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Chapter 8 

 
Robotic Systems Architectures and Programming 
 
Robot software systems tend to be complex.  This 
complexity is due, in large part, to the need to control 
diverse sensors and actuators in real time, in the face of 
significant uncertainty and noise.  Robot systems must 
work to achieve tasks while monitoring for, and 
reacting to, unexpected situations.  Doing all this 
concurrently and asynchronously adds immensely to 
system complexity. 

The use of a well-conceived architecture, together with 
programming tools that support the architecture, can 
often help to manage that complexity.  Currently, there 
is no single architecture that is best for all applications 
– different architectures have different advantages and 
disadvantages.  It is important to understand those 
strengths and weaknesses when choosing an 
architectural approach for a given application.  

This chapter presents various approaches to architecting 
robotic systems.  It starts by defining terms and setting 
the context, including a recounting of the historical 
developments in the area of robot architectures.  The 
chapter then discusses in more depth the major types of 
architectural components in use today – behavioral 
control (see Ch. 38), executives, and task planners (see 
Ch. 9) – along with commonly used techniques for 
inter-connecting those components.  Throughout, 
emphasis will be placed on programming tools and 
environments that support these architectures.  A case 
study is then presented, followed by a brief discussion 
of further reading.  

8.1. Introduction 

The term robot architecture is often used to refer to two 
related, but distinct, concepts.  Architectural structure 
refers to how a system is divided into subsystems and 
how those subsystems interact.  The structure of a robot 
system is often represented informally using traditional 
“boxes and arrows” diagrams or more formally using 
techniques such as UML [Jacobson et al 1998].  In 
contrast, architectural style refers to the computational 
concepts that underlie a given system.  For instance, 
one robot system might use a publish-subscribe 
message passing style of communication, while another 
may use a more synchronous client-server approach. 

All robotic systems use some architectural structure and 
style.  However, in many existing robot systems it is 

difficult to pin down precisely the architecture being 
used.  In fact, a single robot system will often use 
several styles together.  In part, this is because the 
system implementation may not have clean subsystem 
boundaries, blurring the architectural structure.  
Similarly, the architecture and the domain-specific 
implementation are often intimately tied together, 
blurring the architectural style(s). 

This is unfortunate, as a well-conceived, clean 
architecture can have significant advantages in the 
specification, execution, and validation of robot 
systems.  In general, robot architectures facilitate 
development by providing beneficial constraints on the 
design and implementation of robotic systems, without 
being overly restrictive.  For instance, separating 
behaviors into modular units helps to increase 
understandability and reusability, and can facilitate unit 
testing and validation. 

Special Needs of Robot Architectures 

In some sense, one may consider robot architectures as 
software engineering.  However, robot architectures are 
distinguished from other software architectures because 
of the special needs of robot systems.  The most 
important of these, from the architectural perspective, 
are that robot systems need to interact asynchronously, 
in real time, with an uncertain, often dynamic, 
environment.  In addition, many robot systems need to 
respond at varying temporal scopes – from millisecond 
feedback control to minutes, or hours, for complex 
tasks.   

To handle these requirements, many robot architectures 
include capabilities for acting in real time, controlling 
actuators and sensors, supporting concurrency, 
detecting and reacting to exceptional situations, dealing 
with uncertainty, and integrating high-level (symbolic) 
planning with low-level (numerical) control. 

While the same capability can often be implemented 
using different architectural styles, there may be 
advantages of using one particular style over another.  
As an example, consider how a robot system’s style of 
communications can impact its reliability.  Many robot 
systems are designed as asynchronous processes that 
communicate using message passing.  One popular 
communication style is client-server, in which a 
message request from the client is paired with a 



response from the server.  An alternate communication 
paradigm is publish-subscribe, in which messages are 
broadcast asynchronously and all modules that have 
previously indicated an interest in such messages 
receive a copy.  With client-server style message 
passing, modules typically send a request and then 
block, waiting for the response.  If the response never 
comes (e.g., the server module crashes) then deadlock 
can occur.  Even if the module does not block, the 
control flow still typically expects a response, which 
may lead to unexpected results if the response never 
arrives or if a response to some other request happens to 
arrive first.  In contrast, systems that use publish-
subscribe tend to be more reliable: because messages 
are assumed to arrive asynchronously, the control flow 
typically does not assume any particular order in which 
messages are processed, and so missing, or out-of-order, 
messages tend to have less of an impact. 

Modularity and Hierarchy 

One common feature of robot architectures is modular 
decomposition of systems into simpler, largely 
independent pieces.  As mentioned above, robot 
systems are often designed as communicating processes, 
where the communications interface is typically small 
and relatively low bandwidth.  This design enables the 
processes/modules to handle interactions with the 
environment asynchronously, while minimizing 
interactions with one another.  Typically, this decreases 
overall system complexity and increases overall 
reliability. 

Often, system decomposition is hierarchical – modular 
components are themselves built on top of other 
modular components.  Architectures that explicitly 
support this type of layered decomposition reduce 
system complexity through abstraction.  However, 
while hierarchical decomposition of robotic systems is 
generally regarded as a “desirable quality”, debate 
continues over the dimensions along which to 
decompose.  Some architectures (c.f. [Albus 1995]) 
decompose along a temporal dimension – each layer in 
the hierarchy operates at a characteristic frequency an 
order of magnitude slower than the layer below.  In 
other architectures ([Brooks 1986; Firby 1987; 
Simmons 1994; Borrelly 1998]), the hierarchy is based 
on task abstraction – tasks at one layer are achieved by 
invoking a set of tasks at lower levels.  In some 
situations, decomposition based on spatial abstraction 
may be more useful, such as when dealing with both 
local and global navigation (c.f., [Kuipers 2000].  The 
main point is that different applications need to 
decompose problems in different ways, and 
architectural styles can often be found to accommodate 
those different needs. 

Software Development Tools 

While significant benefit accrues from designing 
systems using well-defined architectural styles, many 
architectural styles also have associated software tools 
that facilitate adhering to that style during 
implementation.  These tools can take the form of 
libraries of functions calls, specialized programming 
languages, or graphical editors.  The tools make the 
constraints of the architectural style explicit, while 
hiding the complexity of the underlying concepts. 

For instance, inter-process communication libraries, 
such as CORBA [Orfali et al 1997] and IPC [Simmons 
& Whelan 1997], make it easy to implement message 
passing styles, such as client-server and publish-
subscribe, respectively.  Languages, such as 
Subsumption [Brooks 1990b] or Skills [Firby & Slack 
1995] facilitate the development of data-driven, real-
time behaviors, while languages such as ESL [Gat 
1997] and PLEXIL [Verma et al 2005] provide support 
for reliably achieving higher-level tasks.  Graphical 
editors, such as found in ControlShell [Schneider et al 
1998], Labview [Labview] and ORCCAD [Borrelly 
1998], provide constrained ways to assemble systems, 
and then automatically generate code that adheres to the 
architectural style. 

In each case, the tools facilitate the development of 
software in the given style and, more importantly, make 
it impossible (or, at least, very difficult) to violate the 
constraints of that architectural style.  The result is that 
systems implemented using such tools are typically 
easier to implement, understand, debug, verify, and 
maintain.  They also tend to be more reliable, since the 
tools provide well-engineered capabilities for 
commonly needed control constructs, such as message 
passing, interfacing with actuators and sensors, and 
handling concurrent tasks. 

