagement with the enemy, the company commander returnedto home base alone, abandoning members of its own company at the battle position.2. Upon reaching the holding area, the company waited, while a single scout started
yingforward. Unfortunately, the scout unexpectedly crashed into a hillside; now, the rest of thecompany just waited inde�nitely for the scout's scouting message.3. One pilot agent unexpectedly processed its initial orders before others. It then
ew towardsthe battle position, while its teammates were left behind at the home base.4. Only a scout made it to the holding area (all other helicopters crashed or got shot down);but the scout scouted the battle position anyhow, and waited inde�nitely for its non-existentcompany to move forward.5. When the initial orders unexpectedly failed to allocate the scouting role to team members,the company members waited inde�nitely when they reached the holding point.6. Instructions sent by the commander pilot agent to some company members were lost, becausethe commander unexpectedly sent them while the members were busy with other tasks. Hence,these members were unable to select appropriate actions.7. While evading an enemy vehicle encountered enroute, one helicopter pilot agent unexpectedlydestroyed the vehicle via gun�re. However, this pilot agent did not inform others; and thusan unnecessary, circuitous bypass route was planned.8. In an extreme case, when all company members ran out of ammunition, the company failedto infer that their mission could not continue.9. Two separate companies of helicopters were accidentally allowed to use the same radio chan-nels, leading to interference and loss of an initial message from one of the company commanders| its company hung inde�nitely.Figure 5: Some illustrative examples of breakdown in teamwork.coordination plans have to be added on a case-by-case basis | a di�cult process, since fail-ures have to be �rst encountered in actual runs. Furthermore, as the system continues toscale up to increasingly complex teamwork scenarios, such failures continually recur. Thus,a large number of special case coordination plans are potentially necessary. Finally, it isdi�cult to reuse such plans in other domains.Given these di�culties, we have pursued an alternative approach | provide agentswith a general model of teamwork. The agents can then themselves reason about their co-ordination/communication responsibilities as well as anticipate and avoid (or recover from)teamwork failures. Such an approach also requires an explicit representation of agents' teamgoals and team plans; for that is the very basis for reasoning about teamwork. Unfortu-nately, the agent's operator hierarchy shown in Figure 4 represents its own activities. Thus,although the agent is provided information about its teammates, their participation in par-ticular activities is not explicit (but rather, implicit in the coordination plans). As a result,the agent remains ignorant as to which operators truly involve teamwork and the teammatesinvolved in them. For instance, execute-mission and engage are in reality team activitiesinvolving the entire company; while mask and unmask involve no teamwork. Furthermore,in some team tasks only subteams are involved, adding to the di�culty of relying on implicit89

Tamberepresentations since the teammates involved in team tasks vary. Even more problematicfor implicit representation are team tasks where the team members perform non-identicalactivities. For instance, consider team tasks such as travelling overwatch (where one sub-team travels while the other overwatches), or wait while battle position scouted (where scoutsscout the battle position while the non-scouts wait). In such tasks, no single agent performsthe team activity, and yet it is important to represent and reason about the combined ac-tivity that results. This di�culty in representation is not speci�c to the Soar architecture,but the entire family of architectures mentioned in Section 1.More importantly, concomitant with the explicit team goals and plans are certain com-mitments and coordination responsibilities towards the team, based on the general modelof teamwork employed. In the absence of both the explicit representation of team goals andplans, as well as commitments and responsibilities they engender, agents are often forcedto rely on the problematic domain-speci�c coordination plans, leading to aforementionedteamwork failures.3. Models of TeamworkSeveral teamwork theories have been proposed in the literature (Cohen & Levesque, 1991b;Grosz & Kraus, 1996; Jennings, 1995; Kinny et al., 1992). The theories are not intendedto be directly implemented (say via a theorem prover), but to be used as a speci�cationfor agent design. They often prescribe general, rather than domain-speci�c, reasoningprocesses or heuristics for teamwork. Di�erent types of operational teamwork models couldpotentially emerge from these theories | the space of such models remains to be fullyexplored and understood. In developing STEAM, we have focused on the joint intentionstheory (Cohen & Levesque, 1991b; Levesque et al., 1990; Cohen & Levesque, 1991a), givenits detailed formal speci�cation and prescriptive power. The joint intentions theory isbrie
y reviewed in Section 3.1. STEAM ultimately builds on joint intentions in a way thatparallels the SharedPlan theory (Grosz & Sidner, 1990; Grosz, 1996; Grosz & Kraus, 1996).The SharedPlans theory is very brie
y reviewed in Section 3.2. Section 3.3 sketches theimplications of the theories for STEAM. It outlines the rationale for the design decisionsin STEAM | in the process, it brie
y compares the capabilities provided by the jointintentions and SharedPlan theories. STEAM is later presented in detail in Sections 4 and5.3.1 Joint Intentions TheoryThe joint intentions framework (Cohen & Levesque, 1991b, 1991a; Levesque et al., 1990)focuses on a team's joint mental state, called a joint intention. A team � jointly intends ateam action if team members are jointly committed to completing that team action, whilemutually believing that they were doing it. A joint commitment in turn is de�ned as a jointpersistent goal (JPG). The team �'s JPG to achieve p, where p stands for completion of ateam action, is denoted JPG(�, p, q). q is an irrelevance clause | as described below, itenables a team to drop the JPG should they mutually believe q to be false. JPG(�, p, q)holds i� three conditions are satis�ed:1. All team members mutually believe that p is currently false.90

Towards Flexible Teamwork2. All team members have p as their mutual goal, i.e, they mutually know that they want p tobe eventually true.3. All team members mutually believe that until p is mutually known to be achieved, unachiev-able or irrelevant they mutually believe that they each hold p as a weak goal (WAG).3 WAG(�,p, �, q), where � is a team member in �, implies that one of the following holds:� � believes p is currently false and wants it to be eventually true, i.e., p is a normalachievement goal); or� Having privately discovered p to be achieved, unachievable or irrelevant (because q isfalse), � has committed to having this private belief become �'s mutual belief.JPG provides a basic change in plan expressiveness, since it builds on a team task p.Furthermore, a JPG guarantees that team members cannot decommit until p is mutuallybelieved to be achieved, unachievable or irrelevant. Basically, JPG(�, p, q) requires teammembers to each hold p as a weak achievement goal (WAG). WAG(�, p, �, q), where � isa team member in �, requires � to adopt p as its goal if it believes p to be false. However,should � privately believe that p has terminated | i.e., p is either achieved, unachievableor irrelevant | JPG(�,p, q) is dissolved, but � is left with a commitment to have thisbelief become �'s mutual belief. To establish mutual belief, � must typically communicatewith its teammates about the status of the team task p.The commitment to attain mutual belief in the termination of p is a key aspect of aJPG. This commitment ensures that team members stay updated about the status of teamactivities, and thus do not unnecessarily face risks or waste their time. For instance, considerthe �rst failure presented in Section 5, where the commander returned to home base alone,abandoning its teammates to face a risky situation. Such failures can be avoided given thecommitments in a JPG. In our example, the commander would have communicated withits teammates to establish mutual belief about the termination of the engagement.To enter into a joint commitment (JPG) in the �rst place, all team members mustestablish appropriate mutual beliefs and commitments. An explicit exchange of requestand con�rm speech acts is one way that a team can achieve appropriate mutual beliefsand commitments (Smith & Cohen, 1996). Since this exchange leads to establishment ofa JPG, we will refer to it in the following as the establish commitments protocol. The keyto this protocol is a persistent weak achievement goal (PWAG). PWAG(�i, p, �) denotescommitment of a team member �i to its team task p prior to the team's establishing aJPG.4 � initiates the protocol while its teammates in �, �1,.,�i..�n, respond:1. � executes a Request(�, �, p), cast as an Attempt(�, �,). That is, �'s ultimate goal � isto both achieve p, and have all �i adopt PWAG(�i, p, �). However, � is minimally committedto , where denotes achieving mutual belief in � that � has the PWAG to achieve �. Withthis Request, � adopts the PWAG.2. Each �i responds via con�rm or refuse. Con�rm, also an Attempt, informs others that�i has the PWAG to achieve p.3. WAG was originally called WG in (Levesque et al., 1990), but later termed WAG in (Smith & Cohen,1996).4. The PWAG also includes an irrelevance clause q, but we will not include it here to simplify the followingdescription. 91

Tambe3. If 8 i, �i con�rm, JPG(�, p) is formed.In establishing a JPG, this protocol synchronizes �. In particular, with this protocol,members simultaneously enter into a joint commitment towards a current team activityp. While the JPG is the end product of the establish commitment protocol, importantbehavioral constraints are enforced during execution via the PWAGs. In step 1, the adop-tion of a PWAG implies that if after requesting, � privately believes that p is achieved,unachievable or irrelevant, it must inform its teammates. Furthermore, if � believes thatthe minimal commitment is not achieved, it must retry (e.g., if a message did not getthrough it must retransmit the message). Step 2 similarly constrains team members �i toinform others about p, and to rebroadcast. As step 3 indicates, all team members mustconsent, via con�rmation, to the establishment of a JPG. A JPG is not established if anyone agent refuses. Negotiations among team members may ensue in such a case; however,that remains an open issue for future work.3.2 Shared Plans TheoryIn contrast with joint intentions, the concept of SharedPlans (SP) is not based on a jointmental attitude (Grosz, 1996; Grosz & Kraus, 1996; Grosz & Sidner, 1990). Instead, SPrelies on a novel intentional attitude, intending that, which is similar to an agent's normalintention to do an action. However, an individual agent's intention that is directed towardsits collaborator's actions or towards a group's joint action. Intention that is de�ned via aset of axioms that guide an individual to take actions, including communicative actions,that enable or facilitate its teammates, subteam or team to perform assigned tasks (Grosz& Kraus, 1996).An SP is either a full SharedPlan (FSP) or a partial SharedPlan(PSP). We will beginwith a de�nition of an FSP, and then follow with brief remarks about a PSP. An FSP todo � represents a situation where every aspect of a joint activity � is fully determined.This includes mutual belief and agreement in the complete recipe R� to do �. R� isa speci�cation of a set of actions �i, which when executed under speci�ed constraints,constitutes performance of �. FSP(P, GR, �, Tp, T�, R�) denotes a group GR's plan Pat time Tp to do action � at time T� using recipe R�. Very brie
y, FSP(P, GR, �, Tp,T�, R�) holds i� the following conditions are satis�ed:51. All members of group GR mutually believe that they each intend that the propositionDo(GR,�, T�) holds i.e., that GR does � over time T�.2. All members of GR mutually believe that R� is the recipe for �.3. For each step �i in R�:� A subgroup GRk (GRk � GR) has an FSP for �i, using recipe R�i. (GRk may only bean individual, in which case, it must have a full individual plan, an analogue of FSP forindividuals.)� Other members of GR believe that there exists a recipe such that GRk can bring about�i and have an FSP for �i (but other members may not know R�i).5. For the sake of brevity, a context clause C� is deleted from this de�nition. Also, in this article, we willnot address the contracting case discussed in (Grosz & Kraus, 1996).92

