Systems of First Order Linear Differential Equations

We will now turn our attention to solving systems of simultaneous
homogeneous first order linear differential equations. The solutions of such
systems require much linear algebra (Math 220). But since it is not a
prerequisite for this course, we have to limit ourselves to the simplest
instances: those systems of two equations and two unknowns only. But first,
we shall have a brief overview and learn some notations and terminology.

A system of n linear first order differential equations in » unknowns (an n x
n system of linear equations) has the general form:

[ A
Xy =apxytapxt...tayx,tg

[ A
Xy =an Xy tapxyt...tayx,+ 9

r %k
X3 = azx; T apxy T ..t azx, t g (*)

r_
Xn = Au1 X1 + a2 X2 +... Tt AnunXn +gn

Where the coefficients a;;’s, and g;’s are arbitrary functions of z. If every

term g; is constant zero, then the system is said to be homogeneous.
Otherwise, it is a nonhomogeneous system if even one of the g’s is nonzero.
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The system (*) is most often given in a shorthand format as a matrix-vector
equation, in the form:

x'=Ax+g
B r ] _ — _ — _ —
X, dyp 4y a, X1 8
!
X, dy Ay ... Uy, Xy 8>
!
a a .. a X
X, || % 32 3n 3| 4 83
!
X, _anl d,, ann_ _‘xn_ _gn
x' A X g

Where the matrix of coefficients, A, is called the coefficient matrix of the
system. The vectors x’, x, and g are

-, L L
X4 X 4
'
xz x2 g2
'
X3 X3 83
x’: ) x: ) g:
'
_xn ] _'xn_ _gn_

For a homogeneous system, g is the zero vector. Hence it has the form

x'= Ax.
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Fact. Every n-th order linear equation is equivalent to a system of » first
order linear equations. (This relation is not one-to-one. There are multiple
systems thus associated with each linear equation, for n > 1.)

Examples:

(1) The mechanical vibration equation mu" + yu' + ku = F(¢) is equivalent to

’_
X = Xy

m m m

Note that the system would be homogeneous (respectively,
nonhomogeneous) if the original equation is homogeneous
(respectively, nonhomogeneous).

(11) y'"'=2y"+3y'—=4y=0 is equivalent to
xi'= X
X' = X3

)C3' = 4X1 - 3X2+ 2X3
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This process can be easily generalized. Given an n-th order linear equation

ay"” + a1 Y+ a0 )"+ Lt ay +ay + apy = g(0).

Make the substitutions: ¥ = I VAR S YARINR =y and 6 =50,

The first n — 1 equations follow thusly. Lastly, substitute the x’s into the
original equation to rewrite it into the n-th equation and obtain the system of
the form:

X = X2
X' = X3
X=X
xn—l, = Xn
14
—a a a a ()
— 0 _ 1 2, _  _Znd [=A\P4
xn — xl x2 x3 eee xn+

Note: The reverse is also true (mostly) . Given an n x n system of linear
equations, it can be rewritten into a single n-th order linear equation.

" The exceptions being the systems whose coefficient matrices are diagonal matrices. However, our
Eigenvector method will nevertheless be able to solve them without any modification.
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Exercises D-1.1:

1 —3 Convert each linear equation into a system of first order equations.
1. y'=4y'+5y=0

2. "= 5y" + 9y = tcos 2t
3. Y+ 3y — "+ 2my' — 6y =11

4. Rewrite the system you found in (a) Exercise 1, and (b) Exercise 2, into a
matrix-vector equation.

5. Convert the third order linear equation below into a system of 3 first
order equation using (a) the usual substitutions, and (b) substitutions in the
reverse order: x; =", x, =)', x3 =y. Deduce the fact that there are multiple
ways to rewrite each n-th order linear equation into a linear system of n
equations.

le + 6yl! +yl _ 2y — O

Answers D-1.1:

1. .X'1': X2 2. .X'1': X2
.X'z': _le +4X2 .X'z': X3
X3’ = _9X1 + 5.X'3 + tcos 2t
3. .X'1': X2
.X'z': X3
.X'3': X4
X4 = 6x1 — 2mx, + wx3 — 3x4 + 11
0 10 0
0 1
4. (a) x’{_s Jx b x=90 0L 0
-9 0 5 tcos2t
5. (a) .X'1': X2 (b) X1':_6X1 — X+ 2X3
X' = X3 X' = X
X3':2X1 _X2_6X3 .X'3': X2
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A Crash Course in (2 x 2) Matrices

Several weeks worth of matrix algebra in an hour... (Relax, we will only
study the simplest case, that of 2 x 2 matrices.)

