
Reasoning about Continuations

with Control E�ects

Pierre Jouvelot 1;2

David K. Gi�ord 2

Abstract

We present a new static analysis method for �rst-class
continuations that uses an e�ect system to classify the
control domain behavior of expressions in a typed poly-
morphic language. We introduce two new control ef-
fects, goto and comefrom, that describe the control 
ow
properties of expressions. An expression that does not
have a goto e�ect is said to be continuation following
because it will always call its passed return continua-
tion. An expression that does not have a comefrom ef-
fect is said to be continuation discarding because it will
never preserve its return continuation for later use. Un-
observable control e�ects can be masked by the e�ect
system. Control e�ect soundness theorems guarantee
that the e�ects computed statically by the e�ect sys-
tem are a conservative approximation of the dynamic
behavior of an expression.
The e�ect system that we describe performs certain

kinds of control 
ow analysis that were not previously
feasible. We discuss how this analysis can enable a va-
riety of compiler optimizations, including parallel ex-
pression scheduling in the presence of complex control
structures, and stack allocation of continuations. The
e�ect system we describe has been implemented as an
extension to the FX-87 programming language.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by the O�ce of Naval Research under contract number N00014-
83-K-0125.

1CAI, Ecole des Mines, 60 bvd Saint-Michel, 75272, PARIS,
France (E-mail: JOUVELOT@FREMP11.bitnet)

2LCS, Massachusetts Institute of Technology, 545 Techno-
logy Square, Cambridge, MA 02139, USA (E-mail:
GIFFORD@BROKAW.LCS.MIT.EDU)

Categories and Subject Descriptions: D.1.3 [Program-
ming Techniques] { Concurrent Programming: E�ect
systems; D.1.m [Programming Techniques] { Mis-
cellaneous: First-class continuations; D.3.1 [Program-
ming Languages] { Formal De�nitions and Theory;
D.3.3 [Programming Languages] { Language Con-
structs: Control structures, e�ect systems; D.3.4 [Pro-
gramming Languages] { Processors: Compilers, op-
timization.

General Terms: Languages, Theory, Veri�cation.

Additional KeyWords and Phrases: e�ect systems, type
systems, control e�ects, e�ect masking, control 
ow
analysis, FX-87.

1 Introduction

First-class continuations add a great deal of expressive
power to a programming language as they permit the
implementation of a wide variety of control structures,
including jumps, error-handlers, and coroutines [F87].
With this power comes substantial semantic [MR88] and
implementation [CHO88] complexities. Thus it would
be very useful to be able to precisely identify which
expressions in a program use �rst-class continuations
and in what manner.

We present a new static method for control 
ow anal-
ysis that performs certain kinds of analysis that were
not previously feasible. Speci�cally, we have developed
the �rst static method of determining which expressions
may not exhibit sequential control 
ow in a program-
ming language with �rst-class continuations.
Our static analysis technique is based on the use of an

e�ect system [LG88] to classify the possible control do-
main behavior of expressions. An e�ect system is based
on a kinded type system for the second-order lambda
calculus [M79]. Kinds are the \types" of descriptions
which include types and e�ects. Our type and e�ect
system has three base kinds: types, which describe the
value that an expression may return; e�ects, which de-
scribe the side-e�ects that an expression may have; and

1



regions, which are used to describe where side-e�ects
may occur. An expression that does not have an ob-
servable e�ect is said to be pure. Expressions that are
pure are referentially transparent.
Types, e�ects and regions are closely interrelated; in

particular, a function type incorporates a latent e�ect
that describes the side-e�ects that the function may
perform when it is applied, and a reference type in-
corporates a region that describes where the reference
is allocated. The kind system is used to verify the well-
formedness of descriptions; the type and e�ect system
is used to verify the well-formedness of expressions.
We can use an e�ect system for control 
ow analysis

by introducing two types of control e�ects, goto and
comefrom, that describe the control 
ow properties of
expressions. An expression that does not have a goto

e�ect is said to be continuation following because it will
always call its return continuation in the usual way. An
expression that does not have a comefrom e�ect is said
to be continuation discarding because it will never pre-
serve its return continuation for later use. This \dou-
ble negation" style of de�nitions is necessary when one
wants to express conservative approximations of run-
time program behaviors.
Unobservable control e�ects can be masked by the ef-

