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Abstract

This paper studies a batch arrival queueing system in which the server may face occasional random breakdowns. The

repair process does not start immediately after a breakdown and there is a delay time waiting for repairs to start. Further,

after every service completion the server has the option to leave for a vacation with probability p or continue serving with

probability1 − p. The main new assumption in this paper is that the server has the option to go on extended vacation

after the original vacation completion with probability r or rejoins the system to provide service directly after the original

vacation with probability 1 − r. The service times, vacation times, extended vacation times, delay times and repair times

are all assumed to follow general arbitrary distributions, while only the breakdown times are exponentially distributed.

Keywords: M[X]/G/1 queue, Batch arrival, Vacation time, Extended vacation time, Random breakdown, Delay time,
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1. Introduction

Several authors including (Y. Levy, U. Yechilai,1976), (Doshi, B. T., 1986), (Takagi, H., 1990) and (Madan, 1991, 2000b,

2005) have studied queues with vacations. Also queueing systems with breakdowns have been studied by several authors

including (Federgruen & So, 1990), (Aissani & Artalejo, 1998), (Wang, Cao & Li, 2001) and (Madan, Abu-Dayyeh,

Gharaibeh, 2003b). Recently (Maraghi, Madan and Darby-Dowman, 2009 a) have studied some queueing systems with

vacations and breakdowns. All these research papers assume no server delay in joining the system after completion of a

vacation period and no delay in starting the repair process after a breakdown occurs. In this work we study an M[X]/G/1
queueing system with Bernoulli schedule vacation where after completion of the service of a customer the server may take

a vacation with probability p or stay on in the system to serve the customers with probability1 − p In most of the studies

on vacation queues, it is assumed that the server joins the queue immediately after the vacation period is over. However,

in this paper we add a realistic assumption that the server may have to go for an extended vacation due to many reasons

which may include illness or engagement in another activity or delay in traveling etc.

We further assume that the server may face random breakdowns from time to time. When the server breaks down, it does

not enter the repair process immediately and there is a delay time waiting for the repair to start.

We assume that the service times, vacation times, extended vacation times, repair times and delay times have a general
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distribution while the breakdown times are exponentially distributed.

The rest of this work is organized as follows: Section 2 gives the mathematical model containing the assumptions under-

lying the considered queueing system. Related definitions and used notation are given in Section 3. Equations governing

the system are formulated in Section 4. In section 5 we give the solution of the equations given in the previous section

to find the queue size distribution at a random epoch. The average queue size and the average waiting time are given

in Section 6. Some special cases have been discussed in Section 7. In Section 8, we consider a numerical example to

illustrate application of our results.

2. Mathematical Model

We consider a batch arrival queueing system, where customers arrive at the system according to a compound Poisson

process with batch size random variable X and batch arrival rate λ. Letck = Pr[X = k], then λckdtis the probability that

during a short time interval (t, t + Δt)a batch of size k (k = 1, 2, 3, ...) arrives the system.

Although the customers arrive in groups, the single server can serve only one customer at a time based on the (FCFS)

discipline. The service times assumed to follow a general distribution. Let G(x) and g(x) be the distribution function

and the density function of the service time respectively. The conditional probability of service completion during the

interval, (x, x+Δx],given that the elapsed service time is x, is given by μ(x)Δx, so that μ(x) = g(x)/(1−G(x)) and, therefore

g(s) = μ(s) exp(−
s∫

0

μ(x)dx). Once the single server complete a customer service it can go on a vacation of random length

with probability p, or stay in the system providing service with probability 1 − p. The vacation times are assumed to

follow a general distribution. Let B(x) and b(x) be the distribution function and the density function of the vacation time

respectively.The conditional probability of a vacation completion during the interval, (x, x + Δx],given that the elapsed

vacation time is x, is given by β(x)Δx, so that β(x) = b(x)/(1−B(x)) implies to b(v) = β(v) exp(−
v∫

0

β(x)dx). On completion

of a vacation period, the server has the further option of taking an extended vacation. We assume that with probability

r (0 ≤ r ≤ 1)the server takes an extended vacation and with probability 1 − rrejoins the system immediately after

completion of the first vacation. The extended vacation times follows a general (arbitrary) distribution with distribution

function W(x) and density function w(x). Let ϕ(x)Δx be the conditional probability of a completion of an extended

vacation during the interval (x, x +Δx] given that the elapsed extended vacation time is x, so that ϕ(x) = w(x)/(1 − W(x))

and therefore, w(x) = ϕ(x) exp(−
x∫

0

ϕ(t)dt). The system may breakdown at random, and breakdowns are assumed to occur

according to a Poisson stream with mean breakdown rateα > 0. Further we assume that once the system breaks down, the

customer whose service is interrupted comes back to the head of the queue. Once the system breakdown, its repairs do

not start immediately and there is a delay time.