Review topics:
1. What is a matrix (p/. matrices)?

A matrix is a rectangular array of objects (called entries). Those
entries are usually numbers, but they can also include functions,
vectors, or even other matrices. Each entry’s position is addressed by
the row and column (in that order) where it is located. For example,
as, represents the entry positioned at the 5th row and the 2nd column
of the matrix A.

2. The size of a matrix
The size of a matrix is specified by 2 numbers
[number of rows] x [number of columns].

Therefore, an m x n matrix 1s a matrix that contains m rows and n
columns. A matrix that has equal number of rows and columns is
called a square matrix. A square matrix of size n x n is usually
referred to simply as a square matrix of size (or order) n.

Notice that if the number of rows or columns is 1, the result (respectively, a
1 x n, or an m x 1 matrix) is just a vector. A 1 x n matrix is called a row
vector, and an m x 1 matrix is called a column vector. Therefore, vectors are
really just special types of matrices. Hence, you will probably notice the
similarities between many of the matrix operations defined below and vector
operations that you might be familiar with.
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3. Two special types of matrices
Identity matrices (square matrices only)

The n x n identity matrix is often denoted by 1,.

1 0 0

B 1o 1 0
Ig— O 1, 13— , etc.

0 0 1

Properties (assume A4 and I are of the same size):

AlI=1IA=A
I, x=x, Xx =any n x 1 vector
Zero matrices — matrices that contain all-zero entries.

Properties:

A+0=0+A4=4
A0=0=04

4. Arithmetic operations of matrices

(1) Addition / subtraction

ab+ef_aiebif
c d| |g h_cig dxh
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(i1) Scalar Multiplication

a b ka kb
k ¢ d = ke kd |’ for any scalar k.

(111)) Matrix multiplication
a blle f| |ae+tbg af +bh
c dl|lg h e+ dg cf +dh

The matrix multiplication AB = C is defined only if there are as many
rows in B as there are columns in 4. For example, when 4 is m x k
and B is k x n. The product matrix C is going to be of size m x n, and
whose ij-th entry, ¢;;, is equal to the vector dot product between the i-
th row of 4 and the j-th column of B. Since vectors are matrices, we
can also multiply together a matrix and a vector, assuming the above
restriction on their sizes i1s met. The product of a 2 x 2 matrix and a 2-
entry column vector is

ol M oot

Note 1: Two square matrices of the same size can always be
multiplied together. Because, obviously, having the same number of
rows and columns, they satisfy the size requirement outlined above.

Note 2: In general, AB # BA. Indeed, depending on the sizes of 4
and B, one product might not even be defined while the other product
is.
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5. Determinant (square matrices only)

For a 2 x 2 matrix, its determinant is given by the formula

a b
det =ad —bc
d

C

Note: The determinant is a function whose domain is the set of all
square matrices of a certain size, and whose range is the set of all real
(or complex) numbers.

6. Inverse matrix (of a square matrix)

Given an n x n square matrix A, if there exists a matrix B (necessarily
of the same size) such that

AB=BA=1,

then the matrix B is called the inverse matrix of A, denoted A~'. The
inverse matrix, if it exists, is unique for each 4. A matrix is called
invertible if it has an inverse matrix.

a b
Theorem: For any 2 x 2 matrix A = c dl

its inverse, if exists, is given by

1 d -b
A_lzad—bc —-Cc a

Theorem: A square matrix is invertible if and only if its
determinant is nonzero.
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1 -2 2 -3
Examples: Let A = 5 9 and B = 1 4 |
1 -2] [2 =-3] [ 2-2 -4-(3)
) 24-B=215 o ||| 4| [10-(-1) 4-4
0 -1
=111 0
1 -2|[2 -3] [2+2 -3-87 [4 -1I
() AB=15 2 1|-1 4| [10-2 -15+8]| |8 -7
On the other hand:
2 -3][1 -2] [2-15 -4-6] [-13 -10
BA=\_1 4|5 2| |-1+20 2+8 | |19 10

(iii) det(4)=2—(~10)=12, det(B)=8—3=5.

Since neither is zero, as a result, they are both invertible matrices.