fect system. Our masking rule applies to expressions
that are externally well-behaved, even if they use con-
tinuations internally. Control e�ect soundness theorems
guarantee that the e�ects computed statically by the
e�ect system are a conservative approximation of the
dynamic behavior of an expression.
We show how our e�ect system can be used with the

procedure call-with-current-continuation inspired
from [R86], hereafter noted cwcc. This procedure allows
�rst-class access to the current continuation. Simpler
control structures based on labels and jumps can be
treated in a similar way.
Control e�ects are useful to the programmer, the lan-

guage designer and the compiler writer:

� Control e�ects let the programmer specify, in
machine-veri�able form, the expected run-time
control behavior of a given program, thus increas-
ing documentation, modularity and maintainabil-
ity of programs. Control e�ects also provide a pro-
grammer with a new framework in which to rea-
son about languages with �rst-class continuations.
Moreover, when unobservable control e�ects are
masked, a programmer knows that an expression
will be well-behaved.

� Control e�ects let the language designer limit the
use of continuations to simplify the semantics of
the language. For instance, by saying that top-
level de�nitions are not allowed to have comefrom

or goto e�ects, the problem of a variable \redef-
inition" by a \return" inside its define form is
avoided. In the same manner, mutations that are
performed by taking advantage of the implementa-
tion of recursive de�nitions by letrec [B89] can be
prohibited.

� Control e�ects let the compiler writer perform safe
optimizations in the presence of �rst-class continu-
ations. For instance, if a given cwcc expression has
a masked control e�ect, then the internal contin-
uation will be used only as a \downward funarg"
[S78] and thus the expression's continuation struc-
ture (control frames) can be stack allocated.

Control e�ects also allow sequential semantics to be pre-
served in the presence of both �rst-class continuations
and automatic compile-time detection of parallelism.
When compiling for a parallel target machine, the com-
piler can guarantee sequential semantics (which is in-
timately related to the notion of continuations, which
represent the state of a sequential evaluation) by con-
sidering that control e�ects interfere with all e�ects.

In the remainder of this paper we describe the kernel
language KFX of FX-87 (Section 2), integrate control
e�ects into KFX (Section 3), state two control e�ect
soundness theorems (Section 4), give precise conditions
when it is possible to mask unobservable control e�ects
(Section 5), survey related work (Section 6), and sum-
marize our results (Section 7).

2 KFX - A Kernel Language for

FX-87

For pedagogical purposes we will study control e�ects
in the context of KFX, the kernel language of FX-87.
FX-87 [GJLS87][LG88] is a polymorphic typed language
that allows side-e�ects and �rst-class functions. Its syn-
tax and most of its standard operations are strongly in-
spired by Scheme [R86] which will be used in most of our
examples. The language KFX has the following Kind,
Description (Region, E�ect and Type) and Expression
domains (where I is the domain of identi�ers):

K ::= region

effect

type

R ::= I

@I region constant

2



F ::= I

pure no e�ect
(write R) write on R

(read R) read on R

(alloc R) allocation on R

(maxeff F0 F1) combination

T ::= I

(subr F (T) T) function
(poly (I K) T) polymorphic type
(ref T R) reference to T in

region R

D ::= R

F

T

E ::= I

(lambda (I T) E) lambda
abstraction

(E0 E1) application
(plambda (I K) E) polymorphic

abstraction
(proj E D) projection
(new R T E) allocation
(get E) dereference
(set E0 E1) mutation

In the e�ect domain, a pure expression is referentially
transparent. Impure expressions can write, read or
allocate (alloc) memory in regions which denote sets
of memory locations. Combined e�ects are introduced
by maxeff.

In the type domain, the subr type of a function en-
codes its latent e�ect F, the type of its argument and its
return type. Poly represents the type of polymorphic
values abstracted over kind K. (Ref T R) is the type of
a reference in the region R to a value of type T.