8.2. History 

Robot architectures and programming began in the late 
1960s with the Shakey robot at Stanford University 
[Nilsson 1969] (see Figure 8.1).  Shakey had a camera, 
a range finder, and bump sensors, and was connected to 
DEC PDP-10 and PDP-15 computers via radio and 
video links.  Shakey’s architecture was decomposed 
into three functional elements: sensing, planning, and 
executing [Nilsson 1980].  The sensing system 
translated the camera image into an internal world 
model.  The planner took the internal world model and 
a goal and generated a plan (i.e., a series of actions) that 
would achieve the goal.  The executor took the plan and 
sent the actions to the robot.  This approach has been 
called the sense-plan-act (SPA) paradigm (see Figure 
8.2).  Its main architectural features are that sensing 



flowed into a world model that was then used by the 
planner, and that the plan was executed without directly 
using the sensors that created the model.  For many 
years, robotic control architectures and programming 
focused almost exclusively on the SPA paradigm.  

Subsumption 

In the early 1980’s, it became apparent that the SPA 
paradigm had problems.  First, planning in any real-
world domain took a long time, and the robot would be 
blocked waiting for planning to complete.  Second, and 
more importantly, execution of a plan without involving 
sensing was dangerous in a dynamic world.  Several 
new robot control architecture paradigms began to 
emerge, including reactive planning, in which plans 
were generated quickly and relied more directly on 
sensed information instead of internal models [Firby 
1987; Agre and Chapman 1987].  The most influential 
work, however, was the Subsumption architecture of 
Rodney Brooks of MIT [Brooks 1986].  A Subsumption 
architecture is built from layers of interacting finite 
state machines – each connecting sensors to actuators 
directly (see Figure 8.3).  These finite state machines 
were called behaviors (leading some to call 
Subsumption “behavior-based” or “behavioral” robotics 
[Arkin 1998]; see also Ch. 38).   Since multiple 
behaviors could be active at any one time, Subsumption 
had an arbitration mechanism that enabled higher-level 
behaviors to override signals from lower-level 
behaviors.  For example, the robot might have a 
behavior that simply drives the robot in random 
directions.  This behavior is always active and the robot 
is always driving somewhere.  A second, higher-level 
behavior could take sensor input, detect obstacles and 
steer the robot away from them.  It also is always active.  
In an environment with no obstacles, the higher-level 
behavior never generates a signal.  However, if it 
detects an obstacle it overrides the lower-level behavior 
and steers the robot away.  As soon as the obstacle is 
gone (and the higher-level behavior stops sending 
signals), the lower-level behavior gets control again.  
Multiple, interacting layers of behaviors could be built 
to produce more and more complicated robots.   

Many robots were built using the Subsumption 
approach – most at MIT [Connell 1992; Mataric 1992; 
Horswill 1993]. They were quite successful.  Whereas 
SPA robots were slow and ponderous, Subsumption 
robots were fast and reactive.  A dynamic world did not 
bother them because they constantly sensed the world 
and reacted to it.  These robots scampered around like 
insects or small rodents.  Several behavioral 
architectures arose in addition to Subsumption, often 
with different arbitration schemes for combining the 
outputs of behaviors [Payton 1986; Rosenblatt 1997].   

A popular example of behavior-based architectures is 
Arkin’s motor-control schemas [Arkin 1989].  In this 
biologically inspired approach, motor and perceptual 
schemas [Arbib 1992] are dynamically connected to 
one another.  The motor schemas generate response 
vectors based on the outputs of the perceptual schemas, 
which are then combined in a manner similar to 
potential fields [Khatib 1985].  To achieve more 
complex tasks, the AuRA (Autonomous Robot 
Architecture) architecture [Arkin 1990; Arkin & Balch 
1992] added a navigation planner and a plan sequencer, 
based on finite state acceptors (FSAs), to the reactive 
schemas.  

However, behavior-based robots soon reached limits in 
their capabilities.  It proved very difficult to compose 
behaviors to achieve long-range goals and it proved 
almost impossible to optimize robot behavior.  For 
example, a behavior-based robot that delivered mail in 
an office building could easily be built by simply 
wandering around the office building and having 
behaviors looking for rooms and then overriding the 
wandering and entering the office.  It was much more 
difficult to use the behavioral style of architecture to 
design a system that reasoned about the day’s mail to 
visit the offices in an optimal order to minimize 
delivery time.  In essence, robots needed the planning 
capabilities of the early architectures wedded to the 
reactivity of the behavior-based architectures.  This 
realization led to the development of layered, or tiered, 
robot control architectures. 

Layered Robot Control Architectures 

One of the first steps towards the integration of 
reactivity and deliberation was the RAPs system 
created by James Firby. In his thesis [Firby 1989], we 
see the first outline of an integrated, three-layer 
architecture. The middle layer of that architecture, and 
the subject of the thesis, was the Reactive Action 
Packages (RAPs) system. Firby also speculated on the 
form and function of the other two tiers, specifically 
with the idea of integrating classic deliberative methods 
with the ideas of the emerging situated reasoning 
community, but those layers were never implemented.  
Later, Firby would integrate RAPs with a continuous 
low-level control layer [Firby 1994]. 

Independently and concurrently, Pete Bonasso at 
MITRE [Bonasso 1991] devised an architecture that 
began at the bottom layer with robot behaviors 
programmed in the Rex language as synchronous 
circuits [Rosenschein & Kaelbling 1988]. These Rex 
machines guaranteed consistent semantics between the 
agent’s internal states and those of the world.  The 
middle layer was a conditional sequencer implemented 
in the GAPPs language [Kaelbling 1988], which would 



continuously activate and deactivate the Rex skills until 
the robot's task was complete. This sequencer based on 
GAPPS was appealing because it could be synthesized 
through more traditional planning techniques 
[Kaelbling 1990].  This work culminated in the 3T 
architecture (named for its three tiers of interacting 
control processes – planning, scheduling, and real-time 
control), which has been used on many generations of 
robots [Bonasso et al 1997].   

Architectures similar to 3T (see Figure 8.4) have been 
developed subsequently.  One example is ATLANTIS 
[Gat 1992], which leaves much more control at the 
sequencing tier.  In ATLANTIS, the deliberative tier 
must be specifically called by the sequencing tier.  A 
third example is Saridis’ intelligent control architecture 
[Saridis 1995].  The architecture begins with the servo 
systems available on a given robot and augments them 
to integrate the execution algorithms of the next level, 
using VxWorks and the VME-bus. The next level 
consists of a set of coordinating routines for each lower 
subsystem, e.g., vision, arm motion, and navigation. 
These are implemented in Petri Net Transducers 
(PNTs), a type of scheduling mechanism, and activated 
by a dispatcher connected to the organizational level. 
The organizational level is a planner implemented as a 
Boltzmann neural network. Essentially the neural 
network finds a sequence of actions that will match the 
required command received as text input, and then the 
dispatcher executes each of these steps via the network 
of PNT coordinators. 

