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Forward  
 
 Wright-Patterson Air Force Base (WPAFB) has enjoyed a 
lengthy and distinguished history of serving the Greater-Dayton 
community in a variety of ways. One of these ways is through the 
WPAFB Educational Outreach (EO) Program, for which the Air 
Force Research Laboratory (AFRL) is a proud and continuous 
supporter, providing both technical expertise (from over 2000 
practicing scientists and engineers) and ongoing resources for the 
various programs sponsored by the WPAFB Educational 
Outreach. The mission of the WPAFB EO program is 
 
To form learning partnerships with the K-12 educational 
community in order to increase student awareness and excitement 
in all fields of math, science, aviation, and aerospace; ultimately 
developing our nation’s future scientific and technical workforce. 
 
 In support of this mission, the WPAFB EO aspires to be 
the best one-stop resource for encouragement and enhancement 
of K-12 science, math and technology education throughout the 
United States Air Force. It is in this spirit that AFRL offers The 
Handbook of Essential Mathematics, a compendium of 
mathematical formulas and other useful technical information that 
will well serve both students and teachers alike from early grades 
through early college. It is our sincere hope that you will use this 
resource to either further your own education or the education of 
those future scientists and engineers so vital to preserving our 
cherished American freedoms.   

  
LESTER MCFAWN, SES 
Executive Director 
Air Force Research Laboratory 
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Introduction 
 

 Formulas! They seem to be the bane of every beginning 
mathematics student who has yet to realize that formulas are 
about structure and relationship—and not about memorization. 
Granted, formulas have to be memorized; for, it is partly through 
memorization that we eventually become ‘unconsciously 
competent’: a true master of our skill, practicing it in an almost 
effortless, automatic sense.  In mathematics, being ‘unconsciously 
competent’ means we have mastered the underlying algebraic 
language to the same degree that we have mastered our native 
tongue. Knowing formulas and understanding the reasoning 
behind them propels one towards the road to mathematical 
fluency, so essential in our modern high-tech society. 
 
 The Handbook of Essential Mathematics contains three 
major sections. Section I, “Formulas”, contains most of the 
mathematical formulas that a person would expect to encounter 
through the second year of college regardless of major. In 
addition, there are formulas rarely seen in such compilations, 
included as a mathematical treat for the inquisitive. Section I also 
includes select mathematical processes, such as the process for 
solving a linear equation in one unknown, with a supporting 
examples. Section II, “Tables”, includes both ‘pure math’ tables 
and physical-science tables, useful in a variety of disciples ranging 
from physics to nursing. As in Section I, some tables are included 
just to nurture curiosity in a spirit of fun. In Sections I and II, each 
formula and table is enumerated for easy referral. Section III, 
“Applications in Personal Finance”, is a small textbook within a 
book where the language of algebra is applied to that everyday 
financial world affecting all of us throughout our lives from birth to 
death. Note: The idea of combining mathematics formulas with 
financial applications is not original in that my father had a similar 
type book as a Purdue engineering student in the early 1930s.  
 
 I would like to take this opportunity to thank Mr. Al 
Giambrone—Chairman of the Department of Mathematics, Sinclair 
Community College, Dayton, Ohio—for providing required-
memorization formula lists for 22 Sinclair mathematics courses 
from which the formula compilation was partially built. 
 
John C. Sparks 
March 2006 
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Dedication 
 

The Handbook of Essential Mathematics is dedicated to all 
Air Force families 

 
 
 
 

O Icarus…  
 
 I ride high... 
 With a whoosh to my back 
 And no wind to my face, 
 Folded hands 
 In quiet rest— 
 Watching...O Icarus... 
 The clouds glide by, 
 Their fields far below 
 Of gold-illumed snow, 
 Pale yellow, tranquil moon 
 To my right— 
   Evening sky. 
 
  And Wright...O Icarus... 
  Made it so— 
  Silvered chariot streaking 
  On tongues of fire leaping— 
   And I will soon be sleeping 
  Above your dreams... 
 
 
 August 2001: John C. Sparks 
 

 
100th Anniversary of Powered Flight 

1903—2003 
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1. Algebra 
 
1.1. What is a Variable? 
 
 In the fall of 1961, I first encountered the monster called 
x  in my high-school freshman algebra class. The letter x is still a 
monster to many, whose real nature has been confused by such 
words as variable and unknown: perhaps the most horrifying 
description of x  ever invented! Actually, x  is very easily 
understood in terms of a language metaphor. In English, we have 
both proper nouns and pronouns where both are distinct and 
different parts of speech. Proper nouns are specific persons, 
places, or things such as John, Ohio, and Toyota. Pronouns are 
nonspecific persons or entities such as he, she, or it. 
 
 To see how the concept of pronouns and nouns applies to 
algebra, we first examine arithmetic, which can be thought of as a 
precise language of quantification having four action verbs, a verb 
of being, and a plethora of proper nouns. The four action verbs are 
addition, subtraction, multiplication, and division denoted 
respectively by ÷⋅−+ ,,, . The verb of being is called equals or is, 

denoted by = . Specific numbers such as 12 , 4512.3 , 5
323 , 769

123 , 

00045632.0 , 45− , , serve as the arithmetical equivalent to 
proper nouns in English. So, what is x ? x  is merely a nonspecific 
number, the mathematical equivalent to a pronoun in English. 
English pronouns greatly expand our capability to describe and 
inform in a general fashion. Hence, pronouns add increased 
flexibility to the English language.  Likewise, mathematical 
pronouns—such as zyx ,, , see Appendix B for a list of symbols 
used in this book—greatly expand our capability to quantify in a 
general fashion by adding flexibility to our language of arithmetic. 
Arithmetic, with the addition of zyx ,,  and other mathematical 
pronouns as a new part of speech, is called algebra.  
 
In Summary: Algebra can be defined as a generalized arithmetic 
that is much more powerful and flexible than standard arithmetic. 
The increased capability of algebra over arithmetic is due to the 
inclusion of the mathematical pronoun x  and its associates zy, , 
etc. A more user-friendly name for variable or unknown is 
pronumber.  
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1.2. Field Axioms 
 
The field axioms decree the fundamental operating 

properties of the real number system and provide the basis for all 
advanced operating properties in mathematics. Let cba &,  be 
any three real numbers (pronumbers). The field axioms are as 
follows.  
 
 

Properties Addition + Multiplication . 

Closure ba + is a unique real 
number 

ba ⋅ is a unique 
real number 

Commutative abba +=+  abba ⋅=⋅  

Associative 
)(

)(
cba
cba

++
=++

 
)(

)(
bca
cab =

 

Identity aa =+⇒ 00  aa =⋅⇒ 11  

Inverse 
0)(

0)(
=+−⇒
=−+⇒

aa
aaa

 
11

110

=⋅⇒

=⋅⇒≠

a
a

a
aa

 

Distributive or 
Linking Property 

cabacba ⋅+⋅=+⋅ )(  

Transitivity 

cacbba
cacbba
cacbba

<⇒<<
>⇒>>
=⇒==

&
&
&

 

Note: babaab )()( == are alternate 
 representations of ba ⋅  
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1.3. Divisibility Tests 
 

Divisor Condition That Makes it So 
2 The last digit is 0,2,4,6, or 8 
3 The sum of the digits is divisible by 3 
4 The last two digits are divisible by 4 
5 The last digit is 0 or 5 
6 The number is divisible by both 2 and 3 

7 
The number formed by adding five times the last 
digit to the “number defined by” the remaining 
digits is divisible by 7** 

8 The last three digits are divisible by 8 
9 The sum of the digits is divisible by 9 
10 The last digit is 0 

11 11 divides the number formed by subtracting two 
times the last digit from the “ “ remaining digits** 

12 The number is divisible by both 3 and 4 

13 13 divides the number formed by adding four 
times the last digit to the “ “ remaining digits** 

14 The number is divisible by both 2 and 7 
15 The number is divisible by both 3 and 5 

17 17 divides the number formed by subtracting five 
times the last digit from the “ ” remaining digits** 

19 19 divides the number formed by adding two 
times the last digit to the “ “ remaining digits** 

23 23 divides the number formed by adding seven 
times the last digit to the “ “ remaining digits** 

29 29 divides the number formed by adding three 
times the last digit to the remaining digits** 

31 
31 divides the number formed by subtracting 
three times the last digit from the “ “ remaining 
digits** 

37 
37 divides the number formed by subtracting 
eleven times the last digit from the “ “ remaining 
digits** 

 

**These tests are iterative tests in that you continue to cycle 
through the process until a number is formed that can be 
easily divided by the divisor in question. 
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1.4. Subtraction, Division, Signed Numbers 
 
1.4.1. Definitions: 

Subtraction: )( baba −+≡−  

Division: 
b

aba 1
⋅≡÷  

1.4.2. Alternate representation of ba ÷ : 
b
aba ≡÷  

1.4.3. Division Properties of Zero 

 Zero in numerator: 000 =⇒≠
a

a  

 Zero in denominator: 
0
a

is undefined 

 Zero in both: 
0
0

is undefined 

 
1.4.4. Demonstration  that division-by-zero is undefined 

 cbac
b
a

⋅=⇒=  for all real numbers a  

 If ca
=

0
, then  00 =⇒⋅= aca  for all real numbers a , 

 an algebraic impossibility 
 
1.4.5. Demonstration that attempted division-by-zero leads to 

erroneous results. 
 
 Let yx = ; then multiplying both sides by x  gives 

 

)())((

222

2

yxyyxyx
yxyyx

xyx

−=+−
⇒−=−

⇒=

 

 Dividing both sides by yx −  where 0=− yx gives 
 122 =⇒=⇒=+ yyyyx .  
 
 The last equality is a false statement.  
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1.4.6. Signed Number Multiplication: 
 )()( baba ⋅−=⋅−  
 )()( baba ⋅−=−⋅  
 )()()( baba ⋅=−⋅−  
 
1.4.7. Table for Multiplication of Signed Numbers: the italicized 

words in the body of the table indicate the resulting sign of 
the associated product. 

 
Multiplication of ba ⋅  

Sign of b  Sign ofa  
Plus Minus 

Plus Plus Minus 
Minus Minus Plus 

 
 
1.4.8. Demonstration of the algebraic reasonableness of the 

laws of multiplication for signed numbers. In both columns, 
both the middle and rightmost numbers  decrease in the 
expected logical fashion. 

 

 

20)5()4(
16)4()4(
12)3()4(
8)2()4(
4)1()4(

0)0()4(
4)1()4(
8)2()4(
12)3()4(
16)4()4(
20)5()4(

−=−⋅
−=−⋅
−=−⋅
−=−⋅
−=−⋅

=⋅
=⋅
=⋅
=⋅
=⋅
=⋅

 

30)6()5(
25)5()5(
20)4()5(
15)3()5(
10)2()5(
5)1()5(

0)0()5(
5)1()5(
10)2()5(
15)3()5(
20)4()5(

=−⋅−
=−⋅−
=−⋅−
=−⋅−
=−⋅−
=−⋅−
=⋅−
−=⋅−
−=⋅−
−=⋅−
−=⋅−
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1.5. Rules for Fractions 
 

Let 
b
a

 and 
d
c

be fractions with 0≠b and 0≠d . 

 

1.5.1. Fractional Equality: bcad
d
c

b
a

=⇔=  

1.5.2. Fractional Equivalency: 
cb
ca

bc
ac

b
ac ==⇒≠ 0  

1.5.3. Addition (like denominators): 
b
ca

b
c

b
a +

=+  

1.5.4. Addition (unlike denominators): 

 
bd
cbad

bd
cb

bd
ad

d
c

b
a +

=+=+  

 Note: bd is the common denominator 

1.5.5. Subtraction (like denominators): 
b
ca

b
c

b
a −

=−  

1.5.6. Subtraction (unlike denominators): 

 
bd
cbad

bd
cb

bd
ad

d
c

b
a −

=−=−  

1.5.7. Multiplication: 
bd
ac

d
c

b
a

=⋅  

1.5.8. Division: 
bc
ad

c
d

b
a

d
c

b
ac =⋅=÷⇒≠ 0  

1.5.9. Division (missing quantity): 
bc
a

cb
ac

b
ac

b
a

=⋅=÷=÷
1

1
 

1.5.10. Reduction of Complex Fraction:
bc
ad

d
c

b
a

d
c
b
a

=÷=  

1.5.11. Placement of Sign: 
b
a

b
a

b
a

−
=

−
=−  
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1.6. Partial Fractions 
 
Let )(xP  be a polynomial expression with degree less than the 
degree of the factored denominator as shown. 
 
1.6.1. Two Distinct Linear Factors: 
 

 
bx
B

ax
A

bxax
xP

−
+

−
=

−− ))((
)(

 

 
 The numerators BA,  are given by 
 

 
ab
bPB

ba
aPA

−
=

−
=

)(,)(
 

 
1.6.2. Three Distinct Linear Factors: 
 

 
cx

C
bx
B

ax
A

cxbxax
xP

−
+

−
+

−
=

−−− ))()((
)(

 

 
 The numerators CBA ,,  are given by 
 

 

))((
)(

,
))((

)(,
))((

)(

bcac
cPC

cbab
bPB

caba
aPA

−−
=

−−
=

−−
=

 

 
1.6.3. N Distinct Linear Factors:  
 

 ∑
∏ =

=

−
=

−

n

i i

i
n

i
i

ax
A

ax

xP
1

1

)(

)(
 with 

∏
≠
=

−
= n

ij
j

ji

i
i

aa

aP
A

1

)(

)(
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1.7. Rules for Exponents 
 
1.7.1. Addition: mnmn aaa +=  

1.7.2. Subtraction: mn
m

n

a
a
a −=  

1.7.3. Multiplication: nmmn aa =)(  
1.7.4. Distributed over a Simple Product: nnn baab =)(  
1.7.5. Distributed over a Complex Product: pnmnnpm baba =)(  

1.7.6. Distributed over a Simple Quotient:  n

nn

b
a

b
a

=





  

1.7.7. Distributed over a Complex Quotient: pn

mnn

p

m

b
a

b
a

=






  

1.7.8. Definition of Negative Exponent: n
n

a
a

−≡
1  

1.7.9. Definition of Radical Expression: nn aa
1

≡  
1.7.10. Definition when No Exponent is Present: 1aa ≡  
1.7.11. Definition of Zero Exponent: 10 ≡a  
 
1.7.12. Demonstration of the algebraic reasonableness of the 
 definitions for 0a and na −  via successive divisions by 2 . 
 Notice the power decreases by 1 with each division.  
 

 

0

1

2

3

4

2221
2242

222284
22222168

2222223216

≡÷=

≡÷=

=⋅=÷=

=⋅⋅=÷=

=⋅⋅⋅=÷=

 
[ ]
[ ]
[ ] 4

2
1

8
1

16
1

3
2
1

4
1

8
1

2
2
1

2
1

4
1

1
2
1

2
1

22

22

22

221

4

3

2

1

−

−

−

−

≡=÷=

≡=÷=

≡=÷=

≡=÷=
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1.8. Rules for Radicals 
 

1.8.1. Basic Definitions: naan
1

≡ and 2
1

2 aaa ≡≡  

1.8.2. Complex Radical: n
m

aan m =  

1.8.3. Associative: n
m

aaa n mmn ==)(  
1.8.4. Simple Product:  nnn abba =  

1.8.5. Simple Quotient: n
n

n

b
a

b
a
=  

1.8.6. Complex Product: nm nmmn baba =  
 

1.8.7. Complex Quotient: nm
n

m

m

n

b
a

b
a
=  

1.8.8. Nesting: nmn m aa =  

1.8.9. Rationalizing Numerator for mn > : 
n mn

n m

ab
a

b
a

−
=  

1.8.10. Rationalizing Denominator for mn > :
a
ab

a
b n mn

n m

−

=  

1.8.11. Complex Rationalization Process: 

 

cb
cba

cb
a

cbcb
cba

cb
a

−
−

=
+

⇒
−+

−
=

+

2

)(

))((
)(

 

 

 Numerator: 
)(

2

cab
ca

b
ca

−
−

=
+

 

 
1.8.12. Definition of Surd Pairs: If ba ± is a radical expression, 

 then the associated surd is given by  ba m . 
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1.9. Factor Formulas 
 
1.9.1. Simple Common Factor: acbcbaacab )()( +=+=+  
1.9.2. Grouped Common Factor: 

 

))((
)()(

)()(

dacb
dcbacb
cbdacb
dcdbacab

++
=+++
=+++
=+++

 

1.9.3. Difference of Squares: ))((22 bababa −+=−  
1.9.4. Expanded Difference of Squares: 
 ))(()( 22 cbacbacba −+++=−+  
1.9.5. Sum of Squares: ))((22 biabiaba −+=+ i complex 
1.9.6. Perfect Square: 222 )(2 bababa ±=+±  
1.9.7. General Trinomial: 

  

))((
)()(

)()(
)(

2

2

bxax
baxxax
abbxaxx
abxbax

++
=+++
=+++

=+++

 

1.9.8. Sum of Cubes: ))(( 2233 babababa +−+=+  
1.9.9. Difference of Cubes: ))(( 2233 babababa ++−=−  
1.9.10. Difference of Fourths: 

 
))()((

))((
2244

222244

babababa
bababa
++−=−

⇒+−=−
 

1.9.11. Power Reduction to an Integer: 
 ))(( 22224224 bababababbaa +−++=++  
1.9.12. Power Reduction to a Radical: 
 ))((2 axaxax +−=−  
1.9.13. Power Reduction to an Integer plus a Radical: 
 ))((22 babababababa +−++=++  
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1.9.14. Quadratic Trinomial Factoring Process 
Let cbxax ++2 be a quadratic trinomial where the three 
coefficients cba ,, are integers. 
 
Step 1: Find integers NM ,  such that 

  
acNM
bNM

=⋅
=+

. 

Step 2: Substitute for b ,  

 
cxNMax

cbxax
+++

=++

)(2

2

 

Step 3: Factor by Grouping (1.9.2) 

 

∴+





 +

=





 ++






 +

=





 ⋅

+++

=+++

)(

)( 2

2

Nax
a
Mx

a
MxN

a
Mxax

a
NMNxMxax

cNxMxax

 

 
Note: if there are no pair of integers NM ,  with both bNM =+  
and acNM =⋅  then the quadratic trinomial is prime. 
 
Example: Factor the expression 7132 2 −− xx . 

   

)12)(7(
)7(1)7(2:

7142
732:

1,14
13&14)7(2:

3

2

2
2

1

+−
=−⋅+−

−+−

=−−

=−=
⇒−=+−=−⋅=

xx
xxx

xxx
xx

NM
NMMN

a

a

a
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1.10. Laws of Equality 
 
Let BA =  be an algebraic equality andC , D  be any quantities. 
 
1.10.1. Addition: CBCA +=+  
1.10.2. Subtraction: CBCA −=−  
1.10.3. Multiplication: CBCA ⋅=⋅  

1.10.4. Division: 
C
B

C
A
= provided 0≠C  

1.10.5. Exponent: nn BA =  provided n is an integer 

1.10.6. Reciprocal: 
BA
11

= provided 0,0 ≠≠ BA  

1.10.7. Means & Extremes: ADCB
B
D

A
C

=⇒=  if 0,0 ≠≠ BA  

1.10.8. Zero Product Property: 0=⋅ BA  ⇔ 0=A or 0=B  
 
1.10.9. The Concept of Equivalency 
 
When solving equations, the Laws of Equality—with the exception 
of 1.10.5, which produces equations with extra or ‘extraneous’ 
solutions in addition to those for the original equation—are used to 
manufacture equations that are equivalent to the original equation. 
Equivalent equations are equations that have identical solutions. 
However, equivalent equations are not identical in appearance. 
The goal of any equation-solving process is to use the Laws of 
Equality to create a succession of equivalent equations where 
each equation in the equivalency chain is algebraically simpler 
than the preceding one. The final equation in the chain should be 
an expression of the form ax = , the no-brainer form that allows 
the solution to be immediately determined. In that algebraic 
mistakes can be made when producing the equivalency chain, the 
final answer must always be checked in the original equation. 
When using 1.10.5, one must check for extraneous solutions and 
delete them from the solution set. 
 
1.10.10. Linear Equation Solution Process 
Start with the general form )()( xRxL = where )(xL and )(xR  
are first-degree polynomial expressions on the left-hand side and 
right-hand side of the equals sign. 
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Step 1: Using proper algebra, independently combine like terms 
 for both )(xL and )(xR  
Step 2: Use 1.10.1 and 1.10.2 on an as-needed basis to  create an 
 equivalent equation of the form bax = . 
Step 3: use either 1.10.3 or 1.10.4 to create the final equivalent 

 form 
a
bx =  from which the solution is easily deduced. 

Step 4: Check solution in original equation. 
 
Example: Solve 3)1(51)}9(2]9)3(7[3{4 −−=−−++− yyy . 

   ∴=

⇒=

=
⇒+−=+−

⇒−=−
⇒−−=−−

⇒−=−

−=−
⇒−=−−
⇒−=−−

⇒−=−−+−
⇒−=−−+−

⇒−−=−−++−
⇒−−=−−++−

87
209

20987:

20987
217821721787

821787
855217592

8521792:

8521792
85121692

851}5423{4
851}1823621{4

851}182]127[3{4
3551}182]9217[3{4

3)1(51)}9(2]9)3(7[3{4:

3

2

1

y

y

y
y
y

yyyy
yy

yy
yy
yy

yyy
yyy
yyy

yyy

a

a

a

 

   :
4
a Check the final answer 

87
209

=y  in the original equation   

   3)1(51)}9(2]9)3(7[3{4 −−=−−++− yyy . 
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1.11. Laws of Inequality 
 
Let BA >  be an algebraic inequality and C  be any quantity. 
 
1.11.1. Addition: CBCA +>+  
1.11.2. Subtraction: CBCA −>−  
 

1.11.3. Multiplication: 
CBCAC
CBCAC
⋅<⋅⇒<
⋅>⋅⇒>

0
0  

 

1.11.4. Division: 

C
B

C
AC

C
B

C
AC

<⇒<

>⇒>

0

0
 

1.11.5. Reciprocal: 
BA
11

< provided 0,0 ≠≠ BA  

 
Similar laws hold for BA < , BA ≤ , and BA ≥ . When 
multiplying or dividing by a negative C , one must reverse the 
direction of the original inequality sign. Replacing each side of the 
inequality with its reciprocal also reverses the direction of the 
original inequality. 
 
1.11.6. Linear Inequality Solution Process 
Start with the general form )()( xRxL > where )(xL and )(xR  
are as described in 1.10.10. Follow the same four-step process as 
that given in 1.10.10 modifying per the checks below. 
 

 Reverse the direction of the inequality sign when multiplying or 
dividing both sides of the inequality by a negative quantity. 

 
 Reverse the direction of the inequality sign when replacing 

each side of an inequality with its reciprocal. 
 

 The final answer will have one the four forms ax > , ax ≥ ,  
ax < , and ax ≤ . One must remember that in of the four 

cases, x  has infinitely many solutions as opposed to one 
solution for the linear equation. 
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1.12.  Order of Operations 
 
Step 1: Perform all power raisings in the order they occur from left 
 to right 
Step 2: Perform all multiplications and divisions in the order they 
 occur from left to right 
Step 3: Perform all additions and subtractions in the order they 
 occur from left to right 
Step 4: If parentheses are present, first perform steps 1 through 3 
 on an as-needed basis within the innermost set of 
 parentheses until a single number is achieved. Then 
 perform steps 1 through 3 (again, on an as-needed basis) 
 for the next level of parentheses until all parentheses have 
 been systematically removed. 
Step 5: If a fraction bar is present, simultaneously perform steps 1 
 through 4 for the numerator and denominator, treating 
 each as totally-separate problem until a single number is 
 achieved. Once single numbers have been achieved for 
 both the numerator and the denominator, then a final 
 division can be performed. 
 
 
 
1.13. Three Meanings of ‘Equals’ 
 
1. Equals is the mathematical equivalent of the English verb “is”, 

the fundamental verb of being. A simple but subtle use of 
equals in this fashion is 22 = . 

2. Equals implies an equivalency of naming in that the same 
underlying quantity is being named in two different ways. This 
can be illustrated by the expression MMIII=2003 . Here, the 
two diverse symbols on both sides of the equals sign refer to 
the same and exact underlying quantity. 

3. Equals states the product (either intermediate or final) that 
results from a process or action. For example, in the 
expression 422 =+ , we are adding two numbers on the left-
hand side of the equals sign. Here, addition can be viewed as 
a process or action between the numbers 2 and 2 . The result 
or product from this process or action is the single number 4 , 
which appears on the right-hand side of the equals sign. 
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1.14. The Seven Parentheses Rules 
 
1.14.1. Consecutive processing signs ÷⋅−+ ,,, are separated by 

parentheses. 
1.14.2. Three or more consecutive processing signs are 

separated by nested parenthesis where the rightmost sign 
will be in the innermost set of parentheses. 

1.14.3. Nested parentheses are typically written using the various 
bracketing symbols to facilitate reading. 

1.14.4. The rightmost processing sign and the number to the 
immediate right of the rightmost sign are both enclosed 
within the same set of parentheses. 

1.14.5. Parentheses may enclose a signed or unsigned number 
by itself but never a sign by itself. 

1.14.6. More than one number can be written inside a set of 
parentheses depending on what part of the overall 
process is emphasized. 

1.14.7. When parentheses separate numbers with no intervening 
multiplication sign, a multiplication is understood. The 
same is true if just one plus or minus sign separates the 
two numbers and the parentheses enclose both the 
rightmost number and the separating sign. 

 
1.14.8. Demonstrating the Seven Basic Parentheses Rules 
 

 125 −+ : Properly written as )12(5 −+ . 1.14.1, 1.14.4 
 125 −⋅ : Properly written as )12(5 −⋅ . 1.14.1, 1.14.4 
 125 −−+ : Properly written as )]12([5 −−+ . 1.14.1 thru 4 
 12)(5 −⋅ : Incorrect per 1.14.5 
 )12()5( −⋅ : Correct per 1.14.1, 1.14.4, 1.14.5 
 125 ⋅− : Does not need parentheses to achieve separation 

since the 5  serves the same purpose. Any use of 
parentheses would be optional 

 12)5( ⋅− : The optional parentheses, though not needed, 
emphasize the negative5  per 1.14.5 

 )125( ⋅− : The optional parentheses emphasize the fact that 
the final outcome is negative per 1.14.5, 1.14.6 
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 )12(4 : The mandatory parentheses indicate that 4  is 
multiplying12 . Without the parentheses, the expression would 
be properly read as the single number 412 , 1.14.7. 

 )5(7 − : The mandatory parentheses indicate that 7  is 
multiplying 5− . Without the intervening parentheses, the 
expression is properly read as the difference 57 − , 1.14.7. 

 )5)(32( −− : The mandatory parentheses indicate that 32−  is 
multiplying 5− . The expression )5()32( −⋅−  also signifies 
the same, 1.14.7. 

 
1.14.9. Demonstration of Use of Order-of-Operations with 

Parentheses Rules to Reduce a Rational Expression.  