In the expression domain, just as lambda abstracts
E over the ordinary variable I of type T, plambda ab-
stracts E over the description variable I of kind K to
yield a polymorphic value. A polymorphic value is in-
stantiated with the proj construct. New allocates (i.e.,
has an alloc latent e�ect) a reference in region R to
the value of E of type T, get reads and returns the value
stored into the reference E and set writes E1 in the ref-
erence E0. As an example, we give below the code of the
polymorphic twice function that applies the function f

twice on its argument x:

(plambda (t type)

(plambda (e effect)

(lambda (f (subr e (t) t))

(lambda (x t)

(f (f x))))))

Note that twice is abstracted over the type t of the
argument of f and its latent e�ect e. The type of twice
is:

twice : (poly (t type)

(poly (e effect)

(subr pure

((subr e (t) t))

(subr e (t) t))))

The type and e�ect rules for application, abstraction,
polymorphic abstraction1 and projection follow. Just as
\:" is used to denote the \type of" relation, \!" is used
to denote the \e�ect of" relation. T is the type and
kind assignment function that maps variables to their
type or kind.

hE0; T i : (subr e (t1) t2) ! e0
hE1; T i : t1 ! e1

h(E0 E1); T i : t2 ! (maxeff e
(maxeff e0 e1))

hE; T [t1=I]i : t2 ! e
h(lambda (I t1) E); T i : (subr e (t1) t2) ! pure

hE; T [k=I]i : t ! pure
h(plambda (I k) E); T i : (poly (I k) t) ! pure

hE; T i : (poly (I k) t) ! e
h(proj E k0); T i : t[k0=I] ! e

where (f [y=x])z is y if z is x and fz otherwise (the same
notation on types is used to denote syntactic substitu-
tion). The remaining e�ect and type rules of KFX are
presented in [LG88].
The standard semantics [S86] of KFX is de�ned on

type-erased KFX expressions. A program is type-erased
by reducing plambda and proj expressions to their em-
bedded expressions and eliminating all type information
(see [L87] for a formal de�nition of type erasure).
The domain equations for locations, basic values, clo-

sures, values, environment, stores, results and continu-
ations in our standard semantics are as follows:

l : Loc
b : Basic
p : Clo = V al ! Cont ! Store! Answer
v : V al = Basic+ Clo+ Loc
u : Env = I! V al
s : Store = Loc! V al
a : Answer = V al
k : Cont = V al ! Store! Answer

where + means disjoint sum and ! is right-associative.

1We suppose alpha-renaming to avoid name capture.

3



The de�nition of Eval, of type E ! Env ! Cont !
Store! Answer, is fairly simple [S86]:

E [[ I ]]uk = k(u[[ I ]])

E [[ (lambda (I) E) ]]uk = k(�e:E [[ E ]]u[e=I])

E [[ (E0 E1) ]]uk = E [[ E0 ]]u(�e0:
E [[ E1 ]]u(�e1:

e0e1k))

E [[ (new E) ]]uk = E [[ E ]]u(�es:kl(s[e=l]))
where l = newLoc()

E [[ (get E) ]]uk = E [[ E ]]u(�es:k(se)s)

E [[ (set E0 E1) ]]uk = E [[ E0 ]]u(�e0:
E [[ E1 ]]u(�e1s1:

ke1(s1[e1=e0])))

where newLoc is a function that allocates fresh mem-
ory locations. Note that, contrarily to the Scheme set!
special form, the function set evaluates its �rst argu-
ment, which is a reference. For clarity, we omitted in-
jection and projection operations in sum domains.

3 Control E�ects Describe Po-

tential Behavior

The material of the previous section is a simpli�ed pre-
sentation of the e�ect system that is the basis of the
FX-87 programming language [GJLS87]. This static
system was mainly designed to cleanly deal with mem-
ory side-e�ects within a typed polymorphic language
which allows �rst-class functions. We show below how
this framework can be easily extended to deal with the
a-priori unrelated control side-e�ects that are caused by
�rst-class continuations. This shows the power and 
ex-
ibility of an e�ect system.

We introduce �rst-class continuations into KFX with
the Scheme function cwcc. The function cwcc passes a
procedural representation of its return continuation to
its argument, which must be a one-argument function.
In order to add cwcc to KFX we need merely to bind
cwcc to its value in the initial environment u. So, we
have :

u[[ cwcc ]] = �ek:e(�e0k0:ke0)k

The cwcc function gives the programmer access to
continuations. As �rst-class values, these continuations
can subsequently be stored into global variables or re-
turned, allowing a given expression to be evaluated more
than once (to return a result more than once) or to es-
cape from its current continuation (to discard its current
continuation by applying another one).