1 [2 2] 12 2] [ 16 16
W) A7=2_(<10)|-5 1] 12|-5 1] |[-5/12 1/12
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7. Systems of linear equations (also known as linear systems)

A system of linear (algebraic) equations, Ax = b, could have zero,
exactly one, or infinitely many solutions. (Recall that each linear
equation has a line as its graph. A solution of a linear system is a
common intersection point of all the equations’ graphs — and there are
only 3 ways a set of lines could intersect.)

If the vector b on the right-hand side is the zero vector, then the
system is called homogeneous. A homogeneous linear system always
has a solution, namely the all-zero solution (that is, the origin). This
solution is called the trivial solution of the system. Therefore, a
homogeneous linear system Ax = @ could have either exactly one
solution, or infinitely many solutions. There is no other possibility,
since it always has, at least, the trivial solution. If such a system has n
equations and exactly the same number of unknowns, then the number
of solution(s) the system has can be determined, without having to
solve the system, by the determinant of its coefficient matrix:

Theorem: If A 1s an n x n matrix, then the homogeneous linear
system Ax = 0 has exactly one solution (the trivial solution) if and
only if A4 is invertible (that is, it has a nonzero determinant). It
will have infinitely many solutions (the trivial solution, plus
infinitely many nonzero solutions) if 4 is not invertible
(equivalently, has zero determinant).
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8. Eigenvalues and Eigenvectors

Given a square matrix A, suppose there are a constant » and a nonzero
vector x such that
Ax=rx,

then r is called an Eigenvalue of A, and x is an Eigenvector of A
corresponding to 7.

Do eigenvalues/vectors always exist for any given square matrix?
The answer is yes. How do we find them, then?

Rewrite the above equation, we get Ax — rx = 0. The next step would

be to factor out x. But doing so would give the expression
A-r)x=0.

Notice that it requires us to subtract a number from an » x n matrix.

That’s an undefined operation. Hence, we need to further refined it by

rewriting the term »x = r I x, and then factoring out x, obtaining

(A-rDx=0.

This is an n x n system of homogeneous linear (algebraic) equations,
where the coefficient matrix is (4 — »I). We are looking for a nonzero
solution x of this system. Hence, by the theorem we have just seen,
the necessary and sufficient condition for the existence of such a
nonzero solution, which will become an eigenvector of A4, is that the
coefficient matrix (4 — »I) must have zero determinant. Set its
determinant to zero and what we get is a degree n polynomial
equation in terms of ». The case of a 2 x 2 matrix is as follow:

a b 1 0 a—r b
7 —7r =
A-rl= c d 0 1 c d—r|
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Its determinant, set to 0, yields the equation

a—-r b 5
de‘{ J }z(a—r)(d—r)—bc=r —(a+d)r+(ad —bc)=0

C —-r

It is a degree 2 polynomial equation of r, as you can see.

This polynomial on the left is called the characteristic polynomial of
the (original) matrix 4, and the equation is the characteristic equation
of A. The root(s) of the characteristic polynomial are the eigenvalues
of A. Since any degree n polynomial always has n roots (real and/or
complex; not necessarily distinct), any # x n matrix always has at least
one, and up to n different eigenvalues.

Once we have found the eigenvalue(s) of the given matrix, we put

each specific eigenvalue back into the linear system (4 —rI)x =0 to
find the corresponding eigenvectors.
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2 3
Examples: A=y 3

2 3 1 0] [2=r 3
_ — —r =
A=rl=\,4 5 0 1 4 3—r|

Its characteristic equation is

[2 —-r
det
4 _

}:(2—r)(3—r)—12:r2—5r—6:(r+1)(r—6):0

The eigenvalues are, therefore, » = —1 and 6.

Next, we will substitute each of the 2 eigenvalues into the matrix
equation (4 —rI)x=10.

For r = —1, the system of linear equations is

241 3 3 3] [o
A-rhx=A+Dx=| 4 3,.9|" 7|4 af |0l

Notice that the matrix equation represents a degenerated system of 2
linear equations. Both equations are constant multiples of the
equation x| + x, = 0. There is now only 1 equation for the 2
unknowns, therefore, there are infinitely many possible solutions.
This is always the case when solving for eigenvectors. Necessarily,
there are infinitely many eigenvectors corresponding to each
eigenvalue.
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Solving the equation x| + x, = 0, we get the relation x, = —x;. Hence,
the eigenvectors corresponding to » = —1 are all nonzero multiples of

