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Abstract 
Some aspects of recent developments in the study of the Euler equations for compressible 

fluids and related hyperbolic conservation laws are analyzed and surveyed. Basic features and 
phenomena including convex entropy, symmetrization, hyperbolicity, genuine nonlinearity, 
singularities, BV bound, concentration and cavitation are exhibited. Global well-posedness for 
discontinuous solutions, including the BV theory and the L ~ theory, for the one-dimensional 
Euler equations and related hyperbolic systems of conservation laws is described. Some an- 
alytical approaches including techniques, methods and ideas, developed recently, for solving 
multidimensional steady problems are presented. Some multidimensional unsteady problems 
are analyzed. Connections between entropy solutions of hyperbolic conservation laws and 
divergence-measure fields, as well as the theory of divergence-measure fields, are discussed. 
Some further trends and open problems on the Euler equations and related multidimensional 
conservation laws are also addressed. 

Keywords: Adiabatic, Clausius-Duhem inequality, Compensated compactness, Compress- 
ible fluids, Conservation laws, Divergence-measure fields, Entropy solutions, Euler equations, 
Finite difference schemes, Free boundary approaches, Gauss-Green formula, Genuine nonlin- 
earity, Geometric fluids, Glimm scheme, Hyperbolicity, Ill-posedness, Isentropic, Isothermal, 
Lax entropy inequality, Potential flow, Self-similar, Singularity, Supersonic shocks, Super- 
sonic vortex sheets, Traces, Transonic shocks, Multidimension, Well-posedness 
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1. I n t r o d u c t i o n  

Hyperbolic conservation laws, quasilinear hyperbolic systems in divergence form, are one 
of the most important classes of nonlinear partial differential equations, which typically 
take the following form: 

O t u + V x ' f ( u ) - - 0 ,  U E R  n , x E I R  d, (1.1) 

where Vx - (Oxj . . . . .  Oxd) and 

f - -  (fl . . . . .  fd)" ]Rn -+ (]Rn) d 

is a nonlinear mapping with fi "R n --+ R n for i -- 1 . . . . .  d. 

Consider plane wave solutions 

u(t,  x) -- w(t, x .  co) for co E S d-1. 

Then w(t, ~) satisfies 

o,w + ( v f ( w ) .  - o, 

where V -- (Owj . . . . .  0w,,). 
In order that there is a stable plane wave solution, it requires that, for any co E S d-  1 

(Vf(w) �9 co)n xn have n real eigenvalues ~i (W; co) and be diagonalizable, 

l <~i <~n. (1.2) 

Based on this, we say that system (1. l) is hyperbolic in a state domain 79 if condition (1.2) 
holds for any w E D and co E sd-1 

The simplest example for multidimensional hyperbolic conservation laws is the follow- 
ing scalar conservation law 

a t u + d i v x f ( u ) - O ,  UEIR, XEIR d, (1.3) 

with f" R -+ R d nonlinear. Then 

,~(u, o9) - f ' ( u ) - o 9 .  

Therefore, any scalar conservation law is hyperbolic. 

As is well known, the study of the Euler equations in gas dynamics gave birth to the 

theory of hyperbolic conservation laws so that the system of Euler equations is an archetype 
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of this class of nonlinear partial differential equations. In general, the Euler equations for 
compressible fluids in R d are a system of d + 2 conservation laws 

I O t p + V x . m - - O  

Otm + Vx" (m| ---7-) + V x p -  0 

O t E + V x . ( ~ ( E + p ) ) - - O  

(Euler 1755-1759), 

(Cauchy 1827-1829), 

(Kirchhoff 1868) 

(1.4) 

for (t, x) 6 Rd+ +1, Rd+ +1 -- R+ x R d " -  (0, cx~) • R d. System (1.4) is closed by the consti- 

tutive relations 

1 Iml 2 
p = p(p,  e), E = + pe. (1.5) 

2 p 

In (1.4) and (1.5), r = 1/p is the deformation gradient (specific volume for fluids, strain 
for solids), v -- (vl . . . . .  Vd) T is the fluid velocity with pv -- m the momentum vector, 
p is the scalar pressure and E is the total energy with e the internal energy which is a given 
function of (r, p) or (p, p) defined through thermodynamical relations. The notation a | b 
denotes the tensor product of the vectors a and b. The other two thermodynamic variables 
are temperature 0 and entropy S. If (p, S) are chosen as the independent variables, then 
the constitutive relations can be written as 

(e, p, O) -- (e(p, S), p(p,  S), O(p, S)) (1.6) 

governed by 

P 0 dS -- de + p dr -- de - ---w dp. p,- (1.7) 

For a polytropic gas, 

p = RpO, e = CvO, Y = 1 + -  (1.8) 
Cv 

and 

p = p(p,  S) = xp • e s/cv, K py_leS/cv e -- ~ , (1.9) 
F - 1  

where R > 0 may be taken to be the universal gas constant divided by the effective mole- 
cular weight of the particular gas, Cv > 0 is the specific heat at constant volume, y > 1 is 
the adiabatic exponent and tc > 0 can be any positive constant by scaling. 

As shown in Section 2.4, no matter how smooth the initial data is, the solution of (1.4) 
generally develops singularities in a finite time. Then system (1.4) is complemented by the 
Clausius-Duhem inequality 

Ot (p S) + Vx. (mS) ~> 0 (Clausius 1854, Duhem 1901) (1.10) 
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in the sense of distributions in order to single out physical discontinuous solutions, so- 

called entropy solutions. 
When a flow is isentropic, that is, entropy S is a uniform constant So in the flow, then 

the Euler equations for the flow take the following simpler form 

Otp+Vx.m-O, 
atIn + Vx. (m| ] , ~' , + V p - - O ,  

(1.11) 

where the pressure is regarded as a function of density, p - p (p, S0), with constant So. For 
a polytropic gas, 

P(P)--KP • v > l ,  (1.12) 

where tc > 0 can be any positive constant under scaling. This system can be derived 
from (1.4) as follows. It is well known that, for smooth solutions of (1.4), entropy 
S (p, In, E) is conserved along fluid particle trajectories, i.e., 

O, (p S) + Vx-(mS) --0.  (1.13) 

If the entropy is initially a uniform constant and the solution remains smooth, then (1.13) 
implies that the energy equation can be eliminated, and entropy S keeps the same constant 
in later time. Thus, under the constant initial entropy, a smooth solution of (1.4) satisfies 
the equations in (1.11). Furthermore, it should be observed that solutions of system (1.11) 

are also a good approximation to solutions of system (1.4) even after shocks form, since 
the entropy increases across a shock to third order in wave strength for solutions of (1.4), 
while in (1.11) the entropy is constant. Moreover, system (1.11) is an excellent model for 
the isothermal fluid flow with V = 1 and for the shallow water flow with V = 2. 

In the one-dimensional case, system (1.4) in Eulerian coordinates is 

I Otp + Oxm--O, 
m 2 Otm + Ox(--F- + p) --O, 

o,e + +p))-o 

(1.14) 

1 m 2 
with E -- ~ 7 + pe. The system above can be rewritten in Lagrangian coordinates in one- 
to-one correspondence as long as the fluid flow stays away from vacuum p - 0, 

atr - Oxv-O,  

atv + axp-O, 

8t(e+~)+Ox(pv)--O 
(1.15) 
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with v = m / p ,  where the coordinates ( t ,x)  are the Lagrangian coordinates, which are 
different from the Eulerian coordinates for (1.14); for simplicity of notation, we do not 
distinguish them. For the isentropic case, systems (1.14) and (1.15) reduce to 

3t p + 3xm = 0, 
(1.16) 

and 

Otr - OxV - O, 
Otv + Oxp- -0 ,  (1.17) 

respectively, where pressure p is determined by (1.12)for the polytropic case, p = p ( p ) =  
/5(r) with r = 1/p.  The solutions of (1.16) and (1.17), even for entropy solutions, are 
equivalent (see [52,332]). 

This chapter is organized as follows. In Section 2 we exhibit some basic features and 
phenomena of the Euler equations and related hyperbolic conservation laws such as convex 
entropy, symmetrization, hyperbolicity, genuine nonlinearity, singularities and B V bound. 
In Section 3 we describe some aspects of a well-posedness theory and related results for 
the one-dimensional isentropic, isothermal and adiabatic Euler equations, respectively. In 
Sections 4-7 we discuss some samples of multidimensional models and problems for the 
Euler equations with emphasis on the prototype models and problems that have been solved 
or expected to be solved rigorously at least for some cases. In Section 8 we discuss connec- 
tions between entropy solutions of hyperbolic conservation laws and divergence-measure 
fields, as well as the theory of divergence-measure fields to construct a good framework 
for studying entropy solutions. Some analytical approaches including techniques, methods, 
and ideas, developed recently, for solving multidimensional problems are also presented. 

2. Basic features and phenomena 

In this section we exhibit some basic features and phenomena of the Euler equations and 
related hyperbolic conservation laws. 

2.1. Convex entropy and symmetrization 

A function r/:79 --+ R is called an entropy of system (1.1) if there exists a vector function 
q:79 --+ R d, q = (ql . . . . .  qd), satisfying 

Vqi(u) : Vr/(u)Vfi (u), i -- 1 . . . . .  d. (2.1) 

An entropy r/(u) is called a convex entropy in 79 if 

V2/7(u) ) 0 for any u 6 79 
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and a strictly convex entropy in 79 if 

V2/'](u) ) col 

n 

with a constant co > 0 uniform for u E 791 for any 791 C 791 G 79, where I is the n x n iden- 
tity matrix. Then the correspondence of (1.10) in the context of hyperbolic conservation 
laws is the Lax entropy inequality 

0trl(u) + Vx. q(u) ~< 0 (2.2) 

in the sense of distributions for any C 2 convex entropy-entropy flux pair (7, q). 

THEOREM 2.1. A system in (1.1) endowed with a strictly convex entropy 71 in a state 

domain 79 must be symmetrizable and hence hyperbolic in 79. 

PROOF. Taking V of both sides of the equations in (2.1) with respect to u, we have 

V2r l (u )g f i (u )  n u Vrl (u)V2fi (u)  -- V2qi(u) ,  i -- 1 . . . . .  d. 

Using the symmetry of the matrices 

V/7 (U) V2fi (U) and V2qi (U) 

for fixed i -- l, 2 . . . . .  d, we find that 

V2r](u)Vfi (tit) is symmetric. (2.3) 

Multiplying (1.1) by V2r](u), we get 

d 
V2r](u) Otu --[- Z V2r](u)Vfi(u)Vxiu--O" 

i=1 
(2.4) 

The fact that the matrices V2rl(u) > 0 and V2rl(u)Vfi(u), i -- 1, 2 . . . . .  d, are symmetric 
implies that system (1.1) is symmetrizable. Notice that any symmetrizable system must be 
hyperbolic, which can be seen as follows. 

Since vZrl(u) > 0 for u 6 79, then the hyperbolicity of (1.1) is equivalent to the hyper- 
bolicity of (2.4), while the hyperbolicity of (2.4) is equivalent to that, for any co 6 S d-a, 

all zeros of the determinant [)vV2r](u) - V2rl(u)Vf(u)  �9 09 1 are real. (2.5) 

Since V2/7(U) is real symmetric and positive definite, there exists a matrix C(u) such 
that 

V 2 r I (U) -- C (u) C (u) T. 
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Then the hyperbolicity is equivalent to that, for any co 6 S d - 1  , the eigenvalues of the fol- 
lowing matrix 

C (U) -1 V2 r/(u)Vf(u) �9 co(C (U) -1 ) V (2.6) 

are real, which is true since the matrix is real and symmetric. This completes the 
proof. D 

REMARK 2.1. This theorem is particularly useful to determine whether a large physical 
system is symmetrizable and hence hyperbolic, since most of physical systems from con- 
tinuum physics are endowed with a strictly convex entropy. In particular, for system (1.4), 

(rl,, q,) = ( - p S ,  - m S )  (2.7) 

is a strictly convex entropy-entropy flux pair when p > 0 and p > 0; while, for sys- 
tem (1.11), the mechanical energy and energy flux 

(1  Im[ 2 +pe(p) ,  m ( 1  Iml 2 + p e ( p ) + p ( p ) ) )  (2.8) 
( r / , , q , ) - -  ~ P p ~ P 

is a strictly convex entropy-entropy flux pair when p > 0 for polytropic gases. For multi- 
dimensional hyperbolic systems of conservation laws without a strictly convex entropy, it 
is possible to enlarge the system so that the enlarged system is endowed with a globally 
defined, strictly convex entropy. See [29,111,113,275,295]. 

REMARK 2.2. The observation that systems of conservation laws endowed with a strictly 
convex entropy must be symmetrizable is due to Godunov [155-157], Friedrich and Lax 
[140] and Boillat [22]. See also [284]. 

REMARK 2.3. This theorem has many important applications in the energy estimates. Ba- 
sically, the symmetry plays an essential role in the following situation: For any u, v E I~ n, 

2uT V2r/(v)Vfk (v) Oxk u 

= Ox~ (uTV2r/(v)Vfk (v)u) -- u T Oxk (V2r/(v)Vfk (v))u (2.9) 

for k = 1, 2 . . . . .  d. This is very useful to make energy estimates for various problems. 

There are several direct, important applications of Theorem 2.1 based on the symmetry 
property of system (1.1) endowed with a strictly convex entropy such as (2.9). We list three 
of them below. 

2.1.1. Local existence of classical solutions. Consider the Cauchy problem for a general 
hyperbolic system (1.1) with a strictly convex entropy r/whose Cauchy data is 

ult=o = uo. (2.10) 
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THEOREM 2.2. Assume that uo" •d __+ 79 is in H s n L ~ with s > d / 2  + 1. Then, for  

the Cauchy problem (1.1) and (2.10), there exists a finite time T -- T(lluoll~, Ilu011L~) E 
(0, OQ) such that there is a unique bounded classical solution u E C 1 ([0, T] • IR d) with 

U(t,X) E79 f o r ( t , x )  E [ O , T ] •  d 

and 

U E C([0,  T]; H s) N 61([0 ,  T]; HS-1) .  

Kato [ 184,185] first formulated and applied a basic idea in the semigroup theory to yield 
the local existence of smooth solutions to (1.1). 

The proof of this theorem in [241 ] relies solely on the elementary linear existence theory 
for symmetric hyperbolic systems with smooth coefficients via a classical iteration scheme 
(cf. [101]) by using the symmetry of system (1.1), especially (2.9). In particular, for all 
u E 79, there is a positive definite symmetric matrix A0(u) = vZr](u) that is smooth in u 
and satisfies 

c01 ~< A0 (u) ~< c o 11 (2.11) 

m 

with a constant co > 0 uniform for u E 791, for any 791 C 791 C 79, such that Ai (u) i 
A0(u)Vfi(u) is symmetric. Moreover, a sharp continuation principle was also provided" 
For u0 E H S with s > d / 2  + 1, the interval [0, T) with T < cx~ is the maximal interval of 
the classical H s existence for (1.1) if and only if either 

I(u,, Du)(t,  ")lc~ --+ oo as t --+ T, 

or 

u(t, x) escapes every compact subset K G 79 as t --+ T. 

The first catastrophe in this principle is associated with the formation of shock waves and 
vorticity waves, among others, in the smooth solutions, and the second is associated with 
a blow-up phenomenon such as focusing and concentration. 

In [246], Makino, Ukai and Kawashima established the local existence of classical solu- 
tions of the Cauchy problem with compactly supported initial data for the multidimensional 
Euler equations, with the aid of the theory of quasilinear symmetric hyperbolic systems; 
in particular, they introduced a symmetrization which works for initial data having either 
compact support or vanishing at infinity. There are also discussions in [48] on the local 
existence of smooth solutions of the three-dimensional Euler equations (1.4) by using an 
identity to deduce a time decay of the internal energy and the Mach number. 

The local existence and stability of classical solutions of the initial-boundary value prob- 
lem for the multidimensional Euler equations can be found in [ 182,189,191 ] and the refer- 
ences cited therein. 
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2.1.2. Stability of  Lipschitz solutions, rarefaction waves, and vacuum states in the class of 
entropy solutions in L cr 

THEOREM 2.3. Assume that system (1.1) is endowed with a strictly convex entropy rl on 
compact subsets of  7). Suppose that v is a Lipschitz solution of (1.1) on [0, T), taking 
values in a convex compact subset K of D, with initial data v0. Let u be any entropy 
solution of  (1.1) on [0, T), taking values in K, with initial data u0. Then 

Zx~<R [u(,, x) - v(,, x)l 2 dx ~< c ( ~ )  Zx~<R+~, luo(x) - vo(x) 12 dx  

holds for  any R > 0 and t ~ [0, T), with L > 0 depending solely on K and the Lipschitz 

constant of  v. 

The main point for the proof of Theorem 2.3 is to use the relative entropy-entropy flux 
pair (cf. [ 105]) 

(u ,  v)  - ~ (u)  - ~ (v)  - v ~  (v)  (u  - v ) ,  

f l ( u ,  v)  - q(u) - q(v) - Vr/(v) (f(u) - f(v)) 

(2.12) 

(2.13) 

and to calculate and find 

o,.(u, v) + Vx. ~(u, v) ~< - {o, ( v , ( v ) ) ( u -  v) + Vx(V,(v)) (f(u) - r(v))1. 

Since v is a classical solution, we use the symmetry property of system (1.1) with the 
strictly convex entropy ~ to have 

0t (V~(V)) = (0tv)TV2/7(V) 

d 
~-- - - E ( 0 x k  V) T (Vfk (V))TV2/7 (V) 

k=l 

d 
-- --Z(Oqxk v)Tv2r/(v)Vfk (V). 

k=l 

Therefore, we have 

d 

Otot(u, V) -+- Vx" fl(u, v) ~< - E ( O x k  V)TV2jT(V)Qfk(u, V), 
k=l 

where 

Qfk (u,  v)  - f~ (u)  - f~ (v)  - V ~  (v)  (u  - v ) .  
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Integrating over a set 

{(r, x)" 0 ~< r ~< t ~< T, Ixl <~ R + L(t  - r)} 

with the aid of the Gauss-Green formula in Section 8 and choosing L > 0 large enough 
yields the expected result. 

Some further ideas have been developed to show the stability of planar rarefaction waves 
and vacuum states in the class of entropy solutions in Le~ for the multidimensional Euler 
equations by using the Gauss-Green formula in Section 8. 

THEOREM 2.4. Let co E S d-1. Let 

R(t, x)- (/~, lh) ( ~ )  

be a planar solution, consisting of  planar rarefaction waves and possible vacuum states, 
of  the Riemann problem 

_ j (P - ,  m - ) ,  
Rlt=0 / (p+, 11~1+), 

X ' O )  < O, 

X. (_O > 0, 

with constant states (p+, ~a+). Suppose u(t, x) = (p, m)(t, x) is an entropy solution in L ~ 
of  (1.11) thatmay contain vacuum. Then, for  any R > 0 and t E [0, co), 

fix c~(u, R)(t, x) dx ~< / oe(u, R)(0, x) dx, 
f 

[<R ,JIx[<R+Lt 

where L > 0 depends solely on the bounds of  the solutions u and R, and 

or(u, R ) -  ( u -  R)T ( fo  1 V2~, (R + r ( u -  R ) ) d r ) ( u -  R) 

l lm12 4-pe(p) with r/,(u) -- E ---- 2 p 

REMARK 2.4. Theorem 2.3 is due to Dafermos [110] (also see [111]). Theorem 2.4 is 
due to Chen and Chen [56], where a similar theorem was also established for the adiabatic 
Euler equations (1.4) with appropriate chosen entropy; also see [55] and [70]. 