∴=
×
×

=

=
+

=
⋅+

=
⋅+

=
⋅++

=
⋅+++

=
−

⋅++−−

=
−

⋅++−−

17
95

172
952

34
190

34
54136

34
96136

34
96)34(4

34
96)826(4

)17(2
96)8]818([4

)6481(2
96)8}8{18(4

)89(2
96)2}8{18(4

22

3
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1.15. Rules for Logarithms 
 
1.15.1. Definition of Logarithm to Base 0>b : 
 xy blog=  if and only if xby =  
1.15.2. Logarithm of the Same Base: 1log =bb  
1.15.3. Logarithm of One: 01log =b  
1.15.4. Logarithm of the Base to a Power: pb pb =log  
1.15.5. Base to the Logarithm: pb pb =log  
1.15.6. Notation for Logarithm Base 10 : xLogx 10log≡  
1.15.7. Notation for Logarithm Base e : xx elogln ≡  

1.15.8. Change of Base Formula: 
b
NN
a

a
b log

loglog =  

1.15.9. Product: MNMN bbb loglog)(log +=  

1.15.10. Quotient: NM
N
M

bbb logloglog −=





  

1.15.11. Power: NpN b
p

b loglog =  
 
1.15.12. Logarithmic Simplification Process 

 Let p

mn

C
BAX = , then 

 ( ) ( )
( ) ( ) ( )
( ) ( ) ( )∴−+=

⇒−+=

⇒−=

⇒







=

CpBmAnX
CBAX

CBAX

C
BAX

bbbb

p
b

m
b

n
bb

p
b

mn
bb

p

mn

bb

logloglog)(log
logloglog)(log

loglog)(log

log)(log

 

 
Note: The use of logarithms transforms complex algebraic 
expressions where products become sums, quotients become 
differences, and exponents become coefficients, making the 
manipulation of these expressions easier in some instances. 
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1.16. Complex Numbers 
 
1.16.1. Definition of the imaginary unit i : i  is defined to be the 

solution to the equation 012 =+x . 
1.16.2. Properties of the imaginary unit i : 
 1101 22 −=⇒−=⇒=+ iii  
1.16.3. Definition of Complex Number: Numbers of the form 
 bia +  where ba, are real numbers 

1.16.4. Definition of Complex Conjugate: biabia −=+  

1.16.5. Definition of Complex Modulus: 22 babia +=+  

1.16.6. Addition: idbcadicbia )()()()( +++=+++  
1.16.7. Subtraction: idbcadicbia )()()()( −+−=+−+  
 
1.16.8. Process of Complex Number Multiplication 

 

ibcadbdac
bdibcadac
bdiibcadac

dicbia

)(
)1()(

)(
))((

2

++−
−+++
=+++

=++

 

 
1.16.9. Process of Complex Number Division 

 

i
dc
adbc

dc
bdac

dc
iadbcbdac

dicdic
dicbia
dicdic
dicbia

dic
bia









−
−

+
−
+

=
−

−++

=
−+
−+

=
++
++

=
+
+

2222

22

)()(
))((
))((
))((
))((
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1.17. What is a Function? 
 
 The mathematical concept called a function is 
foundational to the study of higher mathematics. With this 
statement in mind, let us define in a working sense the word 
function: A function is any process where numerical input is 
transformed into numerical output with the operating restriction 
that each unique input must lead to one and only one output.  

 
 The above figure is a diagram of the general function 
process for a function named f . Function names are usually 
lower-case letters, ,,, hgf  etc. When a mathematician says, ‘let 
f  be a function’, the entire input-output process—start to finish—

comes into discussion. If two different function names are being 
used in one discussion, then two different functions are being 
discussed, often in terms of their relationship to each other. The 
variable x  is the independent or input variable; it is independent 
because any specific input value can be freely chosen. Once a 
specific input value is chosen, the function then processes the 
input value via the processing rule in order to create the output 
variable )(xf , also called the dependent variable since the value 
of )(xf  is entirely determined by the action of the processing rule 
upon x . Notice that the complex symbol )(xf reinforces the fact 
that output values are created by direct action of the function 
process f upon the independent variable x . Sometimes, a simple 
y  will be used to represent the output variable )(xf  when it is 

well understood that a function process is indeed in place. Two 
more definitions are noted. The set of all possible input values for 
a function f is called the domain and is denoted by the 
symbolDf . The set of all possible output values is called the 
range and is denoted byRf . 

Function Name

x

Input Side 

)(xf

Output Side

Processing 
Rule 

f
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1.18. Function Algebra 
 
Let f  and g  be functions, and let 1−f  be the inverse for f  
 
1.18.1. Inverse Property: xxffxff == −− )]([)]([ 11  
1.18.2. Addition/Subtraction: )()())(( xgxfxgf ±=±  
1.18.3. Multiplication: )()())(( xgxfxgf ⋅=⋅  

1.18.4. Division: 
)(
)()(
xg
xfx

g
f

=







;

)(
)()(
xf
xgx

f
g

=







 

1.18.5. Composition:  
)]([))((
)]([))((
xfgxfg
xgfxgf

=
=

o

o
 

 
1.18.6. Process for Constructing Inverse Functions 
 
Step 1: Start with xxff =− ))(( 1 , the process equality that must 
 be in place for an inverse function to exist. 
Step 2: Replace )(1 xf − with y to form the equality xyf =)( . 

Step 3: Solve for y  in terms of x . The resulting y is )(1 xf − . 

Step 4: Verify by the property xxffxff == −− ))(())(( 11 . 
 
1.18.7. Demonstration of 1.18.6: 
 Find )(1 xf −  for 2)( 3 += xxf .  

   

( ) xxxxff

xxxxff

xy

xy

xy

xxfxff

=+−=+−=

==−+=

−=

⇒=+

=+

=+=

−

−

−−

2)2(2)2())((:

2)2())((:

2

2)(:

2)(:

2))(())((:

3
31

4

3 33 31
4

3

3
3

3
2

311
1

a

a

a

a

a
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1.19. Quadratic Equations & Functions 
 
1.19.1. Definition and Discussion 
 
A complete quadratic equation in standard form (ready-to-be-
solved) is an equation having the algebraic structure 

02 =++ cbxax  where 0,0,0 ≠≠≠ cba . If either 0=b  or 
0=c , the quadratic equation is called incomplete. If 0=a , the 

quadratic equation reduces to a linear equation. All quadratic 
equations have exactly two solutions if complex solutions are 
allowed. Solutions are obtained by either factoring or by use of the 
quadratic formula. If, within the context of a particular problem 
complex solutions are not admissible, quadratic equations can 
have up to two real solutions. As with all real-world applications, 
the number of admissible solutions depends on context. 
 
1.19.2. Quadratic Formula with Development: 

 

∴
−±−

=

⇒
−

±=





+

⇒
−

=













+

⇒+−=+





+

⇒−=





+⇒=++

a
acbbx

a
acb

a
bx

a
acb

a
bx

a
b

a
c

a
bx

a
bx

a
cx

a
bxcbxax

2
4

2
4

2

4
4

2

44

0

2

2

2

22

2

2

2

2
2

22

  

 
1.19.3. Solution of Quadratic Equations by Formula 
To solve a quadratic equation using the quadratic formula—the 
more powerful of two common methods for solving quadratic 
equations—apply the following four steps. 
 
Step 1: Rewrite the quadratic equation so it matches the 
 standard form 02 =++ cbxax . 
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Step 2: Identify the two coefficients and constant term cba ,&, . 
Step 3: Apply the formula and solve. 
Step 4: Check your answer(s) in the original equation.  
 
1.19.4. Solution Discriminator: acb 42 −  
 ⇒>− 042 acb two real solutions 
 ⇒=− 042 acb one real solution of multiplicity two 
 ⇒<− 042 acb two complex (conjugates) solutions 
 
1.19.5. Solution when 0&0 ≠= ba : 

 
b
cxcbx −

=⇒=+ 0  

 
1.19.6. Solution of Quadratic Equations by Factoring 
To solve a quadratic equation using the factoring method, apply 
the following four steps. 
 
Step 1: Rewrite the quadratic equation in standard form 
Step 2: Factor the left-hand side into two linear factors using the 
 quadratic trinomial factoring process 1.9.14. 
Step 3: Set each linear factor equal to zero and solve. 
Step 4: Check answer(s) in the original equation 
 
Note: Use the quadratic formula when a quadratic equation cannot 
be factored or is hard to factor. 
 
1.19.7. Quadratic-in-Form Equation: 02 =++ cbUaU  where 

U is an algebraic expression of varying complexity. 
 
1.19.8. Definition of Quadratic Function: 

 
a
acb

a
bxacbxaxxf

4
4

2
)(

22
2 −

−





 +=++=  

1.19.9. Axis of Symmetry for Quadratic Function: 
a
bx

2
−

=  

1.19.10. Vertex for Quadratic Function: 






 −−
a
bac

a
b

4
4,

2

2
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1.20. Cardano’s Cubic Solution 
 
Let 023 =+++ dcxbxax  be a cubic equation written in 
standard form with 0≠a  
 

Step 1: Set 
a
byx
3

−= . After this substitution, the above cubic 

 becomes 03 =++ qpyy  where 







−= 2

2

3a
b

a
cp  and 

 







+−=
a
d

a
bc

a
bq 23

2

327
2

 

 
Step 2: Define vu& such that vuy −=  and uvp 3=  
 
Step 3: Substitute for py&  in the equation 03 =++ qpyy . 

 This leads to 0
27

)(
3

323 =−+
pquu , which is quadratic-

 in-form in 3u . 
 
Step 4: Use the quadratic formula 1.19.3 to solve for 3u  
 

  
2

3
27
42

3 pqq
u

++−
=  

 

Step 5: Solve for vu&  where 
u
pv

3
= to obtain 

 3
3

27
42

3
3

27
42

2
&

2
pqq

v
pqq

u
+−−

−=
++−

=  

 

Step 6: Solve for x  where
a
bvux

a
byx

33
−−=⇒−=  
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1.21. Theory of Polynomial Equations 
 
Let 01

2
2

1
1 ...)( axaxaxaxaxP n

n
n

n +++++= −
−  be a 

polynomial written in standard form. 
 
The Eight Basic Theorems 
 
1.21.1. Fundamental Theorem of Algebra: Every polynomial 

)(xP  of degree 1≥N has at least one solution 0x for 

which 0)( 0 =xP . This solution may be real or complex (i.e. has 

the form bia + ). 
 
1.21.2. Numbers Theorem for Roots and Turning Points: If )(xP  
is a polynomial of degree N , then the equation 0)( =xP  has up 
toN real solutions or roots. The equation 0)( =xP has exactly 
N roots if one counts complex solutions of the form bia + . Lastly, 
the graph of )(xP will have up to 1−N  turning points (which 
includes both relative maxima and minima). 
 
1.21.3. Real Root Theorem: If )(xP is of odd degree having all 
real coefficients, then )(xP  has at least one real root. 
 
1.21.4. Rational Root Theorem: If )(xP has all integer 
coefficients, then any rational roots for the equation 0)( =xP  

must have the form q
p  where p is a factor of the constant 

coefficient 0a andq is a factor of the lead coefficient na . Note: This 
result is used to form a rational-root possibility list. 
 
1.21.5. Complex Conjugate Pair Root Theorem: Suppose )(xP  
has all real coefficients. If bia +  is a root for 

)(xP with 0)( =+biaP , then 0)( =−biaP . 
 
1.21.6. Irrational Surd Pair Root Theorem: Suppose )(xP has all 

rational coefficients. If ba +  is a root for )(xP  with 

0)( =+ baP , then 0)( =− baP . 
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1.21.7. Remainder Theorem: If )(xP is divided by )( cx − , then 
the remainderR is equal to )(cP . Note: this result is extensively 
used to evaluate a given polynomial )(xP at various values of x . 
 
1.21.8. Factor Theorem: If c is any number with 0)( =cP ,  then 

)( cx −  is a factor of )(xP . This means )()()( xQcxxP ⋅−=  
where )(xQ is a new, reduced polynomial having degree one less 
than )(xP . The converse 0)()()()( =⇒⋅−= cPxQcxxP  is 
also true. 

 
The Four Advanced Theorems 
 
1.21.9. Root Location Theorem: Let ),( ba be an interval on the 

x axis with 0)()( <⋅ bPaP . Then there is a value ),(0 bax ∈ such 

that 0)( 0 =xP . 
 
1.21.10. Root Bounding Theorem: Divide )(xP  by )( dx −  to 
obtain RxQdxxP +⋅−= )()()( . Case 0>d : If bothR and all 
the coefficients of )(xQ  are positive, then )(xP has no 

root dx >0 . Case 0<d : If the roots of )(xQ  alternate in sign—

with the remainderR ”in sync” at the end—then )(xP has no 

root dx <0 . Note: Coefficients of zero can be counted either as 
positive or negative—which ever way helps in the subsequent 
determination. 
 
1.21.11. Descartes’ Rule of Signs: Arrange )(xP in standard 
order as shown in the title bar. The number of positive real 
solutions equals the number of coefficient sign variations or that 
number decreased by an even number. Likewise, the number of 
negative real solutions equals the number of coefficient sign 
variations in )( xP − or that number decreased by an even number. 
 
1.21.12. Turning Point Theorem: Let a polynomial )(xP  have 
degreeN . Then the number of turning points for a polynomial 

)(xP  can not exceed 1−N . 



 39

1.22. Determinants and Cramer’s Rule 
 
1.22.1. Two by Two Determinant Expansion: 

 bcad
dc
ba

−=  

 
1.22.2. Three by Three Determinant Expansion: 

 

cegcdhbdibfgahfaei
egdhcfgdibfheia

hg
ed

c
ig
fd

b
ih
fe

a
ihg
fed
cba

−+−+−
=−+−−−

=+−=

)()()(  

 
1.22.3. Cramer’s Rule for a Two-by-Two Linear System 
  

 Given 
fdycx
ebyax

=+
=+

 with  0≠=
dc
ba

D  

 

 Then 
D
df
be

x =  and 
D
fc
ea

y =  

 
1.22.4. Cramer’s Rule for a Three-by-Three Linear System 
     

 Given 

lizhygx
kfzeydx
jczbyax

=++
=++
=++

with 0≠=
ihg
fed
cba

D  

  

 Then 
D

lhg
ked
jba

z
D

ilg
fkd
cja

y
D

ihl
fek
cbj

x === ,,  
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1.22.5. Solution Types in 
D
Dx

x i
i =  

 00,0 =⇒≠= ii xDDx  

 ⇒== 0,0 DDxi ix  has infinite solutions 

 ⇒≠≠ 0,0 DDxi ix  has a unique solution 

 ⇒=≠ 0,0 DDxi ix  has no solution 
 
 
1.23. Binomial Theorem 
 
Let n  and r be positive integers with rn ≥ . 
 
1.23.1. Definition of !n : 1)...2)(1(! −−= nnnn , 
1.23.2. Special Factorials: 1!0 = and 1!1 =  

1.23.3. Combinatorial Symbol: 
)!(!

!
rnr

n
r
n

−
=







  

1.23.4. Summation Symbols: 

n

n

i
i aaaaaaa ++++++=∑

=

...43210
0

 nkkkk

n

ki
i aaaaaa ++++= +++

=
∑ ...321  

1.23.5. Binomial Theorem: ∑
=

−








=+

n

i

iinn ba
i
n

ba
0

)(  

 
1.23.6. Sum of Binomial Coefficients when 1== ba : 

  ∑
=

− =+=






n

i

nniin

i
n

0
2)11(11  

 

1.23.7. Formula for the thr )1( + Term: rrn ba
r
n −







  
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1.23.8. Pascal’s Triangle for 10: =







n

r
n

 

1 
1   1 

1   2   1 
1   3    3   1 

1   4     6     4   1 
1   5   10   10   5   1 

1   6   15   20   15   6   1 
1   7   21   35   35   21   7   1 

1   8   28   56   70   56   28   8   1 
1   9  36   84  126  126  84   36  9   1 

1 10 45  120  210 252 210  120 45 10   1 
 
 
1.24. Arithmetic Series 

1.24.1. Definition: ∑
=

+=
n

i
ibaS

0
)( where b is the common 

increment 

1.24.2. Summation Formula for S : ]2[
2

)1( nbanS +
+

=  

 
 
1.25. Geometric Series 

1.25.1. Definition: ∑
=

=
n

i

iarG
0

where r is the common ratio 

1.25.2. Summation Formula for  G : 

 

r
raG

araararrGG

arrGarG

i

i
n

i

i
n

i

i

n

i

i
n

i

i

−
−

=

⇒−=−=−

⇒=⇒=

+

+

=

+

=

=

+

=

∑∑

∑∑

1
)1( 1

1

0

1

0

0

1

0

 

1.25.3. Infinite Sum Provided 10 << r : 
r
aar

i

i

−
=∑

∞

= 10
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1.26. Boolean Algebra 
 
In the following tables, the propositions qp& are either True (T) 
or False (F).  
 
1.26.1. Elementary Truth Table: 
 

⇔=⇒=∨=∧= ,~::: impliesnegationorand  
p  q  p~  q~ qp ∧ qp ∨ qp⇒ qp⇔  
T T F F T T T T 
T F F T F T F F 
F T T F F T F F 
F F T T T F T T 

 

1.26.2. Truth Table for the Exclusive Or 
e
∨ : 

 

p q qp
e
∨  

T T F 
T F T 
F T T 
F F F 

 
1.26.3. Modus Ponens: Let Tpqp =⇒ & . Then, Tq = . 
1.26.4. Chain Rule: Let rqqp ⇒⇒ & . Then Trp =⇒ )( . 
1.26.5. Modus Tollens:  
 Let Fqqp =⇒ & . Then Tpq =⇒ )~(~ . 
1.26.6. Fallacy of Affirming the Consequent: 
 Let Tqqp =⇒ & .Then Fpq =⇒ )( . 
1.26.7. Fallacy of Denying the Antecedent: 
  Let Fpqp =⇒ & . Then Fqp =⇒ )~(~ . 
1.26.8. Disjunctive Syllogism for the Exclusive Or: 

 Let FqTqp
e

==∨ & . Then Tp =  
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1.26.9. Demonstration that the English double-negative in the 
slang expression “I don’t got none” actually affirms the 
opposite of what is intended. 

 

Step Phrase Comment 

1 I do not have any 
The original proposition p as 
intended 

1 I do have none Assume Tp =  

2 I do not have none Negation of p : Fp =)(~  

3 I don’t have none 
Proper contracted form of 3: 

Fp =)(~  

4 I don’t got none Slang version of 3  

5 I have some 
Logical consequence of 3: 

TpFp =⇒= )(~~)(~  
 
 
1.27.  Variation or Proportionality Formulas 
 
1.27.1. Direct: kxy =  

1.27.2. Inverse: 
x
ky =  

1.27.3. Joint: kxyz =  

1.27.4. Inverse Joint: 
y
kxz =  

1.27.5. Direct to Power: nkxy =  

1.27.6. Inverse to Power: nx
ky =   
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2. Geometry  
 

2.1. The Parallel Postulates 
 

 
 

2.1.1. Let a point reside outside a given line. Then there is 
exactly one line passing through the point parallel to 
the given line. 

2.1.2. Let a point reside outside a given line. Then there is 
exactly one line passing through the point 
perpendicular to the given line. 

2.1.3. Two lines both parallel to a third line are parallel to 
each other.  

2.1.4. If a transverse line intersects two parallel lines, then 
corresponding angles in the figures so formed are 
congruent. 

2.1.5.  If a transverse line intersects two lines and makes 
congruent, corresponding angles in the figures so 
formed, then the two original lines are parallel. 

      
 

2.2. Angles and Lines 

 
2.2.1. Complimentary Angles: Two angles βα ,  with 

090=+ βα . 

•

α β

0180=+ βα

α
β

090=+ βα
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2.2.2. Supplementary Angles: Two angles βα ,  with 
0180=+ βα  

2.2.3. Linear Sum of Angles: The sum of the two angles 
βα ,  formed when a straight line is intersected by a 

line segment is equal to 0180  
2.2.4. Acute Angle: An angle less than 090  
2.2.5. Right Angle: An angle exactly equal to 090  
2.2.6. Obtuse Angle: An angle greater than 090  

 
 

2.3. Triangles 

 
2.3.1. Triangular Sum of Angles: The sum of the three 

interior angles γβα ,,  in any triangle is equal to 
0180  

2.3.2. Acute Triangle: A triangle where all three interior 
angles γβα ,,  are acute 

2.3.3. Right Triangle: A triangle where one interior angle 
from the triad γβα ,, is equal to 090  

2.3.4. Obtuse Triangle: A triangle where one interior angle 
from the triad γβα ,,  is greater than 090  

2.3.5. Scalene Triangle: A triangle where no two of the 
three side-lengths cba ,, are equal to another 

2.3.6. Isosceles Triangle: A triangle where exactly two of 
the side-lengths cba ,,  are equal to each other 

2.3.7. Equilateral Triangle: A triangle where all three side-
lengths cba ,, are identical cba ==  or all three 

angles γβα ,,  are equal with 060=== γβα  

α β

γ
ab

c

0180=++ γβα
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2.3.8. Congruent Triangles: Two triangles are congruent 
(equal) if they have identical interior angles and 
side-lengths. 

2.3.9. Similar Triangles: Two triangles are similar if they 
have identical interior angles. 

2.3.10. Included Angle: The angle that is between two 
given sides 

2.3.11. Opposite Angle: The angle opposite a given side 
2.3.12. Included Side: The side that is between two given 

angles 
2.3.13. Opposite Side: The side opposite a given angle  

 
 

2.4. Congruent Triangles 
Given the congruent two triangles as shown below 

 
2.4.1. Side-Angle-Side (SAS): If any two side-lengths and 

the included angle are identical, then the two 
triangles are congruent. 

  Example: fecb &&&& φα =  
2.4.2. Angle-Side-Angle (ASA): If any two angles and the 

included side are identical, then the two triangles are 
congruent. 

  Example: ϕφβα &&&& fc =  
2.4.3. Side-Side-Side (SSS): If the three side-lengths are 

identical, then the triangles are congruent. 
  Example: dfeacb &&&& =  

2.4.4. Three Attributes Identical: If any three attributes—
side-lengths and angles—are equal with at least one 
attribute being a side-length, then the two triangles 
are congruent. These other cases are of the form 
Angle-Angle-Side (AAS) or Side-Side-Angle (SSA). 

  Example (SSA): ϕβ &&&& deab =  
  Example (AAS): da &&&& ϕφβα =  

α β

γ
ab

c
φ ϕ

ω
de

f
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2.5. Similar Triangles 
 
Given the two similar triangles as shown below 

 
2.5.1. Minimal Condition for Similarity: If any two angles 

are identical (AA), then the triangles are similar. 
 Suppose ϕβφα == &  

 Then 
φϖϕγβα

ϖϕφγβα

=−−=−−=

⇒=++=++
00

00

180180
180&180

 

 
2.5.2. Ratio laws for Similar Triangles: Given similar 

triangles as shown above, then 
d
a

f
c

e
b

==  

 
2.6. Planar Figures 

 
A  is the planar area, P is the perimeter, n is the number of sides. 
 

2.6.1. Degree Sum of Interior Angles in General Polygon: 
 ]2[1800 −= nD  

 
2.6.2. Square: sPsA 4:2 == , s is the length of a side 

 
 
 
 
 

α β

ab
γ

c φ ϕ

ω
de

f

5=n 6=n
0

0

7206
5405

=⇒=

=⇒=

Dn
Dn

s
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2.6.3. Rectangle: hbPbhA 22: +== , hb& are the 
base and height 

 
 
 
 
 

2.6.4. Triangle: bhA 2
1= , hb&  are the base and altitude 

 
 
 
 
 

2.6.5. Parallelogram: bhA = , hb&  are the base and 
altitude 

 

 
2.6.6. Trapezoid: hbBA )(2

1 += , bB&  are the two 

parallel bases and h is the altitude 
 
 
 
 
 
 

2.6.7. Circle: rPrA ππ 2:2 ==  where r  is the radius, or 
dP π=  where rd 2= , the diameter. 

 
 
 
 
 

2.6.8. Ellipse: abA π= ; ba& are the half lengths of the 
major & minor axes 

 
 
 

b
h

b
h

h
b

B

b
h

r

a
b
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2.7.      Solid Figures 
 
A  is total surface area, V is the volume 
 

2.7.1. Cube: 32 :6 sVsA == , s  is the length of a side 
 
 
 
 
 
 

2.7.2. Sphere: 3
3
42 :4 rVrA ππ == , r is the radius 

 
 
 
 
 
 
 

2.7.3. Cylinder: lrVrlrA 22 :22 πππ =+= , lr &  are 
the radius and length 

 
 
 
 
 
 
 
 

2.7.4. Cone: hrVrtrA 2
3
12 :2 πππ =+= , htr &&  are 

the radius, slant height, and altitude 
 
 
 
 
 
 
 
 

s

r
l

t
h
r

r
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2.7.5. Pyramid (square base): hsVstsA 2
3
12 :2 =+= , 

hts &&  are the side, slant height, and altitude 
 

 
 
 
 

2.8. Pythagorean Theorem 
 

2.8.1. Statement: Let a right triangle ABC∆  have one 

side AC  of length x , a second side AB of length y , 

and a hypotenuse (long side) BC  of length z . Then 
222 yxz +=  

 
 

2.8.2. Traditional Algebraic Proof: Construct a big square 
by bringing together four congruent right triangles.  

 

 

x
z

y

x

y
z

¬
A

B

C

t

s

h
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 The area of the big square is given by 
 
 2)( yxA +=  , or equivalently by 

 





+=

2
42 xyzA . 

 Equating: 

∴+=

⇒=+

⇒+=++

⇒





+=+

222

222

222

22

22
2

4)(

yxz
zyx

xyzyxyx

xyzyx

. 

 
2.8.3. Visual (Pre-Algebraic) Pythagorean Proof: 

 
The idea is to observe that the two five-sided irregular polygons on 
either side of the dotted line have equivalent areas. Taking away 
three congruent right triangles from each area leads to the desired 
Pythagorean equality.   
 

2.8.4. Pythagorean Triples: Positive integers 
NML ,, such that 222 NML +=  

 
2.8.5. Generating Formulas for Pythagorean triples: Let 

nm,  with 0>> nm  be integers. Then 
22 nmM −= , mnN 2= , and 22 nmL +=  
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2.9. Heron’s Formula 
 
Let )(2

1 cbas ++= be the semi-perimeter of a general triangle 

and A  be the internal area enclosed by the same.  
 

 
2.9.1. Heron’s Formula: ))()(( csbsassA −−−=  

 
2.9.2. Derivation Using Pythagorean Theorem: 

 :
1
a Create two equations for the unknowns h  and x  

222
2

222
1

)(:

:

axchE

bxhE

=−+

=+
 

 :
2
a Subtract 2E from 1E and solve for x   

c
abcx

abccx
abxcx

2

2
)(

222

222

2222

−+
=

⇒−=−

⇒−=−−

 

:
3
a Substitute the value for x  into 1E  

2
2222

2

2
b

c
abch =







 −+
+  

 :
4
a Solve for h  

 
[ ]

⇒
−+−

= 2

222222

4
4

c
abcbch   

a b

c

h
xxc − ¬
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[ ]{ } [ ]{ }

[ ]{ }[ ]{ }

{ }{ }{ }{ }
2

2

2222

2

222222

4

4

4
22

c
abcabcbcacbah

c
abcbcah

c
abccbabccbh

++−+−+−+
=

⇒
−+−−

=

⇒
−++−+−

=

 

 :
5
a Solve for area using chA 2

1= . 

  

{ }{ }{ }{ }

{ }{ }{ }{ }
16

4 22
1

abcabcbcacbaA

c
abcabcbcacbacA

++−+−+−+
=

⇒
++−+−+−+

=
 

 :
6
a Substitute 

2
cbas ++

=  and simplify. 

∴−−−=

⇒−−−=

⇒






 −






 −






 −=

))()((

))()((

}{
2

2
2

2
2
2

csbsassA

sasbscsA

sasbscsA

 

 
2.10. Golden Ratio 

 
2.10.1. Definition: Let 1=p  be the semi-perimeter of a 

rectangle whose base and height are in the 
proportion shown, defining the Golden Ratioφ . 
Solving for x  leads to 6181.1=φ . 

 

 

x

x−1
x x−1

1
φ=

−
=

x
x

x 1
1
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2.10.2. Golden Triangles: Triangles whose sides are 
proportioned to the Golden Ratio. Two examples are 
shown below. 