Similarly, for = 6, the system of equations is

2—-6 3 -4 3 0
M-rDx=(A-6Dx=| , 1 "7 4 _37 (ol

Both equations in this second linear system are equivalent to
4x1 —3xp=0. Its solutions are given by the relation 4 x; = 3 x,.
Hence, the eigenvectors corresponding to » = 6 are all nonzero
multiples of

Note: Every nonzero multiple of an eigenvector s also an eigenvector.
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Two short-cuts to find eigenvalues:

1. If A is a diagonal or triangular matrix, that is, if it has the form

a 0 a b a 0
0 d|°°" 0 d|°°" c dJ|

Then the eigenvalues are just the main diagonal entries, » = a and d in all 3
examples above.

2. If A is any 2 x 2 matrix, then its characteristic equation is

a—-r b 5
det =r"—(a+d)r+(ad —bc)=0

c d—r

If you are familiar with terminology of linear algebra, the characteristic
equation can be memorized rather easily as

r* — Trace(4) r + det(4) = 0.

Note: For any square matrix A, Trace(A) = [sum of all entries on the main

diagonal (running from top-left to bottom-right)]. For a 2 x 2 matrix A4,
Trace(4) =a +d.
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A short-cut to find eigenvectors (of a 2 x 2 matrix):

Similarly, there is a trick that enables us to find the eigenvectors of any 2 x 2
matrix without having to go through the whole process of solving systems of
linear equations. This short-cut is especially handy when the eigenvalues
are complex numbers, since it avoids the need to solve the linear equations
which will have complex number coefficients. (Warning: This method does
not work for any matrix of size larger than 2 x 2.)

We first find the eigenvalue(s) and then write down, for each eigenvalue, the
matrix (4 — r1I) as usual. Then we take any row of (4 — rI) that is not
consisted of entirely zero entries, say it is the row vector (a , f). We put a
minus sign in front of one of the entries, for example, (o, —=f). Then an
eigenvector of the matrix A is found by switching the two entries in the
above vector, that is, k= (£, a).

2 3

Example:  Previously, we have seen 4 = 4 3

The characteristic equation is

r* — Trace(A) r + det(4) = r> — 5r — 6 = (r + 1)(r — 6) =0,

3 3
which has roots » =—1 and 6. For » =—1, the matrix (4 —r1) is |:4 4:| :

Take the first row, (3, 3), which is a non-zero vector; put a minus sign to the
first entry to get (—3, 3); then switch the entry, we now have k; = (3, —3). It

is indeed an eigenvector, since it is a nonzero constant multiple of the vector
we found earlier.

On very rare occasions, both rows of the matrix (4 — »I) have all zero
entries. If so, the above algorithm will not be able to find an eigenvector.
Instead, under this circumstance any non-zero vector will be an eigenvector.
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Exercises D-1.2:

-5 -1 2 0
Let C= 7 3 and D= —2 1l

1. Compute: (i) C+ 2D and (ii) 3C - 5D.

2. Compute: (i) CD and (ii) DC.

3. Compute: (i) det(C), (ii) det(D), (iii) det(CD), (iv) det(DC).

4. Compute: (i) C', (if)y D', (iif) (CD)", (iv) show (CD) '=D'C".

5. Find the eigenvalues and their corresponding eigenvectors of C and D.

Answers D-1.2:
| [-1 -1  [-25 -3
Dy ) g gy

(-8 1 _[-10 -2
2. (i) g _J, (zz){ 3 _J

3. ()-8, (i) ~2, (iii) 16, (iv) 16
C[-3/8 8] 12 0]  [-3/16 -1/16]
4+ 0 {7/8 5/8] (”){—1 —J’ (’”){—1/2 —1/2}’(”)The

equality is not a coincidence. In general, for any pair of invertible matrices
Cand D, (CD)'=D7'C".

s s
5.() n=2,k ={ o372 —4, k, ={ } ; § = any nonzero number
— S —
o
. — k — . — k — . —
(il) r =2, k [_2S/3_,r2 1, &, L} ; § = any nonzero number
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Solution of 2 x 2 systems of first order linear equations

Consider a system of 2 simultaneous first order linear equations

x{'=ax;+bx,
X' =cx;tdx,

It has the alternate matrix-vector representation

a b
Cdx.

I =

X

Or, in shorthand x' = Ax, if A4 is already known from context.

