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ABSTRACT

Development of perturbations in a baroclinic flow can arise both from exponential instability and from the
transient growth of favorably configured disturbances that are not of normal mode form. The transient growth
mechanism is able to account for development of neutral and damped waves as well as for an initial growth of
perturbations asymptotically dominated by unstable modes at significantly greater than their asymptotic ex-
ponential rates. Unstable modes, which are the eigenfunctions of a structure equation, are discrete and typically
few in number. In contrast, disturbances favorable for transient growth form a large subset of all perturbations.
To assess the potential of transient growth to account for a particular phenomena it is useful to obtain from
this subset the initial condition that gives the maximum development in a well-defined sense. These optimal
perturbations have a role in the theory of transient development analogous to that of the normal modes in
exponential instability theory; for instance they are the structures that the theory predicts should be found to
precede rapid development.

In this work optimal perturbations for the excitation of baroclinic stable and unstable waves are found. The
optima are obtained for the formation of synoptic scale cyclones as well as for the development of planetary
scale stationary and transient baroclinic Rossby waves. It is argued from these examples that optimal perturbations
are likely to limit predictability on time scales relevant to the short and medium range forecast problem and
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that unstable modes, if present, dominate the long range forecast.

1. Introduction

The ultimate source of energy for atmospheric mo-
tion is heating from solar radiation. At synoptic and
planetary scales the differential insolation between low
and high latitudes maintains an approximately geo-
strophically balanced zonal flow concentrated into
narrow jet streams. The kinetic energy of the jets and
the potential energy associated with their geostrophi-
cally balanced density contrasts provide the energy for
the growth and maintenance of the large scale variance
field. Of these the primary store of energy available to
the waves is in the potential form (Lorenz 1955).

Understanding of the mechanism by which the po-
tential energy is tapped by synoptic scale waves is
gained by use of the quasi-geostrophic equations which
can be cast in the form of conservation following the
geostrophic flow of the quasi-geostrophic potential
vorticity. Restricted to dynamics associated with waves
drawing on the available potential energy this mech-
anism of growth is referred to as baroclinic instability,
a terminology which arose because with certain restric-
tions the linearized conservation equation together with
appropriate boundary conditions admits solutions of
normal mode form that grow exponentially in time
(Charney 1947; Eady 1949). However, it is also known
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that perturbations not of normal mode form undergo
transient development on time scales appropriate to
synoptic and planetary space scales and that the growth
rate of these favorable perturbations can greatly exceed
that of the unstable modes when these are supported
and, furthermore, that transient development proceeds
robustly in flows that are not exponentially unstable
(Farrell 1985). While study of exponential instability
focuses attention on the eigenmodes and in particular
on the mode with maximum growth rate, transient de-
velopment arises from a large subset of all perturbations
(Farrell 1987). These are characterized in the case of
baroclinic dynamics by structures producing heat fluxes
down the mean temperature gradient, that is by pos-
sessing or producing during their development a west-
ward tilt with height of the geopotential field.
Previous work involved with the problem of cyclo-
genesis sought to deal with the ambiguity of choosing
a perturbation by appeal to observation. One structure
that produces development is well known in the syn-
optic literature to correspond to the advection of an
upper level vorticity center such as a short wave over
a preexisting surface vorticity concentration such as a
front. In Farrell (1985) this was modeled by a westward
tilting plane wave confined between the ground and a
scale height in the classic Charney (1947) problem.
This simple model succeeded in producing a robust
cyclogenesis on the advective time scale that was re-
markably similar to observations of cyclone formation.
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Furthermore, the development process proceeded re-
gardless of whether the flow supported instabilities.

Armed with a few general principles and a little ex-
perience one becomes adept at producing disturbances
that develop rapidly in a given flow. These disturbances
resemble in their diversity the growing perturbations
that arise in turbulent fluids such as the atmosphere,
perturbations that are associated with energetic events
stochastically distributed in space and time (Salmon
1980, his Fig. 12). Because it is unlikely that the most
rapidly developing disturbance will arise by chance, it
is necessary in general to make do with suboptimal
growth. Nevertheless there are theoretical reasons to
seek the optimal excitation.

For example, one can find the optimal excitation
over a period of time characteristic of rapid cyclogenesis
without regard for modal projection and compare it
with the optimal excitation of the unstable mode over
the same period and compare these with the growth of
the unstable mode alone to gain an appreciation for
the role of the initial value problem in cyclogenesis.
As a second example, consider a neutral mode such as
one of the retrograde waves in the Charney problem.
This eigenmode excited in isolation cannot draw on
the APE of the mean flow. However, a composite dis-
turbance including the mode can draw on this principle
store of energy. In effect the neutral mode behaves as
if it were an unstable mode for a restricted time period
as far as its energetics are concerned. It turns out (Far-
rell 1988) that modes differ greatly in their potential
to draw on mean flow energy and this potential is most
easily assessed by finding the optimal excitation.