The delay times follow a general (arbitrary) distribution with distribution function F(x) and density function f (x). Let

θ(x)Δx be the conditional probability of a completion of a delay during the interval (x, x + Δx] given that the elapsed

delay time is x, so that, θ(x) = f (x)/(1 − F(x)) and therefore, f (x) = θ(x) exp(−
x∫

0

θ(t)dt).

The duration of repairs follows a general (arbitrary) distribution with distribution function H(x) and density function h(x).

Let γ(x)Δx be the conditional probability of a completion of repairs during the interval (x, x + Δx] given that the elapsed

repair time is x, so that γ(x) = h(x)/(1 − H(x)) and therefore h(x) = γ(x) exp(−
x∫

0

γ(t)dt). We assume that all stochastic

processes involved in the system are independent of each other.

3. Definitions and notations

The set of notations and their definitions that we use are set out in table 1.

Assuming that the steady state exists, we let

lim
t→∞ An(t, x) = An(x), lim

t→∞ An(t) = lim
t→∞

∞∫
0

An(t, x)dx = An,

lim
t→∞

dAn(t)
dt = 0, where A = P, V, D, E, R

(1)

4. Equations Governing the System

According to the assumptions mentioned above, the system has the following set of differential-difference equations
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∂

∂x
Pn(x) = −(λ + μ(x) + α)Pn(x) + λ

n∑
i=1

ciPn−i(x) n ≥ 1 (2)

∂

∂x
P0(x) = −(λ + μ(x) + α)P0(x) (3)

∂

∂x
Vn(x) = −(λ + β(x))Vn(x) + λ

n∑
i=1

ciVn−i(x) n ≥ 1 (4)

∂

∂x
V0(x) = −(λ + β(x))V0(x) (5)

∂

∂x
En(x) + (λ + ϕ(x))En(x) = λ

n∑
i=1

ciEn−i (x) n ≥ 1 (6)

∂

∂x
E0(x) = −(λ + ϕ(x))E0(x) (7)

∂

∂x
Dn(x) + (λ + θ(x))Dn(x) = λ

n∑
i=1

ciDn−i (x) n ≥ 1 (8)

∂

∂x
D0(x) = 0 (9)

∂

∂x
Rn(x) + (λ + γ(x))Rn(x) = λ

n∑
i=1

ciRn−i (x) n ≥ 1 (10)

∂

∂x
R0(x) = −(λ + γ(x))R0(x) = 0 (11)

λQ =

∞∫
0

R0(x)γ(x)dx + (1 − p)

∞∫
0

P0(x)μ(x)dx + (1 − r)

∞∫
0

V0(x)β(x)dx +

∞∫
0

E0(x)ϕ(x)dx (12)

The following boundary conditions will be used to solve the above equations

Pn(0) = (1 − p)
∞∫
0

Pn+1(x)μ(x)dx + (1 − r)
∞∫
0

Vn+1(x)β(x)dx +
∞∫
0

En+1(x)ϕ(x)dx

+
∞∫
0

Rn+1(x)γ(x)dx + λcn+1Q n ≥ 0

(13)

Vn(0) = p

∞∫
0

Pn(x)μ(x)dx n ≥ 0 (14)

En(0) = r

∞∫
0

Vn(x)β(x)dx n ≥ 0 (15)

Dn(0) = α

∞∫
0

Pn−1(x)dx = αPn−1 n ≥ 1 (16)
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D0(0) = 0 (17)

Rn(0) =

∞∫
0

Dn(x)θ(x)dx n ≥ 1 (18)

R0(0) = 0 (19)

5. Queue Size Distribution at a Random Epoch

Defining the following probability generating functions

Aq(x, z) =
∞∑

n=0
znAn(x) Aq(z) =

∞∑
n=0

znAn

where A = P, V, D, E, R

C(z) =
∞∑

i=1
zici

(20)

We Multiply equation (2) by zn, take the summation over n from 1 to ∞, add to (3) then by simplifying and using equation

(20) to obtain

∂

∂x
Pq(x, z) + (λ − λC(z) + μ(x) + α)Pq(x, z) = 0 (21)

