
Handbook of Robotics

Chapter 8: Robotic Systems Architectures and Programming

David Kortenkamp

TRACLabs Inc.

1012 Hercules

Houston TX 77058

korten@traclabs.com

Reid Simmons

Robotics Institute, School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh PA 15241

reids@cs.cmu.edu

Chapter 8

Robotic Systems Architectures and Programming

Robot software systems tend to be complex. This
complexity is due, in large part, to the need to control
diverse sensors and actuators in real time, in the face of
significant uncertainty and noise. Robot systems must
work to achieve tasks while monitoring for, and
reacting to, unexpected situations. Doing all this
concurrently and asynchronously adds immensely to
system complexity.

The use of a well-conceived architecture, together with
programming tools that support the architecture, can
often help to manage that complexity. Currently, there
is no single architecture that is best for all applications
– different architectures have different advantages and
disadvantages. It is important to understand those
strengths and weaknesses when choosing an
architectural approach for a given application.

This chapter presents various approaches to architecting
robotic systems. It starts by defining terms and setting
the context, including a recounting of the historical
developments in the area of robot architectures. The
chapter then discusses in more depth the major types of
architectural components in use today – behavioral
control (see Ch. 38), executives, and task planners (see
Ch. 9) – along with commonly used techniques for
inter-connecting those components. Throughout,
emphasis will be placed on programming tools and
environments that support these architectures. A case
study is then presented, followed by a brief discussion
of further reading.

8.1. Introduction

The term robot architecture is often used to refer to two
related, but distinct, concepts. Architectural structure
refers to how a system is divided into subsystems and
how those subsystems interact. The structure of a robot
system is often represented informally using traditional
“boxes and arrows” diagrams or more formally using
techniques such as UML [Jacobson et al 1998]. In
contrast, architectural style refers to the computational
concepts that underlie a given system. For instance,
one robot system might use a publish-subscribe
message passing style of communication, while another
may use a more synchronous client-server approach.

All robotic systems use some architectural structure and
style. However, in many existing robot systems it is

difficult to pin down precisely the architecture being
used. In fact, a single robot system will often use
several styles together. In part, this is because the
system implementation may not have clean subsystem
boundaries, blurring the architectural structure.
Similarly, the architecture and the domain-specific
implementation are often intimately tied together,
blurring the architectural style(s).

This is unfortunate, as a well-conceived, clean
architecture can have significant advantages in the
specification, execution, and validation of robot
systems. In general, robot architectures facilitate
development by providing beneficial constraints on the
design and implementation of robotic systems, without
being overly restrictive. For instance, separating
behaviors into modular units helps to increase
understandability and reusability, and can facilitate unit
testing and validation.

Special Needs of Robot Architectures

In some sense, one may consider robot architectures as
software engineering. However, robot architectures are
distinguished from other software architectures because
of the special needs of robot systems. The most
important of these, from the architectural perspective,
are that robot systems need to interact asynchronously,
in real time, with an uncertain, often dynamic,
environment. In addition, many robot systems need to
respond at varying temporal scopes – from millisecond
feedback control to minutes, or hours, for complex
tasks.

To handle these requirements, many robot architectures
include capabilities for acting in real time, controlling
actuators and sensors, supporting concurrency,
detecting and reacting to exceptional situations, dealing
with uncertainty, and integrating high-level (symbolic)
planning with low-level (numerical) control.

While the same capability can often be implemented
using different architectural styles, there may be
advantages of using one particular style over another.
As an example, consider how a robot system’s style of
communications can impact its reliability. Many robot
systems are designed as asynchronous processes that
communicate using message passing. One popular
communication style is client-server, in which a
message request from the client is paired with a

response from the server. An alternate communication
paradigm is publish-subscribe, in which messages are
broadcast asynchronously and all modules that have
previously indicated an interest in such messages
receive a copy. With client-server style message
passing, modules typically send a request and then
block, waiting for the response. If the response never
comes (e.g., the server module crashes) then deadlock
can occur. Even if the module does not block, the
control flow still typically expects a response, which
may lead to unexpected results if the response never
arrives or if a response to some other request happens to
arrive first. In contrast, systems that use publish-
subscribe tend to be more reliable: because messages
are assumed to arrive asynchronously, the control flow
typically does not assume any particular order in which
messages are processed, and so missing, or out-of-order,
messages tend to have less of an impact.

Modularity and Hierarchy

One common feature of robot architectures is modular
decomposition of systems into simpler, largely
independent pieces. As mentioned above, robot
systems are often designed as communicating processes,
where the communications interface is typically small
and relatively low bandwidth. This design enables the
processes/modules to handle interactions with the
environment asynchronously, while minimizing
interactions with one another. Typically, this decreases
overall system complexity and increases overall
reliability.

Often, system decomposition is hierarchical – modular
components are themselves built on top of other
modular components. Architectures that explicitly
support this type of layered decomposition reduce
system complexity through abstraction. However,
while hierarchical decomposition of robotic systems is
generally regarded as a “desirable quality”, debate
continues over the dimensions along which to
decompose. Some architectures (c.f. [Albus 1995])
decompose along a temporal dimension – each layer in
the hierarchy operates at a characteristic frequency an
order of magnitude slower than the layer below. In
other architectures ([Brooks 1986; Firby 1987;
Simmons 1994; Borrelly 1998]), the hierarchy is based
on task abstraction – tasks at one layer are achieved by
invoking a set of tasks at lower levels. In some
situations, decomposition based on spatial abstraction
may be more useful, such as when dealing with both
local and global navigation (c.f., [Kuipers 2000]. The
main point is that different applications need to
decompose problems in different ways, and
architectural styles can often be found to accommodate
those different needs.

Software Development Tools

While significant benefit accrues from designing
systems using well-defined architectural styles, many
architectural styles also have associated software tools
that facilitate adhering to that style during
implementation. These tools can take the form of
libraries of functions calls, specialized programming
languages, or graphical editors. The tools make the
constraints of the architectural style explicit, while
hiding the complexity of the underlying concepts.

For instance, inter-process communication libraries,
such as CORBA [Orfali et al 1997] and IPC [Simmons
& Whelan 1997], make it easy to implement message
passing styles, such as client-server and publish-
subscribe, respectively. Languages, such as
Subsumption [Brooks 1990b] or Skills [Firby & Slack
1995] facilitate the development of data-driven, real-
time behaviors, while languages such as ESL [Gat
1997] and PLEXIL [Verma et al 2005] provide support
for reliably achieving higher-level tasks. Graphical
editors, such as found in ControlShell [Schneider et al
1998], Labview [Labview] and ORCCAD [Borrelly
1998], provide constrained ways to assemble systems,
and then automatically generate code that adheres to the
architectural style.

In each case, the tools facilitate the development of
software in the given style and, more importantly, make
it impossible (or, at least, very difficult) to violate the
constraints of that architectural style. The result is that
systems implemented using such tools are typically
easier to implement, understand, debug, verify, and
maintain. They also tend to be more reliable, since the
tools provide well-engineered capabilities for
commonly needed control constructs, such as message
passing, interfacing with actuators and sensors, and
handling concurrent tasks.

8.2. History

Robot architectures and programming began in the late
1960s with the Shakey robot at Stanford University
[Nilsson 1969] (see Figure 8.1). Shakey had a camera,
a range finder, and bump sensors, and was connected to
DEC PDP-10 and PDP-15 computers via radio and
video links. Shakey’s architecture was decomposed
into three functional elements: sensing, planning, and
executing [Nilsson 1980]. The sensing system
translated the camera image into an internal world
model. The planner took the internal world model and
a goal and generated a plan (i.e., a series of actions) that
would achieve the goal. The executor took the plan and
sent the actions to the robot. This approach has been
called the sense-plan-act (SPA) paradigm (see Figure
8.2). Its main architectural features are that sensing

flowed into a world model that was then used by the
planner, and that the plan was executed without directly
using the sensors that created the model. For many
years, robotic control architectures and programming
focused almost exclusively on the SPA paradigm.

Subsumption

In the early 1980’s, it became apparent that the SPA
paradigm had problems. First, planning in any real-
world domain took a long time, and the robot would be
blocked waiting for planning to complete. Second, and
more importantly, execution of a plan without involving
sensing was dangerous in a dynamic world. Several
new robot control architecture paradigms began to
emerge, including reactive planning, in which plans
were generated quickly and relied more directly on
sensed information instead of internal models [Firby
1987; Agre and Chapman 1987]. The most influential
work, however, was the Subsumption architecture of
Rodney Brooks of MIT [Brooks 1986]. A Subsumption
architecture is built from layers of interacting finite
state machines – each connecting sensors to actuators
directly (see Figure 8.3). These finite state machines
were called behaviors (leading some to call
Subsumption “behavior-based” or “behavioral” robotics
[Arkin 1998]; see also Ch. 38). Since multiple
behaviors could be active at any one time, Subsumption
had an arbitration mechanism that enabled higher-level
behaviors to override signals from lower-level
behaviors. For example, the robot might have a
behavior that simply drives the robot in random
directions. This behavior is always active and the robot
is always driving somewhere. A second, higher-level
behavior could take sensor input, detect obstacles and
steer the robot away from them. It also is always active.
In an environment with no obstacles, the higher-level
behavior never generates a signal. However, if it
detects an obstacle it overrides the lower-level behavior
and steers the robot away. As soon as the obstacle is
gone (and the higher-level behavior stops sending
signals), the lower-level behavior gets control again.
Multiple, interacting layers of behaviors could be built
to produce more and more complicated robots.