 

ba
baba
abba
abba

φ=
⇒=−−

⇒+=

⇒+=

0

)(

22

22

222

 

 
 
 
 
 
 
 

2.11. Distance and Line Formulas 
Let ),( 11 yx  and ),( 22 yx  be two points where 12 xx > . 
 

2.11.1. 2-D Distance Formula: 
2

12
2

12 )()( yyxxD −+−=  

2.11.2. 3-D Distance Formula: For the points ),,( 111 zyx  

and ),,( 222 zyx , 
2

12
2

12
2

12 )()()( zzyyxxD −+−+−=  

2.11.3. Midpoint Formula: 





 ++

2
,

2
2121 yyxx

 

Line Formulas 

2.11.4. Slope of Line: 
12

12

xx
yym

−
−

=  

2.11.5. Point/Slope Form: )( 11 xxmyy −=−  
2.11.6. General Form: 0=++ CByAx  
2.11.7. Slope/Intercept Form: bmxy +=  where 







 − 0,
m
b

 and ),0( b  are the x  and y  Intercepts: 

a

b

ab

A 

B

C

C

B

A D 
072

072

036

036

036

0108

a

a

a

b
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2.11.8. Intercept/Intercept Form: 1=+
b
y

a
x

 

where )0,(a and ),0( b are the x  and y  intercepts 
2.11.9. Slope Relationship between two Parallel Lines 1L  

and 2L  having slopes 1m  and 2m : 21 mm =   
2.11.10. Slope Relationship between two 

Perpendicular Lines 1L  and 2L  having slopes 1m  

and 2m : 
2

1
1
m

m −
=   

2.11.11. Slope of Line Perpendicular to a Line of 

Slope m : 
m
1−  

 
2.12. Formulas for Conic Sections 

2.12.1. General: 022 =+++++ FEyDxCyBxyAx  
2.12.2. Circle of Radius r Centered at ),( kh : 

 222 )()( rkyhx =−+−  
2.12.3. Ellipse Centered at 

),( kh : 1)()(
2

2

2

2

=
−

+
−

b
ky

a
hx  

I) If ba > , the two foci are on the line ky = and are 

 given by ),( kch − & ),( kch +  where 222 bac −= . 
II) If ab > , the two foci are on the line hx = and are 

 given by ),( ckh − & ),( ckh +  where 222 abc −= . 
 
2.12.4. Hyperbola Centered at ),( kh : 

1)()(
2

2

2

2

=
−

−
−

b
ky

a
hx

 or  1)()(
2

2

2

2

=
−

−
−

a
hx

b
ky

 

I) When 2

2)(
a
hx −

 is to the left of the minus sign, the two 

 foci are on the line ky = and are given by ),( kch −  & 

 ),( kch +  where 222 bac += . 
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II) When 2

2)(
b
ky −

 is to the left of the minus sign, the two 

 foci are on the line hx =  and are given by ),( ckh −  & 

 ),( ckh +  where 222 abc += . 
 
2.12.5. Parabola with Vertex at ),( kh and Focal 

Length p : 
)(4)( 2 hxpky −=−  or  )(4)( 2 kyphx −=−  

I) For 2)( ky − , the focus is ),( kph + and the directrix is 
 given by the line phx −= . 

II) For 2)( hx − , the focus is ),( pkh + and the directrix is 
 given by the line pky −= . 

 
2.12.6. Transformation Process for Removal of xy  

Term in the General Conic Equation 
 022 =+++++ FEyDxCyBxyAx : 

 Step 1: Set 
CA
B
−

=)2tan( θ  and solve for θ . 

 

 Step 2: let 
θθ
θθ

cossin
sincos

yxy
yxx
′+′=

′−′=
 

 
 Step 3: Substitute the values for yx,  obtained in Step 2  

  into 022 =+++++ FEyDxCyBxyAx . 
 
 Step 4: Reduce. The final result should be of the form  
  0)()()()( 22 =′+′′+′′+′′+′′ FyExDyCxA . 
 

 



 57

3. Trigonometry 
 

3.1. Basic Definitions of Trigonometric 
Functions & Trigonometric Inverse 
Functions 

 
 
 
 
 
 
 
 
Let the figure above be a right triangle with one side of length x , a 
second side of length y , and a hypotenuse of length z . The 
angle α  is opposite the side of length. The six trigonometric 
functions—where each is a function of α —are defined as follows: 
 
Z :  Arbitrary     Z is 1 Inverse when Z is 1 

3.1.1. 
z
y

=)sin(α  y=)sin(α  α=− )(sin 1 y  

3.1.2. 
z
x

=)cos(α  x=)cos(α  α=− )(cos 1 x  

3.1.3. 
x
y

=)tan(α  
x
y

=)tan(α  α=





−

x
y1tan  

3.1.4. 
y
x

=)cot(α  
y
x

=)cot(α  α=






−

y
x1cot  

3.1.5. 
x
z

=)sec(α  
x
1)sec( =α  α=






−

x
1sec 1  

3.1.6. 
y
z

=)csc(α  
y
1)csc( =α  α=







−

y
1csc 1  

 
Note: 1sin −  is also known as arcsin . Likewise, the other inverses 
are also known as  seccot,arctan,arccos, arcarc  and cscarc . 

x

yz

α
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3.2. Fundamental Definition-Based Identities 
 

3.2.1. 
)sin(

1)csc(
α

α =  

3.2.2. 
)cos(

1)sec(
α

α =  

3.2.3. 
)cos(
)sin()tan(

α
αα =  

3.2.4. 
)sin(
)cos()cot(

α
αα =  

3.2.5. 
)cot(

1)tan(
α

α =  

 
3.3. Pythagorean Identities 

 
3.3.1. 1)(cos)(sin 22 =+ αα  
3.3.2. )(sec)(tan1 22 αα =+  
3.3.3. )(csc)(cot1 22 αα =+  

 
3.4. Negative Angle Identities 

 
3.4.1. )sin()sin( αα −=−  
3.4.2. )cos()cos( αα =−  
3.4.3. )tan()tan( αα −=−  
3.4.4. )cot()cot( αα −=−  

 
3.5. Sum and Difference Identities 

 
3.5.1. )sin()cos()cos()sin()sin( βαβαβα +=+  
3.5.2. )sin()cos()cos()sin()sin( βαβαβα −=−  
3.5.3. )sin()sin()cos()cos()cos( βαβαβα −=+  
3.5.4. )sin()sin()cos()cos()cos( βαβαβα +=−  
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3.5.5. 
)tan()tan(1
)tan()tan()tan(
βα
βαβα

−
+

=+  

3.5.6. 
)tan()tan(1
)tan()tan()tan(
βα
βαβα

+
−

=−  

 
3.5.7. Derivation of Formulas for )cos( βα +  and 

)sin( βα + : 
 
In the figure below, each coordinate of the point 

)}sin(),{cos( βαβα ++  is decomposed into two components 
using both definitions for the sine and cosine in 3.1.1. and 3.1.2.  

 
From the figure, we have  

 
∴−=+

⇒−=+
)sin()sin()cos()cos()cos(

)cos( 21

βαβαβα
βα xx

 

  

 
∴+=+

⇒+=+
)cos()sin()cos()sin()sin(

)sin( 21

αββαβα
βα yy

. 

)0,0( )0,1(α
β

)}sin(),{cos( βαβα ++

)}sin(),{cos( αα
)cos(β

)sin(β

)cos()sin(1 βα=y

¬

)cos()cos(1 βα=x

α

)cos()sin(2 αβ=y

)sin()sin(2 αβ=x

x

y
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3.6. Double Angle Identities 
 

3.6.1. )cos()sin(2)2sin( ααα =  
3.6.2. )(sin)(cos)2cos( 22 ααα −=  
3.6.3. )(sin211)(cos2)2cos( 22 ααα −=−=  

3.6.4. 
)(tan1

)tan(2)2tan( 2 α
αα

−
=  

 
3.7. Half Angle Identities 

 

3.7.1. 
2

)cos(1)
2

sin( αα −
±=  

3.7.2. 
2

)cos(1)
2

cos( αα +
±=  

3.7.3. 
)sin(

)cos(1
)cos(1

)sin(
)cos(1
)cos(1)

2
tan(

α
α

α
α

α
αα −

=
+

=
+
−

±=

 
 

3.8. General Triangle Formulas 
 
Applicable to all triangles: right and non-right 
 
 
 
 
 
 
 
 
 

3.8.1. Sum of Interior Angles: 0180=++ θβα   (also 
2.3.1.) 

3.8.2. Law of Sines: 
zxy

)sin()sin()sin( θβα
==  

x

yz

α θ

β
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3.8.3. Law of Cosines: 
 

a) )cos(2222 αxzzxy −+=  

b) )cos(2222 βyzzyx −+=  

c) )cos(2222 θxyyxz −+=  
 

3.8.4. Area Formulas for a General Triangle: 
 
a) )sin(2

1 αxzA =  

b) )sin(2
1 βyzA =  

c) )sin(2
1 θxyA =  

 
3.8.5. Derivation of Law of Sines and Cosines: 
 

Let ABC∆  be a general triangle and drop a perpendicular from 
the apex as shown. 

 
For the Law of Sines we have 
 

 

∴=⇒=

=⇒=

=⇒=

)sin()sin(
)sin()sin(:

)sin()sin(:

)sin()sin(:

3

2

1

αβ
βα

ββ

αα

abab

ah
a
h

bh
b
h

a

a

a

 

 
The last equality is easily extended to include the third angle γ . 

a b

cyx =+
¬ αβ

γ

h

x y
A B 

C 
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For the Law of Cosines we have )sin(αbh = . 
 

 :
1
a  Solve for y and x  in terms of the angle α  

 
)cos(

)cos()cos(

α

αα

bcycx

by
b
y

−=−=

⇒=⇒=
 

 :
2
a Use the Pythagorean Theorem to complete the 

 derivation. 

 

∴−+=

⇒=+−

⇒=++−

⇒=+−

⇒=+

)cos(2
)cos(2

)(sin)(cos)cos(2
)]sin([)]cos([

222

222

222222

222

222

α

α

ααα

αα

bcbca
abbcc

abbbcc
abbc

ahx

 

 
Similar expressions can be written for the remaining two sides. 
 

3.9. Arc and Sector Formulas 
 
 
 
 
 
 
 
 

3.9.1. Arc Length s : θrs =  
3.9.2. Area of a Sector: θ22

1 rA =  
 

3.10. Degree/Radian Relationship 
 

3.10.1. Basic Conversion: π=0180  radians 

θ
r s 
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3.10.2. Conversion Formulas: 
 

From To Multiply by 

Radians Degrees 
π

0180
 

Degrees Radians 
180
π

 

 
 

3.11. Addition of Sine and Cosine 
 
 )sin(cossin αθθθ +=+ kba  where 
 

 









+
=

+=

−

22

1

22

sin
ba

b

bak

α
 

 or 

 








+
= −

22

1cos
ba

aα  

 
3.12. Polar Form of Complex Numbers 

 
3.12.1. )sin(cos θθ irbia +=+  where 

 

 22 bar += , 



= −

a
bTan 1θ  

3.12.2. Definition of θire : )sin(cos θθθ irrei +=  
3.12.3. Euler’s Famous Equality: 1−=πie  
3.12.4. De-Moivre’s Theorem: θθ innni erre =)(  or 

 [ ] ])sin[](cos[)sin(cos θθθθ ninrir nn +=+  
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3.12.5. Polar Form Multiplication: 
)(

2121
βαβα +⋅=⋅ iii errerer  

3.12.6. Polar Form Division: )(

2

1

2

1 βα
β

α
−= i

i

i

e
r
r

er
er  

 
3.13. Rectangular to Polar Coordinates 

 
 ),(),( θryx ⇔  

 
( )xyyxr

ryrx

/tan,

sin,cos
122 −=+=

==

θ

θθ
 

 
3.14. Trigonometric Values from Right 

Triangles 
  

In the right triangle below, let
1

)sin()(sin 1 xxx ==⇒=− αα .  

 
Then 

3.14.1. 21)cos( x−=α  
3.14.2. 

21
)tan(

x
x
−

=α  

3.14.3. 
x
x 21)cot( −

=α  

3.14.4. 
21

1)sec(
x−

=α  

3.14.5. 
x
1)csc( =α  

α
x

1

21 x−
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4. Elementary Vector Algebra 
 

4.1. Basic Definitions and Properties 
 
Let ),,( 321 vvvV =

r
, ),,( 321 uuuU =
r

 be two vectors. 
 

 
 

4.1.1.  Sum and/or Difference: VU
rr

±  
 ),,( 332211 vuvuvuVU ±±±=±

rr
 

4.1.2. Scalar Multiplication: ),,()( 321 uuuU αααα =
r

 
4.1.3. Negative Vector: UU

rr
)1(−=−  

4.1.4. Zero Vector: )0,0,0(0 =
r

 

4.1.5. Vector Length: 2
3

2
2

2
1|| uuuU ++=

r
 

4.1.6. Unit Vector Parallel toV
r

: V
V

r
r

||
1  

4.1.7. Two Parallel Vectors: UV
rr

||  means there is a 

scalar c   such that UcV
rr

)(=  
 

4.2. Dot Products 
 

4.2.1. Definition of Dot 
Product: 332211 vuvuvuVU ++=•

rr
 

4.2.2. Angleθ  Between Two Vectors:
||||

cos
VU
VU
rr

rr
•

=θ  

4.2.3. Orthogonal Vectors: 0=•VU
rr

 

U
r

V
rθ
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4.2.4. Projection of U
r

ontoV
r

: 
 

 

[ ]
||

cos||

||||||
)(

2

V
VU

V
V

V
VUV

V
VUUprojV

r

r
r

r

r

r

rr
r

r

rr
r

r

θ

=






 •
=







 •
=

 

 
4.3. Cross Products 

4.3.1. Definition of Cross Product: 

321

321

vvv
uuu
kji

VU =×
rr

 

 

4.3.2. Orientation of VU
rr

× ; Orthogonal to BothU
r

andV
r

: 
 0)()( =×•=×• VUVVUU

rrrrrr
 

 
4.3.3. Area of Parallelogram: θsin|||||| VUVUA

rrrr
=×=  

 

 
 

4.3.4. Interpretation of the Triple Scalar Product: 
 

 

321

321

321

)(
www
vvv
uuu

WVU =×•
rrr

 

 
The triple scalar product is numerically equal to the volume of the 
parallelepiped at the top of the next page 

U
r

V
r

θ

VU
rr

×
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4.4. Line and Plane Equations 
 
Given a point ),,( cbaP =

r
 

 
4.4.1. Line Parallel toP

r
 Passing Through ),,( 111 zyx : 

 If ),,( zyx is a point on the line, then 

 
c
zz

b
yy

a
xx 111 −

=
−

=
−  

4.4.2. Plane Normal to P
r

Passing Through ),,( 111 zyx . 
 If ),,( zyx is a point on the plane, then 

 0),,(),,( 111 =−−−• zzyyxxcba  
4.4.3. DistanceD  between a point & plane: 
If a point is given by ),,( 000 zyx  and 

 0=+++ dczbyax is a plane, then 

 
222

000

cba

dczbyax
D

++

+++
=  

 
4.5. Miscellaneous Vector Equations 

4.5.1. The Three Direction Cosines: 

 
||

cos,
||

cos,
||

cos 321

V
v

V
v

V
v

rrr === γβα  

4.5.2. Definition of Work: constant forceF
r

along the 
path QP

r
: 

 |||)(| QPFprojQPFW QP

rrrr
r=•=  

U
r

V
r

W
r
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5. Elementary Calculus 
 

5.1. What is a Limit? 
 
 Limits are foundational to calculus and will always be so. 
Limits lead to results unobtainable by algebra alone. 
 
 So what is a limit? A limit is a numerical target, a target 
acquired and locked. Consider the expression 7→x  where x  is 
an independent variable. The arrow (→ ) points to a target on the 
right, in this case the number 7 . The variable x  on the left is 
targeting 7  in a modern smart-weapon sense. This means x is 
moving, moving towards target, closing range, and programmed to 
merge eventually with the target. Notice that the quantity x  is a 
true independent variable in that x  has been launched and set in 
motion towards a target, a target that cannot escape from its 
sights. Independent variables usually find themselves embedded 
inside an algebraic (or transcendental) expression of some sort, 
which is being used as a processing rule for a function.  Consider 
the expression 32 +x  where the independent variable x  is about 
to be sent on the mission 5−→x . Does the entire expression 

32 +x  in turn target a numerical value as 5−→x ? A way to 
phrase this question using a new type of mathematical notation 
might be ?)32(arg

5
=+

−→
xett

x
 Interpreting the notation, we are 

asking if the dynamic output stream from the expression 32 +x  
targets a numerical value in the modern smart-weapon sense as 
the equally-dynamic x  targets the value 5− . Mathematical 
judgment says yes; the output stream targets the value 7− . 
Hence, we complete our new notation as 7)32(arg

5
−=+

−→
xett

x
. 

This explanation is reasonable except for one little problem: the 
word target is nowhere to be found in calculus texts. The 
traditional replacement (weighing in with 300 years of history) is 
the word limit, which leads to the following working definition: 

 
Working Definition: A limit is a target in the modern smart-weapon 
sense. In the above example, we will write 7)32(lim

5
−=+

−→
x

x
. 
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5.2. What is a Differential? 
 

The differential concept is one of the two core concepts 
underlying calculus, limits being the other. 

 
Wee is a Scottish word that means very small, tiny, 

diminutive, or minuscule. In the context of calculus, ‘wee’ can be 
used in similar fashion to help explain the concept of differential, 
also called an infinitesimal. To have a differential, we first must 
have a variable, zyx ,,  etc. Once we have a variable, say x , we 
can create a secondary quantity dx , which is called the differential 
of the variable x . What exactly is this dx , read ‘dee x’? The 
quantity dx  is a very small, tiny, diminutive, or minuscule 
numerical amount when compared to the original x . Moreover, it is 
the very small size of dx that makes it, by definition, a wee x . How 
small? In mathematical terms, the following two conditions hold: 

 

10 <<< xdx   and  10 <<<
x
dx

. 

 

The two above conditions state dx  is small enough to guarantee 
that both its product and quotient with the original quantity x is still 
very small and much, much closer to zero than to one (the 
meaning of the symbol 1<< ) . Both inequalities imply that dx  is 

also very small when considered independently 10 <<< dx . 

Lastly, both inequalities state that 0>dx , which brings us to the 
following very important point: although very small, the quantity 
dx  is never zero. One can also think of dx as the final h  in a limit 
process 

0
lim
→h

where the process abruptly stops just short of target, 

in effect saving the rapidly vanishing h  from disappearing into 
oblivion! Thinking of dx  in this fashion makes the differential a 
prepackaged or frozen limit of sorts. Differentials are designed to 
be so small that second-order and higher terms involving 
differentials, such as 2)(7 dx , can be totally ignored in associated 
algebraic expressions. This final property distinguishes the 
differential as a topic belonging to the subject of calculus. 
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5.3. Basic Differentiation Rules 
 

5.3.1. Limit Definition of Derivative: 

 



 −+

=
→ h

xfhxfxf
h

)()(lim)('
0

 

5.3.2. Differentiation Process Indicator: ][ ′  

5.3.3. Constant: [ ] 0=′k  

5.3.4. Power: [ ] 1−=
′ nn nxx , n  can be any exponent  

5.3.5. Coefficient: [ ] )(')( xafxaf =′  

5.3.6. Sum/Difference: [ ] )()()()( xgxfxgxf ′±′=′±  

5.3.7. Product: [ ] )(')()(')()()( xfxgxgxfxgxf +=′  

5.3.8. Quotient: 2)(
)(')()(')(

)(
)(

xg
xgxfxfxg

xg
xf −

=
′








  

5.3.9. Chain: [ ] )('))(('))(( xgxgfxgf =′  

5.3.10. Inverse: [ ]
))(('

1)( 1
1

xff
xf −

− =
′  

5.3.11. Generalized 

Power: { }[ ] { } )(')()( 1 xfxfnxf nn −=
′

; 
Again, n can be any exponent  
 

5.4. Transcendental Differentiation 
 

5.4.1. 
x

x 1][ln =′  

5.4.2. 
ax

xa ln
1][log =′  

5.4.3. xx ee =′][   
5.4.4. aaa xx ln][ =′  
5.4.5. xx cos][sin =′  
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5.4.6. 
2

1

1

1])([sin
x

x
−

=′−  

5.4.7. xx sin][cos −=′  

5.4.8. 
2

1

1

1])([cos
x

x
−

−
=′−  

5.4.9. xx 2sec][tan =′  

5.4.10. 2
1

1
1])([tan
x

x
+

=′−  

5.4.11. xxx tansec][sec =′  

5.4.12. 
1||

1])([sec
2

1

−
=′−

xx
x  

  
5.5. Basic Antidifferentiation Rules 

5.5.1. Antidifferentiation Process Indicator: ∫  

5.5.2. Constant: ∫ += Ckxkdx  

5.5.3. Coefficient: ∫ ∫= dxxfadxxaf )()(  

5.5.4. Power Rule for 1−≠n : ∫ +
+

=
+

C
n
xdxx
n

n

1

1

 

5.5.5. Power Rule for 1−=n : 

∫ ∫ +==− Cxdx
x

dxx ln11  

5.5.6. Sum:
 [ ]∫ ∫ ∫+=+ dxxgdxxfdxxgxf )()()()(  

5.5.7. Difference: 
[ ]∫ ∫ ∫−=− dxxgdxxfdxxgxf )()()()(  

5.5.8. Parts:

∫ ∫ ′−=′ dxxfxgxgxfdxxgxf )()()()()()(  

5.5.9. Chain: ∫ +=′′ Cxgfdxxgxgf ))(()())((  
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5.5.10. Generalized Power Rule for 1−≠n : 

 [ ] [ ] C
n
xfdxxfxf

n
n +

+
=′∫

+

1
)()()(

1

 

 
5.5.11. Generalized Power Rule for 1−=n : 

 ∫ −=+=
′

1,)(ln
)(
)( nCxfdx
xf
xf

 

 
5.5.12. General Exponential: ∫ +=′ Cedxxfe xfxf )()( )(   

 
5.6. Transcendental Antidifferentiation 

 
5.6.1. ∫ +−= Cxxxxdx lnln  

5.6.2. Cedxe xx +=∫   

5.6.3. Cexdxxe xx +−=∫ )1(  

5.6.4. C
a
adxa
x

x +=∫ ln
 

5.6.5. Cxdxx +=∫ sincos  

5.6.6. Cxdxx +−=∫ cossin  

5.6.7. ∫ +−= Cxxdx |cos|lntan  

5.6.8. ∫ += Cxxdx |sin|lncot  

5.6.9. ∫ ++= Cxxxdx |tansec|lnsec  

5.6.10. ∫ += Cxxdxx sectansec  

5.6.11. ∫ += Cxxdx tansec2  

5.6.12. ∫ ++−= Cxxxdx |cotcsc|lncsc  

5.6.13. ∫ +−= Cxxdx cotcsc2  
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5.6.14. C
xa

dx
a
x +=

−
−∫ )(sin 1

22
 

5.6.15. C
xa

dx
a
x

a +=
+

−∫ )(tan 11
22  

5.6.16. C
xa

dx
ax
ax

a +=
− +

−∫ ||ln2
1

22  

 
5.7. Lines and Approximation 

 
5.7.1. Tangent Line at ))(,( afa : 

))(()( axafafy −′=−  

5.7.2. Normal Line at ))(,( afa : )(
)(

1)( ax
af

afy −
′
−

=−  

5.7.3. Linear Approximation: ))(()()( axafafxf −′+≅  
5.7.4. Second Order Approximation: 

 2)(
2

)())(()()( axafaxafafxf −
′′

+−′+≅  

5.7.5. Newton’s Iterative Formula: 
)(
)(

1
n

n
nn xf

xf
xx

′
−=+  

5.7.6. Differential Equalities: 

dxxfxFdxxF
dxxfxfdxxf
dxxfdyxfy

)()()(
)()()(

)()(

+=+

′+=+

′=⇒=
 

5.8. Interpretation of Definite Integral 
 
At least three interpretations are valid for the definite integral. 
 
First Interpretation: As a processing symbol for functions, the 

definite integral ∫
b

a

dxxf )(  instructs the operator to start the 

process by finding )(xF (the primary antiderivative for dxxf )( ) 

and finish it by evaluating the quantity )()(|)( aFbFxF b
a −= . 

This interpretation is pure process-to-product with no context. 
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Second Interpretation: As a summation symbol for differential 

quantities, ∫
b

a

dxxf )( signals to the operator that myriads of 

infinitesimal quantities of the form dxxf )( are being continuously 
summed on the interval ],[ ba  with the summation process 
starting at ax =  and ending at bx = . Depending on the context 
for a given problem, such as summing area under a curve, the 
differential quantities dxxf )(  and subsequent total can take on a 
variety of meanings. This makes continuous summing a powerful 
tool for solving real-world problems. The fact that continuous sums 

can also be evaluated by )()(|)()( aFbFxFdxxf b
a

b

a

−==∫  is a 

key consequence of the Fundamental Theorem of Calculus (5.9.). 
 

Third Interpretation: The definite integral ∫
b

a

dxxf )( can be 

interpreted as a point solution )(by  to any explicit differential 
equation having the general form 0)(:)( == aydxxfdy . In this 

interpretation ∫
b

a

dxxf )( is first modified by integrating over the 

variable subinterval ],[],[ baza ⊂ . This leads to 

)()()()( aFzFdxxfzy
z

a

−== ∫ . Substituting ax =  gives the 

stated boundary condition 0)()()( =−= aFaFay  and 

substituting bx =  gives ∫=−=
b

a

dxxfaFbFby )()()()( . In this 

context, the function )()()( aFzFzy −= , as a unique solution to 
0)(:)( == aydxxfdy , can also be interpreted as a continuous 

running sum from ax =  to zx = . 
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5.9. The Fundamental Theorem of Calculus 
 

Let ∫
b

a

dxxf )(  be a definite integral representing a continuous 

summation process, and let )(xF be such that )()( xfxF =′ . 

Then, ∫
b

a

dxxf )(  can be evaluated by the alternative process 

)()(|)()( aFbFxFdxxf b
a

b

a

−==∫ . 

Note: A continuous summation (or addition) process on the 
interval [ ]ba, sums millions upon millions of consecutive, tiny quantities 

from ax =  to bx =  where each individual quantity has the general 
form dxxf )( . 
 

5.10. Geometric Integral Formulas 
 

5.10.1. Area Between two Curves for )()( xgxf ≥  on 
],[ ba : 

 ∫ −=
b

a

dxxgxfA )]()([  

5.10.2. Area Under 0)( ≥xf  on ],[ ba : ∫=
b

a

dxxfA )(  

5.10.3. Volume of Revolution about x  Axis Using Disks: 

 ∫=
b

a

dxxfV 2)]([π  

5.10.4. Volume of Revolution about y  Axis using Shells: 

 ∫=
b

a

dxxfxV |)(|2π  

5.10.5. Arc Length: ∫ ′+=
b

a

dxxfs 2)]([1  
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5.10.6. Revolved Surface Area about x  Axis: 

 dxxfxfSA
b

a
x ∫ += 2)]('[1|)(|2π  

5.10.7. Revolved Surface Area about y  Axis: 

 dxxfxSA
b

a
x ∫ += 2)]('[1||2π  

5.10.8. Total Work with Variable Force )(xF  on ],[ ba : 

 ∫=
b

a

dxxFW )(  

5.11. Select Ordinary Differential Equations (ODE) 

5.11.1. First Order Linear: )()( xgyxf
dx
dy

=+  

5.11.2. Bernoulli Equation: nyxgyxf
dx
dy )()( +=  

5.11.3. ODE Separable if it reduces 
to: dxxfdyyg )()( =  

5.11.4. Falling Body with Drag: nkvmg
dt
dvm +−=−  

5.11.5. Constant Rate Growth or Decay: 

0)0(: yyky
dt
dy

==  

5.11.6. Logistic Growth: 0)0(:)( yyyyLk
dt
dy

=−=  

5.11.7. Continuous Principle Growth: 

00 )0(: PPcrP
dt
dP

=+=  

5.11.8. Newton’s Law in One Dimension: 

∑= FmV
dt
d )(  

5.11.9. Newton’s Law in Three 

Dimensions: ∑= FVm
dt
d rr

)(  
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5.11.10. Process for Solving a Linear ODE 
 
Step1: Let )(xF be such that )()( xfxF =′  

Step 2: Formulate the integrating factor )(xFe  

Step 3: Multiply both sides of   )()( xgyxf
dx
dy

=+  by )(xFe  

 

( ) )(

)()(

)()(

)()()(

xgeye
dx
d

xgeyxfe
dx
dye

xFxF

xFxFxF

⋅=

⇒=+





 

Step 4:  Perform the indefinite integration. 