Finally, consider the problem of predictability. It is
well known that flow regimes differ greatly in predict-
ability in the sense that perturbations cause the trajec-
tory of the solution in its phase space to deviate more
readily for some flows than for others (Hoffman and
Kalnay 1983; Palmer 1988). It is sometimes main-
tained that this deviation can be assessed by examining
the eigenvalues of the tangent linear differential equa-
tion, the Lyapunov exponents, but for time scales as-
sociated with synoptic forecast this is not so. In fact,
there are perturbations that grow much faster than the
first Lyapunov exponent rate and the perturbation that
grows the fastest is the optimal excitation. For time
scales of interest in forecast, assessment of the pre-
dictability of different flow regimes should be made by
comparing the development of optimal perturbations
- to the flows and not by comparing Lyapunov exponents
(Lacarra and Talagrand 1988). :

Optima for the excitation of baroclinic flows are
found here in the L, and energy norms including the
optimal excitation of the neutral wave and the most
unstable eigenmode. Optima are also found in the same
norms for the excitation of disturbances over a fixed
time interval without regard for projection. This is the
explosive growth solution that is also relevant to as-
sessing predictability.
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2. Baroclinic quasi-geostrophic model with Ekman
damping

Restriction to a pure baroclinic basic state with the
zonal wind a function of height only isolates the dy-
namics to that of the primary energy reservoir. We
expect that optimal perturbations in basic flows with
horizontal and vertical shear exploit the kinetic energy
of the jet by adopting a component of the tilted trough
configuration familiar in synoptic observations. Re-
striction to horizontal shear alone isolates this mech-
anism (Farrell 1988) but the mixed shear problem is
so much more demanding of computational resources
as to encourage preliminary study of a pure baroclinic
model. It is also assumed here that the initial growth
of small but finite perturbations can be adequately
modeled with linear dynamics.

In order to maintain the flexibility to simulate more
realistic basic states the model includes variation of the
static stability and density with height as well as vari-
ation of the Coriolis parameter with latitude. For sim-
plicity, the density scale height is taken to be constant
H™'= —p~'(8p/dz) and the Coriolis parameter is lin-
earized f = fo + By.

With these assumptions the nondimensional per-
turbation quasi-geostrophic potential vorticity equation
in the scaled streamfunction:
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with boundary conditions including a vertical velocity
induced through Ekman convergencc at the lower
boundary:
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In addition (2.1) allows for a gravest meridional mode
withy =0aty =+7x/(20), and (2.2) for the imposition
of linear potential vorticity damping.
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where & = Vk? + [? is the total horizontal wavenum-
ber, and ¢ = fo2/ Ny? is the square ratio of the Coriolis
parameter to a characteristic Brunt-Viisild frequency.
Additionally we define: ¢ = f52/No?, € = €/¢. The
problem is characterized by the nondimensional beta
parameter 8 = BH/ A¢, the Ekman parameter:

~ lNo v ”2&2
I'=—— il
AH\2f) Kk

and the stability parameter:

§=-L(&_
s=-4(2-1)

where » is the vertical eddy viscosity coefficient and A
is a characteristic shear. The last bracketed term in
(2.2) is referred to as Beg.

Tildes are dropped in sequel.

The above may be reduced to the canonical Charney
problem by taking R = 0, ¢ = 1 and U(z) = Az:

é . 1 , _
2.4)

4

i) . 3 _
Py (% + -2-) —ik1-T)Yy=0, z=0 (2.53)

Y =0, (2.5b)

The Charney problem has been extensively studied
and many facts including its dispersion relation and
eigenfunction structure are well known and available
in standard references, e.g. Pedlosky (1987). For this
reason it is appropriate to introduce ideas with reference
to the Charney problem and to solve the more general
problem only where greater realism is indicated to serve
a particular purpose.

We choose values for parameters appropriate to the
midlatitude troposphere: f; = 10™%s™!, N=10"%s"!,
H=10km A=3ms '/km, =16 X 107" m™!
s~!, This results in 8 = 0.53. The meridional wave-
number / = 2.0 corresponds to a 3100 km wavelength,
typical of midlatitude cyclogenesis, while k = 0.40 cor-
responds to 15 500 km, a planetary wave scale. A unit
of nondimensional time is 9.3 h.

It has been remarked previously (Card and Barcilon
1982; Farrell 1985, 1989; Hoskins and Valdes 1988)
that Ekman damping suppresses baroclinic instability
in this model problem. As an example of the rapid
decrease in the growth rate of the unstable wave with
increasing vertical diffusion, the synoptic scale wave
with k = /= 2.0 at v = 2.5 m? s~' retains only 28% of
the undamped growth rate and at » ~ 4.5 m? s™'
growth disappears entirely. Even the larger of these
values is modest compared with what is typical in mid-
latitudes.