REMARK 2.5. For multidimensional hyperbolic systems of conservation laws with par- 
tially convex entropies and involutions, see [111]; also see [24,106]. 

REMARK 2.6. For distributional solutions to the Euler equations (1.4) for polytropic 
gases, it is observed in Perthame [269] that, under the basic integrability condition 

p, E, pv" x, IvJE E L~oc (II~+; L1 (]Rd)) 



12 G.-Q. Chen 

and the condition that entropy S(t, x) has an upper bound, the internal energy decays in 
time and, furthermore, the only time-decay on the internal energy suffices to yield the 
time-decay of the density. Also see [48]. 

2.1.3. Local existence of shock front solutions. Shock front solutions, the simplest type of 
discontinuous solutions, are the most important discontinuous nonlinear progressing wave 
solutions in compressible Euler flows and other systems of conservation laws. For a general 
multidimensional hyperbolic system of conservation laws (1.1), shock front solutions are 
discontinuous piecewise smooth entropy solutions with the following structure: 

(i) there exist a C 2 time-space hypersurface $( t )  defined in (t ,x) for 0 ~< t ~< T 
with time-space normal (nt, nx) ---= (nt, nl . . . . .  ha) and two C 1 vector-valued functions, 
u + (t, x) and u - ( t ,  x), defined on respective domains D + and D -  on either side of the 
hypersurface ,9(t), and satisfying 

0tu + + V .  f(u +) - 0  in D+; (2.14) 

(ii) the jump across the hypersurface $( t )  satisfies the Rankine-Hugoniot condition 

{nt(u + - u - )  + nx. (f(u +) - f (u - ) )  } I s - o .  (2.15) 

For the quasilinear system (1.1), the surface ,9 is not known in advance and must be de- 
termined as a part of the solution of the problem; thus the equations in (2.14) and (2.15) 
describe a multidimensional, highly nonlinear, free-boundary value problem for the quasi- 
linear system of conservation laws. 

The initial data yielding shock front solutions is defined as follows. Let So be a smooth 
hypersurface parametrized by oe, and let n(oe) = (nl . . . . .  na)(ol) be a unit normal to So. 
Define the piecewise smooth initial data for respective domains D~- and D o on either side 
of the hypersurface So as 

u o(x),  x ~ D  o , 
u o ( x ) -  u~(x),  x ~ D~-. (2.16) 

It is assumed that the initial jump in (2.16) satisfies the Rankine-Hugoniot condition, i.e., 
there is a smooth scalar function a (or) so that 

- ~  (or)(u~-(or)- u o (ol)) + n(r (f(u~-(or)) - f(u o (or))) --O, (2.17) 

and that a (or) does not define a characteristic direction, i.e., 

O'(Ol) ~/~i (U~), Og E SO, 1 ~<i ~< n, (2.18) 

where ~.i, i = 1 . . . . .  n, are the eigenvalues of (1.1). It is natural to require that ,9(0) = So. 
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Consider the three-dimensional full Euler equations in (1.4), away from vacuum, which 
can be rewritten in the form 

l 
ot p + X7x �9 (pv) -- 0, x C R 3, t > 0, 

Ot (pv) + Vx. (pv | v) + 7 x p  -- 0, 

+ Vx(v(E + p ) ) -  0, 
(2.19) 

with piecewise smooth initial data 

(po, Vo, e +)(x), 
(p, v, E)l,_-0- v+, E+)(x), 

xET~ O, 

x 6 D  +. 
(2.20) 

THEOREM 2.5. Assume that So is a smooth hypersurface in IR 3 and that (p+, v +, E+)(x) 

belongs to the uniform local Sobolev space Hu~(D+), while (Po, Vo, Eo)(X) belongs to 
the Sobolev space H s (Do), for some fixed s >>. 10. Assume also that there is a function 
c~(a) E H s (So) so that (2.17) and (2.18) hold, and the compatibility conditions up to order 
s - 1 are satisfied on So by the initial data, together with the entropy condition 

v + .  n(ot)+ V/pp(p +, S~-) < o-(ot) < v o �9 n(ot)+ V/pp(po , So),  (2.21) 

and the Majda stability condition 

1 + (p(p+) - P(Po))  (Po)ZPP(PO' So)PS(P~ So) 

O0 

- (po)3(p(P~)  - P(Po))Pp(Po'  SO) > O. (2.22) 

Then there is a C 2 hypersurface S( t )  together with C 1 functions (p+, v +, E+)(t ,  x) de- 
fined for t c [0, T], with T sufficiently small, so that 

- / (P-'  v- ,  E-) ( t ,  x), 
(p ,  v, E)(t  x) 

' I ( P + ' v + ' E + ) ( t ' x ) '  

(t,x) c / ) - ,  
(2.23) 

(t, x) E D +, 

is the discontinuous shock front solution of the Cauchyproblem (2.19) and (2.20) satisfying 
(2.14) and (2.15). In particular, the condition in (2.22) is always satisfied for shocks of 
any strength for polytropic gas with Y > 1 and for sufficiently weak shocks for general 
equations of  state. 

In Theorem 2.5, the uniform local Sobolev space HS~ (D +) is defined as follows: A vector 
function u is in Hul, provided that there exists some r > 0 so that 

m a x  IIW~,yullm < oo 
y ~ d  
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with 

x - y )  
/ / )r ,y(X)__ - -  t/) 

r 

where w E C ~  (R d) is a function so that w(x) ~> 0, w(x) - 1 when Ixl ~ 1/2 and w(x) - 0 
when Ix] > 1. 

REMARK 2.7. Theorem 2.5 is taken from [240]. The compatibility conditions in Theo- 
rem 2.5 are defined in [240] and needed in order to avoid the formation of discontinuities 
in higher derivatives along other characteristic surfaces emanating from So: Once the main 
condition in (2.17) is satisfied, the compatibility conditions are automatically guaranteed 
for a wide class of initial data functions. Further studies on the local existence and stabil- 
ity of shock front solutions can be found in [239-241 ]. The uniform time of existence of 
shock front solutions in the shock strength was obtained in [249]. Also see [21] for further 
discussions. 

The idea of the proof is similar to that for Theorem 2.2 by using the existence of a 
strictly convex entropy and the symmetrization of (1.1), but the technical details are quite 
different due to the unusual features of the problem considered in Theorem 2.5 (see [240]). 
The shock front solutions are defined as the limit of a convergent classical iteration scheme 
based on a linearization by using the theory of linearized stability for shock fronts devel- 
oped in [239]. The technical condition s ~> 10, instead of s > 1 + d/2, is required because 
pseudo-differential operators are needed in the proof of the main estimates. Some improved 
technical estimates regarding the dependence of operator norms of pseudo-differential op- 
erators on their coefficients would lower the value of s. For more details, see [240]. 

2.2. Hyperbolicity 

There are many examples of n x n hyperbolic systems of conservation laws for x E ~2 
which are strictly hyperbolic; that is, they have simple characteristics. However, for 
d = 3, there are no strictly hyperbolic systems if n - 2 (mod 4) or, even more generally, 
n -- 4-2, -+-3, 4-4 (mod 8) as a corollary of Theorem 2.6. Such multiple characteristics in- 
fluence the propagation of singularities. 

THEOREM 2.6. Let A, B and C be three matrices such that 

~ A + ~ 3 B +  yC 

has real eigenvalues for any real ~, ~ and Y. If  n = 4-2, i 3 ,  4-4 (mod 8), then there exist 
do, ~0 and 9/0 with ~2 + ~2 + y2 ~ 0 such that 

otoA +/3oB + yoC (2.24) 

is degenerate, that is, there are at least two eigenvalues of matrix (2.24) which coincide. 
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PROOF. We prove only the case n = 2 (mod 4). 
1. Denote A// the set of all real n x n matrices with real eigenvalues, and N" the set 

of nondegenerate matrices (that have n distinct real eigenvalues) in A//. The normalized 
eigenvectors r j  of N in N', i.e., 

Nr j  = zkjrj ,  Irjl = 1. j = 1.2 . . . . .  n. 

are determined up to a factor + 1. 
2. Let N(0), 0 ~< 0 ~< 2rr, be a closed curve in N'. If we fix r j (0) ,  then r j (0 )  can be 

determined uniquely by requiring continuous dependence on 0. 

Since 

N(2u)  = N(0), 

then 

rj(2~r) = r j r j ( 0 ) ,  vj = 4-1. 

Clearly, 
(i) each "gj is a homotopy invariant of the closed curve, 

(ii) each "gj = 1 when N(0) is constant. 
3. Suppose now that the theorem is false. Then 

N (0) = A cos 0 + B sin 0 

is a closed curve in N" and 

~ 1 ( 0 )  < )~2(0)  < " "  < An(O). 

Since N(~)  = - N ( 0 ) ,  we have 

~ ( ~ )  = - x , _ j + l  (0), 

r j ( u )  = pjrn- j+l(O),  pj -+- l. 

4. Since the ordered basis 

{rl (0), r2(0) . . . . .  r ,  (0) } 

is defined continuously, it retains its orientation. Then the ordered bases 

{r l (0) . r2(0)  . . . . .  r . (0)}  and {p l r . (0 ) .  p2rn- l (0 )  . . . . .  p . r l (0 )}  

have the same orientation. 
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For the case n -- 2 (mod 4), reversing the order reverses the orientation of an ordered 
basis, which implies 

V I  pj  - - - - 1 .  

j - 1  

Then there exists k such that 

PkPn-k+l  - -  - -1 .  (2.25) 

5. Since N(0 + r t ) - - N ( 0 ) ,  then 

Aj(O -q- ~)  - - - A n - j + l  (0 ) ,  

which implies 

r j  (2 r t )  - -  p j r n - j + l  (Tt) -- P j P n - j + l r n - j + l  (0). 

Therefore, we have 

vj -- P j P n - j + I .  

Then (2.25) implies 

vk-- 1, 

which yields that the curve 

N (0) = A cos 0 + B sin 0 

is not homotopic to a point. 
6. Suppose that all matrices of form otA + fiB + yC,  O/2 -]-- f12 _+_ y 2  = 1, belong to Af. 

Then, since the sphere is simply connected, the curve N(0) could be contracted to a point, 
contracting rk -- --1. This completes the proof. E3 

REMARK 2.8. The proof is taken from [201] for the case n -= 2 (mod4). The proof for the 
more general case n = +2,  4-3,-4-4 (mod 8) can be found in [138]. 

Consider the isentropic Euler equations (1.11). 
When d = 2, n -- 3, the system is strictly hyperbolic with three real eigenvalues A_ < 

Ao < A+, 

A0 = 091Ul -+- 0)2U2, A4- = O)lUl -q- (-O2U2 i v/P'(19), f) > O. 

The strict hyperbolicity fails at the vacuum states when p = 0. 
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However, when d = 3, n = 4, the system is no longer strictly hyperbolic even when 
p > 0 since the eigenvalue 

)~0 --  colUl + co2u2 -+- co3u3 

has double multiplicity, although the other eigenvalues 

)~-+- - -  col tt 1 --~ co2tt2 + 0)3//3 -+" v / P  ' (/9) 

are simple when p > 0. 
Consider the adiabatic Euler equations (1.4). 
When d = 2, n -- 4, the system is nonstrictly hyperbolic since the eigenvalue 

~,0 --- col U 1 -Jr- co2U2 

has double multiplicity; however, 

)~-1- - -  colUl -Jr-co2u2 i ~ - ~ P  

are simple when p > 0. 
When d = 3, n = 5, the system is again nonstrictly hyperbolic since the eigenvalue 

)~0 = col U 1 +- co2U2 q- 093//3 

has triple multiplicity; however, 

~.-4- - -  colUl + co2u2 n u co3U3 -q- V/--~-; 

are simple when p > 0. 

2.3. Genuine nonlinearity 

The j th-characteristic field of system (1.1) in 79 is called genuinely nonlinear if, for each 
fixed co �9 S d - l ,  the j th  eigenvalue ;g(u;  co) and the corresponding eigenvector r j (u ;  co) 
determined by 

(Vf(u) .  co)rj (u; co) - Zj (u; co)rj (u; co) 

satisfy 

Vu)~j (u;  co) .  r j (u ;  co) -f= 0 for any u e 79, co e S d - 1 .  (2.26) 
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The j th-characteristic field of system (1.1) in 7) is called linearly degenerate if 

Vu~, j (U; co) �9 r j  (u; co) = 0 for  a n y  u E D .  (2.27) 

Then we immediately have the following theorem. 

THEOREM 2.7. Any scalar quasilinear conservation law in R d, d ~ 2, is never genuinely 
nonlinear in all directions. 

It is because, in this case, 

X(u; co) = f '(u) .co, r(u; co) = 1 

and 

X'(u; co)r(u; co) =_ f '  (u) . co 

which is impossible to make this never equal to zero in all directions. 
A multidimensional version of genuine nonlinearity for scalar conservation laws is 

I{u: T+f ' (u ) .~- -o}[=o  forany(r, co) 6S d, 

which is a generalization of (2.26). 
Under this generalized nonlinearity, the following have been established: 

(i) solution operators are compact as t > 0 in [224] (also see [64,314]), 
(ii) decay of periodic solutions [65,128], 

(iii) initial and boundary traces of entropy solutions [82,329], 
(iv) B V  structure of L ~ entropy solutions [112]. 
For systems with n = 2m, m ~> 1 odd, and d = 2, using a topological argument, we have 

the following theorem. 

THEOREM 2.8. Every real, strictly hyperbolic quasilinear system for  n -- 2m, m ~> 1 odd, 
and d = 2 is linearly degenerate in some direction. 

PROOF. We prove only for the case m -- 1. 
1. For fixed u 6 R n , define 

N(0; u) = Vfl (u) cos0 + Vf2(u) sin0. 

Denote the eigenvalues of N(0; u) by X+ (0; u), 

)~_ (0; u) < )~+ (0; u) 

with 

N(0; u)r+(0; u) = )~+(0; u)r+(0; u), Ir+(0; u ) l -  1. (2.28) 
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This still leaves an arbitrary factor +1, which we fix arbitrarily at 0 - -0 .  For all other 
0 c [0, 2n], we require r+ (0; u) to vary continuously with 0. 

2. Since N(0 + n; u) = - N ( 0 ;  u), 

A+(0 + n; u) = -A_(0 ;  u), A_(0 + ~; u) = -A+(0;  u). 

It follows from this and Ir• - 1 that 

r+(0 + n; u) = 0-+r_ (0; u), r_(0 + n; u) = 0-_r+(0; u), (2.29) 

where 0-+ = 1 o r -  1. 
3. Since r+(0; u) were chosen to be continuous functions of 0, we find that 
(i) 0-+ are also continuous functions of 0 and, thus, they must be constant since 

0-+ = +1; 
(ii) the orientation of the ordered basis {r_ (0; u), r+ (0; u) } does not change and, hence, 

the bases 

{ r_ (0; u), r+ (0; u) } and { r_ (n" u), r+ (n" u) } 

have the same orientation. 
Therefore, by (2.29), 

{r_ (0; u), r+ (0; u) } and {0-_r+ (0; u), o+r_  (0; u) } 

have the same orientation. Then 

~+~_ = - 1  

and 

r+(2n;  u) = 0-+r_ (~; u) = 0-+0-_r+(0, u) = - r + ( 0 ,  u). (2.30) 

Similarly, we have 

r_ (2n; u) = - r _  (0; u). (2.31) 

4. Since the eigenvalues A+(0; u) are periodic functions of 0 with period 2n for fixed 
u E R 2, so are their gradients. Then 

VuA+(2n; u)r•  u) = -VuA(O; u)r• u). 

Noticing that 

VA+(O; u)r+(O; u) 
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vary continuously with 0 for any fixed u 6 ]1~ 2, we conclude that there exist 0+ E (0, 2rt) 
such that 

VA:L (0t ;  u) r+ (0+; u) - O. 

This completes the proof. D 

REMARK 2.9. The proof of Theorem 2.8 is from [202]. 

REMARK 2.10. Quite often, linear degeneracy results from the loss of strict hyperbolicity. 
For example, even in the one-dimensional case, if there exists j # k such that 

A j (U) - -  A k (U) fo r  a l l  u c K, 

then Boillat [23] proved that the j th-  and kth-characteristic families are linearly degenerate. 

For the isentropic Euler equations (1.11) with d -- 2, n -- 3, 

A0 - -  O)lUl -+- o92u2, A+ - -  091Ul -Jr- O)2U2 -+- v/if(p), 

and 

ro - ( - - 0 ) 2 , 0 9 1 , 0 ) V ,  

( )T 
P 

r + -  -+-COl, -+-6o2, v/pt(p ) 

which implies 

V ~ o  �9 ro - 0  

and 

pp" (p) + 2p' (p) ), + 1 
VA+ . r + - - s  = +  =/=0. 

2p ' (p)  2 

For the adiabatic Euler equations (1.4) with d - 2, n - 4, 

A0 - -  O)lUl -+- o)2u2,  Adz - -  O)lUl -+- (o2tt2 q - / , / ? ' p  
V p 

a n d  

ro - ( - - 0 ) 2 ,  0 ) 1 , 0 ,  1) q- , , P P r + -  &col +o)2 Yx/P-~, 

which implies 

V)~0 �9 ro = 0 
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and 

9 /+1  
V A + . r + - +  # 0 .  

2 

2.4. Singularities 

For the one-dimensional case, singularities include the formation of shock waves and the 
development of vacuum states, at least for gas dynamics. For the multidimensional case, 
the situation is much more complicated: besides shock waves and vacuum states, singular- 
ities may include vorticity waves, focusing waves, concentration waves, complicated wave 
interactions, among others. 

Consider the Cauchy problem of the Euler equations in (1.4) for polytropic gases in R 3 
with smooth initial data 

(p, v, S)lt=0 -- (P0, v0, S0)(x) with p0(x) > 0 for x 6 R 3 (2.32) 

satisfying 

(po, vo, So)(x) - (/5, O, S-) for Ix] f> R, 

where /5 > 0, S and R are constants. The equations in (1.4) possess a unique lo- 
cal Cl-solution (p, v, S)(t ,x) with p( t ,x)  > 0 provided that the initial data (2.32) is 
sufficiently regular (Theorem 2.2). The support of the smooth disturbance ( p 0 ( x ) -  

/5, v0(x), S0(x) - S - )  propagates with speed at most o- -v /pp ( /5 ,  S-) (the sound speed), 
that is, 

(p, v, S)(t, x) - (/5, 0, S-) if Ixl ~ R + o-t. (2.33) 

The proof of this essential fact of finite speed of propagation for the three-dimensional case 
can be found in [181 ], as well as in [299], established through local energy estimates. 