Towards Flexible Teamwork� Other members of GR intend that GRk can bring about �i using some recipe.The SharedPlan theory aspires to describe the entire web of a team's intentions andbeliefs when engaged in teamwork. In this endeavor, an FSP represents a limiting case;usually, when engaged in a team activity, a team only has a partial SharedPlan (PSP). ThePSP is a snapshot of the team's mental state in a particular situation in their teamwork,and further communication and planning is often used to ful�ll the conditions of an FSP(although, in dynamic domains, the team may never actually form an FSP). We focus onthree relevant arenas in which partiality may exist in a PSP. First, the recipe R� may beonly partially speci�ed. Certainly, in dynamic environments, such as the ones of interestin our work, recipes could be considered to evolve over time, as teams reactively decidethe next step based both on the context and the current situation. For instance, in theAttack domain, the helicopter company may react to enemy vehicles seen enroute, thusevolving their recipe. According to SP theory, team member must arrive at mutual beliefin their next step(s) �i. For each step �i in the recipe, the relevant subgroup must form aSharedPlan.Second, the team's task allocation may be unreconciled, e.g., the agent or group toperform particular task may not be determined. In this situation, team members intendthat there exist some individual or subgroup to do the task. Among actions considered asa result of the intending that, individuals may volunteer to perform the unreconciled task,or persuade/order others to take over the task.Third, individuals or subgroups may not have attained appropriate mutual beliefs forforming an FSP, leading to communication within the team. Communication may alsoarise due to agents' \intention that" attitude both towards their team goal and towardsteammates' activities. For instance, a teammember's intention that its team do an action �i,and its belief that communication of some particular information will enable the team to do�i, will lead it to communicate that information to the team (as long as such communicationdoes not con
ict with previous commitments).3.3 The In
uence of Teamwork Theories on STEAMIn STEAM, joint intentions are used as building blocks of teamwork. Several advantagesaccrue due to this use. First, the commitments in a joint intention begin to provide aprincipled framework for reasoning about coordination and communication in teamwork.Thus, this framework begins to address teamwork failures such as those in Figure 5. Second,the joint commitments in joint intentions provide guidance for monitoring and maintenanceof a team activity, i.e., agents should monitor conditions that cause the team activity tobe achieved or unachievable or irrelevant, and maintain the team activity at least until oneof these conditions arises. Third, a joint intention leads to an explicit representation of ateam activity, and thus facilitates reasoning about teamwork. In particular, as shown later,agents can reason about the relationship between their team activity and an individual's orsubteam's contributions to it.However, a single joint intention for a high-level team goal � is insu�cient to provideall of these advantages. To guarantee coherent teamwork, four additional issues must beaddressed. Here, the SharedPlans theory helps in analysis of STEAM's approach, and inone case, STEAM directly borrows from SharedPlans. A key observation is that analogous93

Tambeto partial SharedPlans, STEAM builds up snapshots of the team's mental state, but viajoint intentions.The �rst issue involves coherence in teamwork| team members must pursue a commonsolution path in service of their joint intention for the high-level team goal �. Indeed, asJennings (1995) observes, without such a constraint, team members could pursue alternativesolution paths that cancel each other, so no progress is made towards �. The SharedPlantheory addresses such coherence by stepping beyond the team members' \intentions that"towards �. In addition, SharedPlans mandates mutual belief in a common recipe (even ifpartial) and SharedPlans for individual steps �i in the common recipe, thus generating arecursive hierarchy to ensure coherence.STEAM's approach here parallels that of SharedPlans; however, it builds on joint inten-tions rather than SharedPlans. That is, STEAM uses joint intentions as a building blockto hierarchically build up the mental attitude of individual team members, and ensure thatteam members pursue a common solution path. In particular, as mentioned earlier, indynamic domains, given reactive plans, a recipe R� may evolve step by step during execu-tion. In STEAM, as the recipe evolves, if a step �i requires execution by the entire team,STEAM requires that the entire team agree on �i, and form joint intentions to execute it.To execute a substep of �i, other joint intentions are formed, leading to a hierarchy. Duringthe expansion of this hierarchy, if a step involves only a subteam then that subteam mustform a joint intention to perform that step. If only an individual is involved in the step, itmust form an intention to do that step. In general, the resulting intention hierarchy evolvesdynamically, depending on the situations the team encounters.Second, Grosz and Kraus (1996) discuss the tradeo�s in the amount of information teammembers must maintain about teammates' activities, particularly when a step �i involvesonly a subteam, or an individual. Grosz and Kraus address this tradeo� in SharedPlansas shown in step 3b in Section 3.2, requiring that team members know only that a recipeexists to enable a teammate(s) to perform its actions, but not the details of the recipe.Similarly, STEAM requires that in case a step �i is performed by a subteam (or just anindividual team member), remaining team members track the subteam's joint intention (orthe relevant team member's intention) to perform the step. This intention tracking neednot involve detailed plan recognition, e.g., as in our previous work (Tambe, 1995, 1996).Instead, a team member must only be able to infer that its teammates intend (or cannotor do not intend) to execute the step �i. This minimal constraint is necessary becauseotherwise, team members may be unable to monitor the current status of the team activity,e.g., that their team activity has fallen apart. In addition, some information about thedependency relationship among team members' actions is useful in monitoring, as discussedin Section 4.2.A third issue is the analogue of the \unreconciled" case in SharedPlans. STEAM formsa joint intention to replan whenever a team's joint intention for a step �i is seen to beunachievable. Replanning may lead the team to �rst analyze the cause of the initial un-achievability. Among other possibilities, the cause could be the absence of assignment ofa subtask to a subteam or individual, or the failure of the relevant individual or subteamin performing the subtask. In such a case, each team member acts to determine the ap-propriate agent or subteam for performing the relevant task. As a result, an agent canvolunteer itself, or suggest to other individuals or subteams to perform the unassigned task.94

Towards Flexible TeamworkOf course, the unachievability may be the result of other causes besides lack of assignment;replanning must then address this other cause (further discussion in Section 4.2).A �nal issue is generalization of STEAM's communication capabilities via a hybrid ap-proach that combines the prescriptions of the joint intentions approach with some aspectsof SharedPlans. A key observation based on (Grosz & Kraus, 1996) is that the communica-tion in joint intentions could potentially be arrived at in SharedPlans via axioms de�ningintention that. For instance, consider that a team member has obtained private informa-tion about the achievement of the team's current team action �1. In joint intentions, thisteam member will seek to attain mutual belief in the achievement of �1, leading to com-munication. In contrast, in SharedPlans, the team member's communication would arisebecause: (i) it intends that the team do some action �2 which follows �1, and (ii) the teamcannot do �2 without all team members being aware of achievement of �1. Thus, further�rst principles reasoning, based on interrelationships among actions, is required to deriverelevant communication in SharedPlans; but in this instance, joint intentions provide forsuch communication without the reasoning.In general, if the team's termination of one action �1 is essential for the team to performsome following action �2, the prescription in joint intentions | to attain mutual belief intermination of team actions | is adequate for relevant communication. However, in somecases, additional communication based on speci�c information-dependency relationshipsamong actions is also essential. For instance, the scouts in the Attack domain not onlyinform all company members of completion of their scouting activity (so the company canmove forward), but also the precise coordinates of enemy location to enable the companyto occupy good attacking positions (information-dependency). Such communication couldalso be potentially derived from the axioms of intention that in SharedPlans, but at thecost of further reasoning.STEAM does not rely on the �rst-principles reasoning from intention that for its commu-nication, relying on the prescriptions of joint intentions instead. However, STEAM exploitsexplicit declaration of information-dependency relationships among actions, for additionalcommunication. Thus, when communicating the termination of a team action �i, STEAMchecks for any inferred or declared information-dependency relationships with any followingaction �j . The information relevant for �j is also communicated when attaining mutualbelief in the termination of �i. As a result, based on the speci�c information-dependencyrelationship speci�ed, di�erent types of information are communicated, when terminating�i. Thus, the scouts can communicate the location of enemy units when communicatingthe completion of their scouting { given the information-dependency relationship with theplanning of attacking positions. If no such relationship is speci�ed, or if other relationshipsare speci�ed, the scouts would communicate di�erent information.STEAM thus starts with joint intentions, but then builds up hierarchical structuresthat parallel the SharedPlans theory, particularly, partial SharedPlans. The result couldbe considered a hybrid model of teamwork, that borrows from the strengths of both jointintentions (formalization of commitments in building and maintaining joint intentions) andSharedPlans (detailed treatment of team's attitudes in complex tasks, as well as unrecon-ciled tasks). This is of course not the only possible hybrid. As mentioned earlier, furtherexploration in the space of teamwork models is clearly essential.95

Tambe4. STEAMSTEAM's basis is in executing hierarchical reactive plans, in common with architecturesmentioned in Section 1. The novel aspects of STEAM relate to its teamwork capabilities.The key novelty in STEAM is team operators (reactive team plans). When agents developedin STEAM select a team operator for execution, they instantiate a team's joint intentions.Team operators explicitly express a team's joint activities, unlike the regular \individualoperators" which express an agent's own activities. In the hierarchy in Figure 6, operatorsshown in [] such as [Engage] are team operators, while others are individual operators.Team activities such as travelling overwatch or waiting while battle position scouted are noweasily expressed as team operators, as shown in Figure 6, with activities of individuals orsubteams expressed as children of these operators. (Team operators marked with *" aretypically executed by subteams in this domain.)
Mask

Select−
Mask

Unmask

Dip

Engage

Employ
weapons

Fly−flight−plan

EXECUTE−MISSION

Travelling

Fly−control
route

[]

[]

][[
[]

][

Initialize
hover

Maintain
position

Goto−new
mask−location

]

High
level

Low
level

Contour NOE

............

Travelling
Overwatch[]

Travelling
Lead

Travelling
 Cover[[]]

High
level

Low
level

Contour NOE

............

Wait−while−
battle−position−scouted

Scout
forward[] wait−for

scouting
............

**

*
............

Employ−
missile

............

popup

[]Mask &
Observe

............
*

............