Z=> 0.
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3. Numerical solution of the baroclinic problem

The Charney problem (2.4) together with its
boundary conditions (2.5) can be written in operator
notation assuming the solution form ¥(x, y, z, 1)
= E(z)e* >~ cos(ly) as

LE(z) = cE(2). (3.1)
With
L=A"[zA + By4],

where A=9,. — [@? + {]and Ber = 8 + 1.

Here L is expressed using centered differences on N
collocation points; z;, { = 1, N so that the N eigen-
functions in the finite difference approximation are
each represented by a vector (Green 1960; Lindzen et
al. 1982):

¥, = Ee™*9) cos(ly).

The vertical structure of the physical streamfunction
modes are related to the scaled variable by (2.1),

E; = PE;e™~9 cos(ly)

where,

ez,-/2
P=—5,

Ve(z))
Assuming a fixed wavenumber k, the evolution in time

of an initial physical perturbation &,e** cos(/y) can
be expressed as

& =

M =

v,Ee*=a" cos(ly). (3.2)

j=t

Where ¥ is the spectral projection of the perturbation
on the eigenvectors, obtained using E, the matrix hav-

ing the physical eigenvectors as columns:

v =E"'&,. (3.3)

4. Formulation of the optimization problem

The concept of an optimum requires a measure of
perturbation magnitude for which an obvious choice
is the rms amplitude of the streamfunction. Another
and perhaps more physical measure is the square root
of the total perturbation energy. The former will be
referred to as the L, norm and the latter as the energy
norm. It was remarked in the Introduction that while
unstable normal modes imply a structure for the de-
veloping disturbance, transient growth arises from a
large subset of perturbations. An advantage gained by
using two norms is that examples of optimal pertur-
bations in these norms can be compared to obtain an
impression of the variability within the set of rapidly
developing disturbances.
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Because the structure of an isolated normal mode is
invariant, all its norms increase at the exponential
growth rate and one norm is as good a measure of
amplitude as another. The greater freedom of choice
permitted by the initial value problem with perturba-
tions a\llowed to change structure with time is reflected
in the freedom to choose perturbations that increase
most rapidly in a given norm. For example, the L,
norm optimum tends to favor exploiting temperature
perturbations in the lower troposphere to produce large
amplitude disturbances in geopotential in the upper
troposphere and stratosphere when compared to an
energy norm optimum at the same scale. This is be-
cause the derivative with height of the geopotential,

proportional to temperature perturbations, is not di-

rectly penalized in the L, norm as it is in the energy

norm while the decrease in density with height favors

the propagation of a disturbance upward where, other
effects being equal, a greater geopotential deflection
will be produced. The freedom to choose a measure of
perturbation amplitude has physical significance. It
may be argued for instance that the most destructive
- cyclone corresponds to maximizing the wind at ground
level.

We now consider some example problems, the first
posed as follows: find the minimum initial disturbance
required to excite a chosen mode at unit amplitude.
The motivation could be to locate potential vorticity
sources arising from topography and diabatic heating
S0 as to give rise to the strongest driving of the external
mode in a study of the planetary wave pattern. On the
other hand, the geopotential configuration preceding
the most rapid set up of the unstable Charney mode
would be relevant to understanding the cyclogenesis
problem. It might be supposed that the best way to
excite one of these modes would be to put the available
amplitude or energy, as the case may be, directly into
the mode. This is not so; in fact, driving the desired
mode directly is highly suboptimal. It is much better
in flows with nonorthogonal modes to distribute the
initial disturbance so that the interaction between the
nonorthogonal modes and the mean flow transfers en-
ergy from the mean to the perturbation. The result of
such a choice of perturbation is an increase of distur-
bance energy even for a stable or damped problem.
This disturbance energy is drawn from the mean flow
despite the possible absence of instability.

With experience one becomes skilled at producing
perturbations that are energetically active and the
choice is well guided by synoptic observations of con-
figurations leading to development. However, the lim-
iting transient growth is determined by finding the op-
timal perturbation. If, for instance, no perturbation
could produce significant growth in a given flow then
the energy of the mean is not available in the linear
limit. This is a quite different result from the absence
of exponential instabilities placing a limit on ¢t = c©
asymptotic growth, and the existence of such instabil-
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ities has no clear relationship with the potential for
transient growth, as should be clear from examining
the overdamped Charney problem (Farrell 1985). In
practice transient development results from properly
configured perturbations whenever there is available
potential energy in the flow, as required by enexrgy in-
tegral relations (Pedlosky 1987).

The best perturbation for exciting a given mode is
found by solution of a variational problem. In the L,
norm the functional to be minimized is ®*-® at ¢
= 0.0, where the bar denotes a normalized volume in-
tegral over a wavelength. It is proportional, using the
spectral projection 3.3, to:

(Ev)*-(Ev) = Y*E*Ev = v*A¥. 4.1

Choosing as a constraint that the nth mode be of
unit magnitude, it is necessary to render stationary the
functional:

F=v*Ay + A(v+ ¢, — 1)

where ¢, is the unit column vector. Setting the first
variation in vy to zero gives the relation that the opti-
mum < satisfies which is, recognizing A to be Hermi-
tian:

Ay = = Ne,. 4.2)

Solution for the optimal spectral prOJectlon for the nth
mode,

y=—-M"l, 4.3)

is completed by choosing A so that vy, = 1.0.