Many robots were built using the Subsumption
approach – most at MIT [Connell 1992; Mataric 1992;
Horswill 1993]. They were quite successful. Whereas
SPA robots were slow and ponderous, Subsumption
robots were fast and reactive. A dynamic world did not
bother them because they constantly sensed the world
and reacted to it. These robots scampered around like
insects or small rodents. Several behavioral
architectures arose in addition to Subsumption, often
with different arbitration schemes for combining the
outputs of behaviors [Payton 1986; Rosenblatt 1997].

A popular example of behavior-based architectures is
Arkin’s motor-control schemas [Arkin 1989]. In this
biologically inspired approach, motor and perceptual
schemas [Arbib 1992] are dynamically connected to
one another. The motor schemas generate response
vectors based on the outputs of the perceptual schemas,
which are then combined in a manner similar to
potential fields [Khatib 1985]. To achieve more
complex tasks, the AuRA (Autonomous Robot
Architecture) architecture [Arkin 1990; Arkin & Balch
1992] added a navigation planner and a plan sequencer,
based on finite state acceptors (FSAs), to the reactive
schemas.

However, behavior-based robots soon reached limits in
their capabilities. It proved very difficult to compose
behaviors to achieve long-range goals and it proved
almost impossible to optimize robot behavior. For
example, a behavior-based robot that delivered mail in
an office building could easily be built by simply
wandering around the office building and having
behaviors looking for rooms and then overriding the
wandering and entering the office. It was much more
difficult to use the behavioral style of architecture to
design a system that reasoned about the day’s mail to
visit the offices in an optimal order to minimize
delivery time. In essence, robots needed the planning
capabilities of the early architectures wedded to the
reactivity of the behavior-based architectures. This
realization led to the development of layered, or tiered,
robot control architectures.

Layered Robot Control Architectures

One of the first steps towards the integration of
reactivity and deliberation was the RAPs system
created by James Firby. In his thesis [Firby 1989], we
see the first outline of an integrated, three-layer
architecture. The middle layer of that architecture, and
the subject of the thesis, was the Reactive Action
Packages (RAPs) system. Firby also speculated on the
form and function of the other two tiers, specifically
with the idea of integrating classic deliberative methods
with the ideas of the emerging situated reasoning
community, but those layers were never implemented.
Later, Firby would integrate RAPs with a continuous
low-level control layer [Firby 1994].

Independently and concurrently, Pete Bonasso at
MITRE [Bonasso 1991] devised an architecture that
began at the bottom layer with robot behaviors
programmed in the Rex language as synchronous
circuits [Rosenschein & Kaelbling 1988]. These Rex
machines guaranteed consistent semantics between the
agent’s internal states and those of the world. The
middle layer was a conditional sequencer implemented
in the GAPPs language [Kaelbling 1988], which would

continuously activate and deactivate the Rex skills until
the robot's task was complete. This sequencer based on
GAPPS was appealing because it could be synthesized
through more traditional planning techniques
[Kaelbling 1990]. This work culminated in the 3T
architecture (named for its three tiers of interacting
control processes – planning, scheduling, and real-time
control), which has been used on many generations of
robots [Bonasso et al 1997].

Architectures similar to 3T (see Figure 8.4) have been
developed subsequently. One example is ATLANTIS
[Gat 1992], which leaves much more control at the
sequencing tier. In ATLANTIS, the deliberative tier
must be specifically called by the sequencing tier. A
third example is Saridis’ intelligent control architecture
[Saridis 1995]. The architecture begins with the servo
systems available on a given robot and augments them
to integrate the execution algorithms of the next level,
using VxWorks and the VME-bus. The next level
consists of a set of coordinating routines for each lower
subsystem, e.g., vision, arm motion, and navigation.
These are implemented in Petri Net Transducers
(PNTs), a type of scheduling mechanism, and activated
by a dispatcher connected to the organizational level.
The organizational level is a planner implemented as a
Boltzmann neural network. Essentially the neural
network finds a sequence of actions that will match the
required command received as text input, and then the
dispatcher executes each of these steps via the network
of PNT coordinators.

LAAS (LAAS Architecture for Autonomous Systems)
is a three-layered architecture that includes software
tools to support development/programming at each
layer [Alami et al 1998]. The lowest layer (functional)
consists of a network of modules, which are
dynamically parameterized control and perceptual
algorithms. Modules are written in the GenoM
language, which produces standardized templates that
facilitate the integration of modules with one another.
Unlike most other three-layered architectures, the
executive layer is fairly simple – it is purely reactive
and does no task decomposition. It serves mainly as a
bridge – receiving task sequences from the highest layer
and selecting and parameterizing tasks to send to the
functional layer. The executive is written in the Kheops
language, which automatically generates decision
networks that can be formally verified. At the top, the
decision layer consists of a planner, implemented using
the IxTeT temporal planner [Ghallab & Laruelle 1994;
Laborie & Ghallab 1995], and a supervisor,
implemented using PRS [Georgeff & Ingrand 1989;
Ingrand et al 1996]. The supervisor is similar to the
executive layer of other three-layered architectures – it
decomposes tasks, chooses alternative methods for
achieving tasks, and monitors execution. By combining

the planner and supervisor in one layer, LAAS achieves
a tighter connection between the two, enabling more
flexibility in when, and how, replanning occurs. The
LAAS architecture actually allows for multiple
decisional layers at increasingly higher levels of
abstraction, such as a high-level “mission” layer and a
lower-level “task” layer.

The Remote Agent is an architecture for the
autonomous control of spacecraft [Muscettola et al
1998]. It actually consists of four layers – a control
(behavioral) layer, an executive, a planner/scheduler,
and MIR (Mode Identification and Recovery) that
combines fault detection and recovery. The control
layer is the traditional spacecraft real-time control
system. The executive is the core of the architecture –
it decomposes, selects, and monitors task execution,
performs fault recovery, and does resource management,
turning devices on and off at appropriate times to
conserve limited spacecraft power. The
planner/scheduler is a batch process that takes goals, an
initial (projected) state, and currently scheduled
activities, and produces plans that include flexible
ranges on start and end times of tasks. The plan also
includes a task to reinvoke the planner to produce the
next plan segment. An important part of the Remote
Agent is configuration management – configuring
hardware to support tasks and monitoring that the
hardware remains in known, stable states. The role of
configuration management is split between the
executive, which uses reactive procedures, and MIR,
which uses declarative models of the spacecraft and
deliberative algorithms to determine how to reconfigure
the hardware in response to detected faults [Williams &
Nayak 1996].

The Syndicate architecture [Sellner et al 2006] extends
the 3T model to multi-robot coordination (see Ch. 40).
In this architecture, each layer interfaces not only with
the layers above and below, as usual, but also with the
layers of the other robots at the same level (see Figure
8.5). In this way, distributed control loops can be
designed at multiple levels of abstraction. The version
of Syndicate in [Goldberg et al 2004] used a distributed
market-based approach for task allocation at the
planning layer.

Other noteworthy multi-tiered architectures have
appeared in the literature. NASREM [Albus et al 1986;
Albus 1995], later named RCS, was an early reference
model for telerobotic control (see Figure 8.6). It is a
many tiered model in which each layer has the same
general structure, but operates at increasingly lower
frequency as it moves from the servo level to the
reasoning levels. With the exception of maintaining a
global world model, NASREM, in its original inception,
provided for all the data and control paths that are

present in architectures such as 3T. But NASREM was
a reference model, not an implementation. The
subsequent implementations of NASREM followed
primarily the traditional sense-plan-act approach and
were mainly applied to telerobotic applications, as
opposed to autonomous robots. A notable exception
was the early work of Blidberg [Blidberg 1986].

While three-layered robot architectures are very popular,
various two-layered architectures have been
investigated by researchers. CLARAty (Coupled
Layered Architecture for Robot Autonomy) was
designed to provide reusable software for NASA’s
space robots, especially planetary rovers [Volpe et al
2001; Nesnas et al 2006]. CLARAty consists of a
functional and a decision layer. The functional layer is
a hierarchy of object-oriented algorithms that provide
more and more abstract interfaces to the robot, such as
motor control, vehicle control, sensor-based navigation,
and mobile manipulation. Each object provides a
generic interface that is hardware independent, so that
the same algorithms can run on different hardware. The
decision layer combines planning and executive
capabilities. Similar to the LAAS architecture, this is
done to provide for tighter coordination between
planning and execution, enabling continual replanning
in response to dynamic contingencies.

CLEaR (Closed Loop Execution and Recovery) [Estlin
et al 2005] is one instantiation of the CLARAty
decision layer. CLEaR combines the CASPER repair-
based planner [Knight et al 2001] and the TDL
executive language [Simmons & Apfelbaum 1998].
CLEaR provides a tightly coupled approach to goal-
driven and event-driven behavior. At its heart is the
capability to do fast, continuous replanning, based on
frequent state and resource updates from execution
monitoring. This enables the planner to react to many
exceptional situations, which can be important in cases
where there are many tasks, few resources, and
significant uncertainty. In CLEaR, both the planning
and executive components are able to handle resource
conflicts and exceptional situations – heuristics are used
to decide which component should be involved in a
given situation. The OASIS system [Estlin et al 2007]
extends CLEaR to include science data analysis so that
the architecture can be driven by opportunistic science-
related goals (such as finding unusual rocks or
formations). OASIS is planner-centric, releasing tasks
to the executive component just a few seconds before
their scheduled start times.