Figure 6: Attack domain: Portion of modi�ed operator hierarchy with team operators.As with individual operators, team operators also consist of: (i) precondition rules; (ii)application rules; and (iii) termination rules. Whether an operator is a team operator oran individual operator is dynamically determined. In particular, when an agent �i invokesan operator for execution, the operator is annotated with an \executing agent", which maybe dynamically determined to be an individual, or subteam, or a team. If the \executingagent" is a particular team or subteam, the operator is determined to be a team operator.If the \executing agent" is the agent �i itself, then an individual operator results. Thus,precise team executing a team operator is not compiled in, but can be
exibly determinedat execution time. Figure 6 thus illustrates the con�guration of operators that is typical inthe Attack domain.Given an arbitrary team operator OP, all team members must simultaneously select OPto establish a joint intention (joint intention for OP will be denoted as [OP]�). In Figure6, at the highest level, the team forms a joint intention for [execute-mission]� . In service ofthis joint intention, the team may form a joint intention [engage]�. In service of [engage]�,individual team members all select individual operators to employ-weapons, thus formingindividual intentions. An entire hierarchy of joint and individual intentions is thus formedwhen an agent participates in teamwork. 96

Towards Flexible TeamworkA STEAM-based agent maintains its own private state for the application of its indi-vidual operators; and a \team state" to apply team operators. A team state is the agent's(abstract) model of the team's mutual beliefs about the world, e.g., in the Transport do-main, the team state includes the coordinates of the landing zone. The team state is usuallyinitialized with information about the team, such as the team members in the team, possiblesubteams, available communication channels for the team, the pre-determined team leaderand so forth. STEAM can also maintain subteam states for subteam participation. Thereis of course no shared memory, and thus each team member maintains its own copy of theteam state, and any subteam states for subteams it participates in. To preserve the con-sistency of a (sub)team state, one key restriction is imposed for modi�cations to it | onlythe team operators representing that (sub)team's joint intentions can modify it. Thus, thestate corresponding to a subteam
 can only be modi�ed in the context of a joint intention[OP]
.Thus, at minimum, STEAM requires the following modi�cations to the architecturessuch as Soar, RAP, PRS and others mentioned in Section 1 to support teamwork: (i) gen-eralization of operators (reactive plans) to represent team operators (reactive team plans);(ii) representation of team and/or subteam states, and (iii) restrictions on team state mod-i�cations (only via appropriate team operators). While these team operators and teamstates are at the foundation of STEAM, as a general model of teamwork, STEAM alsoinvolves agents' commitments in teamwork, monitoring and replanning capabilities, andmore. Hard-wiring this entire teamwork model within the agent architectures could po-tentially lead to unnecessary rigidity in agent behaviors. Instead, the STEAM model ismaintained as a domain-independent, operational module (e.g., in the form of rules) toguide agents' behaviors in teamwork. In the future, appropriate generalizations of thesecapabilities could begin to be integrated in agent architectures.The following subsections now discuss key aspects of STEAM in detail. Section 4.1discusses team operator execution in STEAM. Section 4.2 describes STEAM's capabilitiesfor monitoring and replanning. Detailed pseudo-code for executing STEAM appears inAppendix A.4.1 Team Operator ExecutionTo execute a team operator, agents must �rst establish it as a joint intention. Thus, whena member selects a team operator for execution, it �rst executes the establish commitmentsprotocol described below (introduced in Section 3.1):1. Team leader broadcasts a message to the team � to establish PWAG to operator OP. Leadernow establishes PWAG. If [OP]� not established within time limit, repeat broadcast.2. Subordinates �i in the team wait until they receive leader's message. Then, turn by turn,broadcast to � establishment of PWAG for OP; and establish PWAG.3. Wait until 8 �i, �i establish PWAG for OP; establish [OP]�.With this establish commitment protocol, agents avoid problems of the type where justone member
ies o� to the battle position (item 3, Figure 5). In particular, a team membercannot begin executing the mission without �rst establishing a joint intention [execute-mission]�. During execution of the establish commitment protocol, PWAGs address several97

Tambecontingencies | if an OP is believed achieved, unachievable or irrelevant prior to [OP]�,agents inform teammates. Other contingencies are also addressed, e.g., even if a subordinateinitially disagrees with the leader, it will conform to the leader's broadcasted choice ofoperators. In general, resolving disagreements among team members via negotiation is asigni�cant research problem in its own right (Chu-Carroll & Carberry, 1996), which is notaddressed in STEAM. Instead, currently STEAM relies on a team leader to initiate therequest, and thus resolve disagreements.After establishing a joint intention [OP]�, a team operator can only be terminated byupdating the team state (mutual beliefs). This restriction on team operator terminationavoids critical communication failures of the type where the commander returned to home-base alone | instead, agents must now inform teammates when terminating team operators.Furthermore, with each team operator, multiple termination conditions may be speci�ed,i.e., conditions that make the operator achieved, unachievable or irrelevant. Now, if anagent's private state contains a belief that matches with a team operator's terminationcondition, and such a belief is absent in its team state, then it creates a communicativegoal, i.e., a communication operator. This operator broadcasts the belief to the team,updating the team state, and then terminating the team operator.As mentioned earlier, during teamwork, an agent may be a participant in several jointintentions, some involving the entire team, some only a subteam. Thus, an agent may beparticipating in a joint intention involving the entire company, such as [execute-mission]�,as well as one involving just a subteam, such as [mask-and-observe]
. When the termina-tion condition of a speci�c team operator is satis�ed, a STEAM-based agent will aim toattain mutual belief in only the relevant subteam or team, e.g., facts relevant to [mask-and-observe]
 may only be communicated among
.During the broadcast of the communication message, STEAM checks for information-dependency relationships with any following tasks; if one exists, relevant information isextracted from the current world state and broadcast as well. The information-dependencyrelationship may be speci�ed individually per speci�c termination condition. For instance,suppose a company member �4 sees some enemy tanks on the route while
ying to homebase. It recognizes that this fact causes the team's current joint intention [
y-
ight-plan]�to be unachievable. If this fact is absent in the team state, then a communication operatoris executed, resulting in a message broadcast indicating termination of the
y-
ight-planteam operator. In addition, STEAM uses the explicitly speci�ed information-dependencyrelationship with a following operator evade to extract the x,y location and direction of thetank. As a result, the following communication is generated:�4 terminate-JPG
y-
ight-plan evade tank elaborations 61000 41000 right.This message identi�es the speaker (�4), and informs team members to terminate [
y-
ight-plan]� in order to evade a tank. Thus, �4 informs others; it does not evade tankson its own. The part of �4's message that follows the key word elaborations is due to theinformation-dependency relationship. This information | the x,y location and direction ofthe tank | enables team members to evade appropriately. Separating out the information-98

Towards Flexible Teamworkdependency component in this fashion provides additional communication
exibility, asexplained earlier in Section 3.3.64.2 Monitoring and ReplanningOne major source of teamwork failures, as outlined in Section 2, is agents' inability tomonitor team performance. STEAM facilitates such monitoring by exploiting its explicitrepresentation of team operators. In particular, STEAM allows an explicit speci�cation ofmonitoring conditions to determine achievement, unachievability or irrelevancy of team op-erators. In addition, STEAM facilitates explicit speci�cation of the relationship between ateam operator and individuals' or subteam's contributions to it. STEAM uses these speci�-cations to infer the achievement or unachievability of a team operator. These speci�cationsare based on the notion of a role. A role is an abstract speci�cation of the set of activitiesan individual or a subteam undertakes in service of the team's overall activity. Thus, a roleconstrains a team member �i (or a subteam
) to some suboperator(s) op�i of the teamoperator [OP]�. For instance, suppose a subteam
 is assigned the role of a scout in theAttack domain. This role constrains the subteam
 to execute the suboperator(s) to scoutthe battle position in service of the overall team operator wait-while-battle-position-scouted(see Figure 6).Based on the notion of roles, three primitive role-relationships (i) AND-combination(ii) OR-combination and (iii) Role-dependency can currently be speci�ed in STEAM. Theseprimitive role-relationships | called role-monitoring constraints | imply the followingrelationships between a team operator [OP] and its suboperators:1. AND-combination: [OP]� () Vni=1 op�i2. OR-combination: [OP]� () Wni=1 op�i3. Role dependency: op�i =) op�j (op�i dependent on op�j)These primitive role-monitoring constraints may be combined, to specify more com-plex relationships. For instance, for three agents �i, �j and �k, with roles op�i, op�j andop�k, a combination AND-OR role relationship can be speci�ed as ((op�i W op� j) V op�k).STEAM-based agents can now infer that the role non-performance of �k (:op�k) makesOP� unachievable; but the role non-performance of just one of �i or �j is not critical toOP�. Similarly, for two agents �i and �j, both an OR-combination plus role-dependencymay be speci�ed as ((op�i W op� j) V (op�i =) op�j)). Role monitoring constraints maybe speci�ed in terms of individuals' roles, or subteam's roles.The mechanisms for tracking teammates' role performance or inferring their role non-performance is partly domain dependent. As mentioned in Section 3.3, in some domains,an agent need not know its teammate's detailed plan or track that in detail, but may relyon high-level observations. For instance, in the Attack domain, if a helicopter is destroyed,team members infer role non-performance for the a�ected team member. In other cases,such as the RoboCup Soccer domain, no such high-level indication is available. Instead,6. In the future, to enable STEAM-based agents to communicate with non-STEAM-based agents, a genericcommunication language may be necessary. While generating natural language is currently outside thescope of STEAM, STEAM does not preclude such a possibility. Alternatively, an arti�cial communicationlanguage, such as (Sidner, 1994) may be used. 99

Tambeagents need to obtain role performance information via agent tracking (plan recognition)(Tambe, 1995, 1996), e.g., is a player agent in the RoboCup simulation dashing ahead toreceive a pass? Communication may be another source of information regarding role non-performance. First, as discussed below, STEAM leads individuals to announce role-changesto the team, and thus other team members indirectly infer role-performance information.Second, as discussed in Section 5.1, STEAM may lead individuals to directly communicatetheir role non-performance. Additionally, a few domain-independent mechanisms for infer-ring role performance are provided in STEAM. Thus, role non-performance is inferred if noindividual or subteam is speci�ed for performance of a role (as in item 5, Figure 5). Also,if all individuals within a subteam are found incapable of performing their roles, STEAMinfers the entire subteam cannot perform its role.If, based on the role-monitoring constraints and the role performance information aboutteammates, STEAM infers team operator [OP]� to be unachievable, it invokes [repair]� forreplanning. By casting repair as a team operator, agents automatically ensure the entireteam's commitment for their replanning (the entire team is a�ected if [OP]� is unachiev-able). Furthermore, agents inform teammates not only about possible repair results, butalso repair unachievability or irrelevancy. The actions taken in service of [repair]� dependon the context. If [repair]� was invoked due to [OP]�'s domain-speci�c unachievabilityconditions, domain-speci�c repair is triggered. In contrast, if [repair]� was invoked due torole-monitoring constraint failures, STEAM leads each agent to �rst analyze the failure.The analysis may reveal a critical role failure | a single role failure causing the unachiev-ability of [OP]� | which may occur in an AND-combination if any agent or subteam failsin its role; or an OR-combination when all team members are role-dependent on a sin-gle individual or a single subteam. For instance, when agents are
ying in formation via[travelling]� (OR-combination), everyone is role-dependent on the lead helicopter. Thus,should the lead crash, a critical role failure occurs.The action taken in cases of a critical role failure is team recon�guration, to determinea team member, or subteam, to substitute for the critical role. As mentioned earlier, thissituation corresponds to the \unreconciled case" in SharedPlans, discussed in Section 3.2.The steps taken in STEAM in this case are as follows:1. Determine candidates for substitution: Each team member �rst matches it own capabilitiesor those of other agents or subteams with the requirements of the critical role. Matchingcurrently relies on domain-speci�c knowledge. Of course, agents or subteams that are thecause of the critical role failure cannot be candidates for substitution.2. Check for critical con
icting commitments: Once an agent determines possible candidate(s),including itself, it checks for con
icts with candidate's existing commitments to the team. Ifthese commitments are already critical, the candidate is eliminated from consideration. Forinstance, if the candidate is a participant in a team operator which is an AND-combination,its responsibilities to the team are already critical | even if it possesses relevant capabilities,it cannot take over the role in question. Similarly, the candidate is ruled out if all other teammembers are role-dependent on it.3. Announce role-substitution to the team: Candidate(s) not ruled out in step 2 can substitutefor the role. This could mean an individual volunteering itself, or a team leader volunteeringits subteam for the critical role. Since [repair]� is a team operator, and since role-substitutionimplies its achievement, any role-substitution is announced to �.100