Following a similar process, from equations (4) & (5), (6) & (7), (8) & (9), (10) & (11). we get respectively

∂

∂x
Vq(x, z) + (λ − λC(z) + β(x))Vq(x, z) = 0 (22)

∂

∂x
Eq(x, z) + (λ − λC(z) + ϕ(x))Eq(x, z) = 0 (23)

∂

∂x
Dq(x, z) + (λ − λC(z) + θ(x))Dq(x, z) = 0 (24)

∂

∂x
Rq(x, z) + (λ − λC(z) + γ(x))Rq(x, z) = 0 (25)

Multiply equation (13) by zn+1, sum over n from 0 to ∞, and use the generating functions defined in (20), we get

zPq(0, z) = (1 − p)
∞∫
0

Pq(x, z)μ(x)dx + (1 − r)
∞∫
0

Vq(x, z)β(x)dx +
∞∫
0

Eq(x, z)ϕ(x)dx +
∞∫
0

Rq(x, z)γ(x)dx + λC(z)Q

−
⎡⎢⎢⎢⎢⎣(1 − p)

∞∫
0

P0(x)μ(x)dx + (1 − r)
∞∫
0

V0(x, z)β(x)dx +
∞∫
0

E0(x)ϕ(x)dx +
∞∫
0

R0(x)γ(x)dx
⎤⎥⎥⎥⎥⎦ (26)

using equation (12) to Replace −
⎡⎢⎢⎢⎢⎣(1 − p)

∞∫
0

P0(x)μ(x)dx + (1 − r)
∞∫
0

V0(x, z)β(x)dx +
∞∫
0

E0(x)ϕ(x)dx +
∞∫
0

R0(x)γ(x)dx
⎤⎥⎥⎥⎥⎦ by

−λQ, we have

zPq(0, z) = (1 − p)
∞∫
0

Pq(x, z)μ(x)dx +
∞∫
0

Eq(x, z)ϕ(x)dx+(1 − r)
∞∫
0

Vq(x, z)β(x)dx

+
∞∫
0

Rq(x, z)γ(x)dx + λQ(C(z) − 1)

(27)
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Now multiply equation (14) by zn and sum over n from 0 to ∞, to obtain

Vq(0, z) = p

∞∫
0

Pq(x, z)μ(x)dx (28)

Similarly, we multiply equation (15) by zn and sum over n from 0 to ∞, we get

Eq(0, z) = r

∞∫
0

Vq(x, z)β(x)dx (29)

Multiply equation (16) by zn and sum over n from 1 to ∞ and taking into account (17), we get

Dq(0, z) = αzPq(z) (30)

Now multiply equation (18) by zn and sum over n from 1 to ∞ and taking into account (19), we get

Rq(0, z) =

∞∫
0

Dq(x, z)θ(x)dx (31)

Integrating equation (21) from 0 to x yields

Pq(x, z) = Pq(0, z)e
−(λ−λC(z)+α)x−

x∫
0

μ(t)dt
(32)

where Pq(0, z) is given by equation (57).

Let λ − λC(z) + α = a Integrating equation (32) by parts with respect to x yields

Pq(z) = Pq(0, z)

(
1 − G∗(a)

a

)
(33)

where G∗(a) =
∞∫
0

e−(λ−λC(z)+α)xdG(x) is the Laplace-Stieltjes transform of the service time G(x)

Now multiplying both sides of equation (32) by μ(x) and integrating over x, we get

∞∫
0

Pq(x, z)μ(x)dx = Pq(0, z)G∗(a) (34)

Using equation (34) from equation (28), we get

Vq(0, z) = pPq(0, z)G∗(a) (35)

Similarly, we integrate equation (22) from 0 to x, we get

Vq(x, z) = Vq(0, z)e
−(λ−λC(z))x−

x∫
0

β(t)dt
(36)

Substituting by the value of Vq(0, z) from (35) in equation (36), we get

Vq(x, z) = pPq(0, z)G∗(a)e
−(λ−λC(z))x−

x∫
0

β(t)dt
(37)

Let λ − λC(z) = b. Integrating equation (37) by parts with respect to x, we get
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Vq(z) =
pPq(0, z)G∗(a) (1 − B∗(b))

b
(38)

where B∗(b) =
∞∫
0

e−(λ−λC(z))xdB(x) is the Laplace-Stieltjes transform of the vacation time B(x).