Take t5 -- p(/5, S ). Define 

P(t )  -- fR  3 (p( t ,  X) 1/Y - -  ~l/y) dx 

-- xl/• f~ (P(t' x) exp( S(t' x) • - f3  

F(t) -- fR3 pv(t, x). x dx, 

expISll dx 

which, roughly speaking, measure the entropy and the radial component of momentum. 
The following theorem on the formation of singularities in solutions of (1.4) and (2.32) is 
due to Sideris [300]. 
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THEOREM 2.9. Suppose that (p,v,S)( t ,x)  is a Cl-solution of (1.4) and (2.32) 
for O < t < T and 

P (0) ~> O, (2.34) 

16~t 
F(0) > otaR4maxp0(x), c~ = ~ .  (2.35) 

x 3 

Then the lifespan T of the C 1-solution is finite. 

PROOF. Set 

M(t) -- f ~  (p(t, x) - #) dx. 

Combining the equations in (1.4) with (2.33) and using the integration by parts, one has 

M' (t) -- - f ~ 3  V .  (pv) dx - O, 

P ' ( t ) = - K 1 / •  R3 v ( p v e x p ( ~ c v ) )  d x -  0' 

which implies 

M(t)--M(O), P (t) = P (0) (2.36) 

and 

F'(t)  -- fR3 x. (pv)t dx 

- J~3 (plvl2 + 3 ( p - / 3 ) )  dx 

(plvl 2 + 3 ( p - / 3 ) )  dx, (2.37) 

where B(t) = {x e R3: Ixl ~ R + at}. From H61der's inequality, (2.34) and (2.36), one has 

1 1/• dx pdx >~ p 
(t) IB(t)l • (t) 

, ( 
It~()l'"t"z-1 P(0) + dx (t) 

>1 ft,(t) ~ dx, 
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where IB(t)l denotes the volume of ball B(t). Therefore, by (2.37), 

FZ(t) ~> J~3 plvl2 dx. (2.38) 

By the Cauchy-Schwarz inequality and (2.36), 

F(t)  2 -- p v - x d x  
(t) 

<~ fB(t) 
plvl 2dxf8  P Ixl2dx 

(t) 

<~ (R + crt)2 fB plvl2 dx(M(t) + fB /Sdx) 
(t) (t) 

<~(R+~rt)2fB Plvl2dx(f  B (t) (t) (po(x) - /5 )  dx + fB(t) 

<~ ~ (R + crt) 5 maxp0(x) plvl 2 dx. 
x (t)  

 dx) 

Then (2.38) implies that 

4rt )-1 
F' (t) <. -~-(R + crt) 5 max p0(x) F(t)  2. (2.39) 

Since F(0) > 0 by (2.35), F(t) remains positive for 0 < t < T, as a consequence of (2.38). 
Dividing by F(t)  2 and integrating from 0 to T in (2.39) yields 

F(0) -1 > F(0) -1 - F(T)  -1 ~> (oto" maxpo)- i  (R -4 - (R + crT)-4). 

Thus, 

(R + cr T) 4 < 
R4F(0) 

F (0) - otcr R 4 max Po 

This completes the proof. 

REMARK 2.1 1. The proof is taken from [86], which is a refinement of Sideris [299]. The 
method of the proof above applies equally well in one and two space dimensions. In the 
isentropic case, the condition P (0) ~> 0 reduces to M(0) ) 0. 

REMARK 2.12. To illustrate a way in which conditions (2.34) and (2.35) may be satisfied, 
we consider the initial data 

po-~ ,  So-S .  
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Then P (0) = 0, and (2.35) holds if 

fix v0(x)- x dx > ~cr R 4. 
I<R 

Comparing both sides, one finds that the initial velocity must be supersonic in some region 
relative to the sound speed at infinity. The formation of a singularity (presumably a shock 
wave) is detected as the disturbance overtakes the wave front forcing the front to propagate 
with supersonic speed. 

The formation of singularities occurs even without condition of largeness such as (2.35). 
For example, if So(x) >~ S and, for some 0 < R0 < R, 

fix [XI-1 (IxI- r)2(pO(X)- FS)dx > 0, 
]>r 

fx  Ixl-3 (Ix12 - r2)p~176 X dx >i 0 
I>r 

for R0 < r < R, 

(2.40) 

then the lifespan T of the C 1-solution of (1.4) and (2.32) is finite. The assumptions in (2.40) 
mean that, in an average sense, the gas must be slightly compressed and outgoing directly 
behind the wave front. For the proof in [300], some important technical points were adopted 
from [298] on the nonlinear wave equations in three dimensions. 

REMARK 2.13. For the multidimensional Euler equations for compressible fluids with 
smooth initial data that is a small perturbation of amplitude e from a constant state, the 
lifespan of smooth solutions is at least O(e -1) from the theory of symmetric hyperbolic 
systems [139,183]. Results on the formation of singularities show that the lifespan of a 
smooth solution is no better than O(e -2) in the two-dimensional case [276] and O(e s-2) 
[300] in the three-dimensional case. See [2,301,302] for additional discussions in this di- 
rection. Also see [246] and [279] for a compressible fluid body surrounded by the vacuum. 

2.5. BV bound 

For one-dimensional strictly hyperbolic systems, Glimm's theorem [ 145] indicates that, as 
long as Ilu011BV is sufficiently small, the solution u(t, x) satisfies the following stability 
estimate 

Iluu, ) 118,, cllu011  . (2.41) 

Even more strongly, for two solutions u(t, x) and v(t, x) obtained by either the Glimm 
scheme, wave-front tracking method or vanishing viscosity method with small total varia- 
tion, 

[[u(t, . ) -  v(t, ")[[ L'(R> C IIu(O' ")- v(O, ") [] 
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See [20,33,111,167,204] and the references cited therein. 
The recent great progress for entropy solutions for one-dimensional hyperbolic systems 

of conservation laws based on BV estimates and trace theorems of BV fields naturally arises 
the expectation that a similar approach may also be effective for multidimensional hyper- 
bolic systems of conservation laws, that is, whether entropy solutions satisfy the relatively 
modest stability estimate 

I u(t, ")lsv ~ Clluollav. (2.42) 

Unfortunately, this is not the case. 
Rauch [278] showed that the necessary condition for (2.42) to be held is 

Vfk (u) VII (u) : Vft (u) Vfk (u) for all k, 1 = 1, 2 . . . . .  d. (2.43) 

The analysis above suggests that only systems in which the commutativity relation (2.43) 
holds offer any hope for treatment in the B V framework. This special case includes the 
scalar case n -- 1 and the one-dimensional case d = 1. Beyond that, it contains very few 
systems of physical interest. 

An example is the system with fluxes 

fk(u) - ~k (lul2)u, k -- 1, 2 . . . . .  d, 

which governs the flow of a fluid in an anisotropic porous medium. However, the recent 
study in [34] and [7] shows that, even in this case, the space BV is not a well-posed space, 
and (2.42) fails. 

Even for the one-dimensional systems whose strict hyperbolicity fails or initial data is 
allowed to be of large oscillation, the solution is no longer in B V in general. However, 
some bounds in L ~ or L P may be achieved. One of such examples is the isentropic Euler 
equations (1.16), for which we have 

l u( , ,  )1 ClluollLoo. 

See [75] and the references cited therein. However, for the multidimensional case, entropy 
solutions generally do not have even the relatively modest stability 

Ilu(t, .) - c ltuo -  OCtL , p 2, (2.44) 

based on the linear theory by Brenner [31 ]. 
In this regard, it is important to identify good analytical frameworks for studying entropy 

solutions of multidimensional conservation laws (1.1), which are not in BV, or even in L p. 

The most general framework is the space of divergence-measure fields, formulated recently 
in [67,69,83,84], which is based on the following class of entropy solutions: 

(i) u(t, x) ~ .Ad(IR~ +1) or LP(It~d++I), 1 ~< p ~< oc; 

(ii) for any convex entropy-entropy flux pair (rl, q), 

Ot r/(u) + Vx. q(u) ~< 0 
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in the sense of distributions, as long as (r/(u), q(u))(t, x) is a distributional field. 
According to the Schwartz lemma, we have 

div(t,x) (r/(u), q(u)) ~ .A/I, 

which implies that the vector field 

(r/(u), q(u))(t,  x) 

is a divergence measure field. We will discuss a theory of such fields in Section 8. 

3. One-dimensional Euler equations 

In this section, we present some aspects of a well-posedness theory and related results for 
the one-dimensional Euler equations. 

3.1. Isentropic Euler equations 

Consider the Cauchy problem for the isentropic Euler equations (1.16) with initial data 

(P, m)[t=0 = (P0, mo)(x), (3.~) 

where (P0, m0) is in the physical region {(p, m): p >~ 0, Iml ~< Cop} for some Co > 0. The 
pressure function p(p) is a smooth function in p > 0 (nonvacuum states) satisfying 

p'(p) > O, pp"(p) + 2p'(p) > 0 when p > 0, (3.2) 

and 

pp(j+l)(p) 
p (0) = p'(0) = 0, lim -- cj > O, j - O, 1. (3.3) 

p~O p(J)(p) 

More precisely, we consider a general situation of the pressure law that there exist a se- 
quence of exponents 

1 < g : =  Y1 < )"2 < " "  < YJ 
3 V - 1  

< YJ+I  

and a function P (p) such that 

J 

P(P) -- Z KJPYJ + p• p(p), 
j = l  

lim sup(] P (p)[ + [p3 p,,, (p)l) < ec, 
p--+0 

(3.4) 
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for s o m e  Kj, j = 1 . . . . .  J ,  with tel > 0. For a polytropic gas obeying the y-law (1.12), or 
a mixed ideal polytropic fluid, 

p(p) = K i p  yi -k- t r  y2 , tr > O, 

the pressure function clearly satisfies (3.2)-(3.4). 
System (1.16) is strictly hyperbolic at the nonvacuum states {(p, v): p > 0, Ivl < cx~}, 

and strict hyperbolicity fails at the vacuum states {(p, v): p = 0, Ivl < ~ } .  
Let ( o , q ) " R  2 --+ ~ 2  be an entropy-entropy flux pair of system (1.16). An entropy 

rl(p, m) is called a weak entropy if 7 / - 0  at the vacuum states. 
In the coordinates (p, v), any weak entropy function rl(p, v) is governed by the second- 

order linear wave equation 

- U  --0, rlpp (P)2~Tvv 
flip=0 - -0 ,  

p > 0 ,  
(3.5) 

with k(p) - f~ p'(s)/s ds. 
In the Riemann invariant coordinates w = (wl, w2) defined as 

tO 1 - -  V + fO p v/P'(Y) 
Y 

fo p v/P'(Y) dy, w 2 - v -  ~ d y ,  (3.6) 
Y 

any entropy function 1/(w) is governed by 

A(Wl-w2)  
rlw~ w2 + (r/w, - r/w2) = 0, (3.7) 

l/)1 -- 11)2 

where 

k(p)k'(p) wi thp  = k - l ( w l - w 2 )  
A(tOl - to2) - - -  k,(p)2 2 " (3.8) 

The corresponding entropy flux function q (w) is 

qw; (w) = )~i (w)/Twj (W), i r j .  (3.9) 

In general, any weak entropy-entropy flux pair (0, q) can be represented by 

rl(p, v) -- f• X (P , v; s)a(s) ds, q(p, v) = fR or(p, v; s)b(s)ds, (3.10) 

for any continuous function a(s) and related function b(s), where the weak entropy kernel 
and entropy flux kernel are determined by 

Xpp - k'(p)2xvv - O, 

X (0, v; s) - O ,  X~ (0, v" s) - ,~=~ 
(3.11) 
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and 

_ k I p " ( p )  O'pp (P)2~rvv-- p Xv, 

or(O, v; s) --O, cr,(O, v; s) -- v~=~, 
(3.12) 

respectively, with 6v=s the delta function concentrated at the point v -- s. 
The equations in (3.5)-(3.9) and (3.11)-(3.12) belong to the class of Euler-Poisson- 

Darboux-type equations. The main difficulty comes from the singular behavior of 
A (Wl - w2) near the vacuum. In view of (3.8), the derivative of A(wl - w2) in the co- 
efficients of (3.7) may blow up like (//)1 - -  //J2) - ( V - 1 ) / 2  when wl - 11)2 ~ 0 in general, 
and its higher derivatives may be more singular, for which the classical theory of Euler- 
Poisson-Darboux equations does not apply (cf. [ 19,341,342]). However, for a gas obeying 
the y-law, 

A ( t O l  - / / ) 2 )  = ~ :- '-  
3 - 9 /  

2 ( 9 / -  1)' 

the simplest case, which excludes such a difficulty. In particular, for this case, the weak 
entropy kernel is 

A mathematical theory for dealing with such a difficulty for the singularities of weak 
entropy kernel and entropy flux kernel can be found in [74,75]. 

A bounded measurable function u(t, x) = (p, m)(t, x) is called an entropy solution of 
(1.16) and (3.1)-(3.3) in ~ 2  if u(t, x) satisfies the following" 

(i) there exists C > 0 such that 

0 <<. p( t ,x )  <<. C, [m(t,x) I <<. Cp(t ,x);  (3.13) 

(ii) the entropy inequality 

OtO(p, m) + Oxq(p, m) <<. 0 (3.14) 

holds in the sense of distributions in R 2 for any convex weak entropy-entropy flux pair 
(o ,q) (p ,m) .  

Notice that 0(P, m) = + p ,  +m are trivial convex entropy functions so that (3.14) auto- 
matically implies that (p, m)(t, x) is a weak solution in the sense of distributions. 

THEOREM 3.1. Consider the Euler equations (1.16)with (3.2)-(3.4). Let (ph,mh)(t ,x) ,  
h > O, be a sequence offunctions satisfying the following conditions: 

(i) there exists C > 0 such that 

O<~ph(t,x)<~C, Imh(t,x)[<~Cph(t,x) fora .e . ( t , x ) ;  (3.15) 
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(ii) for any weak entropy-entropy flux pair (r/, q), 

Otrl(p h, m h) + Oxq(p h, m h) is compact in Hlolc (]1{2). (3.16) 

Then the sequence (ph, mh)(t, x) is compact in L~oc(I[{2), that is, there exist (p, m) ~ L ~176 
and a subsequence (still denoted) (ph, mh)(t, X) such that 

(ph,mh)-+ (p, m) in Lloc(II~ 2) as h --+ O, 

and 

0 <~ p(t, x) <~ C, [m(t, x)[ ~< Cp(t, x). 

REMARK 3.1. The compactness framework in Theorem 3.1 was established to replace the 
BV compactness framework (the Helly theorem), for which the detailed proof can be found 
in [75]. For a gas obeying the y-law, the case F = (N 4- 2) /N,  N ~> 5 odd, was first treated 
by DiPema [ 123], and the general case 1 < F ~< 5/3 for usual gases was first completed by 
Chen [50] and Ding, Chen and Luo [115]. The cases ], ~> 3 and 5/3 < g < 3 were treated 
via kinetic formulation by Lions, Perthame and Tadmor [223] and Lions, Perthame and 
Souganidis [222], respectively. 

In order to establish Theorem 3.1, it requires to establish the corresponding reduction 
theorem" A Young measure satisfying the Tartar commutation relations 

(v(t,x), ~71 q2 -- r/2ql ) 

= (v(t,x), rll)(V(t,x), q2) -- (v(t,x), rl2)(v(t,x), ql) for a.e. (t, x), (3.17) 

for all weak entropy-entropy flux pairs is a Dirac mass. These conditions are derived by 
the method of compensated compactness, especially the div-curl lemma (see [318,319] 
and [258,260]). The proof was based on new properties of cancellation of singularities of 
the entropy kernel g and the entropy flux kernel cr in the following combination 

E ( p ,  v; Sl, $2)"-- X(P,  v; Sl)O'(p, v; $2) - X(P,  v; s2)o'(p,  v; s1), 

the fractional derivative technique first introduced in [50,115], and an important obser- 
vation that the following identity is an elementary consequence of the symmetric form 
of (3.17) 

(lP(t,x), X(P, V; Sl))(V(t,x), Os~2 q-10(? 1E(IO , 1); S2, S3)) 

+ (V(t,x), O~2+lx(p, V; S2))(V(t,x), Osk+lE(p, V; s3, Sl)) 

Oz+l -Jr-(lP(t,x) ' s3 X(P,  v; s3))(v(t,x), O~?lE(t  O, v; S1,S2))-O (3.18) 

for all S1, $2 and s3, where the derivatives are understood in the sense of distributions (also 
see [222,223]). It was proved that, when s2, s3 --~ sl, the second and the third terms con- 
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verge in the weak-star sense of measures to the same term but with opposite sign. The 
first term is more singular and contains the products of functions of bounded variation by 
bounded measures, which are known to depend upon regularization. The first term in (3.18) 
converges to a nontrivial limit which is determined explicitly. Finally, the genuine nonlin- 
earity on p(p) is required to conclude that the Young measure v either reduces to a Dirac 
mass or is supported on the vacuum line. 

This compactness framework has successfully been applied for proving the convergence 
of the Lax-Friedrichs scheme [50,115], the Godunov scheme [116], the vanishing viscosity 
method [68,222] and for establishing the compactness of solution operators and the decay 
of periodic solutions [65,75]. Also see the references cited in [86]. In particular, we have 
the following theorem. 

THEOREM 3.2 (Existence, compactness and decay). Assume that there exists Co > 0 such 
that the initial data (Po, mo) (x) satisfies 

0 <<, po(x) <<, Co, [mo(x)[ ~ CoPo(x). 

Then 

(i) there exists a global solution (p, m)(t, x) of the Cauchy problem for (1.16) satisfy- 
ing (3.13),for some C depending only on Co and y, and (3.14) in the sense of distributions 
for any convex weak entropy-entropy flux pairs (rl, q); 

(ii) the solution operator (p, m)(t, .) = St(Po, m0)(.), determined by (i), is compact in 
L~o c (N 2) for t > 0; 

(iii) furthermore, if the initial data (Po, mo)(x) is periodic with period P, then there 
exists a global periodic solution (p, m)(t, x) with (3.13) such that (p, m)(t, x) asymptoti- 
cally decays in L 1 to 

1; 
IPI (po, mo)(x)dx.  

REMARK 3.2. All the results for entropy solutions to (1.16) in Eulerian coordinates can 
be presented equivalently as the corresponding results for entropy solutions to (1.17) in 
Lagrangian coordinates (see [52] and [332]). 

REMARK 3.3. If the initial data is in BV and has small oscillation, or (?, - 1)TV(p0, m0) 
is sufficiently small, away from vacuum, the solution is in BV; see [118,145,263]. In the 
direction of relaxing the requirement of small total variation for (1.16), see [ 117,287,322, 
323,349]. For extensions to initial-boundary value problems, see [68,229,264,315]. 