Towards Flexible Teamwork4. Delete non-critical con
icting commitments: After assuming the new role in the team activity,the relevant individual or subteam members delete their old roles and old commitments.In the Attack domain, team members can follow the above procedure when recoveringfrom critical role failures such as item 5 in Figure 5. There, since a scouting subteam isnot speci�ed, and the relevant operator wait-while-battle-position-scouted involves an AND-combination of the scouting role with the non-scouts, a critical role failure occurs. Asubteam in the rest of the company is located to possess the capabilities of scouting. Theleader of this subteam determines that it can volunteer its subteam for scouting, and an-nounces this change in role to the rest of the team. Members of this subteam then deletecon
icting commitments. [wait-while-battle-position-scouted]� is now executed with thisnew role assignment. (Since such new role assignments are con�ned to the local context ofindividual team operators, and since step 2 explicitly checks for critical con
icts, they donot lead to any global side-e�ects.)The entire repair procedure above can invoked in the context of a subteam
, rather thanthe team �. In this case, [repair]
 will be invoked as a team operator. STEAM followsan identical repair procedure, in this case enabling individuals or sub-subteams to takeover particular critical roles. Furthermore, any repair communication here is automaticallyrestricted within
.In case the failure is a pure role dependency failure, only a single dependent agent �iis disabled from role performance (because op� i =) op�j). Here, �i must locate anotheragent �k such that op� i =) op�k . Role dependency failure could involve a subteam
iinstead of an individual; and the subteams engage in an identical repair.If failure type is all roles failure, no agent performs its role; this state is irreparable.In this situation, or in case no substitution is available for a critical role, [repair]� is itselfunachievable. Since the repair of [OP]� is itself unachievable, a complete failure is assumed,and [complete-failure]� is now invoked. For instance, in the Attack domain, completefailure implies returning to home base. By casting complete-failure as a team operator,STEAM ensures that team members will not execute such drastic actions without consultingteammates. If only a subteam
 or an individual �i encounters complete-failure, they inferinability to perform their roles in the team �'s on-going activity.5. STEAM: Selective CommunicationSTEAM agents communicate to establish and terminate team operators. Given the largenumber of team operators in a dynamic environment, this communication is a very sig-ni�cant overhead (as Section 6 shows empirically), or risk (e.g., in hostile environments).Therefore, STEAM integrates decision-theoretic communication selectivity. Here, STEAMtakes into consideration communication costs and bene�ts, as well as the likelihood that somerelevant information may be already mutually believed. While this pragmatic approach isa response to the constraints of real-world domains, it is not necessarily a violation of theprescriptions of the joint intentions framework. In particular, the joint intentions frame-work does not mandate communication, but rather a commitment to attain mutual belief.Via its decision-theoretic communication selectivity, STEAM attempts to follow the mostcost-e�ective method of attaining mutual belief relevant in joint intentions.101

TambeFigure 7 presents the decision tree for the decision to communicate a fact F, indicatingthe termination of [OP]�. Rewards and costs are measured to the team, not an individual.The two possible actions are NC (not communicate, cost 0) or C (communicate, cost Cc).If the action is NC, two outcomes are possible. With probability (1-�), F was commonlyknown anyway, and the team is rewarded B for terminating [OP]�. With probability � ,however, F was not known, and thus there is miscoordination in terminating [OP]� (e.g.,some agents come to know of F only later). Given a penalty Cmt for miscoordination, thereward reduces to B-Cmt. If the action is C, assuming reliable communication, F is known.
C
Cost: Cc

NC
Cost: 0

(1−)
Rewards

B

B(F known)

(F unknown)

Decision node

Chance node (F unknown)

(F known)

B − Cmt

1

0 B − CmtFigure 7: Decision tree for communication.EU(C), the expected utility of option C, is B-Cc . EU(NC) of option NC is B-�*Cmt.To maximize expected utility, an agent communicates i� EU(C) > EU(NC), i.e., i�:� � Cmt > CcThus, for instance, in the Attack domain, when
ying with high visibility, pilot agents donot inform others of achievement of waypoints on their route, since � is low (high likelihoodof common knowledge), and Cmt is low (low penalty). However, they inform others aboutenemy tanks on the route, since although � is low, Cmt is high. The communication costCc could vary depending on the situation as well, and team members may
exibly reduce(increase) communication if the cost increases (decreases) during their team activity. Inter-estingly, if only a single agent is left in a team, � drops to zero, and thus, no communicationis necessary.Expected utility maximization is also used for selectivity in the establish commitmentsprotocol. If
 is the probability of lack of joint commitments, and Cme the penalty forexecuting [OP]� without joint commitments from the team, then an agent communicatesi� EU(C) > EU(NC), i.e., i�:
 �Cme > Cc5.1 Further Communication GeneralizationFurther generalization in communication is required to handle uncertainty in the termina-tion criteria for joint intentions. For instance, a team member �4 may be uncertain that anenemy tank seen enroute causes [
y-
ight-plan]� to be unachievable | the tank's threatmay not be clearcut. Yet not communicating could be highly risky. The decision tree forcommunication is therefore extended to include �, the uncertainty of an event's threat tothe joint intention (Figure 8). Since agents may now erroneously inform teammates toterminate team operators, a nuisance cost -Cn is introduced.102

Towards Flexible Teamwork
C

Cost: Cc

NC
Cost: 0

(1−)

Rewards

(1 −)

(1 −)

B

−Cn

B

(1 −)

0

0

(Terminates)

(Not Terminate)

(Terminates)

(Not Terminate)

(Terminates)

(Not Terminate)

B−Cmt

1

0 [Irrelevant]Figure 8: Extended decision tree with �.Again, an agent communicates i� EU(C)> EU(NC), i.e., i� �*�*Cmt > (Cc + (1-�)Cn).If � is 1, i.e., a team operator has terminated, this equation reduces to | �*Cmt > Cc |seen previously. If � << 1, i.e., high uncertainty about termination, no communicationresults if Cn is high. Therefore, the decision tree is further extended to include a newmessage type | threat to joint intention | where Cn is zero, but bene�ts accrued arelower (B - C�). This threat message maximizes expected utility when � << 1, i.e., if Cn ishigh for communicating termination, a team member communicates a threat. For instance,a threat message is used if an agent fails in its own role, which is a threat to the jointintention. However, as before, termination messages are used when � = 1, where theymaximize expected utility.5.2 Estimating Parameters (
, � , �)As a �rst step, STEAM only uses qualitative (low, high, medium) parameter values. STEAMestimates likelihood of lack of joint commitments
, via team tracking (Tambe, 1996) |dynamically inferring a team's mental state from observations of team members' actions.Fortunately, rather than tracking each teammate separately, an agent �i can rely on its ownteam operator execution for team tracking. In particular, suppose �i has selected a teamoperator OP for execution, and it needs to estimate
 for operator OP, and its team �.Now, if �i selected OP at random from a choice of equally preferable candidates, then itsteammates may di�er in this selection. Thus, there is clearly a low likelihood of a jointcommitment | �i estimates
 to be high. However, if OP is the only choice available, then
 depends on the preceding [OP2]
 that �i executed with the team
. (
 may be just asingleton, i.e., OP2 may be an individual operator that �i executed alone). There are threecases to consider. First, if � �
 (� is subteam of
) or � =
, all members of � werejointly executing [OP2]
. Furthermore, [OP2]
 could only be terminated via mutual beliefamong �. Thus, � is likely to be jointly committed to executing the only next choice OP |
 is estimated low. Second, if
 � �, some members in � were not jointly participating inteam operator execution earlier; hence
 is estimated high. Third, if no operator precedesOP, e.g., OP is �rst in a subgoal, then
 is estimated low.While agents usually infer matching estimates of
, sometimes, estimates do mismatch.Therefore, STEAM integrates some error recovery routines. For instance, if an agent �i103

Tambeestimates
 to be low, when others estimate it high, �i starts executing the team operator,and only later receives messages for establishing joint commitments. �i recovers by stoppingcurrent activities and re-establishing commitments. In contrast, if �i mis-estimates
 to behigh, it unnecessarily waits for messages for establishing commitments. STEAM infers sucha mis-estimation via reception of unexpected messages; it then conducts a lookahead searchto catch up with teammates.To estimate � (the probability that a fact is not common knowledge), STEAM assumesidentical sensory capabilities for team members, e.g., if some fact is visible to an agent,then it is also visible to all colocated teammates. However, at present, domain knowledgeis also required to model information media such as radio channels, in estimating � . �,the probability of an event's threat to a joint intention, is estimated 1 if a fact matchesspeci�ed termination conditions. Otherwise role monitoring constraints are used, e.g., inan OR-combination, � is inversely proportional to the number of team members. The costparameters, Cmt, Cme, and Cc are assumed to be domain knowledge.6. EvaluationSTEAM is currently implemented within Soar via conventions for encoding operators andstates, plus a set of 283 rules. Essentially these rules help encode the algorithm in Ap-pendix A; some sample rules are presented in Appendix B. STEAM has been applied in thethree domains mentioned earlier: Attack, Transport and RoboCup. Table 1 provides someinformation about the three domains. Column 1 lists the three domains. Column 2 liststhe maximum number of agents per team in each domain. Column 3 shows the possiblevariations in the sizes of the team. Thus, in the Attack and Transport domains, the teamsizes may vary substantially; but not so in RoboCup. Column 4 shows the number of levelsin the team organization hierarchy (e.g., the team-subteam-individual hierarchy is a threelevel hierarchy). Column 5 shows the maximum number of subteams active at any one time.Domain Max team Team size Levels in Maximum numname size varation team hierarchy subteamsAttack 8 2-8 3 2Transport 16 3-16 4 5RoboCup 11 11 3 4Table 1: The organizational hierarchy in the three domains.STEAM's application in these three domains provides some evidence of its generality.In particular, not only do these domains di�er in the team tasks performed, but as Table1 illustrates, the domains di�er substantially in the team sizes and structure. The rest ofthis section now uses the three domains in detailed evaluation of STEAM using the criteriaof overall performance, reusability, teamwork
exibility, communication e�ciency, as wellas e�ort in encoding and modifying teamwork capabilities.104