The cwcc function cannot be treated as pure. The
comefrom e�ect corresponds to the capture of a con-
tinuation and it is introduced by providing cwcc with
a (comefrom r) latent e�ect, where r is a region.
The region restricts the domain of in
uence of a given
continuation-capturing expression (see below). The fol-
lowing Scheme program shows that a compiler cannot
common subexpression eliminate calls to cwcc since
calling f1 would perform horrible-effects on the
store; these e�ects would not occur if f2 were called.
Thus the cwcc calls cannot be pure.

(let* ((f1 (cwcc (lambda (x) x)))

(x (horrible-effects))

(f2 (cwcc (lambda (x) x))))

...)

The goto e�ect corresponds to the \escaping" call of a
continuation and is introduced by providing a continua-
tion with a (goto r) latent e�ect, where r is the region
used in the cwcc expression that created the continua-
tion. The following Scheme program shows that any
e�ect can be exercised by the evaluation of a continua-
tion:

(let ((x (cwcc (lambda (f)

(cwcc (lambda (g) (f g)))

(h)

f))))

(horrible-effects)

...

(x 0)

...)

In this example, between the evaluations of (f g)

and (h), (horrible-effects) will be executed; thus
these expressions cannot be reordered. The e�ects of
(horrible-effects) will also be performed after any
call to x, since it is bound to the continuation that binds
the result of the call of cwcc to x.

In summary, the KFX type and e�ect rules can be
used to compute control e�ects by assigning cwcc the
following type2:

cwcc: (poly (r region)

(poly (t type)

(poly (e effect)

(subr (maxeff (comefrom r) e)

((subr e

((subr (goto r)

(t)

void))

t))

t))))

2Without loss of generality, we assume that the anti-aliasing
rule of FX-87 [GJLS87] is eliminated.

4



The function cwcc is abstracted over the region r in
which the continuation is located, the type t of the
eventual result and the latent e�ect e of the function
passed as argument. The latent e�ect of cwcc denotes
the combined e�ects of calling its argument and cap-
turing a continuation in r. The argument to cwcc is a
function that expects as argument the captured contin-
uation seen as a function with a (goto r) latent e�ect.
The type void indicates that a call to the continuation
will never return to its caller.

The control e�ects of an expression can be masked if
the e�ects cannot be observed outside of the expression.
For instance, if we follow the typing rules of KFX, then
we deduce that the following expression

(+ (cwcc (lambda (f) (f 0))) 1)

has both (goto r) and (comefrom r) e�ects for some
region r. However, it is easy to prove that this expres-
sion is well-behaved; it will call its return continuation
(it is continuation following) and will not preserve its
continuation (it is continuation discarding). Its control
e�ects can thus be masked as we discuss further in sec-
tion 5; in consequence, the continuation f will not need
to be heap allocated, thus improving run-time perfor-
mance and saving on memory consumption.

4 Soundness of comefrom and

goto e�ects

We now need to show that the comefrom and goto ef-
fects we compute for an expression are a conservative
estimate of the expression's dynamic behavior. With-
out loss of generality, we restrict our soundness proofs
to terminating expressions.

De�nition. An expression E is continuation follow-
ing i�, for every environment u and store s, there exist
two continuations k1 and k2 such that

E [[ E ]]uk1s 6= E [[ E ]]uk2s

The de�nition of equality we use is extensional. The
evaluation of a continuation-following expression ends
by calling the continuation it is passed and never escapes
via some continuation available in the environment or
store.

Theorem (Goto Soundness). If there does not
exist a region r such that E has e�ect (goto r), then E

is continuation following.

Proof sketch. By induction on the domain of ex-
pressions. Every construct of KFX is continuation fol-

lowing (a look at the semantic de�nition shows that
every equation of E ends by calling the continuation it
is passed), except the application (E0 E1). There are
two ways we can generate a function in KFX:

� if e0 is obtained by evaluating a lambda expression,
then it is continuation following if its body is,

� otherwise e0 comes from a continuation created by
a cwcc expression, and then the expression isn't
continuation following. But, this continuation has
latent e�ect (goto r) where r is the region that
cwcc has been projected onto. Therefore, the ap-
plication will have e�ect (goto r). 2

With this theorem, we know that the goto e�ect in-
formation collected by the KFX type system is a con-
servative (i.e. safe) approximation of the run-time be-
havior of a program.