We know that the above system is equivalent to a second order
homogeneous linear differential equation. As a result, we know that the
general solution contains two linearly independent parts. As well, the
solution will be consisted of some type of exponential functions. Therefore,
assume that x = ke'" is a solution of the system, where k is a vector of
coefficients (of x; and x,). Substitute x and x' = rke" into the equation

x' = Ax, and we have

rke""=Ake".
Since e is never zero, we can always divide both sides by e and get
rk=Ak.

We see that this new equation is exactly the relation that defines eigenvalues
and eigenvectors of the coefficient matrix 4. In other words, in order for a
function x = ke” to satisfy our system of differential equations, the number r
must be an eigenvalue of A, and the vector £ must be an eigenvector of 4
corresponding to . Just like the solution of a second order homogeneous
linear equation, there are three possibilities, depending on the number of
distinct, and the type of, eigenvalues the coefficient matrix 4 has.
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The possibilities are that 4 has

L. Two distinct real eigenvalues
II.  Complex conjugate eigenvalues
III. A repeated eigenvalue

A related note, (from linear algebra,) we know that eigenvectors that each
corresponds to a different eigenvalue are always linearly independent from
each others. Consequently, if 7| and r, are two different eigenvalues, then
their respective eigenvectors k; anf k;, and therefore the corresponding
solutions, are always linearly independent.
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Casel Distinct real eigenvalues

If the coefficient matrix 4 has two distinct real eigenvalues 7, and r,, and
their respective eigenvectors are k; and k,. Then the 2 x 2 system x' = Ax
has a general solution

nt rt
x=Cke" +C ke

2 3
Example: x'= 4 3%

We have already found that the coefficient matrix has eigenvalues
r=—1 and 6. And they each respectively has an eigenvector

LT

Therefore, a general solution of this system of differential equations is

1| 3
x=C, 1e + C, 4e

6t
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3 =2 1
Example: X'=|9 _9|x x(0) = -1

The characteristic equation is #> —r—2 = (r+ 1)(r —2) = 0. The
eigenvalues are » = —1 and 2. They have, respectively, eigenvectors

For r = —1, the system is

341 -2 4 -21 o
M-rhx=A+Dx=| 5 5 1 ["Tly 1" ||

Solving the bottom equation of the system: 2x; — x, = 0, we get the
relation x, = 2 x;. Hence,

For r =2, the system is

3-2 =2 I -2 0
A-rDx=(A-2Dx=| 5 _5_», X = D) _4x= ol

Solving the first equation of the system: x; — 2x, = 0, we get the
relation x; = 2x,. Hence,
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Therefore, a general solution is
1 2
x=C,| _|e"+C,| |
2 1 '

Apply the initial values,

oJ el el
x(0)=C, e +C, e = =
2 1 2C +C, -1/

That is
c, + 2C, =1

2C, + C, =-1-

We find C, =—1 and C, = 1, hence we have the particular solution

1y, (2], |—e'+2e
x=—| |e" + e’ =
2 1 _26—t+ezt .
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Case Il Complex conjugate eigenvalues

If the coefficient matrix 4 has two distinct complex conjugate eigenvalues

A ui. Also suppose k= a + bi is an eigenvector (necessarily has complex-
valued entries) of the eigenvalue 4 + ui. Then the 2 x 2 system x' = Ax has a
real-valued general solution

x=C,e" (acos(ut) - bsin(ut))+ C,e*' (asin( ut) + b cos(ut))

A little detail: Similar to what we have done before, first there was the
complex-valued general solution in the form

x=C k""" + C,k,e" "
We “filter out” the imaginary parts by carefully choosing two sets of

coefficients to obtain two corresponding real-valued solutions that are also
linearly independent:

u=e*'(acos(ut)—bsin(ut))

v=e""(asin(ut) +bcos(ut))
The real-valued general solution above is just x = Cyu + C,v. In particular,
it might be useful to know how u and v could be derived by expanding the

following complex-valued expression (the front half of the complex-valued
general solution):

k "' = (a+bi)e” e = e (a+ bi)(cos(ut) +isin(ut))
=™ (acos(ut) +iasin(ut) + ibcos(ut) + i*bsin(ut))
=" (acos(ut) —bsin(ut)) +ie™ (asin(ut) + bcos(ut))

Then, u is just the real part of this complex-valued function, and v is its
imaginary part.