There is a relationship between this optimum and
the eigenvectors of the matrix adjoint to L. Whereas
the eigenfunctions of a self-adjoint operator are or-
thogonal and consequently dynamically independent,
a nonself-adjoint operator such as L has an adjoint
operator, L* which for the L, norm is its Hermitian
transpose. The eigenvalues of L.* are the complex con-
jugates of the eigenvalues of L and an eigenvector of
an eigenvalue in the adjoint matrix is orthogonal to all
eigenvectors of the original matrix except for the one
with eigenvalue conjugate to its own, provided only
that the eigenvalues are distinct as can be verified for
the examples to follow (Nobel 1969). 1t is clear from
the definition of A in (4.1) and the condition of sta-
tionarity (4.2) that Ey must be orthogonal to all the
columns of E except the nth. Therefore, the L, optimal
initial condition for exciting the mode &, = Py, is

&, = P '¢,, 4.4

where ¢, is the eigenfunction of L* with eigen-
value cy.

A practical consequence of this observation is that
the optimal excitation in the L, norm can be found
from eigenanalysis of the adjoint problem (Farrell
1988). It will be shown that this result carries over to
solution of the differential operator as well with differ-
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ential adjoints replacing the matrix adjoints of the finite
difference approximation.

An alternative interpretation of the L, optimum
arises from considering the problem of maximizing the
projection of an arbitrary physical perturbation &,
written as '

_ Exploiting the biorthogonality of ®; and its adjoint
®; the projection is
_ (%0-9F)

" @ )

Clearly «; is maximized by the choice ®, = &, as we

have already seen but in addition it is now apparent
that the magnitude of v; depends on the projection of
®; on its adjoint. In effect, modes with dissimilar ad-
joints are more able to exploit the transient growth
mechanism than are modes with similar adjoints (Far-
rell 1988). This sensitivity of the projection of the initial
perturbation on the modes implies a loss of predict-
ability arising because the inevitable uncertainties in
observing the initial state are magnified by the ill-con-
ditioning resulting when the denominator in (4.5) is
small.

Optima in the energy norm are obtained using the
expression for perturbation energy, K:

K

_ p0)
2
where D = e™%/2§jj.
The area average energy density can be expressed
using the spectrum v as K = y*B«vy with
p(0)
8

[a*{(D®)*-(D®)} + (P7'®,)*-(P7'®,)],

B= [a*(DE)*(DE) + (P™'E;)*(P7'E,)],

(4.6)

where E, is the matrix with the eigenvector derivatives
as columns.

The optimization proceeds as before, stationarity
requiring of the optimal v:

By = — ey, 4.7)
giving the optimal spectral projection:
Y= _)\B—l'e"’

with A chosen to make the projection on the nth mode
unity.

5. Optimal excitation of the Charney modes

The unstable mode of the Charney problem at k = /
= 2.0 is shown in Fig. la. The optimal initial condition

BRIAN F. FARRELL
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FI1G. 1. (a) Unstable mode in the Charney model with 8 = 0.53
corresponding to midlatitude parameter values and wavenumber k
= | = 2.0 corresponding to a zonal and meridional wavelength of
3100 km, The eigenvalue ¢ = (0.28, 0.068). Optimal excitation of
the unstable mode in (b) the L; norm and (c) the energy norm.

to excite this mode in the L, norm is shown in Fig. 1b
and the optimal for the energy norm in Fig. 1c. Evo-
lution of the streamfunction for these are given in Fig.
2 and Fig. 3 respectively. In the figures the maximum
of the streamfunction as well as the norm are indicated
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F1G. 2. Development of the L, norm optimal excitation of the unstable Charney mode with k = / = 2.0. The
maximum of the perturbation streamfunction and its L, norm are given at the indicated times, each normalized by
its initial value. :

at each time so that the resolution of the plot need not
be compromised by a constant contour interval.

If the unstable mode alone had been excited, the
amplitude and energy would have increased by a factor
of 26.2 compared with the optimal 552.9 and 282.5
respectively from Fig. 2 and Fig. 3. However, even this
growth is far from the maximum obtainable in either
norm as the perturbation has been highly and arbi-
trarily constrained to project optimally on the unstable
mode and an unconstrained optimal perturbation
grows even faster as we shall see. Furthermore, if a
modest amount of Ekman dissipation is included, cor-
responding to a vertical coefficient of diffusion of 4.5
m?s~!, the model does not support exponential insta-
bility at this wavenumber but, even so, transient growth
on time scales appropriate to synoptic development is
still robust (Farrell 1985).