Towards Flexible Teamwork6.1 Overall PerformanceOne key evaluation criterion is the overall agent-team performance in our three domains.Ultimately, STEAM-based agent teams must successfully accomplish their tasks, withintheir given environments, both e�ciently and accurately. This is a di�cult challenge inall three domains. Certainly, the Attack and Transport domains involve complex syntheticmilitary exercises with hundreds of other agents. Furthermore, in these domains, the domainexperts (expert human pilots) de�ne the pilot teams' missions (tasks), rather than thedevelopers. STEAM-based pilot teams have so far successfully met the challenges in thesedomains | they have successfully participated in not one, but about 10 such syntheticexercises, where the domain experts have issued favorable written and verbal performanceevaluations.In the RoboCup domain, our player team must compete e�ectively against teams devel-oped by other researchers worldwide. At the time of writing this article, our player teameasily wins against the winner of the pre-RoboCup'96 competition. However, all teams con-tinue to evolve, and researchers continue to �eld new sophisticated teams. One key test forall the teams in the near future is the RoboCup'97 tournament at the International JointConference on Arti�cial Intelligence (IJCAI), Nagoya, Japan, in August 1997.6.2 Reuse of Teamwork CapabilitiesSTEAM's inter-domain and intra-domain reusability is approximately measured in Table2. Column 1 once again lists the three di�erent domains of STEAM's application. Column2 lists the total number of rules per agent per domain | which include the rules thatencode the domain knowledge acquired from domain experts as well as STEAM rules |illustrating complexity of the agents' knowledge base. The number of STEAM rules usedin these domains is listed in Column 3. Column 4 measures percent reuse of STEAM rulesacross domains. (No reuse is shown in STEAM's �rst domain, Attack). There is 100%reuse in Transport, i.e., no new coordination/communication rules were written | a majorsaving in encoding this domain. RoboCup, in its initial stages, has lower reuse. Here, dueto weakness in spatial reasoning and tracking, agents fail to recognize other team's play, oreven own teammates' failures (e.g., in executing a pass), hampering the reuse of rules forrole-monitoring constraints, repair and threat detection. With improved spatial reasoningand tracking, reuse may improve in the future. Column 5 lists the total number of teamoperators speci�ed per domain, illustrating signi�cant intra-domain reuse | essentially, foreach team operator, STEAM's entire teamwork capabilities are brought to bear.Domain Total rules STEAM rules STEAM reuse Team operatorsAttack 1575 283 �rst-use 17Transport 1333 283 100% 14RoboCup 454 110 38% 11Table 2: STEAM reusability data.105

Tambe6.3 Flexibility in TeamworkTeamwork
exibility is closely related with the measures of overall performance and reusabil-ity. Since STEAM's entire teamwork capabilities are brought to bear in executing teamoperators in all of the domains, there are signi�cant improvements in teamwork
exibility.For instance, in benchmark runs of Attack, almost all of the teamwork failures from ourearlier implementation are avoided. Certainly, all of the failures in Figure 5 are addressed:� Items 1 and 7 are addressed because agents must now attain mutual belief in theachievement, unachievability or irrelevancy of team operators. Thus, in item 1, thecommander now attains mutual belief that the helicopter company has completed itsengagement with the enemy; while in item 7, the irrelevancy of planning a bypassroute is communicated to the company.� Items 3 and 6 are addressed because agents now act jointly by �rst ensuring theestablishment of joint commitments before executing their roles. For instance, a teammember does not begin executing the mission as soon as it processes its orders (item3); rather, it acts jointly with the team, after the team establishes joint commitmentsto execute the mission.� Items 2, 4 and 5 are addressed because the team operator wait-while-battle-position-scouted is speci�ed to be an AND-combination of the role of the scouts and thenon-scouts. Thus, unachievability of team operators is detected, since either thescouts or the non-scouts cannot perform their role, or the scouting-role assignment isunspeci�ed. In items 2 and 4 no repairs are possible, but at the least the companyinfers a \complete-failure" and returns to home base, instead of waiting inde�nitely.In item 5, the unassigned role again leads to unachievability, but repair is possiblebecause one of the remaining subteams can take over the role of the scout.� Item 8 is addressed since the relevant operator engage is now explicitly de�ned as ateam operator with an OR-combination of members' roles. Thus, based on commu-nication from team members, team members' can infer its unachievability.� Item 9 is addressed because in the establish-commitments protocol, the leader willrepeat its message if a response is not heard within time limit. However, in general,attaining mutual belief given the possibility of uncertain communication channels isa notoriously di�cult challenge (Halpern & Moses, 1990); and this remains an issuefor future work.As a further illustration of teamwork
exibility in STEAM, we created six variations inthe environmental conditions facing the Attack company of helicopter pilots. Each conditionrequired the pilot team to
exibly modify its communication to maintain coherence inteamwork. The six variations are:1. Condition 1: This is the baseline \normal" condition.2. Condition 2: Although similar to condition 1, we assume in addition that certain radiofrequencies/channels which were previously separated, are now common. In partic-ular, messages previously assumed to be privately delivered to only the commanderagent from its superiors, are now also made available to the other team members.106

Towards Flexible Teamwork3. Condition 3: Although similar to condition 2, the communication cost is raised from\low" to \medium".4. Condition 4: Although similar to condition 3, we assume in addition that the he-licopter team has only a medium priority for ensuring simultaneous attack on theenemy.5. Condition 5: Here, we once again start with the baseline of condition 1, but assumepoor visibility in addition. Thus, agents may not accurately estimate their distances.6. Condition 6: In addition to condition 5, here, the company has some
exibility inreaching the battle position. The company is provided with the option of halting atcertain key locations, rather than continuing to
y.The decision-theoretic framework in STEAM enables agents to
exibly respond to theabove conditions. Figure 9 plots the number of messages exchanged among team membersfor each of the six conditions. The total number of messages in three teams | balanced,cautious and reckless | are compared. Balanced agents fully exploit the decision theoryframework, and thus illustrate STEAM's
exibility. Cautious agents always communicate,ignoring the decision theory framework. Reckless agents communicate very little (only ifhigh Cmt, Cme). Of course, truly reckless agents would likely not communicate at all, sothis de�nition is relaxed here. All three teams work with identical cost models, Cc, Cmt,and Cme. The number of agents were �xed in this experiment to four, so all three teams| cautious, balanced and reckless | could be run (as discussed in the next section, it isdi�cult to run the cautious team with further increase in team size).Focusing �rst on the balanced team, it was able to perform its mission under all sixconditions, by
exibly decreasing or increasing the number of messages in response. The�rst set of conditions (conditions 2 through 4) illustrate that the balanced team can reduceits communication in response to the situation faced, e.g., increase in communication cost.However, under conditions 5 and 6, the balanced team can also increase its communicationto address the uncertainties. For instance, with condition 5, knowledge of poor visibilityautomatically leads team members to explicitly communicate achievement of waypointson their route. In addition, with condition 6, the team has to communicate to establishcommitments when deciding to halt or to
y forward.The cautious team was also able to perform the mission under all six conditions, but itrelies on many more messages and remains insensitive to conditions 2-4 that should resultin fewer messages. Indeed, its exchange of 10-20 fold more messages than the balancedteam to perform an identical task is not only a waste of precious communication resources,but can create risks for the team in hostile environments. (The next subsection will discussthe issue of communication e�ciency in more detail.) The reckless team does communicatefewer messages, but it fails to perform its basic mission. Even in the �rst normal case,this helicopter company gets stuck on the way to the battle position, since a message withmedium Cmt but high � is not communicated. Interestingly, the number of messages increasein the reckless team under conditions 2-4. This is because condition 2 allows the recklessteam to avoid getting stuck before reaching the battle position. (In fact, this condition wasdesigned to get the reckless team unstuck.) Since the reckless team can now perform more of107

Tambe
0

50

100

150

200

250

300

350

1 2 3 4 5 6

N
um

be
r

of
 m

es
sa

ge
s

Types of uncertainties

"balanced-u"
"cautious-u"
"reckless-u"Figure 9: Change in communication with additional uncertainties.the mission | reaching its battle position | more messages are exchanged. Unfortunately,some key messages are still not exchanged, leaving team members stranded in the battleposition.6.4 Communication E�ciencyCommunication e�ciency is critical in teamwork, particularly with scale-up in team size, elsecommunication overheads can cause signi�cant degradation in team performance. Figure10 and 11 attempt to measure the communication overhead of teamwork, and the usefulnessof STEAM's decision-theoretic communication selectivity in lowering the overhead, partic-ularly for a scale-up in team size. Both the �gures compare the total number of messagesin the three teams introduced above | balanced, cautious and reckless | with increasingnumbers of agents per team. In the interest of a fair comparison, the total computationalresources available to each team were kept constant (a single SUN Ultra1). While thislimits the maximum team size that could be run, the results shown below are su�cientlyillustrative in terms of scale-up.Figure 10 focuses on the Attack domain. Decision-theoretic selectivity enables the bal-anced team to perform well with few messages | this team is regularly �elded in syntheticexercises. The cautious team exchanges 10 to 20-fold or more messages than the balancedteam | a substantial communication overhead. Indeed, beyond six agents, the simulationwith cautious team could not be run in real time.7 Reckless agents in this case do notexchange any messages at all.Figure 11 focuses on the Transport domain; once again comparing the performance ofcautious, balanced and reckless teams for increasing numbers of agents in the team. Onceagain, decision-theoretic selectivity enables the balanced team to perform well with fewmessages | this team is regularly �elded in synthetic exercises. The cautious team onceagain incurs a signi�cant overhead of 10 to 20-fold or more messages than the balanced7. The earlier experiments in Section 6.3 were run with four agents per team, so that the cautious teamcould be run in real-time. 108

Towards Flexible Teamwork
0

50
100
150
200
250
300
350
400
450
500

2 3 4 5 6 7 8

N
um

be
r

of
 m

es
sa

ge
s

Number of agents in team

"balanced"
"cautious"
"reckless"Figure 10: Attack domain: selective communication. Reckless team exchanges no messagesand hence that plot overlaps with the x-axis.team. Here, beyond seven agents, the simulation with the cautious team could not berun in real time. Interestingly, in the test scenario for this experiment, the reckless teamis able to perform the mission appropriately even though this team exchanges just 1-2messages, far fewer than the balanced team. To a certain extent, this result illustrates thepotential for improving the decision-theoretic selectivity in the balanced team. However,when the test scenario for this experiment was changed, so that the transports arrived lateat the rendezvous point, the balanced team was able to continue to perform the missionappropriately. However, the reckless team now performed inappropriately, highlighting therisk in the reckless approach.

0

50

100

150

200

250

300

3 4 5 6 7 8

N
um

be
r

of
 m

es
sa

ge
s

Number of agents in team

"balanced-m"
"cautious-m"
"reckless-m"Figure 11: Transport domain: selective communication.Figure 12 illustrates the di�ering communication patterns in the cautious and balancedteams for the Attack domain, to attempt to understand the di�erence in their total com-109

Tambemunication. Figure 12-a plots the varying degree of collaboration (y-axis) during di�erentphases (x-axis) in the Attack domain. Degree of collaboration is measured as the percentageof team operators in a pilot's operator hierarchy (which consists of team and individual op-erators). A low percentage implies low degree of collaboration and vice versa. The solid lineplots the overall degree of collaboration in the team, taking into account all team operators.The dashed line indicates the degree of collaboration without counting team operators exe-cuted by this pilot agent's subteam | the di�ering pattern in the two lines is an indicationof the di�ering degree of subteam activity. In particular, the two lines sometimes overlapbut separate out at other times, indicating the
exibility available to the subteam. Theoverall degree of collaboration is lowest in phases 18-20 (20-40%), where agents engage theenemy. Figure 12-b plots the percentage of total communication per phase, for cautiousand balanced teams. For instance, the cautious team exchanges 1% of its total messages inphase 20. Communication percentage is correlated to the degree of collaboration per phasefor the cautious team (coe�cient 0.80), but not for the balanced team (coe�cient -0.34).Essentially, unlike the cautious team, the balanced team does not communicate while theircollaboration proceeds smoothly.
0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35

D
eg

re
e

of
 C

ol
la

bo
ra

tio
n

Phase Number

"team"
"team-without-subteam"

