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Abstract

Ebola virus disease (EVD) is a severe, often fatal disease in humans and other non-human primates caused by infection
with any of the four identified Ebola virus species of the family Filoviridae. This paper develops the SEIR and the
SEIHDR epidemic models that investigate the effects of the ante-mortem contact and post-mortem contact on the spread
of the disease. The reproduction number of the models are determined. The equilibria and conditions for the existence
of the equilibria are also determined. The models are solved numerically and the numerical simulations implemented
to elucidate various scenarios. The results of the models are then compared to WHO data of confirmed cases for the
2014 Ebola outbreak in Liberia. It is observed that the SEIHDR model agrees better with the data than the SEIR model.
Moreover, a new model, the SEIQDR model (a modification of the SEIHDR Model) is formulated which incorporates
quarantine as an intervention. Again, this SEIQDR model is compared to the WHO data of confirmed cases for the 2014
Ebola outbreak in Liberia. The results of the SEIQDR model is found to agree better than those of the other models
especially in respect of the latter stages of the disease outbreak. Finally, the effect of vaccination on both the SEIHDR
and the SEIQDR models is investigated. Different rates of vaccination using numerical simulations in order to predict
the effect of vaccination on the infected individuals over time is also discussed. The SEIQDR model with vaccination
indicates a lower threshold which should not be less than 25% as compared to the SEIHDR model for which vaccination
should not be less than 65%. It is observed that vaccination as an additional strategy helps to control the disease more
effectively.

Keywords: Epidemic models, Ebola, post-mortem infectivity, quarantine.

1. Introduction

There have been an overwhelming Ebola epidemic in West Africa (Yamin et al., 2015). Ebola virus disease (EVD), which
was known as Ebola haemorrhagic fever, is a severe and often fatal disease in human beings and other non-humans such
as monkeys and gorillas (WHO, 2015a; CDC, 2015a). The Democratic Republic of Congo happens to be the place where
Ebola was first discovered in the year 1976. Since that period, Ebola outbreak have occurred occasionally in several
African countries (Legrand et al., 2007; Chowell-Puente, 2005; CDC, 2015a). Ebola spreads among humans through
direct contact (through broken skin or mucous membrane) with the blood, secretions, organs or other bodily fluids of
infectious individuals (Funk & Kumar, 2015). Ebola can spread through contact with corpses of Ebola patients, semen or
breast milk of a recovered Ebola person (CDC, 2015b; CDC, 2014; Chowell et al., 2015). Persons infected with the virus
may experience symptoms as; sudden onset of fever, severe headache, muscle pain, intense weakness, Fatigue, vomiting,
sore throat and in some cases both internal and external bleeding (PAHO/WHO, 2014; Gatherer, 2014). Most infected
persons may die within 10 days after being infectious. Medicine and knowledge about the disease have advance over the
years but EVD outbreaks still pose a treat to humans. Mathematical models have been used by several researchers to study
the dynamics of the EVD outbreak but much emphases have not been placed on the post-mortem effect on the spread of the
disease and modelling the interventions. It is therefore important that we study and investigate the wide spread of EVD
in humans as a result of post-mortem contact and analyse quarantine as an intervention strategy adapted by the health
management authorities to control the spread. Thus, the main objective of this work is to study and investigate the effects
of post-mortem contact on the spread of Ebola and quarantine as an intervention using mathematical models. We begin
by developing the SEIR model adapted from Okeke et al., (2014) to serve as the basis for further investigation. We also
study the SEIHDR model adapted from Legrand et al., (2007) which takes into account infection caused by hospitalized
individuals and corpses. Again, we formulate the SEIQDR model which is a modification of the previous model to
investigate and analyse quarantine as an intervention strategy adapted by the health management authorities to control
the spread. We also investigate the effectiveness of vaccination as an intervention strategy. Furthermore, we provide
numerical simulations of all the models to illustrate the analytic results using python software. Finally, we compare the
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models to data from Liberia on EVD outbreak.

The paper is organized as follows: In Section 2, we present the SEIR model and its basic reproduction number. We carry
out the equilibria and stability analysis of the model and discuss some numerical simulations. In Section 3, we carry out
analysis for the SEIHDR model. We also compare the models to an outbreak data in Section 4. Section 5 contains the
analysis of the SEIHDR model with vaccination. Section 6 also contains the analysis of the quarantine model (SEIQDR)
based on the model in Section 3. In Section 7 we analyse the SEIQDR model with vaccination. Conclusion of this report
is given in Section 8.

2. The SEIR Model

The SEIR model (adapted from Mamo & Koya, 2015) is very useful in epidemiology. For example, it has been used by
Oduro, (Oduro, 2012) to study the transmission dynamics of Malaria in Ghana and also in the study of Ebola transmission
dynamics (Oduro, 2016). In this model, the total population (N) is categorised into four compartments namely, the
susceptible (S), the exposed (E), the infectious (I), and the removed (R) (Keeling & Rohani, 2008).