    [ ] ∴+⋅⋅==

⇒+⋅=⋅

−− ∫
∫

)()()(

)()(

)()(

)(
xFxFxF

xFxF

Cedxxgeexyy

Cdxxgeye
 

 

5.12. Laplace Transform; General Properties 
 

5.12.1. Definition: )()()]([
0

sFdtetftfL st∫
∞

− ≡=  

5.12.2. Linear Operator Property: 
  )()()]()([ sbGsaFtbgtafL +=+  

5.12.3. Transform of the Derivative: 

 
)0(...)0(

)0()()]([
)1()2(

)1()(

−−

−

−−′

−−=
nn

nnn

ffs
fssFstfL

 

5.12.4. Derivative of the Transform: )()()()( tftsF nn −=  
5.12.5. Transform of the Definite Integral: 

 ssFdfL
t

/)(])([
0

=∫ ττ  
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5.12.6. Transform of the Convolution: 

 )()()()(
0

sGsFdtgf
t

⇔−∫ τττ  

5.12.7. First Shifting Theorem: )()( asFtfeat −⇔  
5.12.8. Transform of Unit Step Function )( atU − where 

0)( =− atU  on ],0[ a  and  1)( =− atU  

on ],( ∞a . 
s
eatU
as−

⇔− )(  

5.12.9. Second Shifting Theorem:  
 )()()( sFeatUatf as−⇔−−  
 

5.13. Laplace Transform: Specific Transforms 
 
Entries are a one-to-one correspondence between )(tf and )(sF . 
 

5.13.1. s/11⇔  
5.13.2. 2/1 st⇔  
5.13.3. )1(/! +⇔ nn snt  
5.13.4. )/(1 aseat −⇔  
5.13.5. 2)/(1 asteat −⇔  
5.13.6. 1)/(! +−⇔ natn asnet  

5.13.7. 22)sin(
ks
kkt
+

⇔  

5.13.8. 
)4(

2)(sin 22

2
2

kss
kkt
+

⇔  

5.13.9. 222 )(
2)sin(
ks
ksktt
+

⇔  

5.13.10. 22)cos(
ks
skt
+

⇔  

5.13.11. 
)4(

2)(cos 22

22
2

kss
kskt

+
+

⇔  
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5.13.12. 222

22

)(
)cos(

ks
ksktt

+
−

⇔  

5.13.13. 22)sinh(
ks
kkt
−

⇔  

5.13.14. 
)4(

2)(sinh 22

2
2

kss
kkt
−

⇔  

5.13.15. 222 )(
2)sinh(
ks
ksktt
−

⇔  

5.13.16. 22)cosh(
ks
skt
−

⇔  

5.13.17. 
)4(

2)(cosh 22

22
2

kss
kskt

−
−

⇔  

5.13.18. 222

22

)(
)cosh(

ks
ksktt

−
+

⇔  

5.13.19. 22)(
)sin(

kas
kkteat
+−

⇔  

5.13.20. 22)(
)sinh(

kas
kkteat
−−

⇔  

5.13.21. 
))((

1
bsasba

ee btat

−−
⇔

−
−  

5.13.22. 22)(
)cos(

kas
askteat
+−

−
⇔  

5.13.23. 22)(
)cosh(

kas
askteat
−−

−
⇔  

5.13.24. 
))(( bsas

s
ba
beae btat

−−
⇔

−
−  
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6. Money and Finance 
 

6.1. What is Interest? 
 
 Interest affects just about every adult in America. If you 
are independent, own a car or a home or both, or have a credit 
card or two, you probably pay or have paid interest. So, what 
exactly is interest? Interest is a rent charge for the use of money. 
 
 As a rent charge for the use of housing accumulates over 
time, likewise, an interest charge for the use of money also 
accumulates over time. Interest is normally stated in terms of a 
percentage interest rate such as year

%8 . Just as velocity is a rate of 

distance accumulation (e.g. hour
miles60  ), percentage interest rate is a 

‘velocity’ of percent accumulation. When driving in America, the 
customary units of velocity are miles per hour. Likewise, the 
customary units for interest rate are percent per year. The reader 
should be aware that other than customary units may be used in 
certain situations. For example, in space travel sec7 miles  is used to 
describe escape velocity from planet earth; and, when computing 
a credit-card charge, a monthly interest rate of  month

%5.1  may be 
used. Both velocity and percentage interest rate need to be 
multiplied by time—specified in matching units—in order to obtain 
the total amount accumulated, either miles or percent, as in the 
two expressions mileshoursD hour

miles 175275 3
1 =⋅=  or 

percentmonthsmonth
percent 732% 2

1 =⋅= .  
 
 Once the total accumulated interest is computed, it is then 
multiplied by the amount borrowed, called the principal P , in 
order to obtain the total accumulated interest charge I   The total 
accumulated interest charge I , the principal P , the percentage-
interest rate r  (simply called the interest rate), and the time t  
during which a fixed principal is borrowed are related by the 
fundamental formula tI Pr= . This basic formula applies as long 
as the principal P  and the interest rate r  remain constant 
throughout the duration of the accumulation time t . 
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For the remaining subsections in 6.0, the following apply. 
 
α : Annual growth rate as in the growth rate of voluntary 
 contributions to a fund 
A : Total amount gained or owed 
D : Periodic deposit rate—weekly, monthly, or annually 

iD : Deposit made at the start of the thi  compounding period 

FV : Future value 
i : Annual inflation rate 
L : Initial Lump Sum 
M : Monthly payment 
n : Number of compounding periods per year 
P : Amount initially borrowed or deposited 
PV : Present value 
r  : Annual interest rate 

effr : Effective annual interest rate 

SM : Total sum of payments 
t  : Time period in years for an investment  
T : Time period in years for a loan 
 

6.2. Simple Interest 
 

6.2.1. Accrued Interest: TI Pr=  
6.2.2. Total repayment over T : 

)1(Pr rTPTPA +=+=  

6.2.3. Monthly payment over T :
T
rTPM

12
)1( +

=  

6.3. Compound and Continuous Interest 
6.3.1. Compounded Growth: nt

n
rPA )1( +=  

6.3.2. Continuous Growth: rtPeA =  
6.3.3. Annually Compounded Inflation Rate i : 

tiPA )1( −=  
6.3.4. Continuous Annual Inflation Rate i : itPeA −=  

  
Note: inflation rate can be mathematically treated as a negative 
interest rate, thus the use of the negative sign in 6.3.3 and 6.3.4.  
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6.4. Effective Interest Rates 
 

6.4.1. Simple Interest: 11 −+= T
eff rTr  

6.4.2. Compound Interest: 1)1( −+= n
n
r

effr  

6.4.3. Continuous Interest: 1−= r
eff er  

6.4.4. Given TAP ,, : 1−= T
eff P

Ar  

 
6.5. Present-to-Future Value Formulas 

 
6.5.1. Compound Interest:  

 nt
n
r

nt
n
r FVPVPVFV

)1(
)1(

+
=⇔+=  

6.5.2. Annual Compounding with effr :  

 t
eff

t
eff r

FVPVrPVFV
)1(

)1(
+

=⇔+=  

6.5.3. Constant Annual Inflation Rate with Yearly 
Compounding: Replace effr  with i−  in 6.5.2. 

6.5.4. Continuous Compounding: 

rt
rt

e
FVPVPVeFV =⇔=  

6.5.5. Simple Interest: 

)1(
)1(

rt
FVPVrtPVFV
+

=⇔+=  

6.6. Present  Value of a Future Deposit Stream 
 
Conditions: n  compounding periods per year; total term t  years 
with nt compounding periods; annual interest rate r ; nt  identical 
deposits D  made at beginning of each compounding period. 
 

6.6.1. Periodic Deposit with no Final Deposit 1+ntD :  

 ( ) ( ){ }nrnt
n
r

r
DnPV +−+= + 11 1  



 83

6.6.2. Periodic Deposit with Final Deposit 1+ntD : 

 ( ){ }11 1 −+= +nt
n
r

r
DnPV  

6.6.3. Annual Deposit with no Final Deposit 1+tD : 

 ( ) ( ){ }eff
t

eff
eff

rr
r
DPV +−+= + 11 1  

6.6.4. Annual Deposit with Final Deposit 1+tD : 

 ( ){ }11 1 −+= +t
eff

eff

r
r
DPV  

 
6.7. Present Value of a Future Deposit Stream 

Coupled with Initial Lump Sum 
 
Assume the initial lump sum DL >  

6.7.1. Periodic Deposit with no Final Deposit 1+ntD :  

 ( ) ( ) ( ){ }nrnt
n
rnt

n
r

r
DnDLPV +−+++−= + 111)( 1  

6.7.2. Periodic Deposit with Final Deposit 1+ntD : 

 ( ) ( ){ }111)( 1 −+++−= +nt
n
rnt

n
r

r
DnDLPV  

6.7.3. Annual Deposit with no Final Deposit 1+tD : 

 ( ) ( ) ( ){ }eff
t

eff
eff

t
eff rr

r
DrDLPV +−+++−= + 111)( 1  

6.7.4. Annual Deposit with Final Deposit 1+tD : 

 ( ) ( ){ }111)( 1 −+++−= +t
eff

eff

t
eff r

r
DrDLPV  

 
6.8. Present Value of a Continuous Future 

Deposit Stream 

6.8.1. Annual Deposit Only: )1( −= rte
r
DPV  
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6.8.2. Annual Deposit plus Lump 

Sum: )1( −+= rtrt e
r
DLePV  

6.8.3. Increasing Annual Deposit tDeα : 

)( trt ee
r
DPV α

α
−

−
=  

 
6.8.4. 6.8.3 plus Lump Sum: 

)( trtrt ee
r
DLePV α

α
−

−
+=  

 
6.9. Types of Retirement Savings Accounts 

STANDARD 
IRA ROTH IRA 401 (K) KEOGH 

PLAN 

Sponsored by 
Individual 

Sponsored by 
Individual 

Sponsored 
by Company 

Plan for self 
employed 

Taxes on 
contributions 
and interest 
are deferred 

until 
withdrawn 

Taxes on 
contributions 
paid now. No 
taxes on any 

proceeds 
withdrawn 

Taxes on 
contributions 
and interest 
are deferred 

until 
withdrawn 

Taxes on 
contributions 
and interest 
are deferred 

until 
withdrawn 

$3000/year 
$6000/year 
for jointly 

filing couples 

$3000/year 
$6000/year 
for jointly 

filing couples 

Increases 
every year. 
Currently 

$15,000.00 

Up to 25% of 
income 

Withdrawals 
can begin at 

age 59.5, 
must begin at 

70.5 

Withdrawals 
can begin at 

age 59.5 

Withdrawals 
can begin at 

age 59.5, 
must begin at 

70.5 

Withdrawals 
can begin at 

age 59.5, 
must begin at 

70.5 
Substantial 
penalty for 

early 
withdrawal 

Lesser 
penalty for 

early 
withdrawal 

Substantial 
penalty for 

early 
withdrawal 

Substantial 
penalty for 

early 
withdrawal 

Limited heir 
rights 

Substantial 
heir rights 

Limited heir 
rights 

Limited heir 
rights 
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6.10. Loan Amortization 

 
Assume monthly payments M   

6.10.1. First Month’s Interest: 
121
rPI st =  

6.10.2. Amount of Payment: 
( )[ ]Tr

rPM 12
121112 −+−

=  

 
6.10.3. Total Loan Repayment: TMSM 12=  
6.10.4. Total Interest Paid: PTMItotal −= 12  
6.10.5. Payoff jPO  after the thj  Payment: 

 ( ) ( ){ }11121 1212 −+−+= jrjr
j r

MPPO  

 

6.10.6. Amount PjM  of thj  Payment to Principle: 

 ( ) 1
121

12
12 −+



 −

= jr
Pj

rPMM  

 

6.10.7. Amount IjM  of thj  Payment to 

Interest: PjIj MMM −=  
6.10.8. Pros and Cons of Long-Term Mortgages: 

 
PROS CONS 

Increased total mortgage costs 
are partially defrayed by tax 
breaks and inflation via payoff 
by cheaper dollars 

Total mortgage costs are much 
more over time 

Allows the borrower to buy 
more house sooner: with 
inflation, sooner means 
cheaper 

Home equity buildup by 
mortgage reduction is much 
slower for long-term mortgages 

Historically, inflation of home 
purchase prices contributes 
more to home equity buildup 
than home equity buildup by 
mortgage reduction 

Mortgage is more vulnerable to 
personal misfortune such as 
sickness or job loss 
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6.11. Annuity Formulas 
 
Note: Use the loan amortization formulas since annuities are 
nothing more than loans where the roles of the institution and the 
individual are reversed. 
 

6.12. Markup and Markdown 
 
C : Cost 
OP : Old price 
NP : New price 

%P ; Given percent as a decimal equivalent 
6.12.1. Markup Based on Original Cost: 

CPNP %)1( +=  
6.12.2. Markup Based on Cost plus New Price: 

 NPNPPC =⋅+ %  
6.12.3. Markup Based on Old Price: OPPNP %)1( +=  
6.12.4. Markdown Based on Old Price: 

OPPNP %)1( −=  
6.12.5. Percent given Old and New Price: 

OPNPP /% =  
6.13. Calculus of Finance 

6.13.1. General Differential Equation of Elementary 

Finance:  0)0(:)()( PPtDPtr
dt
dP

=+=  

6.13.2. Differential Equation for Continuous Principle 
Growth or  Continuous Loan Reduction Assuming a 
Constant Interest  Rate and  Fixed Annual 
Deposits/Payments 

 

)1()(

)0(:

0
0

000

0 −±=

⇒=±=

rttr e
r
D

ePtP

PPDPr
dt
dP

 

6.13.3. Present Value of Total Mortgage Repayment: 

 
( )

)1(
)(

1

)(
0

0

0

−
−

=⇒







−

=
−

−∫ rT

TirrT
i
r

PV
it

T

rT

rT

PV e
eeP

Adte
e
erP

A  
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7. Probability and Statistics 
 

7.1. Probability Formulas 
Let U be a universal set consisting of all possible events. 
Let Φ be the empty set consisting of no event. 
Let UBA ⊂,  
 

7.1.1. Basic Formula: 

waysofnumbertotal
waysofnumberfavorableP

−−−
−−−

=  

 

7.1.2. Fundamental Properties: 
0)(
1)(

=Φ
=

P
UP

 

 
7.1.3. Order Relationship:  1)(0 ≤≤⇒⊂ APUA  

 
7.1.4. Complement Law:  )(~1)( APAP −=  

 
7.1.5. Addition Law:

 )()()()( BAPBPAPBAP ∩−+=∪  
 

7.1.6. Conditional Probability Law:

 

)(
)()|(

)(
)()|(

AP
BAPABP

BP
BAPBAP

∩
=

∩
=

 

 

7.1.7. Multiplication Law: 
)|()()(
)|()()(
ABPAPBAP
BAPBPBAP

⋅=∩
⋅=∩

 

 
7.1.8. Definition of Independent Events (IE):

 Φ=∩ BA  
 

7.1.9. IE Multiplication Law:
 )()()( BPAPBAP ⋅=∩  
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7.2. Basic Statistical Definitions 
 

7.2.1. Set: an aggregate of individual items—animate or 
inanimate 

7.2.2. Element: a particular item in the set 
7.2.3. Observation: any attribute of interest associated 

with the element 
7.2.4. Statistic: any measurement of interest associated 

with the element. Any statistic is an observation, but 
not all observations are statistics 

7.2.5. Data set: a set whose elements are statistics   
7.2.6. Statistics: the science of drawing conclusions from 

the totality of observations—both statistics and other 
attributes—generated from a set of interest 

7.2.7. Population: the totality of elements that one wishes 
to study by making observations 

7.2.8. Sample: that population subset that one has the 
resources to study 

7.2.9. Sample Statistic: any statistic associated with a 
sample 

7.2.10. Population Statistic: any statistic associated with 
a population 

7.2.11. Random sample: a sample where all population 
elements have equal probability of access 

7.2.12. Inference: the science of using sample statistics 
to predict population statistics  

 
7.2.13. Brief Discussion Using the Above Definitions 

 
Let a set consist of N elements },...,,,{ 321 NEEEE where there 
has been observed one statistic of a similar nature for each 
element. The data set of all observed statistics is denoted 
by },...,,,{ 321 Nxxxx . The corresponding rank-ordered data set is 

a re-listing of the individual statistics },...,,,{ 321 Nxxxx in 
numerical order from smallest to largest. Data sets can come from 
either populations or from samples. Most data sets will be 
considered samples. As such, the sample statistics obtained 
from the sample will be utilized to make inferential predictions for 
corresponding population statistics characterizing a much larger 
population. Inference processes are valid if and only if one can 
be assured that the sample obtained is a random sample. 
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The diagram below supports sections 7.2 through 7.4 by 
illustrating some of the key concepts. 
 

  
 

7.3. Measures of Central Tendency 
 

7.3.1. Sample Mean or Average x : ∑
=

=
N

i
iN xx

1

1  

 

7.3.2. Population Mean or Averageµ : ∑
=

=
N

i
iN x

1

1µ  

Smaller sample },...,{ 21 NEEE  
Having known statistics 

},...,{ 21 Nxxx and sx,  

Much larger population 
having unknown 
statistics σµ,  

iE

Did iE  have equal-
probability access? 

Example of Statistical Inference 
Use x to predictµ . 

Questions: 
 Is my sample a random sample? 

 How close is my prediction? 
 How certain is my prediction? 
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7.3.3. Median x~ : the middle value in a rank-ordered data 
set 

7.3.4. ModeM : the data value or statistic that occurs most 
often. 

7.3.5. Multi-Modal Data Set: a data set with two or more 
modes 

7.3.6. Median Calculation Process: 
Step 1: Rank order from smallest to largest all elements in the 
 data set. 
Step 2: The median x~  is the actual middle statistic if there is an 
 odd number of data points. 
Step 3: The median x~ is the average of the two middle statistics if 
 there is an even number of data points. 
 

7.4. Measures of Dispersion 
7.4.1. RangeR : SL xxR −= where Lx is the largest data 

value  in the data set and Sx is the smallest data 
value 

 
7.4.2. Sample Standard Deviation s : 

2

1
1

1 )( xxs
N

i
iN −= ∑

=
− . 

7.4.3. Population Standard Deviationσ : 

2

1

1 )( µσ −= ∑
=

N

i
iN x . 

7.4.4. Sample Variance: 2s  
 

7.4.5. Population Variance: 2σ  

7.4.6. Sample Coefficient of Variation VSC :
x
sCVS =  

7.4.7. Population Coefficient of Variation VPC : 
µ
σ

=VPC  

7.4.8. Z-Score iz  for a Sample Value ix : 
s
xx

z i
i

−
=  
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7.5. Sampling Distribution of the Mean 
  
The mean x is formed from a sample of individual data points 
randomly selected from either an infinite or finite population. The 
number of data points selected is given byn . The sample is 
considered a Large Sample if 30≥n ; a Small Sample if 30<n . 
 

7.5.1. Expected Value of x : µ=)(xE  
 

7.5.2. Standard Deviation of x : 
 
 Infinite Population Finite Population of Count N  

 
nx
σσ =   

nN
nN

x
σσ

1−
−

=  

 

7.5.3. Large Sample Z-score for ix : 
n

x
z i
i /σ

µ−
=  

 When σ is unknown, substitute s . 
 

7.5.4. Interval Estimate of Population Mean: 
 
 Large-Sample Case Small-Sample Case 

 







⋅±

n
zx σ
α
2

  







⋅±

n
stx

2
α  

 
Note: No assumption about the underlying population needs to be 
made in the large-sample case. In the small-sample case, the 
underlying population is assumed to be normal or nearly so. When 
σ  is unknown in the large-sample case, substitute s . 
 

7.5.5. Sampling Error RE : 







⋅=

n
zER

σ
α
2

 

7.5.6. Sample Size Needed for a Given Error: 
2

2











 ⋅
=

RE

z
n

σα

. 
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7.6. Sampling Distribution of the Proportion 
 
The proportion p  is a quantity formed from a sample of individual 
data points randomly selected from either an infinite or finite 
population. The proportion can be thought of as a mean 
formulated from a sample where all the individual values are either 
zero ( 0 ) or one (1). The number of data points selected is given 
byn . The sample is considered a Large Sample if both 5≥np  
and 5)1( ≥− pn . 
 

7.6.1. Expected Value XE  of p :  µ=)( pEX  
7.6.2. Standard Deviation of p : 

 
 Infinite Population Finite Population of Count N  

 
n
pp

p
)1( −

=σ  
n
pp

N
nN

p
)1(

1
−

−
−

=σ  

 
7.6.3. Interval Estimate of Population Proportion: 

  

 
n
ppzp )1(

2

−
⋅± α   

 

Note: Use 5.=p  in 
n
pp )1( −

 if clueless on the initial size of p . 

 

7.6.4. Sampling Error: 
n
ppzER

)1(

2

−
⋅= α  

7.6.5. Sample Size Needed for Given Error: 

2

2 )1(
2

ER

ppz
n

−⋅
=

α

 

 
7.6.6. Worse case for 7.6.5., proportion unknown: 

2

2

4
2

ER

z
n

α

=  
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Section II 

 

Tables 
 



 94

1. Numerical 
 
1.1. Factors of Integers 1 through 192 

 
The standard order-of-operations applies; ^ is used to denote the 
raising to a power; and * is used for multiplication. 

 
INTEGER FOLLOWED BY FACTORIZATION 

1 1 29 Prime 57 3*19 
2 Prime 30 2*3*5 58 2*29 
3 Prime 31 Prime 59 Prime 
4 2^2 32 2^5 60 2^2*3*5 
5 Prime 33 3*11 61 Prime 
6 2*3 34 2*17 62 2*31 
7 Prime 35 5*7 63 3*3*7 
8 2^3 36 2^2*3^2 64 2^6 
9 3*3 37 Prime 65 5*13 
10 2*5 38 2*19 66 2*3*11 
11 Prime 39 3*13 67 Prime 
12 2^2*3 40 2^3*5 68 2^2*17 
13 Prime 41 Prime 69 3*23 
14 2*7 42 2*3*7 70 2*5*7 
15 3*5 43 Prime 71 Prime 
16 2^4 44 2^2*11 72 2^3*3^2 
17 Prime 45 3^3*5 73 Prime 
18 2*3*3 46 2*23 74 2*37 
19 Prime 47 Prime 75 3*5^2 
20 2^2*5 48 2^4*3 76 2^2*19 
21 3*7 49 7*7 77 7*11 
22 2*11 50 2*5^2 78 2*3*13 
23 Prime 51 3*17 79 Prime 
24 2^3*3 52 2^2*13 80 2^4*5 
25 5^5 53 Prime 81 3^4 
26 2*13 54 2*3^3 82 2*41 
27 3^3 55 5*11 83 Prime 
28 2^2*7 56 2^3*7 84 2^2*3*7 



 95

Integer Followed By Factorization 
85 5*17 121 11^2 157 3*7^2 
86 2*43 122 2*61 158 2*79 
87 3*29 123 3*41 159 3*53 
88 2^3*11 124 2^2*31 160 2^5*5 
89 Prime 125 5^3 161 7*23 
90 2*3^2*5 126 2*3^2*7 162 2*3^4 
91 7*13 127 Prime 163 Prime 
92 2^2*23 128 2^7 164 2^2*41 
93 3*31 129 3*43 165 3*5*11 
94 2*47 130 2*5*13 166 2*83 
95 5*19 131 Prime 167 Prime 
96 2^5*3 132 2*61 168 2^3*3*7 
97 Prime 133 7*19 169 Prime 
98 2*7^2 134 2*67 170 2*5*17 
99 3^2*11 135 3^3*5 171 3^2*19 
100 2^2*5^2 136 2^3*17 172 2^2*43 
101 Prime 137 Prime 173 Prime 
102 2*3*17 138 2*3*23 174 2*87 
103 Prime 139 Prime 175 5^2*7 
104 2^3*13 140 2^2*5*7 176 2^4*11 
105 3*5*7 141 3*47 177 3*59 
106 2*53 142 2*71 178 2*89 
107 Prime 143 11*13 179 Prime 
108 2^2*3^3 144 2^4*3^2 180 2^2*3^2*5 
109 Prime 145 5*29 181 Prime 
110 2*5*11 146 2*73 182 2*91 
111 3*37 147 3*7^2 183 3*61 
112 2^4*7 148 2^2*37 184 2^3*23 
113 Prime 149 Prime 185 5*37 
114 2*3*19 150 2*3*5^2 186 2*93 
115 5*23 151 Prime 187 11*17 
116 2^2*29 152 2^3*19 188 2^2*47 
117 3*3*13 153 Prime 189 3^3*7 
118 2*59 154 2*7*11 190 2*5*19 
119 7*17 155 5*31 191 Prime 
120 2^3*3*5 156 2^2*3*13 192 2^7*3 
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1.2. Prime Numbers less than 1000 
 

2 3 5 7 11 13 17 19 23 29 
31 37 41 43 47 53 59 61 67 71 
73 79 83 89 97  101 103 107 109 
113 127 131 137 139 149 151 157 163 167 
173 179 181 191 193 197 199  211 223 
227 229 233 239 241 251 257 263 269 271 
277 281 283 293  307 311 313 317 331 
337 347 349 353 359 367 373 379 383 389 
397  401 409 419 421 431 433 439 443 
449 457 461 463 467 479 487 491 499  
503 509 521 523 541 547 557 563 569 571 
577 587 593 599  601 607 613 617 619 
631 641 643 647 653 659 661 673 677 683 
691  701 709 719 727 733 739 743 751 
757 761 769 773 787 797  809 811 821 
823 827 829 839 853 857 859 863 877 881 
883 887  907 911 919 929 937 941 947 
953 967 971 977 983 991 997    

 
 
 
1.3. Roman Numeral and Arabic Equivalents 
 

ARABIC ROMAN ARABIC ROMAN ARABIC ROMAN 
1 I 10 X 101 CI 
2 II 11 XI 200 CC 
3 III 15 XV 500 D 
4 IV 20 XX 600 DI 
5 V 30 XXX 1000 M 
6 VI 40 XL 5000 V bar 
7 VII 50 L 10000 L bar 
8 VIII 60 LX 100000 C bar 
9 IX 100 C 1000000 M bar 
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1.4. Nine Elementary Memory Numbers 
 

NUM MEM NUM MEM NUM MEM 
2  1.4142 7  2.6457 φ  0.6180 

3  1.7321 π  3.1416 )10ln(  2.3026 

5  2.2361 e  2.7182 )(eLog 0.4343 

 
1.5. American Names for Large Numbers 
 

NUM NAME NUM NAME NUM NAME 

10^3 thousand 10^18 quintillion 10^33 decillion 
10^6 million 10^21 sextillion 10^36 undecillion 
10^9 billion 10^24 septillion 10^39 duodecillion 
10^12 trillion 10^27 octillion 10^48 quidecillion 
10^15 quadrillion 10^30 nontillion 10^63 vigintillion 

 
 
1.6. Selected Magic Squares 
 
1.6.1. 3X3 Magic Square with Magic Sum 15. The second 

square below is called a 3x3 Anti-Magic Square:  
 

2 7 6
9 5 1
4 3 8

 
2 4 7
5 1 8
9 3 6
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1.6.2.    4X4 Perfect Magic Square with Magic Sum 34: 
 

1 15 6 12

8 10 3 13

11 5 16 2 

14 4 9 7 
 
  
1.6.3.    5X5 Perfect Magic Square with Magic Sum 65: 
 
 

1 15 8 24 17

23 7 16 5 14

20 4 13 22 6 

12 21 10 19 3 

9 18 2 11 25
 
 
 
Note: For a Magic Square of size NXN, the Magic Sum is given by 
the formula 

2
)1( 2 +NN
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1.6.4.  Nested 5X5 Magic Square with Outer Magic Sum 65: 
 

1 18 21 22 3 

2 10 17 12 24

18 15 13 11 8 

21 14 9 16 5 

23 7 6 4 25
  
 
1.6.5. 6X6 Magic Square with Magic Sum 111: 

 
 

1 32 3 34 35 6 

12 29 9 10 26 25

13 14 22 21 23 18

24 20 16 15 17 19

30 11 28 27 8 7 

31 5 33 4 2 36
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1.6.6. 7X7 Magic Square: Magic Sum is 175. 
 

22 21 13 5 46 38 30

31 23 15 14 6 47 39

40 32 24 16 8 7 48

49 31 33 25 17 9 1 

2 43 42 34 26 18 10

11 3 44 36 35 27 19

20 12 4 45 37 29 28
 
 
1.6.7. Quadruple-Nested 9X9 Magic Square with Outer Magic 

Sum 369: 
 

16 81 79 78 77 13 12 11 2 
76 28 65 62 61 26 27 18 6 
75 23 36 53 51 35 30 59 7 
74 24 50 40 45 38 32 58 8 
9 25 33 39 41 43 49 57 73

10 60 34 44 37 42 48 22 72
14 63 52 29 31 47 46 19 68
15 64 17 20 21 56 55 54 67
80 1 3 4 5 69 70 71 66
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1.7. Thirteen-by-Thirteen Multiplication Table 
  
Different font sizes are used for, one, two, or three-digit entries. 
 