CIRCA (Cooperative Intelligent Real-Time Control
Architecture) is a two-layered architecture concerned
with guaranteeing reliable behavior [Musliner et al
1995; Musliner et al 2000]. It embodies the notion of
bounded reactivity – an acknowledgement that the

resources of the robot are not always sufficient to
guarantee that all tasks can be achieved. CIRCA
consists of a real-time system (RTS) and an AI system
(AIS) that are largely independent. The RTS executes a
cyclic schedule of TAPs (Test Action Pairs) that have
guaranteed worst-case behavior in terms of sensing the
environment and conditionally acting in response. It is
the responsibility of the AIS to create a schedule that is
guaranteed to prevent catastrophic failures from
occurring, while running in hard real-time. The AIS
does this by planning over a state-transition graph that
includes transitions for actions, exogenous events, and
the passage of time (e.g., if the robot waits too long,
bad things can happen). The AIS tests each plan (set of
TAPs) to see if it can actually be scheduled. If not, it
alters the planning model, either by eliminating tasks
(based on goal prioritization) or by changing
parameters of behaviors (e.g., reducing the robot’s
velocity). The AIS continues this until it finds a plan
that can be successfully scheduled, in which case it
downloads the new plan to the RTS in an atomic
operation.

Like CIRCA, Orccad is a two-layered architecture that
is concerned with guaranteed reliability [Borrelly 1998;
Espiau et al 1995]. In the case of Orccad, this
guarantee is achieved through formal verification
techniques. Robot-tasks (lower-level behaviors) and
robot-procedures (higher-level actions) are defined in
higher-level languages that are then translated into the
Esterel programming language [Berry & Gonthier
1992], for logical verification, or the Timed-Argus
language [Jourdan et al 1993], for temporal verification.
The verification is geared toward liveness and safety
properties, as well as verifying lack of contention for
resources.

8.3. Architectural Components

We will take the three-tiered architecture as the
prototype for the components discussed in this chapter.
Figure 8.4 shows a typical three-tiered architecture.
The lowest tier (or layer) is behavioral control and is
the layer tied most closely to sensors and actuators.
The second tier is the executive layer and is responsible
for choosing the current behaviors of the robot to
achieve a task. The highest tier is the task planning
layer and it responsible for achieving long-term goals of
the robot within resource constraints. Using the
example of an office delivery robot, the behavioral
layer is responsible for moving the robot around rooms
and hallways, for avoiding obstacles, for opening doors,
etc. The executive layer coordinates the behavioral
layer to achieve tasks such as leaving a room, going to
an office, etc. The task-planning layer is responsible
for deciding the order of deliveries to minimize time,

taking into account delivery priorities, scheduling
recharging, etc. The task-planning layer sends tasks
(e.g., exit the room, go to office 110) to the executive.
All these tiers need to work together and exchange
information. The next section deals with the problem
of connecting components to each other. We then
discuss each component of the three-tiered prototype
architecture in detail.

8.3.1 Connecting Components
All of the architecture components that have been
discussed in this chapter need to communicate with
each other. They need to both exchange data and send
commands. The choice of how components
communicate (often called the middleware) is one of
the most important and most constraining of the many
decisions a robot architecture designer will make.
From previous experience, a great deal of the problems
and a majority of the debugging time in developing
robot architectures have to do with communication
between components. In addition, once a
communication mechanism is chosen it becomes
extremely difficult to change, so early decisions persist
for many years. Many developers “roll their own”
communication protocols, usually built on top of Unix
sockets. While this allows for customization of
messages, it fails to take advantage of the reliability,
efficiency, and ease of use that externally available
communication packages provide. There are two basic
approaches to communication – client-server and
publish/subscribe.

Client-Server

In a client-server (also called a point-to-point)
communication protocol, components talk directly with
other components. A good example of this is Remote
Procedure Call (RPC) protocols in which one
component (the client) can call another component’s
(the server) functions and procedures. A modern, and
popular, variation on this is the Common Object
Request Broker Architecture (CORBA). CORBA
allows for one component to call object methods that
are implemented by another component. All method
calls are defined in an Interface Definition Language
(IDL) file that is language independent. Every
component uses the same IDL to generate code that
compiles with their component to handle
communication. The advantage of this is that when an
IDL file is changed all components that use that IDL
can be recompiled automatically (by using make or
similar code configuration tools). CORBA Object
Request Brokers (ORBs) are available for most major
object oriented languages. Although free ORBs are
available, many commercial ORBs offer additional

features and support. One disadvantage of CORBA is
that it introduces quite a bit of additional code into
applications. Some competitors have tried to address
this issue, such as the Internet Communications Engine
(ICE), which has its own version of an IDL file called
the Specification Language for ICE (SLICE). The
biggest advantage of a client-server protocol is that the
interfaces are very clearly defined in advance and
everyone knows when the interface has changed.
Another advantage is that it allows for a distributed
approach to communication with no central module that
must distribute data. A disadvantage of client-server
protocols is that they introduce significant overhead,
especially if many components need the same
information. It should be noted that CORBA and ICE
also have a broadcast mechanism (called an event
channel, or the notification service, in CORBA).

Publish-Subscribe

In a publish-subscribe (also called a broadcast) protocol,
a component publishes data and any other component
can subscribe to that data. Typically, a centralized
process routes data between publishers and subscribers.
In a typical architecture, most components both publish
information and subscribe to information published by
other components. There are several existing publish-
subscribe middleware solutions. A popular one for
robotics is the RTI Data Distribution Service (formerly
NDDS) [Pardo-Castellote & Schneider 1994]. Another
popular publish-subscribe paradigm is IPC developed at
Carnegie Mellon University [Simmons & Whelan
1997]. Many publish-subscribe protocols are
converging on using XML descriptions to define the
data being published, with the added convenience of
transmitting XML over HTTP, which allows for
significant interoperability with web-based applications.
Publish-subscribe protocols have a large advantage in
being simple to use and having low overhead. They are
especially useful when it is unknown how many
different components might need a piece of data (e.g.,
multiple user interfaces). Also, components do not get
bogged down with repeated requests for information
from many different sources. Publish-subscribe
protocols are often more difficult to debug because the
syntax of the message is often hidden in a simple string
type. Thus problems are not revealed until run-time
when a component tries, and fails, to parse an incoming
message. Publish-subscribe protocols are also not as
readable when it comes to sending commands from one
module to another. Instead of calling an explicit
method or function with parameters, a command is
issued by publishing a message with the command and
parameters in it and then having that message be parsed
by a subscriber. Finally, publish-subscribe protocols
often use a single central server to dispatch messages to

all subscribers providing a single point of failure and
potential bottleneck.

JAUS

Recently, a standard has emerged in the defense
robotics community not only for a communication
protocol but also for definitions of messages that are
sent via that communication protocol. JAUS (Joint
Architecture for Unmanned Systems) defines a set of
reusable messages and interfaces that can be used to
command autonomous systems. These reusable
components reduce the cost of integrating new
hardware components into autonomous systems. Reuse
also allows for components developed for one
autonomous system to be used by another autonomous
system. JAUS has two components: a domain model
and a reference architecture. The domain model is a
representation of the unmanned systems’ functions and
information. It contains a description of the system’s
functional and informational capabilities. The former
includes models of the system’s maneuvering,
navigational, sensing, payload, and manipulation
capabilities. The latter includes models of the system’s
internal data such as maps and system status. The
reference architecture provides a well-defined set of
messages. Messages cause actions to commence,
information to be exchanged, and events to occur.
Everything that occurs in a JAUS system is precipitated
by messages. This strategy makes JAUS a component-
based, message-passing architecture.

The JAUS reference architecture defines a system
hierarchy, as shown in Figure 8.7. The topology
defines the “system” as the collection of vehicles,
operator control units (OCU), and infrastructure
necessary to provide the full robotic capability.
Subsystems are individual units (e.g., vehicles or
OCUs) in the system. Nodes define a distinct
processing capability within the architecture and route
JAUS messages to components. Components provide
the different execution capabilities and respond directly
to command messages. Components might be sensors
(e.g., a SICK laser or a vision sensor), actuators (a
manipulator or a mobile base) or payloads (weapons or
task sensors). The topology (the layout of particular
system, subsystems, nodes, and components) is defined
by the system implementers based on task requirements.

At the core of JAUS is a set of well-defined messages.
JAUS supports the following message types:

Command: Initiate mode changes or actions

Query: Used to solicit information from a
component

Inform: Response to a query

Event Set Up: Passes parameters to set up an
event

Event Notification: Sent when the event
happens

JAUS has about thirty pre-defined messages that can be
used to control robots. There are messages for control
of a robotic vehicle. For example, the Global Vector
Driver message performs closed loop control of the
desired global heading, altitude, and speed of a mobile
vehicle. There are also sensor messages such as Global
Pose Sensor, which distributes the global position and
orientation of the vehicle. There are also manipulation
messages in JAUS. For example, the Set Joint Positions
message sets the desired joint position values. The Set
Tool Point message specifies the coordinates of the
end-effector tool point in terms of the coordinate
system attached to the end-effector.