The external mode in the Charney problem arises
at the wavenumber for which » = 1 solves (Pedlosky
1987):

= g+1
(1 + 4a®)!/?

with 8 = 0.53 this implies « = 0.58. At total wave-
numbers less than this there exists a neutral mode with
small retrograde phase speed and the large scale equiv-
alent barotropic structure of stationary planetary waves
(Held et al. 1985). Assuming the mean surface wind
in midlatitudes is small and westerly the most favorable
driving of the stationary wave pattern can be studied
as the optimal excitation of the external mode for a
total wavenumber slightly below a = 0.58, the wave-
number of the mode with zero doppler shifted phase
speed. Here k = [ = 0.40 is chosen corresponding to a
dimensional wavelength of 15 500 km. A lid placed at
zr = 8.0 for computational convenience results in only
a small modification of the external mode which is
found to have phase speed —6.7 m s~! in the model.
Figure 4 shows the external mode and the optimal ex-
citation in the L, and energy norms. The optimal ex-
citation is equivalent barotropic and surface concen-
trated. The development of the optimum in the L,
norm is shown in Fig. 5, and similarly the development
of the energy norm optimum is shown in Fig. 6.

Return now to the biorthogonality relation between
eigenvectors of L and its adjoint. A parallel relation
exists between the differential equation:



1 May 1989

20 I;T 0.0
max
——=1.0
[©4|max
15

1.6 24 3]

BRIAN F. FARRELL

1199

t=4.0
[®lmax
=3.2
|°¢|max

K _
K—¢.'5'7

FI1G. 3. Development of the energy norm optimal excitation of the unstable Charney mode with k = [ = 2.0. The
maximum of the perturbation streamfunction and the perturbation energy are given, each normalized by its initial

value.

(U—c)Ay; + By =0 5.1
and its adjoint:
A(U — ¢c))¢; + Beyd; = 0. (5.2)

Use is made of the Bretherton (1966) é adjustment of
- the zonal wind to U; = 0 in a thin layer adjacent to
the boundaries which simplifies the boundary condition
to

¢z+§=¢z+5§=oz, 2=0
v—=>0, ¢—>0, z— .

Remarks to follow apply equally to the barotropic
model (Farrell 1988) for which ¢ = ¢ = 0 is appropriate
at channel walls.

Inspection of (5.1) and (5.2) suffices to establish ¢;
=y;/(U — ¢;). If (5.1) is multiplied by ¢; and (5.2) by
¥; and the difference taken, integration by parts results
in the orthogonality relation:

(VC,' - Cj) J; ¢,~A¢,~dz = Q.

The argument leading to expression (4.3) for the op-

(5.3)

timal spectral projection in the vector product ¥ -
¥; can be made in a similar fashion for continuous
functions by replacing the vector product with the
analogous expression:

J:o Yiydz.

Examination of 5.3 reveals that properly normalized
eigenfunctions, ; with eigenvalue ¢; and adjoint ei-
genfunctions ¢; with eigenvalue c; are biorthogonal in
a way similar to that of their matrix analogues,

An examination of (4.4) and (5.4) shows that the
analogy between the matrix and differential optima re-
quires the physical matrix adjoint mode &; = P~'¢;
be identified with the Laplacian of the conjugate of
the differential adjoint mode P 'A¢¥ where P!
= ¢ %/?e. The conceptual advantage of this obser-
vation is that the optimal excitation in the L, norm
can be found almost by inspection knowing the target
mode and its complex phase speed. The Laplacian of
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FI1G. 4. (a) The external mode in the Charney problem with k = /
= 0.40. Optimal excitation of the external mode in (b) the L, norm
and (c) the energy norm.

the streamfunction amplified by the factor of the in-
verse of (U — ¢) produces a highly structured wave
field concentrated near the steering level. For example
[¥/(U— c)]* and its Laplacian scaled by P! are shown
in Fig. 7 for the Charney mode at k = [ = 2.0; Fig. 7b
should be compared with Fig. 1b.
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In the case of the barotropic probiem and in the
baroclinic if the density and stability variation can be
ignored an even more direct relation exists between
the optimal excitation in the energy norm and the dif-
ferential adjoints. To see this set A = V? and integrate
(5.4) twice by parts:

J; (Vzw,-)dydz = 6,,

This is the integral equivalent of (4.7) if the identifi-
cations B = (V’E*)E and ¢* > E#, are made. The
requirement. for stationarity in the discrete case, that
E+v, be biorthogonal to _VZE}", is parallel to the re-
quirement that ¢, be biorthogonal to V?y; in the con-
tinuous case. We can identify ¢} = [¢,,/U — ¢,]* and
the optimal perturbation in the energy norm. For in-
stance in the Charney problem with k = / = 2.0 strat-
ification plays a minor role in the Laplacian and Fig.
7a is nearly identical to Fig. lc.

A different perspective on projections and excitation
of modes is afforded by a discussion complementary
to the above framed in terms of pseudomomentum
orthogonality (Held 1985).