0

5

10

15

20

25

0 5 10 15 20 25 30 35

P
er

ce
nt

ag
e

of
 m

es
sa

ge
s

Phase Number

"cautious"
"balanced"(a) Degree of collaboration (b) Percentage communicationFigure 12: Attack domain: pattern of communication6.5 Encoding and Modi�cation E�ortThe �nal evaluation criteria focus on the e�ort involved in encoding and modifying agents'teamwork capabilities | comparing the e�ort in STEAM with alternatives. The key alter-native is reproducing all of STEAM's capabilities via special-case coordination plans, as inour initial implementation in the Attack domain. We estimate that such an e�ort wouldrequire signi�cant additional encoding e�ort. For example, just to reproduce STEAM'sselective communication capabilities, our initial implementation could potentially have re-quired hundreds of special case operators. Consider our initial implementation in the Attackdomain. Here, the 17 team operators in STEAM (which would only be individual operatorsin the initial implementation), would each require separate communication operators | twooperators each to signal commitments (request and con�rm) and one to signal terminationof commitments. That is already a total of 51 (17x3). Furthermore, to reproduce selectivity,additional special cases would be necessitated | in the extreme case, each combination ofvalues of (� , Cmt, and Cc) or (
, Cme, and Cc), could require a separate special case operator110

Towards Flexible Teamwork(51 x total combinations, already more than a hundred). Furthermore, separate operatorsmay be required depending on whether the communication occurs with the entire team oronly a subteam. Of course, it would appear that all such special cases could be economizedin our initial implementation by discovering generalizations | but then STEAM encodesprecisely such generalizations to avoid the many special cases.An additional point of evaluation is easy of modi�ability of agent team behaviors. Inour experience, domain knowledge acquired from experts is not static | rather it undergoesa slow evolution. In the Attack domain, for instance, real-world military doctrine continuesto evolve, requiring modi�cations in our synthetic pilot team behaviors. In such situations,STEAM appears to facilitate such modi�cations suggested by domain experts; at least, itis often not necessary to add new coordination plans. For instance, in the Attack domain,domain experts earlier suggested a modi�cation, that the helicopter company should evadeenemy vehicles seen enroute, rather than
ying over. Here, adding a new unachievabil-ity condition for the team operator [
y-
ight-plan]� was su�cient; STEAM then ensuredthat the pilot agents coordinated the termination of [
y-
ight-plan]� , even if just one arbi-trary team member detected the enemy vehicles. (Of course, the evasion maneuvers, beingdomain-speci�c, had to be added.)7. Related WorkAs mentioned earlier, most implementations of multi-agent collaboration continue to rely ondomain-speci�c coordination in service of teamwork (Jennings, 1994, 1995). More recently,however, a few encouraging exceptions have emerged (Jennings, 1995; Rich & Sidner, 1997).We �rst brie
y review these systems and then contrast them with STEAM.Jennings's (1995) implementation of multi-agent collaboration in the domain of electric-ity transportation management is also based on joint intentions | it is likely one of the �rstimplementations in a complex domain based on a general model of teamwork. He presentsa framework called joint responsibility based on a joint commitment to the team's jointgoal � and a joint recipe commitment to a common recipe �. Two distinct types of jointcommitments | a modi�cation to the joint intentions framework | are claimed necessarybecause di�erent actions are invoked when joint commitments are dropped. However, asa result, joint responsibility would appear to be limited to a two-level hierarchy of a jointgoal and a joint plan, although individuals could execute complex activities in service ofthe joint plan. The joint responsibility framework is implemented in the GRATE* system,which appears to focus on a team of three agents. In GRATE*, teamwork proceeds with anorganizer agent detecting the need for joint action; it is then responsible for establishing ateam and ensuring members' commitments as required by the joint responsibility method.While the procedure for establishing joint commitments in STEAM is similar to GRATE*| including the similarity of the \leader" in STEAM to the \organizer" in GRATE* |STEAM does bene�t from adopting PWAGs, which provides it additional
exibility.STEAM is also related to COLLAGEN (Rich & Sidner, 1997), a prototype toolkit ap-plied to build a collaborative interface agent for applications such as air-travel arrangements.COLLAGEN's origins are in the SharedPlans theory. Although the COLLAGEN implemen-tation does not explicitly reason from the intend that attitude in SharedPlans introducedin (Grosz & Kraus, 1996), it does incorporate discourse generation and interpretation algo-111

Tamberithms that originate in such reasoning (Lochbaum, 1994). Treating the underlying agent asa blackbox, COLLAGEN facilitates the discourse between a human user and the blackbox(intelligent agent). Several COLLAGEN features aid in such interaction, such as mainte-nance of a segmented interaction history.STEAM contrasts with COLLAGEN (Rich & Sidner, 1997) and GRATE* (Jennings,1995) in several important ways. First, STEAM builds on joint intentions (with somein
uence of SharedPlans), rather than the SharedPlan approach in COLLAGEN or thejoint responsibility approach of GRATE*. Particularly in contrast with joint responsibility,STEAM allows teamwork based on deep joint goal/plan hierarchies. Second, STEAM hasthe capability for role-monitoring constraints and role substitution in repairing team activi-ties, not relevant in the other two systems. Third, STEAM has attempted scale-up in teamsize. Thus, STEAM has introduced techniques both to reduce teamwork overheads, e.g.,decision-theoretic communication selectivity, as well as to deal with a hierarchy of teamsand subteams, not relevant in smaller-scale teams. STEAM also illustrates reuse acrossdomains, not seen in the other two systems. Finally, rather than building a collaborationlayer on top of an existing domain-level system or blackbox (\loose coupling"), STEAM hasproposed tighter coupling via modi�cations to support teamwork in the agent architectureitself, e.g., with explicit team goals and team states, and accompanying commitments. Thedetermining factor here would appear to be the tightness of collaboration, e.g., a deeplynested, dynamic joint goal hierarchy should favor a tighter coupling.In our previous work (Tambe, 1997b) we presented an initial implementation of a team-work model, also based on joint intentions. That work clearly laid the groundwork forSTEAM, by de�ning team operators, and elaborating on their expressiveness. However,STEAM was later developed because of (i) several problems in that work in continued de-velopment of teamwork capabilities in the Attack domain, (ii) the presence of new domainssuch as Transport, and (iii) signi�cant scale-up in team sizes. Since STEAM both extendsand substantially revises that earlier work, it is best to treat STEAM as a separate system,rather than an extension of that early work. STEAM also provides a conceptual advancein a clearer analysis and speci�cation of the joint mental attitude it builds up in a team.In particular, via an explicit analogy to partial SharedPlans (Grosz & Kraus, 1996), thisarticle has spelled out the requirement for teams and subteams to build up a hierarchy ofjoint intentions, beliefs about other team members' intentions, and joint intentions for the\unreconciled case". This analysis also led to a generalization of communication based oninformation-dependency.The following now presents a detailed comparison between STEAM and the earlier work(Tambe, 1997b) in terms of their capabilities. To begin with, STEAM includes an explicitmechanism to establish joint commitments based on PWAGs, which was unaddressed inprevious work | so earlier, agents would implicitly, and hence sometimes incorrectly, as-sume the existence of joint commitments. Also, in earlier work, monitoring and repairwas highly specialized. In particular, the mechanism provided for monitoring was basedon comparing achievement conditions of operators; this mechanism was later discoveredto be limited to monitoring and repair of just one pre-determined specialist role per teamoperator. Furthermore, the role-substitution was de�ned via a special procedure executedseparately by individuals. In contrast, STEAM has signi�cantly generalized monitoring andrepair via its explicit role-monitoring constraints, that enable monitoring of a much greater112

Towards Flexible Teamworkvariety of failures, e.g., the \specialist" is just one case in all of the varied role-monitoringconstraint combinations. Furthermore, STEAM establishes a joint intention to resolve allfailures, rather than relying on any special case procedures. This is not merely a conceptualadvance in terms of an integrated treatment of repair, but has real behavioral implicationsin providing additional
exibility embodied in the commitments in [repair]�. Further-more, STEAM's repair generalizes to subteams, addresses previous critical commitments,as well as unallocated tasks. In terms of practical concerns, our previous work (Tambe,1997b) raised the issue of communication risk in hostile environments, but suggested only aheuristic evaluation of communication costs and bene�ts; a general purpose mechanism waslacking. STEAM has �lled the gap with its decision theoretic framework that now considersvarious uncertainties, both for selective communication as well as enhancements in commu-nication. Also, unlike STEAM, our earlier work did not deal with complex team-subteamhierarchies, and its mechanisms did not generalize to subteams. Finally, STEAM is backedup with detailed experimental results about both its
exibility and reuse across domains, alloutside the scope of the previous work.STEAM is also related to coordination frameworks such as Partial Global Planning(PGP)(Durfee & Lesser, 1991), and Generalized Partial Global Planning(GPGP) (Decker & Lesser,1995). Although not driven via theories of collaboration, these coordination frameworks alsostrive towards domain independence. The earlier work on PGP focuses on a system of co-operating agents for consistent interpretation of data from a distributed sensor network(Durfee & Lesser, 1991). Here, subordinate agents may exchange their individual goalsand plans of action. An assigned agent (e.g., a supervisor) may recognize that individualplans of di�erent agents meld into a partial global plan (PGP) | so called because PGPsinvolve more than one agent but not necessarily all agents (partially global) | in serviceof a common group goal. The PGP is a basis for planning coordination actions; and itmay be transmitted to subordinates for guidance in execution of individual actions. (PGPcan accommodate di�erent types of organizations as well.) GPGP (Decker & Lesser, 1995)provides several independent coordination modules, any subset of which may be combinedin response to coordination needs of a task environment; the GPGP approach can duplicateand extend the PGP algorithm.As a general model of teamwork, STEAM can provide a principled underlying model toreason about at least some of the coordination speci�ed in PGP, e.g., agents would establisha joint intention towards the collective goal in a PGP, and modulate their communicationvia decision-theoretic reasoning. That is, PGP \compiles out" some of the underlying rea-soning in STEAM, and thus STEAM could provide additional
exibility in coordination.Essentially, PGP and GPGP do not separate out coordination in teamwork from coordina-tion in general (such as via a centralized coordinator). As a result, they fail to exploit theresponsibilities and commitments of teamwork in building up coordination relationships.Analogously, some of the general coordination in PGP or GPGP is unaccounted for inSTEAM, and hence understanding relationships among STEAM and GPGP is an interest-ing area of future work. There is a similar relationship between STEAM and the COOLcoordination framework (Barbuceanu & Fox, 1996). COOL also focuses on general pur-pose coordination by relying on notions of obligations among agents. However, it explicitlyrejects the notion of joint goals and joint commitments. It would appear that individual113