Now multiplying both sides of equation (37) by β(x) and integrating over x, we get

∞∫
0

Vq(x, z)β(x)dx = pPq(0, z)G∗(a)B∗(b ) (39)

Integrating equation (23) from 0 to x and taking into account equations (29) and (39). we get

Eq(x, z) = Eq(0, z)e
−bx−

x∫
0

ϕ(t)dt
= rpPq(0, z)G∗(a)B∗(b )e

−bx−
x∫

0

ϕ(t)dt
(40)

By integrating equation (40) by parts with respect to x, we get

Eq(z) =
rpPq(0, z)G∗(a)B∗(b ) (1 − W∗(b))

b
(41)

where W∗(b) =
∞∫
0

e−(λ−λC(z))xdW(x) is the Laplace-Stieltjes transform of the extended vacation time W(x).

Now multiplying both sides of equation (40) by ϕ(x) and integrating over x, we get

∞∫
0

Eq(x, z)ϕ(x)dx = rpPq(0, z)G∗(a)B∗(b )W∗(b) (42)

Integrating equation (24) from 0 to x and taking into account the value of Dq(0, z) from (30), we get

Dq(x, z) = Dq(0, z)e
−bx−

x∫
0

θ(t)dt
= αzPq(z)e

−bx−
x∫

0

θ(t)dt
(43)

Integrating equation (43) by parts with respect to x and taking into account equation (33), we get

Dq(z) =
αzPq(z) (1 − F∗(b))

b
=
αzPq(0, z) (1 − G∗(a)) (1 − F∗(b))

a b
(44)

where F∗(b) =
∞∫
0

e−(λ−λC(z))xdF(x) is the Laplace-Stieltjes transform of the delay time F(x).

Now multiplying both sides of equation (43) by θ(x), integrating over x and taking into account equation (33), we get

∞∫
0

Dq(x, z)θ(x)dx = αzPq(z)F∗(b) =
αzPq(0, z) (1 − G∗(a)) F∗(b)

a
(45)

Now integrating equation (25) from 0 to x, and taking into account equations (31) and (45), we get

Rq(x, z) = Rq(0, z)e
−bx−

x∫
0

γ(t)dt
=
αzPq(0, z) (1 − G∗(a)) F∗(b)

a
e
−bx−

x∫
0

γ(t)dt
(46)

integrating equation (46) by parts with respect to x, we get
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Rq(z) =
αzPq(0, z) (1 − G∗(a)) F∗(b)(1 − H∗(b))

a b
(47)

where H∗(b) =
∞∫
0

e−(λ−λC(z))xdH(x) is the Laplace-Stieltjes transform of the repair time H(x).

Multiplying both sides of equation (46) by γ(x) and integrating over x, we get

∞∫
0

Rq(x, z)γ(x)dx =
αzPq(0, z) (1 − G∗(a)) F∗(b)H∗(b)

a
(48)

Using equations (34), (39), (42) and (48) in equation (27) yields

Pq(0, z) =
−a bQ

a (z − G∗(a) (1 − p + pB∗(b )(1 − r + rW∗(b)))) − αz (1 − G∗(a)) F∗(b)H∗(b)
(49)

Substituting Pq(0, z) in equation (33), (38), (41), (44) and (47), we obtain

Pq(z) =
− bQ (1 − G∗(a))

a (z − G∗(a) (1 − p + pB∗(b )(1 − r + rW∗(b)))) − αz (1 − G∗(a)) F∗(b)H∗(b)
(50)

Vq(z) =
−a QpG∗(a) (1 − B∗(b))

a (z − G∗(a) (1 − p + pB∗(b )(1 − r + rW∗(b)))) − αz (1 − G∗(a)) F∗(b)H∗(b)
(51)

Eq(z) =
−a QrpG∗(a)B∗(b ) (1 − W∗(b))

a (z − G∗(a) (1 − p + pB∗(b )(1 − r + rW∗(b)))) − αz (1 − G∗(a)) F∗(b)H∗(b)
(52)

Dq(z) =
−Qαz (1 − G∗(a)) (1 − F∗(b))

a (z − G∗(a) (1 − p + pB∗(b )(1 − r + rW∗(b)))) − αz (1 − G∗(a)) F∗(b)H∗(b)
(53)

Rq(z) =
−Qαz (1 − G∗(a)) F∗(b)(1 − H∗(b))

a (z − G∗(a) (1 − p + pB∗(b )(1 − r + rW∗(b)))) − αz (1 − G∗(a)) F∗(b)H∗(b)
(54)

Let S q(z) denote the probability generating function of the queue size irrespective of the state of the system. i.e S q(z) =

Pq(z) + Vq(z) + Eq(z) + Dq(z) + Rq(z).