6. Optimal growth over fixed time

Optimal excitations demonstrate directly by example
that the available potential energy of the mean flow
may be as available to neutral modes on time scales
appropriate to synoptic and planetary space scales as
it is to unstable modes. Furthermore, the optimal ex-
citation of the unstable Charney mode shows that the
unstable mode is far from the most favorable pertur-

- bation even for the task of exciting itself. These obser-

vations serve to clarify the relation of the neutral and
unstable modes in the initial value problem. However,
a problem of greater physical interest is to find the
most rapidly growing perturbation without arbitrary
restrictions on its spectral projection. For instance, a
large amplitude planetary wave pattern can be more
effectively excited by an optimal initial condition that
does not also require the external mode be maximally
driven because this additional restriction results in a
suboptimal total growth. As another example consider
the cyclogenesis problem. We have seen that the Char-
ney mode can be excited optimally by perturbations
which do not initially resemble it and that grow much
faster. But the problem of cyclogenesis is best addressed
without modal prejudice. It is stated as follows: find
the disturbance that grows maximally in energy over
48 h.
The functional to be rendered stationary is

F=v*Bxy + M¥*Boy ™).

Here B, is given by (4.6) where E is replaced by E,,
the matrix of eigenvectors each advanced in time as
in (3.2). :
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FI1G. 5. Development of the L, norm optimal for the external mode in the Charney problem with k = / = 0.40.

The requirement of stationarity is that v satisfy
By + AByy = 0,
or:
(Bo~'B, + AI)y = 0.

The eigenvectors of the above matrix are the spectral
projections of the stationary solutions and one of these
is the desired optimum.

For the cyclogenesis problem, a zonal wind and static
stability distribution is chosen to model the troposphere
and lower stratosphere. The zonal wind rapidly ap-
proaches a constant above a scale height and static sta-
bility increase by a factor of 4 at this simulated tro-

popause:
z— 1.5
1 + tanh
+ tan ( 0.15 )

U(z)=z~(z-1.5) >

1+ tanh(z_ 1'5)

0.15

el(z2)=1+3 >

Otherwise parameter values are the same as in the
midlatitude cyclogenesis example in section 3 except

that Ekman damping corresponding to » = 10 m?s™!
has been included (I" = 0.075) to eliminate unstable
modes. The perturbation that results in maximum
growth in energy over 5 nondimensional time units,
corresponding to 47 h, is shown in Fig. 8 and its growth
rate in Fig. 9. This perturbation resembles the classic
configuration of an upper tropospheric trough ap-
proaching a surface center which was modeled by a-
plane wave tilting westward with height in Farrell
(1985). It is remarkable that the optimum perturbation
resembles so closely a disturbance chosen to model
observations of a common precursor to cyclogenesis
considering that this is an unconstrained optimum. It
appears that the observed wave field is rich enough
that synopticians have accurately identified the form
of the most rapidly growing perturbation.

A final example makes use of the realistic basic state
at wavenumber k = / = 0.40 corresponding to a plan-
etary wave length of 15 500 km with the addition of a
Rayleigh damping in the upper stratosphere:

1 + tanh(z — 6.0)
2
in addition to Ekman damping as in the previous ex-

ample (I' = 0.075). The energy optimum over 14 time
units corresponding to 5.4 d is shown in Fig. 10. A

R(z) =
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FIG. 6. Development of the energy norm optimal for the external mode in the Charney problem with k = I = 0.40.

rapid growth of perturbation amplitude results from a
low level wave being overtaken by an upper level dis-
turbance in a manner similar to that operating at the
synoptic scale in the previous example but here at
planetary scale. It can be seen that this development
excites a strong response in the stratosphere. Episodic
development has been observed to occur at these space
and time scales accompanied by similar transient
baroclinic structures (Shilling 1988).

7. Discussion and conclusions

The primary source of energy for synoptic and plan-
etary scale waves is the APE associated with the baro-
clinic vertically sheared zonal wind. Understanding
mechanisms for the excitation and maintenance of the
wave field is central to theoretical progress on the fore-
cast and predictability problem on both the cyclone
and planetary scales. Previous work (Farrell 1985) has
shown that perturbations chosen to roughly model
those associated with development in the synoptic lit-
erature (Petterssen 1955; Palmen and Newton 1969)
result in growth much more rapid than that of unstable

modes in flows that support such modes and that even
when no unstable modes exist properly chosen pertur-
bations undergo a period of transient growth on time
scales appropriate to synoptic development that is little
diminished by the absence of instability. These results
imply a redirection of attention from the most unstable
mode and its structure to the combination of modes
neutral, damped and perhaps unstable which together
produce rapid development. Because developing per-

. turbations comprise a fairly large subset of all pertur-

bations there are a number of variations on the theme
of development. Having suspended the search for an
exponential instability behind every energetic event,
one begins to see the evolving wave field in a new light.
There are many scenarios on display, some of which
are identified in the synoptic literature by such names
as Petterssen’s type B cyclogenesis, tilted trough de-
velopment, Sutcliffe’s self-development and trough
phasing. These can be understood as indicative of the
presence of perturbations favorable to transient devel-
opment. - :