LAAS (LAAS Architecture for Autonomous Systems) 
is a three-layered architecture that includes software 
tools to support development/programming at each 
layer [Alami et al 1998].  The lowest layer (functional) 
consists of a network of modules, which are 
dynamically parameterized control and perceptual 
algorithms.  Modules are written in the GenoM 
language, which produces standardized templates that 
facilitate the integration of modules with one another.  
Unlike most other three-layered architectures, the 
executive layer is fairly simple – it is purely reactive 
and does no task decomposition.  It serves mainly as a 
bridge – receiving task sequences from the highest layer 
and selecting and parameterizing tasks to send to the 
functional layer.  The executive is written in the Kheops 
language, which automatically generates decision 
networks that can be formally verified.  At the top, the 
decision layer consists of a planner, implemented using 
the IxTeT temporal planner [Ghallab & Laruelle 1994; 
Laborie & Ghallab 1995], and a supervisor, 
implemented using PRS [Georgeff & Ingrand 1989; 
Ingrand et al 1996].  The supervisor is similar to the 
executive layer of other three-layered architectures – it 
decomposes tasks, chooses alternative methods for 
achieving tasks, and monitors execution.  By combining 

the planner and supervisor in one layer, LAAS achieves 
a tighter connection between the two, enabling more 
flexibility in when, and how, replanning occurs.  The 
LAAS architecture actually allows for multiple 
decisional layers at increasingly higher levels of 
abstraction, such as a high-level “mission” layer and a 
lower-level “task” layer. 

The Remote Agent is an architecture for the 
autonomous control of spacecraft [Muscettola et al 
1998].  It actually consists of four layers – a control 
(behavioral) layer, an executive, a planner/scheduler, 
and MIR (Mode Identification and Recovery) that 
combines fault detection and recovery.  The control 
layer is the traditional spacecraft real-time control 
system.  The executive is the core of the architecture – 
it decomposes, selects, and monitors task execution, 
performs fault recovery, and does resource management, 
turning devices on and off at appropriate times to 
conserve limited spacecraft power.  The 
planner/scheduler is a batch process that takes goals, an 
initial (projected) state, and currently scheduled 
activities, and produces plans that include flexible 
ranges on start and end times of tasks.  The plan also 
includes a task to reinvoke the planner to produce the 
next plan segment.  An important part of the Remote 
Agent is configuration management – configuring 
hardware to support tasks and monitoring that the 
hardware remains in known, stable states.  The role of 
configuration management is split between the 
executive, which uses reactive procedures, and MIR, 
which uses declarative models of the spacecraft and 
deliberative algorithms to determine how to reconfigure 
the hardware in response to detected faults [Williams & 
Nayak 1996]. 

The Syndicate architecture [Sellner et al 2006] extends 
the 3T model to multi-robot coordination (see Ch. 40).  
In this architecture, each layer interfaces not only with 
the layers above and below, as usual, but also with the 
layers of the other robots at the same level (see Figure 
8.5).  In this way, distributed control loops can be 
designed at multiple levels of abstraction.  The version 
of Syndicate in [Goldberg et al 2004] used a distributed 
market-based approach for task allocation at the 
planning layer. 

Other noteworthy multi-tiered architectures have 
appeared in the literature.  NASREM [Albus et al 1986; 
Albus 1995], later named RCS, was an early reference 
model for telerobotic control (see Figure 8.6). It is a 
many tiered model in which each layer has the same 
general structure, but operates at increasingly lower 
frequency as it moves from the servo level to the 
reasoning levels. With the exception of maintaining a 
global world model, NASREM, in its original inception, 
provided for all the data and control paths that are 



present in architectures such as 3T. But NASREM was 
a reference model, not an implementation. The 
subsequent implementations of NASREM followed 
primarily the traditional sense-plan-act approach and 
were mainly applied to telerobotic applications, as 
opposed to autonomous robots. A notable exception 
was the early work of Blidberg [Blidberg 1986].  

While three-layered robot architectures are very popular, 
various two-layered architectures have been 
investigated by researchers.  CLARAty (Coupled 
Layered Architecture for Robot Autonomy) was 
designed to provide reusable software for NASA’s 
space robots, especially planetary rovers [Volpe et al 
2001; Nesnas et al 2006].  CLARAty consists of a 
functional and a decision layer.  The functional layer is 
a hierarchy of object-oriented algorithms that provide 
more and more abstract interfaces to the robot, such as 
motor control, vehicle control, sensor-based navigation, 
and mobile manipulation.  Each object provides a 
generic interface that is hardware independent, so that 
the same algorithms can run on different hardware.  The 
decision layer combines planning and executive 
capabilities.  Similar to the LAAS architecture, this is 
done to provide for tighter coordination between 
planning and execution, enabling continual replanning 
in response to dynamic contingencies. 

CLEaR (Closed Loop Execution and Recovery) [Estlin 
et al 2005] is one instantiation of the CLARAty 
decision layer.  CLEaR combines the CASPER repair-
based planner [Knight et al 2001] and the TDL 
executive language [Simmons & Apfelbaum 1998].  
CLEaR provides a tightly coupled approach to goal-
driven and event-driven behavior.  At its heart is the 
capability to do fast, continuous replanning, based on 
frequent state and resource updates from execution 
monitoring.  This enables the planner to react to many 
exceptional situations, which can be important in cases 
where there are many tasks, few resources, and 
significant uncertainty.  In CLEaR, both the planning 
and executive components are able to handle resource 
conflicts and exceptional situations – heuristics are used 
to decide which component should be involved in a 
given situation.  The OASIS system [Estlin et al 2007] 
extends CLEaR to include science data analysis so that 
the architecture can be driven by opportunistic science-
related goals (such as finding unusual rocks or 
formations).  OASIS is planner-centric, releasing tasks 
to the executive component just a few seconds before 
their scheduled start times. 

CIRCA (Cooperative Intelligent Real-Time Control 
Architecture) is a two-layered architecture concerned 
with guaranteeing reliable behavior [Musliner et al 
1995; Musliner et al 2000].  It embodies the notion of 
bounded reactivity – an acknowledgement that the 

resources of the robot are not always sufficient to 
guarantee that all tasks can be achieved.  CIRCA 
consists of a real-time system (RTS) and an AI system 
(AIS) that are largely independent.  The RTS executes a 
cyclic schedule of TAPs (Test Action Pairs) that have 
guaranteed worst-case behavior in terms of sensing the 
environment and conditionally acting in response.  It is 
the responsibility of the AIS to create a schedule that is 
guaranteed to prevent catastrophic failures from 
occurring, while running in hard real-time.  The AIS 
does this by planning over a state-transition graph that 
includes transitions for actions, exogenous events, and 
the passage of time (e.g., if the robot waits too long, 
bad things can happen).  The AIS tests each plan (set of 
TAPs) to see if it can actually be scheduled.  If not, it 
alters the planning model, either by eliminating tasks 
(based on goal prioritization) or by changing 
parameters of behaviors (e.g., reducing the robot’s 
velocity).  The AIS continues this until it finds a plan 
that can be successfully scheduled, in which case it 
downloads the new plan to the RTS in an atomic 
operation. 

Like CIRCA, Orccad is a two-layered architecture that 
is concerned with guaranteed reliability [Borrelly 1998; 
Espiau et al 1995].  In the case of Orccad, this 
guarantee is achieved through formal verification 
techniques.  Robot-tasks (lower-level behaviors) and 
robot-procedures (higher-level actions) are defined in 
higher-level languages that are then translated into the 
Esterel programming language [Berry & Gonthier 
1992], for logical verification, or the Timed-Argus 
language [Jourdan et al 1993], for temporal verification.  
The verification is geared toward liveness and safety 
properties, as well as verifying lack of contention for 
resources. 