Then adding equations (50), (51), (52), (53) and (54), we obtain

S q(z) =
− Q (1 − G∗(a)) {b + αz (1 − F∗(b)H∗(b))} − a QpG∗(a) { 1 − B∗(b ) (1 − r + rW∗(b))}

a (z − G∗(a) (1 − p + pB∗(b )(1 − r + rW∗(b)))) − αz (1 − G∗(a)) F∗(b)H∗(b)
(55)

In order to find Q, we use the normalization condition S q(1) + Q = 1.

Note that for z = 1, S q(1) is indeterminate of the 0/0 form. Therefore, we apply L’Hopitals Rule on equation (55), to

obtain

lim
z→1

S q(z) =
QλE(I) {(1 − G∗(α)) (1 + α(E(D) + E(R)) + αp G∗(α) (E(V) + rE(eV))}

−αpλE(I)G∗(α) (E(V) + rE(eV)) − λE(I) (1 − G∗(a)) [1 + α(E(D) + E(R))] + αG∗(α)
(56)

where C(1) = 1, C′(1) = E(I) is the mean batch size of the arriving customers, B∗ (0) = 1 and B∗′(0) = −E(V) the mean

vacation time, W ∗ (0) = 1 and W∗′(0) = −E(eV) the mean extended vacation time, F ∗ (0) = 1, and F∗′(0) = −E(D) the

mean delay time and H ∗ (0) = 1, and H∗′(0) = −E(R) the mean repair time.

Therefore, adding Q to equation (61) and equating to 1 and simplifying, we get

Q = 1 − λE(I)

[
1

αG∗(α)
+

E(D)

G∗(α)
+

E(R)

G∗(α)
− 1

α
− E(D) − E(R) + p (E(V) + rE(eV))

]
(57)
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Equation (57) gives the probability that the server is idle. From equation (57) the utilization factor, ρ of the system is

given by

ρ = λE(I)

[
1

αG∗(α)
+

E(D)

G∗(α)
+

E(R)

G∗(α)
− 1

α
− E(D) − E(R) + p (E(V) + rE(eV))

]
(58)

where ρ < 1 is the stability condition under which the steady states exits.

Substituting for Q from (57) into (55), we have completely and explicitly determined S q(z), the probability generating

function of the queue size.

6. The Average Queue Size and the Average Waiting Time

Let Lqdenote the mean number of customers in the queue under the steady state. Then

Lq =
d
dz

S q(z)

∣∣∣∣∣
z=1

(59)

Since this formula is of the 0/0 form, then we write S q(z) given in (55) as S q(z) = N(z)/D(z) where N(z) and D(z) are the

numerator and denominator of the right hand side of (55) respectively. Then using the L’Hopital’s rule twice we obtain

Lq = lim
z→1

D′(z)N′′(z) − N′(z)D′′(z)

2 (D′(z))2
(60)

where primes and double primes in (60) denote first and second derivatives at z = 1, respectively. Carrying out the

derivatives at z = 1, we have

N′(1) = QλE(I) {(1 − G∗(α)) (1 + α(E(D) + E(R))) + αpQ G∗(α) (E(V) + rE(eV))} (61)

N′′(1) = (λE(I))2 Q {α(1 − G∗(α))
[
E(D2) + E(R2) + 2E(D)E(R)

]
+ 2G∗′(α) (1 + α(E(D) + E(R)))

+αpG∗(α)
[
E(V2) + rE(eV2) + 2rE(V)E(eV)

]
− 2p (E(V) + rE(eV)) (αG∗′ (α) +G∗(α))

}
+λE(I(I − 1))Q {(1 − G∗(α)) (1 + α(E(D) + E(R))) + αpG∗(α) (E(V) + rE(eV))}
+2αQλE(I)(1 − G∗(α))(E(D) + E(R))

(62)

D′(1) = −λE(I) {(1 − G∗(α)) (1 + α(E(D) + E(R))) + αpG∗(α) (E(V) + rE(eV))} + αG∗(α) (63)

D′′(1) = −(λE(I))2G∗(α)
{
αp

(
E(V2) + rE(eV2) + 2rE(V)E(eV)

)
− 2p (E(V) + rE(eV))

−α
(
E(D2) + E(R2) + 2E(D)E(R)

)}
− α(λE(I))2

(
E(D2) + E(R2) + 2E(D)E(R)