There is no necessity for an energetic event to be
associated with an optimal excitation as the examples
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FIG. 7. (a) The complex conjugate of the differential adjoint of
the unstable Charney mode with k = / = 2.0. This is an approximation
to the energy norm optimal excitation in Fig. 1c. (b) The optimal
excitation in the L, norm of the unstable Charney mode with k = /
= 2.0 given by the Laplacian of the complex conjugate of the differ-
ential adjoint. This is to be compared to the discrete optimal in Fig.
1b.

in Farrell (1985) show. The suboptimal perturbations
used in that work were meant to approximately cor-
respond to one common precursor of development. A
little experience integrating a model builds up an in-
tuition and one becomes skilled at obtaining a variety
of growth scenarios. However, obtaining the optimal

perturbation for a given flow has the theoretical ad- -

vantage of bringing order to the search and identifying
the limits of the transient growth. While it is easy to
find perturbations that grow robustly, the examples
above of optimal perturbations are more highly struc-
tured in some cases than one might be bold enough to
try without encouragement.

Additional topics of discussion follow:

(i) A generalization of transient development that
is of heuristic value arises from considering a stationary

BRIAN F. FARRELL
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solution to the nonlinear equations with allowance for
a steady progressive wave. In the frame of reference of
the wave the condition of stationarity is

J(¥, Q) =0,

where ¢ is the stationary streamfunction and  is the
potential vorticity, both perhaps a function of z. Con-
sider a perturbation to this solution ¢ =y + . If the
perturbation is sufficiently small its development is
governed by a linear equation resulting from linearizing
about the stationary solution. This equation is analo-
gous to (1) but is of higher dimension if the stationary
wave field varies in other directions. Assuming the sta-
tionary solution has a nonzero deformation field as-
sociated with it, there are perturbations that decay and
those that grow. The optimal perturbation over a given
time interval is the one that grows the most and it can
be found by means analogous to those used above.
This most dangerous perturbation produces the max-
imum disruption of the stationary solution and this
optimum is central to determining the predictability.
A flow is unpredictable on the given time scale in pro-
portion to the growth of the optimal excitation not, as
is commonly assumed, in proportion to its first Lya-
punov exponent which is the growth rate of the most
unstable exponential normal mode. In the limit ¢ —
co these growth rates are the same if the flow supports
an instability but as examples above make clear, over
synoptic time scales the 1 —=> co asymptotic is inappro-
priate and predictability is likely to be much worse
than the first Lyapunov exponent would suggest.

This result may be generalized to a fully developed
nonlinear wave field by appeal to the tangent differ-
ential equation which is the linear equation linearized
about the time developing flow field. This equation
governs the growth of small perturbations to the non-
linear, possibly turbulent flow. It admits optimal per-
turbations which control the predictability on synoptic
time scales as well as Lyapunov exponents to which
the optimum is asymptotic as ¢ —=> oo . These issues are
further developed in the context of a barotropic model
by Lacarra and Talagrand (1988).

(ii) The transient growth mechanism and the op-
timal perturbations have been discussed with reference
to the quasi-geostrophic equations here and using the
barotropic vorticity equations in Farrell (1988). This
was done for analytic and computational convenience
and it is clear from the analysis above that the mech-
anism depends only on the fact that the modes of the
problem are not orthogonal. This in turn results from
the differential dynamical equation being nonself-ad-
joint. Any linear evolution equation of the form:

W _
o
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with supercritical damping and k = / = 2.0. No requirements are imposed on the modal composition.

supports the mechanism if L is not self-adjoint, in-
cluding the primitive equations. The only common
exceptions are dynamical equations for a channel with
a constant zonal wind and analogously solid body ro-
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F1G. 9. The energy growth rate for the overdamped realistic basic
state optimal excitation in Fig. 8.

tation on the sphere. It is clear in these cases without
a mean deformation field that there can be no energetic
interactions.

(iii) Perturbations favorable for development can
arise from the superposition of interior potential vor-
ticity centers as in the example of cyclogenesis in Fig.
8. In that case it is clear that a development will ensue
because the perturbation has a streamfunction field that
tilts westward with height, the energetically favorable
configuration (Pedlosky 1987). However, developing
perturbations are not limited to such configurations.
For example, the stationary wave in Fig. 6 develops
from an equivalent barotropic perturbation in the clas-
sic self-development scenario, acquiring its tilt as the
disturbance evolves.

(iv) Disturbances that give rise to high amplitude
smooth, low vertical wavenumber modes are them-
selves often of small amplitude with complex, high
vertical wavenumber structure. If observations are col-
lected using an averaging technique it is likely that the

" large amplitude final state will dominate the perceived

structure and the crucial highly variable perturbation
it came from will be lost in the noise. This can have
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state with k = / = 0.40 corresponding to a planetary scale wavelength of 15 500 km.

the effect of diverting attention from the dynamically
relevant small scales to the comparatively inert large
scale final states.