8.3. Architectural Components 

We will take the three-tiered architecture as the 
prototype for the components discussed in this chapter.  
Figure 8.4 shows a typical three-tiered architecture.  
The lowest tier (or layer) is behavioral control and is 
the layer tied most closely to sensors and actuators.  
The second tier is the executive layer and is responsible 
for choosing the current behaviors of the robot to 
achieve a task.  The highest tier is the task planning 
layer and it responsible for achieving long-term goals of 
the robot within resource constraints.  Using the 
example of an office delivery robot, the behavioral 
layer is responsible for moving the robot around rooms 
and hallways, for avoiding obstacles, for opening doors, 
etc.  The executive layer coordinates the behavioral 
layer to achieve tasks such as leaving a room, going to 
an office, etc.  The task-planning layer is responsible 
for deciding the order of deliveries to minimize time, 



taking into account delivery priorities, scheduling 
recharging, etc.  The task-planning layer sends tasks 
(e.g., exit the room, go to office 110) to the executive.  
All these tiers need to work together and exchange 
information.  The next section deals with the problem 
of connecting components to each other. We then 
discuss each component of the three-tiered prototype 
architecture in detail.    

8.3.1 Connecting Components 
All of the architecture components that have been 
discussed in this chapter need to communicate with 
each other.  They need to both exchange data and send 
commands.  The choice of how components 
communicate (often called the middleware) is one of 
the most important and most constraining of the many 
decisions a robot architecture designer will make.  
From previous experience, a great deal of the problems 
and a majority of the debugging time in developing 
robot architectures have to do with communication 
between components.  In addition, once a 
communication mechanism is chosen it becomes 
extremely difficult to change, so early decisions persist 
for many years.  Many developers “roll their own” 
communication protocols, usually built on top of Unix 
sockets.  While this allows for customization of 
messages, it fails to take advantage of the reliability, 
efficiency, and ease of use that externally available 
communication packages provide.  There are two basic 
approaches to communication – client-server and 
publish/subscribe.   

Client-Server 

In a client-server (also called a point-to-point) 
communication protocol, components talk directly with 
other components.  A good example of this is Remote 
Procedure Call (RPC) protocols in which one 
component (the client) can call another component’s 
(the server) functions and procedures.  A modern, and 
popular, variation on this is the Common Object 
Request Broker Architecture (CORBA).  CORBA 
allows for one component to call object methods that 
are implemented by another component.  All method 
calls are defined in an Interface Definition Language 
(IDL) file that is language independent.  Every 
component uses the same IDL to generate code that 
compiles with their component to handle 
communication.  The advantage of this is that when an 
IDL file is changed all components that use that IDL 
can be recompiled automatically (by using make or 
similar code configuration tools).  CORBA Object 
Request Brokers (ORBs) are available for most major 
object oriented languages.  Although free ORBs are 
available, many commercial ORBs offer additional 

features and support.  One disadvantage of CORBA is 
that it introduces quite a bit of additional code into 
applications.  Some competitors have tried to address 
this issue, such as the Internet Communications Engine 
(ICE), which has its own version of an IDL file called 
the Specification Language for ICE (SLICE).  The 
biggest advantage of a client-server protocol is that the 
interfaces are very clearly defined in advance and 
everyone knows when the interface has changed.  
Another advantage is that it allows for a distributed 
approach to communication with no central module that 
must distribute data.  A disadvantage of client-server 
protocols is that they introduce significant overhead, 
especially if many components need the same 
information.  It should be noted that CORBA and ICE 
also have a broadcast mechanism (called an event 
channel, or the notification service, in CORBA).        

Publish-Subscribe 

In a publish-subscribe (also called a broadcast) protocol, 
a component publishes data and any other component 
can subscribe to that data.  Typically, a centralized 
process routes data between publishers and subscribers.  
In a typical architecture, most components both publish 
information and subscribe to information published by 
other components.  There are several existing publish-
subscribe middleware solutions.  A popular one for 
robotics is the RTI Data Distribution Service (formerly 
NDDS) [Pardo-Castellote & Schneider 1994].  Another 
popular publish-subscribe paradigm is IPC developed at 
Carnegie Mellon University [Simmons & Whelan 
1997].  Many publish-subscribe protocols are 
converging on using XML descriptions to define the 
data being published, with the added convenience of 
transmitting XML over HTTP, which allows for 
significant interoperability with web-based applications.  
Publish-subscribe protocols have a large advantage in 
being simple to use and having low overhead.  They are 
especially useful when it is unknown how many 
different components might need a piece of data (e.g., 
multiple user interfaces). Also, components do not get 
bogged down with repeated requests for information 
from many different sources.  Publish-subscribe 
protocols are often more difficult to debug because the 
syntax of the message is often hidden in a simple string 
type.  Thus problems are not revealed until run-time 
when a component tries, and fails, to parse an incoming 
message.  Publish-subscribe protocols are also not as 
readable when it comes to sending commands from one 
module to another.  Instead of calling an explicit 
method or function with parameters, a command is 
issued by publishing a message with the command and 
parameters in it and then having that message be parsed 
by a subscriber.  Finally, publish-subscribe protocols 
often use a single central server to dispatch messages to 



all subscribers providing a single point of failure and 
potential bottleneck.     

JAUS 

Recently, a standard has emerged in the defense 
robotics community not only for a communication 
protocol but also for definitions of messages that are 
sent via that communication protocol.  JAUS (Joint 
Architecture for Unmanned Systems) defines a set of 
reusable messages and interfaces that can be used to 
command autonomous systems.  These reusable 
components reduce the cost of integrating new 
hardware components into autonomous systems.  Reuse 
also allows for components developed for one 
autonomous system to be used by another autonomous 
system.  JAUS has two components: a domain model 
and a reference architecture.  The domain model is a 
representation of the unmanned systems’ functions and 
information.  It contains a description of the system’s 
functional and informational capabilities.  The former 
includes models of the system’s maneuvering, 
navigational, sensing, payload, and manipulation 
capabilities.  The latter includes models of the system’s 
internal data such as maps and system status.  The 
reference architecture provides a well-defined set of 
messages.  Messages cause actions to commence, 
information to be exchanged, and events to occur.  
Everything that occurs in a JAUS system is precipitated 
by messages.  This strategy makes JAUS a component-
based, message-passing architecture.   

The JAUS reference architecture defines a system 
hierarchy, as shown in Figure 8.7.  The topology 
defines the “system” as the collection of vehicles, 
operator control units (OCU), and infrastructure 
necessary to provide the full robotic capability.  
Subsystems are individual units (e.g., vehicles or 
OCUs) in the system.  Nodes define a distinct 
processing capability within the architecture and route 
JAUS messages to components.  Components provide 
the different execution capabilities and respond directly 
to command messages.  Components might be sensors 
(e.g., a SICK laser or a vision sensor), actuators (a 
manipulator or a mobile base) or payloads (weapons or 
task sensors).  The topology (the layout of particular 
system, subsystems, nodes, and components) is defined 
by the system implementers based on task requirements.    

At the core of JAUS is a set of well-defined messages.   
JAUS supports the following message types:  

Command: Initiate mode changes or actions 

Query: Used to solicit information from a 
component 

Inform: Response to a query 

Event Set Up: Passes parameters to set up an 
event 

Event Notification: Sent when the event 
happens 

JAUS has about thirty pre-defined messages that can be 
used to control robots. There are messages for control 
of a robotic vehicle.  For example, the Global Vector 
Driver message performs closed loop control of the 
desired global heading, altitude, and speed of a mobile 
vehicle.  There are also sensor messages such as Global 
Pose Sensor, which distributes the global position and 
orientation of the vehicle.   There are also manipulation 
messages in JAUS. For example, the Set Joint Positions 
message sets the desired joint position values. The Set 
Tool Point message specifies the coordinates of the 
end-effector tool point in terms of the coordinate 
system attached to the end-effector. 