Tambecommitments in COOL would be inadequate in addressing some teamwork phenomena, butfurther work is necessary in understanding the relationship among COOL and STEAM.In team tracking (Tambe, 1996), i.e., inferring team's joint intentions, the expressivenessof team operators has been exploited. However, issues of establishing joint commitments,communication, monitoring and repair are not addressed. The formal approach to team-work in (Sonenberg et. al., 1994) transforms team plans into separate role-plans for exe-cution by individuals, with rigidly embedded communications. STEAM purposely avoidssuch transformations, so agents can
exibly reason with (i) explicit team goals/plans; and(ii) selective communication (seen to be important in practice). In (Gmytrasiewicz, Dur-fee, & Wehe, 1991), decision theory is applied for message prioritization in coordinationbased on the agents' recursive modeling of each others' actions. STEAM applies decisiontheory for communication selectivity and enhancements, but in a very di�erent context |practical operationalization of general, domain-independent teamwork model based on jointintentions.8. Summary and Future WorkTeamwork is becoming increasingly critical in a variety of multi-agent environments, rang-ing from virtual environments for training and education, to internet-based informationintegration, to potential multi-robotic space missions (Tambe et al., 1995; Rao et al., 1993;Pimentel & Teixeira, 1994; Williamson et al., 1996; Kitano et al., 1997; Hayes-Roth et al.,1995; Reilly, 1996). In previous implementations of multi-agent systems, including our own,teamwork has often been based on pre-de�ned, domain-speci�c plans for coordination. Un-fortunately, these plans are in
exible and thus no match for the uncertainties of complex,dynamic environments. As a result, agents' coherent teamwork can quickly dissolve intomiscoordinated misbehavior. Furthermore, the coordination plans cannot be reused in otherdomains. Such reuse is important however, both to save implementation e�ort and enforceconsistency across applications.Motivated by the critical need for teamwork
exibility and reusability, this article haspresented STEAM, a general model of teamwork. While STEAM's development is drivenby practical needs of teamwork applications, its core is based on principled theories of team-work. STEAM is one of just a few implemented systems that have begun to bridge the gapbetween collaboration theories and practice. STEAM combines several key novel features:(i) use of joint intentions as a building block for a team's joint mental attitude (Levesqueet al., 1990; Cohen & Levesque, 1991b) | the article illustrates that STEAM builds upa hierarchical structure of joint intentions and individual intentions, analogous to the par-tial SharedPlans (Grosz & Kraus, 1996); (ii) integration of novel techniques for explicitestablishment of joint intentions (Smith & Cohen, 1996); (iii) principled communicationbased on commitments in joint intentions; (iv) use of explicit role-monitoring constraintsas well as repair methods based on joint intentions; (v) application of decision-theoretictechniques for communication selectivity and enhancements, within the context of the jointintentions framework. To avail of the power of a model such as STEAM, a fundamentalchange in agent architectures is essential | architectures must provide explicit support forrepresentation of and reasoning with team goals, (reactive) team plans and team states.STEAM has been applied and evaluated in three complex domains. Two of the domains,114

Towards Flexible TeamworkAttack and Transport, are based on a real-world simulation environment for training, andhere our pilot agent teams have participated large-scale synthetic exercises with hundreds ofother synthetic agents. In the third domain, RoboCup, our player agent team is now underdevelopment for participation in the forthcoming series of (simulated) soccer tournaments,beginning at IJCAI-97.Of course, STEAM is far from a complete model of teamwork, and several major is-sues remain open for future work. One key issue is investigating STEAM's interactionswith learning. Initial experiments with chunking (Newell, 1990) (a form of explanation-based learning (Mitchell, Keller, & Kedar-Cabelli, 1986)) in STEAM reveal that agentscould automatize routine teamwork activities, rather than always reasoning about them.Speci�cally, from STEAM's domain-independent reasoning about teamwork, agents learnsituation-speci�c coordination rules. For instance, when the formation leader crashes, an-other agent learns situation-speci�c rules to take over as formation lead and communicate. Awell-practiced team member could thus mostly rely on learned rules for \routine" activities,but fall back on STEAM rules if it encounters any unanticipated situations. Additionally,STEAM's knowledge-intensive to learning approach could complement current inductivelearning approaches for multi-agent coordination (Sen, 1996).Failure detection and recovery is also a key topic for future work, particularly in environ-ments with unreliable communication. One novel approach exploits agent tracking (Tambe& Rosenbloom, 1995; Tambe, 1996) to infer teammates' high-level goals and intentions forcomparison with own goals and intentions. Di�erences in goals and intentions may indicatecoordination failures, since teammates often carry out identical or related tasks. However,given the overheads of such an approach, it has to be carefully balanced with an agents'other routine activities. Initial results of this approach are reported in (Kaminka & Tambe,1997).Enriching STEAM's communication capabilities in a principled fashion is yet anotherkey topic for future work. Such enriched communication may form the basis of multi-agentcollaborative negotiation (Chu-Carroll & Carberry, 1996). Currently, STEAM relies on theteam or subteam leader when resolving disagreements, particularly when deciding the nextaction. While leadership in teamwork is by itself an interesting phenomena of investigation,enabling agents to negotiate their plans without a leader would also improve STEAM's
exibility. We hope that addressing such issues would ultimately lead STEAM towardsimproved
exibility in teamwork.AcknowledgementsThis research was supported as part of contract N66001-95-C-6013 from ARPA/ISO. Thisarticle is an extended version of a previous conference paper (Tambe, 1997a). I thank JohnnyChen, Jon Gratch, Randy Hill and Paul Rosenbloom for their comments and support forthe work reported in this article. Discussions with Nick Jennings have helped improve thequality of the article. I also thank ISI team members working on the RoboCup e�ort fortheir support of the work reported in this article. Domain expertise for this work wasprovided by David Sullivan and Greg Jackson of BMH Inc., and Wayne Sumner of RDALogicon. 115

TambeAppendix A: Detailed STEAM Speci�cationThe pseudo-code described below follows the description of STEAM provided in this article.It is based on execution of hierarchical operators, or reactive plans. All operators in thehierarchy execute in parallel, and hence the \in parallel" construct. The comments in thepseudo code are enclosed in /* */. The terminology is �rst described below, to clarify thepseudo-code.� Execute-Team-Operator(�, �, C, f�1, �2,...,�ng) denotes the execution of a teamoperator �, by a team �, given the context of the current intention hierarchy C, andwith parameters �1, �2...�n.� Terms
, Cme, Cc, � , Cmt are all exactly as in Section 5.� [�]� denotes the team �'s joint intention to execute �.� status([�]�, STATUS-OF-�) denotes the status of the joint intention [�]�, whetherit is mutually believed to be achieved, unachievable or irrelevant.� satis�es (Achievement-conditions(�), f) denotes that the fact f satis�es the achieve-ment conditions of the team operator �; similarly with respect to unachievability andirrelevancy conditions.� Communicate(terminate-jpg(�), f,�) denotes communication to the team � to termi-nate �'s joint commitment to �, due to the fact f.� Update-state (team-state(�), f) denotes the updating of the team state of � withthe fact f.� Update-status([�]�) denotes the updating of the team operator � with its currentstatus of achievement, unachievability or irrelevancy.� Agent(�) is the individual agent or team executing operator �.� actions(�) denote the actions of the operator �.� teamtype() is a test of whether the agent is a team or just one individual.� self() is a test of whether the agent denotes self.� agent-status-change(�) denotes change in the role performance capability of agentor subteam �.� Execute-individual-Operator(, self, C, f�1, �2,...,�ng) denotes the execution of anindividual operator by self, given the context of the current intention hierarchy C,and with parameters �1, �2...�n.For expository purposes, \Execute-team-operator" and \Execute-individual-operator"are de�ned as separate procedures. In reality, STEAM does not di�erentiate between thetwo. 116

Towards Flexible TeamworkTeam Operator ExecutionExecute-Team-Operator(�, �, C, f�1, �2,...,�ng)f 1. estimate
; /* See Section 5. */2. if
* Cme > Cc execute establish commitments protocol;/* see Section 4.1 for explanation. */3. establish joint-intention [�]�;4. While NOT(status([�]�, Achieved) W status([�]�, Unachievable) W status([�]�, Irrel-evant)) Dof(a) if (satis�es (Achievement-conditions(�), f) W satis�es (Unachievability-conditions(�),f) W satis�es (Irrelevance-conditions(�), f))/* This is the case where fact f is found to satisfy the termination condition of �. Thecase where f is only a threat to � (see Section 5.1) is analogous. */f i. estimate � ; /* see section 5. */ii. if �* Cmt > Cc propose-operator Communicate(terminate-jpg(�), f, �) with highpriority;/* See Section 5 and 4.1*/iii. if no other higher priority operator, in parallelExecute-individual-operator(Communicate(terminate-jpg(�), f, �), self, �/C, f�1,�2,...g);iv. Update-state (team-state(�), f);v. Update-status([�]�);g(b) if agent-status-change(�), where � 2 �f i. Evaluate role-monitoring constraints; /* See Section 4.2. */ii. if role-monitoring constraint failure cf such that (satis�es (Unachievability-conditions(�),cf) then update-status([�]�);g(c) if receive communication of terminate-jpg(�) and fact ffif (satis�es (Achievement-conditions(�), f) W satis�es (Unachievability-conditions(�),f) W satis�es (Irrelevance-conditions(�), f))f i. Update-state (team-state(�), f);ii. Update-status([�]�);gg(d) Update-state(team-state(�), actions(�));/* execute domain-speci�c actions to modify team state of � */117

Tambe(e) if children operator �1,�2,...�n of � proposed as candidatesf i. �i select-bestf�1...�ng;ii. if (teamtype(Agent(�i)) V (� = Agent(�i))) then in parallelExecute-team-operator(�i, �, �/C, f�1,�2...g);iii. if (teamtype(Agent(�i)) V (Agent(�i))� �) then in parallelfA. Execute-team-operator(�i, Agent(�i), �/C, f�1,�2...g);B. Instantiate role-monitoring constraints;giv. if self(Agent(�i)) then in parallelfA. Execute-individual-operator(�i, self, �/C, �1...);B. Instantiate role-monitoring constraints;ggg /* End while statement in 4 */5. terminate joint intention [�]�;6. if status([�]�, Unachievable)fif (� != Repair) /* If � is not itself Repair */fExecute-team-operator(Repair, �, C, f�, cause-of-unachievability,...g)/* Repair is explained in detail in Section 4.2. Cause-of-unachievability, passed as a parameterto Repair, may be role-monitoring constraint violation as in case 4b, or the domain-speci�cunachievability conditions. */g else fExecute-team-operator(Complete-Failure, �, C, f�, cause-of-unachievability,...g)/* If Repair is itself unachievable, complete-failure results, as in Section 4.2 */ggg /* end procedure execute-team-operator */Individual Operator ExecutionExecute-individual-Operator(, self, C, f�1, �2,...,�ng)f 1. establish as an individual intention;2. While NOT(status(, Achieved) W status(, Unachievable) W status(, Irrelevant))Dof(a) if (satis�es (Achievement-conditions(), f) W satis�es (Unachievability-conditions(),f) W satis�es (Irrelevance-conditions(), f))f i. Update-state (state(self), f); 118

Towards Flexible Teamworkii. Update-status();g(b) Update-state(state(self), actions());/* execute domain-speci�c actions to modify private state */(c) if new children operator f�1...�ng of proposedf i. �i select-bestf�1...�ng;ii. Execute-individual-operator(�i, self, /C, f�1...g)gg /* end while statement in 2 */3. if status(, Unachievable)fif (!= Repair)fExecute-individual-operator(Repair, self, C, f , cause-of-unachievability,...g)/* Repair is explained in detail in Section 4.2. Cause-of-unachievability is only domain-speci�cunachievability condition. This is passed as a parameter to repair. */g else fExecute-individual-operator(Complete-Failure, self, C, f , cause-of-unachievability,...g)/* If Repair is itself unachievable, complete-failure results, as in Section 4.2 */ggg /* end procedure execute-individual-operator */Appendix B: STEAM Sample RulesThe sample rules described below follow the description of STEAM provided in this article,and essentially help encode the algorithm described in Appendix A. The rules, as with thealgorithm in Appendix A, are based on execution of hierarchical operators, or reactive plans.While the sample rules below are described in simpli�ed if-then form, the actual rules areencoded in Soar, and are available as an online Appendix.SAMPLE:RULE:CREATE-COMMUNICATIVE-GOAL-ON-ACHIEVED/* This rule focuses on generating a communicative goalif an agent's private state contains a belief that satis�esthe achievement condition of a team operator [OP]�.See section 4.1. */IFagent �i's private state contains a fact FANDfact F matches an achievement condition ACof a team operator [OP]�ANDfact F is not currently mutually believedANDa communicative goal for F is not already generatedTHEN 119