We now prove the soundness of comefrom e�ects.
This aspect is a bit more complex, so we need some
preliminary de�nitions.

De�nition. A continuation collecting semantics of a
programming language L is a non-standard semantics of
L in which every evaluation of an expression E returns an
ordered pair made of the standard value of E and the set
of intermediate continuations captured while evaluating
E (i.e. continuations made available by calls to cwcc).

De�nition. Ec is the continuation collecting seman-
tics of E .

The precise de�nition of Ec is an extension of E , where
the set of continuations is passed along the computation
and updated by cwcc. For every function F used in the
semantics of KFX, there is an equivalent one in the con-
tinuation collecting semantics of KFX; we will note it
Fc. Note that the continuations kc successively take
the value to be passed, the set of (potentially available)
continuations and the current store. For instance, here
are the equations de�ning Ec for identi�er, lambda ex-
pression and application (j denotes the current set of
intermediate continuations):

Ec[[ I ]]ucjkc = kc(uc[[ I ]])j

Ec[[ (lambda (I) E) ]]ucjkc = kc(�ej:

Ec[[ E ]]uc[e=I]j)j

Ec[[ (E0 E1) ]]ucjkc = Ec[[ E0 ]]ucj(�e0j0:
Ec[[ E1 ]]ucj0(�e1j1:

e0e1j1kc))

and the de�nition for cwcc:

uc cwcc = �ejkc:e(�e
0j0k0

c:kce
0j0)(fkcg [ j)kc

5



De�nition. An expression context Ec is an expres-
sion with a \hole" in it, identi�ed by []. It can be �lled
with E by writing Ec[E].

De�nition. An expression context Ec is well-behaved
i� for every environment uc, store sc and continuation
kc, there exist an expression E and a value v such that

Ec[[ Ec[E] ]]ucfgkcsc = v; fg

where x; y is the ordered pair made of x and y and fg the
empty set. A well-behaved expression context doesn't
capture any continuation on its own.

De�nition. An expression E is continuation discard-
ing i� for every well-behaved expression context Ec, en-
vironment uc, store sc, continuation kc, value v and list
of continuations j:

Ec[[ Ec[E] ]]ucfgkcsc = v; j =) v 62 j

The idea behind this de�nition is that it isn't possible,
from the evaluation of E, to recover some continuation
caught in some global variable or returned by E. For
instance, the following expression :

(begin (cwcc (lambda (f)

(set x (lambda () f))))

(h))

isn't continuation discarding, since the well-behaved
context (begin [] ((get x))) returns a caught con-
tinuation if we replace the hole by the previous expres-
sion.

Theorem (Comefrom Soundness). If there does
not exist a region r such that E has e�ect (comefrom r),
then E is continuation discarding.

Proof sketch. The proof is by induction on the equa-
tions of Ec. The only way the set of caught continuations
can be extended is by a call to cwcc, which implies, fol-
lowing KFX typing rules, that there is a region r such
that this call has a (comefrom r) e�ect. 2

With this theorem, we know that the comefrom ef-
fect information collected by the KFX type system is a
conservative (i.e. safe) approximation of the run-time
behavior of a program.

5 Control E�ect Masking

FX-87 e�ect masking detects and eliminates e�ects of
an expression that are not observable (e.g., mutation of
locally allocated references) under the following condi-
tions:

� if no free variable uses the region r in its type, then
read and write e�ects on r can be masked,

� if r does not appear in the type of the result of the
expression, then alloc e�ects on r can be masked.

E�ect masking can be easily extended to deal with con-
trol e�ects. Control e�ect masking soundness a direct
extension of FX-87 type soundness and e�ect masking
soundness [GJLS87]. We use the following lemma:

Lemma. When evaluating E in the environment u,
continuation k and store s, the value passed to k is de-
termined by the values of the free variables and the stor-
age locations accessible via these free variables.