REMARK 3.4. Consider the isentropic Euler equations (1.16) in nonlinear elasticity with 
p = - a ( r )  6 C2(R), a ' ( r )  > 0, satisfying that 

sign((r - r  ~> 0, 

there is no interval in which a is affine, 

(3.19) 

(3.20) 
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and there exists a positive integer m E Z+ such that, in an interval 07, r + 5) or (f - 5, ~?) 
for some 3 > 0, 

m 

k=l 
(3.21) 

Then the existence, compactness and decay of entropy solutions in L ~ has been estab- 
lished in [78], and the results have been extended to the equations of motion of viscoelastic 
media with memory in [59,78]. In the simplest model for common rubber, condition (3.19) 
implies that the stress o- as a function of the strain r switches from concave in the com- 
pressive mode r < ~ to convex in the expansive mode r > ~. 

3.2. Isothermal Euler equations 

For the isothermal Euler equation (1.16) with V -- 1, we have entropy-entropy flux pairs 
in the form 

r / _  pl/(l_~2) exp { ~ m}  
l _ ~ 2 p  ' 

q - -  - - + ~  p exp 

(3.22) 

which satisfy 

2~ m] 2 _ ~4 p 2~2/(1-~2)-2exp 1 -- ~2 /9 l~PPJ~mm - -  l ~ P m  (1 - -  ~ 2 ) 3  for ~ E R. (3.23) 

Then ~ is a weak and convex entropy for any ~ 6 ( - 1 ,  1). 
We have the following similar compensated compactness framework for this case. 

THEOREM 3.3. Assume that (ph, mh)(t, x), h > O, is a sequence of functions satisfying 
the following conditions: 

(i) there exists some constant C > 0 such that 

0 <~ ph( t ,x )  <~ C, [mh(t,x)[ <~ ph(t,x)(C + Ilnph(t,x)l) a.e.; 

(ii) the sequence of entropy dissipation measures 

Otrl(p h , m h) + Oxq(p h, m h) is compact in Hlolc (R 2) 

for any entropy-entropy flux pair (r/, q) in (3.22) with ~ E (--1, 1). 
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Then the sequence (ph, mh)( t ,x)  is compact in L~oc(]R2), that is, there exist (p, m) �9 L ~162 

and a subsequence (still denoted) (ph, m h) such that 

(ph, m h) __~ (p, m) in L~oc(R 2) as h --+ O, 

and 

O <, p ( t , x )  <, C, [m(t,x) I p(t,x)(C + llnp(t,x)[). 

REMARK 3.5. This compactness framework was first established in [172]. Another proof 
was also provided recently in [205] by employing the approach in [75]. 

For strictly hyperbolic systems with smooth fluxes, the H-l-compactness condition is 
easy to be obtained, due to the uniform boundedness of approximate solutions and Murat's 
lemma [259], provided that the system has a strictly convex entropy. Similar to the isen- 
tropic case, it is not clear for the case y - 1 whether the strong entropy-entropy flux pairs 
satisfy the H-l-compactness condition. Furthermore, for the isothermal case, the propa- 
gation speed may not be finite due to the presence of vacuum and the entropy equation is 
not of EPD type, which is different from the isentropic case. 

The key point in the proof of [ 172] is to establish the commutation relations for not only 
the weak entropy-entropy flux pairs but also the strong ones by using the analytic extension 
theorem even though it is not known whether strong entropy-entropy flux pairs satisfy the 
H-l-compactness condition. To achieve this, formula (3.22) of entropies parameterized 
by a complex variable ~ was used, which includes both weak and strong entropies deter- 
mined by the value of ~. It was shown that, for any ~ �9 ( -1 ,  1), the weak entropy-entropy 
flux pair satisfies the H-l-compactness condition. Therefore, the commutation relations 
are satisfied for these weak entropy-entropy flux pairs. It was observed that the two sides 
of the commutation relations are regular in ~ and are analytic functions with respect to ~, 
which implies that the commutation relations exactly hold for the whole complex variable 
except two points ( -1 ,  0) and (1, 0) by using the analytic extension theorem. Noting that 
the entropies are strong if I~l > 1 (see (3.22)), therefore, the commutation relations hold 
for these weak and strong entropy-entropy flux pairs so that the H-l-compactness con- 
dition for strong entropy-entropy flux pairs can be bypassed. Since both weak and strong 
entropy-entropy flux pairs are applied to the commutation relations, the reduction theorem 
for the corresponding Young measure was obtained as that in the strictly hyperbolic case 
in [124,290], which implies the compensated compactness framework. The proof of [205] 
employed the approach described in Section 3.1 for the isentropic case by using only the 
weak entropy-entropy flux pairs. 

As an application of Theorem 3.3, we have the following theorem. 

THEOREM 3.4 (Existence). Assume that the initial data satisfies 

o poCx) Co, lmo(x)l ~< po(x)(Co +[logpo(x)])  a.e. (3.24) 
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for  some constant Co > O. Then there exists a global entropy solution of  (1.16) and (3.1) 
(with Y = 1)satisfying 

o <~ p(t,x) <. c, Im(t,x) I <~ p(t,x)(C + I logp( t , x ) [ )  a.e., (3.25) 

where C > 0 depends only on Co. 

REMARK 3.6. The convergence of the viscosity method was established in [172]. Un- 
like the isentropic case, the eigenvalues of the system are no longer bounded near vacuum 
(which may grow with the speed I ln P I), the construction of shock capturing scheme is 
more delicate since the Courant-Friedrichs-Lewy stability condition may fail for standard 
shock capturing schemes. In [77], such a shock capturing scheme was successfully de- 
veloped and its strong convergence was established by introducing a cut-off technique to 
modify the approximate density functions and adjust the ratio of the time and space mesh 
sizes to construct the shock capturing scheme. 

REMARK 3.7. Away from vacuum, the first result on the existence of BV solutions with 
large initial data was obtained in Nishida [262] by using the Glimm scheme [145] for 
Y -- 1. Poupaud, Rascle and Vila [274] made further simplification and improved the re- 
sults of [262] to the isothermal Euler-Poisson system. The existence result in Theorem 3.4 
allows the initial data (P0, m0) only in L ~ ,  which may even contain vacuum. 

3.3. Adiabatic Euler equations 

For the full Euler equations in gas dynamics (1.15) with the following Cauchy problem 

(r, v, S)lt=0 = (r0, v0, S0)(x), (3.26) 

the following existence theorem holds which is due to Liu [232] (also see [85] and [321 ]). 

THEOREM 3.5. Let K C {(r, v, S): r > 0} be a compact set in R+ x IF[ 2, and let N ~ 1 
be any positive constant. Then there exists a constant Co = Co(K, N),  independent of  
Y E (1,5/3],suchthat ,  foreveryini t ialdata (to, vo, So)(x) c K with TVR(r0, v0, So) ~< N, 
when 

(y - 1)TV~(r0, v0, S0) ~ C0 

for  any Y c (1, 5/3], the Cauchy problem (1.15) and (3.26) has a global entropy solution 
(r, v, S)(t, x) which is bounded and satisfies 

TV•(r, v, S)(t, .) <~ CTVx(r0, v0, So) 

for  some constant C > 0 independent of  y. 
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In the direction of relaxing the requirement of small total variation for (1.15), 
see [268,287,322,323]. For extensions to initial-boundary value problems, see [68,229, 
264,315]. 

For the decay of entropy solutions in B Vloc with periodic data or compact support, see 
[111,119,121,149,225,226]; also see [65] for entropy solutions only in L ~ .  For additional 
further discussions and references to the Glimm scheme, see [111,235,294]; also see [85]. 

Furthermore, we have the following theorem. 

THEOREM 3.6. If  the initial data functions uo(x) and vo(x) have sufficiently small total 
variation and uo - vo E L 1 ( R ) ,  then, for the corresponding exact Glimm, or wave-front 
tracking, or vanishing viscosity solutions u(t, x) and v(t, x) of the Cauchy problem (1.1) 
and (2.10) (d = 1), there exists a constant C > 0 such that 

Ilu<t, ) - v<t, C l l u o  - vOIIL,<R) f o r  all t > O. (3.27) 

An immediate consequence of this theorem is that the whole sequence of approximate 
solutions constructed by the Glimm scheme, as well as the wave-front tracking method and 
the vanishing viscosity method, converges to a unique entropy solution of (1.1) and (2.10) 
(d -- 1) as the mesh size or the viscosity coefficient tends to zero. See also [32] for the 
uniqueness of limits of Glimm's random choice method. The details of the proof of Theo- 
rem 3.6 can be found in [20,33,236,238]. In the direction relaxing the requirement of small 
total variation for (1.1), see [207,208]. 

For other discussions and extensive references about the Ll-stability of B V entropy 
solutions and related problems, we refer to [33,111,167,204]. 

Furthermore, the uniqueness and stability of Riemann solutions in the class of entropy 
solutions with large variation satisfying only one entropy inequality for the strictly convex 
physical entropy S has been established in [70] as follows. 

THEOREM 3.7. Let u( t ,x)  -- (r, v,e  + v2/2)( t ,x)  be an entropy solution of (1.15) 
and (3.26) in 17~ := {(t,x): 0 <, t <, T} for some T E ( 0 , ~ ) ,  which belongs to 
BVloc(HT; 79) with 79 C {(r, v, e + v2/2): r > 0} C R 3 bounded. Let R ( x / t )  be the clas- 
sical Riemann solution with Riemann data R0(x). 

(i) Ifuo = R0, then 

u(t, x ) -  R ( t  ) f o r a . e . ( t , x )  EHT.  

(ii) Ifuo - Ro E L 1 N L e~ N BVloc(R), then 

F ess lim ]u(t, - I - 0 for any L > O; 
t---+cx~ L 

(3.28) 

that is, the Riemann solution R(x / t) is asymptotically stable in the sense (3.28) with 
respect to the corresponding initial perturbation in L 1 N L e~ n BVloc(•). 
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We now consider the 3 x 3 system of Euler equations (1.15) in Lagrangian coordinates 
in thermoelasticity with the following class of constitutive relations for the new state vec- 
tor (r, S) with the form 

fo r+~S e--  cr(w)dw + flS, 

p -- - a ( r  + c~S), (3.29) 

0 - ~ a ( r  + ~S) +/~, 

where or(w) is a function with at(w) > 0, and ot and fl are positive constants. The 
model (3.29) is quite special. Even so, when we are dealing with solutions in which (r, S) 
do not deviate far from some constant values (f, S), we may obtain a reasonable approxi- 
mation for general constitutive relations (see [58]) 

e - ~(r, S), p = - b ( r ,  S), 0 - t}(r, S) (3.30) 

satisfying the conditions 

b - ~ r ,  g - ~ s .  (3.31) 

We also assume that, for some tb, 

cr"(w) + 4 c~cr'(to) 2 { ~< 0 if W < t~, 
Ota(W)+/3 ~>0 i f w > t b ,  (3.32) 

and 

a" (w)  r 0 for w > t~, (3.33) 

or there exists t~ > tb such that or(w) satisfies conditions (3.19)-(3.21)with t~ replacing ~. 
Consider the Cauchy problem for (1.15) with initial data 

(w, v, S)l~=o - (wo, vo, So)(x) (3.34) 

for w - -  r +c~S. 

THEOREM 3.8. Assume 

(wo, vo)(x) e { (w, v)" f? v 4- V@'(w) dw <.co I 
and So(x) �9 ./~loc(]t~). Then 
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(i) there exists a distributional solution 

(w, v, S)( t ,x)  ~ Le~(R2; I[~ 2) X .,h,41oc (I[~2; lt~) 

of (1.15) and (3.34) satisfying 

St(t, X) E .A/[loc(~2+), O(llo(t, X)) ~ O, 

isl(to, to1 x {l~l-< cro}).< crg 
(3.35) 

for any c, To > O, with C > 0 independent of To. Moreover, (w, v, S)( t ,x)  satisfies the 
entropy condition 

Otrl(w, v) + Oxq(W, v) <, O, St >1 0 (3.36) 

in the sense of distributions for any C 2 entropy-entropy flux pair (rl, q)(w, v) of the system 

OtW -- OxV - - 0 ,  OtV -- OxO'(W) --0,  

for which the following strong convexity condition holds: 

O~l~w - a a '  (w)~l~ ) O, 

Orlvv - oerlw ) O, 

( o ~  - ~ ' ( w ) ~ ) ( o ~  - ~ )  - ~ 2 / >  o; 

(ii) any sequence (w h , vh)(t, x) that is uniformly bounded in h > 0 and satisfies (3.36) 
is compact in L~o c (IR 2) when t > O; 

(iii) furthermore, if the initial data (wo, vo, So)(x) is periodic with period P, then there 
exists a periodic entropy solution (r, v, S)(t, x) of (1.15) and (3.34) with period P satis- 

fying 

(3.35) and (3.36). Moreover, the velocity v(t, x), the pressure p(w(t ,  x)) and the tempera- 
ture O(w(t,x)) asymptotically decay in L 1 to 

IPI vo(x)dx 

and 

1 

1 
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respectively, where O(w)  -- ~w + ot f o  ~r(co) dco. 

REMARK 3.8. The first existence theorem for global entropy solutions for (1.15) and 
(3.29)-(3.33) was established in [58]. The existence result was extended in [65] and [78] 
to the existence, compactness and decay of entropy solutions of (1.15) and (3.29)-(3.33) 
under the weaker conditions (3.19)-(3.21) with tb replacing ~. 

REMARK 3.9. An interesting feature here is that, because of linear degeneracy of the 
second characteristic field of (1.15) and (3.29)-(3.33), one cannot expect the decay of all 
components of the solutions. However, some important quantities such as the velocity, the 
pressure, and the temperature do decay as t --+ cx~. 

4. Multidimensional Euler equations and related models 

Multidimensional problems for the Euler equations are extremely rich and complicated. 
Some great developments and progress have been made in the recent decades through 
strong and close interdisciplinary interactions and diverse approaches including 

(i) experimental data, 
(ii) large and small scale computing by a search for effective numerical methods, 

(iii) asymptotic and qualitative modeling, 
(iv) rigorous proofs for prototype problems and an understanding of the solutions. 
In some sense, the developments and progress made by using approach (iv) are behind 

those by using the other approaches (i)-(iii) (see [150]); however, most scientific problems 
are considered to be solved satisfactorily only after approach (iv) is achieved. 

In this section, together with Sections 5-7, we give some samples of multidimensional 
models and problems for the Euler equations with emphasis on those prototype models and 
problems that have been solved or expected to be solved rigorously at least for some cases. 

Since the multidimensional problems are so complicated in general, a natural strategy to 
attack these problems as a first step is to study 

(i) simpler nonlinear models with strong physical motivations, 
(ii) special, concrete nonlinear physical problems. 

Meanwhile, extend the results and ideas from the first step to study 
(i) the Euler equations in gas dynamics and elasticity, 

(ii) more general problems, 
(iii) nonlinear systems that the Euler equations are the main subsystem or describe the 

dynamics of macroscopic variables such as Navier-Stokes equations, MHD equations, 
combustion equations, Euler-Poisson equations, kinetic equations especially including the 
Boltzmann equation, among others. 

In this section we first focus on some samples of multidimensional models for the Euler 
equations and related multidimensional hyperbolic conservation laws. 
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4.1. The potential flow equation 

This approximation is well known in transonic aerodynamics, beyond the isentropic ap- 
proximation (1.11) from (1.4). Denote 

d 

Dt -- at + ~ vk Oxk, 
k=l 

the convective derivative along fluid particle trajectories. From (1.4), we have 

DtS ---0 (4.1) 

and, by taking the curl of the momentum equations and using vector identities, 

Dt -- -- �9 Vv + p3 Vp • VS. (4.2) 
P 

The identities in (4.1) and (4.2) imply that a smooth solution of (1.4) which is both 
isentropic and irrotational at time t = 0 remains isentropic and irrotational for all later time, 
as long as this solution stays smooth. Then the conditions S = So = const and curl v = 0 
are reasonable for smooth solutions. 

For a smooth irrotational solution of (1.4), we integrate the d-momentum equations 
in (1.11) through Bernoulli' s law 

1 
OtV n t- ~V(IvI  2) -+- V i ( p )  = 0 ,  z " " 

where i' (p) = p p (p, S0) / p. 
On a simply connected space region, the condition curl v = 0 implies that there exists r 

such that 

v = V @ .  

Then we have 

at p + div (p V ~)  = 0, 

O t CI) -+- �89 2 -+-i(p) -- K, 
(4.3) 

where K is the Bernoulli constant, which is usually determined by the boundary conditions 
if such conditions are prescribed. From the second equation in (4.3), we have 

( ( 1 )) 
p ( D ~ ) - - i  -1 K -  a t ~ + ~ l V ~ [  2 �9 
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Then system (4.3) can be rewritten as the following time-dependent potential flow equa- 
tion of second order 

0tp(D4,) + V.  (p(D4,)74, )  --0.  (4.4) 

For a steady solution 4" = ~0(x), i.e., 0t 4, = 0, we obtain the celebrated steady potential 
flow equation of aerodynamics 

V.  (p(V~o)Vr - 0. (4.5) 

In applications in aerodynamics, (4.3) or (4.4) is used for discontinuous solutions, and 
the empirical evidence is that entropy solutions of (4.3) or (4.4) are fairly good approxima- 
tions to entropy solutions for (1.4) provided that 

(i) the shock strengths are small, 
(ii) the curvature of shock fronts is not too large, 

(iii) there is a small amount of vorticity in the region of interest. 
The advantages of equation (4.4), or equivalently (4.3), as the simplest multidimensional 

prototype conservation laws include (cf. [242]) 
(i) unidirectional plane wave solutions of (4.4) reduce to solutions of a 2 x 2 system 

of conservation laws with the structure of a wave equation, 
(ii) the linear structure of (4.4) is strictly hyperbolic with characteristics defined by a 

single light cone in several space variables, 
(iii) under reasonable thermodynamic assumptions such as an ideal gas law (1.12), the 

system for (4.4) is genuinely nonlinear in all wave directions simultaneously and the cor- 
responding multidimensional shock fronts are uniformly stable, 

(iv) this system has the vorticity waves removed unlike (1.4) and (1.11). Such vorticity 
waves are linearly degenerate wave fields but represent an enormous source of instability 
in multidimension through Kelvin-Helmhotz instability. 

The model (4.4) or (4.3) is an excellent model to capture multidimensional shock waves 
by ignoring vorticity waves, while the model (the incompressible Euler equations) in Sec- 
tion 4.2 is an excellent model to capture multidimensional vorticity waves by ignoring 
shock waves in fluid flow. 

4.2. Incompressible Euler equations 

In the homogeneous case, the incompressible Euler equations take the form 

Or v + div(v | v) + Vp - 0, 
(4.6) 

div v - 0. 

This can formally be obtained from (1.11) by setting p = 1 as the equation of state and 
regarding p as an unknown function. As indicated above, the model (4.6) excludes the 
appearance of shock waves in fluid flow to capture multidimensional vorticity waves. 
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In the inhomogeneous case, the incompressible Euler equations are 

0t p + div (pv) - 0, 

Ot (pv) + div(pv | v) + Vp - 0, 

div v = 0. 

(4.7) 

These models can be obtained by formal asymptotics for low Mach number expansions 
from the compressible Euler equations. For more details, see [95,98,166,220,221,243] and 
the references cited therein. 