Tambecreate possible communicative goal CG to communicate fact F to team� to terminate [OP]�.SAMPLE:RULE:CREATE-COMMUNICATIVE-GOAL-ON-UNACHIEVABLE/* This rule is similar to the one above. */IFagent �i's private state contains a fact FANDfact F matches an unachievability condition UCof a team operator [OP]�ANDfact F is not currently mutually believedANDa communicative goal for F is not already generatedTHENcreate possible communicative goal CG to communicate fact F to team� to terminate [OP]�.SAMPLE:RULE:ESTIMATE-VALUE-FOR-NON-COMMUNICATION/* This rule estimates �*Cmt for non-communicationgiven a communicative goal, using the formula fromSection 5.*/IFCG is a possible communicative goal to communicate fact F to team� to terminate [OP]�ANDCmt is estimated highAND� is estimated lowTHENEstimated value of non-communication is medium.SAMPLE:RULE:DECISION-ON-COMMUNICATION/* This rule makes the communication decision using the formula * with �*Cmt and Ccfrom Section 5.*/IFCG is a possible communicative goal to communicate fact F to team� to terminate [OP]�ANDEstimated value of non-communication for CG is mediumANDEstimated value of communication for CG is lowTHENpost CG as a communicative goal to communicate fact F to team� to terminate [OP]�SAMPLE:RULE:MONITOR-UNACHIEVABILITY:AND-COMBINATION/* This rule checks for unachievability of role-monitoringconstraints involving an AND-combination. See section 4.2./ 120

Towards Flexible TeamworkIFA current joint intention [OP]� involves an AND-combinationAND�i is a member performing role to execute sub-operator opANDno other member �j is also performing role to execute sub-operator opAND�i cannot perform roleTHENCurrent joint intention [OP]� is unachievable, due to a critical role failureof �i in performing opReferencesBarbuceanu, M., & Fox, M. (1996). The architecture of an agent building shell. InWooldridge, M., Muller, J., & Tambe, M. (Eds.), Intelligent Agents, Volume II: Lec-ture Notes in Arti�cial Intelligence 1037. Springer-Verlag, Heidelberg, Germany.Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar, J. M. F., & Ceranowicz, A. Z.(1993). Modsaf behavior simulation and control. In Proceedings of the Conference onComputer Generated Forces and Behavioral Representation.Chu-Carroll, J., & Carberry, S. (1996). Con
ict detection and resolution in collaborativeplanning. In Wooldridge, M., Muller, J., & Tambe, M. (Eds.), Intelligent Agents,Volume II: Lecture Notes in Arti�cial Intelligence 1037. Springer-Verlag, Heidelberg,Germany.Cohen, P. R., & Levesque, H. J. (1991a). Con�rmation and joint action. In Proceedings ofthe International Joint Conference on Arti�cial Intelligence.Cohen, P. R., & Levesque, H. J. (1991b). Teamwork. Nous, 35.Coradeschi, S. (1997). A decision mechanism for reactive and coordinated agents. Tech.rep. 615, Linkoping University. (Licentiate Thesis).Decker, K., & Lesser, V. (1995). Designing a family of coordination algorithms. In Proceed-ings of the International Conference on Multi-Agent Systems.Durfee, E., & Lesser, V. (1991). Partial global planning: a coordination framework fordistributed planning. IEEE transactions on Systems, Man and Cybernetics, 21 (5).Firby, J. (1987). An investigation into reactive planning in complex domains. In Proceedingsof the National Conference on Arti�cial Intelligence (AAAI).Gmytrasiewicz, P. J., Durfee, E. H., & Wehe, D. K. (1991). A decision theoretic approachto co-ordinating multi-agent interactions. In Proceedings of International Joint Con-ference on Arti�cial Intelligence.Grosz, B. (1996). Collaborating systems. AI magazine, 17 (2).121

TambeGrosz, B., & Kraus, S. (1996). Collaborative plans for complex group actions. Arti�cialIntelligence, 86, 269{358.Grosz, B. J., & Sidner, C. L. (1990). Plans for discourse. In Cohen, P. R., Morgan,J., & Pollack, M. (Eds.), Intentions in Communication, pp. 417{445. MIT Press,Cambridge, MA.Halpern, J. Y., & Moses, Y. (1990). Knowledge and common knowledge in a distributedenvironment. Journal of the ACM, 37 (3), 549{587.Hayes-Roth, B., Brownston, L., & Gen, R. V. (1995). Multiagent collaboration in directedimprovisation. In Proceedings of the International Conference on Multi-Agent Systems(ICMAS-95).Hill, R., Chen, J., Gratch, J., Rosenbloom, P., & Tambe, M. (1997). Intelligent agents forthe synthetic battle�eld: a company of rotary wing aircraft. In Proceedings of theInnovative Applications of Arti�cial Intelligence.Jennings, N. (1994). Commitments and conventions: the foundation of coordination inmulti-agent systems. The Knowledge Engineering Review, 8.Jennings, N. (1995). Controlling cooperative problem solving in industrial multi-agentsystems using joint intentions. Arti�cial Intelligence, 75.Kaminka, G. A., & Tambe, M. (1997). Social comparison for failure monitoring and recov-ery in multi-agent settings. In Proceedings of the National Conference on Arti�cialIntelligence, p. (Student abstract).Kinny, D., Ljungberg, M., Rao, A., Sonenberg, E., Tidhard, G., & Werner, E. (1992).Planned team activity. In Castelfranchi, C., & Werner, E. (Eds.), Arti�cial SocialSystems, Lecture notes in AI 830. Springer, NY.Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., & Osawa, E. (1995). Robocup: The robotworld cup initiative. In Proceedings of IJCAI-95 Workshop on Entertainment andAI/Alife.Kitano, H., Tambe, M., Stone, P., Veloso, M., Noda, I., Osawa, E., & Asada, M. (1997).The robocup synthetic agents' challenge. In Proceedings of the International JointConference on Arti�cial Intelligence (IJCAI).Laird, J. E., Jones, R. M., & Nielsen, P. E. (1994). Coordinated behavior of computergenerated forces in tacair-soar. In Proceedings of the Fourth Conference on Com-puter Generated Forces and Behavioral Representation. Orlando, Florida: Institutefor Simulation and Training, University of Central Florida.Levesque, H. J., Cohen, P. R., & Nunes, J. (1990). On acting together. In Proceedings ofthe National Conference on Arti�cial Intelligence. Menlo Park, Calif.: AAAI press.Lochbaum, K. E. (1994). Using collaborative plans to model the intentional structure ofdiscourse. Ph.D. thesis, Harvard University.122

Towards Flexible TeamworkMitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based general-ization: A unifying view. Machine Learning, 1 (1), 47{80.Newell, A. (1990). Uni�ed Theories of Cognition. Harvard Univ. Press, Cambridge, Mass.Pimentel, K., & Teixeira, K. (1994). Virtual reality: Through the new looking glass.Windcrest/McGraw-Hill, Blue Ridge Summit, PA.Pollack, M. (1992). The uses of plans. Arti�cial Intelligence, 57, 43{68.Rajput, S., & Karr, C. R. (1995). Cooperative behavior in modsaf. Tech. rep. IST-CR-95-35,Institute for simulation and training, University of Central Florida.Rao, A. S., Lucas, A., Morley, D., Selvestrel, M., & Murray, G. (1993). Agent-orientedarchitecture for air-combat simulation. Tech. rep. Technical Note 42, The AustralianArti�cial Intelligence Institute.Reilly, W. S. (1996). Believable Emotional and Social Agents. Ph.D. thesis, School ofComputer Science, Carnegie Mellon University.Rich, C., & Sidner, C. (1997). COLLAGEN: When agents collaborate with people. InProceedings of the International Conference on Autonomous Agents (Agents'97).Rosenbloom, P. S., Laird, J. E., Newell, A., , & McCarl, R. (1991). A preliminary analysis ofthe soar architecture as a basis for general intelligence. Arti�cial Intelligence, 47 (1-3),289{325.Sen, S. (1996). Proceedings of the Spring Symposium on Adaptation, Coevolution and Learn-ing. American Association for Arti�cial Intelligence, Menlo Park, CA.Sidner, C. (1994). An arti�cial discourse language for collaborative negotiation. In Proceed-ings of the National Conference on Arti�cial Intelligence (AAAI).Smith, I., & Cohen, P. (1996). Towards semantics for an agent communication languagebased on speech acts. In Proceedings of the National Conference on Arti�cial Intelli-gence (AAAI).Sonenberg, E., Tidhard, G., Werner, E., Kinny, D., Ljungberg, M., & Rao, A. (1994).Planned team activity. Tech. rep. 26, Australian AI Institute.Stone, P., & Veloso, M. (1996). Towards collaborative and adversarial learning: a casestudy in robotic soccer. In Sen, S. (Ed.), AAAI Spring Symposium on Adaptation,Coevolution and Learning in multi-agent systems.Tambe, M. (1995). Recursive agent and agent-group tracking in a real-time dynamic en-vironment. In Proceedings of the International Conference on Multi-agent systems(ICMAS).Tambe, M. (1996). Tracking dynamic team activity. In Proceedings of the National Con-ference on Arti�cial Intelligence (AAAI).123

TambeTambe, M. (1997a). Agent architectures for
exible, practical teamwork. In Proceedings ofthe National Conference on Arti�cial Intelligence (AAAI).Tambe, M. (1997b). Implementing agent teams in dynamic multi-agent environments. Ap-plied Arti�cial Intelligence. (to appear).Tambe, M., Johnson, W. L., Jones, R., Koss, F., Laird, J. E., Rosenbloom, P. S., &Schwamb, K. (1995). Intelligent agents for interactive simulation environments. AIMagazine, 16 (1).Tambe, M., & Rosenbloom, P. S. (1995). RESC: An approach for real-time, dynamic agenttracking. In Proceedings of the International Joint Conference on Arti�cial Intelligence(IJCAI).Tambe, M., Schwamb, K., & Rosenbloom, P. S. (1995). Building intelligent pilots forsimulated rotary wing aircraft. In Proceedings of the Fifth Conference on ComputerGenerated Forces and Behavioral Representation.Tidhar, G., Selvestrel, M., & Heinze, C. (1995). Modeling teams and team tactics inwhole air mission modeling. Tech. rep. Technical Note 60, The Australian Arti�cialIntelligence Institute.Williamson, M., Sycara, K., & Decker, K. (1996). Executing decision-theoretic plans inmulti-agent environments. In Proceedings of the AAAI Fall Symposium on Plan Exe-cution: Problems and Issues.

124

