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Abstract. The use of quantum bits (qubits) in cryptography holds
the promise of secure cryptographic quantum key distribution schemes.
Unfortunately, the implemented schemes are often operated in a regime
which excludes unconditional security. We provide a thorough investiga-
tion of security issues for practical quantum key distribution, taking into
account channel losses, a realistic detection process, and modifications
of the “qubits” sent from the sender to the receiver. We first show that
even quantum key distribution with perfect qubits might not be achiev-
able over long distances when fixed channel losses and fixed dark count
errors are taken into account. Then we show that existing experimen-
tal schemes (based on weak pulses) currently do not offer unconditional
security for the reported distances and signal strength. Finally we show
that parametric downconversion offers enhanced performance compared
to its weak coherent pulse counterpart.

1 Introduction

Quantum information theory suggests the possibility of accomplishing tasks that
are beyond the capability of classical computer science, such as information-
theoretically secure cryptographic key distribution [3, 5]. The lack of security
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proofs for standard (secret- and public-) key distribution schemes, and the
insecurity of the most widely used classical schemes (such as RSA [27]) against
potential attacks by quantum computers [29], emphasizes the need for provably
information-theoretically secure key distribution.

Whereas the security of idealized quantum key distribution (qkd) schemes
has been reported against very sophisticated collective [8, 7] and joint [22, 23, 6]
attacks, we show here that already very simple attacks severely disturb the
security of existing experimental schemes, for the chosen transmission length
and signal strength. For a different parameter region a positive security proof
against individual attacks has been given recently [19, 20] making use of ideas
presented here.

In the four-state scheme introduced in 1984 by Bennett and Brassard [3],
usually referred to as BB84, the sender (Alice) and the receiver (Bob) use two
conjugate bases (say, the rectilinear basis, +, and the diagonal basis, ×) for the
polarization of single photons. In basis + they use the two orthogonal basis states
|0+〉 and |1+〉 to represent “0” and “1” respectively. In basis × they use the two
orthogonal basis states |0×〉 = (|0+〉 + |1+〉)/

√
2 and |1×〉 = (|0+〉 − |1+〉)/

√
2

to represent “0” and “1”. The basis is revealed later on via an authenticated
classical channel that offers no protection against eavesdropping. The signals
where Bob used the same basis as Alice form the sifted key on which Bob can
decode the bit value. In absence of disturbance by an eavesdropper (Eve) and
errors of various kinds, the sifted key should be identical between Alice and Bob.
The remaining signals are ignored in the protocol and in this security analysis.
Finally, Alice and Bob test a few bits to estimate the error rate, and if it is less
than some threshold, they use error correction and privacy amplification [2, 4]
to obtain a secure final key [6, 23].

In order to be practical and secure, a quantum key distribution scheme must
be based on existing—or nearly existing—technology, but its security must be
guaranteed against an eavesdropper with unlimited computing power whose
technology is limited only by the rules of quantum mechanics. The experiments
that have been performed so far are usually based on weak coherent pulses
(wcp) as signal states with a low probability of containing more than one pho-
ton [2, 13, 30, 11, 25]. Initial security analysis of such weak-pulse schemes were
done [2, 15], and evidence of some potentially severe security problems (which
do not exist for the idealized schemes) have been shown [15, 32].

Using a conservative definition of security, we investigate such limitations
much further to show insecurity of various existing setups, and to provide sev-
eral explicit limits on experimental qkd. First, we show that secure qkd to
arbitrary distance can be totally impossible for given losses and detector dark
counts, even with the assumption of a perfect source. Second we show that qkd

can be totally insecure even with perfect detection, if considering losses and
multi-photon states. In a combination we compute a maximal distance beyond
which (for any given source and detection units) secure qkd schemes cannot be
implemented. Finally we prove the advantage of a better source which makes
use of parametric downconversion (pdc).
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2 Losses and Dark Counts