4.3. The transonic small disturbance equation 

A further simpler model than the potential flow equation in transonic aerodynamics is the 
unsteady transonic small disturbance equation or so-called the two-dimensional inviscid 
Burgers equation (see [97]), 

OtU + Ox ( lu2)  -'}- OyU --O, 

OyU -- Ox V --  O, 
(4.8) 

or in the form of Zabolotskaya-Khokhlov equation [346], 

Ot(OtU -Jr- U OxU) -'}- OyyU = O. (4.9) 

The equations in (4.8) describe the potential flow field near the reflection point in weak 
shock reflection, which determines the leading-order approximation of geometric optical 
expansions; and it can also be used to formulate asymptotic equations for the transition 
from regular to Mach reflection for weak shocks. See [173-175,252] and the references 
cited therein. 

Equation (4.9) arises in many different situations. It was first derived by Timman in 
the context of transonic flows [325]. In nonlinear acoustics, it was derived by Zabolot- 
skaya and Khokhlov [346] and is used to describe the diffraction of nonlinear acoustic 
beams [164]. Motivated by the experiments of Sturtevant and Kulkarny [310] on the fo- 
cusing of shocks, Cramer and Seebass [102] used (4.9) to study caustics in nearly planar 
sound waves. The same equation arises as a weakly nonlinear equation for cusped caustics 
[174]. Hunter [173] also showed that (4.8) describes high-frequency waves near singular 
rays. 

4.4. Pressure-gradient equations 

The inviscid fluid motions are driven mainly by the pressure gradient and the fluid convec- 
tion (i.e., transport). As for modeling, it is natural to study first the effect of the two driving 
factors separately. Such an idea has also been used by Argarwal and Halt [1 ] to formulate 
a flux-splitting scheme in numerical computations for airfoil flows. 
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Separating the pressure gradient from the Euler equations, we first have the pressure- 
gradient system 

Otp = 0 ,  

Ot (pu) + Ox p = O, 

Ot (fir) + Oy p = O, 

Ot(pE) + Ox(up) + Oy(Vp) = O. 

(4.10) 

We may choose p -- 1. Setting 

P = (g - 1)P, t = 
V - I '  

then we have the following pressure-gradient equations 

{ OsU + OxP --0, 

OsV + OyP -O,  

as (In P) + OxU + Oy v -O.  

(4.11) 

Eliminating the velocity (u, v), we obtain the following nonlinear wave equation for P: 

O,,~ (ln P) - A P  = 0. (4.12) 

Although system (4.11) is obtained from the splitting idea, system (4.11) is a good ap- 
proximation to the full Euler equations, especially when the velocity (u, v) is small and 
the adiabatic gas exponent y > 1 is large (see [357]). This can be achieved by the formal 
expansion in terms of e = 1 / (Y - 1) 

I P -- Pl -Jr- 8p2 -Jr- 0(82). 

(. .  V) -- ~(Ul. 1)1) -Jr- 0(82). 

p -- 8pl + O(82). 

Plugging the expansion into the Euler equations (1.4), we first compare the order of 62 and 
have 

Ot Pl = O, 

and so we may choose Pl = 1. We then compare the order of e and have 

I OtUl --~ Oxpl--0, 

Ot Vl -~- Oy Pl -- O, 

Ot(-~_l) + Pl OxUl + Pl OyVl --O. 

(4.13) 
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Set 

Pl = (Y -- 1)P, t = 
y - 1  

Then we have 

OsU l -ff 3x P -- 0, 

Os Vl -}- Oy P = 0 ,  

Os(ln P) + OxUl q-- OyVl --O, 

which is the same as (4.11) that leads to (4.12). 

4.5. Pressureless Euler equations 

With the pressure-gradient equations (4.11), the convection (i.e., transport) part of fluid 
flow forms the pressureless Euler equations 

Ot p + Ox(pU) + Oy(pV) = O, 

Ot(pu) if- Ox(pU 2) -ff Oy(pUV) --0,  

Ot(pV) q- Ox(pUV) -+- Oy (/9l) 2) --O, 

3t(pE) + 3x(puE) + 3y(pvE) = O. 

(4.14) 

This system also models the motion of free particles which stick under collision; see 
[30,127,348]. In general, solutions of (4.14) become measure solutions. 

System (4.14) has been analyzed extensively; for example, see [26,27,30,127,161,172, 
210-212,273,296,335] and the references cited therein. In particular, the existence of mea- 
sure solutions of the Riemann problem was first presented in [26] for the one-dimensional 
case, and a connection of (4.14) with adhesion particle dynamics and the behavior of global 
weak solutions with random initial data were discussed in [ 127]. It has also been shown that 
6-shocks and vacuum states do occur in the Riemann solutions even in the one-dimensional 
case. Since the two eigenvalues of the transport equations coincide, the occurrence of 
6-shocks and vacuum states as t > 0 can be regarded as a result of resonance between 
the two characteristic fields. Such phenomena can also be regarded as the phenomena of 
concentration and cavitation in solutions to the Euler equations for compressible fluids as 
the pressure vanishes. It has shown in [79] for y > 1 and [209] for y = 1 that, as the pres- 
sure vanishes, any two-shock Riemann solution to the Euler equations tends to a 6-shock 
solution to (4.14) and the intermediate densities between the two shocks tend to a weighted 
~-measure that forms the ~-shock. By contrast, any two-rarefaction-wave Riemann solu- 
tion of the Euler equations has been shown in [79] to tend to a two-contact-discontinuity 
solution to (4.14), whose intermediate state between the two contact discontinuities is a 
vacuum state, even when the initial data stays away from the vacuum. Some numerical 
results exhibiting the formation process of ~-shocks and vacuum states have also been 
presented in [79]. 
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4.6. Euler equations in nonlinear elastodynamics 

The equations of nonlinear elastodynamics provide another excellent example of the rich 
special structure one encounters when dealing with hyperbolic systems of conservation 
laws. In three space dimensions, the state vector is (v, F), where v 6 IR 3 is the velocity vec- 
tor and F is the 3 • 3 matrix-valued deformation gradient constrained by the requirement 
det F > 0. The system of conservation laws, which express the integrability conditions be- 
tween v and F and the balance of linear momentum, reads 

Ot Fi~ - -  Ox~ v i  - -  O,  

Otvj - Y]~=I Ox#Sj#(F)--0,  

i, ot = 1, 2, 3, 

j -- 1, 2, 3. (4.15) 

The symbol S stands for the Piola-Kirchhoff stress tensor, which is determined by the 
(scalar-valued) strain energy function a (F), 

O~(F) 
S~ (r)  - ~ Fj~ 

System (4.15) is hyperbolic if and only if 

3 3 02cr(F ) 

Z OFic~OFj# 
i,j=l c~,fl=l 

~i~jnc~n# > 0 (4.16) 

for any vectors ~, n c S 3. 
System (4.15) is endowed with an entropy-entropy flux pair 

1 
r / -  o- (F) + Ivl 2 

3 

q~ -- - Z v j S j ~ ( F ) .  
j= l  

However, the laws of physics do not allow cr (F), and thereby 7, to be convex functions. 
Indeed, convexity of cr would violate the principle of material frame indifference 

o-(OF) = o-(F) for all O E SO(3), 

and would also be incompatible with the natural requirement that o-(F) ~ co as det F $ 0 
or det F 1" oo (see [ 106]). Consequently, the useful results on the local existence of classical 
solutions to the Cauchy problem and the uniqueness of classical solutions in the context 
of weak solutions that are available for hyperbolic systems of conservation laws endowed 
with a convex entropy in Section 2.1 are not directly applicable to system (4.15). 

The failure of (r to be convex is also the main source of complication in elastostatics, 
where one is seeking to determine equilibrium configurations of the body by minimizing 
the total strain energy fcr  (F). The following alternative conditions, weaker than convexity 
and physically reasonable, are relevant in that context [ 13]: 
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(i) polyconvexity, 

(~ (F) = g (F, F*, det F), 

where F* is the adjugate of F (the matrix of cofactors of F), F* -- (detF)F -1, and 
g(F, G, w) is a convex function of 19 variables, 

(ii) quasiconvexity in the sense of Morrey [254], 
(iii) rank-one convexity, expressed by (4.16). 

It is known that convexity =~ polyconvexity ==~ quasiconvexity =~ rank-one convexity, 
however, none of the converse statements is generally valid. It is important to investigate 
the relevance of the above conditions in elastodynamics. A first start was made in [106] 
where it was shown that rank-one convexity suffices for the local existence of classical 
solutions, quasiconvexity yields the uniqueness of classical solutions in the context of the 
class of entropy-admissible weak solutions, and polyconvexity renders the system sym- 
metrizable (also see [275]). 

To achieve this for polyconvexity, one of the main ideas is to enlarge system (4.15) 
with the state vector (v, F) into a large, albeit equivalent, system for the new state vector 
(v, F, F*, w) with w = det F 

3 3 

O t ~ - - ~ ~ O x ~ ( F * ~ i v i  ), 
ot=l i=1 

3 3 

a,fi=l i,j=l 

(4.17) 

y , k -  1,2,3, (4.18) 

where ec~• and gijk denote the standard permutation symbols. Then the enlarged system 
with 21 equations, which consists of (4.15) augmented by (4.17) and (4.18), is endowed a 
uniformly convex entropy 

1 
' 7 -  (w(F, F*, w) -4- ~ Ivl 2 

so that the local existence of classical solutions and the stability of Lipschitz solutions may 
be inferred directly from Theorem 2.3. See [ 111,113,275] for more details. 

4.7. The Born-Infeld system in electromagnetism 

The Born-Infeld system is a nonlinear version of Maxwell equations, 

[ 0 tB  + curl 0w -0-g -- 0, 
OW --0,  0t D - curl -~- 

(4.19) 
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where W : R  3 x R 3 --+ IR is the given energy density. The Born-Infeld model corresponds 
to the special case 

WBI(B, D) --v/1 4- IBI 2 4- IDI 2 4- IPl 2. 

When W is strongly convex (i.e., D2W > 0), system (4.19) is endowed with a strictly 
convex entropy, which implies that the system is symmetric and hyperbolic and, therefore, 
the Cauchy problem is locally well posed in H s for s > 5/2. However, WBI is not convex 
for a large enough field. 

As in Section 4.6, the Born-Infeld model is enlarged from 6 to 10 equations in [29], by 
adjunction of the conservation laws satisfied by P := B x D and W so that the augmented 
system turns out to be a set of conservation laws in the unknowns 

( h , B , D , P )  E N x R  3 x R  3 x R  3, 

endowed with a strongly convex entropy, which is symmetric and hyperbolic, 

Ot h 4- div P = 0, 

o, 8 + - O, 

O, D 4-curl(P• -B )  - -0 ,  

Ot P 4- Div( P | 1 7 4 1 7 4  h ) ~ 0 ,  

where I is the 3 x 3 identity matrix. The physical region is 

{(h, B, D, P)" P - -  D x B , h - -  v/1 4- Igl 2 4- ID] 2 4- IPl 2 > 0]. 

Also see [295] for another enlarged system consisting of 9 scalar evolution equations in 
9 unknowns (B, D, P), where P stands for the relaxation of the expression D x B. 

4.8. Lax systems 

Let f (u) be an analytic function of a single complex variable u = u 4- vi. We impose on 
the complex valued function u -- u(t, z), z = x 4- yi, and the real variable t the following 
nonlinear partial differential equation 

at fi + oz f (u) = o, (4.20) 

where the bar denotes the complex conjugate and Oz - �89 (Ox - i Oy). Then we can express 

this equation in terms of the real and imaginary parts of u and �89 f (u) - a (u, v) + b(u, v)i. 
Then (4.20) gives 

Otu 4- Oxa(u, v) + Oyb(u, v) - O ,  

Otv - Oxb(u, v) + Oya(U, v) --O. 
(4.21) 



46 G.-Q. Chen 

In particular, when f (u) = u 2 = u 2 -Jr- 1) 2 -q- 2uvi, system (4.20) is called the complex 
Burger equation, which becomes 

o,. + 10x(.~ + ~)  + Oy(.~)- o, 

o,~ - Ox ( . ~ ) +  �89 o , ( .  2 + ~2) _ o. 
(4.22) 

System (4.21) is a symmetric hyperbolic system of conservation laws with a strictly 
convex entropy 

/7(U, U ) =  U 2 -+- 1)2, 

so that local well posedness of classical solutions can be inferred directly from The- 
orem 2.3; see [202] for more details. For the one-dimensional case, this system is an 
archetype of hyperbolic systems of conservation laws with umbilic degeneracy, which has 
been analyzed in [72,286] and the references cited therein. 

5. Multidimensional steady supersonic problems 

Multidimensional steady problems for the Euler equations are fundamental in fluid dynam- 
ics. In particular, understanding of these problems will help us to understand the asymp- 
totic behavior of evolution solutions for large time, especially global attractors. One of the 
excellent sources of steady problems is Courant-Friedrichs' book [ 100]. 

In this section we first discuss some of recent developments in the study of two- 
dimensional steady supersonic problems. 

The two-dimensional steady Euler flows are governed by 

ax(pu) + ay(pv) -O,  

a~(p. 2 + p) + a~ ( p . ~ ) - o .  

Ox(pUv) -k- Oy(pV 2 -k- p) --O, 

a~ (.(E + p)) + ay (~(E + p)) - o ,  

(5.~) 

where (u, v) is the velocity and E is the total energy, and the constitutive relations among 
the thermodynamical variables p, p, e, 0 and S are determined by (1.5)-(1.9). For the 
barotropic (isentropic or isothermal) case 

xp • 
P = P ( P ) = ~ ,  v >~ l, 

and then the first three equations in (5.1) form a self-contained system, the Euler system 
for steady barotropic fluids. The quantity 

c = v/pp (p. s) 

is defined as the sonic speed and, for polytropic gases, c = ~/YP/P. 
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System (5.1) governing a supersonic flow (i.e., U 2 § 1) 2 > C 2) has all real eigenvalues 
and is hyperbolic, while system (5.1) governing a subsonic flow (i.e., u 2 + v 2 < c 2) has 
complex eigenvalues and is both elliptic-hyperbolic mixed and composite. 

5.1. Wedge problems involving supersonic shocks 

The mathematical study of two-dimensional steady supersonic flows past wedges whose 
vertex angles are less than the critical angle can date back to the 1940s since the stability 
of such flows is fundamental in applications (cf. [100] and [336]). Local solutions around 
the wedge vertex were first constructed in [162,219,285] and the references cited therein. 
Global potential solutions have been constructed in [89-91] when the wedge has some 
convexity or the wedge is a small perturbation of the straight wedge with fast decay in 
the flow direction and in [353,354] for piecewise smooth curved wedges that are a small 
perturbation of the straight wedge. 

As indicated in Section 4.1, the potential flow equation is an excellent model for the 
flow containing only weak shocks since it approximates to the isentropic Euler equations 
up to third order in shock strength. For the flow containing shocks of large strength, the 
full Euler equations (5.1) are required to govern the physical flow. For the wedge problem, 
when the vertex angle is large, the flow contains a large shock front emanating from the 
wedge vertex and, for this case, the Euler equations should take the position to describe the 
physical flow. Thus it is important to study the two-dimensional steady supersonic flows 
governed by the Euler equations for the wedge problem with a large vertex angle. When 
a wedge is straight and the wedge vertex angle is less than the critical angle cocrit, there 
exists a supersonic shock front emanating from the wedge vertex so that the constant states 
on both sides of the shock are supersonic; the critical angle condition is necessary and 
sufficient for the existence of the supersonic shock. This can be seen through the shock 
polar (see Figures 1 and 2; also see [88,100]). 

Consider two-dimensional steady supersonic Euler flows past two-dimensional Lip- 
schitz curved wedges whose vertex angles are less than the critical angle merit, along which 
the total variation of the tangent angle functions is suitably small. More specifically, 

(i) there exists a Lipschitz function g ~ Lip(R+) with g' ~ BV(R+) and g(0) = 0 such 
that coo := arctan(g'(0+)) < cocrit, 

TV{g'(.); R+ ] ~< e for some constant e > 0, 

s "-- {(x, y)" y > g(x),x ) 01, F "-- {(x, y)" y -- g(x),x ) 0} 
(5.2) 

and n(x+)  = ( - g ' ( x + ) ,  1)/v/(g'(x=l=)) 2 + 1 are the outer normal vectors to F at points 
x+,  respectively (see Figure 3); 

(ii) the uniform upstream flow U_ = (p_, u_, 0, p_)  satisfies 

u- >c-  " - ~  Vp-p_ 

so that a strong supersonic shock emanates from the wedge vertex. 
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Fig. 1. Supersonic shock emanating from the wedge vertex. 

Fig. 2. Shock polar in the (u, v)-plane. 

Fig. 3. Supersonic flow past a curved wedge. 

With this setup, the wedge problem can be formulated into the following problem of 

initial-boundary value type for system (5.1) 

Cauchy condition: Ulx=0 = U_; (5.3) 

boundary condition" (u, v) .  n -  0 on/-'. (5.4) 
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DEFINITION 1 (Entropy solutions). A function U = U(x, y) ~ BV(S-2) is called an entropy 
solution of problem (5.1) and (5.3)-(5.4) provided that 

(i) U is a weak solution of (5.1): U satisfies the equations in the sense of distributions 
and the Cauchy and boundary conditions (5.3) and (5.4) in the trace sense, 

(ii) U satisfies the entropy inequality in the sense of distributions, 

Ox(puS) -+- Oy(pvS) >/O, (5.51 

that is, for any q9 E C~ c (LK2) with q9 ~> 0, 

L J0 (puSq)x + pvSq)y) dx dy <~ p_u_S_q9(O, y) dy. (5.6) 

Then we have the following theorem. 

THEOREM 5.1 (Existence and stability). There exist go > 0 and C > 0 such that, if 
(5.2) holds for  e <. go, there exists a pair of  functions 

v By(R; R+ • R 2 • R+), cr 6 BV(IK+; LK) 

with X - f o  ~r (s) ds ~ Lip(LK+; lK+) such that 
(i) U is a global entropy solution of  problem (5.1) and (5.3)-(5.4) in s with 

TVIU(x,.)" [g (x ) , -oo )}  ~< CTV(g'( . ) )  f o r e v e r y x  ELK+, 

(u, v). nly=g(x) = 0 in the trace sense; 

(ii) the curve y = X (x) is a strong shock front with X (x) > g(x)  for  any x > 0 and 

Ul{y>x(x)} = U_, V/U 2 + V21{g{x)<y<x(x)} < u_" 

(iii) there exist constants poc and croc such that 

lim sup{lp(x, y ) -  P~c]" g(x) < y < X(x)} = 0 ,  
x---+ o o  

lim [er(x) - oe~l = 0 
x - - +  o o  

and 

lim sup { 
x - + O O  

v(x, y) ) 
arctan - cooc u(x, y) 

�9 g ( x ) < y < x ( x ) } - O ,  

where a)~ = l i m x ~  arctan(g ~ (x +)). 
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This theorem has been established in [88]. It indicates that, under the BV perturbation 
of the wedge boundary as long as the wedge vertex angle is less than the critical angle, 
the strong shock front emanating from the wedge vertex is nonlinearly stable in structure 
globally, although there may be many weak shocks and vortex sheets between the wedge 
boundary and the strong shock front. This asserts that any supersonic shock for the wedge 
problem is nonlinearly stable. 