 

×  1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 

2 2 4 6 8 10 12 14 16 18 20 22 24 26 

3 3 6 9 12 15 18 21 24 27 30 33 36 39 

4 4 8 12 16 20 24 28 32 36 40 44 48 42 

5 5 10 15 20 25 30 35 40 45 50 55 60 65 

6 6 12 18 24 30 36 42 48 54 60 66 72 78 

7 7 14 21 28 35 42 49 56 63 70 77 84 91 

8 8 16 24 32 40 48 56 64 72 80 88 96 104 

9 9 18 27 36 45 54 63 72 81 90 99 108 117 

10 10 20 30 40 50 60 70 80 90 100 110 120 130 

11 11 22 33 44 55 66 77 88 99 110 121 132 143 

12 12 24 36 48 60 72 84 96 108 120 132 144 156 

13 13 26 39 42 65 78 91 104 117 130 143 156 169 

 
 

Note: The shaded blocks on the main diagonal are the first thirteen 
squares 
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1.8. The Random Digits of PI 
 

The digits of PI pass every randomness test. Hence, the first 900 
digits of PI serve equally well as a random number table. 

 
PI=3.--  READ LEFT TO RIGHT, TOP TO 

BOTTOM 
14159 26535 89793 23846 26433 83279 
50288 41971 69399 37510 58209 74944 
59230 78164 06286 20899 86280 34825 
34211 70679 82148 08651 32823 06647 
09384 46095 50582 23172 53594 08128 
48111 74502 84102 70193 85211 05559 
64462 29489 54930 38196 44288 10975 
66593 34461 28475 64823 37867 83165 
27120 19091 45648 56692 34603 48610 
45432 66482 13393 60726 02491 41273 
72458 70066 06315 58817 48815 20920 
96282 92540 91715 36436 78925 90360 
01133 05305 48820 46652 13841 46951 
94151 16094 33057 27036 57595 91953 
09218 61173 81932 61179 31051 18548 
07446 23799 62749 56735 18857 52724 
89122 79381 83011 94912 98336 73362 
44065 66430 86021 39494 63952 24737 
19070 21798 60943 70277 05392 17176 
29317 67523 84674 81846 76694 05132 
00056 81271 45263 56052 77857 71342 
75778 96091 73637 17872 14684 40901 
22495 34301 46549 58537 10507 92279 
68925 89235 42019 95611 21290 21960 
86403 44181 59813 62977 47713 09960 
51870 72113 49999 99837 29784 49951 
05973 17328 16096 31859 50244 59455 
34690 83026 42522 30825 33446 85035 
26193 11881 71010 00313 78387 52886 
58753 32083 81420 61717 76691 47303 
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1.9. Standard Normal Distribution  
 

THE STANDARD NORMAL DISTRIBUTION: TABLE 
VALUES ARE THE RIGHT TAIL AREA FOR A GIVEN Z 
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 .5000 .4960 .4920 .4880 .4840 .4800 .4761 .4761 .4681 .4641 
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247 
0.2 .4207 .4168 .4129 .4090 .4051 .4013 .3974 .3936 .3897 .3858 
0.3 .3821 .3783 .3744 .3707 .3669 .3631 .3594 .3556 .3520 .3483 
0.4 .3446 .3409 .3372 .3336 .3300 .3263 .3228 .3192 .3156 .3121 
0.5 .3085 .3050 .3015 .2980 .2946 .2911 .2877 .2843 .2809 .2776 
0.6 .2742 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2482 .2451 
0.7 .2420 .2389 .2358 .2327 .2297 .2266 .2236 .2206 .2176 .2148 
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867 
0.9 .1841 .1814 .1788 .1761 .1736 .1711 .1685 .1660 .1635 .1611 
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379 
1.1 .1357 .1335 .1314 .1292 .1271 .1250 .1230 .1210 .1190 .1170 
1.2 .1151 .1131 .1112 .1093 .1074 .1056 .1038 .1020 .1003 .0985 
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0837 .0822 
1.4 .0807 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681 
1.5 .0668 .0655 .0642 .0630 .0618 .0606 .0594 .0582 .0570 .0559 
1.6 .0548 .0536 .0526 .0515 .0505 .0495 .0485 .0475 .0465 .0455 
1.7 .0445 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367 
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294 
1.9 .0287 .0280 .0274 .0268 .0262 .0255 .0250 .0244 .0238 .0232 
2.0 .0228 .0222 .0217 .0212 .0206 .0202 .0197 .0192 .0187 .0183 
2.1 .0178 .0174 .0170 .0165 .0162 .0158 .0154 .0150 .0146 .0143 
2.2 .0139 .0136 .0132 .0128 .0125 .0122 .0119 .0116 .0113 .0110 
2.3 .0107 .0104 .0101 .0099 .0096 .0094 .0091 .0089 .0087 .0084 
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064 
2.5 .0062 .0060 .0058 .0057 .0055 .0054 .0052 .0050 .0049 .0048 
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036 
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0020 .0020 .0019 
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010 
3.1 .0010 .0010 .0009 .0009 .0009 .0009 .0009 .0008 .0008 .0008 
3.2 .0007 .0007 .0006 .0007 .0007 .0006 .0006 .0005 .0005 .0005 
3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0004 
3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 
3.5 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 
3.6 .0002 .0002 .0002 .0001 .0001 .0001 .0001 .0001 .0001 .0001 
3.7 .0001 .0001 .0001 Right Tail Area starts to fall below 0.0001 
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1.10. Two-Sided Student’s t Statistic 
 

TABLE VALUES ARE T SCORES NEEDED TO 
GUARANTEE THE PERCENT CONFIDENCE 
Degrees of 

freedom: DF 90% 95% 99% 

1 6.314 12.706 63.657 
2 2.920 4.303 9.925 
3 2.353 3.182 5.841 
4 2.132 2.776 4.604 
5 2.015 2.571 4.032 
6 1.943 2.447 3.707 
7 1.895 2.365 3.499 
8 1.860 2.306 3.355 
9 1.833 2.262 3.250 

10 1.812 2.228 3.169 
11 1.796 2.201 3.106 
12 1.782 2.179 3.055 
13 1.771 2.160 3.012 
14 1.761 2.145 2.977 
15 1.753 2.131 2.947 
16 1.746 2.120 2.921 
17 1.740 2.110 2.898 
18 1.734 2.101 2.878 
19 1.729 2.093 2.861 
20 1.725 2.083 2.845 
21 1.721 2.080 2.831 
22 1.717 2.074 2.819 
23 1.714 2.069 2.907 
24 1.711 2.064 2.797 
25 1.708 2.060 2.787 
26 1.706 2.056 2.779 
27 1.703 2.052 2.771 
28 1.701 2.048 2.763 
29 1.699 2.045 2.756 
30 1.697 2.042 2.750 
40 1.684 2.021 2.704 
60 1.671 2.000 2.660 
120 1.658 1.980 2.617 
∞  1.645 1.960 2.576 
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1.11. Date and Day of Year 
 

DATE DAY DATE DAY DATE DAY 
Jan 1 1 May 1 121 Sep 1 244 
Jan 5 5 May 5 125 Sep 5 248 
Jan 8 8 May 8 128 Sep 8 251 
Jan 12 12 May 12 132 Sep 12 255 
Jan 15 15 May 15 135 Sep 15 258 
Jan 19 19 May 19 139 Sep 19 262 
Jan 22 22 May 22 142 Sep 22 265 
Jan 26 26 May 26 146 Sep 26 269 
Feb 1 32 Jun 1 152 Oct 1 274 
Feb 5 36 Jun 5 156 Oct 6 278 
Feb 8 39 Jun 8 159 Oct 8 281 
Feb 12 43 Jun 12 163 Oct 12 285 
Feb 15 46 Jun 15 166 Oct 15 288 
Feb 19 50 Jun 19 170 Oct 19 292 
Feb 22 53 Jun 22 173 Oct 22 295 
Feb 26 57 Jun 26 177 Oct 26 299 
Mar 1 60** Jul 1 182 Nov 1 305 
Mar 5 64 Jul 5 186 Nov 5 309 
Mar 8 67 Jul 8 189 Nov 8 312 
Mar 12 71 Jul 12 193 Nov 12 316 
Mar 15 74 Jul 15 196 Nov 15 319 
Mar 19 78 Jul 19 200 Nov 19 323 
Mar 22 81 Jul 22 203 Nov 22 326 
Mar 26 85 Jul 26 207 Nov 26 330 
Apr 1 91 Aug 1 213 Dec1 335 
Apr 5 96 Aug 5 218 Dec 5 339 
Apr 8 98 Aug 8 220 Dec 8 342 
Apr 12 102 Aug 12 224 Dec 12 346 
Apr 15 105 Aug 15 227 Dec 15 349 
Apr 19 109 Aug 19 331 Dec 19 353 
Apr 22 112 Aug 22 234 Dec 22 356 
Apr 26 116 Aug 26 238 Dec 26 360 

** Add one day starting here if a leap year 
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2. Physical Sciences 
 
2.1. Conversion Factors in Allied Health 
 
2.1.1. Volume Conversion Table 

 
Apothecary Household Metric 

     
1minim  1drop 1gtt  
16minims    1mL (cc) 
60minims 1fluidram 60gtts 1tsp 5mL (cc) or 4mL 
4fluidrams 0.5fluidounce 3tsp 1tbsp 15mL (cc) 
8fluidrams 1fluidounce 2tbsp  30mL (cc) 
 8fluidounces 1cup  240mL (cc) 
 16fluidounces 2cups 1pint 500mL (cc) or 480mL 
 32fluidounces 2pints 1quart 1000mL (cc) or 960mL 

 
2.1.2. Weight Conversion Table 

 
Apothecary Metric 

   
1grain  60mg or 64mg 
15grains  1g 
60grains 1dram 4g 
8drams 1ounce 32g 
12ounces 1pound 384g 

 
2.1.3. General Comments 
 

 All three systems—apothecary, household and metric 
systems—have rough volume equivalents. 

 Since the household system is a volume-only system, the 
Weight Conversion Table in 2.1.2 does not include household 
equivalents. 

 Common discrepancies that are still considered correct are 
shown in italics in both tables 2.1.1 and 2.1.2. 
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2.2. Medical Abbreviations in Allied Health 
 
 

ABBREVIATION MEANING 
b.i.d. Twice a day 
b.i.w. Twice a week 
c With 
cap, caps Capsule 
dil. Dilute 
DS Double strength 
gtt Drop 
h, hr Hour 
h.s. Hour of sleep, at bedtime 
I.M. Intramuscular 
I.V. Intravenous 
n.p.o., NPO Nothing by mouth 
NS, N/S Normal saline 
o.d. Once a day, every day 
p.o By or through mouth 
p.r.n. As needed, as necessary 
q. Every, each 
q.a.m. Every morning 
q.d. Every day 
q.h. Every hour 
q2h Every two hours 
q4h Every four hours 
q.i.d. Four times a day 
ss One half 
s.c., S.C., s.q. Subcutaneous 
stat, STAT Immediately, at once 
susp Suspension 
tab Tablet 
t.i.d. Three times a day 
P% strength P grams per 100 mL 
A:B strength A grams per B mL 
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2.3. Wind Chill Table 
 

Grey area is the danger zone where exposed human flesh will 
begin to freeze within one minute. 

  
 WIND SPEED (mph) 

 5 10 15 20 25 30 35 40 
35 31 27 25 24 23 22 21 20 
30 25 21 19 17 16 15 14 13 
25 19 15 13 11 9 8 7 6 
20 13 9 6 4 3 1 0 -1 
15 7 3 0 -2 -4 -5 -7 -8 
10 1 -4 -7 -9 -11 -12 -14 -15 
5 -5 -10 -13 -15 -17 -19 -21 -22 
0 -11 -16 -19 -22 -24 -26 -27 -29 
-5 -16 -22 -26 -29 -31 -33 -34 -36 
-10 -22 -28 -32 -35 -37 -39 -41 -43 
-15 -28 -35 -39 -42 -44 -46 -48 -50 
-20 -34 -41 -45 -48 -51 -53 -55 -57 

 
 
 
 
T 
E 
M 
P 
 
0F 

-25 -40 -47 -51 -55 -58 -60 -62 -64 
 
 
2.4. Heat Index Table 
 

The number in the body of the table is the equivalent heating 
temperature at 0% humidity 

 
 RELATIVE HUMIDITY (%) 

 30 40 50 60 70 80 85 90 
105 114 123 135 148 163 180 190 199 
104 112 121 131 144 158 175 184 193 
103 110 118 128 140 154 169 178 186 
102 108 116 125 136 149 164 172 180 
101 106 113 122 133 145 159 166 174 
100 104 111 119 129 141 154 161 168 
97 99 105 112 120 129 140 145 152 
95 96 101 107 114 122 131 136 141 

 
T 
E 
M 
P 
 
0F 

90 89 92 96 100 106 112 115 119 
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2.5. Temperature Conversion Formulas 

2.5.1. Fahrenheit to Celsius: 
8.1
32−

=
FC  

2.5.2. Celsius to Fahrenheit: 328.1 += CF  
 
 
2.6. Unit Conversion Table 
 

Arranged in alphabetical order 
 

TO CONVERT TO MULTIPLY 
BY 

acres ft2 43560 
acres m2 4046.9 
acres rods 160 
acres hectares  0.4047 
acre feet barrels 7758 
acre feet m3  1233.5 
Angstrom (å) cm 10E-8 
Angstrom nm 0.1 
astronomical unit (AU) cm 1.496E13 
astronomical unit  km 1.496E8 
atmospheres (atm) feet H2O 33.94 
atmospheres in of Hg 29.92 
atmospheres mm of Hg 760 
atmospheres psi 14.7 
bar atm .98692 
bar dyne/cm2 10E6 
bar psi (lb/in2) 14.5038 
bar mm Hg 750.06 
bar MPa 10E-1 
barrels (bbl) ft3 5.6146 
barrels  m3 0.15898 
barrels  gal (US) 42 
barrels  liter 158.9 
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TO CONVERT TO MULTIPLY BY 

BTU  Canadian BTU 1.000418022 
BTU  cal  251.996 
BTU  erg  1.055055853 E-10 
BTU  joule  1054.35 
calorie (cal)  joule  4.184 
centimeter (cm) inch  0.39370 
cm  m  1E-2 
darcy  m2  9.8697E-13 
dyne  g cm /s2  1 
dyne  Newton  10E-5 
erg  cal 2.39006E-8 
erg  dyne cm  1 
erg  joule  10E-7 
fathom  ft  6 
feet (ft)  in  12 
feet  m  0.3048 
furlong  yd  220 
gallon (US gal) in3  231 
gallon  liter  3.78541 
(Imperial) gal  in3  277.419 
gallon  liter  4.54608 
gamma  Gauss  10E-5 
gamma  Tesla  10E-9 
gauss  Tesla  10E-4 
gram (g)  pound  0.0022046 
gram  kg  10E-3 
hectare  acre  2.47105 
hectare  cm2  10E-8 
horsepower  Watt (W)  745.700 
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TO CONVERT  TO MULTIPLY BY 
inch (in)  cm  2.54 
inch (in)  mm  25.4 
joule (J)  erg  10E7 
joule  cal  0.239006 
kilogram (kg)  g  10E3 
kilogram  pound  2.20462 
kilometer (km)  m  10E3 
kilometer  ft  3280.84 
kilometer  mile  0.621371 
Kilometer/hr (kph)  mile/hr (mph)  0.621371 
kilowatt  hp  1.34102 
knot  mph  1.150779 
liter  cm3  10E3 
liter  gal (US)  0.26417 
liter  in3  61.0237 
meter  angstrom  10E10 
meter  ft  3.28084 
micron  cm  10E-4 
mile  ft  5280 
mile  km  1.60934 
mm Hg  dyne/cm2  1333.22 
Newton  dyne  10E5 
Newton  pound force 0.224809 
Newton-meter (torque) foot-pound-force 0.737562 
ounce  lb  0.0625 
Pascal  atmospheres  9.86923 x10E-6 
Pascal  psi  1.45 x10E-4 
Pascal  torr  7.501 x10E-3 
pint  gallon  0.125 
poise  g /cm/s  1 
poise  kg /m/s  0.1 



 112

 
 

TO CONVERT  TO MULTIPLY BY 
pound mass  kg  0.453592 
pound force  Newton  4.4475 
rod  feet  16.5 
quart  gallon  0.25 
stoke  cm2 /s  1 
slug  kg  14.594 
Tesla  Gauss  10E4 
Torr  millibar  1.333224 
Torr  millimeter hg 1 
ton (long)  lb  2240 
ton (metric)  lb  2205 
ton (metric)  kg  1000 
ton (short or net) lb  2000 
ton (short or net) kg  907.185 
ton (short or net) ton (metric)  0.907 
watt  J /s  1 
yard  in  36 
yard  m  0.9144 
year (calendar)  days  365.242198781
year (calendar)  s  3.15576 x 10E7

 
 
2.7. Properties of Earth and Moon 
 
PROPERTY VALUE PROPERTY VALUE 

Distance from 
sun 

9.2.9x10^6 
miles 

Earth 
Surface g 32.2 ft/s2 

Equatorial 
diameter 7926 miles Moon distance 

from earth 
238,393 

miles 
Length of day 24 hours Moon diameter 2160 miles 

Length of year 365.26 days Moon 
revolution 

27 days, 7 
hours 
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2.8. Metric System 
 
2.8.1. Basic and Derived Units 

QUANTITY NAME SYMBOL UNITS 
Length meter m basic unit 
Time second s basic unit 
Mass kilogram kg basic unit 
Temperature Kelvin K basic unit 
Electrical 
Current ampere A basic unit 

Force Newton N kg m s-2  
Volume Liter L m3 
Energy joule J kg m2 s-2 
Power watt W kg m2 s-3 
Frequency hertz Hz s-1 
Charge coulomb C A s 

Capacitance farad F C2 s2 kg-1 m-

2 
Magnetic 
Induction Tesla T kg A-1 s-2 

 
 

2.8.2. Metric Prefixes 

PREFIX FACTOR SYMBOL METER EXAMPLE 
peta 10^15 E Em 
tera 10^12 P Pm 
giga 10^9 G Gm 

mega 10^6 M Mm 
kilo 10^3 k km 

hecto 10^2 h hm 
deca 10^1 da dam 
deci 10^(-1) d dm 
centi 10^(-2) c cm 
milli 10^(-3) m mm 

micro 10^(-6) µ  mµ  
nano 10^(-9) n nm 
pica 10^(-12) p pm  
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2.9. British System 
 
2.9.1. Basic and Derived Units 
 

QUANTITY NAME SYMBOL UNITS 
Length foot ft basic unit 
Time second s basic unit 
Mass slug  basic unit 
Temperature Fahrenheit 0F basic unit 
Electrical Current ampere A basic unit 
Force pound lb derived unit 
Volume gallon gal derived unit 
Work foot-pound ft-lb derived unit 
Power horsepower hp derived unit 
Charge coulomb C derived unit 
Capacitance farad F derived unit 

Heat British 
thermal unit Btu basic unit 

 
 

2.9.2. Uncommon British Measures of Weight and Length 
 

WEIGHT LINEAR 
Grain=Basic Unit Inch=Basic Unit 
1 scruple=20 grains 1 hand=4 inches 
1 dram=3 scruples 1 link=7.92 inches 
1 ounce=16 drams 1 span=9 inches 
1 pound=16 ounces 1 foot=12 inches 
1 hundredweight=100 pounds 1 yard=3 feet 
1 ton=2000 pounds 1 fathom=2 yards 
1 long ton=2240 pounds 1 rod=5.5 yards 
 1 chain=100 links=22 yards 
 1 furlong=220 yards 
 1 mile=1760 yards 
 1 knot mile=6076.1155 feet 
 1 league=3 miles 
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2.9.3. Uncommon British Measures of Liquid and Dry Volume 
 

LIQUID DRY 
Gill=Basic Unit Pint=Basic Unit 
1 pint=4 gills 1 quart=2 pints 
1 quart= 2 pints 1 gallon=4 quarts 
1 gallon=4 quarts 1 peck=2 gallons 
1 hogshead=63 gallons 1 bushel=4 pecks 
1 pipe (or butt)=2 
hogsheads  

1 tun=2 pipes  
 
2.9.4. Miscellaneous British Measures 
 

AREA ASTRONOMY 
1 square chain=16 
square rods 

1 astronomical unit (AU) = 
93,000,000 miles 

1 acre=43,560 
square feet 

1 light second = 186,000 
miles =0.002 AU 

1 acre=160 
square rods 

1 light year = 5.88x10^12 
miles =6.3226x10^4 AU 

1 square mile = 640 
square acres 

1 parsec (pc) = 3.26 light 
years 

1 square mile = 1 
section 1 kpc=1000pc 

1 township = 36 
sections 1 mpc = 1000000pc 

 
 

VOLUME 
1 U.S. liquid gallon= 231 
cubic inches 
I Imperial gallon=1.2 U.S. 
gallons=0.16 cubic feet 
1 cord=128 cubic feet 
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1. The Algebra of Interest 
 
1.1. What is Interest? 
 
 Interest affects just about every adult in America. If you 
are independent, own a car or a home or both, or have a credit 
card or two, you probably pay or have paid interest. So, what 
exactly is interest? Interest is a rent charge for the use of money. 
As a rent charge for the use of housing accumulates over time, 
likewise, an interest change for the use of money also 
accumulates over time. Just as people sometimes borrow housing 
when shelter is needed, people sometimes borrow money when 
we want or need the items that money can buy. 
 
 Interest is normally stated in terms of a percentage 
interest rate such as year

%8 . Just as velocity ( hour
miles60  ) is a rate of 

distance accumulation, percentage interest rate is a ‘velocity’ of 
percent accumulation. When driving in America, the customary 
units of velocity are miles per hour. Likewise, the customary units 
for interest rate are percent per year. The reader should be aware 
that other than customary units may be used in certain situations. 
For example, in space travel sec7 miles  is used to describe escape 
velocity from planet earth; and, when computing a credit-card 
charge, a monthly interest rate of  month

%5.1  may be used. Both 
velocity and percentage interest rate need to be multiplied by 
time—specified in matching units—in order to obtain the total 
amount accumulated, either miles or percent, as illustrated below. 
 
   On the road: mileshoursD hour

miles 175275 3
1 =⋅=    

 

   In the bank: percentmonthsmonth
percent 732% 2

1 =⋅=  $ 
  
 Once the total accumulated interest is computed, it is then 
multiplied by the amount borrowed, called the principalP , in order 
to obtain the total accumulated interest charge I . 
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 The total accumulated interest charge I , the principalP , the 
percentage interest rate r  (hereafter, to be simply called the 
interest rate), and the accumulated time t  (called the term) during 
which a fixed principle is borrowed are related by the 
Fundamental Interest Charge Formula tI Pr=  (also called the 
Simple Interest Formula). This formula applies as long as the 
principal P  and the interest rate r  remain constant throughout 
the time t . 
 
Ex 1.1.1: Suppose 00.000,10$  is borrowed at year

%7  over a 42 
month period with no change in either principal or interest rate. 
How much are the total interest charges? Using tI Pr= , we 
obtain (after converting percent to its fractional equivalent and 
months to their yearly equivalent) 
 

00.2800$)3)()(00.000,10($ 2
11

100
8 == yearsI years . 

 
Note: Notice how much the formula tI Pr=  resembles the formula 

RtD = , where D  is distance, R  is a constant velocity, and t  is the 
time during which the constant velocity is in effect. The variable P  in 

tI Pr=  distinguishes the Fundamental Interest Charge Formula in that 
total interest charges are proportional to both the principal borrowed and 
the time during which the principal is borrowed.   
 
 There are two types of interest: ordinary interest and 
banker’s interest. Ordinary interest is computed on the basis of a 
365 -day year, while bankers’ interest is computed on the basis of 
a 360 -day year. The distinction usually shows up in short duration 
loans of less than one year where the term is specified in days. 
Given two identical interest rates, principals, and terms, the 
loan where interest is computed on the basis of bankers’ 
interest will always cost more. 
 
Ex 1.1.2: Suppose 00.000,150$  is borrowed at year

%9  for 125 
days. How much are the total interest charges using A) ordinary 
interest as the basis for computation, B) bankers’ interest as the 
basis for computation? 
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Again, using tI Pr=  as our fundamental starting point, we obtain 
 

A) 29.4623$))(9)(00.000,150($ 365
125% == yearsI year  

B) 50.4687$))(9)(00.000,150($ 360
125% == yearsI year . 

 
Notice bankers’ interest nets 21.64$  to the bank. 
 
1.2. Simple Interest 
 
 Simple interest is interest charged according to the 
formula tI Pr= . We normally find simple interest being used in 
loans where the term is relatively short or the principal is a few 
thousand dollars or less. At one time, simple interest was the 
interest method primarily used to compute changes in an 
automobile loan. Today, however, with some automobile prices 
approaching those of a small house—e.g. the Hummer—many 
automobile loans are set up just like shorter-term home 
mortgages.  
 
 When we borrow money via a simple interest contract, not 
only are we to pay the interest charges, but we also must pay back 
the principal borrowed in full. That is the meaning of the word 
borrowed: we are to return the item used in the same condition 
that it was originally loaned to us. When we borrow money, we are 
to return it in its original condition—i.e. all of it and with the same 
purchasing power. Since money invariably loses some of its 
purchasing power with the passage of time due to the effects of 
inflation, one can almost always be sure that the amount borrowed 
is worth less at the end of a specified term than at the beginning. 
Thus, any interest charge levied must, as a minimum, make up for 
the loss of purchasing power. In actuality, purchasing power is not 
only preserved but actually increased via the application of 
commercial interest charges. Remember, a bank is a business 
and should expect a profit (interest) on the sale of its particular 
business commodity (money). 
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 Retiring a simple-interest loan requires the payment of 
both the principal borrowed and the simple interest charge 
incurred during its term. Thus we can easily write an algebraic 
formula for the total amount A  to be returned, called the Simple 
Interest Formula, )1(Pr rtPtPIPA +=+=+= . We can 
easily use the simple interest formula to help calculate the monthly 
payment M  for any loan issued on the basis of simple interest. 
 
Ex 1.2.1: You borrow 00.000,38$  for an SUV at year

%5.3  simple 
interest over a term of 7 years. What is your monthly payment? 
What is the total interest charge? 

   

∴=−=−=

∴===

=⇒
+=+=+=

00.310,9$00.000,38$00.310,47$:

22.563$
84

00.310,47$
#

:

00.310,47$
})7{035.01(00.000,38$)1(:

3

2

1

PAI

months
AM

A
rtPIPA

a

a

a

 

  
 Buyers should be aware that sometimes the actual 
interest rate is more than it is stated to be. A Simple Discount Note 
is a type of loan where this is indeed the case. Here, the borrower 
prepays all the interest up front from the principal requested. Thus, 
the funds F available for use during the term of the loan are in 
fact less, as given by the expression IPF −= . This leads to a 
hidden increase in interest rate if one considers the principal to be 
those funds F  actually transferred to the borrower. This next 
example illustrates this common sleigh-of-hand scenario. 
 
Ex 1.2.2: A Simple Discount Note for 00.000,100$  is issued for a 

term of 15 months at year
%10 . Find the ‘hidden’ interest rate. 

   

00.500,87$00.500,12$00.000,100$:

00.500,12$))(10(00.000,100$Pr:
2

12
15%

1

=−=−=

===

IPF

yearstI year

a

a
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∴==

⇒=

⇒=
⇒=

yearr

r
r

FrtI

%

12
15

3

4.11
00.375,109

00.500,12
00.500,1200.375,109

))((00.500,8700.500,12
:a

 

 
Notice that the interest rate is increased by 4.1  percentage points 
by simply changing the type of loan, i.e. a Simple Discount Note. 
This will always be the case: not only does interest rate matter, but 
also the type of loan employing the interest rate. As shown in our 
last example, precise formulas allow one to easily calculate the 
various financial quantities without resorting to the use of 
extensive financial tables. 
 