The susceptibles are uninfected individuals who may become exposed after contact with an infectious individual. The
exposed comprises of individuals, who have been infected but not yet infectious. The infectious individuals are those with
the disease and can transmit the infection to other susceptible individuals. The removed comprises of individuals removed
from the chain of transmission either by recovery or dead and buried. At any given time (t), the number of individuals in
the susceptible, exposed, infectious and removed compartment is denoted by S(t), E(t), I(t) and R(t) respectively (Britton,
2012; Rivers et al., 2014).

2.1 Some Assumptions Underlying the Model

The model makes the following assumptions:

• All individuals in the population are initially considered susceptible ie. N(0) = S(0).

• The recruitment rate is equal to the natural death rate.

• Individuals become infectious, by first becoming exposed.

• Individuals leave the infectious class either by recovery, dead and buried or due to natural death (and move to class
R).

• Age, sex, status and race do not affect the probability of being infected with the Ebola virus.

• All cases of infection are assumed to be related to human-to-human transmission.

2.2 The Compartmental Model

In this section, we consider the SEIR compartmental model. The effective contact between a susceptible and an infectious
individual is denoted by β. The parameter b is the recruitment or natural death rate that may occur in the population under
consideration. The asymptomatic non-infectious exposed individual eventually show the symptoms of the ebola disease
and pass onto the infectious class. This is denoted by γE, where γ is the per-capita infectious rate. Thus the average
duration for an individual to be infectious is 1/γ. δ is the death or recovery rate of an infected individual. As before,
death and recovery are considered to be in the same compartment, since there has not yet been any reported case where
an individual who survived Ebola contracts the virus again (Astacio et al., 1996).

The above model together with the assumptions can be expressed in mathematical terms by the following system of
ordinary differential equations:

S ′ = bN − βS I
N
− bS ,

E′ = βS
I
N
− (γ + b)E,

I′ = γE − (δ + b)I,
R′ = δI − bR,

(1)

with the non-negativity requirements of the initial conditions:

S (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0. (2)
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β γ δ

S E I R

bN

bS bE bI bR

Figure 1. S EIR compartmental model indicating the movement of individuals from one class to another.

N is the total population under consideration. Thus the total population density is given by S (t)+E(t)+ I(t)+R(t) = N(t).
Adding the four equations, we see that

N′ = S ′ + E′ + I′ + R′ = 0,

thus N(t) = N(0) and so the population size is constant. Given non-negative initial data (2), it is easy to check that for all
t > 0, the solution always lies in the set I:

I = {(S , E, I,R)| S (t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, S (t) + E(t) + I(t) + R(t) = N}.

2.3 The Basic Reproduction Number

This section determines the basic reproduction number R0. This is an important quantity which determines whether a
disease persists or dies out and also how fast it spreads. It is defined as the average number of secondary cases arising
from a single infective introduced into an entirely susceptible population of size N (Astacio et al., 1996; Keeling &
Rohani, 2008). We use the method of next generation matrix to determine the expression for R0 (Driessche & Watmough,
2002; Khanh, 2015; Khan et. al., 2015). From the equilibrium analysis carried out in 2.4 of this section, the system (1)
has a disease-free equilibrium (DFE) given by (N, 0, 0, 0). The infected compartments are E and I. Let x = (E, I, S ,R)T .
Then the system (1) can be written as

dx
dt
= F (x) −V(x),

where

F (x) =


βS I
N
0
0
0

 and V(x) =


(γ + b)E

−γE + (δ + b)I
−bN + βS I

N − bS
−δI + bR

 .
This gives the following:

F = Jacobian of F at DFE =
(
0 β
0 0

)
,

V = Jacobian ofV at DFE =
(
(γ + b) 0
−γ (δ + b)

)
.

Thus,

V−1 =

(
δ+b

(δ+b)(γ+b) 0
γ γ + b

)
.
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The next generation matrix for the system (1) is

FV−1 =

( βγ
(δ+b)(γ+b)

β(γ+b)
(δ+b)(γ+b)

0 0

)
.

We have the spectral radius of the matrix FV−1 to be the reproduction number of the system (1) according to (Driessche
& Watmough, 2001). Thus, the basic reproduction number is given by:

R0 =
βγ

(δ + b)(γ + b)
. (3)

R0 is the critical parameter in determining the stability of equilibria for the above system.

2.4 Equilibria

The model (1) has two equilibria, the disease free and the endemic equilibria. It can be shown (Keeling & Rohani, 2008)
that the disease free equilibrium given by

(S ∗, E∗, I∗,R∗) = (N, 0, 0, 0),

exists and the endemic equilibrium is given by

(S ∗, E∗, I∗) =
(

N
R0
,

bN(δ + b)
βγ

(R0 − 1),
bN
β

(R0 − 1)
)
.