JAUS also has user-definable messages. Messages
have headers that follow a specific format and include
message type, destination address (e.g., system,
subsystem, node, and component), priority, etc. While
JAUS is primarily point-to-point, JAUS messages can
also be marked as “broadcast” and distributed to all
components. JAUS also defines coordinate systems for
navigation and manipulation to ensure all components
understand any coordinates sent to them.

8.3.2 Behavioral Control
Behavioral control represents the lowest level of control
in a robot architecture. It directly connects sensors and
actuators. While these are typically hand crafted
functions written in C or C++, there have been
specialized languages developed for behavioral control,
including ALFA [Gat 1991], Behavioral Language
[Brooks 1990] and REX [Kaelbling 1987]. It is at this
level that traditional control theory (e.g., PID functions,
Kalman filters, etc.) resides. In architectures such as 3T,
the behavioral layer functions as a “Brooksian
machine” – that is, the layer is composed of a small
number of behaviors (also called skills) that perceive
the environment and carry out the actions of the robot.

Example

Consider an office delivery robot that operates in a
typical office building. The behavioral control layer
contains the control functions necessary to move
around in the building and carry out delivery tasks.
Assuming the robot has an a priori map of the building
some possible behaviors for this robot include:

1. Move to location while avoiding obstacles
2. Move down hallway while avoiding obstacles
3. Find a door

4. Find a door knob
5. Grasp a door knob
6. Turn a door knob
7. Go through door
8. Determine location
9. Find office number
10. Announce delivery

Each of these behaviors ties sensors (vision, range
sensing, etc.) to actuators (wheel motors, manipulator
motors, etc.) in a tight loop. In architectures such as
Subsumption, all behaviors are running concurrently
with a hierarchical control scheme inhibiting the
outputs of certain behaviors. In Aura [Arkin & Balch
1989], behaviors are combined using potential
functions. Other architectures [Kaelbling 1987;
Rosenblatt 1997] use explicit arbitration mechanisms
to choose amongst potentially conflicting behaviors.

In architectures such as 3T [Bonasso et al 1997], not all
of the behaviors are active at the same time. Typically,
only a few behaviors that do not conflict would be
active at a time (e.g., behaviors 2 and 9 in the example
above). The executive layer (see Section 8.3.3) is
responsible for activating and deactivating behaviors to
achieve higher-level tasks and to avoid conflicts
between two behaviors competing for the same
resource (e.g., actuator).

Situated behaviors

An important aspect of these behaviors is that they be
situated. This means that the behavior works only in
very specific situations. For example, behavior 2 above
moves down a hallway, but this is appropriate only
when the robot is situated in a hallway. Similarly,
behavior 5, which grasps a door knob, is appropriate
only when the robot is within grasping distance of a
door knob. The behavior is not responsible for putting
the robot in the particular situation. However, it should
recognize that the situation is not appropriate and signal
as such.

Cognizant failure

 A key requirement for behaviors is that they know
when they are not working. This is called cognizant
failure [Gat 1999]. For example, behavior 5 in our
example (grasping the door knob) should not
continually grasp at air if it is failing. More succinctly,
the behavior should not continue to “bang its head
against the wall.” A common problem with early
Subsumption robots is that the behaviors did not know
they were failing and continued to take actions that
were not resulting in progress. It is not the job of the
behavioral control layer to decide what to do in a failure

situation; it is only necessary to announce that the
behavior has failed and halt activity.

Implementation constraints

The behavioral control layer is designed to bring the
speed and reactivity of Subsumption to robot control.
For this reason, the behaviors in the behavioral control
layer need to follow the philosophies of Subsumption.
In particular, the algorithms used for behaviors should
be constant in state and time complexity. There should
be little or no search at the behavioral control level, and
little iteration. Behaviors should simply be transfer
functions that take in signals (from sensors or other
behaviors) and send out signals (to actuators or other
behaviors), and repeat these several times a second.
This will allow for reactivity to changing environments.
More controversial is how much state should be
allowed at the behavioral level. Brooks famously said
several years ago to “use the world as its own best
model” [Brooks 1990a] – that is, instead of maintaining
internal models of the world and querying those models
the robot should instead directly sense the world to gets
its data. State such as maps, models, etc. belong at the
higher levels of the three-tiered prototype architecture,
not at the behavioral control layer. Certain exceptions,
such as maintaining state for data filtering calculations,
could be made on a case-by-case basis. Gat [Gat 1993]
argues that any state kept at the behavioral layer should
be ephemeral and limited.

8.3.3 Executive
The executive layer is the interface between the
numerical behavioral control and the symbolic planning
layers. It is responsible for translating high-level plans
into low-level behaviors, invoking behaviors at the
appropriate times, monitoring execution, and handling
exceptions. Some executives also allocate and monitor
resource usage, although that functionality is more
commonly performed by the planning layer.

Example

Continuing the example of an office delivery robot, the
main high-level task would be to deliver mail to a given
office. The executive would decompose this task into a
set of subtasks. It may use a geometric path planner to
determine the sequence of corridors to move down and
intersections at which to turn. If there are doorways
along the route, a task would be inserted to open and
pass through the door. At the last corridor, the
executive would add a concurrent task that looks for the
office number. The final subtasks would be to
announce that the person has mail and to concurrently
monitor whether the mail has been picked up. If it is

not picked up after some period of time, an exception
would be triggered that invokes some recovery action
(perhaps announcing again, perhaps checking to make
sure the robot is at the correct office, perhaps notifying
the planning layer to reschedule the delivery for a later
time).

Capabilities

The example above illustrates many of the capabilities
of the executive layer. First, the executive decomposes
high-level tasks (goals) into low-level tasks (behaviors).
This is typically done in a procedural fashion: the
knowledge encoded in the executive describes how to
achieve tasks, rather than describing what needs to be
done and having the executive figure out the “how” by
itself. Sometimes, though, the executive may also use
specialized planning techniques, such as the route
planner used in the example above. The decomposition
is typically a hierarchical task tree (see Figure 8.8),
with the leaves of the task tree being invocations and
parameterizations of behaviors.

Besides decomposing tasks into subtasks, executives
add and maintain temporal constraints between tasks
(usually between sibling tasks only, but some executive
languages permit temporal constraints between any pair
of tasks). The most common constraints are serial and
concurrent, but most executives support more
expressive constraint languages, such as having one
task begin 10 seconds after another one starts or having
one task end when another ends.

The executive is responsible for dispatching tasks when
their temporal constraints are satisfied. In some
executives, tasks may also specify resources (e.g., the
robot’s motors or camera) that must be available before
the task can be dispatched. As with behaviors,
arbitrating between conflicting tasks can be a problem.
In the case of executives, however, this arbitration is
typically either programmed in explicitly (e.g., a rule
that says what to do in cases where the robot’s attempt
to avoid obstacles takes it off the preferred route) or
handled using priorities (e.g., recharging is more
important than mail delivery).

The final two important executive capabilities are
execution monitoring and error recovery. One may
wonder why these capabilities are needed if the
underlying behaviors are reliable. There are two
reasons. First, as described in Section 8.3.2, the
behaviors are situated, and the situation may change
unexpectedly. For instance, a behavior may be
implemented assuming that a person is available to pick
up the mail, but that may not always be the case.
Second, in trying to achieve some goal, the behavior
may move the robot into a state that is unexpected by
the executive. For instance, people may take advantage

of the robot’s obstacle avoidance behavior to “herd” it
into a closet. While the behavior layer may, in fact,
keep the robot safe in such situations, the executive
needs to detect the situation in order to get the robot
back on track.

Typically, execution monitoring is implemented as a
concurrent task that either analyzes sensor data directly
or activates a behavior that sends a signal to the
executive when the monitored situation arises. These
correspond to polling and interrupt-driven monitors,
respectively.

Executives support various responses to monitors being
triggered. A monitor may spawn subtasks that handle
the situation, it may terminate already-spawned
subtasks, it may cause the parent task to fail, or it may
raise an exception. The latter two responses involve the
error recovery (also called exception handling)
capability. Many executives have tasks return status
values (success or failure) and allow parent tasks to
execute conditionally based on the return values. Other
executives use a hierarchical exception mechanism that
throws named exceptions to ancestor nodes in the task
tree. The closest task that has registered a handler for
that exception tries to handle it; if it cannot, it re-throws
the exception up the tree. This mechanism, which is
inspired by the exception handling mechanisms of C++,
Java, and LISP, is strictly more expressive than the
return-value mechanism, but it is also much more
difficult to design systems using that approach, due to
the non-local nature of the control flow.

Implementation constraints

The underlying formalism for most executives is a
hierarchical finite-state controller. Petri Nets [Peterson
1981] are a popular choice for representing executive
functions. In addition, various languages have been
developed specifically to assist programmers in
implementing executive-level capabilities. We briefly
discuss aspects of several of these languages: RAPs
(Reactive Action Packages) [Firby 1987; Firby 1989],
PRS (Procedural Reasoning System) [Georgeff &
Ingrand 1989; Ingrand et al 1996], ESL (Execution
Support Language) [Gat 1997], TDL (Task Description
Language) [Simmons & Apfelbaum, 1998], and
PLEXIL (Plan Execution Interchange Language)
[Verma et al 2005].