The effect of losses is that single-photon signals will arrive only with a probability
F at Bob’s site where they will lead to a detection in Bob’s detectors with a
probability ηB (detection efficiency). This leads to an expected probability of
detected signals given by psignal

exp = FηB. For optical fibres, as used for most
current experiments, the transmission efficiency F is connected to the absorption
coefficient β of the fibre, the length ` of the fibre and a distance-independent
constant loss in optical components c, via the relation

F = 10−
β`+c
10 (1)

which, for given β and c, gives a one-to-one relation between distance and trans-
mission efficiency. Quantum key distribution can also be achieved through free
space [2, 11], in which case the problem of lossy fibres is replaced by the problem
of beam broadening. Each of Bob’s detectors is also characterized by a dark
count probability dB per time slot in the absence of the real signal, so that for a
typical detection apparatus with two detectors the total dark count probability
is given by pdark

exp ≈ 2dB. The dark counts are due to thermal fluctuations in the
detector, stray counts, etc. Throughout the paper we assume conservatively that
Eve has control on channel losses and on ηB, that all errors are controlled by
Eve (including dark counts), and that Bob’s detection apparatus cannot resolve
the photon number of arriving signals. Without these assumptions, one gets a
relaxed security condition, which, however, is difficult to analyse and to justify.

The total expected probability of detection events is given by

pexp = psignal
exp + pdark

exp − psignal
exp pdark

exp

≤ psignal
exp + pdark

exp . (2)

There are two differently contributing error mechanisms. The signal contributes
an error with some probability due to misalignment or polarization diffusion.
On the other hand, a dark count contributes with probability approximately
1/2 to the error rate. As the transmission efficiency F becomes smaller and
smaller when the distance ` is increased, the errors due to dark counts become
dominant. Therefore, considering the relevant limit where we can neglect the
coincidence probability between a signal photon and a dark count, or between
dark counts in both detectors, we have for the error rate e (per sent signal) the
approximate lower bound

e º 1
2 p

dark
exp , (3)

where “x º y” means that x is approximately greater than or equal to y, when
second-order terms are neglected. The contribution to the error rate per sifted
key bit is then given by pe = e/pexp.

If the error rate per sifted key bit pe exceeds 1/4, there is no way to create
a secure key. With such an allowed error rate, a simple intercept/resend attack
(in which Eve measures in one of the two bases and resends according to her
identification of the state) causes Bob and Eve to share (approximately) half of
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Alice’s bits and to know nothing about the other half; hence, Bob does not pos-
sess information which is unavailable to Eve, and no secret key can be distilled.
Using pe = e/pexp and pe <

1
4 , we obtain a necessary condition for secure qkd

e < 1
4 pexp , (4)

and using (2, 3), we finally obtain psignal
exp º pdark

exp .

For ideal single-photon states we therefore obtain (with psignal
exp = FηB and

pdark
exp ≈ 2dB) the bound FηB º 2dB. We see that even for ideal single-photon

sources (SP), the existence of a dark count rate leads to a minimum transmission
efficiency

F > FSP ≈ 2dB/ηB (5)

below which qkd cannot be securely implemented. Even for perfect detection
efficiency (ηB = 1) we get a bound F > FSP ≈ 2dB. These bounds correspond,
according to (1), to a maximal covered distance, which mainly depends on β.

3 Losses and Imperfect Sources

In a quantum optical implementation, single-photon states would be ideally
suited for quantum key distribution. However, such states have not yet been
practically implemented for qkd, although proposals exist and experiments have
been performed to generate them for other purposes. The signals produced in
the experiments usually contain zero, one, two, etc., photons in the same polar-
ization (with probabilities p0, p1, p2, etc., respectively). The multi-photon part
of the signals, pmulti =

∑

i≥2 pi, leads to a severe security gap, as has been
anticipated earlier [2, 15, 32]. Let us present the photon number splitting (PNS)
attack, which is a modification of an attack suggested in [15] (the attack of [15]
was disputed in [32] so the modification is necessary): Eve deterministically splits
one photon off each multi-photon signal. To do so, she projects the state onto
subspaces characterized by n, which is the total photon number, which can be
measured via a quantum nondemolition (QND) measurement. The projection
into these subspaces does not modify the polarization of the photons. Then she
performs a polarization-preserving splitting operation, for example by an interac-
tion described by a Jaynes-Cummings Hamiltonian [26, 16] or an active arrange-
ment of beamsplitters combined with further QND measurements. She keeps
one photon and sends the other (n − 1) photons to Bob. When receiving the
data regarding the basis, Eve measures her photon and obtains full information.
Each signal containing more than one photon in this way will yield its complete
information to an eavesdropper.