In order to establish this theorem, we first developed a modified Glimm scheme whose 
mesh grids are designed to follow the slope of the Lipschitz wedge boundary, which are 
not standard rectangle mesh grids, so that the lateral Riemann building blocks contain only 
one shock or rarefaction wave emanating from the mesh points on the boundary. Such 
a design makes the BV estimates more convenient for the Glimm approximate solutions. 
Then careful interaction estimates were made. One of the essential estimates is the estimate 
of the strength 61 of the reflected 1-waves in the interaction between the 4-strong shock 
front and weak waves (o~1, f12, f13, f14), that is, 

~1 --Oll -Jr- Kslfl4 + O(1)lC~ll(lfl2l + 1/331) with I g s l l  < 1. 

The second essential estimate is the interaction estimate between the wedge boundary and 
weak waves. 

Based on the construction of the modified Glimm scheme and interaction estimates, we 
successfully identified a Glimm-type functional to incorporate the curved wedge boundary 
and the strong shock front naturally and to trace the interactions not only between the 
wedge boundary and weak waves but also between the strong shock front and weak waves. 
In particular, the Glimm-type functional on the mesh curve J is defined by 

F ( J )  -- C,]o "J - o-01 .qt_ L ( J )  .n I- K Q ( J ) .  

Here the linear part measuring the total variation is 

L ( J )  = K o L o ( J )  + L I ( J )  -+- K 2 L 2 ( J )  + K 3 L 3 ( J )  + K 4 L 4 ( J )  

with 

L j ( J ) -  E l l o t j l  �9 crj crosses J}, l~<j~<4,  

and the quadratic part measuring the potential wave interaction is 

Q(J)  "-  ~{1~11~1" ~, ~ interacting waves crossing J}, 

where S-2j is the set of the mesh comer points lying in J and the boundary, cr J stands for 
the speed of the strong shock crossing J, the constants K, C,, Ko, K2, K3 and K4 can be 
appropriately chosen with the aid of the important fact that I Ksll < 1 so that the identified 
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Glimm functional monotonically decreases in the flow direction. Another essential esti- 
mate is to trace the approximate strong shocks in order to establish the nonlinear stability 
and asymptotic behavior of the strong shock emanating from the wedge vertex under the 
B V wedge perturbation. 

Condition (5.2) can be relaxed by combining the analysis in [88] with the argument 
in [322,323]. The existence and stability of transonic flows past a curved wedge is under 
investigation with the aid of free boundary approaches (see Section 6.3). 

For the cone problem, the nonlinear stability of a self-similar three-dimensional gas flow 
past an infinite cone with small vertex angle was established upon the perturbation of the 
obstacle in [203]. It would be interesting to combine the analysis in [203] with the argument 
in [88] to study the nonlinear stability of a self-similar three-dimensional gas flow past an 
infinite cone with arbitrary vertex angle. Other related results and analysis for this problem 
can be seen in [92,93] and the references cited therein. 

5.2. Stability of supersonic vortex sheets 

Another natural problem is the stability of supersonic vortex sheets above Lipschitz walls 
along which the total variation of the tangent angle functions is suitably small. More pre- 
cisely, 

(i) there exists a Lipschitz function g ~ Lip(R+; IR) with g ( 0 ) =  0, g ' ( 0 + ) =  0, 
l imx~arctan(g'(x+))  = 0, and g' c BV(JR+; •) such that 

TV(g'(.)) ~< e for some constant e > 0 ,  

s -- {(x, y): y > g(x),x >~ 0], /-' = {(x, y): y = g(x),x >~ 0}, 
(5.7) 

and n(x•  = ( -g ' (x+),  1)/v/(g'(x• 2 + 1 are the outer normal vectors to F at points 
x +, respectively (see Figure 4); 

(ii) the upstream flow consists of one supersonic straight vortex sheet y -- Y0 > 0 and 
two constant vectors U0 = (P0, u0, 0, P0) when y > y0 > 0 and U1 = (Pl, u l, 0, p0) when 
0 < y < y0 satisfying 

Ul > UO > O, U i > Ci, i = 0,  1, 

where Ci = x / Y P i / P i  is the sonic speed of states Ui, i -- 0, 1. 
With this setup, the vortex sheet problem can be formulated into the following problem 

of initial-boundary value type for system (5.1): 

U0, 0 < y < y 0 ,  
Cauchy condition: UIx=O- U1, y > y0; (5.8) 

boundary condition: (u, v). n = 0 on F. (5.9) 

The stability of supersonic vortex sheets has been studied by classical linearized sta- 
bility analysis, large-scale numerical simulations, and asymptotic analysis. In particular, 
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Fig. 4. Stability of the supersonic vortex sheet. 

the nonlinear development of instabilities of supersonic vortex sheets has been predicted 
at high Mach number as time evolves; see [11,339] and the references cited therein. Mo- 
tivated by the phenomenon of evolution instabilities, we are interested in whether steady 
supersonic vortex sheets, as time-asymptotics, are stable under a BV perturbation of the 
Lipschitz walls. In contrast with the prediction of instability in time, it has been proved 
that steady supersonic vortex sheets, as time-asymptotics, are stable in structure globally, 
even under the BV perturbation of the Lipschitz walls in [87]. 

THEOREM 5.2 (Existence and stability). There exist eo > 0 and C > 0 such that, if  
(5.7) holds for  e <~ eo, there exists a pair o f  functions 

U e BV(R+; R), X 6 Lip(R+; R+) 

with X (0) = yo such that 
(i) U is a global entropy solution o f  problem (5.1) and (5.8)-(5.9) in s with 

T V I U ( x ,  .): [g(x), cx~)} ~< CTV(g ' ( . ) )  for  every x E [0, oo), 

(u, v) �9 nl y=g(x) = 0 in the trace sense; 

(ii) the curve {y = X(X)} is a strong supersonic vortex sheet with X(X) > g(x)  for  any 
x > 0 and 

(iii) there exist constants Poc and X ~  such that 

lim sup{lp(x, y ) - p ~ [ "  g ( x ) <  y < X(X)}--0, 
x---~ Oo 

lim IX(X)- Xocl-0 
x---~ o o  

and 

lim sup { 
x---+ OO 

v(x, y) ) 
arctan u(x,  y) �9 y > g(x)}  =0. 
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This theorem indicates that the strong supersonic vortex sheets are nonlinearly stable in 
structure globally under the B V perturbation of the Lipschitz wall, although there may be 
many weak shocks and supersonic vortex sheets away from the strong vortex sheet. 

In order to establish this theorem, as in Section 5.1, we first developed a modified Glimm 
scheme whose mesh grids are designed to follow the slope of the Lipschitz boundary, 
which are not standard rectangle mesh grids, so that the lateral Riemann building blocks 
contain only one wave emanating from the mesh points on the boundary. For this case, one 
of the essential estimates is the estimate of the strength (~1 of the reflected 1-wave in the 
interaction between the 4-weak wave or4 and the strong vortex sheet from below, that is, 

~1 : K01ot4, IKoll < 1. 

Another essential estimate is the estimate of the strength ~4 of the reflected 4-wave in the 
interaction between the 1-weak wave/31 and the strong vortex sheet from above is also less 
than one, that is, 

$4 = Kllfll ,  1Kl1[ < 1. 

The third essential estimate is the interaction estimate between the boundary and weak 
waves. 

Based on the construction of the modified Glimm scheme and the new interaction es- 
timates, we successfully identified a Glimm-type functional by both incorporating the 
Lipschitz wall and the strong vortex sheet naturally and tracing the interactions not only 
between the boundary and weak waves but also between the strong vortex sheet and weak 
waves so that the Glimm-type functional monotonically decreases in the flow direction. 
Another essential estimate is to trace the approximate supersonic vortex sheets in order to 
establish the nonlinear stability and asymptotic behavior of the strong vortex sheet under 
the BV boundary perturbation. For more details, see [87]. 

6. Multidimensional steady transonic problems 

In this section we discuss another important class of multidimensional steady problems: 
transonic problems. In the last decade, a program has been initiated on the existence and 
stability of multidimensional transonic shocks, and some new analytical approaches in- 
cluding techniques, methods and ideas have been developed. We focus here on the po- 
tential flow equation for the velocity potential q9 : S-2 C R d --+ R, which is a second-order 
nonlinear equation of mixed elliptic-hyperbolic type, 

div(p(IVqgl2)Vqg)- 0, x ~ K2 C R J, (6.1) 

where the density p(q2) is 

p ( q 2 ) _  ( 1 - O q 2 )  1~(y-l) 
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with adiabatic exponent V > 1. Equation (6.1) is elliptic at Vq9 with IV~01 - q if 

p(q2) _jr_ 2q2p,(q2) > 0 

and hyperbolic if 

p (q2) _+_ 2q2p, (q2) < O. 

We are interested in compressible potential flows with shocks. Let I-2 + and S2- be open 
subsets of I2 such that 

12+ N I-2- -- 0, 
h 

,.f2+ u , f 2 -  - ,f2, S - -  OI2+ N I2. 

Let ~0 6 C~ be a weak solution of (6.1) and in C1(S-2 +) so that Vq9 experiences a 
jump across S that is a (d - 1)-dimensional smooth surface. Then q9 satisfies the following 
Rankine-Hugoniot conditions on S 

[qgls - 0, [p(lVgol2)Vgo �9 n ] s  - 0, (6.2) 

where n is the unit normal to S from S2- to 12 +, and the bracket denotes the differ- 
ence between the values of the function along S on the S2 + sides. Moreover, a function 
q9 6 C1(S2+), which satisfies IVy01 ~< ~/2 / (y  - 1), (6.2), and equation (6.1) in S-2 +, respec- 
tively, is a weak solution of (6.1) in the whole domain S2. Set q9 + - ~01~• Then we can 
also write (6.2) as 

q9 + - qg- on S (6.3) 

and 

p(lv o+12)v ,+.n - p([V -12)Vq,-.n on S .  (6.4) 

Note that the function 

q0(p) . - ( 1  y - 1  ) 1/(• 
2 p2 p (6.5) 

is continuous on [0, ,,/2/(Y - 1) ] and satisfies 

(J2) 
q~ (p) > 0 for p E 0, q~ (0) - �9 - -0 ,  (6.6) 

y - 1  ' y - 1  

(j2) 
0 < 4 ' ( p ) < l  on(0 ,  c.),  q ~ ' ( p ) < 0  on c., (6.7) 

? , - 1  ' 

q~" (p) < 0 on (0, c,], (6.8) 
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where c,  -- x / 2 / ( V  + 1) is the sonic speed, for which a flow is called supersonic if 
IV(p] > c, and subsonic if IV(p[ < c,.  

Suppose that (p 6 C 1 (F2 +) is a weak solution satisfying 

IV~ol < c, in ~ + ,  IV~ol > c, in S-2-, V~o • �9 n l s  > O. (6.9) 

Then (p is a transonic shock solution with transonic shock S dividing s into the subsonic 

region F2 + and the supersonic region F2- and satisfying the physical entropy condition 
(see [ 100]) 

p(Iv~ 12) < p(Iv~+12 ) along S. (6.10) 

Note that (6.1) is elliptic in the subsonic region and hyperbolic in the supersonic region. 
Let (xl, x') be the coordinates in ~d, where Xl E R and x ' -  (x2 . . . . .  Xd) ~ ]R d-1 . Fix 

V0 c R 'l, and let 

9 o ( x ) ' - V o ' x ,  x E R  d. 

If IV01 ~ (0, c,) (resp. IV01 ~ (c,, x / 2 / ( y -  1))), then (p0(x) is a subsonic (resp. super- 
sonic) solution in R '1, and V0 - V(P0 is its velocity. 

l f Let qo > 0 and V 0 E R a -  1 be such that the vector V o "-- (qo,  V0) satisfies IVol > c,.  
Then, using the properties of function (6.5), we conclude from (6.6)-(6.8) that there exists 
a unique q~- > 0 such that 

1 y - 1 12 2))'/(• 
- - - - 5 - ( I q ~ -  + Lv;I  q +  

) 1/(y-l) 
- -  1 V - 1 2 , 2) _ .  ( 6 . 1 1 )  

- --5-(Iqo[ + IVol qo 

The entropy condition (6.10)implies q~- < qo" By denoting V~-"-- (q+, V~) and defining 
functions 

then q9 + (resp. q9 o)  is a subsonic (resp. supersonic) solution. Furthermore, from (6.4) 
and (6.11), the function 

(po(x) "- min((p o (x), (p+ (x)) 

_{V~-.x,  x c S 2 o - - l x ~ R d ' x l < O  l, 
Vo x, x~n+'- - lx~R~" ~1 >0}, 

(6.12) 

is a plane transonic shock solution in R d, s o and s are respectively its subsonic and su- 
personic regions, and ,_q - {xl - 0} is a transonic shock. Note that, if V~ - 0, the velocities 

V0 i are orthogonal to the shock S and, if V~ :fi 0, the velocities are not orthogonal to S. 
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In order to deal with multidimensional transonic shocks in an unbounded domain s we 
define the following weighted H61der seminorms and norms in a domain 79 C IRa. 

Let x --+3x be a given nonnegative function defined on 79, which will be specified in 
each case we consider below. Let 6x,y " -  min(~x, ~y) for x, y ~ 79. For k ~ R, ot ~ (0, 1) 
and m E Z+,  we define 

[,(,) _ 

/g]m,0,7)-- ~ sup ID~u(x)l),  
Ifil=m x~D 

[ u~(k) ) 

Ifll--m x,ycD,x-Cy ~fx,y i x  _ yl ,~  , 

m 

j=O 
ilull(k) ( k )  ~ ,(k) m , o t , ' D  - -  Ilu IIm,0, + tUlm,ot,D, 

(6.13) 

where D ~ 0Xfll 1 0 fld . . . .  Xd' fl = (ill . . . . .  rid) is a multiindex with flj >~ O, flj E Z and Ifl] = 
fl] + " "  + rid. We denote by IIullm,~,D the (nonweighted) H61der norms in a domain 79, 
i.e., the norms defined as above with 6x - 3x,y - 1. 

6.1. Transonic shock problems in IR d 

We now consider multidimensional perturbations of the uniform transonic shock solu- 
tion (6.12) in the whole space IRa with d ~> 3. 

Since it suffices to specify the supersonic perturbation qg- only in a neighborhood of the 
unperturbed shock surface {x] --0}, we introduce domains 

s "-- ( - 1 ,  cx:~) x ~d-1 ,  S'21 "-- (--1, 1) x Ii~ d-1 . 

Note that we expect the subsonic region s + to be close to the half-space s = {xl > 0}. 
We use the norms in (6.13) with the weight function 

6 x -  1 + Ixl 

and consider the following problem. 

PROBLEM 6.1. Given a supersonic solution qg- (x) of (6.1) in a'21 satisfying that, for some 

0r  

II - 2,or, s ~ O" (6.14) 

with cr > 0 small, find a transonic shock solution qg(x) in s such that 

s C s ~o (x) -- (p- (x) in s  
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where ~ -  := ~ \ ~ +  and s + := {x e ~2: IV~0(x)l < c,}, and 

~p = ~o-, Ox~ cp = Oxl cp- on {xl = - 1 }, 

l i m  - II - O. R----~ oo (~+ \BR (0)) - -  

(6.15) 

(6.16) 

Condition (6.15) determines that the solution has supersonic upstream, while condition 
(6.16) determines, in particular, that the uniform velocity state at infinity in the downstream 
direction is equal to the unperturbed downstream velocity state. The additional requirement 
in (6.16) that ~p ~ ~p+ at infinity within s + fixes the position of shock at infinity. This 
allows us to determine the solution of Problem 6.1 uniquely. 

Then we have the following theorem (see [62]). 

THEOREM 6.1. Let I(qo,Vg)l ~ (c,, ~ / 2 / ( Z -  1)) and q+ e (0, c,) satisfy (6.11), and 
let ~p0(x) be the transonic shock solution (6.12). Then there exist positive constants cro, 
C1 and C2 depending only on d, Y, ~, Ig~[ and qo such that, for every ~ <<, ~o and any 
supersonic solution cp-(x) of  (6.1) satisfying the conditions stated in Problem 6.1, there 
exists a unique solution ~p(x) of Problem 6.1 satisfying 

2,c~,~2+ ~ ClO- (6.17) 

with s + defined in Problem 6.1. In addition, 

n + -  / x, > / ( r  (6.18) 

where f : JK d- 1 ._~ R satisfies 

i l f l l  (<1-2) 2,ot,]Kd_ I ~ C2o' ,  (6.19) 

that is, the shock surface 

,s - { (x , ,  x')- x, - f (x ') ,  x' ~ U -1 } 

is in C 2'~ and converges at infinity, with an appropriate algebraic rate, to the hyperplane 

8 0  = {x l  = 0}.  

Moreover, there exist a nonnegative nondecreasing function ~ E C([0, oo)) satisfying 
l qJ (0) -- 0 and a constant ~ro depending only on d, y,  ~, IV01 and qo such that, if ~ < ~o 

and smooth supersonic solutions ~p-(x) and ~ - ( x )  of  (6.1) satisfy (6.14), the unique solu- 
tions ~p(x) and q3(x) of Problem 6.1 for  cp-(x) and ~ - ( x ) ,  respectively, satisfy 

II Lo - f~  II ( d - 2 )  - , ,  - II 2,ot,s ) '  (6.20) 

where f~(x') and f~(x') are the free boundary functions of~p(x) and ~b(x) in (6.18), re- 
spectively. 
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This existence result can be extended to the case that the regularity of the steady pertur- 
bation qg- is only C 1,1 . That is, (6.14) can be replaced by 

_ ( d - l )  
(6.21) 

Another related problem is the stability of transonic shocks near a spherical transonic 
shock, which can be established by following similar arguments (see [60,62]). 

6.2. Nozzle problems involving transonic shocks 

We now consider multidimensional transonic shocks in the following infinite nozzle s 
with arbitrary smooth cross-sections 

= t/-/(A x ]I~) ("1 {Xl > -1} ,  (6.22) 

where A C IRd-1 is an open bounded connected set with a smooth boundary, and 
qj : IRd _+ IRd is a smooth map, which is close to the identity map. For simplicity, we as- 
sume that 

OA is in C [d/2]+3'c~, I1~ - lll[d/2]+3,~,Rd ~ cr (6.23) 

for some ot E (0, 1) and small cr > 0, where [s] is the integer part of s, I :IR a --+ IRd is the 
identity map, and 01 ~ := !P (IR x O A) N {xl > - 1  }. Such nozzles especially include the 
slowly varying de Laval nozzles [100,336]. For concreteness, we also assume that there 
exists L > 1 such that 

tp (x) ---- x for any x -- (Xl, x') with Xl > L, (6.24) 

that is, the nozzle slowly varies in a bounded domain as the de Laval nozzles. 
In the two-dimension case, the domain S2 defined above has the following simple form 

S'2 --  { (Xl,  X2)" Xl > -- 1, b -  (X2) < X2 < b + (x2) }, 

where lib + - b ~  ll4,~,~ ~< a and b + = b ~  on [L, ~ )  for some constants b ~  satisfying 
b L > b ~ .  