JAUS also has user-definable messages.  Messages 
have headers that follow a specific format and include 
message type, destination address (e.g., system, 
subsystem, node, and component), priority, etc.  While 
JAUS is primarily point-to-point, JAUS messages can 
also be marked as “broadcast” and distributed to all 
components.  JAUS also defines coordinate systems for 
navigation and manipulation to ensure all components 
understand any coordinates sent to them.   

8.3.2 Behavioral Control 
Behavioral control represents the lowest level of control 
in a robot architecture.  It directly connects sensors and 
actuators.  While these are typically hand crafted 
functions written in C or C++, there have been 
specialized languages developed for behavioral control, 
including ALFA [Gat 1991], Behavioral Language 
[Brooks 1990] and REX [Kaelbling 1987].  It is at this 
level that traditional control theory (e.g., PID functions, 
Kalman filters, etc.) resides.  In architectures such as 3T, 
the behavioral layer functions as a “Brooksian 
machine” – that is, the layer is composed of a small 
number of behaviors (also called skills) that perceive 
the environment and carry out the actions of the robot.   

Example 

Consider an office delivery robot that operates in a 
typical office building.  The behavioral control layer 
contains the control functions necessary to move 
around in the building and carry out delivery tasks.  
Assuming the robot has an a priori map of the building 
some possible behaviors for this robot include: 

1. Move to location while avoiding obstacles 
2. Move down hallway while avoiding obstacles 
3. Find a door 



4. Find a door knob 
5. Grasp a door knob 
6. Turn a door knob 
7. Go through door 
8. Determine location 
9. Find office number 
10. Announce delivery 

 
Each of these behaviors ties sensors (vision, range 
sensing, etc.) to actuators (wheel motors, manipulator 
motors, etc.) in a tight loop.  In architectures such as 
Subsumption, all behaviors are running concurrently 
with a hierarchical control scheme inhibiting the 
outputs of certain behaviors.  In Aura [Arkin & Balch 
1989], behaviors are combined using potential 
functions.  Other architectures [Kaelbling 1987; 
Rosenblatt 1997] use explicit arbitration mechanisms 
to choose amongst potentially conflicting behaviors. 

In architectures such as 3T [Bonasso et al 1997], not all 
of the behaviors are active at the same time.  Typically, 
only a few behaviors that do not conflict would be 
active at a time (e.g., behaviors 2 and 9 in the example 
above).  The executive layer (see Section 8.3.3) is 
responsible for activating and deactivating behaviors to 
achieve higher-level tasks and to avoid conflicts 
between two behaviors competing for the same 
resource (e.g., actuator).     

Situated behaviors 

An important aspect of these behaviors is that they be 
situated.  This means that the behavior works only in 
very specific situations.  For example, behavior 2 above 
moves down a hallway, but this is appropriate only 
when the robot is situated in a hallway.  Similarly, 
behavior 5, which grasps a door knob, is appropriate 
only when the robot is within grasping distance of a 
door knob.  The behavior is not responsible for putting 
the robot in the particular situation.  However, it should 
recognize that the situation is not appropriate and signal 
as such.  

Cognizant failure 

 A key requirement for behaviors is that they know 
when they are not working.  This is called cognizant 
failure [Gat 1999].  For example, behavior 5 in our 
example (grasping the door knob) should not 
continually grasp at air if it is failing.  More succinctly, 
the behavior should not continue to “bang its head 
against the wall.”  A common problem with early 
Subsumption robots is that the behaviors did not know 
they were failing and continued to take actions that 
were not resulting in progress.  It is not the job of the 
behavioral control layer to decide what to do in a failure 

situation; it is only necessary to announce that the 
behavior has failed and halt activity.   

Implementation constraints 

The behavioral control layer is designed to bring the 
speed and reactivity of Subsumption to robot control.  
For this reason, the behaviors in the behavioral control 
layer need to follow the philosophies of Subsumption.  
In particular, the algorithms used for behaviors should 
be constant in state and time complexity.   There should 
be little or no search at the behavioral control level, and 
little iteration.  Behaviors should simply be transfer 
functions that take in signals (from sensors or other 
behaviors) and send out signals (to actuators or other 
behaviors), and repeat these several times a second.  
This will allow for reactivity to changing environments.  
More controversial is how much state should be 
allowed at the behavioral level.  Brooks famously said 
several years ago to “use the world as its own best 
model” [Brooks 1990a] – that is, instead of maintaining 
internal models of the world and querying those models 
the robot should instead directly sense the world to gets 
its data.  State such as maps, models, etc. belong at the 
higher levels of the three-tiered prototype architecture, 
not at the behavioral control layer.  Certain exceptions, 
such as maintaining state for data filtering calculations, 
could be made on a case-by-case basis.  Gat [Gat 1993] 
argues that any state kept at the behavioral layer should 
be ephemeral and limited.     

8.3.3 Executive 
The executive layer is the interface between the 
numerical behavioral control and the symbolic planning 
layers.  It is responsible for translating high-level plans 
into low-level behaviors, invoking behaviors at the 
appropriate times, monitoring execution, and handling 
exceptions.  Some executives also allocate and monitor 
resource usage, although that functionality is more 
commonly performed by the planning layer. 

Example 

Continuing the example of an office delivery robot, the 
main high-level task would be to deliver mail to a given 
office.  The executive would decompose this task into a 
set of subtasks.  It may use a geometric path planner to 
determine the sequence of corridors to move down and 
intersections at which to turn.  If there are doorways 
along the route, a task would be inserted to open and 
pass through the door.  At the last corridor, the 
executive would add a concurrent task that looks for the 
office number.  The final subtasks would be to 
announce that the person has mail and to concurrently 
monitor whether the mail has been picked up.  If it is 



not picked up after some period of time, an exception 
would be triggered that invokes some recovery action 
(perhaps announcing again, perhaps checking to make 
sure the robot is at the correct office, perhaps notifying 
the planning layer to reschedule the delivery for a later 
time). 

Capabilities 

The example above illustrates many of the capabilities 
of the executive layer.  First, the executive decomposes 
high-level tasks (goals) into low-level tasks (behaviors).  
This is typically done in a procedural fashion: the 
knowledge encoded in the executive describes how to 
achieve tasks, rather than describing what needs to be 
done and having the executive figure out the “how” by 
itself.  Sometimes, though, the executive may also use 
specialized planning techniques, such as the route 
planner used in the example above.  The decomposition 
is typically a hierarchical task tree (see Figure 8.8), 
with the leaves of the task tree being invocations and 
parameterizations of behaviors. 

Besides decomposing tasks into subtasks, executives 
add and maintain temporal constraints between tasks 
(usually between sibling tasks only, but some executive 
languages permit temporal constraints between any pair 
of tasks).  The most common constraints are serial and 
concurrent, but most executives support more 
expressive constraint languages, such as having one 
task begin 10 seconds after another one starts or having 
one task end when another ends. 

The executive is responsible for dispatching tasks when 
their temporal constraints are satisfied.  In some 
executives, tasks may also specify resources (e.g., the 
robot’s motors or camera) that must be available before 
the task can be dispatched.  As with behaviors, 
arbitrating between conflicting tasks can be a problem.  
In the case of executives, however, this arbitration is 
typically either programmed in explicitly (e.g., a rule 
that says what to do in cases where the robot’s attempt 
to avoid obstacles takes it off the preferred route) or 
handled using priorities (e.g., recharging is more 
important than mail delivery). 