© 2008, 2012 Zachary S Tseng D-1-24




2 =5
Example: X=11 _o|x

The characteristic equation is #> + 1 = 0, giving eigenvalues r = + i.
That is, A =0 and u =1.

Take the first (the one with positive imaginary part) eigenvalue r = i,
and find one of its eigenvectors:

2o =5 0
M=rDx=1 1 _5_;|" 7o

Solving the first equation of the system: (2 — i) x; — 5x, = 0, we get
the relation (2 — 7) x; = 5x,. Hence,

ol HH e

a b

Therefore, a general solution is

—COf5 tO'tCOfS‘t+0 t
x=Ce 2cos()— . sin(?) |+ C,e 2sm() 1 cos(?)

[ 5cos(?) J [ 5sin(¢) j
=(, , +C, ,
2cos(t) + sin(¢) 2sin(t) —cos(?)

© 2008, 2012 Zachary S Tseng D-1-25



-1 -6 0
Example: x'= 3 5 |% x(0) = 71

The characteristic equation is #> — 4r + 13 = 0, giving eigenvalues
r=2%3i. Thus, A =2 and u =3.

Take » =2 + 3i and find one of its eigenvectors:
—1-(2+3i) -6 -3-3i -6 0
_ _ x = =
M=rhx= 3 5(2+30) 3 3-3i| |o|

Solving the second equation of the system: 3x; + (3 — 3i)x, = 0, we
get the relation x; = (—1 + i) x,. Hence,

P

The general solution is

x=C, eth—ll} cos(3t) — Ll)} sin(3t)J +C,e’ tq—ll} sin(3¢) + Lﬂ cos(3t))

9 [—cos(3t)—sin(3t)j ) (cos(sz)—sin(st)j
1 € + C2 e ]
cos(3r) sin(3¢)
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Apply the initial values to find C; and C;:

x(0) = C,e’ [{_11} cos(0) — Lﬂ sin(O)J +C, e’ q—ll} sin(0) + Ll)} cos(O)J
el
=C, +C,| |= =
1 0 C 2

Therefore, C;, =2 and C, = 2. Consequently, the particular solution is

) [— cos(3t) —sin(3t) N (cos(3t) ~ sin(3t)j
x=12e + 2e .
cos(3¢) sin(3t)
o —4sin(3¢)
¢ 2cos(3¢) + 2sin(3¢)
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CaseIIl  Repeated real eigenvalue

Suppose the coefficient matrix A has a repeated real eigenvalues 7, there are
2 sub-cases.

(1) If r has two linearly independent eigenvectors k; and k,. Then the 2 x 2
system x’ = Ax has a general solution

X = Cl k1 e” + Czkzert.

Note: For 2 x 2 matrices, this possibility only occurs when the coefficient
matrix A4 is a scalar multiple of the identity matrix. That is, 4 has the form

I 0 a 0
124 0 1 = 0 al for any constant a.

2 0
Example: x'= 0 2%

The eigenvalue is » = 2 (repeated). There are 2 sets of linearly
independent eigenvectors, which could be represented by any 2
nonzero vectors that are not constant multiples of each other. For
example

Therefore, a general solution is

1 0
x=C, {0} e’ + C, L} e’
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(i) Ifr, as it usually does, only has one linearly independent eigenvector &.
Then the 2 x 2 system x’' = Ax has a general solution

x=Cike"+ Cy(kte" +ye’.

Where the second vector # is any solution of the nonhomogeneous linear
system of algebraic equations

A-—rDhn=k.

1 -4 2
Example: x'= 4 —7|% x(0) = 1 |-

The eigenvalue is » = =3 (repeated). The corresponding system is

1+3 -4 ] [4 -4] To
M-rhx=| 4 _7.31" 7|4 —a| o]

Both equations of the system are 4x; — 4x, = 0, we get the same
relation x| = x,. Hence, there is only one linearly independent

eigenvector:
F}
k=
1 .
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Next, solve for %:
4 —4 1
4 —4(1= 1|

1
—+1,
It has solution in the formn = 4

m,
1/4
Choose 77, =0, we get y = 0 |

A general solution is, therefore,

x=C,| e +C, te ™ + e
1 1 0

Apply the initial values to find C; =1 and C, = —12. The particular
solution is

1 1 1/4 —12¢t -2
x=| |e" =12[| |te™ + / e |= e
1 1 0 —12t+1
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Summary: Solving a Homogeneous System of Two Linear
First Order Equations in Two Unknowns

Given:
x' = Ax.