2.5 Stability Analysis

In this section, we discuss the stability of the disease free and endemic equilibria. In system (1), the fourth equation is
independent of the rest, so we can omit it and reduce the system to a set of three equations:

S ′ = bN − βS I
N
− bS ,

E′ = βS
I
N
− (γ + b)E,

I′ = γE − (δ + b)I.

(4)

We study the stability by stating and proving these theorems:

Theorem 2.1. If R0 < 1, then the disease free equilibrium (DFE) is stable.

Proof. The Jacobian matrix of the system (4) is given by:

J =


− βI

∗

N − b 0 − βS
∗

N
βI∗

N −(γ + b) βS ∗

N
0 γ −(δ + b)

 .
Now we evaluate this at the disease-free equilibrium. The Jacobian matrix evaluated at the disease-free equilibrium gives:

J(DFE) =

−b 0 −β
0 −(γ + b) β
0 γ −(δ + b)

 .
We compute the eigenvalues of this matrix as follows:∣∣∣∣∣∣∣∣

−b − λ 0 −β
0 −(γ + b) − λ β
0 γ −(δ + b) − λ

∣∣∣∣∣∣∣∣ = 0,

⇒ (−b − λ) [(γ + b + λ)(δ + b + λ) − βγ] = 0,
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thus

λ1 = −b,

and

(γ + b + λ)(δ + b + λ) − βγ = 0,

⇒ λ2 + (2b + γ + δ)λ + (γδ + bγ + bδ + b2 − βγ) = 0.

We solve the quadratic equation as follows:

λ =
−(2b + γ + δ) ±

√
(2b + γ + δ)2 − 4(γδ + bγ + bδ + b2 − βγ)

2
,

=
−(2b + γ + δ) ±

√
(2b + γ + δ)2 − 4[(b + δ)(b + γ) − βγ]

2
,

=
−(2b + γ + δ) ±

√
(2b + γ + δ)2 − 4(b + δ)(b + γ)

(
1 − βγ

(b+δ)(b+γ)

)
2

,

=
−(2b + γ + δ) ±

√
(2b + γ + δ)2 − 4(b + δ)(b + γ) (1 − R0)

2
.

Thus we have that:

λ2 =
−(2b + γ + δ) +

√
(2b + γ + δ)2 − 4(b + δ)(b + γ) (1 − R0)

2
,

and

λ3 =
−(2b + γ + δ) −

√
(2b + γ + δ)2 − 4(b + δ)(b + γ) (1 − R0)

2
,

are the eigenvalues at the disease-free equilibrium. If R0 < 1 then

λ2 < −
2b + γ + δ

2
+

√
(2b + γ + δ)2

2
= 0,

and

λ3 < −
2b + γ + δ

2
−

√
(2b + γ + δ)2

2
= −(2b + γ + δ).

Since all the eigenvalues have negative real parts for R0 < 1, the disease-free equilibrium is stable. �

Theorem 2.2. If R0 > 1, then the endemic equilibrium (EE) is stable.

Proof. The Jacobian matrix at the endemic equilibrium (EE) is given by:

J(EE) =


−bR0 0 − βR0

b(R0 − 1) −(γ + b) β
R0

0 γ −(δ + b)

 .
Now we compute the eigenvalues of the endemic equilibrium point as follows:

∣∣∣∣∣∣∣∣∣
−bR0 − λ 0 − βR0

b(R0 − 1) −(γ + b) − λ β
R0

0 γ −(δ + b) − λ

∣∣∣∣∣∣∣∣∣ = 0,

⇒ −(bR0 + λ)
[
(γ + b + λ)(δ + b + λ) − βγ

R0

]
− β

R0
(bγ(R0 − 1)) = 0,

−(bR0 + λ)
[
(γ + b + λ)(δ + b + λ) − (b + δ)(b + γ)

] − b(R0 − 1)(b + δ)(b + γ) = 0,

−(bR0 + λ)
[
λ2 + (γ + 2b + δ)λ

]
− b(R0 − 1)(b + δ)(b + γ) = 0.
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Expanding and simplifying the algebra, we have

λ3 + (bR0 + 2b + γ + δ)λ2 + bR0(2b + γ + δ)λ + b(R0 − 1)(b + δ)(b + γ) = 0.

This is in the form

λ3 + a1λ
2 + a2λ + a3 = 0,

where

a1 = bR0 + 2b + γ + δ,

a2 = bR0(2b + γ + δ),
a3 = b(R0 − 1)(b + δ)(b + γ).