These languages all share features and exhibit
differences. One distinction is whether the language is
stand-alone (RAPs, PRS, PLEXIL) or an extension of
an existing language (ESL is an extension of Common
Lisp; TDL is an extension of C++). Stand-alone
languages are typically easier to analyze and verify, but
extensions are more flexible, especially with respect to
integration with legacy software. While stand-alone

executive languages all support interfaces to user-
defined function, these interfaces are usually limited in
capability (such as what types of data structures can be
passed around).

All of these executive languages provide support for
hierarchical decomposition of tasks into subtasks. All
except PLEXIL allow for recursive invocation of tasks.
RAPs, TDL, and PLEXIL have syntax that
distinguishes leaf nodes of the task tree/graph from
interior nodes.

All these languages provide capabilities for expressing
conditionals and iteration, although with RAPs and
PLEXIL these are not core-language constructs, but
must be expressed as combinations of other constructs.
Except for TDL, the languages all provide explicit
support for encoding pre- and post-conditions of the
tasks and for specifying success criteria. With TDL,
these concepts must be programmed in, using more
primitive constructs. The stand-alone languages all
enable local variables to be defined within a task
description, but provide for only limited computation
with those variables. Obviously, with extension
languages the full capability of the base language is
available for defining tasks.

All the languages support the simple serial (sequential)
and concurrent (parallel) temporal constraints between
tasks, as well as timeouts that can be specified to trigger
after waiting a specified amount of time. In addition,
TDL directly supports a wide range of temporal
constraints – one can specify constraints between the
start and end times of tasks (e.g., “task B starts after
task A starts” or “task C ends after task D starts”) as
well as metric constraints (e.g., “task B starts 10
seconds after task A ends” or “task C starts at 1pm”).
ESL and PLEXIL support the signaling of events (e.g.,
when tasks transition to new states) that can be used to
implement similarly expressive types of constraints. In
addition, ESL and TDL support task termination based
on the occurrence of events (e.g., “task B terminates
when task A starts”).

The languages presented differ considerably in how
they deal with execution monitoring and exception
handling. ESL and TDL both provide explicit
execution monitoring constructs and support exceptions
that are “thrown” and then “caught” by registered
handlers in a hierarchical fashion. This type of
exception handling is similar to that used in C++, Java,
and Lisp. ESL and TDL also support “clean up”
procedures that can be invoked when tasks are
terminated. RAPs and PLEXIL use return values to
signal failure, and do not have hierarchical exception
handling. PLEXIL, though, does support clean up
procedures that are run when tasks fail. PRS has
support for execution monitoring, but not exception

handling. ESL and PRS support the notion of resources
that can be shared. Both provide support for
automatically preventing contention amongst tasks for
the resources. In the other executive languages, this
must be implemented separately (although there are
plans to extend PLEXIL in this area).

Finally, RAPs, PRS and ESL all include a symbolic
database (“world model”) that connects either directly
to sensors or to the behavior layer to maintain
synchrony with the real world. Queries to the database
are used to determine the truth of preconditions, to
determine which methods are applicable, etc. PLEXIL
has the concept of a “lookup” that performs a similar
function, although it is transparent to the task how this
is implemented (e.g., by a database lookup or by
invoking a behavior-level function, etc.) TDL leaves it
up to the programmer to specify how the tasks connect
to the world.

8.3.4 Planning
The planning component of our prototype layered
architecture is responsible for determining the long-
range activities of the robot based on high-level goals.
Where the behavioral control component is concerned
with the here-and-now and the executive is concerned
with what has just happened and what should happen
next, the planning component looks towards the future.
In our running example of an office delivery robot, the
planning component would look at the day’s deliveries,
the resources of the robot, and a map, and determine the
optimal delivery routes and schedule, including when
the robot should recharge. The planning component is
also responsible for replanning when the situation
changes. For example, if an office is locked, the
planning component would determine a new delivery
schedule that puts that office’s delivery later in the day.

Types of planning

Chapter 9 describes approaches to robot planning in
detail. Here, we summarize issues with respect to
different types of planners as they relate to layered
architectures.

The two most common approaches use are hierarchical
task net (HTN) planners and planner/schedulers. HTN
planners (c.f. [Currie & Tate 1991; Nau et al 1999])
decompose tasks into subtasks, in a manner similar to
what many executives do. The main differences are
that HTN planners typically operate at higher levels of
abstraction, take resource utilization into account, and
have methods for dealing with conflicts between tasks
(e.g., tasks needing the same resources, or one task
negating a precondition needed by another task). The
knowledge needed by HTN planners is typically fairly

easy to specify, since one indicates directly how tasks
are to be achieved.

Planner/schedulers (c.f. [Chien et al 2000; Muscettola
1994]) are useful in domains where time and resources
are limited. They create high-level plans that schedule
when tasks should occur, but typically leave it to the
executive to determine exactly how to achieve the tasks.
Planner/schedulers typically work by laying out tasks
on timelines, with separate timelines for the various
resources that are available on the robot. (motors,
power, communication, etc.). The knowledge needed
by planner/schedulers includes the goals that tasks
achieve, the resources they need, their duration, and any
constraints between tasks.

Many architectures provide for specialized planning
“experts” that are capable of solving particular
problems efficiently. In particular, these include
motion planners, such as path planners and trajectory
planners. Sometimes, the planning layer of the
architecture invokes these specialized planners directly;
in other architectural styles, the motion planners are
part of the lower levels of the architecture (the
executive, or even the behavioral layer). Where to put
these specialized planners is often a question of style
and performance (see Section 8.5).

Additionally, some architectures provide for multiple
planning layers [Muscettola et al 1998; Alami et al
1998; Simmons et al 2000]. Often, there is a “mission”
planning layer at the very top that plans at a very
abstract level, over relatively long periods of time. This
layer is mainly responsible for selecting which high-
level goals are to be achieved over the next period of
time (and, in some cases, determining in which order to
achieve them) in order to maximize some objective
function (e.g., net reward). The lower “task” planning
layer is then responsible for determining exactly how
and when to achieve each goal. This breakdown is
usually done for efficiency reasons, since it is difficult
to plan simultaneously at both a detailed level and over
a long time horizon.

Integrating planning and execution

There are two main approaches to the integration of the
planning and execution components in robotic
architectures. The first approach is that the planning
component is invoked as needed by the executive and
returns a plan. The planning component is then
dormant until called again. Architectures such as
ATLANTIS [Gat 1993] and Remote Agent [Muscettola
et al 1998] use this approach, which requires that the
executive either leave enough time for planning to
complete or that it “safes” the system until planning is
complete. In the Remote Agent, for instance, a special
“planning” task is explicitly scheduled.

The second approach is that the planning component
sends high level tasks down to the executive as required
and monitors the progress of those tasks. If tasks fail,
replanning is done immediately. In this approach, the
planning component is always running and always
planning and replanning. Signals must pass in real time
between the planner and the executive to keep them
synchronized. Architectures such as 3T [Bonasso et al
1997] use this second approach. The first approach is
useful when the system is relatively static, so that
planning can occur infrequently, at relatively
predictable times. The second approach is more suited
to dynamic environments, where replanning is more
frequent and less predictable.

Other decisions that need to be made when integrating
planning and execution are when to stop task
decomposition, where to monitor plan execution, and
how to handle exceptions. By planning all the way
down to primitive actions/behaviors, the planner has a
very good notion of what will happen during execution,
but at a price of much more computation. Also, some
task decompositions are easier to describe procedurally
(using an executive language) rather than declaratively
(using a planning language). Similarly, monitoring at
the executive level tends to be more efficient, since the
monitoring happens closer to the robot sensors, but the
planner may be able to use its more global knowledge
to detect exceptions earlier and/or more accurately.
With respect to handling exceptions, executives can
handle many on their own, at the price of breaking the
expectations used by the planner in scheduling tasks.
On the other hand, having exceptions handled by the
planner typically involves replanning, which can be
computationally expensive.

For all these integration issues, however, a middle
ground usually exists. For instance, one can choose to
decompose some tasks more deeply than others, or
handle certain exceptions in the executive and others in
the planner. In general, the “right” approach usually
involves a compromise and is determined by analyzing
the domain in detail.

8.4. Case Study – GRACE

In this section, we present the architecture of a fairly
complex autonomous mobile robot. GRACE (Graduate
Robot Attending ConferencE) resulted from the efforts
of five research institutions (Carnegie Mellon, Naval
Research Laboratory, Northwestern University, Metrica,
and Swarthmore College) to tackle the AAAI Robot
Challenge. The Challenge was for a robot to attend the
AAAI National Conference on Artificial Intelligence as
a participant – the robot must find the registration desk
(without knowing the layout of the convention center
beforehand), register for the conference, and then, after

being provided with a map, find its way to a given
location in time to give a technical talk about itself.

The architectural design of the robot was particularly
important given the complexity of the task and the need
to integrate techniques that had been previously
developed by the five institutions. These techniques
included localization in a dynamic environment, safe
navigation in the presence of moving people, path
planning, dynamic replanning, visual tracking of people,
signs, and landmarks, gesture and face recognition,
speech recognition and natural language understanding,
speech generation, knowledge representation, and
social interaction with people.