1.3. Compound Interest 
 
 The simple interest formula )1( rtPA +=  is used in 
situations where the principal never changes during the term of the 
loan. But more often than not, the principal will change due to the 
fact that accrued interest is added to the original principal at 
regular intervals, where each interval is called a compounding 
period. This addition creates a new and enlarged principal from 
which future interest is calculated. Interest during any one 
compounding period is computed using the simple interest 
formula. To see how this works, let P  be the initial principal and 

cr  be the interest rate during the compounding period (e.g. for an 
annual interest r applied via monthly compounding periods, 

12
r

cr = ). Then after one compounding period, we have by the 
simple interest formula 
 

1
1

1 )1(1Pr PrPPIPA cc =+=⋅+=+= . 
 
After the second compounding period, we have 
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2
211

2

1
11112

)1()1()1(

)1(

PrPrrPA

rPrPPIPA

ccc

cc

=+=+⋅+=

⇒+=+=+=
. 

 
After the third compounding period, the process cycles again with 
the result 
 

3
312

3

1
22223

)1()1()1(

)1(

PrPrrPA

rPrPPIPA

ccc

cc

=+=+⋅+=

⇒+=+=+=
. 

 
Letting the process continue to the end of n compounding periods 
leads to the Compound Interest Formula for Total Amount 
Returned n

cn rPAA )1( +== . If r is the annual interest rate 
and n  is the number of compounding periods in one year, then 
the amount A  after a term of t  years is given by the familiar 
compound-interest formula nt

n
rPA )1( += .  

  
 In order to use either version of the compound interest 
formula, no addition to the initial principal P  must occur (other 
than that generated by the compounding effect) during the totality 
of the compounding process (term).  The amount A  is the amount 
to be returned when the compounding process is complete (i.e. 
has cycled itself through a specified number of compounding 
periods). Both formulas are most commonly used in the case 
where an initial sum of money is deposited in a 
financial/investment institution and allowed to grow throughout a 
period of years under a specified set of compounding conditions.  

 
Ex 1.3.1: A lump sum of 00.000,100$  is deposited at year

%3  for 
10 years compounded quarterly (four times per year). Find the 
amount A  at the end of the term.  

   

∴==

⇒+=

⇒+=
⋅

86.834,134$)0075.1(00.000,100$

)1(00.000,100$

)1(:

40

104
4
03.0

1

A

A

PA nt
n
ra
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Ex 1.3.2: An amount of 00.000,25$  compounds at period
%1  for 

240 periods. Find the amount A  at the end of the term.  

   

∴==

⇒+=

⇒+=

84.313,272$)01.1(00.000,25$
)01.01(00.000,25$

)1(:

240

240

1

A
A

rPA n
ca

 

 
Ex 1.3.3: A grandfather invests $5000.00 in a long-term growth 
fund for his newly-born granddaughter. The fund is legally 
inaccessible until the child reaches the age of 65. Assuming an 
effective interest rate of  year

%9  compounded annually, how much 
will the granddaughter have accumulated by age 65? 

   

∴==

⇒+=

⇒+=
⋅

81.229,354,1$)09.1(00.000,5$

)1(00.000,5$

)1(:

65

651
1
09.0

1

A

A

PA nt
n
ra

 

 
The last example shows the magic of compounding as it operates 
on an initial principal through a long period of time. A relatively 
small financial gain received when young can grow into a 
magnificent sum if left to accumulate over several decades. This 
simple but powerful fact leads to our first Words of Wisdom: If 
properly managed, young windfalls become old fortunes. 
 
1.4. Continuous Interest 
 
 Consider the compound interest formula nt

n
rPA )1( += . 

What would be the overall effect of increasing the number of 
compounding periods n  in one year while holding both the annual 
interest rate r and the term t  constant? One can immediately see 
that the exponent nt  would grow in size, but the quantity inside 
the parentheses, n

r+1 , would become almost indistinguishable 

from the number 1 as n  increases indefinitely. 
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Since 11 =n  no matter how large n  is, the diminishing of n
r+1   

to 1 may negate the effect of having a larger and larger exponent. 
Thus, we end up with a mathematical tug of war between the two 
affected quantities in nt

n
rA )1( += . Our exponent is growing larger 

desperately trying to make A  an indefinitely large number. By 
contrast, our base is nearing the number 1 trying to make 1=A .  
Which wins? Or, is there a compromise?  
 
 To explore this issue, we’ll first look at a specific example 
where yearr %5= , 10=t  years, 00.1$=P ,  and, subsequently, 

n
nA 1005.0 )1(00.1$ += . The number of compounding periods n  in 

a year will be allowed to increase through the sequence1, 10 , 12 , 
100 , 365 , 1000 , 000,10 , 000,100 , and 000,000,1 . Modern 
calculators allow calculations such as these to be easily performed 
on a routine basis. The results are displayed in the table below 
with the corresponding amount generated by using the simple 
interest formula )1( rtPA += . 
 

n A 
1 $1.6288946
10 $1.6466684
12 $1.6470095
100 $1.6485152
365 $1.6486641
1000 $1.6487006
10000 $1.6487192
100000 $1.6487210
1000000 $1.6487212

 
Notice that as n  progressively increases without bound, the 
amount A  becomes more and more certain, stabilizing about one 
digit to the left of the decimal point for every power of ten. In 
conclusion, we can say that the battle ends in a tidy compromise 
with ∞<< A1 , in particular ...64872.1=A  
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 The process of n  progressively increasing without bound 
is called a limit process and is symbolized by the limit symbol

∞→n
lim . 

Limit processes are extensively used to derive most of the 
mathematical tools and results associated with calculus. We now 
investigate A  as ∞→n  for the case of a fixed annual interest 
rate r and term t  in years, ])1([lim nt

n
r

n
PA +=

∞→
. To analyze this 

expression, we first move the limit process inside the parentheses 
and next to the part of the expression it directly affects to obtain 

tn
n
r

n
PA ]})1[(lim{ +=

∞→
. Again, we have set up our classic battle 

of opposing forces: the exponent grows without bound and the 
base gets ever closer to1. What is the combined effect? To 
answer, first define rmnm r

n =⇒= . From this, we can establish 
the towing relationship ∞→⇔∞→ mn . Substituting, we 
obtain 

rtm
mm

tn
n
r

n

nt
n
r

n

PA

PA

PA

]})1[(lim{

]})1[(lim{

])1([lim

1+=

⇒+=

⇒+=

∞→

∞→

∞→

. 

 
Now all we need to do is evaluate ])1[(lim 1 m

mm
+

∞→
, and we will do 

this evaluation the modern, easy way, via a scientific calculator. 
 

m value m
m )1( 1+  

1 2 
10 2.5937 

100 2.7048 
1000 2.7169 
10000 2.7181 

100000 2.7183 
1000000 2.7183 
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We will stop the evaluations at 000,000,1=m . Notice that each 
time m is increased by a factor of10 , one more digit in the 
expression m

m )1( 1+  is stabilized. If more decimal places are 

needed, we can simply compute m
m )1( 1+  to the accuracy desired. 

When m  gets astronomically large, the expression m
m )1( 1+  

converges to the number ...7183.2=e . Correspondingly, our 
final limit becomes 

 

rt

rt

rtm
mm

PeA
ePA

PA

=

⇒=

⇒+=
∞→

}{

]})1[(lim{ 1

. 

 
The last expression rtPeA =  is known as the Continuous 
Interest Formula. For a fixed annual interest rate r and initial 
depositP , the formula gives the account balance A at the end of 
t  years under the condition of continuously adding to the current 
balance the interest earned in a ‘twinkling of an eye.’ The 
continuous interest formula represents in itself an upper limit for 
the growth of an account balance given a fixed annual interest 
rate. Hence, it is a very important and easily used tool, which 
allows a person to quickly estimate account balances over a long 
period of time. The following example will illustrate this. 
 
Ex 1.4.1: An initial deposit of 00.000,10$  is compounded monthly 

(typical turnover for a company 401K account, etc.) at year
%8  for a 

period of 30 years. Compare the final amounts obtained by using 
both continuous and compound interest formulas. 
 

   

∴=
⇒=

⇒=
⋅

76.231,110$
00.000,10$

:
)3008.0(

1

A
eA

PeA rta
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∴=
⇒=

⇒+=

⇒+=
⋅

73.487,109$
)00667.1(00.000,10$

)1(00.000,10$

)1(:

360

3012
12
08.0

2

A
A

A

PA nt
n
ra

 

 
 Notice that there is less than 00.400$  difference between 
the two amounts, which shows the continuous interest formula a 
very valuable tool for making estimates when the number of 
compounding periods in a year exceeds twelve or more. By 
providing a quick upper bound for the total amount to be returned, 
the continuous interest formula can also be thought of as a fiscal 
‘gold standard’ defining the limiting capabilities of the 
compounding process. In the next two examples, we explore the 
use of the continuous interest formula in providing rapid estimates 
for both interest rate and time needed to achieve a given 
amount A . In each example, the natural logarithm (denoted by 
‘ ln ’) is first used to release the overall exponent in rte , which, in 
turn allows one to solve for either r or t .  
 
Ex 1.4.2: A brokerage house claims that 00.000,10$  is 
‘guaranteed’ to become 00.000,000,1$  in 40 years if left with 
them. What interest rate would make this so?  

   

∴==

⇒=
⇒=

⇒=

=

⇒=

⇒=⇒=

year

r

r

r

rtrt

r
r

er
e

e
e

APePeA

%

40
2

40

40

1

5.11057.0
605.440

)100ln()ln(40
)100ln()ln(:

100
00.000,000,1$000,10$

:

a

a
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The interest rate of year
%5.11  may be obtainable, but represents an 

aggressive estimate since the average Dow-Jones-Industrial-
Average annual rate of return has hovered around year

%9  for the 
last 40 years. Hence the brochure is making a marketer’s claim! 
Suppose we actively managed our account for 40 years where we 
were actually able to achieve year

%9 . Then 

34.982,365$00.000,10$ )4009.0( == ⋅eA , which is a tidy sum, but 
no million. Let buyers beware, or, better yet, let buyers be able to 
figure for themselves. 
 
Ex 1.4.3: How long does it take a starting principal P  to 
quadruple at  year

%5  compounded monthly?  

   

∴=
⇒=

⇒=

=⇒=

⇒=

⇒=

yearst
t
e

ePPe
PeP
PeA

t

tt

t

rt

73.27
38629.105.0

)4ln()ln(:

44
4

:

)05.0(
2

)05.0()05.0(

)05.0(

1

a

a

 

 
1.5. Effective Interest Rate 
 
 How do we compare one interest rate to another? The 
question arises since not only does actual interest rate matter, but 
also the way the rate interest is utilized (i.e. type of compounding 
mechanism). The effective annual interest rate, designated effr , 
provides a mathematical basis for comparing interest rates having 
different compounding mechanisms. effr  is defined as that 
annually-compounded interest rate that generates the same 
amount as the specified interest rate and associated compounding 
process at the end of t  years. In the case of the compound 
interest formula, we have 
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In the case of continuous interest, we have 
 

  

1

1

][)1(

)1(

−=

⇒=+

⇒=+

⇒=+

r
eff

r
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eff

rtt
eff

er

er

er

PerP

 

 
In the case of simple interest, we have 
 

  

11

11

)1()1(

)1()1(

−+=

+=+

⇒+=+

⇒+=+

t
eff

t
eff

t
eff

t
eff
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rtr

rtr
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 The effective interest rate, as defined above, is a simple 
and powerful consumer basis of comparison in that it combines 
both rate and process information into a single number. Banks and 
other lending institutes are legally required to state effective 
interest rate in their advertising and on their documents. Stock 
market returns over a long period of time are normally specified in 
terms of an average annual growth or interest rate. We definitely 
need to know the meaning of effr and its use if we are to survive 
the confusion of numbers tossed our way in modern society.  
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Ex 1.5.1: Which is the better deal, year

%25.7  compounded 

continuously or year
%5.7 compounded quarterly? 

   

∴==−+=

⇒−+=

==−=

⇒−=

yeareff

n
n
r

eff

yeareff

r
eff

r

r

er

er

%4
4
075.0

2

%0725.0

1

713.707713.01)1(

1)1(:

519.707519.01

1:

a

a

 

The better deal is year
%5.7 compounded quarterly where the 

effective interest rate is yeareffR %713.7= .   
 
When viewed as a general concept, the effective annual interest 
rate becomes a powerful economic and forecasting tool in that it 
can be easily adapted to determine the average annual growth 
rate for securities or any phenomena where change occurs over a 
period of years. 
 
Ex 1.5.2: Securities valued at 00.000,5$  in 1980 have grown in 
value to 00.000,80$  in 2005. Assuming continuation of the 
average annual growth value as already displayed during the past 
25 years, project the value of these same securities in 2045. 
 
Diagramming the problem in two steps, we have  

   

?00.000,80$:

00.000,80$00.000,5$:
30

20452005

2

25

20051980

1

AP

AP
years

years

−

−

→→=

=→→=

a

a
 

 
Utilizing the general definition of effr as found in t

effrPA )1( +=  
allows us to easily solve this problem for each step. 



 132
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00.401,223,2$)1172.1(00.000,80$
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The average annual interest/growth rate of year

%72.11  is very good 
and shows active management of the overall growth process. The 
final reward, 00.401,223,2$ , is well worth it! 
 
Ex 1.5.3: A professional’s salary grows from $9949.00 to 

00.951,107$  over a period of 30 years. What is the average 
annual growth rate? 

   Diagramming: 00.951,107$00.949,9$
30

=→→= AP
years

. Solving, 
we have 
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⇒==+

⇒+=
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30
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271.808271.0

08271.185.101

)1(85.10
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)1(:a

 

 
The final average growth rate of year

%271.8 certainly exceeds the 

average inflation annual rate of year
%3  and shows a steady 

increase in purchasing power over time. 
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Ex 1.5.4: 00.000,10$  is lent to a friend at year
%2  simple interest 

for a period of 5 years. What is  effr ? 

   

Q

a

yeareff

eff

t
eff
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r

rtr
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Ex 1.5.5: You have $25,000 to invest for 10 years. Which of the 
following three deals is most advantageous to you, the investor: 

year
%12 simple interest for the entire time period, year

%7  interest 

compounded daily for the entire time period, or year
%8 interest 

compounded quarterly for the entire time period? 
 
We analyze problem in two stages. First, we will compute the effr  
for the three cases noting that daily interest (365 compounding 
periods a year) is for all effects and purposes  indistinguishable 
from continuous interest. The highest effr  will then provide our 
answer. Secondly, in the modern spirit of ‘show me the money’, 
we will compute the expected earnings in all three cases. 
Comparing effr  

   

∴=−+=
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Quarterly compounding at year

%8  provides the best deal. 
Calculating the associated expected earnings gives 
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Case three, quarterly compounding at year

%8 , has the highest 

expected earnings as predicted by the associated effr . 
 
 The three alternate calculations use the effective annual 
interest-rate construct formula to arrive at the exact same answers 
(within a dollar or two) as those produced by the associated 
compounding formulas. This would be expected; for this is how the 
three effr  formulas were derived in the first place! 
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2. The Algebra of the Nest Egg 
 
2.1. Present and Future Value 
 
 Money changes its value with time. This fact is as certain 
as the proverbial ‘death and taxes’. Inflation is a force beyond an 
individual’s control that lessens the value of money over time. 
Smart investing counters inflation in that it enhances the value of 
money over time. The value of money right now is called the 
present value PV . The time-changed equivalent value in the 
future is called the future value FV . This can be diagramed as 
 

FVPV
process

time
→→ . 

 
In order for a present value to become a future value, both time 
and a process need to be specified. This is exactly the case in the 
familiar compound interest formula nt

n
rPA )1( += . Using the 

above general diagrammatic pattern, we can diagram the 
compound-interest formula as follows 
 

AP
nt

n
r

t

)1( +

→→ . 

 
Replacing AP&  with FVPV &  respectively leads to 
 

FVPV
nt

n
r

t

)1( +

→→ . 

 
Note: The above formula is not completely correct until one takes 
in account the effects of inflation, an analysis option. To account 
for inflation, subtract the annual inflation rate from the given 
annual interest rate. Use the modified rate in present-to-future 
value formulas to project an inflation-adjusted future value. 
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 With this last note in mind, we present the four coupled 
Present-to-Future-Value Formulas. All interest rates in the 
formulas below need to be inflation adjusted per irradj −= if one 
wants to obtain an inflation-adjusted future value. 
 

Compound Interest: nt
n
r

nt
n
r FVPVPVFV

)1(
)1(

+
=⇔+=  

Effective Interest:  t
eff

t
eff r

FVPVrPVFV
)1(

)1(
+

=⇔+=  

Continuous Interest:  rt
rt

e
FVPVPVeFV =⇔=  

Simple Interest:  
)1(

)1(
rt

FVPVrtPVFV
+

=⇔+=  

 
Notice that the coupled Present-to-Future-Value Formulas allow 
us to easily move from present value to future value (or visa versa) 
as long as the compounding process, time period, and one of the 
two values—present or future—is specified. Coupled present-to-
future-value formulas allow us to estimate total change in 
monetary value as either investments or durable goods move 
forwards or backwards in time under a given set of process 
conditions. 
 
Ex 2.1.1: Bill wishes to have 00.000,800,1$  in his Individual 
Retirement Account (IRA) when he retires in 35 years. What is the 
present value of this amount assuming an average annual 
compounding rate of year

%5.11 ? 

   

54.870,39$
)115.1(

00.000,800,1$
)115.1(

00.000,800,1$
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Ex 2.1.2: Repeat the calculation in Ex. 2.1.1 if an average inflation 
rate yeari %3=  acts through the same 35 year time period. 
 
Bill’s wish can be restated in terms of buying power. What Bill 
really wants is 00.000,800,1$  in current buying power by the time 
he retires in 35 years. Thus  

   

42.952,064,5$
)03.1(00.000,800,1$

)1(

)1(:
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Interpreted, 42.952,064,5$ is the amount needed 35 years from 
now just to preserve the buying power inherent in  

00.000,800,1$ today assuming a long-term steady inflation rate of 

yeari %3= . Turning to the present value of this new amount 

assuming the same year
%5.11  , we have  

   

83.147,96$
)115.1(

42.952,064,5$
)115.1(

42.952,064,5$
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 When inflationary price increases for durable goods are 
stated in terms of an annually-compounded percentage jump, we 
typically use present-to-future-value formulas to estimate the 
future price. This is especially true for single ‘big ticket’ items such 
as houses, cars, boats, jewelry, etc. Our next example illustrates 
the use of a present-to-future value formula to estimate the future 
price of a newly-built house. 
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Ex 2.1.3: The price of a new house in a certain city increases at an 
average rate of year

%5 . If a particular 3-bedroom model in a certain 

subdivision is priced at 00.000,235$ in 2006, estimate the price of 
a similar model in the same subdivision in 2010. 

   

00.644,285$
)05.01(00.000,235$

)1(:
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1

=
⇒+=

⇒+=

FV
FV

rPVFV t
effa

 

 
This is some disconcerting news in that the same house will sell 
for approximately 00.644,285$  four years from now. If you can 
afford it, you better buy now. Waiting costs money! 
 
Ex 2.1.4: Calculate the present value of a 00.000,100$  corporate 

bond coming due in 15 years at year
%5  compounded quarterly. 

   

76.456,47$
)1(

00.000,100$
)1(

:
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4
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If redeemed today, the bond would fetch $47,456.76. 
 
2.2. Growth of an Initial lump Sum Deposit 
  
 If an initial lump-sum deposit is the only means by which 
monetary growth is achieved, then the Present-to-Future-Value 
Formulas are sufficient to perform the associated calculations. 
We need only to identify the process by which the growth is 
occurring: annual compounding via an effective interest rate, 
continuous compounding, or compounding for a finite number of 
compounding periods per year. Each compounding process has 
an associated formula to which a total time and interest rate must 
be supplied. 
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Ex 2.2.1: What is the future value (non-inflation adjusted) at age 
65 of 00.000,13$  invested at age 25 assuming yeareffr %8=  
throughout the 40-year term? 
 
Note: the making of a monetary-growth diagram is strongly recommended 
as a first step for all present-to-future-value problems since pictures 
engage the use of one’s right brain and the associated spatial problem-
solving capabilities. Hence, for Example 2.2.1, the associated monetary-
growth diagram is 
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Solving: 

   

77.417,282$
)08.01(00.000,13$

)1(:
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Ex 2.2.2: Calculate the effective annual interest rate needed to 
turn 00.000,10$  into 00.000,000,1$ over a 25 year period.  
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1
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Note that the process mechanism implicitly assumed is annual 
compounding via the referencing of an unknown effr . Solving: 
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The effective annual interest rate of yeareffr %22.20= is probably 
impossible to sustain for an extended period of 25 years. Even in 
the go-go high-tech 90s, rates of this magnitude lasted for only six 
years or so.  
 
Ex 2.2.3: What continuous interest rate is needed to quadruple a 
given present value in 15 years? 
 
 Asking for a continuous interest rate contr means that the 
continuous interest form of the present-to-future value formula 

rtPVeFV =  should be used. Also, the problem states that the 
required future value is PVFV 4= . Annotating this information 
on the monetary-growth diagram and solving gives  
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The stated continuous interest rate of year
%24.9  is certainly 

achievable in today’s markets; however, it is not automatic and will 
require active management of one’s investments. 
 
 Our last example illustrates what happens if more than 
one deposit is made during the overall investment period. 
 
Ex 2.2.4: What is the projected future value (ignoring inflation) of a 
retirement fund where an initial deposit of 000.000,40$  is made 
at age 30 and a subsequent deposit of 00.000,60$  is made at 
age 40. Assume an effective annual interest rate of 

yeareffr %10= and an anticipated retirement age of 68. 
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Understandably, the monetary-growth diagram increases in 
complexity as it is modified to show the 00.000,60$ deposit (or 
insertion into the investment process) at age 40. Again, by the 
stating of an effective annual interest rate effr , the monetary-
growth process is understood to be annual compounding. 
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30

1
?000,40$:

%

40
000,60$

age
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age
FV

yeareff

age

=

↑
→→a  

Solving for the projected future value requires direct addition of 
two algebraic terms.  

   

35.433,361,2$
61.259,865$73.173,496,1$

)1.1(000,60$)1.1(000,40$

)1(000,60$)1(000,40$:
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To summarize Ex 2.2.4, 00.000,100$  invested by the age of 40 
becomes 35.433,361,2$ by age 68 if the stated conditions hold 
throughout the investment period. 
 
 Suppose that in Ex 4.2.4 a single deposit could be made 
at age 30 in order to create the same 35.433,361,2$  by age 68. 
How much would such a deposit be? By direct application of the 
coupled Present-to-Future Value Formulas  

   59.132,63$
)1.1(

35.433,361,2$
38 ==PV , 

 
a net savings to the investor of $36,867.40. Calculating the 
inflation-adjusted future value of 35.433,361,2$  over the same 
38 years, we obtain 

   88.999,767$
)03.1(

35.433,361,2$
38 ==adjFV . 
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2.3. Growth of a Deposit Stream 
 
 Most of us don’t have an initial lump sum of 00.000,40$  
(or 59.132,63$ ) by which to build a retirement fund. The more 
typical way we build our retirement funds is by means of a periodic 
deposit—either through payroll deduction or direct self-discipline—
that accumulates in value year after year. And, after thirty years or 
so, we are talking about a sum jokingly referred to as ‘real money’. 
But it is no joke on how the sum is obtained: through discipline, 
sacrifice, and attentive money management. In this section, we will 
develop and use the equations that determine the future value of a 
regular deposit stream over an extended period of time. 
 
 Let ntiDDi ,1: =≡  be a deposit stream of identically-
sized payments made over a period of t  years where n  is the 
number of compounding periods per year and  r  is the annual 
interest rate. Suppose that each deposit iD  is sequenced to 
coincide with the beginning of the corresponding compounding 
period and that the last deposit ntD  begins the last of the nt  
compounding periods. Under these conditions, what is the future 
value of the entire deposit stream? Diagramming, 
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Now, each deposit iD  contributes a portion iFV  to the total future 

value FV  where ( ) int
n
r

ii DFV −++= 11 . Thus, 
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The expression 
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is a geometric series and can be summed accordingly as 
 

( ) ( ) ( ){ }nrnt
n
r

nt

i

int
n
r

r
DnD +−+=+ +

=

−∑ 111 1

1
, 

 

leads to the following formula: ( ) ( ){ }nrnt
n
r

r
DnFV +−+= + 11 1 . 

 
 Suppose we want to conclude our term of t  years with 
one final deposit 1+ntD  as shown in the modified deposit stream  
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To do so, add one more D  to obtain ( ){ }11 1 −+= +nt
n
r

r
DnFV . 

 
In the case of annual compounding where effn

r r= and D  is a 
yearly total (or rate), the two formulas become 
 

Without Final Deposit: ( ) ( ){ }eff
t

eff
eff

rr
r
DFV +−+= + 11 1  

No Final Deposit: ( ){ }11 1 −+= +t
eff

eff

r
r
DFV  

 
Similar formulas are developed for the case of continuous 
compounding in Section III, Topic 5. As discussed previously, all 
future values must be adjusted for inflation in order to ascertain 
true buying power. 
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Ex 2.3.1: After a term of 30 years, what is the projected future 
value of a retirement fund where 30 annual deposits of 00.5000$  
are faithfully made on 1 January of each succeeding each year. 
Assume yeareffr %11= .  
 
A modified monetary-growth diagram can be used to show the 
periodic annual deposits as follows: 
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Here, the diagram starts with the first annual deposit of 00.5000$  
at 0=t and annotates via multiplication the subsequent 29 annual 

00.5000$  deposits made at the start of each annual 
compounding period. Solving, 
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To summarize, 30 annual deposits of 00.5000$  totaling 

00.000,150$  have grown to a future value of 

87.565,104,1$ over a 30-year term assuming yeareffr %11= . 
 
Ex 2.3.2: Suppose a single lump-sum deposit could be made at 
the start of the 30-year period in Example 2.3.1 in an amount 
sufficient to create the same future value of 87.565,104,1$ . How 

much would be needed? Assume yeareffr %11= . 
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54.250,48$
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Ex 2.3.3: Sam contributes 00.200$  per month to a college 
savings account for his daughter Mary, who just turned 12. In 
addition, he makes ‘bonus deposits’ of 00.1000$  on Mary’s 
birthday. Sam started this practice with a combined 00.1200$  
deposit on the day of Mary’s birth and will ‘cash out’ on Mary’s 18th 
birthday with a final deposit of 00.1200$ . How much will be in 
Mary’s college savings account at that time assuming yearr %7=  
and monthly compounding?  
 
This problem can be thought of as two sub-problems: 1) a monthly 
deposit stream of 217 individual deposits over a term of 18 years 
and 2) a parallel yearly deposit stream of 19 individual deposits 
over a period of 18 years. The total future value will be the sum of 
both parallel deposit streams the day Mary turns 18. 
 
For the monthly deposit stream, we slightly modify the monetary-
growth diagram to show the inclusion of the final deposit.  
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Solving: 
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For the yearly deposit stream, we will first need to compute the 
effective annual interest rate: yeareffr %12

12
07.0 229.71)1( =−+= . 

Now, we have all the information needed to compute yearFV  and, 

consequently, yearmonthtotal FVFVFV +=  
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 Each of the four deposit-stream formulas can also be used 
to determine the periodic deposit D  needed in order to 
accumulate a specified future value under a given set of 
conditions. 
 
Ex 2.3.4: Suppose Sam is not happy with the 64.115,125$  
accumulated by Mary’s 18th birthday and, instead, would like to 
accumulate a future value of 00.000,160$  via the single 
mechanism of monthly deposits.  A) How much should this deposit 
be, again, assuming monthly compounding and yearr %7= ? B) 
What single lump-sum deposit made on the day Mary was born 
would generate an equivalent future value? 
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This example suggests the old maxim of pay me now or pay me 
later. One could think of now as a single payment of 09.551,45$  
and later as a deposit stream of 217 payments, each 47.368$ , 
totaling $79,957.99. 
 