Proof sketch. By induction on E equations with the
use of the \location invariance" property of [L87] which
expresses that the choice of bound locations does not
in
uence the �nal result of the evaluation. 2

Theorem. A (goto r) e�ect of an expression E can
be masked if E does not import variables or return values
in the type of which r appears.

Proof sketch: We have to show that if the preceding
condition is veri�ed, then E is continuation following, i.e.
that for every u and s there exist k1 and k2 such that
E [[ E ]]uk1s 6= E [[ E ]]uk2s. By the previous lemma, the
value of E passed to k1 and k2 is de�ned only by the
values of the free variables of E, which appear in u, and
accessible (i.e. in the returned value) locations, in s. If r
does not appear in the type of any of these values, then,
by application of FX-87 type soundness, no (goto r)

e�ect can be performed by an external (i.e. not de�ned
in E) continuation. By goto e�ect soundness, E is then
continuation-following, and choosing k1 = (�es:0) and
k2 = (�es:1) will su�ce. 2

Theorem. A (comefrom r) e�ect of an expression
E can be masked if E does not import variables or return
values which have r in their type.

Proof sketch. In the same way, we have to show
that if the preceding condition is veri�ed, then E is con-
tinuation discarding. We want to prove that for every
Ec, uc, sc and kc, v is not a member of j where v and j
are as in the de�nition of \continuation discarding". As
before, Ec[E] can only refer to free variables of E or its
returned value. If r does not appear in the type of any
of these, then, by application of FX-87 type soundness,
no continuation e�ectively caught by cwcc forms inside
of E projected on r can be returned by Ec[E]. 2

6



Not surprisingly these control e�ect masking rules are
very similar to the ones already in FX-87 for memory
e�ects. One can view a call to cwcc as allocating some
data in the heap region to store the current stack and a
call to a continuation as reading a stored stack and writ-
ing to the current stack. This analogy is not quite right
since the goto e�ect requires a more stringent rule as
seen above. This can be demonstrated by the following
(admittedly contrived) Scheme program which shows an
expression with a goto e�ect that cannot be masked,
even though this expression has no free variables:

(let ((x (cwcc (lambda (f)

(let ((y (cons f f)))

(cwcc (lambda (g)

(set-cdr! y g)

(f y)))

((car y) y))))))

(cwcc (lambda (h)

(set-car! x h)

((cdr x) x))))

In this example, by calling f, we �rst bind x to the pair
y that contains f and the continuation g that precedes
the evaluation of ((car y) y). The �rst element of x
is mutated with h that corresponds to the rest of the
program and x's binding expression is reentered at the
point where ((car y) y) is evaluated; this evaluation
is not continuation-following. Although there are no
free variables in the expression x is bound to, the goto
e�ect of the call ((car y) y) cannot be masked; �rst-
class continuations allow the programmer to temporar-
ily export and mutate local locations, thus requiring the
supplementary check on the regions appearing in return
type (which is also, by construction, the type of values
passed to the captured continuation).

The major practical bene�t of control e�ect mask-
ing is the possibility of compile-time detection of exter-
nally well-behaved expressions that internally use com-
plex control structures. This allows a programmer to
formally reason about his program as if he were not
using �rst-class continuations, thus easing program cor-
rectness proofs. In addition, this allows compile-time
optimizations such as parallel evaluation of expressions
that have internal control e�ects or recognition of stack-
allocatable continuations, in which case cwcc can be im-
plemented with a more e�cient catch-throw mechanism
[M74].
When an expression has a masked control e�ect, it

may use full-
edged continuations internally. If con-
trol e�ects are kept at run time, control e�ects can be
used to dynamically optimize these internal continua-
tions as well. The only control frames that have to be
dumped into the heap when a continuation in region r

is captured are the ones that are 
agged with the same
(comefrom r) e�ect. These are precisely the control
frames that correspond to the dynamic extent of the
captured continuation up to the point where the control
e�ect is masked. We know that the control frames that
appear after this point won't be needed. Note that this
optimization is not of utmost importance in a system
that uses a stack/heap strategy for the implementation
of continuations [CHO88]. It can however be useful in
an implementation that supports parallel evaluation of
expressions since it avoids stack sharing between di�er-
ent processes.