We use the RouthCHurwitz stability criterion to determine the stability of the endemic equilibrium. It can be seen that if
R0 > 1, we have

a1 > 0, a2 > 0, a3 > 0.

Also

a1a2 − a3 = (bR0 + 2b + γ + δ)(bR0(2b + γ + δ)) − b(R0 − 1)(b + δ)(b + γ) > 0.

Thus all the eigenvalues have negative real parts by the RouthCHurwitz criteria. Hence the endemic equilibrium of the
system (4) is stable. �

2.6 Numerical Simulations

In this section we solve the system of differential equations (1) numerically. A crucial parameter which governs the
behaviour of the system is the reproduction number R0 which is given in (3). In all the graphs, we have time (measured
in years) on the horizontal axis and the proportion of the population who are either susceptible, exposed, infectious or
removed (ie. s = S

N , e =
E
N , i =

I
N , r =

R
N so that the total population is N = 1) is on the vertical axis. All simulations are

produced using python (odeint).

(a) (b)

Figure 2. Numerical solutions of the SEIR model (1) with b = 0.016, β = 3, γ = 3, δ = 4, N = 1, s(0) =
0.4, e(0) = 0, i(0) = 0.6, r(0) = 0 and R0 = 0.74 < 1. By Theorem 2.1 the disease-free equilibrium is stable (a). Also,
b = 0.2, β = 45, γ = 3, δ = 4, N = 1, s(0) = 0.8, e(0) = 0, i(0) = 0.2, r(0) = 0, and R0 = 10.04 > 1. By Theorem
2.2, the endemic equilibrium is stable (b).

3. The SEIHDR Model

In the previous section 2, we studied the SEIR model. The major assumption was that when an infective dies (either
natural or disease-related), he or she is removed from the chain of transmission. However, disease-related death does not
end transmission but causes infection upon contact with a susceptible individual. To better understand the dynamics of
the disease it is important to consider the dead bodies as a means of transfer of disease. In this regard a model called
the SEIHDR model was developed by Legrand et al. (2006). The variables H and D represent infectives who become
hospitalized and dead respectively.
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3.1 Model Assumptions

The model accounts for two aspects of disease transfer.

(i) Infection at the hospitals as a result of health workers interaction with hospitalised individuals.

(ii) Infection caused by dead bodies of Ebola patients during funerals and burial services.

Table 1 is a description of the parameters that we use in the SEIHDR model:

Table 1. Model Parameters and their description (Rivers et. al., 2014).

Parameter Description
µ Recruitment rate of susceptible individuals
βI Contact rate in the Community
βH Contact rate in the Hospital
βD Contact rate during Funeral
1/γ Incubation period
1/αH Time until Hospitalization
1/αDH Time from Hospitalization to Death
1/αF Duration of traditional Funeral
1/αI Duration of Infection
1/αD Time from Infection to Death
1/αIH Time from Hospitalization to Removed
θ1 Fraction of Infected Hospitalized
δ1 Case fatality rate, Unhospitalized
δ2 Case fatality rate, Hospitalized

Figure 3 represents the compartmental SEIHDR model.

S ES I H D R

λ γ αHθ1 αDHδ2

αIH(1− δ2)

αD(1− θ1)δ1

αI(1− θ1)(1− δ1)µN

µS µE

µI µH µD µR

αF

Figure 3. The SEIHDR compartmental model which represents the dynamics of the Ebola virus disease in a flow diagram.

This model can be represented by the following system of differential equations.

S ′ = µN − βIS I + βHS H + βDS D
N

− µS ,

E′ =
βIS I + βHS H + βDS D

N
− (γ + µ)E,

I′ = γE − (αHθ1 + αD(1 − θ1)δ1 + αI(1 − θ1)(1 − δ1) + µ)I,
H′ = αHθ1I − (αDHδ2 + αIH(1 − δ2) + µ)H,
D′ = αD(1 − θ1)δ1I + αDHδ2H − (αF + µ)D,
R′ = αI(1 − θ1)(1 − δ1)I + αIH(1 − δ2)H + αF D − µR,

(5)

with the non-negativity requirements of the initial conditions:

S (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0, D(0) ≥ 0, R(0) ≥ 0. (6)

The system (5) has both disease-free and endemic equilibria. Analysis of these equilibria are similar to that of the model
in section 2.
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3.2 Numerical Simulations

In this section, we study system (5) numerically. We show some numerical simulations. We have time (measured in years)
on the horizontal axis and the proportion of the population who are either susceptible, exposed, infectious, hospitalized,
dead or removed (ie. s = S

N , e =
E
N , i =

I
N , h =

H
N , d =

D
N , r =

R
N so that the total population is N = 1) is on the vertical

axis.