)
−λE(I(I − 1)) {(1 − G∗(α)) (1 + α(E(D) + E(R)) + αpG∗(α) (E(V) + rE(eV))}
−2(λE(I))2G∗′(α) {1 + α(E(D) + E(R)) − αp (E(V) + rE(eV))}
−2λE(I)

{
1 + αG∗′(α) + α(1 − G∗(α))(E(D) + E(R))

} (64)

where E(V2), E(R2), E(D2), E(eV2) are the second moment of the; vacation time, repair time, delay time and the extended

vacation time respectively, E(I(I − 1)) is the second factorial moment of the batch size of arriving customers, and Q has

been found in (57).

The following cases have been derived as some interesting particular cases of our results obtained in the previous section

6.

6.1 Case 1. no delay for repairs to start

Once the system breakdown, if its repairs start immediately and there is no delay time we let E(D) = 0 and F∗(b) = 1

Using this in the main results of this paper, we get

S q(z) =
− Q (1 − G∗(a)) {b + αz(1 − H∗(b))} − a QpG∗(a) { 1 − B∗(b )(1 − r + rW∗(b))}

a (z − G∗(a) (1 − p + pB∗(b )(1 − r + rW∗(b)))) − αz (1 − G∗(a)) H∗(b)
(65)

Q = 1 − λE(I)

[
1

αG∗(α)
+

E(R)

G∗(α)
− 1

α
− E(R) + p (E(V) + rE(eV))

]
(66)
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N′(1) = QλE(I) {(1 − G∗(α)) (1 + αE(R)) + αp G∗(α) (E(V) + rE(eV))} (67)

N′′(1) = (λE(I))2 Q
{
α(1 − G∗(α))E(R2) + 2G∗′(α) (1 + α(E(D) + E(R)))

+αpG∗(α)
[
E(V2) + rE(eV2) + 2rE(V)E(eV)

]
−2p (E(V) + rE(eV)) (αG∗′(α) +G∗(α))

}
+ 2αQλE(I)(1 − G∗(α))E(R)

+λE(I(I − 1))Q {(1 − G∗(α)) (1 + αE(R)) + αpG∗(α) (E(V) + rE(eV))}
(68)

D′(1) = −λE(I) {(1 − G∗(α)) (1 + αE(R)) + αpG∗(α) (E(V) + rE(eV))} + αG∗(α) (69)

D′′(1) = −(λE(I))2G∗(α)
{
αp

(
E(V2) + rE(eV2) + 2rE(V)E(eV)

)
− 2p (E(V) + rE(eV))

−αE(R2)
}
− α(λE(I))2E(R2)

−λE(I(I − 1)) {(1 − G∗(α)) (1 + αE(R)) + αpG∗(α) (E(V) + rE(eV))}
−2(λE(I))2G∗′ (α) {1 + αE(R) − αp (E(V) + rE(eV))}
−2λE(I)

{
1 + αG∗′ (α) + α(1 − G∗(α))E(R)

} (70)

The results obtained in (65) to (70) agree with the result given by the authors in previous work. (communicated for

publication)

6.2 Case 2. no extended vacation time

Once the vacation ends finish the server start the service immediately and there is no extended vacation time, we let r = 0

and W∗(b) = 1. Using this in the main results of this paper, we get

S q(z) =
− Q (1 − G∗(a)) {b + αz (1 − F∗(b)H∗(b))} − a QpG∗(a) { 1 − B∗(b )}

a (z − G∗(a) (1 − p + pB∗(b ))) − αz (1 − G∗(a)) F∗(b)H∗(b)
(71)

Q = 1 − λE(I)

[
1

αG∗(α)
+

E(D)

G∗(α)
+

E(R)

G∗(α)
− 1

α
− E(D) − E(R) + pE(V)

]
(72)

N′(1) = QλE(I) {(1 − G∗(α)) (1 + α(E(D) + E(R))) + αp G∗(α) E(V)} (73)

N′′(1) = (λE(I))2 Q {α(1 − G∗(α))
[
E(D2) + E(R2) + 2E(D)E(R)

]
+2G∗′(α) (1 + α(E(D) + E(R))) + αpG∗(α)E(V2) − 2pE(V)(αG∗′ (α) +G∗(α))

}
+λE(I(I − 1))Q {(1 − G∗(α)) (1 + α(E(D) + E(R))) + αpG∗(α)E(V)}
+2αQλE(I)(1 − G∗(α))(E(D) + E(R))