2.4. The Two Growth Mechanisms in Concert 
 
 Sometimes, we may have the opportunity to open up a 
retirement or college investment account with a respectable lump-
sum deposit (denote by SL )—perhaps gained by winning a lottery 
or receiving an inheritance. From then on, we contribute to this 
deposit by means of a deposit stream as shown in the monetary-
growth diagram 
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If DDL iS => (which would surely be the case for 99% of the 
time), then we could redraw the monetary-growth diagram as 
follows 
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Examining this last diagram, one algebraic expression can be 
easily written for the associated future value by summing the two 
embedded monetary-growth processes: 
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Ex 2.4.1: Suppose Bill makes quarterly deposits of 00.2000$  to a 
retirement fund over a period of 35 years that is started with an 
initial deposit of 00.5000$  and concluded with a final deposit of 

00.2000$ . What is the future value assuming quarterly 
compounding and yearr %8= ? 
 
The monetary-growth diagram increases in complexity again. 
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Solving: 
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Note: The reader may ask, “Is this the only way that a monetary-growth 
diagram can be drawn?” The answer is an emphatic no! These diagrams 
are offered as a suggested approach for two reasons: 1) they visually 
imply a flow of money and 2) they have been classroom tested. The 
important thing is to make a monetary-growth diagram that has meaning 
to you and upon which you can assemble all the relevant information. 
 
Ex 2.4.2: Suppose in Ex 2.4.1, Bill starts his retirement account on 
his 25th birthday and stops contributing on his 60th birthday with 
plans not to withdraw from his account until the age of 70. Bill is 
becoming increasingly wary of higher-risk investments as he 
grows older. Hence, Bill rolls his retirement account over into a 
safe U.S. government-bond fund paying an effective annual 
interest rate of yeareffr %5.4=  on his 60th birthday. What will be the 
future value of Bill’s retirement account at age 70? 
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 Ex 2.4.2 illustrates the importance of being able to choose 
the right formula for the right scenario. In many investment 
scenarios, several formulas may have to be used in order to obtain 
the sought-after answer. Understanding of the underlying concepts 
and facility with algebra are the two keys to success. We will now 
list all four future-value formulas with initial lump sum deposit SL  
corresponding to the four deposit-stream formulas.  
 

 
Final Deposit & Other-than-Annual Compounding: 
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No Final Deposit & Other-than-Annual Compounding: 
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Final Deposit and Yearly Compounding:  
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No Final Deposit and Yearly Compounding:  
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Our next example illustrates the integration of a mid-life windfall 
into one’s retirement program. 
 
Ex 2.4.3: George graduates from nursing school at age 22 and 
accepts a sign-on bonus of 00.7000$  to go to work at a local 
hospital. At the time, George used 00.2000$  of the money to 
open up a Roth IRA (see Section I: 6.9). He contributes 

00.1000$  per year making the final deposit at age 60. 
 
George is a fairly astute investor and was able to achieve an 
effective annual interest rate of yeareffr %5.12= over the course of 
38 years. Additionally, at age 45, George received a small 
inheritance of 00.000,15$  that he promptly invested in tax-free 
municipals paying an effective annual interest rate of 

yeareffr %5.4= . What are George’s total holdings at age 60?  
 
For the Roth portion 
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For the tax-free-municipals portion 
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   Finally: 64.638,899$=+= taxfreeRoth FVFVFV  
 
To recap, through smart investing, George was able to turn 
contributions totaling 00.000,55$ into 64.638,899$  over a 38-
year period. 
 
2.5. Summary 
 
 This article is not intended to be a treatise on retirement 
planning. All serious retirement planning should start with a 
licensed financial consultant in order to devise detailed long-term 
action plans that meet individual goals. The important thing in this 
day of age is to ‘just do it!’ This leads to a second Words of 
Wisdom: You must first plan smart! Then, you must do smart in 
order to achieve that coveted economic security! 
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 We close this article with the table below, a powerful 
motivational aid that shows the future value of a 00.4000$  yearly 
deposit for various terms and effective annual interest rates. 
Notice that the shaded million-dollar levels can be reached in four 
of the five columns. Reaching a net worth of one million dollars or 
more is a matter of both time and average annual interest rate. 
The formula used to construct the table is  
 

( ){ }11 1 −+= +t
eff

eff

r
r
DFV . 

 
GROWTH OF $4000.00 YEARLY DEPOSIT 

 EFFECTIVE ANNUAL INTEREST RATE 
TERM 5% 7% 9% 11% 13% 
5 yr $27,207 $28,613 $30,093 $31,651 $33,290 

10 yr $56,827 $63,134 $70,241 $78,245 $87,257 
15 yr $94,629 $111,552 $132,013 $156,759 $186,686 
20 yr $142,877 $179,460 $227,058 $289,060 $369,879 
25 yr $204,453 $274,705 $373,295 $511,995 $707,400 
30 yr $283,043 $408,292 $598,300 $887,652 $1,329,260 
35 yr $383,345 $595,653 $944,498 $1,520,657 $2,474,997 
40 yr $511,359 $858,438 $1,477,167 $2,587,307 $4,585,943 
45 yr $674,740 $1,227,007 $2,296,744 $4,384,675 $8,475,224 
50 yr $883,261 $1,743,943 $3,557,764 $7,413,343 $15,640,972 
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1. The Algebra of Consumer Debt 
 
3.1 Loan Amortization 
 
 Very few people buy a house with cash. For most of us, 
the mortgage is the time-honored way to home ownership. A 
mortgage is a long-term collateralized loan, usually with a financial 
institution, where the title-deed to the house itself is the collateral. 
Once a mortgage is secured, mortgage payments are then made 
month-by-month and year-by-year until the amount originally 
borrowed is fully paid, usually within a pre-specified time in years. 
We call this process of methodically paying back—payment by 
payment—the amount originally borrowed amortizing a loan. The 
word ‘amortize’ means to liquidate, extinguish, or put to death. So, 
to amortize a loan means to put the loan to death.  In generations 
past (especially those in the ‘Greatest Generation’), the final 
payment in ‘putting a loan to death’ was celebrated with the 
ceremonial burning of some of the mortgage paperwork. This 
symbolized the death of the mortgage and the associated 
transference of the title deed to the proud and debt-free 
homeowners. Nowadays, we Baby Boomers or Generation Xers 
don’t usually hang on to a mortgage long enough to have the 
satisfaction of burning it.  
 
 Suppose we borrow a mortgage amount A , which is 
scheduled to be compounded monthly for a term of T  years at an 
annual interest rate r . If no payments are to be made during the 
term, and a single balloon payment is to be made at the end of the 
term, then the future value AFV  of this single balloon payment is 
 

( ) Tr
A AFV 12

121+= . 
 

Now, let TiDD i 12,1: ==  be a stream of identically-sized 

mortgage payments made over the same term of T  years where 
the first payment is made exactly one-month after mortgage 
inception and the last payment coincides with the end of the term.  
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Then, the total future value DFV  associated with the payment 
stream is 

( ){ }1112 12
12 −+= Tr

D r
DFV  

 
For the mortgage to be paid, the future value of the mortgage-
amount borrowed must be equal to the total future value of the 
mortgage-payments made. Hence, 
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The last expression is the monthly payment D  needed to 
amortize a mortgage amount A  at the end of T  years given a 
fixed annual interest rate. Once D  is determined, we can 
compute the present dollar value of the entire payment stream 

 
TDPVPS 12=  

 
and the present dollar value of all the interest paid via the entire 
payment stream 

ATDPVIPS −= 12 . 
 
 Another fundamental quantity associated with a loan, 
particularly a mortgage loan, undergoing the process of 
amortization is the actual dollar value of the original loan still 
unpaid—called the payoff or payout value—after a given number 
j  of monthly payments D  have been made. We will denote this 

payoff value by the algebraic symbol jPO . 
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 Recall that the thj  payment is made at the end of the thj  
compounding period. By that time, the amount borrowed will have 
grown via the compounding mechanism to ( ) jrA 121+ . In like 

fashion, the future value of the first monthly payment D  will have 
grown to ( ) 1

121 −+ jrD  , and the total future value of the first j  

monthly payments D  will have grown to ( ){ }1112
12 −+ jr

r
D

. 

Hence, the amount of the payoff jPO  that corresponds to exactly 

the first j  monthly payments D  is 
 

( ) ( ){ }11121 1212 −+−+= jrjr
j r

DAPO . 

 
For any fixed amortization term T , the payoff amount undergoes 
a negative change from the stj 1−  payment to the thj  payment 
as it is incrementally reduced throughout the life of the loan. The 
negative of this change is the actual dollar amount AjD  of the  thj  
payment actually applied to loan reduction (or to principal, see 
next note). Thus, 
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Finally, the dollar amount of the  thj  payment D  going towards 
the payment of interest I  is 
 

AjIj DDD −= . 
 
Note: In this hand book, we have deliberately shied away from the term 
‘principal’ in favor of more user-friendly terms that allow the construction 
of non-overlapping and pneumonic algebraic symbols. Traditionally, the 
principal P  is a capital sum initially borrowed or initially deposited to 
which a compounding mechanism is applied.  
 
 The six loan-amortization formulas presented thus far can 
be split into two groups: Global Amortization Formulas and 
Payment Specific Formulas. One must first compute the monthly 
payment D  in order calculate all remaining quantities in either 
group. 

Global Amortization Formulas 
 

Monthly Payment: ( ){ }Tr

rAD 12
121112 −+−

=  

Sum of Payments in Payment Stream: TDPVPS 12=  
 

Total Interest Paid in Payment Stream: ATDPVIPS −= 12  
 

Payment Specific Formulas 
 

Payoff after the thj  Monthly Payment:  

( ) ( ){ }11121 1212 −+−+= jrjr
j r

DAPO  

 
Amount of thj  Monthly Payment to Principal: 

( ) 1
121

12
12 −+



 −

= jr
Aj

rADD  

 
Amount of thj  Monthly Payment to Interest: AjIj DDD −=  
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Ex 3.1.1: A 00.000,400$  business-improvement loan is 

negotiated with a local bank for an interest rate of yearr %7=  and 

an amortization term of 17 years. Find the quantitiesD , PSPV , 

IPSPV , 180PO , 100AD , and 100ID . 
 
Since these six quantities are a direct single-step application of the 
associated formulas, a process diagram is not needed.  
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The last three quantities are payment specific. 
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180PO  is also the ‘balloon’ payment needed in order to amortize 
the loan 2 years ahead of schedule at the end of 15 years. 
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Ex 5.1.2: Bill borrows 00.000,38$  in order to buy a new SUV. 

The year
%5 declining-balance loan (another name for a loan that is 

being reduced via an amortization schedule) has a term of 7 
years.  A) Calculate the monthly paymentD , the sum of all 
monthly payments PSPV , and the sum of all interest 

payments IPSPV . B) Calculate 1AD  and 1ID . C) Find the payment 

number J  where the amount being applied to principal starts to 
exceed 90% of the payment. 
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Note: Notice the use of the natural logarithm ln  when solving for 

1−J . Taking the logarithm of both sides is the standard 
technique when solving algebraic equations where the variable 
appears as an exponent. In theory, one can use any base, but 
ln is a standard key available on most scientific calculators. 
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 An interesting question associated with loan amortization 
asks, what percent of the first payment is applied towards principal 
and what percent pays interest charges? We already have the 
algebraic machinery in place to answer this question. To start, 
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Recall that 

 ( ){ }Tr

rAD 12
121112 −+−

= . 

 
Substituting the expression for D  into that for 1AD  gives 
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Next, we form the ratio 
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Finally, we obtain after algebraic simplification 

 ( ) ∴+= − TrA

D
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Ex 3.1.3: Calculate 
D
DA1  for yearr %25.8=  and the following 

values forT : 15, 20, and 30 years. 
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 The expression ( ) TrA

D
D 12

12
1 1 −+=  can be used to build a 

lookup table for various annual interest rates and typical loan 
amortization terms where the entries in the body of the table will 

be the corresponding principal-to-overall-payment ratios 
D
DA1  for 

the very first mortgage payment. 
 

 ANNUAL INTEREST RATE 
TERM 5% 6% 7% 8% 9% 
15 yr .473 .407 .351 .302 .260 
20 yr .368 .302 .247 .202 .166 
30 yr .223 .166 .123 .091 .067 
40 yr .135 .091 .061 .041 .027 

 
The above table helps answer questions such as, ‘by what 
percentage would I have to increase my monthly payment in order 
to reduce my amortization term from 30 years to 20 years?’ If your 
mortgage interest rate is year

%7  , the answer from table lookup is 
roughly 

%4.12124.%
123.247.%

==∆
⇒−=∆

. 
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3.2  Your Home Mortgage 
 
 In his pop hit “Philadelphia Freedom”, Elton John sings 
about the ‘good old family home.’ The vast majority of all 
Americans purchase that ‘good old family home’ via a 
collateralized declining-balance loan where the collateral is the title 
deed to the house being purchased. This is the traditional home 
mortgage as we Americans know it. 
 
 Two terms associated with the word mortgage are: 
mortgager, the lending institution granting the mortgage; and 
mortgagee, the individual obtaining the mortgage. The 
responsibility of the mortgagee is to make monthly payments on 
time until that time when the loan is amortized. In return, the 
mortgagee is guaranteed a place to live—i.e. the house cannot be 
legally resold or the mortgagee legally evicted. However, if the 
mortgagee fails to make payments, then the mortgager can start 
the legal process of eviction as a means of recovering the unpaid 
balance associated with the home mortgage. After eviction occurs, 
the lending institution will 1) sell the house, 2) recover the unpaid 
balance, 3) recover expenses associated with the sale, and 4) 
return any proceeds left to the mortgagee. The aforementioned 
scenario is not a happy one and should be avoided at all ‘costs’. 
Remember, as long as there is an unpaid mortgage balance, the 
lending institution holds the title deed to the home that you and 
your family occupy. Always make sure that the payment you sign 
up for is a payment that you can continually meet month after 
month and year after year! 
 
 The many examples in this article address various aspects 
of making mortgage payments and the total lifetime costs 
associated with the mortgage process. Let’s begin with the most 
frequently asked question, how much is my payment? 
 
Ex 3.2.1: The Bennett family is in the process of buying a new 
home for a purchase price of 00.000,300$ . They plan to put 20% 
down and finance the remainder of the purchase price via a 
conventional fixed-interest-rate home mortgage with a local 
lending institution. 
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The amortization options are as follows: 1) 

yearryrsT %25.6@15 == , 2) yearryrsT %90.6@20 == , and 3) 

yearryrsT %25.7@30 == . Compute the monthly payment for 
each of the three options. 
 
The interest-rate range of  year

%00.1  is fairly typical for a term 

range of 15 years. The amount borrowed will be 00.000,240$  
after the 20% down payment is made. Proceeding with the 
calculations, we have 
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Of interest would be the present value TDPVPS 12=  of all 
mortgage payments comprising the payment stream for each of 
the three options. Once PSPV  is determined, we can determine 

IPSPV  by the formula ATDPVIPS −= 12 . The results from Ex 
3.2.1 are shown in the next table 
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PRESENT VALUE FOR THREE 
PAYMENT STREAMS 

TERM PSPV  A  IPSPV  
15 yr $401,274.00 $260,000.00 $141,274.00
20 yr $503,592.00 $260,000.00 $243,592.00
30 yr $638,517.60 $260,000.00 $378,517.00

 
The facts displayed in the above table are a real eye-opener for 
most of us when first exposed. The bottom line is that longer-term 
mortgages with lower monthly payments cost more money—much 
more money—in the long run. These considerations have to be 
factored in when buying a home. Section I: 6.10.8 lists some of 
the pros and cons associated with long-term mortgages.  
 
The next example answers the question, how much house can I 
afford? 
 
Ex 3.2.2: Based on income, Bill Johnson has been approved for a 
monthly mortgage payment not to exceed 00.3000$  including 
real-estate taxes and homeowners insurance. If, on the average, 
real-estate taxes are 00.4000$  per year and homeowners 
insurance is 00.1600$  for homes in the subdivision where Bill 
wants to move, how much house can he afford assuming 30-year 
mortgage rates are yearr %5.6= ?  
 
We are only quoting the 30-year rate since the associated 
mortgage payment will most likely be the lowest payment 
available. The mortgage payment that includes principal, interest, 
taxes, and insurance is traditionally known as the PITI payment, 
whereas the payment that just includes principal and interest is 
known as the PI payment. The first step will be the subtracting out 
of the monthly portion of the 00.3000$  mortgage payment that 
must be allocated to taxes and insurance. 
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In the second step, we set 00.2533$ equal to the monthly 
payment formula and solve for the associated mortgage 
amount A . 
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In summary, Bill qualifies for a 00.000,400$  mortgage. If one 
assumes that Bill has enough money to make a 20% down 
payment, then Bill would be qualified to buy a house having a 
purchase price PP  of 00.000,500$  as shown in the algebraic 
calculation below. 
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Notice that the down payment needed under the above scenario is 
a hefty 00.000,100$ . 
 
 The next example answers the question, if I increase my 
payment by so many dollars per month, how much sooner will I be 
able to pay off my mortgage?  
 
Ex 3.2.3: Nathan and his wife Nancy purchased a house seven 
years ago, financing 00.000,175$  for 30 years at yearr %7= . The 

couple’s monthly income has recently increased by 00.500$ . 
Nathan and Nancy decide to use 00.250$  of this increase for an 
additional monthly principle payment. A) If the couple follows this 
plan, how many years will they be able to save from the current 23 
years remaining on the mortgage? B) How much money will they 
save in interest charges? 
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In Step 1, we calculate the existing monthly payment by the usual 
method. 
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In Step 2, we calculate the balance (payoff) remaining on the 
mortgage at the end of seven years. 
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Keeping the same payment of moD 28.1164$=  allows the 
remaining principle of 97.507,159$  to be paid off in 23 years—
right on schedule. Increasing the payment to moD 28.1414$=  
will logically result in a compression of the remaining term. 
 
Our approach for the remainder of the problem is to use the 
existing monthly payment formula  
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in reverse in order to solve for T when D , A , and r is known. 
First notice that  
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The previous result confirms the power of the existing monthly 
payment formula in that this formula retains the algebraic linkage 
amongst principal, payment, interest rate and term at any stage in 
the amortization process. It also allows one to solve for any one of 
the four variables provided the other three variables are known. 
With this in mind, we finally proceed to Step 3 where D  is 
increased to moD 28.1414$= . 
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The answer yearsT 36.15=  represents 185 payments where the 
final payment is a small fractional payment that would 
ceremoniously pay off the mortgage. Going back to the original 
question, Nathan and Nancy would compress the original 
mortgage by 

   A) yearsyearsyears 64.736.1500.23:
4

=−a  
 
by increasing the payment to moD 28.1414$= . 
 
To answer part B), we calculate the original amount programmed 
to interest (assuming the full thirty-year schedule) and then 
recalculate it for the amount actually paid. The difference is the 
savings. 
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Thus Nathan and Nancy will be able to save 19.661,60$  in 
interest charges if they faithfully follow their original plan. 
 

In the next example, the mortgage initially has a term of 
30 years and the mortgagee wishes to amortize it on an 
accelerated 20 year schedule after five years have elapsed in the 
original term. 
 
Ex 3.2.4: Brian Smith purchased a house five years ago and 
financed 00.000,215$  for 30 years at yearr %2.7= . He would like 
to pay off his house in 15 years. A) By how much should he 
increase his monthly payment in order to make this happen? B) 
How much does he save in the long run by following the 
compressed repayment schedule?  
 
Step 1 is the calculation of the existing monthly payment. 
 

   
( ){ }

∴=

⇒
+−

=

==

−

moD

D

ryrsT year

39.1459$
1112

)00.000,215($072.0

20.7@30:

)30(12
12
072.0

%
1
a

 

 
 
In Step 2, we calculate the payoff at the end of five years. 
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Brian wants to accelerate the mortgage repayment schedule so 
that the remaining 89.809,202$ is paid off in 15 years. This, in 
effect, creates a brand new 15-year mortgage having the same 
annual interest rate. Step 3 is the calculation for Brian’s new 
payment. 
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Once the old and revised payments are known, Part A) is easily 
answered. 

   A) moincrease 77.385$89.1459$66.1845$:
4

=−=a  
 
Part B): Follow the exact process as presented in Example 5.2.3, 
Steps 5) and 6), to obtain Brian’s overall projected savings 
of 20.748,105$ . 
 

In our next example, a mortgage is initially taken out for a 
term of 20 years. Three years into the term, the mortgage is 
refinanced in order to obtain a lower interest rate. 
 
Ex 3.2.5:  In buying a new home, the Pickles financed 

00.000,159$ for 20 years at yearr %2.6= . Three years later, 15-

year rates dropped to year
%875.4 . The Pickles decide to refinance 

the remaining balance and the associated 00.1500$  refinancing 
closing costs at the lower rate. How much do they save overall by 
completing this transaction?  
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Notice that the monthly payment actually drops a little bit, and we 
have compressed the overall term by two years! Using our 
standard methodology, the overall savings is 

   
19.274,28$

)}81.1154($180)55.1157($36{)55.1157($240:
4

=+−a . 

 
Our last example illustrates the devastating cumulative effects of 
making partial mortgage payments over a period of time. 
Hopefully, this is a situation that most of us will strive to avoid. 
 
Ex 5.2.6:  Teresa bought a new home for a purchase price of 

00.000,450$ . She made a 00.000,90$  down payment and 

financed the remainder at year
%7  for a term of 30 years. Three 

years into the loan, Teresa was cut to half-time work for a period 
of 24 months. 
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Teresa was able to negotiate with her lending institution a partial 
mortgage payment (half the normal amount) for the same period. 
At the end of the 24 months, Teresa was able to go back to full-
time employment and make full house payments. A) Calculate her 
mortgage balance at the end of five years. B) Calculate the 
revised remaining term if the original payment is maintained. C) 
Calculate the revised payment needed in order to amortize the 
loan via the original schedule. 
 
First, we need to calculate Teresa’s original payment: 

   
( ){ }

∴=

⇒
+−

=

==

−

moD

D

ryrsT year

09.2395$
1112

)00.000,360($07.0

00.7@30:

)30(12
12
07.0

%
1
a

. 

 
At the end of three years, the mortgage balance is 
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We use the same formula the second time in order to calculate the 
effects of making a monthly half payment of 54.1197$  for a 
period of two years on a partially-amortized loan having a starting 
balance 03.217,348$ . 
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A) Teresa’s revised mortgage balance at the end of five years is 
84.627,369$ , a sum which is 84.9627$  more than she originally 

borrowed. 
 
At the end of five years, the original payment of 08.2395$  comes 
back into play, a payment that must pay off a balance of  

84.627,369$  over a yet-to-be-calculated number of years.  
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B) With the original payment, Teresa will not pay off her mortgage 
until another 33 years have passed. When added to the five years 
that have already transpired, this mortgage will require 38 years to 
amortize assuming no other changes occur. 
 
To bring Teresa back on schedule, we will need to calculate a 
revised mortgage payment that allows her to amortize the balance 
of 84.627,369$  in 25 years. 
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C) Teresa’s revised mortgage payment is mo45.2612$ , 

mo36.317$  more than her original payment of 08.2395$ . 
Playing catch up is costly! 
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3.3  Car Loans and Leases 
 
 Nowadays, most car loans are set up on declining-balance 
amortization schedules. The mathematics associated with car 
loans set up on a declining-balance amortization schedule is 
identical to the mathematics associated with home mortgages. 
Two major differences are that the term is much shorter for a car 
loan and that the annual interest rate is often less. Let’s start off by 
computing a car payment. 
 
Ex 3.3.1:  Bob bought a 2004 SUV having a sticker price of 

00.000,45$ . The salesperson knocked %12  off, a ‘deal’ that 
Bob gladly agreed too. After factoring in a %7 state sales tax on 
the agreed-to sales price, Rob put 00.2000$  down and financed 
the balance for 66 months at year

%4 . The lending institution 
happens to be a subsidiary of the car manufacturer. A) Calculate 
Bob’s car payment. B) Calculate the interest paid to the lending 
institution assuming the loan goes full term. 
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The fascinating thing about Example 5.3.1 is that total interest 
60.4670$  to be paid to the lending institution (part of the car 

conglomerate) just about equals 00.5400$ , the dollar amount 
‘knocked off’ the original sales price. Could this be a classic case 
of pay me now or pay me later? 
 

A real danger in financing large amounts for expensive 
vehicles is that vehicles—unlike houses—depreciate over time. 
This means that there may be a period of time within the term of 
the loan where the actual balance remaining on the loan exceeds 
the current value of the vehicle itself. Such a period of time is 
properly characterized as a financial ‘danger zone’ since insurance 
proceeds paid via the ‘totaling’ of a fully-insured vehicle in the 
danger zone will not be enough to retire the associated loan. Thus, 
the once proud owner is not only stuck with a trashed vehicle, but 
also a partially unpaid debt and, most assuredly, significantly 
higher insurance premiums in the future. Motorized vehicles, as 
much as Americans love ‘em, are definitely a major family money 
drain.  

 
So, by how much does a vehicle typically depreciate? The 

standing rule of thumb is between %15  and %20  per year where 
the starting value is the manufacturers suggested retail price. The 

%15  figure is a good number for higher-priced vehicles equipped 
with desirable standard options such as air conditioning and an 
automatic transmission. The %20  figure is usually reserved for 
cheaper stripped-down models having few customer-enticing 
features. Either percentage figure leads to a simple mathematical 
model describing car depreciation. Let SRP  be the suggested 
retail price of a particular car model, P  be the assumed annual 
depreciation rate (as a decimal fraction), and t  be the number of 
years that have elapsed since purchase. Then the current vehicle 
value )(tVV =  can be estimated by tPSRPtV )1()( −⋅=  
where SRP  is the manufacturers suggested retail price; P  is the 
annual depreciation rate; t  be the number of years since 
purchase. 
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Note: Some estimators say that one must immediately reduce a 
vehicle’s value from resale value to wholesale value as soon as it 
leaves the showroom. That amount is roughly equivalent to a 
normal year’s depreciation, which increases the exponent up by 
one in the previous model 1)1()( +−⋅= tPSRPtV . 
 
Ex 3.3.2:  Project the value of Bob’s SUV over the life of the 
corresponding loan with and without immediate ‘Showroom 
Depreciation’. Use an annual depreciation rate of 15.=P and 
calculate the two values at six-month intervals. 
Looking back at the previous example, we see 
that 00.000,45$=SRP . The results obtained via the two vehicle-
depreciation models are shown in the table below. 
 

DEPRECIATION OF BOB’S SUV 

Time in 
months 

With 
Showroom 

Depreciation 

Without  
Showroom 

Depreciation 
0 $38,250.00 $45,000.00 
6 $35,264.00 $41,487.00 

12 $32,512.00 $38,250.00 
18 $29,975.00 $35,264.00 
24 $27,635.00 $32,512.00 
30 $25,478.00 $29,975.00 
36 $23,490.00 $27,635.00 
42 $21,656.00 $25,478.00 
48 $19,966.00 $23,490.00 
54 $18,408.00 $21,656.00 
60 $16,971.00 $19,966.00 
66 $15,647.00 $18,408.00 

 
One can argue about ‘with’ or ‘without’ showroom depreciated, but 
even with no depreciation, Bob’s SUV drops about 00.3500$  of 
its sticker price in the first six months. The important thing to note 
is that the table values are the insurance value of the vehicle—i.e. 
the cash that an insurance company will pay you if the vehicle is 
totally destroyed. Yes, you may be able to sell it for more; but what 
if it is involved in an accident? The table value will be your legal 
compensation. 
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Let’s see how Bob’s SUV loan progresses towards payout 
during the same 66-month term. We will compute the remaining 
balance at six-month intervals using the now-familiar formula 

 

( ) ( ){ }11121 1212 −+−+= jrjr
j r

DAPO . 

 
The results are: 
 
 

AMORTIZATION OF 
BOB’S SUV LOAN 

Time in 
months 

Remaining 
Loan Balance 

0 $40,372.00 
6 $37,057.16 

12 $33,675.47 
18 $30,225.58 
24 $26,706.12 
30 $23,115.68 
36 $19,452.83 
42 $15,716.11 
48 $11,904.27 
54 $8,015.06 
60 $4,047.67 
66 $0.26 

 
 
Note the few cents remaining on the loan balance. Increasing the 
monthly loan payment to an even 00.683$  will easily eliminate 
that problem (caused by rounding errors)—an approach most 
lending institutions would take. 
 
 Now for the moment of truth! We will merge the last two 
tables into a new table in order to compare depreciated value to 
current loan balance line-by-line. 
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BOB’S SUV LOAN, A LOAN ON THE EDGE! 