First find the two eigenvalues, 7, and their respective corresponding
eigenvectors, k, of the coefficient matrix 4. Depending on the eigenvalues
and eigenvectors, the general solution is:

I. Two distinct real eigenvalues r, and r,:

_ nt ryt
x=Cke" +C ke

II. Two complex conjugate eigenvalues 4 * ui, where A + ui has as an
eigenvector k=a + bi:

x=C,e* (acos(ut) —bsin(ut))+ C,e* (asin( ut) + b cos(ut))

III. A repeated real eigenvalue r:

(1) When two linearly independent eigenvectors exist —
X = Cl k1 e” + Czkzert.

(1)) When only one linearly independent eigenvector exist —
x=Cke"+ Cy(kte" +ne™).

Note: Solve the system (4 — rI)ny = k to find the vector #.
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Exercises D-1.3:

1. Rewrite the following second order linear equation into a system of two

equations.

yi+Sy—6y=0

Then: (a) show that both the given equation and the new system have the
same characteristic equation. (b) Find the system’s general solution.

2 —7 Find the general solution of each system below.

) ,_'2 7
x—__5 —IOx'
(8 —4
4. x=_1 4 X.
(2 1
6. x=_1 2x.

3.

-3 6
x=__3 3 |X
-3 2
x=__1 _5 X.
(2 -5
x=_1 _4x.

8 — 15 Solve the following initial value problems.

g R
. =

, -4 0
9. x' = 0 _4x,

g _
10. x=_2 3_x,
11 = 08

. x—_2 6_x,
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x(0) =

x(0) =

H
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ER 55)=| >

: x—_1 3% x(—55)= 5"
PR 20y-|

: x—__2 1_x, x(20) = 1
15 ’—_3 5 243) = >

: x—__2 1_x, x(243) = 14"

16. For each of the initial value problems #8 through #15, how does the
solution behave as ¢ — ?

17. Find the general solution of the system below, and determine the

possible values of a and £ such that the initial value problem has a solution
that tends to the zero vector as ¢t — oo.

[ -
xX'=1 3 % x(0) = 8|

Answers D-1.3:

-1 1
1. (@) ¥ +5r—6=0, (b)x:C1{6}€_6t+C2L}et

7 _ 1|
2. x=C, {_S}e Y+ C, {_J@ >

_c cos(3¢) + sin(3¢) ol cos(3t) + sin(3¢)
S e sin(3¢)
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2 61 2 6t 1 6t
4. x=C, 1e +C, 1te +0e

x=C 6_4{cos(r) — sin(t)} i C, 6_4;{003(0 + sin(t)}

— cos(?) — sin(?)

_1 t 1 3t
6. x=C, 1e+C2 1e

| —4cost—2sint 5o+ 12
8. X=e€ . 9' xX=
2cost—4sint et
B _2e5"5 et B 4% + 46"
10. x__zeSz—5+e—z+1 11. X= 9l 4 20
B (54 ¥ [9- G 61330
12. X= 5 _eZZ 13. X= 3+2e—6z+330
- 5360 _ 4180
14. X= - 5,360 464180:|

5, ags| D €08(3t —729) + 25sin(3¢ — 729)
X =
15 14 cos(3¢t —729) — 8sin(3t — 729)

_ 0
16. For #8 and 9, tlgglox(t){o] For #10, 11, 12, 14, and 15, the limits do

not exist, as x(¢) moves infinitely far away from the origin. For #13,

limx(¢)= {9}
t—>o© B 3

1 1|
17. x=C, {_ 7} e’ +C, {_ J e ; the particular solution will tend to

zero as t — o provided that C; = 0, which can be achieved whenever the

initial condition is such that o = —f (i.e., a + f = 0, including the case o = f =
0).
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The Laplace Transform Method of
Solving Systems of Linear Equations
(Optional topic)

The method of Laplace transforms, in addition to solving individual linear
differential equations, can also be used to solve systems of simultaneous
linear equations. The same basic steps of transforming, simplifying, and
taking the inverse transform of the solution still apply.