The final two important executive capabilities are 
execution monitoring and error recovery.  One may 
wonder why these capabilities are needed if the 
underlying behaviors are reliable.  There are two 
reasons.  First, as described in Section 8.3.2, the 
behaviors are situated, and the situation may change 
unexpectedly.  For instance, a behavior may be 
implemented assuming that a person is available to pick 
up the mail, but that may not always be the case.  
Second, in trying to achieve some goal, the behavior 
may move the robot into a state that is unexpected by 
the executive.  For instance, people may take advantage 

of the robot’s obstacle avoidance behavior to “herd” it 
into a closet.  While the behavior layer may, in fact, 
keep the robot safe in such situations, the executive 
needs to detect the situation in order to get the robot 
back on track. 

Typically, execution monitoring is implemented as a 
concurrent task that either analyzes sensor data directly 
or activates a behavior that sends a signal to the 
executive when the monitored situation arises.  These 
correspond to polling and interrupt-driven monitors, 
respectively. 

Executives support various responses to monitors being 
triggered.  A monitor may spawn subtasks that handle 
the situation, it may terminate already-spawned 
subtasks, it may cause the parent task to fail, or it may 
raise an exception.  The latter two responses involve the 
error recovery (also called exception handling) 
capability.  Many executives have tasks return status 
values (success or failure) and allow parent tasks to 
execute conditionally based on the return values.  Other 
executives use a hierarchical exception mechanism that 
throws named exceptions to ancestor nodes in the task 
tree.  The closest task that has registered a handler for 
that exception tries to handle it; if it cannot, it re-throws 
the exception up the tree.  This mechanism, which is 
inspired by the exception handling mechanisms of C++, 
Java, and LISP, is strictly more expressive than the 
return-value mechanism, but it is also much more 
difficult to design systems using that approach, due to 
the non-local nature of the control flow. 

Implementation constraints 

The underlying formalism for most executives is a 
hierarchical finite-state controller.  Petri Nets [Peterson 
1981] are a popular choice for representing executive 
functions.  In addition, various languages have been 
developed specifically to assist programmers in 
implementing executive-level capabilities.  We briefly 
discuss aspects of several of these languages: RAPs 
(Reactive Action Packages) [Firby 1987; Firby 1989], 
PRS (Procedural Reasoning System) [Georgeff & 
Ingrand 1989; Ingrand et al 1996], ESL (Execution 
Support Language) [Gat 1997], TDL (Task Description 
Language) [Simmons & Apfelbaum, 1998], and 
PLEXIL (Plan Execution Interchange Language) 
[Verma et al 2005]. 

These languages all share features and exhibit 
differences.  One distinction is whether the language is 
stand-alone (RAPs, PRS, PLEXIL) or an extension of 
an existing language (ESL is an extension of Common 
Lisp; TDL is an extension of C++).  Stand-alone 
languages are typically easier to analyze and verify, but 
extensions are more flexible, especially with respect to 
integration with legacy software.  While stand-alone 



executive languages all support interfaces to user-
defined function, these interfaces are usually limited in 
capability (such as what types of data structures can be 
passed around). 

All of these executive languages provide support for 
hierarchical decomposition of tasks into subtasks.  All 
except PLEXIL allow for recursive invocation of tasks.  
RAPs, TDL, and PLEXIL have syntax that 
distinguishes leaf nodes of the task tree/graph from 
interior nodes.   

All these languages provide capabilities for expressing 
conditionals and iteration, although with RAPs and 
PLEXIL these are not core-language constructs, but 
must be expressed as combinations of other constructs.  
Except for TDL, the languages all provide explicit 
support for encoding pre- and post-conditions of the 
tasks and for specifying success criteria.  With TDL, 
these concepts must be programmed in, using more 
primitive constructs.  The stand-alone languages all 
enable local variables to be defined within a task 
description, but provide for only limited computation 
with those variables.  Obviously, with extension 
languages the full capability of the base language is 
available for defining tasks.  

All the languages support the simple serial (sequential) 
and concurrent (parallel) temporal constraints between 
tasks, as well as timeouts that can be specified to trigger 
after waiting a specified amount of time.  In addition, 
TDL directly supports a wide range of temporal 
constraints – one can specify constraints between the 
start and end times of tasks (e.g., “task B starts after 
task A starts” or “task C ends after task D starts”) as 
well as metric constraints (e.g., “task B starts 10 
seconds after task A ends” or “task C starts at 1pm”).  
ESL and PLEXIL support the signaling of events (e.g., 
when tasks transition to new states) that can be used to 
implement similarly expressive types of constraints.  In 
addition, ESL and TDL support task termination based 
on the occurrence of events (e.g., “task B terminates 
when task A starts”). 

The languages presented differ considerably in how 
they deal with execution monitoring and exception 
handling.  ESL and TDL both provide explicit 
execution monitoring constructs and support exceptions 
that are “thrown” and then “caught” by registered 
handlers in a hierarchical fashion.  This type of 
exception handling is similar to that used in C++, Java, 
and Lisp.  ESL and TDL also support “clean up” 
procedures that can be invoked when tasks are 
terminated.  RAPs and PLEXIL use return values to 
signal failure, and do not have hierarchical exception 
handling.  PLEXIL, though, does support clean up 
procedures that are run when tasks fail.  PRS has 
support for execution monitoring, but not exception 

handling.  ESL and PRS support the notion of resources 
that can be shared.  Both provide support for 
automatically preventing contention amongst tasks for 
the resources.  In the other executive languages, this 
must be implemented separately (although there are 
plans to extend PLEXIL in this area). 

Finally, RAPs, PRS and ESL all include a symbolic 
database (“world model”) that connects either directly 
to sensors or to the behavior layer to maintain 
synchrony with the real world.  Queries to the database 
are used to determine the truth of preconditions, to 
determine which methods are applicable, etc.  PLEXIL 
has the concept of a “lookup” that performs a similar 
function, although it is transparent to the task how this 
is implemented (e.g., by a database lookup or by 
invoking a behavior-level function, etc.)  TDL leaves it 
up to the programmer to specify how the tasks connect 
to the world. 

8.3.4 Planning 
The planning component of our prototype layered 
architecture is responsible for determining the long-
range activities of the robot based on high-level goals.  
Where the behavioral control component is concerned 
with the here-and-now and the executive is concerned 
with what has just happened and what should happen 
next, the planning component looks towards the future.  
In our running example of an office delivery robot, the 
planning component would look at the day’s deliveries, 
the resources of the robot, and a map, and determine the 
optimal delivery routes and schedule, including when 
the robot should recharge.  The planning component is 
also responsible for replanning when the situation 
changes.  For example, if an office is locked, the 
planning component would determine a new delivery 
schedule that puts that office’s delivery later in the day.   

Types of planning 

Chapter 9 describes approaches to robot planning in 
detail.  Here, we summarize issues with respect to 
different types of planners as they relate to layered 
architectures.   

The two most common approaches use are hierarchical 
task net (HTN) planners and planner/schedulers.  HTN 
planners (c.f. [Currie & Tate 1991; Nau et al 1999]) 
decompose tasks into subtasks, in a manner similar to 
what many executives do.  The main differences are 
that HTN planners typically operate at higher levels of 
abstraction, take resource utilization into account, and 
have methods for dealing with conflicts between tasks 
(e.g., tasks needing the same resources, or one task 
negating a precondition needed by another task).  The 
knowledge needed by HTN planners is typically fairly 



easy to specify, since one indicates directly how tasks 
are to be achieved. 