For the multidimensional case, the geometry of the nozzles is much richer. 

Note that our setup implies that 0s - 0o~2 U Ol Y2 with 

:= • A)n x') - , } .  

Then our transonic nozzle problem can be formulated into the following form. 
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PROBLEM 6.2 (Transonic nozzle problem). Given the supersonic upstream flow at the 
entrance 0o12, 

q) - qg~-, qgx, - ~Pe on 0o12, (6.25) 

the slip boundary condition on the nozzle boundary 8112, 

Vq9 �9 n - 0 on 8/12, (6.26) 

and the uniform subsonic flow condition at the infinite exit X l - oo, 

II~(.) - O)Xl Ilc,(oo{.~,>~}, -+ 0 as R --+ oo for some co E (0, c , ) ,  (6.27) 

find a mult idimensional  transonic flow q9 of problem (6.1) and (6.25)-(6.27) in 12. 

The standard local existence theory of smooth solutions for the ini t ia l -boundary value 

problem (6.25) and (6.26) for second-order quasilinear hyperbolic equations implies that, 
as cr is sufficiently small in (6.23) and (6.30), there exists a supersonic solution q)- of (6.1) 
in 

122"--{--1 x<Xl x < 1}, 

which is a C l+l perturbation of 990 -- q0 X l" For any ot E (0, 1], 

I1~- - ~o1 ,.~.~. < c0~ .  ~ - -  1 ,  2 ,  (6.28) 

for some constant Co > 0, and satisfies 

Vq)- �9 n - -  0 o n  01122, (6.29) 

provided that ({Pe, 7*~-) on 0o12 satisfies 

g)e - q o x l  I1..+, + I ~ - qo  I . .+ , .  ~< ~. ~ - 1, 2, (6.30) 

for some integer s > d / 2  + 1 and the compatibili ty conditions up to order s + 1, where the 
norm II" ]]- '  is the Sobolev norm with H s -- W "~'2. 

Then we have the following theorem (see [61 ]). 

THEOREM 6.2. Let q o  E (c, ,  , / 2 / ( V  -- 1) ) and q+ E (0, c,)  satisfy (6.11), and let 99o be 
the transonic shock solution (6.12) with V t - O .  Then there exist cro > O, C1 and C2, de- 
pending only on d, or, y,  qo , A and L, such that, for  every cr E (0, crO), any map tls satisfy- 
ing (6.23) and (6.24), and any supersonic upstream flow (q)e , d/e) on 0o12 satisfying (6.30) 

with I -- 1, there exists a solution q) E C ~ (12) of  Problem 6.2 satisfying 

~- (~o) - I x ,  < s(x')}, (6.31) 
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Moreover, this solution satisfies q9 E C ~ (S2) n C~(S2 +) and the following properties. 
(i) The constant co in (6.27) must be q+, 

co = q + ,  (6.32) 

where q+ is the unique solution in the interval (0, c,) of the equation 

p ( (q+)Z)q+_  Q+ (6.33) 

with 

Q+ 1 f _12 2) 1 IAI oS2 P(]V~'qge + (~-) ~- dT-[d- 

Thus, q) and q + satisfy 

- q+xl Ilc'(s?n{x,>R}) --+ 0 as R --+ e~ (6.34) 

and 

Iq + -  q+l ~< c2~. (6.35) 

(ii) The function f (x') in (6.31) satisfies 

II f II 1,oe,R,,-, ~ C2 O', (6.36) 

and the surface S -- { ( f  (x'), x~): x' E IR d- 1 } N S2 is orthogonal to Ol if2 at every intersection 
point. 

(iii) Furthermore, q) ~ CI'~(I2 +) with 

- q + x l  II 1,oe, s-2+ ~ C2o. (6.37) 

In addition, if the supersonic uniform flow (q)e, ~Pe) on 0oS2 satisfies (6.30) with 1 -- 2, 

then the solution q) E C 2'~ (I2 +) with 

- q+x1112,~,~+ c2 , 

and the solution with a transonic shock is unique and stable with respect to the nozzle 
boundary and the smooth supersonic upstream flow at the entrance. 

When the initial data (q)e, 7%) -= ( - g  re, 7re) is constant and the nozzle 

S - 2 N { - l < ~ x l < ~ - l + e } - - [ - 1 , - l + e ] x A  for some e > 0 

as the de Laval nozzles, then the compatibility conditions are automatically satisfied. In 
fact, in this case, q)-(x) = ~PeXl is a solution near X l -- --1 in the nozzle. 
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When d - 2, condition (6.30) for the supersonic upstream flow (q9 e ,  ~Pe) on 0o12 in 
Theorem 6.2 can be replaced by the C3-condition, 

II e + qo I + II -qolc= (6.38) 

which can be achieved by following the arguments in [216]. For the isothermal gas y = 1, 
the same results can be obtained by following similar arguments. 

The techniques have been extended and applied to the nozzle problem for the full Euler 
equations in [57]. 

Other transonic problems include the stability of transonic flows past infinite nonsmooth 
wedges or cones which are under investigation with the aid of the approaches which will 
be discussed in Section 6.3. 

A further problem is subsonic flow past an airfoil or an obstacle. Shiffman [297], 
Bers [18] and Finn and Gilbarg [136] studied subsonic (elliptic) solutions of (6.1) outside 
an obstacle when the upstream flows are sufficiently subsonic; also see [ 125]. Morawetz 
in [250] first showed that the flows of (6.1) past an obstacle may contain transonic shocks 
in general. An important problem is to construct global entropy solutions of the airfoil 
problem (see [251,253] and [141]). 

6.3. Free boundary approaches 

We now describe two of the free boundary approaches for Problems 6.1 and 6.2, developed 
recently in [60-62]. 

6.3.1. Free boundary problems. The transonic shock problems can be formulated into a 
one-phase free boundary problem for a nonlinear elliptic equation: Given qg- 6 C 1'~ (~) ,  
find a function 99 that is continuous in S-2 and satisfies 

m 

q9 ~< qg- in $2, (6.39) 

equation (6.1), the ellipticity condition in the noncoincidence set $2 + = {99 < 99-}, the free 
boundary condition (6.4) on the boundary S = 0S-2 + A S-2, as well as the prescribed condi- 
tions on the fixed boundary 0 S-2 and at infinity. These conditions are different in different 
problems, for example, conditions (6.15) and (6.16) for Problem 6.1 and (6.25)-(6.27) for 
Problem 6.2. 

The free boundary is the location of the shock, and the free boundary conditions 
(6.3) and (6.4) are the Rankine-Hugoniot conditions in (6.2). Note that condition (6.39) 
is motivated by the similar property (6.12) of unperturbed shocks; and (6.39), locally on 
the shock, is equivalent to the entropy condition (6.10). Condition (6.39) transforms the 
transonic shock problem, in which the subsonic region S2 + is determined by the gradient 
condition IV~0(x)l < c , ,  into a free boundary problem in which $2 + is the noncoincidence 
set. 

In order to solve this free boundary problem, equation (6.1) is modified to be uniformly 
elliptic and then the free boundary condition (6.4) is correspondingly modified. Then this 
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modified free boundary problem is solved. Since 99- is a small C l'~ perturbation of q9 o,  

the solution ~0 of the free boundary problem is shown to be a small C 1,~ perturbation of the 
given subsonic shock solution q9 + in S2 +. In particular, the gradient estimate implies that 
~p in fact satisfies the original free boundary problem, hence the transonic shock problem, 
Problem 6.1 (Problem 6.2, respectively). 

The modified free boundary problem does not directly fit into the variational frame- 
work of Alt and Caffarelli [4] and Alt, Caffarelli and Friedman [5], as well as the regu- 
larization framework of Berestycki, Caffarelli and Nirenberg [ 16]. Also, the nonlinearity 
of the free boundary problem makes it difficult to apply the Hamack inequality approach 
of Caffarelli [38]. In particular, a boundary comparison principle for positive solutions of 
nonlinear elliptic equations in Lipschitz domains is not available yet for the equations that 
are not homogeneous with respect to VZu, Vu and u, which, however, is our case. 

6.3.2. Iteration approach. The first approach we developed in [60,61] is an iteration 
scheme based on the nondegeneracy of the free boundary condition: the jump of the normal 
derivative of a solution across the free boundary has a strictly positive lower bound. Our 
iteration process is as follows: Suppose the domain s + is given so that Sk " -  O S2 + \ O S-2 

is C 1'~. Consider the oblique derivative problem in s + obtained by rewriting the (modi- 
+ 

fled) equation (6.1) and free boundary condition (6.4) in terms of the function u " -  ~0 - q9 o . 
Then the problem has the following form: 

div A (x, V u) = F (x) 

A(x, Vu) .  n = G(x, n) 

in I2~-"--{u > 0},  

on S := OS-2+ \ OS2, 
(6.40) 

plus the fixed boundary conditions on O S2~- A 3 I2 and the conditions at infinity. The equa- 
tion is quasilinear, uniformly elliptic, A(x, 0) = 0, while G(x, n) has a certain structure. 

Let uk E C1'~(S2 +) be the solution of (6.40). Then []uk[ll,~,s2+ is estimated to be small 

if the perturbation is small, where appropriate weighted H61der norms are actually needed 
in the unbounded domains. The function ~Pk "-- q9 + + u k from s + is extended to I2 so that 

the C 1'~ norm of ~Pk - qg~- in S2 is controlled by Iluk IIl,~,s2~-. Define 

for the next step. Note that, since Ilgok - go~-II 1,ot,S2 and Ilgo- - % II 1,~,S-2 are small, we have 

[Vqg- I -IV~0&l ~ ~ > 0 in S'2, 

and this nondegeneracy implies that Sk+l "-- 0S'~-_k_ 1 \ 0if2 is C 1'~ and its norm is estimated 
in terms of the data of the problem. 

The fixed point s + of this process determines a solution of the free boundary problem 
since the corresponding solution q9 satisfies S2 + -- {q9 < qg-} and the Rankine-Hugoniot 
condition holds on S := 312 + A 12. 
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On the other hand, the elliptic estimates alone are not sufficient to get the existence 
of a fixed point, because the right-hand side of the boundary condition in problem (6.40) 
depends on the unit normal n of the free boundary. One way is to require the orthogonality 
of the flat shocks so that 

p([V~p~-[2)V~o~ - -- p( V~ooi2)V~Po in s (6.41) 

to obtain better estimates for the iteration and to prove the existence of a fixed point. Note 
that (6.41) is a vector identity, and the Rankine-Hugoniot condition (6.4) is the normal part 
of (6.41) on the unperturbed free boundary So. 

The uniqueness and stability of solutions for the transonic shock problems are obtained 
by using the regularity and nondegeneracy of solutions. 

For more details, see [60,61 ]. 

6.3.3. Partial hodograph approach. The second approach we developed in [60,62] is a 
partial hodograph procedure, with which we can handle the existence and stability of mul- 
tidimensional transonic shocks that are not nearly orthogonal to the flow direction. One of 
the main ingredients in this new approach is to employ a partial hodograph transform to re- 
duce the free boundary problem to a co-normal boundary value problem for the correspond- 
ing nonlinear second-order elliptic equation of divergence form in unbounded domains and 
then develop techniques to solve the co-normal boundary value problem in the unbounded 
domain. To achieve this, the strategy is to construct first solutions in the intersection do- 
mains between the physical unbounded domain under consideration and a series of half- 
balls with radius R, then make uniform estimates in R, and finally send R --+ o~. It requires 
delicate a priori estimates to achieve this. A uniform bound in a weighted L ~ norm can be 
achieved by both employing a comparison principle and identifying a global function with 
the same decay rate as the fundamental solution of the elliptic equation with constant co- 
efficients which controls the solutions. Then, by scaling arguments, the uniform estimates 
can be obtained in a weighted H61der norm for the solutions, which lead to the existence 
of a solution in the unbounded domain with some decay rate at infinity. For such decaying 
solutions, a comparison principle holds, which implies the uniqueness for the co-normal 
problem. Finally, by the gradient estimate, the limit function can be shown to be a solu- 
tion of the multidimensional transonic shock problem, and then the existence result can 
be extended to the case that the regularity of the steady perturbation is only C 1,1. We can 
further prove that the multidimensional transonic shock solution is stable with respect to 
the C 2'~ supersonic perturbation. 

When the regularity of the steady perturbation is C 3'~ or higher, that is, 

3,or, ~21 ~ O', (6.42) 

we introduced another simpler approach to deal with the existence and stability problem. 
We also extend the approach by using the partial hodograph transform in the radial di- 

rection in the polar coordinates to establish the existence and stability of multidimensional 
transonic shocks near spheres in R a, d ~> 3. The case d -- 2 can also be handled with simi- 
lar approaches. 

Another approach can be found in [40,41,357]. 
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7. Multidimensional unsteady problems 

In this section, we introduce some sample multidimensional time-dependent problems with 
a simplifying feature that the data (domain and/or the initial data) coupled with the structure 
of the underlying equations obey certain geometric structure so that the multidimensional 
problems can be reduced to lower dimensional problems with more complicated couplings. 
Different types of geometric structure call for different techniques. 

The Euler equations for compressible fluids with geometric structure describe many 
important fluid flows, including spherically symmetric flow and self-similar flow. Such 
geometric flows are motivated by many physical problems, such as shock diffraction, su- 
pernovae formation in stellar dynamics, inertial confinement fusion, and underwater ex- 
plosions. For the initial data with large amplitude having geometric structure, the physical 
insight we seek is 

(a) whether the solution has the same geometric structure globally, 
(b) whether the solution blows up to infinity in a finite time, for example, the density 

near the origin for spherically symmetric flow. 
These questions are not easily understood in physical experiments and numerical simula- 
tions, especially for the blow-up, because of the limited capacity of available instruments 
and computers. 

7.1. Spherically symmetric solutions 

The first problem is the study of singularity at the origin for the Euler equations for isen- 
tropic or adiabatic fluids under spherical symmetry in ~d, d ~> 2. The singularity at the 
origin makes the problem truly multidimensional. The central difficulty of this problem 
in the unbounded domain is the singularity at the origin and the reflection of waves from 
infinity and their strengthening as they move radially inwards. 

Consider the Cauchy problem for (1.11), 

(p, m)lt=o -- (po(x), mo(x)) (7.1) 

with the following geometric structure, 

( x) 
(p0(x) ,m0(x)) -  po(lxl),m0(lxl)l- ~ , (7.2) 

where mo(x) is a scalar function of x = Ixl ~ 0. Such a problem describes dynamic behav- 
ior of many physical problems with spherically symmetric initial structure such as explo- 
sion waves in air and other media [100,336]. Motivated by the physical experiments, we 
look for the solutions with spherical symmetry 

x 
p(t, x ) -  p(t, Ixl), m(t, x ) -  m(t, Ixl)Ix]" (7.3) 
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The function (p, m)(t,  x), x = Ixl, is determined by the one-dimensional isentropic Euler 
equations with geometric source terms 

OtP + Oxm --  - - d - l m  
X 

m 2 
O t m + O x ( 7 + P ( P )  ) -- 

X > 0 ,  

d - 1  m 2 (7.4) 
x p 

It is evident that the density p blows up as Ix] --+ 0 in general, for instance, for the fo- 
cusing case. One of the challenging open problems is to understand the order of singularity 

p(t, Ixl) Ixl 

for bounded Cauchy data. 
On the other hand, a criterion was observed in [54] for Lee Cauchy data functions of 

arbitrarily large amplitude to guarantee the global existence of L ee spherically symmetric 
solutions which model outgoing blast waves and large-time asymptotic solutions. 

THEOREM 7.1. Consider the Cauchy problem for the Euler equations (1.11) with spheri- 
cally symmetric initial data (7.1)and (7.2). Assume that the initial data satisfies 

fo p~ v/p'(s)  Imo(x)l 0 ~< ~ ds ~< ~< Co < cx~ (7.5) 
s p0(x) 

for some constant Co > O. Then there exists a global entropy solution (p, m)(t, x) 6 Lee 
of the Cauchy problem ( 1.11 ) and (7.1)-(7.3) satisfying 

0 <~ p( t ,x)  ~< C, 0 ~< ]m(t,x)] ~< Cp( t ,x ) ,  x 6 R d, (7.6) 

for some constant C > 0 and 

lf0W T (p In)(t x) dt --+ 0 for a.e. x ~ 1R cl when T --+ oc. (7.7) 

PROOF. This theorem was established in [54] by developing the fractional Godunov 
scheme through system (7.4). The proof is divided into five steps, and we now briefly 
describe them for the case of polytropic gases with p = Kp • , 1 < y ~< 2. 

Step 1. Construction of  approximate solutions via the fractional-step Godunov scheme. 
Partition R+ by the sequence tk -- kh, k ~ Z+, with mesh size h and partition R+ into cells 
with the j th  cell centered at xj - j l ,  j ~ Z+, with mesh size 1. Denote u h -- (ph, m h) as 
the approximate solutions satisfying the inequality 

1 
A -- max(sup X/(uh)l) ~< ~< 2A (7.8) 

i=1 ,2  ~ " 
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We will prove that u h (t, x) have a uniform bound with respect to h so that it is possible to 
construct u h (t, x) satisfying (7.8). 

Assume that u h (t, x) have been defined for t < kh. Then we define 

1 f(j+l/Z)Z n _ u h (kh - O, x ) X  h (x) dx, u h (kh + O, x) = uj  -[ ( j -  1/2)I 

( ~ )  ( 1 )  
j -  l<~x<<, j + - ~  l, (7.9) 

where Xh(x) is the characteristic function on [Nl, 1], where N -  N(Co) > 0 is some 
large constant depending only on Co > 0, which is solely determined by the initial data 
(see (7.18)). 

In the strip kh <<. t < (k + 1)h, j l  < x <<. (j  + 1)l, j, k ~ Z+, we define 

ph( t , x )  -- ph( t , x ) (1  

mh( t , x )  -- mho(t,x)(1 

d-1  mho(t, x) - - ( t - k h ) ) + ,  
x p~(t,x) 

d -1  m~(t,x) 
~ ( t - k h ) ) + ,  

x pho(t,x) 

(7.10) 

k where uh(t, x) are the Riemann solutions of (1.16) with initial data (u~, Uj+I) with respect 
to x = (j + 1/2)l at t = kh. 

From this, we define the fractional step Godunov scheme 

k+l 1 f ( j + l / 2 ) l  
= I u h(kh - O ,x )X  h ( x ) ~ .  

u j  7 j ( j_  1/2)1 
(7.11) 

In this way, for kh <<. t < (k + 1)h, k >~ 0 integers, we have 

__ m~(t,x) (y-l)/2 
- (1 

wh(t, ) 
__ m~(t,x) ( p h (  t X))(y-1)/2(l 

p~) (t,x) 

d-1  m~(t,x) 
x p~(t,x) 

d-1  m~(t,x) 
x p~(t,x) 

(y-l)/2 
- - ( t - k h ) ) +  

(y-1)/2 
- - ( t - k h ) ) +  

(7.12) 

where (Wl, 1/)2) are the Riemann invariants introduced in (3.6). 