The situation becomes worse in the presence of loss, in which case the eaves-
dropper can replace the lossy channel by a perfect quantum channel and forward
to Bob only chosen signals. This suppression is controlled such that Bob will find
precisely the number of non empty signals as expected given the characterization
of the lossy channel. If there is a strong contribution by multi-photon signals,
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then Eve can use only those signals and suppress the single-photon signals com-
pletely, to obtain full information on the transmitted bits. For an error-free setup,
this argument leads to the necessary condition for security,

pexp > pmulti , (6)

where now the signal contribution is given by

psignal
exp =

∑

i

pi[1− (1− F )i] . (7)

If this condition is violated, Eve gets full information without inducing any er-
rors nor causing a change in the expected detection rate. For given probabilities
pi and transmission rate F , a bound on the distance is obtained, even for per-
fect detection. The limitation on practical qkd as shown in (6) was reported
independently in [10, 18] after having been anticipated in [15].

Whereas this work concentrates mainly on insecurity results, we make here
also an important observation, which is useful for positive security proofs. For a
general source (emitting into the four BB84 polarization modes) analysing all
possible attacks in a large Hilbert space (the Fock space) is a very difficult task.
However, if Alice can dephase the states to create a mixture of “number states”
(in the chosen BB84 polarization state) the transmitted signals are replaced by
mixed states. Then, these states do not change at all when Eve performs a QND
measurement on the total photon number as part of a PNS attack! Therefore
Eve can be assumed to perform the QND part of the PNS attack without loss
of generality. In that case, it is much easier to check that the PNS attack is ac-
tually optimal since we start with an eavesdropper who knows the total photon
number of each signal. Fortunately, in realistic scenarios the dephasing hap-
pens automatically since the eavesdropper has no reference phase to the signal.
Therefore, the signal states appear to be phase-averaged (“dephased”) signals
from her perspective. In some experiments, a phase reference exists initially [25],
but could be destroyed by Alice adding random optical phase shifts to her weak
signals. Following this observation, a complete positive security proof against all
individual particle attacks has been subsequently given [19, 20]. More sophisti-
cated collective and joint attacks can also potentially be restricted to the PNS
attacks.

4 Putting it All Together

Let us return to the necessary condition for security. We can combine the idea
of the two criteria (4, 6) above to a single, stronger one, given by

e < 1
4 (pexp − pmulti) . (8)

This criterion stems from the scenario that Eve splits all multi-photon signals
while she eavesdrops on some of the single-photon signals—precisely on a pro-
portion (pexp − pmulti)/p1 of them—via the intercept/resend attack presented
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before, and suppresses all other single photon signals. We can think of the key
as consisting of two parts: an error-free part stemming from multi-photon sig-
nals, and a part with errors coming from single-photon signals. The error rate in
the second part has therefore to obey the same inequality as used in criterion (4).

We now explore the consequences of the necessary condition for security for
two practical signal sources. These are the weak coherent pulses and the signals
generated by parametric downconversion.

5 Weak Coherent Pulse Implementations

In qkd experiments, the signal states are, typically, weak coherent pulses (wcp)
containing, on average, much less than one photon. The information is contained
in polarization mode of the wcp.