Planner/schedulers (c.f. [Chien et al 2000; Muscettola 
1994]) are useful in domains where time and resources 
are limited.  They create high-level plans that schedule 
when tasks should occur, but typically leave it to the 
executive to determine exactly how to achieve the tasks.  
Planner/schedulers typically work by laying out tasks 
on timelines, with separate timelines for the various 
resources that are available on the robot. (motors, 
power, communication, etc.).  The knowledge needed 
by planner/schedulers includes the goals that tasks 
achieve, the resources they need, their duration, and any 
constraints between tasks.  

Many architectures provide for specialized planning 
“experts” that are capable of solving particular 
problems efficiently.  In particular, these include 
motion planners, such as path planners and trajectory 
planners.  Sometimes, the planning layer of the 
architecture invokes these specialized planners directly; 
in other architectural styles, the motion planners are 
part of the lower levels of the architecture (the 
executive, or even the behavioral layer).  Where to put 
these specialized planners is often a question of style 
and performance (see Section 8.5). 

Additionally, some architectures provide for multiple 
planning layers [Muscettola et al 1998; Alami et al 
1998; Simmons et al 2000].  Often, there is a “mission” 
planning layer at the very top that plans at a very 
abstract level, over relatively long periods of time.  This 
layer is mainly responsible for selecting which high-
level goals are to be achieved over the next period of 
time (and, in some cases, determining in which order to 
achieve them) in order to maximize some objective 
function (e.g., net reward).  The lower “task” planning 
layer is then responsible for determining exactly how 
and when to achieve each goal.  This breakdown is 
usually done for efficiency reasons, since it is difficult 
to plan simultaneously at both a detailed level and over 
a long time horizon. 

Integrating planning and execution 

There are two main approaches to the integration of the 
planning and execution components in robotic 
architectures.  The first approach is that the planning 
component is invoked as needed by the executive and 
returns a plan.  The planning component is then 
dormant until called again.  Architectures such as 
ATLANTIS [Gat 1993] and Remote Agent [Muscettola 
et al 1998] use this approach, which requires that the 
executive either leave enough time for planning to 
complete or that it “safes” the system until planning is 
complete.  In the Remote Agent, for instance, a special 
“planning” task is explicitly scheduled. 

The second approach is that the planning component 
sends high level tasks down to the executive as required 
and monitors the progress of those tasks.  If tasks fail, 
replanning is done immediately.  In this approach, the 
planning component is always running and always 
planning and replanning.  Signals must pass in real time 
between the planner and the executive to keep them 
synchronized.  Architectures such as 3T [Bonasso et al 
1997] use this second approach.  The first approach is 
useful when the system is relatively static, so that 
planning can occur infrequently, at relatively 
predictable times.  The second approach is more suited 
to dynamic environments, where replanning is more 
frequent and less predictable. 

Other decisions that need to be made when integrating 
planning and execution are when to stop task 
decomposition, where to monitor plan execution, and 
how to handle exceptions.  By planning all the way 
down to primitive actions/behaviors, the planner has a 
very good notion of what will happen during execution, 
but at a price of much more computation.  Also, some 
task decompositions are easier to describe procedurally 
(using an executive language) rather than declaratively 
(using a planning language).  Similarly, monitoring at 
the executive level tends to be more efficient, since the 
monitoring happens closer to the robot sensors, but the 
planner may be able to use its more global knowledge 
to detect exceptions earlier and/or more accurately.   
With respect to handling exceptions, executives can 
handle many on their own, at the price of breaking the 
expectations used by the planner in scheduling tasks.  
On the other hand, having exceptions handled by the 
planner typically involves replanning, which can be 
computationally expensive.   

For all these integration issues, however, a middle 
ground usually exists.  For instance, one can choose to 
decompose some tasks more deeply than others, or 
handle certain exceptions in the executive and others in 
the planner.  In general, the “right” approach usually 
involves a compromise and is determined by analyzing 
the domain in detail. 

8.4. Case Study – GRACE 

In this section, we present the architecture of a fairly 
complex autonomous mobile robot.  GRACE (Graduate 
Robot Attending ConferencE) resulted from the efforts 
of five research institutions (Carnegie Mellon, Naval 
Research Laboratory, Northwestern University, Metrica, 
and Swarthmore College) to tackle the AAAI Robot 
Challenge.  The Challenge was for a robot to attend the 
AAAI National Conference on Artificial Intelligence as 
a participant – the robot must find the registration desk 
(without knowing the layout of the convention center 
beforehand), register for the conference, and then, after 



being provided with a map, find its way to a given 
location in time to give a technical talk about itself. 

The architectural design of the robot was particularly 
important given the complexity of the task and the need 
to integrate techniques that had been previously 
developed by the five institutions.  These techniques 
included localization in a dynamic environment, safe 
navigation in the presence of moving people, path 
planning, dynamic replanning, visual tracking of people, 
signs, and landmarks, gesture and face recognition, 
speech recognition and natural language understanding, 
speech generation, knowledge representation, and 
social interaction with people.   

GRACE is built on top of an RWI B21 base and has an 
expressive computer-animated face projected on a flat-
panel LCD screen (Figure 8.9). Sensors that come with 
the B21 include touch, infrared, and sonar sensors. Near 
the base is a SICK scanning laser range finder that 
provides a 180-degree field of view.  In addition, 
GRACE has several cameras, including a stereo camera 
head on a pan-tilt unit built by Metrica TRACLabs and 
a single color camera with pan-tilt-zoom capability, 
built by Canon. GRACE can speak using a high-quality 
speech generation software (Festival), and receive 
speech responses using a wireless microphone headset 
(a Shure TC Computer Wireless transmitter/receiver 
pair). 

The behavioral layer of the architecture consisted of 
individual processes that controlled particular pieces of 
hardware.  These programs provided abstract interfaces 
to either control the hardware or return information 
from sensors.  To accommodate the different coding 
styles of the various groups involved, both synchronous, 
blocking and asynchronous, non-blocking calls were 
supported by most of the interfaces (for the non-
blocking calls, the interfaces allowed programmers to 
specify a callback function to be invoked when data 
was returned).  Interfaces at the behavioral level 
included robot motion and localization (this interface 
also provided laser information), speech recognition, 
speech generation, facial animation, color vision, and 
stereo vision (Figure 8.10). 

The architecture used individual processes for each of 
the behavioral capabilities mainly because the 
underlying code had been developed by different 
organizations.  While having a large number of 
processes run concurrently is somewhat inefficient, 
trying to integrate everything into a monolithic process 
was thought to be too difficult.  In addition, the use of 
separate processes facilitated development and 
debugging, since one needed to run only those aspects 
of the system that were being tested. 

The executive layer consisted of separate programs for 
achieving each subtask of the Challenge – finding the 
registration desk, riding the elevator, standing in line, 
interacting with the person at the desk, navigating to the 
talk, and giving the talk (Figure 8.10).  As is common 
in many implemented robotic systems, the GRACE 
architecture did not have a planning layer – since the 
high-level plan was fixed and relatively straightforward, 
it was coded explicitly.  Several of the executive-layer 
programs were written using TDL (see Section 8.3.3), 
which facilitated concurrent control and monitoring of 
the various tasks.   

One particularly involved task was finding the 
registration desk (recall that GRACE had no idea where 
the booth was, or even what the convention center 
looked like).  TDL was used to create a finite state 
machine that allowed GRACE to maintain multiple 
goals, such as using an elevator to get to a particular 
floor and following directions to find the elevator 
(Figure 8.11).  The top-level goal was to find the 
registration desk.  Intermediate subgoals were created 
as GRACE interacted with people to determine the 
directions to the desk.  If there were no directions to 
follow, GRACE performed a random walk until a 
person was detected using its laser scanner.  GRACE 
then engaged in conversation with the person to obtain 
directions.  GRACE could handle simple commands, 
such as “turn left” and “go forward five meters,” as 
well as higher-level instructions, such as “take the 
elevator” and “turn left at the next intersection.”  In 
addition, GRACE could ask questions, such as “am I at 
the registration desk?” and “is this the elevator?”  The 
TDL-based finite-state machine was used to determine 
which interactions were appropriate at various times 
and to prevent the robot from getting confused. 