(74)

D′(1) = −λE(I) {(1 − G∗(α)) (1 + α(E(D) + E(R))) + αpG∗(α)E(V)} + αG∗(α) (75)

D′′(1) = −(λE(I))2G∗(α)
{
αpE(V2) − 2pE(V) − α

(
E(D2) + E(R2) + 2E(D)E(R)

)}
−α(λE(I))2

(
E(D2) + E(R2) + 2E(D)E(R)

)
−λE(I(I − 1)) {(1 − G∗(α)) (1 + α(E(D) + E(R)) + αpG∗(α)E(V)}
−2(λE(I))2G∗′(α) {1 + α(E(D) + E(R)) − αpE(V)}
−2λE(I)

{
1 + αG∗′(α) + α(1 − G∗(α))(E(D) + E(R))

} (76)

The results obtained in equations (71) to (76) agree with the result given by the authors in previous work. (See F. Rehab,

Madan, K. C. and Cormac A. L (2010)

6.3 Case 3. no delay for repairs to start and No extended vacation time

If there is no delay time, we let E(D) = 0 and F∗(b) = 1, so we consider there is no extended vacation time we let r = 0

and W∗(b) = 1. Using this in the main results of this paper, we get

16 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 4; November 2011

S q(z) =
− Q (1 − G∗(a)) {b + αz (1 − H∗(b))} − a QpG∗(a) { 1 − B∗(b )}

a (z − G∗(a) (1 − p + pB∗(b ))) − αz (1 − G∗(a)) H∗(b)
(77)

Q = 1 − λE(I)

[
1

αG∗(α)
+

E(R)

G∗(α)
− 1

α
− E(R) + pE(V)

]
(78)

N′(1) = QλE(I) {(1 − G∗(α)) (1 + αE(R))) + αp G∗(α) E(V)} (79)

N′′(1) = (λE(I))2 Q
{
α(1 − G∗(α))E(R2) + 2G∗′(α)E(R)

+αpG∗(α)E(V2) − 2pE(V)(αG∗′(α) +G∗(α))
}

+λE(I(I − 1))Q {(1 − G∗(α)) (1 + αE(R)) + αpG∗(α)E(V)}
+2αQλE(I)(1 − G∗(α))E(R))

(80)

D′(1) = −λE(I) {(1 − G∗(α)) (1 + αE(R)) + αpG∗(α)E(V)} + αG∗(α) (81)

D′′(1) = −(λE(I))2G∗(α)
{
αpE(V2) − 2pE(V) − αE(R2)

}
−α(λE(I))2E(R2) − 2(λE(I))2G∗′ (α) {1 + αE(R) − αpE(V)}
−λE(I(I − 1)) {(1 − G∗(α)) (1 + αE(R)) + αpG∗(α)E(V)}
−2λE(I)

{
1 + αG∗′(α) + α(1 − G∗(α))E(R)

} (82)

The results obtained in equations (77) to (82) agree with the result given by Maraghi, Madan, & Darby-Dowman (2009

a).

7. Numerical Example

To numerically illustrate the results obtained in this work we consider that the service times, vacation times, delay times,

extended vacation times and repair times are exponentially distributed. The next tables shows the effect of the new

contribution of this work, where we study different performance measures under different values of the new parametersr, ϕ
and θ All the values were chosen so that the steady state condition is satisfied.

In Table 2 we choose the following values:

μ = 7, β = 6, γ = 3, λ = 2, ϕ = 5, θ = 7, α = 2, E(I) = 1 and E(I(I − 1)) = 0,we consider that r takes the values 0,

0.25 and 0.5,while p takes the values 0.25, 0.5 and 0.75.

In Table 3 we consider μ = 7, λ = 2, α = 2, θ = 7, γ = 3, r = 0.5, p = 0.5, E(I) = 1 and E(I(I − 1)) = 0, whileβ takes

the values 5, 7, 9 and ϕ takes the values 3, 5, and 7.

In Table 4 we consider μ = 7, λ = 2, α = 2, β = 9, ϕ = 7, p = 0.5, r = 0.5, E(I) = 1 and E(I(I − 1)) = 0, while γ
takes the values 3, 5, and 7 and θ takes the values 4, 6, and 8.

Table 2 shows that increasing the value of r or p causes increasing the value of utilization factor, the mean queue size and

the mean waiting time of the customers while the server idle time decreases.

Table 3 shows that increasing the value of β or ϕ causes decreasing the value of utilization factor, the mean queue size and

the mean waiting time of the customers while the server idle time increases.