Coherent states
|α〉 = e−α

2/2
∑

n

αn/
√
n! |n〉 (9)

with amplitude α (chosen to be real) give a photon number distribution (per
pulse [9])

pn = e−α
2 (

α2
)n
/n! . (10)

Since we analyse PNS attacks only, it doesn’t matter if the realistic “coherent
state” is a mixture of number states. Thus,

psignal
exp =

∞
∑

n=1

e−FηBα
2 (

FηBα
2
)n
/n! (11)

and

pmulti =
∞
∑

n=2

e−α
2 (

α2
)n
/n! . (12)

With pexp ≤ psignal
exp + 2dB and the error rate e º dB in (8) we find for α2 ¿ 1

(by expanding to 4th order in α and neglecting the term proportional to F 2η2
Bα

4)
the result

F º 2dB

ηB α2
+

α2

2 ηB
. (13)

The optimal choice α2 = 2
√
dB leads to the bound

F > FWCP ≈ 2
√

dB/ηB . (14)

To illustrate this example we insert numbers ηB = 0.11 and dB = 5× 10−6 taken
from the experiment performed at 1.3µm by Marand and Townsend [21]. Then
the criterion gives F º 0.041. With a constant loss of 5 dB and a fibre loss
at 0.38 dB/km, this is equivalent, according to (1), to a maximum distance of
24 km at an average (much lower than standard) photon number of 4.5 × 10−3.
As we used approximations to reach (14), the achievable distance could differ
slightly from this value either way.
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With α2 = 0.1, as in the literature, secure transmission to any distance is
impossible, according to our conditions. In that case, even if we assume ηB to be
out of control of the eavesdropper, we find that secure transmission to a distance
of more than 21 km is impossible. Frequently we find even higher average photon
numbers in the literature, although Townsend has demonstrated the feasibility
of qkd with intensities as low as α2 = 3 × 10−5 at a wavelength of 0.8µm [30].

6 Parametric Downconversion Implementations

The wcp scheme seems to be prone to difficulties due to the high probability of
signals carrying no photons (the vacuum contribution). This can be overcome in
part by the use of a parametric downconversion (pdc) scheme, which serves to
approximate single-photon states. Parametric downconversion has been used be-
fore for qkd [12, 28]. We use a different formulation, which enables us to analyse
the advantages and limits of the pdc method relative to the wcp approach.

To a good approximation, pdc produces pairs of photons. Although each
pair creation occurs at a random time, the two photons in the pair are created
simultaneously, and they are correlated in energy, direction of propagation and
polarization. Thus, detection of one photon provides information about the ex-
istence and properties of the partner photon without any destructive probing of
the partner photon itself [14]. More technically, we create the state in an output
mode described by photon creation operator a† conditioned on the detection of
a photon in another mode described by b†. If we neglect dispersion, then the
output of the pdc process is described [31] on the two modes with creation
operators a† and b† using the operator

Ta b(χ) = eiχ(a†b†−ab) , (15)

with χ¿ 1, as

|Ψa b〉 = Ta b(χ)|0, 0〉
≈
(

1− 1
2 χ

2 + 5
24 χ

4
)

|0, 0〉+
(

χ− 5
6 χ

3
)

|1, 1〉

+
(

χ2 − 7
6 χ

4
)

|2, 2〉+ χ3|3, 3〉+ χ4|4, 4〉 . (16)

This state is a superposition of two–mode number states where |m,m〉 corre-
sponds to a flux of m photons in each mode. Whereas the earlier discussion on
the wcp concerns distinct pulses, and the number state corresponds to a specific
number of photons in the pulse (i.e. localized in time), the continuous output
of the pdc is better represented in terms of photon flux states [9]. On the other
hand, we can interpret these number states for pdc as localized number states,
to compare with the wcp case, by assuming the presence of choppers in each of
the modes. A chopper periodically blocks the mode, thus converting a continuous
output into a periodic sequence of pulses. By placing synchronized choppers in
each mode, the continuous output becomes a sequence of pulses and the photon
flux state can be regarded as a photon number state (per pulse).
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If we had an ideal detector resolving photon numbers (that is, a perfect
counter) then we could create a perfect single-photon state by using the state
in mode a conditioned on the detection of precisely one photon in the pulse in
mode b. However, realistic detectors useful for this task have a single-photon
detection efficiency far from unity and can resolve the photon number only at
high cost, if at all. Therefore, we assume a detection model which is described
by a finite detection efficiency ηA and gives only two possible outcomes: either
it is not triggered or it is triggered, thereby showing that at least one photon
was present. The detector may experience a dark count rate at dA per time slot.
The two POVM elements describing this kind of detector can be approximated
for our purpose by