GRACE is built on top of an RWI B21 base and has an
expressive computer-animated face projected on a flat-
panel LCD screen (Figure 8.9). Sensors that come with
the B21 include touch, infrared, and sonar sensors. Near
the base is a SICK scanning laser range finder that
provides a 180-degree field of view. In addition,
GRACE has several cameras, including a stereo camera
head on a pan-tilt unit built by Metrica TRACLabs and
a single color camera with pan-tilt-zoom capability,
built by Canon. GRACE can speak using a high-quality
speech generation software (Festival), and receive
speech responses using a wireless microphone headset
(a Shure TC Computer Wireless transmitter/receiver
pair).

The behavioral layer of the architecture consisted of
individual processes that controlled particular pieces of
hardware. These programs provided abstract interfaces
to either control the hardware or return information
from sensors. To accommodate the different coding
styles of the various groups involved, both synchronous,
blocking and asynchronous, non-blocking calls were
supported by most of the interfaces (for the non-
blocking calls, the interfaces allowed programmers to
specify a callback function to be invoked when data
was returned). Interfaces at the behavioral level
included robot motion and localization (this interface
also provided laser information), speech recognition,
speech generation, facial animation, color vision, and
stereo vision (Figure 8.10).

The architecture used individual processes for each of
the behavioral capabilities mainly because the
underlying code had been developed by different
organizations. While having a large number of
processes run concurrently is somewhat inefficient,
trying to integrate everything into a monolithic process
was thought to be too difficult. In addition, the use of
separate processes facilitated development and
debugging, since one needed to run only those aspects
of the system that were being tested.

The executive layer consisted of separate programs for
achieving each subtask of the Challenge – finding the
registration desk, riding the elevator, standing in line,
interacting with the person at the desk, navigating to the
talk, and giving the talk (Figure 8.10). As is common
in many implemented robotic systems, the GRACE
architecture did not have a planning layer – since the
high-level plan was fixed and relatively straightforward,
it was coded explicitly. Several of the executive-layer
programs were written using TDL (see Section 8.3.3),
which facilitated concurrent control and monitoring of
the various tasks.

One particularly involved task was finding the
registration desk (recall that GRACE had no idea where
the booth was, or even what the convention center
looked like). TDL was used to create a finite state
machine that allowed GRACE to maintain multiple
goals, such as using an elevator to get to a particular
floor and following directions to find the elevator
(Figure 8.11). The top-level goal was to find the
registration desk. Intermediate subgoals were created
as GRACE interacted with people to determine the
directions to the desk. If there were no directions to
follow, GRACE performed a random walk until a
person was detected using its laser scanner. GRACE
then engaged in conversation with the person to obtain
directions. GRACE could handle simple commands,
such as “turn left” and “go forward five meters,” as
well as higher-level instructions, such as “take the
elevator” and “turn left at the next intersection.” In
addition, GRACE could ask questions, such as “am I at
the registration desk?” and “is this the elevator?” The
TDL-based finite-state machine was used to determine
which interactions were appropriate at various times
and to prevent the robot from getting confused.

Communication between processes used the IPC
messaging package [Simmons & Whelan, 1997]. IPC
(www.cs.cmu.edu/~IPC) supports both publish-
subscribe and client-server messaging, and enables
complex data structures to be passed transparently
between processes. One side benefit of using IPC to
communicate between processes was the ability to log
all message traffic (both message name and data
content). This proved invaluable, at times, in
determining why the system failed to act as expected –
did a process send out a message with invalid data? Did
it fail to send out a message in a timely fashion? Was
the receiving process blocked, for some reason? Was
there a timing issue? While wading through the
message traffic was often tedious, in some cases it was
the only way to catch intermittent bugs.

In July 2002, GRACE successfully completed the
Challenge at the Shaw Convention Centre in Edmonton,
Canada. The processes at the behavioral level generally

worked as anticipated – this was largely attributed to
the fact that those modules were ported from previously
developed (and hence well tested) systems. While
generally functional, the executive-level processes had
more problems with off-nominal situations. This is
largely attributed to problems in sensor interpretation,
as well as mistaken assumptions about what the
convention center was going to look like (for instance,
it turned out that some of the barriers were made of
glass, which is largely invisible to the laser). Overall,
however, the architecture itself worked as expected,
enabling a large body of complex software to be
integrated rather quickly and operate together
effectively.

8.5. The Art of Robot Architectures

Designing a robot architecture is much more of an art
than a science. The goal of an architecture is to make
programming a robot easier, safer and more flexible.
Thus, the decisions made by a developer of a robot
architecture are influenced by their own prior
experiences (e.g., what programming languages they
are familiar with), their robot and its environment and
the tasks that need to be performed. The choice of a
robot architecture should not be taken lightly as it is the
authors’ experience that early architecture decisions
often persist for years. Changing robot architectures is
a difficult proposition and can set back progress while a
great deal of code is re-implemented.

The art of designing a robotic architecture starts with a
set of questions that the designer needs to ask. These
questions include:

 What are the tasks the robot will be
performing? Are they long-term tasks? Short-
term? User-initiated? Robot-initiated? Are
the tasks repetitive or different across time?

 What actions are necessary to perform the
tasks? How are those actions represented?
How are those actions coordinated? How fast
do actions need to be selected/changed? At
what speed do each of the actions need to run
in order to keep the robot safe?

 What data is necessary to do the tasks? How
will the robot obtain that data from the
environment or from the users? What sensors
will produce the data? What representations
will be used for the data? What processes will
abstract the sensory data into representations
internal to the architecture? How often does
the data need to be updated? How often can it
be updated?

 What computational capabilities will the robot
have? What data will these computational

capabilities produce? What data will they
consume? How will the computational
capabilities of a robot be divided, structured
and interconnected? What is the best
decomposition/granularity of computational
capabilities? How much does each
computational capability have to know about
the other capabilities? Are there legacy
computational capabilities (from other robots,
other robot projects, etc.) that will be used?
Where will the different computational
capabilities reside (e.g., on-board or off-
board)?

 Who are the robot’s users? What will they
command the robot to do? What information
will they want to see from the robot? What
understanding do they need of the robot’s
computational capabilities? How will the user
know what the robot is doing? Is the user
interaction peer-to-peer, supervisory, or as a
bystander?

 How will the robot be evaluated? What are
the success criteria? What are the failure
modes? What is the mitigation for these
failure modes?

 Will the robot architecture be used for more
than one set of tasks? For more than one kind
of robot? By more than one team of
developers?

Once designers have answers to all (or most) of these
questions, they can then begin building some use cases
for the types of operations they want the robot to
perform and how they want users to interact with it.
These use cases should specify the outward behavior of
the robot with respect to its environment and its users.
From the use cases, an initial partitioning of robot
functionality can be developed. This partitioning
should be accompanied by a sequence diagram that
shows the transfer of information and control over time
amongst the various components of the robot
architecture (see
www.agilemodeling.com/artifacts/sequenceDiagram.ht
m). After this, a more formal specification of the
interfaces between architectural components can be
developed. This may be done using a language such as
the Interface Definition Language (IDL) of CORBA or
by defining the messages to be distributed in a publish-
subscribe protocol. This is an important step, as once
implementation begins it is very costly to change
interfaces. If an interface does change, all stakeholders
need to be notified and need to agree to the change.
The most common integration problems in robot
architectures are mismatches between what components
expect and what they are receiving in the way of data.

An advantage of tiered architectures with clear interface
definitions is that the different layers can be developed
in parallel. The behavioral control layer can be
implemented and tested on the robot using a human as
an executive. The executive can be implemented and
tested using state machine “stubs” for the expected
behaviors on the robot. The planning layer can be
implemented and tested using “stubs” for the tasks in
the executive. The stubs merely acknowledge that they
were called and report back appropriately. Then, the
tiers can be integrated to test timing and other run-time
issues. This parallel approach speeds up the
development of a robot architecture, but is possible
only if the roles and interfaces between components are
clearly defined and respected. There is still
considerable real-time debugging necessary during
integration. In our experiences, most of the
development time in robot architectures is still spent on
the behavioral control layer – that is, sensing and acting
are still the hard parts of robot control, as compared to
execution and planning. Having a good, robust
behavioral control layer goes a long way towards
having a competent robot architecture.

8.6. Conclusions and Further
Reading

Robot architectures are designed to facilitate the
concurrent execution of task-achieving behaviors.
They enable systems to control actuators, interpret
sensors, plan, monitor execution, and deal with
unexpected contingencies and opportunities. They
provide the conceptual framework within which
domain-dependent software development can take place.
And they often provide programming tools that
facilitate that development.

While no single architecture has proven to be best for
all applications, researchers have developed a variety of
approaches that can be applied in different situations.
While there is not yet a specific formula for
determining which architecture will be best suited for a
given application, this chapter provides some guidelines
to help developers in selecting the right architecture for
the job. That being said, layered architectures have
proven to be increasingly popular, due to their
flexibility and ability to operate at multiple levels of
abstraction simultaneously.

The book “AI and Mobile Robots” [Kortenkamp et al
1998] has several chapters on architectures that have
influenced this chapter. Most text books in robotics
[Arkin 1998; Murphy 2000; Siegwart & Nourbakhsh
2004] have sections on robot architectures. For many
years in the mid 1990’s, the AAAI Spring Symposia on
Artificial Intelligence had sessions devoted to robot

architectures, although proceedings from those
symposia are not widely available. More information
on GRACE can be found in [Simmons et al 2003;
Gockley et al 2004; Michalowski et al 2007].

References
[Agre and Chapman 1987] Philip E. Agre and David

Chapman, “Pengi: An Implementation of a Theory
of Activity” in Proceedings of the Fifth National
Conference on Artificial Intelligence, 1987.