1 -4 2
Example: x'= 4 —7|% x(0) = 1 |-

Before we start, let us rewrite the problem into the explicit form of
individual linear equations:

Xllz X1 _4)62 x1(0)=—2
Xz’ = 4X1 - 7X2 XQ(O) =]

We then first transform both equations using the usual rules of
Laplace transform:

sLx1f —x1(0) = sLx,§ +2= Llxi} —4Lx} (D)

sLxy; — x3(0) = s.Lxof — 1 =4.Lx} — 7L, (2)

Partially simplifying both equations
(s = DLxi} +4Lx5 = —2 (1%)

—4Lx} + (s T D Lxy =1 (2%)

© 2008, 2012 Zachary S Tseng D-1-35



Then multiply eq. (1*) by —4 and eq. (2*) by s — 1.

—4(s — 1).Lx,} — 16.L8x,} = 8 (1%%)
—4(s—D.Lx} +(s— 1) (s+DLx} =s5—1 (2%%)
Subtract eq. (1**) from eq. (2**)

[(s—1)(s+7) = (16)].8x,} =5 -9

(s> + 65 +9).Lx;t =5 -9

Therefore,

s=9 1 12
(s+3)> s+3 (s+3)

Lixy) =

S xa=e - 12te

Similarly, multiply eq. (1*) by s + 7 and eq. (2*) by 4.
(s—D(s+7DLx 1} +4(6+71Lxy} = 2(s+7) (3)
—16.Lx,} + 4(s + 7).Lx,} =4 (4)
Subtract eq. (4) from eq. (3)

[(s=1)(s+7)+ 16].8x,} = 25— 18

(s> + 65+ 9).Lx;} =25 — 18

—2s-18 -2 12
(s+3)* s+3 (s+3)

Lix ) =

S ox =-2e 12t
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Therefore,
X, —12te7 = 2e7" —-12¢ -2 _,
X = = = e
X, —12te™ + e —12t+1 '

This agrees with the solution we have found earlier using the
eigenvector method.

The method above can also, without any modification, be used to solve
nonhomogeneous systems of linear differential equations. It gives us a way
to solve nonhomogeneous linear systems without having to learn a separate
technique. In addition, it also allows us to tackle linear systems with
discontinuous forcing functions, if necessary.

-4 -2 —t 3
Example: x'= 3 11Xt | 2r-115 x(0) = _5]

Rewrite the problem explicitly and transform:

X1,:_4X1 _2X2_f X1(0)23
X2,: 3X1+ X2+2f_1 Xz(O):_S
1
sOxi; — 3= —4Lbx ) — 20X — 2 )
2 1
sL} +5=3Lm ) + Lo+ T (6)
Simplify:
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1 3s° —1

(s + 9L} + 2L} =— 7 +3=7 (5%)
2 1 — 557 —s5+2
Bl (- DL = E T I (6*)

Multiplying eq. (5*) by s — 1 and eq. (6*) by 2, then subtract the latter
from the former. We eliminate .£&4{x,}, to find .&{x,}.

35 +7s*+s5-3

(s> +3s+ D).Lx,} = I
Therefore,
3S3+7S2+S—3_ 13 +£
L= 245 +2)  Ms+2) 250 4s
1 3, .1
- M7y 2 4

Likewise, multiplying eq. (5*) by 3 and eq. (6*) by s + 4, then add
them together. We find .&{x,}.

—55°—12s* =25 +5

(s> +3s+ 2).Lx,} = e
Therefore,
—5S3—12S2—2S+5_ —1 N 5 19
L0} = T P (5+2)  4s+2) 257 4s
__le_2t+§t_g
- T 2 4
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Finally,

Exercise D-1.4:

le_zt —ét

_| 4 2
ol TR

2

e —6t+11

Use Laplace transforms to solve each nonhomogeneous linear system.

1
1 x'= _2
2
2. x'= __1
3
3 x'= _5
2
4, x'= __1

3 57

e 3]

0 —4sin 2¢ |
+
-2 X cos 2t

—& 3r+1
4 T —6r-2
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>

10
x(0) = 3|

1
x(0)= 1l

2
x(0)= 1l

0
x(0)= 4l

1
4{—62t+10t—19}-
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Answers D-1.4:

13 5, 51 3 s
10 5 2
—17 e—3t +1_7le + 3e—St

5 5

—e*cost+4e*sint+2

| 4e* cost+e’ sint -3

ﬁe” + icos 2t + 2sin 2t

13 13 13

ﬁe” —ﬁe‘z’ —lcos 2t + ﬁsin 2t
|13 52 52 52

ﬂem —31‘2 —lt-f-ﬁ
12 2 12

55 «, 3 ., 1 41
——"+—r+ —

—e
| 24 4 4 24
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