Communication between processes used the IPC 
messaging package [Simmons & Whelan, 1997].  IPC 
(www.cs.cmu.edu/~IPC) supports both publish-
subscribe and client-server messaging, and enables 
complex data structures to be passed transparently 
between processes.  One side benefit of using IPC to 
communicate between processes was the ability to log 
all message traffic (both message name and data 
content).  This proved invaluable, at times, in 
determining why the system failed to act as expected – 
did a process send out a message with invalid data? Did 
it fail to send out a message in a timely fashion? Was 
the receiving process blocked, for some reason? Was 
there a timing issue? While wading through the 
message traffic was often tedious, in some cases it was 
the only way to catch intermittent bugs. 

In July 2002, GRACE successfully completed the 
Challenge at the Shaw Convention Centre in Edmonton, 
Canada.  The processes at the behavioral level generally 



worked as anticipated – this was largely attributed to 
the fact that those modules were ported from previously 
developed (and hence well tested) systems.  While 
generally functional, the executive-level processes had 
more problems with off-nominal situations.  This is 
largely attributed to problems in sensor interpretation, 
as well as mistaken assumptions about what the 
convention center was going to look like (for instance, 
it turned out that some of the barriers were made of 
glass, which is largely invisible to the laser).  Overall, 
however, the architecture itself worked as expected, 
enabling a large body of complex software to be 
integrated rather quickly and operate together 
effectively.   

8.5. The Art of Robot Architectures 

Designing a robot architecture is much more of an art 
than a science.  The goal of an architecture is to make 
programming a robot easier, safer and more flexible.  
Thus, the decisions made by a developer of a robot 
architecture are influenced by their own prior 
experiences (e.g., what programming languages they 
are familiar with), their robot and its environment and 
the tasks that need to be performed.   The choice of a 
robot architecture should not be taken lightly as it is the 
authors’ experience that early architecture decisions 
often persist for years.  Changing robot architectures is 
a difficult proposition and can set back progress while a 
great deal of code is re-implemented.  

The art of designing a robotic architecture starts with a 
set of questions that the designer needs to ask.  These 
questions include: 

 What are the tasks the robot will be 
performing?  Are they long-term tasks?  Short-
term?  User-initiated?  Robot-initiated?  Are 
the tasks repetitive or different across time? 

 What actions are necessary to perform the 
tasks?  How are those actions represented?  
How are those actions coordinated?  How fast 
do actions need to be selected/changed?  At 
what speed do each of the actions need to run 
in order to keep the robot safe? 

 What data is necessary to do the tasks?  How 
will the robot obtain that data from the 
environment or from the users?  What sensors 
will produce the data?    What representations 
will be used for the data?  What processes will 
abstract the sensory data into representations 
internal to the architecture?  How often does 
the data need to be updated?  How often can it 
be updated? 

 What computational capabilities will the robot 
have?  What data will these computational 

capabilities produce?  What data will they 
consume? How will the computational 
capabilities of a robot be divided, structured 
and interconnected?  What is the best 
decomposition/granularity of computational 
capabilities?  How much does each 
computational capability have to know about 
the other capabilities?  Are there legacy 
computational capabilities (from other robots, 
other robot projects, etc.) that will be used?  
Where will the different computational 
capabilities reside (e.g., on-board or off-
board)? 

 Who are the robot’s users? What will they 
command the robot to do?  What information 
will they want to see from the robot?  What 
understanding do they need of the robot’s 
computational capabilities? How will the user 
know what the robot is doing?  Is the user 
interaction peer-to-peer, supervisory, or as a 
bystander?  

 How will the robot be evaluated?  What are 
the success criteria?  What are the failure 
modes?  What is the mitigation for these 
failure modes? 

 Will the robot architecture be used for more 
than one set of tasks?  For more than one kind 
of robot?  By more than one team of 
developers? 

Once designers have answers to all (or most) of these 
questions, they can then begin building some use cases 
for the types of operations they want the robot to 
perform and how they want users to interact with it.  
These use cases should specify the outward behavior of 
the robot with respect to its environment and its users.  
From the use cases, an initial partitioning of robot 
functionality can be developed.  This partitioning 
should be accompanied by a sequence diagram that 
shows the transfer of information and control over time 
amongst the various components of the robot 
architecture (see 
www.agilemodeling.com/artifacts/sequenceDiagram.ht
m).  After this, a more formal specification of the 
interfaces between architectural components can be 
developed.  This may be done using a language such as 
the Interface Definition Language (IDL) of CORBA or 
by defining the messages to be distributed in a publish-
subscribe protocol.  This is an important step, as once 
implementation begins it is very costly to change 
interfaces.  If an interface does change, all stakeholders 
need to be notified and need to agree to the change.  
The most common integration problems in robot 
architectures are mismatches between what components 
expect and what they are receiving in the way of data. 



An advantage of tiered architectures with clear interface 
definitions is that the different layers can be developed 
in parallel.  The behavioral control layer can be 
implemented and tested on the robot using a human as 
an executive.  The executive can be implemented and 
tested using state machine “stubs” for the expected 
behaviors on the robot.  The planning layer can be 
implemented and tested using “stubs” for the tasks in 
the executive.  The stubs merely acknowledge that they 
were called and report back appropriately.  Then, the 
tiers can be integrated to test timing and other run-time 
issues. This parallel approach speeds up the 
development of a robot architecture, but is possible 
only if the roles and interfaces between components are 
clearly defined and respected.  There is still 
considerable real-time debugging necessary during 
integration.  In our experiences, most of the 
development time in robot architectures is still spent on 
the behavioral control layer – that is, sensing and acting 
are still the hard parts of robot control, as compared to 
execution and planning.  Having a good, robust 
behavioral control layer goes a long way towards 
having a competent robot architecture. 

8.6. Conclusions and Further 
Reading 

Robot architectures are designed to facilitate the 
concurrent execution of task-achieving behaviors.  
They enable systems to control actuators, interpret 
sensors, plan, monitor execution, and deal with 
unexpected contingencies and opportunities.  They 
provide the conceptual framework within which 
domain-dependent software development can take place.  
And they often provide programming tools that 
facilitate that development. 

While no single architecture has proven to be best for 
all applications, researchers have developed a variety of 
approaches that can be applied in different situations.  
While there is not yet a specific formula for 
determining which architecture will be best suited for a 
given application, this chapter provides some guidelines 
to help developers in selecting the right architecture for 
the job.  That being said, layered architectures have 
proven to be increasingly popular, due to their 
flexibility and ability to operate at multiple levels of 
abstraction simultaneously.   

The book “AI and Mobile Robots” [Kortenkamp et al 
1998] has several chapters on architectures that have 
influenced this chapter.  Most text books in robotics 
[Arkin 1998; Murphy 2000; Siegwart & Nourbakhsh 
2004] have sections on robot architectures.  For many 
years in the mid 1990’s, the AAAI Spring Symposia on 
Artificial Intelligence had sessions devoted to robot 

architectures, although proceedings from those 
symposia are not widely available.  More information 
on GRACE can be found in [Simmons et al 2003; 
Gockley et al 2004; Michalowski et al 2007]. 
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