A similar comment applies to models where it is
sometimes asserted that because the energy bearing
scales are large, coarse resolution can be justified. As
we have seen, these large scale structures may be related
on advective time scales to much higher wavenumber
disturbances which must be resolved in. order to ac-
curately forecast development.

(v) Transient development provides a powerful
mechanism for amplifying small perturbations in the
forcing of the planetary wave field. An intermittent
excitation such as a cold surge over Southeast Asia that
has the form of a near optimal excitation would gen-
erate a rapidly developing baroclinic wave that draws
on the APE of the Pacific jet and reaches a high am-
plitude and equivalent barotropic structure in about a
week (Figs. 5 and 6). The stochastic character of the
formation would be due to the chance occurrence of
a favorable configuration which requires both that the
background flow admit a robust optimum and that the
forcing approximate it. This scenario is similar to that

advanced by Branstator (1985) using barotropic dy-
namics. '

(vi) Consider the role of planetary waves in the local
and global climate. A substantial fraction of the global
heat flux is associated with these waves which are neu-
tral in their modal structure. As we have seen, however,
proper excitation can result in a large baroclinic flux
as the waves amplify. This flux is directly related to the
fine structure of the forcing which in turn is related to
the details of orography and heating implying a great
sensitivity of the planetary wave amplitude and heat
flux to what may appear to be modest changes in the
forcing.

Acknowledgments. This work was supported by NSF
Grant ATM-8712995.

REFERENCES

Branstator, G., 1985: Analysis of general circulation model sea surface
temperature anomaly simulations using a linear model. Part II:
Eigenanalysis. J. Atmos. Sci., 42, 2242-2254,

Bretherton, F. P., 1966: Critical layer instability in baroclinic flows.
Quart. J. Roy. Meteor. Soc., 92, 325-345,



1206

Card, P. A,, and A. Barcilon, 1982: The Charney stability problem
with a lower Ekman layer. J. Atmos. Sci., 39, 2128-2137.
Charney, J. G., 1947: The dynamics of long waves in a baroclinic

westerly current. J. Meteor., 4, 135-162.

Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33-52.

Farrell, B,, 1985: Transient growth of damped baroclinic waves. J.
Atmos. Sci., 42, 2718-2727. ,

——, 1987: Developing disturbances in shear. J. Atmos. Sci., 44,
2191-2199.

~——, 1988: Optimal excitation of neutral Rossby waves. J. Atmos.
Sci., 45, 163-172.

——, 1989: Unstable baroclinic modes damped by Ekman dissipa-
tion. J. Atmos. Sci., 46, 397-401.

Green, J. S. A., 1960: A problem in baroclinic stability. Quarz. J.

. Roy. Meteor. Soc., 86, 237-251.

Held, I. M., 1985: Pscudomomentum and the orthogonality of modes
in shear flows. J. Atmos. Sci., 42, 2280-2288.

—, R. L. Panetta and R. T. Pierrehumbert, 1985: Stationary ex-
ternal Rossby waves in vertical shear. J. Atmos. Sci., 42, 865-
883,

Hoffman, R. N,, and E. Kalnay, 1983: Lagged average forecasting.
Tellus, 35, 100-1 18.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 46, No. 9

Hoskins, B. J., and P. J. Valdes, 1988: Baroclinic instability of the
zonally averaged flow with boundary damping. J Atmos. Sci.,
45, 1584-1593.

Kuo, H. L., 1979: Baroclinic instabilities of linear and jet profiles in
the atmosphere. J. Atmos. Sci., 36, 2360-2378.

Lacarra, J., and O. Talagrand, 1988: Short-range evolution of small
perturbations in a barotropic model. Tellus, 40A, 81-95.
Lorenz, E. N., 1955: Available potential energy and the maintenance

- of the general circulation. Tellus, 7, 157-167.

Nobel, B., 1969: Applied Linear Algebra. Prentice-Hall, 523 pp.

Palmen, E., and C. Newton, 1969: Atmospheric Circulation Systems.
Academic Press, 603 pp.

Palmer, T. N., 1988: Medium and extended range predictability and
stability of the Pacific/North American mode. Quart. J Roy.
Meteor. Soc., 114, 691-713.

Pedlosky, J., 1987: Geophysical Flutd Dynamics. Springer-Verlag,
710 p

Petterssen, S_ 1955: A general survey of factors influencing devel-
opment at sea level. J. Meteor., 12, 36-42.

Salmon, R., 1980: Baroclinic instability and geostrophic turbulence.
Geophys. Astrophys. Fluid Dyn., 15, 167-211.

Shilling, H. D., 1988: Baroclinic outbreak episodes in wavenumber
domain. Tellus, 40A, 188-204.