[Alami et al 1998] R. Alami, R. Chatila, S. Fleury, M.
Ghallab, F. Ingrand, “An Architecture for
Autonomy”. International Journal of Robotics
Research, 17:4, pp. 315-337, April 1998.

[Albus et al 1986] J.S. Albus, R. Lumia and H.G.
McCain, “NASA/NBS Standard Reference model
for Telerobot Control System Architecture
(NASREM),” National Bureau of Standards, Tech
Note #1235, NASA SS-GFSC-0027, 1986.

[Albus 1991] James S Albus, “Outline for a Theory of
Intelligence,” IEEE Transactions on Systems, Man,
and Cybernetics, 21:3, May/June 1991

[Albus 1995] James S. Albus, “RCS: A reference model
architecture for intelligent systems,” Working
Notes: AAAI 1995 Spring Symposium on Lessons
Learned from Implemented Software Architectures
for Physical Agents, 1995.

[Arbib 1992] Michael Arbib, “Schema Theory”, in
Encyclopedia of Artificial Intelligence, 2nd Edition
(ed. Stuart Shapiro), p. 1427-1443, Wiley 1992.

[Arkin 1989] Ronald C. Arkin, “Motor Schema-Based
Mobile Robot Navigation”, International Journal
of Robotics Research, 8:4, pp. 92-112, August
1989.

[Arkin 1990] Ronald C. Arkin, “Integrating Behavioral,
Perceptual, and World Knowledge in Reactive
Navigation”, Robotics and Autonomous Systems, 6,
pp.105-122, 1990.

[Arkin 1998] Ronald C. Arkin, Behavior-Based
Robotics, MIT Press, Cambridge MA, 1998

[Arkin & Balch 1989] Ronald C. Arkin and Tucker
Balch, “AuRA: Principles and Practice in Review”,
Journal of Experimental and Theoretical Artificial
Intelligence, 9:2/3, pp. 175-188, April 1997.

[Berry & Gonthier 1992] G. Berry and G. Gonthier.
“The Esterel synchronous programming language:
Design, semantics, implementation.” Science Of
Computer Programming, 19(2) pp. 87-152, 1992.

 [Blidberg 1986] D.R. Blidberg and S.G. Chappell,
“Guidance and Control Architecture for the EAVE
Vehicle,” IEEE Journal of Ocean Engineering, Vol.
OE-11, No. 4, pp. 449-461, 1986.

[Bonasso 1991] R. P. Bonasso, “Integrating Reaction
Plans and layered competences through
synchronous control,” in Proceedings International
Joint Conferences on Artificial Intelligence, 1991.

[Bonasso 1997] R.P. Bonasso, R. J. Firby, E. Gat, D.
Kortenkamp, D. P. Miller, and M. G. Slack.
“Experiences with an Architecture for Intelligent,
Reactive Agents.” Journal of Experimental and
Theoretical Artificial Intelligence 9:1, 1997.

 [Borrelly 1998] J.J Borrelly, E Coste-Maniere, B
Espiau, K Kapelos, R Pissard-Gibollet, D Simon,
and N Turro, “The ORCCAD Architecture,”
International Journal of Robotics Research, 17:4,
pp. 338-359, April 1998

[Brooks 1986] Rodney A. Brooks, “A Robust Layered
Control System for a Mobile Robot,” IEEE Journal
of Robotics and Automation, Vol. 2, No. 1, 1986,
pp. 14-23.

[Brooks 1990a] Rodney A. Brooks, “Elephants Don't
Play Chess.” Journal of Robotics and Autonomous
Systems, Volume 6, p. 3-15, 1990

 [Brooks 1990b] Rodney A. Brooks, “The Behavior
Language: User’s Guide,” Technical Report AIM-
1227, MIT Artificial Intelligence Lab, 1990.

[Chien et al 2000] S. Chien, R. Knight, A. Stechert, R.
Sherwood, G. Rabideau, “Using iterative repair to
improve the responsiveness of planning and
scheduling.” In Proceedings of the International
Conference on AI Planning and Scheduling, pp.
300-307, 2000.

 [Connell 1992] Jonathon H. Connell, “SSS: A Hybrid
Architecture Applied to Robot Navigation,” in
Proceedings IEEE International Conference on
Robotics and Automation, pp. 2719-2724, 1992.

[Currie & Tate 1991] Ken Currie, Austin Tate, “O-Plan:
The Open Planning Architecture.” Artificial
Intelligence 52(1) pp. 49-86 1991.

[Espiau et al 1995] B. Espiau, K. Kapellos, M. Jourdan,
“Formal Verification in Robotics: Why and How?”
in Proceedings International Symposium on
Robotics Research, Herrsching, Germany, October
1995.

[Estlin et al 2005] T. Estlin, D. Gaines, C. Chouinard, F.
Fisher, R. Castaño, M. Judd, R. Anderson, and I.
Nesnas. “Enabling Autonomous Rover Science
Through Dynamic Planning and Scheduling,” in

Proceedings of IEEE Aerospace Conference, Big
Sky, Montana, March, 2005

 [Estlin et al 2007] Tara A. Estlin, Daniel Gaines,
Caroline Chouinard, Rebecca Castaño, Benjamin
Bornstein, Michele Judd, Issa A. D. Nesnas, Robert
Anderson. “Increased Mars Rover Autonomy using
AI Planning, Scheduling and Execution.” in
Proceedings of the International Conference On
Robotics and Automation, 2007, pp. 4911-4918

 [Firby 1987] R. James Firby, “An Investigation into
Reactive Planning in Complex Domains,” in
Proceedings of the Fifth National Conference on
Artificial Intelligence, 1987.

[Firby 1989] R. James Firby, “Adaptive Execution in
Complex Dynamic Worlds,” PhD Thesis, Yale
University, 1989.

[Firby 1994] R. James Firby, “Task Networks for
Controlling Continuous Processes,” in Proceedings
of the Second International Conference on AI
Planning Systems", 1994

[Firby & Slack 1995] R. James Firby and Marc G.
Slack, “Task execution: Interfacing to reactive skill
networks,” in Working Notes: AAAI Spring
Symposium on Lessons Learned from Implemented
Architecture for Physical Agents, Stanford CA,
1995

 [Gat 1991] Erann Gat, “ALFA: A Language for
Programming Reactive Robotic Control Systems,”
in Proceedings IEEE International Conference on
Robotics and Automation, pp. 116-1121, 1991.

[Gat 1992] Erann Gat, “Integrating Planning and
reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile
robots,” in Proceedings of the National Conference
on Artificial Intelligence (AAAI), 1992.

[Gat 1993] Erann Gat, “On the Role of Stored Internal
State in the Control of Autonomous Mobile
Robots,” AI Magazine, 1993.

[Gat 1997] Erann Gat, “ESL: A Language for
Supporting Robust Plan Execution in Embedded
Autonomous Agents,” in Proceedings of the IEEE
Aerospace Conference, 1997

 [Gat 1999] Erann Gat, “Non-Linear Sequencing and
Cognizant Failure,” In Proceedings AIP
Conference, 1999

[Georgeff & Ingrand 1989] Michael P. Georgeff and
Francois Felix Ingrand, “Decision-Making in an
Embedded Reasoning System,” in Proceedings of
International Joint Conference on Artificial
Intelligence, pp. 972-978, August, 1989

 [Ghallab & Laruelle 1994] M. Ghallab and H. Laruelle.
“Representation and control in IxTeT, a temporal
planner,” In Proceedings of AIPS-94. 1994.

 [Gockley et al 2004] R. Gockley, R. Simmons, J.
Wang, D. Busquets, C. DiSalvo, K. Caffrey, S.
Rosenthal, J. Mink, S. Thomas, W. Adams, T.
Lauducci, M. Bugajska, D. Perzanowski, A.
Schultz. “Grace and George: Social Robots at
AAAI,” In AAAI 2004 Mobile Robot Competition
Workshop, AAAI Press, Technical Report WS-04-
11, pp. 15-20, August 2004.

[Goldberg et al 2003] Dani Goldberg, Vincent Cicirello,
M. Bernardine Dias, Reid Simmons, Stephen Smith,
and Anthony Stentz. “Market-Based Multi-Robot
Planning in a Distributed Layered Architecture.” in
Multi-Robot Systems: From Swarms to Intelligent
Automata, volume II. A. Schultz, L. Parker and F.E.
Schneider (eds.) Kluwer, 2003.

 [Horswill 1993] Ian Horswill, “Polly: A Vision-Based
Artificial Agent,” in Proceedings of the National
Conference on Artificial Intelligence (AAAI), 1993.

[Ingrand et al 1996] F. Ingrand, R. Chatila, R. Alami,
and F Robert. “PRS: A high level supervision and
control language for autonomous mobile robots.”
In Proceedings of the IEEE International
Conference On Robotics and Automation, 1996.

[Jacobson et al 1998] Ivar Jacobson, Grady Booch,
James Rumbaugh. The Unified Software
Development Process. Addison Wesley Longman.
1998.