6 Related Work

A related approach to our compile-time analysis of
programs uses the notion of \abstract interpretation"
[CC77]. Results in the area of functional languages
[AH87] with higher-order functions and polymorphism
cannot yet equal the outcome of our type and e�ect sys-
tem. For instance, the only analysis of continuations we
found [H87] does not address �rst-class continuations.

[F88a] proposed the �-v-CS formal system to deal
with higher-order functions in the presence of impera-
tive constructs. Continuations can be described in such
a framework and properties about them can be proved.
However, these proofs are not currently automated and
therefore cannot be used in compiling systems.

Thus, the compile time analysis of programming lan-
guages with �rst-class continuations appears to be new.
Most of the literature dealing with continuations gen-
erally focuses on their run-time characteristics and ap-
plications to various problems like coroutines [HFW86],
multiprocessing [W80] or backtracking [SM72].

The possibility of stack-allocation of continuation
structure, which is a major asset of the control e�ect
masking we presented above, is often presented, e.g. in
[HF87], but with an \interpreter view" of the problem.
The detection is done at run time (e.g., by checking
that a continuation is not used in a way incompatible
with its implementation). Our system performs a safe
approximation of this optimization at compile time.

Control e�ect masking allows the run-time system to
limit the amount of control information that has to be
dumped in the heap when a continuation is captured;
the \prompts" proposed in [F88b] or the \shift/reset"
of [DF89] o�er the same kind of facility, but they have
to be introduced by the programmer.

We showed elsewhere [JG89a, JG89b] how e�ect sys-
tems can be also used to describe communication side-
e�ects arising when communicating parallel processes
are added to a language that uses and e�ect systems.
Communication e�ects describe transmission operations

7



on shared channels between processes. Control and
communication e�ects show the power of an e�ect sys-
tem to statically describe run-time behavior of pro-
grams.

7 Conclusion

We presented a new static system that enables the use
of �rst-class continuations in a typed polymorphic lan-
guage. Simpler control structures, for example those
based on gotos and labels, can be straightforwardly
treated by the same framework.
Our new e�ect system introduces two new e�ect con-

structors, called goto and comefrom. Every expression
that does not have a goto (comefrom) e�ect is con-
tinuation following (discarding). Expressions that do
not have control e�ects are well-behaved in the sense
that they observe normal sequential execution seman-
tics. We showed how a precise de�nition of these no-
tions can be given with respect to the FX-87 standard
and continuation collecting semantics. We also proved
two e�ect soundness theorems.
The control e�ect masking rules enable us to de-

tect expressions that are externally well-behaved even
though they use continuations internally. Such expres-
sions can be optimized, e.g. continuations can be stack
allocated at compile time. Well-behaved expressions
can be scheduled to execute in parallel subject to their
other e�ects.
We have also found it relatively easy to implement

our e�ect system as an extension to FX-87. As dis-
cussed above, we only needed to add three constants to
our existing store e�ect system in order to handle the
complications introduced by cwcc.

Acknowledgments

We want to express our gratitude to Olivier Danvy for
his insightful comments on the optimization of continu-
ations and to one of the anonymous referees for encour-
aging us to look for reference [C73] \if only for hack
value".

References

[AH87] Abramsky, C., and Hankin, C. T. Eds. Ab-
stract Interpretation for Declarative Languages. J.
Wiley and Sons, 1987.

[B89] Bawden, A. Submission to the Scheme electronic
mailing list scheme@mc.lcs.mit.edu. March 2,
1989.

[C73] Clark, R. L. A Linguistic Contribution to
GOTO-Less Programming. Datamation, Decem-
ber 1973, 62-63. Reprinted in Communications of
the ACM 4, 27 (1984), 349-350.

[CC77] Cousot, P., and Cousot, R. Abstract Interpre-
tation: A Uni�ed Lattice Model for Static Analy-
sis of Programs by Construction and Approxima-
tion of Fixed Points. In Proceedings of the 4th An-
nual ACM Conference on Principles of Program-
ming Languages. ACM, New York, 1977, pp. 238-
252.

[CHO88] Clinger, W. D., Hartheimer, A. H., and Ost,
E. O. Implementation Strategies for Continuations.
in Proceedings of the 1988 ACM Conference on
Lisp and Functional Programming. ACM, New
York, 1988, pp. 124-131.