(a) (b)

Figure 4. Numerical simulations of the SEIHDR model (1) with µ = 0.007, βI = 0.050, βH = 0.034, βD = 0.012, γ =
0.83, αH = 0.309, αD = 0.075, αI = 0.067, αDH = 0.099, αIH = 0.063, θ1 = 0.197, δ1 = 0.50, δ2 = 0.50, N =
1, s(0) = 0.4, e(0) = 0, i(0) = 0.6, h(0) = 0, d(0) = 0, r(0) = 0 and R∗0 = 0.659 < 1 (a). Also, µ = 0.008, βI =

0.650, βH = 0.540, βD = 0.330, γ = 0.83, αH = 0.309, αD = 0.075, αI = 0.067, αDH = 0.099, αIH = 0.063, θ1 =
0.197, δ1 = 0.50, δ2 = 0.50, N = 1, s(0) = 0.9, e(0) = 0, i(0) = 0.1, h(0) = 0, d(0) = 0, r(0) = 0, and
R∗0 = 10.02 > 1 (b).

4. Comparison of the SEIR and the SEIHDR Models to WHO Data

We compare both the SEIR model and the SEIHDR model to the WHO data of confirmed cases for the 2014 Ebola
outbreak in Liberia (WHO, 2015b). In Figure 5 we compare the infected I(t) obtained from the SEIR model to the WHO
data. Also in Figure 6 we compare the infected I(t) from the SEIHDR model to the WHO data. The choice of the initial
conditions are as a result of the data shown in Figure 2 of the Ebola response roadmap situation report by the WHO
(WHO, 2015c; Rachah & Torres, 2015) with most parameter values taken from Rivers et. al. (2014).

It is seen from Figure 5 and 6 that the SEIHDR model agrees better with the data especially during the early stages of
the outbreak than that of the SEIR model. This makes sense since the post-mortem contact was a major means of disease
spread during the early stages due to misunderstanding and misdiagnosis of the Ebola virus. This confirms that post-
mortem contact effect is important in the dynamics of the disease during the early stages. It is worth noticing that after
interventions were introduced the model no longer agrees with the data. In the next section, we consider quarantine as an
intervention.

5. The SEIHDR Model with Vaccination

Another strategy to control the spread of infectious diseases is through vaccination. Now our objective is to study the
effect of vaccination in an Ebola disease outbreak. The situation where the French nurse was cured of Ebola with the
help of an experimental vaccine is a proof of the fact that vaccinating susceptible individuals is a means to control further
spread (Rachah & Torres, 2015).

5.1 The Compartmental Model with Vaccination

In this section, we modify the SEIHDR model in section 3 by adding a vaccination term v. Figure 7 shows the relationship
between the variables of the SEIHDR model with vaccination.
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Figure 5. Graph of infected I(t) obtained from (1) with b = 0.0001, β = 0.0047, γ = 0.083, δ = 0.00163, S (0) = 600,
E(0) = 0, I(0) = 2, and R(0) = 0 versus the real data of confirmed cases for the 2014 Ebola outbreak in Liberia from
March 30 to October 4, 2014.

Figure 6. Graph of infected I(t) obtained from (5) with µ = 0.0001, βI = 0.0002, βH = 0.0035, βD = 0.0010, γ = 0.83,
αH = 0.28, αD = 0.095, αI = 0.002, αDH = 0.099, αIH = 0.063, θ1 = 0.185, δ1 = 0.0003, δ2 = 0.500, S (0) = 600,
E(0) = 0, I(0) = 2, H(0) = 0, D(0) = 0, and R(0) = 0 versus the real data of confirmed cases for the 2014 Ebola outbreak
in Liberia from March 30 to October 4, 2014.

αI(1− θ1)(1− δ1)

αD(1− θ1)δ1

αIH(1− δ2)

αHθ1 αDHδ2

v

λ γ

µN

µS µE µI µH µD µR

S E I H D R

αF

Figure 7. The SEIHDR compartmental model with vaccination.

The system of equations that describe the SEIHDR model with vaccination are:
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S ′ = µN − βIS I + βHS H + βDS D
N

− µS − vS ,

E′ =
βIS I + βHS H + βDS D

N
− (γ + µ)E,

I′ = γE − (αHθ1 + αD(1 − θ1)δ1 + αI(1 − θ1)(1 − δ1) + µ)I,
H′ = αHθ1I − (αDHδ2 + αIH(1 − δ2) + µ)H,
D′ = αD(1 − θ1)δ1I + αDHδ2H − (αF + µ)D,
R′ = αI(1 − θ1)(1 − δ1)I + αIH(1 − δ2)H + αF D − µR + vS ,

(7)

where v is the percentage of individuals vaccinated.