JAUS Tutorial Powerpoint slides (available at:
http://www.jauswg.org/)

JAUS Domain Model Volume I, Version 3.2 (available
at
http://www.jauswg.org/baseline/current_baseline.s
html)

JAUS Reference Architecture Specification, Volume II,
Part 1 Version 3.2 (available at
http://www.jauswg.org/baseline/refarch.html)

[Jourdan et al 1993] M. Jourdan, F. Maraninchi, and A.
Olivero. “Verifying quantitative real-time
properties of synchronous programs.” In
Proceedings 5th International Conference on
Computer-aided Verification, Elounda, June 1993.
LNCS 697, Springer Verlag.

 [Kaelbling 1987] Leslie Pack Kaelbling, “Rex- A
symbolic language for the design and parallel
implementation of embedded systems,” in
Proceedings of the 6th AIAA Computers in
Aerospace Conference, Wakefield, MA, 1987

[Kaelbling 1988] Leslie Pack Kaelbling, “Goals as
parallel program specifications,” in Proceedings of
the Sixth National Conference on Artificial
Intelligence, 1988.

[Kaelbling 1990] Leslie Pack Kaelbling, “Compiling
Operator Descriptions into Reactive Strategies
Using Goal Regression,” Technical Report, Teleos
Research, TR90-10, 1990.

[Khatib 1985] Osama Khatib. “Real-time obstacle
avoidance for manipulators and mobile robots.” In
Proceedings of the IEEE International Conference
on Robotics and Automation, pages 500-505. 1985.

 [Knight et al 2001] R. Knight et al., “CASPER: Space
Exploration through Continuous Planning.” IEEE
Intelligent Systems, 2001(Sep/Oct).

[Kortenkamp et al 1998] David Kortenkamp, R. Peter
Bonasso and Robin Murphy, Artificial Intelligence
and Mobile Robots, AAAI Press/The MIT Press,
1998

 [Kuipers 2000] Benjamin Kuipers, “The Spatial
Semantic Hierarchy,” Artificial Intelligence, 119:
191-233.

[Laborie & Ghallab 1995] P. Laborie and M. Ghallab,
“Planning with sharable resource constraints.” In
Proceedings of the International Joint Conference
on Artificial Intelligence, 1995.

 [Labview] National Instruments, LabVIEW,
http://www.ni.com/labview/

 [Mataric 1992] Maja Mataric, “Integration of
Representation into Goal-Driven Behavior-Based
Robots,” in Proceedings IEEE International
Conference on Robotics and Automation, 1992.

[Michalowski et al 2007] M.P. Michalowski, S.
Sabanovic, C. DiSalvo, D. Busquets, L.M. Hiatt,
N.A. Melchior and R. Simmons. Socially
“Distributed Perception: GRACE Plays Social Tag
at AAAI 2005.” Autonomous Robots, 22:4, May,
2007, pp. 385-397.

[Murphy 2000] Robin Murphy, Introduction to AI
Robotics, MIT Press, 2000

[Muscettola 1994] Nicolla Muscettola. HSTS:
“Integrating planning and scheduling.” In
Intelligent Scheduling, Mark Fox and Monte
Zweben (eds.), Morgan Kaufmann, 1994

 [Muscettola et al 1998] Nicola P. Muscettola,
Pandurang Nayak, Barney Pell and Brian C.
Williams, “Remote Agent: To Boldly Go Where
No AI System Has Gone Before,” Artificial
Intelligence, 103:1, pp. 5-47, 1998.

[Musliner et al 1995] David Musliner, Ed Durfee and
Kang Shin, “World Modeling for Dynamic
Construction of Real-Time Control Plans,”
Artificial Intelligence, 74:1, 1995.

[Musliner et al 2000] David J. Musliner, Robert P.
Goldman and Michael J. Pelican, “Using Model
Checking to Guarantee Safety in Automatically-
Synthesized Real-Time Controllers,” in
Proceedings of International Conference on
Robotics and Automation, 2000

 [Nau et al 1999] D. S. Nau, Y. Cao, A. Lotem, and H.
Muñoz-Avila. “SHOP: Simple hierarchical ordered
planner.” In Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 968-973.
July/August 1999.

[Nesnas et al 2006] I.A. Nesnas, R. Simmons, D.
Gaines, C. Kunz, A. Diaz-Calderon, T. Estlin, R.
Madison, J. Guineau, M. McHenry, I. Shu, and D.
Apfelbaum, “CLARAty: Challenges and Steps
Toward Reusable Robotic Software,” International
Journal of Advanced Robotic Systems, 3:1, pp.
023-030, 2006.

 [Nilsson 1969] Nils J. Nilsson, “A Mobile Automaton:
An Application of AI Techniques,” in Proceedings
of the First International Joint Conference on
Artificial Intelligence, 509-520, Morgan Kaufmann
Publishers, San Francisco, 1969.

[Nilsson 1980] Nils J. Nilsson, Principles of Artificial
Intelligence, Tioga Press, Palo Alto CA, 1980.

[Orfali et al 1997] Robert Orfali, Dan Harkey.
Client/Server Programming with JAVA and
CORBA, John Wiley & Sons. 1997.

 [Pardo-Castellote & Schneider 1994] Gerardo Pardo-
Castellote, Stanley A. Schneider. “The Network
Data Delivery Service: Real-Time Data
Connectivity for Distributed Control Applications.”
in Proceedings of International Conference on
Robotics and Automation, 1994, pp. 2870-2876

 [Payton 1986] D.W. Payton, “An Architecture for
Reflexive Autonomous Vehicle Control,” in
Proceedings IEEE International Conference on
Robotics and Automation, 1986.

[Peterson 1981] James Lyle Peterson, Petri Net Theory
and the Modeling of Systems. Prentice Hall. 1981.

 [Rosenblatt 1997] J. K, Rosenblatt, “DAMN: A
Distributed Architecture for Mobile Robot
Navigation,” PhD Thesis, Carnegie Mellon
University, 1997.

[Rosenschein & Kaelbling 1988] Stan J. Rosenschein
and Leslie Pack Kaelbling, “The synthesis of

digital machines with provable epistemic
properties,” in Proceedings of the Conference on
Theoretical Aspects of Reasoning About
Knowledge, 1998.

[Saridis 1995] G.N. Saridis, “Architectures for
Intelligent Controls,” Intelligent Control Systems:
Theory and Applications, eds. Gupta and Sinhm,
IEEE Press, 1995.

[Schneider et al 1998] Stanley A. Schneider, Vincent W.
Chen, Gerardo Pardo-Castellote, Howard H. Wang,
“ControlShell: A Software Architecture for
Complex Electromechanical Systems,”
International Journal of Robotics Research, 17:4,
pp. 360-380, 1998.

 [Sellner et al 2006] B. Sellner, F.W. Heger, L.M. Hiatt,
R. Simmons and S. Singh. “Coordinated Multi-
Agent Teams and Sliding Autonomy for Large-
Scale Assembly,” Proceedings of the IEEE, special
issue on multi-agent systems, 94:7 July 2006.

 [Siegwart & Nourbakhsh 2004] Roland Siegwart and
Illah R. Nourbakhsh, Introduction to Autonomous
Mobile Robots, MIT Press, 2004

 [Simmons 1994] Reid Simmons, “Structured Control
for Autonomous Robots,” IEEE Transactions on
Robotics and Automation, 10:1, pp. 34-43,
February 1994.

[Simmons & Whelan 1997] Reid Simmons and Greg
Whelan, “Visualization Tools for Validating
Software of Autonomous Spacecraft,” in
Proceedings of International Symposium on
Artificial Intelligence, Robotics and Automation in
Space, Tokyo, Japan, July 1997.

 [Simmons & Apfelbaum 1998] Reid Simmons and
David Apfelbaum, “A Task Description Language
for Robot Control, in,” in Proceedings of
Conference on Intelligent Robotics and Systems,
Vancouver Canada, October 1998.

 [Simmons et al 2000] Reid Simmons, Joaquin
Fernandez, Richard Goodwin, Sven Koenig,
Joseph O'Sullivan. “Lessons Learned From
Xavier,” IEEE Robotics and Automation Magazine,
7:2, pp 33-39, June 2000.

 [Simmons et al 2003] Reid Simmons, Dani Goldberg,
Adam Goode, Michael Montemerlo, Nicholas Roy,
Brennan Sellner, Chris Urmson, Alan Schultz,
Myriam Abramson, William Adams, Amin Atrash,
Magda Bugajska, Michael Coblenz, Matt
MacMahon, Dennis Perzanowski, Ian Horswill,
Robert Zubek, David Kortenkamp, Bryn Wolfe,
Tod Milam, and Bruce Maxwell, “GRACE: An
Autonomous Robot for the AAAI Robot

Challenge.” AAAI Magazine, 24:2, pp. 51-72,
Summer 2003.

[Verma et al 2005] V. Verma, T. Estlin, A. Jónsson, C.
Pasareanu, R. Simmons and K. Tso. “Plan
Execution Interchange Language (PLEXIL) for
Executable Plans and Command Sequences,” In
Proceedings, in Proceedings 8th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space, Munich, September 2005.

 [Volpe et al 2001] R. Volpe, I. Nesnas, T. Estlin, D.
Mutz, R. Petras, and H. Das. “The CLARAty
architecture for robotic autonomy.” In Proceedings
of the IEEE Aerospace Conference, Big Sky,
Montana, March 2001.

 [Williams & Nayak 1996] Brian C. Williams and P.
Pandurang Nayak, “A Model-based Approach to
Reactive Self-Configuring Systems.” In
Proceedings of AAAI, 1996.