Time in 
months 

With 
Showroom 

Depreciation 

With No 
Showroom 

Depreciation  

Remaining 
Loan 

Balance 
0 $38,250.00 $45,000.00 $40,372.00 
6 $35,264.00 $41,487.00 $37,057.16 

12 $32,512.00 $38,250.00 $33,675.47 
18 $29,975.00 $35,264.00 $30,225.58 
24 $27,635.00 $32,512.00 $26,706.12 
30 $25,478.00 $29,975.00 $23,115.68 
36 $23,490.00 $27,635.00 $19,452.83 
42 $21,656.00 $25,478.00 $15,716.11 
48 $19,966.00 $23,490.00 $11,904.27 
54 $18,408.00 $21,656.00 $8,015.06 
60 $16,971.00 $19,966.00 $4,047.67 
66 $15,647.00 $18,408.00 $0.26 

 The above table shows a loan on the edge! If we factor in 
showroom depreciation, the insurance value of the vehicle is 
actually less than the balance remaining on the loan for about the 
first two years. We could term that period of time a financial 
danger zone since the insurance proceeds from a totaled vehicle 
will not be enough to pay off the loan in full. If we don’t factor in 
showroom depreciation, we are in reasonably good shape 
throughout the same two years—a big if. So, we might conclude 
that Bob is not in too great of danger. But, how about Mr. Harvey, 
whose story is in our next example. 
 
Ex 3.3.3:  Mr. Robert Harvey bought a new Camry for his son 
John, who planned to use it while attending college. The original 
Camry sticker price of 00.995,24$  was discounted by 00.1500$  
due to a Toyota advertised sale. State and county sales taxes then 
added %6  to the remaining purchase price. Mr. Harvey made a 

00.1000$  down payment and financed the balance for five years 
at year

%5.3 , figuring the car would be paid off when John graduated. 
Alas, fate had a different plan because poor John totaled it 
seventeen months later. Project the unpaid loan balance, if any, 
after insurance proceeds are received.  
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At the seventeen-month point, we need to calculate both the 
remaining wholesale value of the Camry (which hopefully equals 
the insurance proceeds) and the remaining balance on the loan. 
Also, as a rule, the Toyota Camry holds its resale value rather 
well. Thus, we will be optimistic and use 13.0=P  in conjunction 
with showroom depreciation. Notice the rescaling of the time t  to 
months. 
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Mr. Harvey escaped by the skin of his teeth. After the loan balance 
is paid off, he will have pocketed 36.302$ . But wait, Mr. Harvey 
will have to come up with an additional down payment because 
John now needs another car. Life on the edge! 
 
 The last story might have been significantly different if 
another model of automobile was involved. Let’s assume that the 
purchase price, discount, taxes, and loan conditions remain 
identical but the make and model of car is one for which 20.0=P . 
Then, starting again at Step 3, we have 
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In this scenario, Mr. Harvey still owes 30.2973$  to the lending 
institution once insurance proceeds are received. Plus, he’ll need 
some additional cash for a new down payment on a replacement 
vehicle. Hence, by signing on to this ‘deal’, Mr. Harvey rolled on 
the edge and eventually fell off. 
 
Our next example is taken from an advertisement in a local 
newspaper.  
 
Ex 3.3.4: A Ford dealership is advertising a brand new 2004 
Freestar for a sales price of 00.483,17$ , which is 00.5000$  less 
than the manufacturers suggested retail price. Ford will finance the 
whole amount—with nothing down for qualified buyers—for 84 
months at year

%89.5 . The advertised payment is mo00.269$ . 
Analyze this deal for correctness, true cost and “edginess’.   



 180

We first need to add in the %7  State-of-Ohio sales tax to get the 
true amount financed; then, we compute the monthly payment. 
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Notice that we are only about 00.3$  away from the advertised 
payment; hence we will accept the dealership’s calculations as 
valid. Note: the small difference is probably due on how we interpreted 
the stated rate of year

%89.5 —as either an effective annual rate effr  or an 

actual annual rate r .  
 
Next, let’s compute the sum of all interest payments during the life 
of the loan. 
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An important thing to note here is that the dealership is gaining 
back 80% of the advertised rebate 00.5000$  in interest charges.  
The hook is the lure of no money down. 
 
Lastly, let’s examine loan ‘edginess’ in terms of remaining loan 
balance versus the depreciated value of the Freestar. Considering 
the size of the initial rebate, assume that the initial showroom 
discount has already occurred. 
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Hence, the appropriate depreciation model is 
tPSRPtV )1()( −⋅= ; and, since the Freestar has desirable 

features, we  will use 15.0=P . Table 5.7 shows the frightful 
results—a Freestar on the edge for nearly four years! 
 

A FREESTAR ON THE EDGE 

Time in 
months 

With no 
Showroom 

Depreciation 

Remaining
Loan 

Balance 
0 $17,483.00 $18,706.81
6 $16,118.52 $17,610.61

12 $14,860.55 $16,487.42
18 $13,700.75 $15,319.19
24 $12,631.47 $14,121.99
30 $11,645.64 $12,889.11
36 $10,736.75 $11,619.46
42 $9,898.79 $10,311.96
48 $9,126.23 $8,965.48 
54 $8,413.97 $7,557.85 

 
 Our last example in this section examines a vehicle lease. 
A lease is a loan that finances the corresponding amount of 
vehicle depreciation that transpires during the term of the loan. At 
the end of the period, the vehicle is returned to the dealership. All 
leases have stipulations where the amount of miles aggregated on 
the vehicle must remain below (usually 12,000 miles) per year. 
 
Ex 3.3.5:  A Grand Cherokee is advertised for a ‘red tag’ sales 
price of 00.888,21$  after rebates. The corresponding red-tag 
lease payment is mo00.248$  plus tax for a term of 39 months 
with 00.999$  due at signing. From the information just given, 
analyze this transaction. 
 
The sales price of 00.888,21$ represents about 20% off and may 
actually be a little bit below wholesale. But, what does it matter, for 
the vehicle is going to eventually be returned to the dealership and 
resold as a ‘premium’ used car! 
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Predicting the original manufacturers suggested retail price (SRP), 
we have 

   ∴=⇒=⋅ 00.360,27$00.888,21$)80.0(:
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Next, we predict the depreciation during the 39 month term of the 
lease using the showroom depreciation model with 15.0=P . 
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Once the depreciation is calculated, we can determine the actual 
amount financed and the interest charged. 
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The difference IPSPV is due to the applied interest rate over the 
term of 39 months, which we will now determine by: 
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Notice the sky-high interest rate of %2.9=r , a rate that is 
approaching low-end credit-card rates! 
 
In closing Article 3.3, we will leave it to the reader to verify the 
following statement: To avoid living on the edge when signing 
up for an automobile loan, make a down payment equivalent 
to the first year’s depreciation, including showroom 
depreciation. 
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3.4  The Annuity as a Mortgage in Reverse 
  
An annuity can be thought of as a mortgage in reverse where the 
annuitant (the one receiving the payment) becomes the lender and 
the institution from which the annuity ‘is purchased’ becomes the 
borrower. Thus, monthly annuity payments are computed via the 
same methods used for computing monthly mortgage payments. 
 
With the last statement in mind, we proceed with just one 
comprehensive example that addresses both annuity creation and 
annuity usage. 
 
Ex 3.4.1:  Mike, age 25, receives 00.000,10$  as an inheritance. 
Using his inheritance money as an initial deposit, Mike wisely 
decides to open a company-sponsored 401K account. For 42 
years, he makes an annual payroll deposit of 00.2000$  which the 
company matches. A) Project the value of Mike’s 401K account at 
age 67 assuming an average effective annual rate of return of 

yeareffr %9= . B) If the total value in Mike’s 401K account is used to 

buy a thirty-year-fixed-payment annuity paying yearr %5=  at age 
67, calculate Mike’s monthly retirement payment. C) If Mike dies at 
age 87, how much is left in his 401K account?  
 
A) Annuity Creation Phase 
 
Step 1 is the construction of a monetary-growth diagram. 
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Step 2 is projecting the Future Value of Mike’s 401K 
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B) Annuity Payment Phase 
 

Using the formula ( ){ }Tr

rAD 12
121112 −+−

=  for monthly payments 

needed to amortize a mortgage, we obtain 
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C) Balance Left in Annuity at the End of 20 Years 
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When Mike dies at age 87, he leaves 89.815,005,1$  in non-
liquidated funds. Hopefully his annuity is such that any unused 
amount reverts to Mike’s estates and heirs as specified in a will.  
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4. The Calculus of Finance 
 
4.1  Jacob Bernoulli’s Differential Equation 
  
 A question commonly asked by those students struggling 
with a required mathematics course is, “What is this stuff good 
for?”  Though asked in every mathematics course that I have 
taught, I think business calculus is the one course where this 
question requires the strongest response. For in my other 
classes—pre-algebra, algebra, etc.—I can argue that one is 
learning a universal language of quantification. Subsequently, to 
essentially ask ‘of what good is this algebraic language?’ is to miss 
the whole point of having available a new, powerful, and exact 
means of communication.  To not have this communication means 
at my disposal could be likened to not being able to speak English 
in a primarily English-speaking country. To say that this would be 
a handicap definitely is an understatement! Yet this is precisely 
what happens when one doesn’t speak mathematics in a 
technological world bubbling over with mathematical language: 
e.g. numbers, data, charts, and formulas. I have found through 
experience that the previous argument makes a good case for pre-
algebra and algebra; however, making a similar case for business 
calculus may require more specifics in a day when Microsoft 
EXCEL rules. In this article, we will explore one very essential 
specific in the modern world of finance, namely the growth and 
decay of money by the use of differential equations, one of the 
last topics encountered in a standard business calculus course. 
 
  Jacob Bernoulli (1654-1705) was nestled in between the 
lifetimes of Leibniz and Newton, the two co-founders of calculus. 
Jacob was about 10 years younger than either of these men and 
continued the tradition of ‘standing on the shoulders of giants’. 
 
 One of Jacob’s greatest contributions to mathematics and 
physics was made in the year 1696 when he found a solution to 
the differential equation below, which bears his name. 

nyxgyxf
dx
dy )()( +=  

Of particular interest in this article is the case for 0=n :  
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  )()( xgyxf
dx
dy

+= . 

 
The solution is obtained via Bernoulli’s 300-year-old methodology 
as follows. 
 
   Step1: Let )(xF be such that )()( xfxF −=′  
 
   Step 2: Formulate the integrating factor )(xFe  
 

   Step 3: Multiply both sides of   )()( xgyxf
dx
dy

+=  by )(xFe  to 

obtain 
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Where the left-hand side of the last equality is the derivative of a 
product  
 

 [ ]ye
dx
dxgeyxfe

dy
dye xFxFxFxF ⋅=⋅=−+






 )()()()( )()]([

.   
   Step 4:  To complete the solution, perform the indefinite 
integration. 
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4.2 Differentials and Interest Rate 
  
 Everyone will agree that a fixed amount of money p  will 
change with time. Even though 00.000,10$=p  is stuffed under 
a mattress for twenty years in the hopes of preserving its value, 
the passage of twenty years will change p  into something less 
due to the ever-present action of inflation (denoted by i  in this 
article), which can be thought of as a negative interest rate.  So 
properly, )(tpp =  where t  is the independent variable and p is 
the dependent variable.  
 
 Let dt  be a differential increment of time. Since 

)(tpp = , dt  will induce a corresponding differential change dp  
in p  via a first-order linear expression linking dp  to dt : 
 
 dttKdpKdtdp )(=⇒= . 
 
The exact form of the proportionality expression )(tK  will depend 
on whether principle is growing, decaying, or whether there is a 
number of complementary and/or competing monetary-change 
mechanisms at work. Any one of these mechanisms may be time 
dependent in and of itself necessitating the writing of K  
as )(tKK = . The simplest case is the monetary growth 

mechanism where 0rpK = , the product of a constant interest rate 

r  and the initial principle 0p . This implies a constant rate of dollar 

increase with time for a given 0p , which is the traditional simple-
interest growth mechanism. Thus 
 
 00 )0(: ppdtrpdp == . 
 
The preceding is a first-order linear differential equation written in 
separated form with stated initial condition.  It can be easily solved 
in three steps: 
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One might recognize the last expression as the functional form of 
the simple interest formula. The same differential equation can be 
written as 
 

 00 )0(: pprp
dt
dp

==  after division by dt . 

 
This form highlights the differential-based definition of the first 
derivative. In words it states that the ratio of an induced differential 
change of principle with respect to a corresponding, intrinsic 
differential change in time is constant, being equal to the applied 
constant interest rate times the initial principal, also constant. 
Simple examination of both sides of the above differential equation 
reveals common and consistent units for both sides with 
 

 
year
dollarsrp

year
dollars

dt
dp

≡≡ 0& .  

 

The expression )(tp
dt
dp ′≡  is known as the Leibniz form of the 

first derivative, equal to the instantaneous change of principle with 
respect to time—which one could immediately liken to an 
instantaneous  “velocity” of money growth.    
 
4.3 Bernoulli and Money 
 
 Returning to dttKdp )(= , we have for the general case 
that )()()()( tdtptrtK +⋅=  where )(tr  is a time-varying 
(variable) interest rate, )(tp is the principal currently present, and 

)(td is an independent variable deposit rate. 
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Substituting into dttKdp )(=  gives 
 
 [ ] 0)0(:)()()( ppdttdtptrdp =+⋅=  
or 

 0)0(:)()()( pptdtptr
dt
dp

=+⋅=  

 
where 0)0( pp = is the amount of principal present at the onset of 
the process. 
 
Translating the differential equation into words, the instantaneous 
rate of change of principal with respect to time equals the sum of 
two independently acting quantities: 1) the product of the variable 
interest rate with the principal concurrently present and 2) a 
variable direct-addition rate.  The preceding differential equation is 
applicable in the business world if the principal p is continuously 
growing (or declining) with time. When the interest rate is fixed 

0)( rtr ≡  and the independent direct-addition rate is 

zero 0)( ≡td , the differential equation reduces to 
  

 00 )0(: pppr
dt
dp

== . 

 
Solving using separation of variables gives 
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The final expression treptp 0

0)( =  is the familiar Continuous-

Interest Formula for principle growth given a starting principal 0p  

and constant interest rate 0r . 
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Returning to the general differential equation 
  

 0)0(:)()()( pptdtptr
dt
dp

=+⋅= , 

 
we see that it is Bernoulli in form with the solution given again by 
an atrocious expression  
 

 [ ] )()()( )()(

)()(
tFtFtF Cedttdeetp

dttrtF
−− +⋅⋅=

−=

∫
∫

 

 
Upon comparison with the general solution developed in detail 
earlier. The initial condition 0)0( pp =  will be applied on a case-
by-case basis as we explore the various and powerful uses of the 
above solution in the world of finance. Depending on the 
complexity of )(tr  and )(td , the coupled solution 
 

 [ ] 0
)()()( )0(:)()(

)()(

ppCedttdeetp

dttrtF
tFtFtF =+⋅⋅=

−=

−− ∫
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may or may not be expressible in terms of a simple algebraic 
expression.. Thus, since interest rates are unpredictable and out 
of any one individual’s control (I have seen double-digit swings in 
both savings-account rates and mortgage rates in my lifetime), we 
will assume for the purpose of predictive analysis that the interest 
rate is constant throughout the time interval of interest 0)( rtr ≡  . 
This immediately leads to 
 
 [ ] 0)0(:)()( 000 ppCedttdeetp trtrtr =+⋅⋅= ∫ − , 

 
a considerable simplification. 
 
The last result is our starting point for concrete applications in 
investment planning, mortgage analysis, and annuity planning. 
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4.4 Applications 
 
4.4.1 Growing a Nest Egg 
 
Case 1: If 0)( dtd ≡ , a constant annual deposit rate, then the last 

expression for )(tp further simplifies to 

 [ ] 00 )0(:)( 000 ppCedteedtp trtrtr =+= ∫ − . 

This can be easily solved to give 

 [ ]1)( 00

0

0
0 −+= trtr e

r
d

eptp  

after applying the boundary condition 0)0( pp = . 
 
 Notice that the above expression consists of two distinct 
terms. The term trep 0

0 corresponds to the principal accrued in a 
continuous interest-bearing account over a time period t  at a 
constant interest rate 0r  given an initial lump-sum investment 0p .  

Likewise, the term [ ]10

0

0 −tre
r
d

 results from direct principal 

addition via annual metered contributions into the same interest-
bearing account.  If either of the constants 0p  or 0d  is zero, then 
the corresponding term drops away from the overall expression. 
The following two-stage investment problem illustrates the use of  

 [ ]1)( 00

0

0
0 −+= trtr e

r
d

eptp . 

 
Ex  4.4.1: You inherit 00.000,12$ at age 25 and immediately 

invest 00.000,10$ in a corporate-bond fund paying year
%6 . Five 

years later, you roll this account over into a solid stock fund 
(whose fifty-year average is year

%8 ) and start contributing 

00.3000$ annually. A) Assuming continuous and steady interest, 
how much is this investment worth at age 68? B) What percent of 
the final total was generated by the initial 00.000,10$ ?  
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A)  In the first five years, the only growth mechanism in play is that 
induced by the initial investment of 00.000,10$ . Thus, the 
amount at the end of the first five years is given by 
 58.498,13$00.000,10$)5( )5(06.0 == ep . 
 
 The output from Stage 1 is now input to Stage 2 where both 
growth mechanisms act for an additional 38 years. 

 

34.666,528$)38(
11.869,375$22.797,148$)38(

)1(
08.0

300058.498,13)38( )38(08.0)38(08.0

=
⇒+=

⇒−+=

p
p

eep

 

 
B) The % of the final total accrued by the initial 00.000,10$ is 

    %1.28281.
34.666,528$
22.792,148$

==  

 
Note: The initial investment of 00.000,10$ is generating %1.28 of 
the final value even though it represents only %8 of the overall 
investment of  00.000,124$ . The earlier a large sum of money is 
inherited or received by an individual, the wiser it needs to be 
invested; and the more it counts later in life. 
 
 Holding the annual contribution rate to 00.3000$ over a 
period of 38 years is not a realistic thing to do. As income grows, 
the corresponding annual retirement contribution should also 
grow. One mathematical  model for this is 
 

 000 )0(: ppedpr
dt
dp t =+= α  

 
where the constant annual contribution rate 0d  in the previous 

model 0d  has been replaced with the expression ted 0
0

α , allowing 
the annual contribution rate to be continuously compounded over 
a time period t  at an average annual growth rate 0α  . 
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The above equation is yet another example of a solvable 
Bernoulli-in-form differential equation per the sequence 
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Ex 4.4.2: Repeat Ex 4.4.1 using the annual contribution model 

tetd 03.03000)( = . 
 
A) Stage 1 remains the same with 58.498,13$)5( =p . The 
Stage 2  calculation now becomes  
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The final annual contribution is 31.9380$00.3000$ )38(03.0 =e  
with the total contribution throughout the 38 years is given by the 
definite integral 
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B) The % of the final total accrued by the initial 00.000,10$ is 

  %2.12122.
71.500,215,1$

22.792,148$
==  

 
Most of us don’t receive a large amount of money early in our 
lives. That is the reason we are a nation primarily made up of 
middle-class individuals. So with this in mind, we will forgo the 
early inheritance in our next example. 
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Ex 4.4.3: Assume we start our investment program at age 25 with 
an annual contribution of 00.3000$ grown at a rate of %50 =α  
per year. Also assume an aggressive annual interest rate of 

%100 =r  (experts tell us that this is still doable in the long term 
through smart investing).  A) How much is our nest egg worth at 
age 68? B) How does an assumed average annual inflation rate of 

%3  throughout the same time period alter the final result? 
 
A) Direct substitution gives 

 
11.896,906,3$)43(
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3000)43( )43(05.0)43(10.0
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eep
 

 
B) Inflation is nothing more than a negative growth rate (or interest 
rate) that debits the given rate. For a %3  average annual inflation 
rate, the true interest 0Tr  and income growth rates 0Tα  are given 
by the two expressions 
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Sadly, our true value after 43 years in terms of today’s buying 
power is 

  
35.454,075,1$)43(
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02.007.0

3000)43( )43(02.0)43(07.0
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4.4.2 Paying for the Nest 
  
 Both mortgage loans and annuities are, in actuality, 
investment plans in reverse where one starts with a given amount 
of principle 0)0( pp =  and chips away at this initial amount until 

that point in timeT  when 0)( =Tp . The governing equation for 

the case where the interest rate 0r  is fixed throughout the 

amortization period T  is 
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0 −+= trtr e
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where 0d  now becomes the required annual payment. 
 
Applying the condition 0)( =Tp  leads to 
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The fixed monthly payment 0m is given by 
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The continuous-interest-principal-reduction model does an 
excellent job of calculating nearly-correct payments when the 
number of compounding or principal recalculation periods exceeds 
four per year. Below are three other mortgage-payment formulas 
based on the continuous-interest model. 
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Ex 4.4.4: 00.000,250$  is borrowed for 30 years at %75.5 . 
Calculate the monthly payment, total repayment , and total interest 
repayment assuming no early payout. 
 

 62.1457$
)1(12

)00.000,250($0575.0
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51.745,274$00.000,250$50.745,524$0 =−=−= pAI  

 
 Many people justify an initially-high mortgage payment 
due to the fact that ‘the mortgage is being paid off in cheaper 
dollars.” This statement refers to the effects of inflation on future 
mortgage payments. Future mortgage payments are simply not 
worth as much in today’s terms as current mortgage payments. In 
fact, if we project t  years into the loan and the continuous annual 
inflation rate has been 0i  throughout that time period, then the 

present value of our future payment PVm is 

 ti
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Tr

PV e
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To illustrate using Ex 4.4.4, the present value of a payment made 
21 years from now, assuming yeari %

0 3=   is 

31.776$62.1457$ )21(03.0 == −emPV . Thus, under stable 
economic conditions, our ability to comfortably afford the mortgage 
should increase over time. This is a case where inflation actually 
works in our favor. Continuing with this discussion, if we are 
paying off our mortgage with cheaper dollars, then what is the 
present value of the total amount paid PVA ? A simple definite 
integral—interpreted as continuous summing—provides the 
answer 
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Returning again to Ex 4.4.4, the present value of the total 30-year 
repayment stream is 90.999,345$=PVA . 
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Ex 4.4.5: Compare 0m , A , and PVA for a mortgage where 

00.000,300$0 =p if the fixed interest rates are: %630 =yearsr , 

%75.520 =yearsr , and %0.515 =yearsr . Assume a steady annual 

inflation rate of %30 =i  and no early payout. In this example, we 
dispense with the calculations and present the results in the table 
below. 
 

FIXED RATE MORTGAGE COMPARISON FOR A 
PRINCIPAL OF 00.000,300$0 =P  

Terms r  M  A  PVA  

30=T  6.00% $1797.05 $646,938.00 $426,569.60 

20=T  5.75% $2103.57 $504,856.80 $379.642.52 

15=T  5.00% $2369.09 $426,436.20 $343,396.61 
 
The table definitely shows the mixed advantages/disadvantages of 
choosing a short-term or long-term mortgage. For a fixed principal, 
long-term mortgages have lower monthly payments. They also 
have a much higher overall repayment, although the total 
repayment is dramatically reduced by the inflation factor. The 
mortgage decision is very much an individual one and should be 
done considering all the facts within the scope of the broader 
economic picture. 
 
Ex 4.4.6: Our last example is an annuity problem.  Annuities are 
simply mortgages in reverse where monthly payouts are made, 
instead of monthly payments, until the principal is reduced to zero.  
You retire at age 68 and invest money earned via Ex 4.4. 3 in an 
annuity paying year

%5.4  to be amortized by age 92. What is the 
monthly payout to you in today’s terms? The phrase, ‘in today’s 
terms”, means we let 35.454,075,1$0 == PVpp . Thus, 

 79.106,6$
)1(12
)35.454,075,1)($045.0(

24)045.0(

24)045.0(

0 =
−

=
e

em . 
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The monthly income provided by the annuity looks very 
reasonable referencing to the year 2005. But, unfortunately, it is a 
fixed-income annuity that will continue as fixed for 24 years. And, 
what happens during that time? Inflation! To calculate the present 
value of that monthly payment, say at age 84, our now well-known 
inflation factor yeari %3= is used to obtain 

 80.3778$79.106,6$ )16(03.
0 == −em . 

 
 In conclusion, the power provided by the techniques in this 
short section on finance is nothing short of miraculous. We have 
used Bernoulli-in-form differential equations to model and solve 
problems in inflation, investment planning, and installment 
payment determination (whether loans or annuities). We have also 
revised the interpretation of the definite integral as a continuous 
sum in order to obtain the present value of a total repayment 
stream many years into the future. These economic and personal 
issues are very much today’s issues, and calculus still very much 
remains a worthwhile tool-of-choice (even for mundane 
earthbound problems) some 300 years after its inception.  
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Appendices 
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A. Greek Alphabet 
 

GREEK LETTER 

Upper Case Lower Case 
ENGLISH NAME 

Α α Alpha 
Β β Beta 
Γ γ Gamma 
∆ δ Delta 
Ε ε Epsilon 
Ζ ζ Zeta 
Η η Eta 
Θ θ Theta 
Ι ι Iota 
Κ κ Kappa 
Λ λ Lambda 
Μ µ Mu 
Ν ν Nu 
Ξ ξ Xi 
Ο ο Omicron 
Π π Pi 
Ρ ρ Rho 
Σ σ Sigma 
Τ τ Tau 
Υ υ Upsilon 
Φ φ Phi 
Χ χ Chi 
Ψ ψ Psi 
Ω ω Omega 
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B. Mathematical Symbols 
 

SYMBOL MEANING 

+  Plus or Add 
- Minus or Subtract or Take Away 

±  Plus or Minus (do both for two 
results) 

÷  Divide 
/  Divide 
· Multiply or Times 
^ Power raising 
• Scalar product of vectors 

 {  }or[  ]or (  )  Parentheses  

=  Is equal to 

≡  Is defined as 
≠  Does not equal 
≅  Is approximately equal to 
≈  Is similar too 
>  Is greater than 
≥  Is greater than or equal to 
<  Is less than 
≤  Is less than or equal to 

.,, etctx  Variables or ‘pronumbers’ 

)(xf or y  Function of an independent variable 
x  

→  Approaches a limit 
.,,, etcdydtdx  differentials 

)(xf ′ or y′  First derivative of a function 
)(xf ′′ or y ′′  Second derivative of a function 
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SYMBOL MEANING 
1
a , 

2
a  Step 1, Step 2, etc. 

BA⇒  A implies B 
BA⇐  B implies A 
BA⇔  A implies B implies A 

! Factorial 

∑
=

n

i 1

 Summation sign summing n  terms 

∫  Sign for indefinite integration or anti-
differentiation  

∫
b

a

 Sign for definite integration 

∏
=

n

i 1

 Product sign multiplying n terms 

 Sign for square root 
n  Sign for thn root 

∞  Infinity symbol or the process of 
continuing indefinitely in like fashion 

|| Parallel 
⊥  Perpendicular 
∠  Angle 
¬  Right angle 
∆  Triangle 
U  Set union 
I  Set intersection 
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SYMBOL MEANING 

Ax∈  Membership in a set A  
Ax∉  Non-membership in a set A  
BA ⊂  Set A  is contained in set B  
BA ⊄  Set A  is not contained in set B  

φ  The empty set 
∴ QED: thus it is shown 
∀  For every 
∋  There exists 
π  The number Pi such as in 3.1… 
e  The number e such as in 2.7… 
ϕ  The Golden Ratio such as in 1.6… 
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C. My Most Used Formulas 
 

Formula    Page Ref 
 
1. ______________________________________________ 
 
2. ______________________________________________ 
 
3. ______________________________________________ 
 
4. ______________________________________________ 
 
5. ______________________________________________ 
 
6. ______________________________________________ 
 
7. ______________________________________________ 
 
8. ______________________________________________ 
 
9. ______________________________________________ 
 
10. ______________________________________________ 
 
11. ______________________________________________ 
 
12. ______________________________________________ 
 
13. ______________________________________________ 
 
14. ______________________________________________ 
 
15. ______________________________________________ 
 
16. ______________________________________________ 
 
17. ______________________________________________ 
 
18. ______________________________________________ 
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