5.2 Numerical Simulations in Case of Vaccination

We simulate the SEIHDR Model with vaccination (7) in order to visualise and predict the evolution of every class of
individuals in case of vaccination (Rachah & Torres, 2015). This study focusses on the test of different rates of vaccination
and how they affect the curve of every class. To simplify the system, we will consider the proportion of susceptible,
exposed, infectious, hospitalized, dead or removed (ie. s = S

N , e =
E
N , i =

I
N , h =

H
N , d =

D
N , r =

R
N so that the total

population is N = 1)

The results are shown in Figures 9 and 10. These figures show different rates of vaccination and their effect on the peak
of the curve of the infected individuals with time. The curve of the infected class shows that when the percentage of
vaccinated individuals increases the peak of the curve of infected class goes down indicating that less individuals are
infected and the period of infection is shortened while the number of removed individuals go up.

Table 2 shows the percentage of infected individuals i corresponding to different rates of vaccination v and the respective
number of weeks for the peak of the i(t) curve to be reached.

Table 2. Maximum percentage (to the nearest whole number) infected i corresponding to different rates of vaccination v
and the respective number of weeks for the peak of the i(t) curve to be reached.

Rate of vaccination Maximum percentage infected Weeks to the peak of i(t)
0 48% 10.14

0.10 28% 8.88
0.20 20% 7.10
0.40 14% 4.77
0.50 13% 4.24
0.60 12% 3.52
0.70 11% 3.34
0.80 11% 2.99

It can be seen from Table 2 that as the rate of vaccination increases the maximum percentage of individuals infected also
increases. Increasing v between 0.6 and 1.0, the percentage infected increases by a small margin. Figure 8 shows the
relation between the rate of vaccination v and the maximum individuals infected i by the disease.

From Figure 8, the threshold proportion of population to be vaccinated to control the disease is estimated to be not less
than v = 0.75.
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Figure 8. A graph showing the relation between the rate of vaccination and the maximum percentage of individuals
infected for the SEIHDR model.

(a) (b)

(c) (d)

Figure 9. Numerical simulations of the SEIHDR model with parameter values same as that of Figure 12 and different
rates of vaccination: v = 0 (a), v = 0.10 (b), v = 0.20 (c), v = 0.40 (d).

6. The SEIQDR Model (A Modified SEIHDR Model)

6.1 Formulation of the SEIQDR Model

The major strategy adopted to control the spread of the Ebola virus disease is to isolate exposed and infectious (and dead)
individuals to prevent further contact and possible subsequent transmission. In this section, we modify the SEIHDR model
through the equations (5) in Section 3 by introducing the compartment Q to denote the exposed and infectious population
being quarantined which for our purposes includes hospitalized individuals. We also introduces new parameters as shown
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(a) (b)

(c) (d)

Figure 10. Numerical simulations of the SEIHDR model with parameter values same as that of Figure 12 and different
rates of vaccination: v = 0.50 (a), v = 0.60 (b), v = 0.70 (c), v = 0.80 (d).

in Table 3. We call this modification of the SEIHDR model the SEIQDR model.

6.2 New Model Parameters

Table 3 is a description of the new parameters of the SEIQDR model:

6.3 The Compartmental Model

In this section, we consider the compartmental SEIQDR model given in Figure 11. From the previous model (5),

λ = βI + βH + βD, (8)

but for this model,

λ = βI + βD. (9)

This is because quarantined individuals do not interact with susceptible ones. Also, βD is the contact rate between non-
quarantined dead bodies of Ebola patients and susceptible individuals during funerals. Quarantine individuals are given
proper burial and so do not contribute to further spread. Thus βD has a lower value as compared to that of model (5). It
can be seen that the rate of transmission of infection in model (10) is reduced as compared to the previous models as a
result of the method of isolation of infected individuals. We analyse the effectiveness of this mode of infection control in
the subsequent sections.

The model can be represented by the following system of ordinary differential equations:
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Table 3. Model Parameters and their description.

Parameter Description
1/γQ Time from Exposed to Quarantine
1/γI Time from Exposed to Infected
1/αQ Time from Infected to Quarantine
1/αDQ Time from Quarantine to Death
1/αIQ Time from Quarantine to Removed
τ Fraction of Exposed Infected
θ1 Fraction of Infected Quarantined
δ1 Case fatality rate, Un-quarantined
δ2 Case fatality rate, Quarantined

S ES I Q D R

λ γIτ αQθ1 αDGδ2

γQ(1− τ)

αI(1− θ1)(1− δ1)

αD(1− θ1)δ1

αIQ(1− δ2)