It is clear from Table 4 that as long as we increase the value of γ or θ, the server idle time increases while the utilization

factor, the mean queue size and the mean waiting time of the customers, all decrease. All the trends shown by the tables

are as expected.
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Table 1.

Notations Definitions
Pn(t, x) probability that at time t, there are n (n ≥ 0) customers in the queue excluding the

customer in service and the elapsed service time of this customer is x

Pn(t) =
∞∫
0

Pn(t, x)dx probability that there are n (n ≥ 0)customers in the queue excluding the customer in

service irrespective of the value of x
Vn(t, x) probability that at time t, there are n (n ≥ 0) customers in the queue and the server is on

vacation with elapsed vacation time x

Vn(t) =
∞∫
0

Vn(t, x)dx probability that at time t, there are n (n ≥ 0) customers in the queue and the server is on

vacation irrespective of the value of x
Q(t) probability that at time t, there are no customers in the system and the server is idle but

available in the system.

Dn(t, x) probability that at time t, there are n (n ≥ 0) customers in the queue, and the server is

inactive due to a system breakdown and waiting for repairs to start with elapsed delay

time x

Dn(t) =
∞∫
0

Dn(t, x)dx probability that at time t, there are n (n ≥ 0) customers in the queue and the server is

waiting for repairs to start irrespective of the value of x
Rn(t, x) probability that at time t, there are n (n ≥ 0) customers in the queue, and the server is

under repair with elapsed repair time x

Rn(t) =
∞∫
0

Rn(t, x)dx probability that at time t, there are n (n ≥ 0) customers in the queue and the server under

repairs irrespective of the value of x
En(t, x) probability that at time t, there are n (n ≥ 0) customers in the queue, and the server is on

an extended vacation with elapsed extended vacation time x

En(t) =
∞∫
0

En(t, x)dx probability that at time t, there are n (n ≥ 0) customers in the queue and the server is on

an extended vacation.

Table 2.

r p ρ Q Lq Wq L W
0.25 0.6412 0.3588 1.9167 0.9584 2.5579 1.2789

0.5 0.7245 0.2755 2.6837 1.3419 3.4082 1.7041

0.75 0.8078 0.1922 4.1159 2.0579 4.9237 2.4619

0.25

0.25 0.6662 0.3338 2.1366 1.0683 2.8027 1.4014

0.5 0.7745 0.2255 3.5047 1.7523 4.2792 2.1396

0.75 0.8828 0.1172 7.4025 3.7013 8.2854 4.1427

0.5

0.25 0.6912 0.3088 2.392 1.196 3.0832 1.5416

0.5 0.8245 0.1755 4.7934 2.3967 5.6179 2.809

0.75 0.9578 0.0422 22.378 11.189 23.3359 11.6679

Published by Canadian Center of Science and Education 19



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 4; November 2011

Table 3.

β ϕ ρ Q Lq Wq L w

5

3 0.9245 0.0755 13.2268 6.6134 14.1513 7.0756

5 0.8578 0.1422 6.2031 3.1015 7.0609 3.5304

7 0.8293 0.1707 4.9356 2.4678 5.7649 2.8824

7

3 0.8673 0.1327 6.967 3.4835 7.8344 3.9172

5 0.8007 0.1993 4.0889 2.0444 4.8895 2.4448

7 0.7721 0.2279 3.4186 1.7093 4.1907 2.0954

9

3 0.8356 0.1644 5.4041 2.702 6.2397 3.1198

5 0.7689 0.2311 3.3906 1.6953 4.1595 2.0798

7 0.7404 0.2596 2.8861 1.4431 3.6265 1.8132

Table 4.

θ γ ρ Q Lq Wq L w

4

3 0.8016 0.1984 4.6216 2.3108 5.4232 2.7116

5 0.7254 0.2746 2.5479 1.2739 3.2733 1.6366

7 0.6927 0.3073 2.0145 1.0072 2.7072 1.3536

6

3 0.754 0.246 3.1879 1.594 3.9419 1.9709

5 0.6778 0.3222 1.7991 0.8995 2.4769 1.2384

7 0.6451 0.3549 1.4215 0.7107 2.0666 1.0333

8

3 0.7302 0.2698 2.6829 1.3414 3.413 1.7065

5 0.654 0.346 1.5192 0.7596 2.1731 1.0866

7 0.6213 0.3787 1.1966 0.5983 1.8179 0.909
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