E0 = (1− dA)|0〉〈0|+
∞
∑

n=1

(1− ηA)
n|n〉〈n| (17)

and

Eclick = dA|0〉〈0|+
∞
∑

n=1

(1− (1− ηA)
n)|n〉〈n| . (18)

The reduced density matrix for the output signal in mode b conditioned on a
click of the detector monitoring mode a is then given by

ρ =
1

N
Trb [|Ψa b〉〈Ψa b|Eclick]

≈ 1

N

[

dA

(

1− χ2 + 2
3 χ

4
)

|0〉〈0|

+ ηAχ
2
(

1− 5
3 χ

2
)

|1〉〈1|+ ηA(2− ηA)χ
4|2〉〈2|

]

(19)

with the normalization constant N . To create the four signal states we rotate
the polarization of the signal, for example using a beam-splitter and a phase
shifter. Note that a mixture of Fock states is created by the detection process,
so that the PNS attack is optimal for Eve.

After some calculation following the corresponding calculation in the wcp

case, the necessary condition for security (8) takes for the signal state (19) the
form

F º 2dA dB

ηA ηB χ2
+

2dB

ηB
+

2− ηA

ηB
χ2 (20)

since we assume dB ¿ 1 and χ2 ¿ 1 and neglect terms going as χ4, dBdA, and
χ2dB. The first error term is due to coincidence of dark counts, the second error
term is due to coincidence of a photon loss and a dark count at Bob’s site; the
third term is the effect of multi photon signal (signals that leak full information
to the eavesdropper). As in the wcp case, the optimal choice of

χ2 =

√

2dAdB

ηA(2− ηA)
(21)
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leads to the necessary condition for security

F > FPDC ≈ 2

√

2dA dB (2− ηA)

ηA η2
B

+
2dB

ηB
. (22)

If we now assume that Alice and Bob use the same detectors as in the wcp case
with the numbers provided by [21], we obtain FPDC º 8.4× 10−4 corresponding
via (1) to a distance of 68 km.

Since we can use downconversion setups which give photon pairs with differ-
ent wavelength, we can use sources so that one photon has the right wavelength
for transmission over long distances, e.g. 1.3 µm, while the other photon has a
frequency which makes it easier to use efficient detectors [12]. In the limit of
Alice using perfect detectors (but not perfect counters), ηA = 1 and dA = 0, we
obtain

FPDC ≈ 2dB/ηB , (23)

as for single-photon sources, yielding a maximal distance of 93 km. This optimal
distance might also be achievable using new single-photon sources of the type
suggested in [17].

7 Conclusions

We have shown a necessary condition for secure qkd which uses current exper-
imental implementations. We find that secure qkd might be achieved with the
present experiments using wcp if one would use appropriate parameters for the
expected photon number, which are considerably lower than those used today.
With current parameters, it seems that all current wcp experiments cannot be
proven secure. The distance that can be covered by qkd is mainly limited by
the fibre loss, but, with α2 > 0.1, wcp schemes might be totally insecure even
to zero distance (in several of the existing experiments), due to imperfect detec-
tion. The distance can be increased by the use of parametric downconversion as
a signal source, but even in this case the fundamental limitation of the range
persists, and a radical reduction of β or of the dark counts is required in order
to increase the distance to thousands of kilometers.

The proposed “4+2” scheme [15], in which a strong reference pulse (as in [1])
from Alice is used in a modified detection process by Bob, might not suffer from
the sensitivities discussed here, but the security analysis would have to follow
different lines. The use of quantum repeaters [24] (based on quantum error-
correction or entanglement purification) or of a string of teleportation stations
in the far future can yield secure transmission to any distance, and the security
is not altered even if the repeaters or stations are controlled by Eve.
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