[DF89] Danvy, O., and Filinski, A. A Functional Ab-
straction of Typed Contexts. DIKU Report 89/5,
University of Copenhagen, 1989.

[F87] Friedman, D. P., and Haynes, C. T. Constrain-
ing Control. In Proceedings of the 12th Annual
ACM Conference on Principles of Programming
Languages. ACM, New York, 1985, pp. 245-254.

[F88a] Felleisen, M. �-v-CS: An Extended �-Calculus
for Scheme. In Proceedings of the 1988 ACM
Conference on Lisp and Functional Programming.
ACM, New York, 1988, pp. 72-85.

[F88b] Felleisen, M. The Theory and Practice of First-
Class Prompts. In Proceedings of the 15th An-
nual ACM Conference on Principles of Program-
ming Languages. ACM, New York, 1988, pp. 180-
190.

[GJLS87] Gi�ord, D. K., Jouvelot, P., Lucassen, J.
M., and Sheldon, M. A. The FX-87 Reference Man-
ual. MIT/LCS/TR-407, 1987.

[H87] Hughes, J. Strictness Analysis by Abstract In-
terpretation of Continuations. In [AH87].

[HF87] Haynes, C. T., and Friedman, D. P. Embed-
ding Continuations in Procedural Objects. ACM

8



Trans. on Prog. Lang. and Syst. 9, 4 (1987),
582-598.

[HFW86] Haynes, C. T., Friedman, D. P., and
Wand, M. Obtaining Coroutines with Continua-
tions. Comput. Lang. 11, 3/4 (1986), 143-153.

[JG88] Jouvelot, P. and Gi�ord, D. K. The FX-87 In-
terpreter. In Proceedings of the 2nd IEEE Interna-
tional Conference on Computer Languages. IEEE,
New York, 1988, pp. 65-72.

[JG89a] Jouvelot, P. and Gi�ord, D. K. Parallel Func-
tional Programming: The FX-87 Project. To ap-
pear in Proceedings of the International Workshop
on Parallel and Distributed Algorithms. North Hol-
land, Amsterdam, 1989.

[JG89b] Jouvelot, P. and Gi�ord, D. K. Commu-
nication E�ects for Message-Based Concurrency.
MIT/LCS/TM-386, 1989.

[L87] Lucassen, J. M. Types and E�ects: Towards the
Integration of Functional and Imperative Program-
ming. PhD Dissertation, MIT/LCS/TR-408, 1987.

[LG88] Lucassen, J. M., and Gi�ord, D. K. Polymor-
phic E�ect Systems. In Proceedings of the 15th An-
nual ACM Conference on Principles of Program-
ming Languages. ACM, New York, 1988, pp. 47-
57.

[M74] Moon, D.MacLISP Reference Manual, Revision
0. MIT Project MAC, 1974.

[M79] McCracken, N. J. An Investigation of a Pro-
gramming Language with a Polymorphic Type
Structure. PhD Dissertation, Syracuse University,
1979.

[MR88] Meyer, A. R., and Riecke, J. Continuations
May Be Unreasonable. In Proceedings of the 1988
ACM Conference on Lisp and Functional Program-
ming. ACM, New York, 1988, pp. 63-71.

[R86] Rees, J. A., and Clinger, W. Eds. The Revised3

Report on the Algorithmic Language Scheme.
MIT/AI Memo 848a, 1986.

[S78] Steele, G. L., and Sussman, G. J. The Art of
the Interpreter or, The Modularity Complex (Parts
Zero, One and Two). MIT/AI Memo 453, 1978.

[S86] Schmidt, D. A. Denotational Semantics: A
Methodology for Language Development. Allyn and
Bacon, 1986.

[SM72] Sussman, G. J., and McDermott, D. From
PLANNER to CONNIVER { A Genetic Approach.
In Proceedings of the Fall Joint Computer Confer-
ence. AFIPS Press, Reston, 1972, pp 1171-1179.

[W80] Wand, M. Continuation-based Multiprocessing.
In Proceedings of the 1980 ACM Conference on
Lisp and Functional Programming. ACM, New
York, 1980, pp. 19-28.

9