µN

µS µE

µI µQ µD µR

αF

Figure 11. The SEIQDR compartmental model

S ′ = µN − βIS I + βDS D
N

− µS ,

E′ =
βIS I + βDS D

N
− [γIτ + γQ(1 − τ) + µ]E,

I′ = γIτE − [αQθ1 + αD(1 − θ1)δ1 + αI(1 − θ1)(1 − δ1) + µ]I,
Q′ = αQθ1I + γQ(1 − τ)E − [αDQδ2 + αIQ(1 − δ2) + µ]Q,
D′ = αD(1 − θ1)δ1I + αDQδ2Q − [αD + µ]D,
R′ = αI(1 − θ1)(1 − δ1)I + αIQ(1 − δ2)Q + αDD − µR,

(10)

with the non-negativity requirements of the initial conditions:

S (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, D(0) ≥ 0, R(0) ≥ 0. (11)

6.4 Numerical Simulations

We do a numerical simulation to illustrate the above theory. We begin with the SEIHDR model (no quarantine) with
parameters

µ = 0.008, βI = 0.650, βH = 0.540, βD = 0.330, γ = 0.83,
αH = 0.309, αD = 0.075, αI = 0.067, αDH = 0.099,
αIH = 0.063, θ1 = 0.197, δ1 = 0.50, δ2 = 0.50, N = 1.

(12)

For these values the reproduction number R0 for the SEIHDR model is

R0 = 10.02 > 1, (13)

so the endemic equilibrium is stable.

Using the same parameter values as (12) and the quarantine parameter values

βD = 0.15, γI = 0.76, γQ = 0.50, τ = 0.50, αQ = 0.309, αDQ = 0.099,
αIQ = 0.063, θ1 = 0.197, δ1 = 0.50, δ2 = 0.50, N = 1.

(14)

We get the reproduction number to be:

RQ = 3.75. (15)
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It can be seen that there is a substantial decline in the level of infection upon applying quarantine.

Fig 12 shows the numerical simulation of the SEIHDR model (5) (without quarantine). Fig 13 shows the numerical
simulation of the SEIQDR model (10) with the reduced level of infection.

Figure 12. Numerical simulation of the SEIHDR model (5) (no quarantine).

Figure 13. Numerical simulation of the SEIQDR model (10) showing the reduced level of infection.

6.5 Comparing the SEIQDR Model to WHO Data

In this section, we compare the SEIQDR model to the data of confirmed cases for the 2014 Ebola outbreak in Liberia
(WHO, 2015b) provided by the World Health Organisation. Figure 14 compares the infected I(t) obtained from the
SEIQDR model to the WHO data.

7. The SEIQDR Model with Vaccination

In this section, we study the SEIQDR model with vaccination similar to the analysis in Section 5.

7.1 The Compartmental Model with Vaccination

In this section, we modify the SEIQDR model by adding a vaccination term v. Figure 15 shows the relationship between
the variables of the SEIQDR model with vaccination.

The system of equations that describe the SEIQDR model with vaccination are:
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Figure 14. Graph of infected I(t) obtained from (10) with µ = 0.0001, βI = 0.0002, βH = 0.0035, βD = 0.010, γI = 0.83,
γQ = 0.2, αQ = 0.540, αD = 0.095, αI = 0.002, αDQ = 0.099, αIQ = 0.063, θ1 = 0.385, δ1 = 0.0003, δ2 = 0.500, τ = 0.9,
S (0) = 600, E(0) = 0, I(0) = 2, H(0) = 0, D(0) = 0,and R(0) = 0 versus the real data of confirmed cases for the 2014
Ebola outbreak occurred in Liberia.

S ES I Q D R

λ γIτ αQθ1 αDGδ2

γQ(1− τ)

αI(1− θ1)(1− δ1)

αD(1− θ1)δ1

αIQ(1− δ2)

µN

µS µE

µI µQ µD µR

v

αF

Figure 15. The SEIQDR compartmental model with vaccination.

S ′ = µN − βIS I + βDS D
N

− µS − vS ,

E′ =
βIS I + βDS D

N
− [γIτ + γQ(1 − τ) + µ]E,

I′ = γIτE − [αQθ1 + αD(1 − θ1)δ1 + αI(1 − θ1)(1 − δ1) + µ]I,
Q′ = αQθ1I + γQ(1 − τ)E − [αDQδ2 + αIQ(1 − δ2) + µ]Q,
D′ = αD(1 − θ1)δ1I + αDQδ2Q − [αD + µ]D,
R′ = αI(1 − θ1)(1 − δ1)I + αIQ(1 − δ2)Q + αDD − µR + vS ,

(16)

where v is the percentage of individuals vaccinated.

7.2 Numerical Simulations in Case of Vaccination

We simulate the SEIQDR model with vaccination (16) in order to visualise and predict the evolution of every class of
individuals in case of vaccination (Rachah & Torres, 2015). This study focusses on the test of different rates of vacci-
nation and how they affect the curve of every class. We will consider the proportion of susceptible, exposed, infectious,
quarantined, dead or removed (ie. s = S

N , e =
E
N , i =

I
N , q =

Q
N , d =

D
N , r =

R
N so that the total population is N = 1).

The results are shown in Figures 17 and 18. These figures show different rates of vaccination and their effect on the
peak of the curve of the infected individuals with time. The curve of the infected class shows that when the percentage
of vaccinated individuals increases the peak of the curve of infected class goes down indicating that less individuals are
infected and the period of infection is shortened while the number of removed individuals go up.

190



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 8, No. 4; 2016

In fact, when there is an outbreak without vaccination (only quarantine), as in the case of Section 6.4 the disease persist in
the population for a longer period of time (see Figure 12), while in the presence of vaccination the disease suffers extinct
in a short period of time (see Figure 18). This shows the efficiency of using vaccination strategy as a means of Ebola
outbreak control.

Table 4 shows the percentage (to the nearest whole number) of infected individuals i corresponding to different rates of
vaccination v and the respective number of weeks for the peak of the i(t) curve to be reached.

Table 4. Maximum percentage infected i corresponding to different rates of vaccination v and the respective number of
weeks for the peak of the i(t) curve to be reached.

Rate of vaccination Maximum percentage infected Weeks to the peak of i(t)
0 21 % 12.3

0.025 18 % 10.6
0.05 15.3 % 9.4
0.10 13 % 7.5
0.15 11.4 % 6.2
0.20 10.7 % 5.1
0.30 9.9 % 4.0
0.40 9.1 % 3.5

It can be seen from Table 4 that as the rate of vaccination increases the maximum percentage of individuals infected also
increases. Increasing v between 0.15 and 0.4, the percentage infected increases by a small margin. Figure 16 shows the
relation between the rate of vaccination v and the maximum individuals infected i by the disease.

Figure 16. A graph showing the relation between the rate of vaccination and the maximum percentage of individuals
infected for the SEIQDR model.

From Figure 16, the threshold proportion of population to be vaccinated to control the disease is estimated to be not less
than v = 0.35.
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(a) (b)

(c) (d)

Figure 17. Numerical simulations of the SEIQDR model (16) with parameter values same as that of Figure 13 and different
rates of vaccination: v = 0 (a), v = 0.025 (b), v = 0.05 (c), v = 0.10 (d).

8. Conclusion

In this paper, the SEIR model which does not consider the post-mortem contact effect and the SEIHDR model which
takes into account the post mortem contact effect on the spread of the Ebola virus disease were analysed. For the first
model, by constructing the equilibria and stability analysis, it was found that if the basic reproduction number R0 < 1,
then the disease-free equilibrium is stable. That is, the disease dies out. If R0 > 1, then the endemic equilibrium is
stable showing that the disease is present and persist in the population. Secondly, we analysed the SEIHDR model which
is a modification of the SEIR model and which takes into account hospitalized and dead individuals regarding them as
infectious. We compared both the SEIR and the SEIHDR models to the WHO data of confirmed cases for the 2014 Ebola
outbreak in Liberia. It was observed that the results of the SEIHDR model agrees better with the WHO data than that of
the SEIR model especially regarding the early stages of the outbreak. This is reasonable since it shows that Ebola patients
were infected more through post-mortem contact during the first few weeks as a result of the initial misunderstanding and
misdiagnoses of the Ebola virus. This further indicates that the post-mortem contact effect is important in the dynamics
of the Ebola disease. We also formulated and analyzed the SEIQDR model which is a modification of the SEIHDR model
which incorporates quarantine as an intervention regarded as inclusive of hospitalization and supervised burials. It was
shown that the results of the SEIQDR model agrees better with the WHO data than that of the SEIR and the SEIHDR
models especially during the latter stages of the disease outbreak. This is apparently due to the fact that knowledge about
the spread of the disease increased with time and also began to effectively introduce interventions (mainly quarantine) to
control the spread. It is therefore quite possible that if quarantine (in our broader sense) had been introduced earlier, the
disease would not have affected so many people since the SEIQDR model indicate a far lower peak of infectives than the
WHO data. It is therefore concluded that quarantine in its own right is an efficacious intervention. Finally, we modified
both the SEIHDR and the SEIQDR models by introducing vaccination as an intervention. The modified SEIQDR indicates
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(a) (b)

(c) (d)

Figure 18. Numerical simulations of the SEIQDR model (16) with parameter values same as that of Figure 13 and different
rates of vaccination: v = 0.15 (a), v = 0.20 (b), v = 0.30 (c), v = 0.4 (d).

a lower threshold which should not be less than 25% as compared to that of the SEIHDR model which should not be less
than 65%. It was observed, moreover, that with vaccination, the disease suffers extinction in a much shorter period of
time. Thus, it offers an additional strategy to control the disease more efficiently.
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