Step 2. L ~ estimate for  the approximate solutions. 
pendent of h, such that 

There exists C = C (Co) > 0, inde- 

0 ~ ph ( t , x )  ~ C, 0 <~ m h (t, x) <<. Cp h (t, x),  (t, x) ~ II~ 2. (7.13) 
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In order to show this estimate, we first need some properties of the Riemann solutions 
for the homogeneous Euler equations (1.16) with initial Riemann data 

u _  = (p_ ,  m _ ) ,  x < x 0 ,  x 0 > 0 ,  
u --  (7 .14)  

u + ~ ( p + , m + ) ,  x > x 0 ,  

and lateral Riemann data 

u l t = o - u + ,  x > O ,  

mlx=o - O, t > O, (7.15) 

where p+ ~> 0 and m+ are the constants with I m • 1 7 7  < ~ .  The discontinuity in the weak 
solutions of (1.16) satisfies the Rankine-Hugoniot condition 

~r(u - uo) = f(u) - f(uo), (7.16) 

where cr is the propagation speed of the discontinuity, u0 and u are the corresponding left 
and right state, respectively. A discontinuity is a shock if it satisfies the entropy condition 

cr (r/(u) - q(uo)) - (q(u) - q(uo)) ~> 0 (7.17) 

for any convex entropy-entropy flux pair (q, q). 
For the Riemann problems (7.14) and (7.15) for system (1.16), the Riemann solutions 

generally contain rarefaction waves and shocks satisfying the following facts. 

FACT (i). There exists a unique piecewise smooth entropy solution (p, m)(t,  x) containing 
vacuum states on the quarter t ~> 0, x ~> 0 for each problem of (7.14) and (7.15), at least 
locally in time. 

FACT (ii). The regions 

S -- { (p ,  m)" W l <~ wo, 1/32 ~ z0, 1/31 -- 1/32 ~ 0]  

and 

27- {(p, m)" W l ~< w0, 1.02 ) Z0, 1131 -- 1132 ) 0 } ,  zo~<O~< 
wo + zo 

are invariant for the Riemann problems (7.14) and (7.15) for system (1.16), respectively. 
More precisely, if the Riemann data lies in X', the corresponding Riemann solution lies 
in X' and its corresponding integral average in x over [a, b] also lies in X'. [i] 

With these properties of the Riemann solutions to (1.16), we can now establish esti- 
mate (7.13). 
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It follows from Fact (ii) that, for kh <~ t < (k + 1)h, 

tol (ph( t ,x) ,m~)( t ,x) )  ~ toO, to2(ph(t,x),  mh( t , x ) )  >/O, 

l101(ph(t,x), mh(t ,x ) )  -- to2(ph(t,x),  m~)(t,x)) ~/ O. 

Therefore, we have 

t o l (ph ( t , x ) ,mh( t , x ) )  ~ ll30, to2(ph( t , x ) ,mh( t , x ) )  ~/0, 

tol (ph( t ,x) ,  mh( t , x ) )  -- to2(ph(t,x),  mh( t , x ) )  >/0 

from the fact 

ph (t, x) - p~) (t, x)(1 

mh(t,x) __ m{l)(t, x) 
ph(t,x) p[{(t,x) 

d-~ m'~',x~ (t _ kh)) 
x p~(t,x) +' 

Then we have again 

0 <~ ph( t ,x )  <~ ~,  0 <~ m h (t, x) <~ ~ph (t, x), 

A A 

where C - C (Co) is solely determined by the initial data. 

Step 3. H -1 -compactness of entropy dissipation measures for the approximate solutions. 
The measure sequence 

J7 (Uh)t + q ( uh)x is compact in Hloc 1 (R2+) (7.19) 

for any weak entropy-entropy flux pair (7/, q). 
Without loss of generality, we assume that the initial data has compact support because 

of the finiteness of propagation speed of approximate solutions, hence one can assume 

fo x) f0 po(x) dx + mo(x) dx + ~l,(po(x), mo(x)) dx < cxz, 

where 

1 m 2 K 
-+- p• 

~ / * - 2  p y - 1  

with corresponding entropy flux 

m toy 
q , - - m  ~--$2 + y _ 1 
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For any function cp ~ C ~ (HT) with HT -- [0, T] • Ii~+, the entropy dissipation measures 
can be calculated in the form 

f f r l  (r] (u h)4)t + q (u h)(px) dx dt 
T 

= M h (dp) + N h (dp) + L h (dp) + r h (dp), (7.20) 

where 

fo fo Mh(d))-- o(r.~),(u~(r.~))~- O(O.~),(u~(O.~))~. 

N h ( r  + (q(u h) - q  (u~))r  at, 
T 

L~(*) ~/(;+1/~), 
j,k d (j-  1/2)1 

fo w 

where uh_ k -- u h (kh - O, x), dp~ -- ~(kh, jl) ,  the summation is taken over all the shocks 

in u h at a fixed time t, cr is the propagating speed of the shock, and [7]0 and [q]0 denote 

the jumps of ~(Uoh (t, x)) and q(Uho(t, x)) across the shock in uh(t, x) from the left to right, 
respectively. 

Noting that (ph, m h) have compact support in/-/T, one can substitute 

(m2 ) (r/, q ,  4)) - -  (p ,  m,  1) and m, - -  + p ( p ) ,  1 
P 

in (7.20). We conclude 

f ( j+l/2)l  l m h ( k h -  0, x ) d x h  ~< C < oo, d -  

Z J(j-1/2)l X j,k 

f ( j+l/2)l  (mh(kh_O,x ) )Zdx  h ~ C < ~ ,  d -  1 

Z J(j-1/2)I X p h ( k h - O , x )  j,k 

(7.21) 

(7.22) 

using the Rankine-Hugoniot condition (7.16) and noting that 

I k f(j+l/2)l d-1 h y~k>>.l f o  (p~ k_ - p j )  dx -- ~-~j,k J(j-1/2)l --y-m (kh - O, x) dx h, 

f(j+l/2)l d-1 (mh(kh-O,x))Z dx h 
Zk>/1 f o ( m ~  k - - m ~ ) d x  - Ej,kJ(j-1/2)l  x ph(kh-O,x) �9 
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Then we choose (r/, q) = (r/,, q,)  and 4~ = 1 in (7.20) and use estimates (7.21) and (7.22) 
to obtain 

fo r E{c r [ r / , ] o  - [q,]o} dt ~< C, (7.23) 

f ( j ~ l / 2 ) / ~ l  k T 
( 1 -  O)(u~ k - - u j )  

�9 ( j -  /2)l 

k k • V 2 r/, (u~ + 0 (u~) k - - u j))(u~)k__ - u j)  dO dx ~< C. (7.24) 

In particular, since V2r],/> co > 0, we obtain 

f (j+l/2)l U hk k 2 
Z (j-1/2)l [ -- uj l  dx ~< C(L). (7.25) 

j,k,O<~jl<~L 

(x--jl] then there exists C(L) < oc such that Noting that u~ (t, x) are of the form V, t - kh  j '  

Z 
j,k,O~jl<~L ( k -  

lug( t 
1)h ( j - 1 / 2 ) l  

,x)-u (kh - o ,  x)L 2 dx dt <~ C(L)h. 

(7.26) 

Then, similarly to the proof of Ding, Chen and Luo [116], we use (7.21)-(7.26) to con- 
clude (7.19). 

Step 4. Convergence and consistency. Applying Theorem 3.1 with (7.13) and (7.19), we 
see that there exist a subsequence (still denoted by) u h (t, x) and an L ~ function u(t,  x) -- 
(p, m)(t, x) such that 

u h (t, x) --+ u(t, x) a.e. when h -+ 0, 

and 

0 <~ p( t ,x)  <~ C, Im(t,x)l <~ Cp(t ,x)  a.e. (7.27) 

It now suffices to check the consistency of the limit function (p, m)(t,  x) with (7.4). 
For any nonnegative function ~p(t,x) E C~C(R2), set cb(t,x) -- x d - l ~ ( t , x )  and a(x) - 
(d - 1)/x. Then we have 

f fR2 + (r/(uh)cpt + q(uh)cpx - a(x)V~(uh)g(uh)cp) dx dt 

fo + r/(u h (0, x))4)(0, x) dx 

(7.28) 
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l f 0 T  ( m(txo)2 ) + -~ m(t, xo) + ' + p(p(t, xo)) dt 
p(t, xo) 

( 1  1 f0T ( m(t xo) 2 ) ) <~ C -+- ~ m(t, xo) + ' + p(p(t, xo)) dt . 
p(t, xo) 

Set xo --+ 0 and then I -+ oc. We obtain 

l f 0 T  ( m(t,x)  2 ) C -- m(t ,x)  + ~ + p(p( t ,x))  dt <, ~ fora.e .x~IR+. 
T p(t ,x)  

This implies that 

lf0W T (p, m)(t, x) dt --~ (0, O) for a.e. x c R+ as T --+ ec, 

which arrives at (7.7). This completes the proof. E3 

7.2. Self-similar solutions 

The second type of geometric structure is self-similarity. One of the most challenging 
problems is to study solutions with data that give rise to self-similar solutions (such so- 
lutions especially include Riemann solutions) and to develop a unifying framework to treat 
hyperbolic-elliptic mixed problems with mixed boundary conditions that are derived from 
compressible flows. 

Compressible flow equations in two space dimensions with one or more linearly de- 
generate modes of wave propagation have additional difficulties. In that case, the global 
flow is governed by a reduced (self-similar) system which is of both (hyperbolic-elliptic) 
mixed and composite type in the subsonic region. The linearly degenerate waves give rise 
to one or more families of degenerate characteristics which remain real in the subsonic re- 
gion. The reduced equations typically couple a hyperbolic-elliptic mixed problem for the 
density and/or the pressure with a hyperbolic (transport) equation for the vorticity. 

For the Euler equations (1.4) for x ~ R 2, self-similar solutions 

(p ,  Ul,  U2, p )  = (p ,  Ul,  U2, p ) ( ~ ,  /1), 
x 

(~,  n)  = - ,  t 

are determined by 

O~(pU)+Oo(pV)=-2p ,  
(pu 2 + p) + a (puv) - - 3 p u ,  

a (puv) + a (pv 2 + p ) -  - S p y ,  

O~(U(E + p)) + O~(V(E + p)) - - 2 ( E  + p), 

(7.36) 

where (U, V) = (Ul - ~, U2 -- r/) is the pseudovelocity and E = p(e + (U  2 -4- V2)/2). 
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It is straightforward to calculate and obtain four eigenvalues 

V 
X 0 -  -;7. (two multiplicity) 

u 

and 

A+ = 
U V  i c x / U  2 Jr- V 2 -  c 2 

U 2 _ r 

where c is the sonic speed. 
When U 2 + V 2 > r system (7.36) is hyperbolic with four real eigenvalues and the flow 

is called pseudosupersonic. 
When U 2 + V 2 < c 2, system (7.36) is hyperbolic-elliptic composite type (two repeated 

eigenvalues are real and the other two are complex): two equations are hyperbolic and the 
other two are elliptic. 

The region U 2 + V 2 = c 2 in the (~, rl) plane is called the pseudosonic region in the flow. 
In general, system (7.36) is both hyperbolic-elliptic mixed and composite type, and the 

flow is pseudotransonic. 
For a bounded solution (p, u l, U2, p), the flow must be pseudosupersonic w h e n  ~2 .+. 

;72---+oo. 

An important prototype problem for both practical applications and the theory of multi- 
dimensional complex wave patterns is the problem of diffraction of a shock wave which is 
incident along an inclined ramp. When a plane shock hits a wedge head on, a self-similar 
reflected shock moves outward as the original shock moves forward (e.g., [15,43,100,150, 
252,291,328]). The computational and asymptotic analysis shows that various patterns of 
reflected shocks may occur, including regular and Mach reflections. The reflected shock 
is a transonic shock in the self-similar coordinates, for which the corresponding equation 
changes its type from hyperbolic to elliptic across the shock. There has been no rigorous 
mathematical result on the global existence and structure of shock reflections for the poten- 
tial flow equation and the full Euler equations. Some results were recently obtained for sim- 
plified models. The transonic small-disturbance (TSD) equation in Section 4.3 was derived 
and used in [173,177,187,252] and the references cited therein for asymptotic analysis of 
shock reflections; and some steps of this analysis have been justified in [40]. Zheng [357] 
made an effort on the existence of a regular reflection solution for the pressure gradient 
equation when the wedge is close to a flat wall. 

It is important to establish the existence and stability of shock reflection solutions and 
clarify the transition among regular reflection, simple Mach reflection, double Mach re- 
flection, and complex Mach reflection. 

A good starting point is the potential flow equation (4.4) for this problem. A self-similar 
solution is a solution of the form 

x 
= tr rl), (~, rl) = - .  

t 



Euler equations and related hyperbolic conservation laws 77 

By introducing the function 

~2 +772 
~(~ ,  ~) = - ~  + ~ ( ~ ,  ~), 

2 

the system can be rewritten in the form of a second-order equation of mixed hyperbolic- 
elliptic type 

div(~,~) (p (I V~o 12, ~o) Vgo) + 2p (IV~pl 2, 99) - -0  (7.37) 

with 

, ( q2 + 2z) 1/(y-l) 
p(q2 z ) -  1 -  2 

Similar to (6.1), equation (7.37) at IVy0[ = q is hyperbolic (pseudosupersonic) if 

p(q2, z) + qpq (q2, z) < 0 

and elliptic (pseudosubsonic) if 

p(q2, z) + qpq (q2, z) > 0. 

The nature of the shock reflection pattern has been explored in [252] for weak inci- 
dent shocks (strength b) and small wedge angles 20w by a number of different scalings, 
a study of mixed equations, and matching asymptotics for the different scalings, where the 
parameter/3 - ClO2/b(v + 1) ranges from 0 to cx~ and cl is the sound speed behind the 
incident shock. It was shown that, for/3 > 2, regular reflection of both strong and weak 
kinds is possible as well as Mach reflection; for/3 < 1/2, Mach reflection occurs and the 
flow behind the reflection is subsonic and can be constructed in principle (with an open 
elliptic problem) and matched; and for 1/2 </3 < 2, the flow behind a Mach reflection 
may be transonic and the corresponding nonlinear boundary value problem of mixed type 
has been discussed. The basic pattern of reflection was shown to be an almost semicircular 
shock, for regular reflection, emanating from the reflection point on the wedge and, for 
Mach reflection, matched with a local interaction flow. It is important to establish some 
rigorous proofs for this problem with the aid of free boundary approaches as discussed 
in Section 6.3. Such a rigorous proof for the existence of shock reflection solutions has 
successfully been established in [63] when the wedge angle is large. 

7.3. Global solutions with special Cauchy data 

Several cases of initial data for the Cauchy problem may be solved for constructing global 
solutions for the compressible Euler equations (1.11) or (1.4). 
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CASE 1. Initial data of the form 

(/9_, Ul- , / ' /2- )  
(/9, Ul, U2)lt=0 -- (p+, Ul+, U2+) 

if L(x) < 0, x E R 2, 

if L(x) > 0, 
(7.38) 

for (1.11). The initial discontinuity L (x) = 0 is a smooth curve which separates the x-plane 
into two unbounded parts, and VxL is continuous. This Cauchy problem (1.11) and (7.38) 
can be considered as a multidimensional generalization of the one-dimensional Riemann 
problem. It is also a natural problem from the viewpoint of physics. Conventional self- 
similarity transformations or symmetric transformations are not available to such a prob- 
lem. 

Certain preliminary observations have shown in the case where the global solutions are 
connected by two-dimensional rarefaction waves, with the discontinuity L(x) = 0 being 
convex or concave, and two initial constants (p_, Ul-,  u2-) and (p+, Ul+, u2+) satisfying 
a natural relation. A natural strategy is to develop the so-called envelope method and some 
particular implicit functions which may enable the construction of the two-dimensional 
rarefaction waves to be possible. It has also been observed that the state functions inside the 
rarefaction waves and the intermediate state functions between the two rarefaction waves 
must be smooth. It is interesting to obtain a complete global solution. For the pressureless 
Euler equations, some results have been obtained by Yang and Huang [343]. 

CASE 2. Initial data of the form 

(p - ,  t / l - ,  U2-) 
(/9, Ul, u2)lt=0 -- (p - ,  Ul+, U2+)(X) 

if L (x) < 0, 

if L(x) > 0, 

where (p_, Ul-,  u2-)  is a constant state and (p+, Ul+, U2+)(X) is a smooth initial function. 
It is important to determine the class of initial functions (p+, u 1+, uz+)(x) which leads to 
the existence of two-dimensional global solutions that have only a single shock for such 
special initial data. In this regard, see [159] and [160]. 

CASE 3. Initial data consists of four different constant states U i -  (lOi,t/il,t/2), 
i = 1, 2, 3, 4, corresponding to four quadrants with a special relationship among the states, 
so that the unfolding solution at infinity consists of only one rarefaction wave along the 
direction of each semiaxis. Chang, Chen and Yang [44,45] and Lax and Liu [203] have sim- 
ilar numerical results for this case. The contour curve of the density p is simple: the two 
groups of planar rarefaction waves, R12 (along the 7/+ axis) and R41 (along the ~+ axis), 
R34 (along the 7-  axis) and R23 (along the ~-  axis), are connected by a family of straight 
lines ~ + rl = or, where ot is a constant parameter. Hence, p is symmetric about ~ - rl = & 
for a particular ~, while the contour curve of the self-Mach number is relatively complex 

but follows some rules. 

It is interesting to construct two-dimensional global solutions to the Euler equa- 
tions (1.11) with this type of initial data. The idea is first to estimate the solution of p 
from its contour curve, then to plug/9 into equations (1.11), according to the symmetry 
of/9, so as to construct u 1 and u2. 
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8. Divergence-measure fields and hyperbolic conservation laws 

Naturally, we want to approach the questions of existence, stability, uniqueness, and long- 
time behavior of entropy solutions for multidimensional compressible flows for fluids 
(as represented by the Euler equations of inviscid flows such as system (1.4) and sys- 
tem (1.11)) and solids (as represented by the equations of nonlinear elastodynamics such 
as system (4.15), (4.17) and (4.18)) with as much generality as possible. In this section, 
we discuss some recent efforts in developing a theory of divergence-measure fields to con- 
struct a global framework for studying solutions of multidimensional compressible flows 
and, more generally, hyperbolic systems of conservation laws. 

8.1. Connections 

Consider a system of hyperbolic conservation laws in d space dimensions in (1.1). As men- 
tioned earlier, the main feature of nonlinear hyperbolic conservation laws (1.1), especially 
(1.4) or (1.11), is that, no matter how smooth the initial data is, solutions may develop 
singularities and form shock waves and vorticity waves, among others, in finite time. For 
the one-dimensional problem of (1.1), in particular, for the one-dimensional version of 
the Euler equations (1.15) or (1.17) in Lagrangian coordinates, one may expect solutions 
in BV; this is indeed the case by Glimm's theorem [ 145] which indicates that there exists a 
global entropy solution in B V when the initial data has sufficiently small total variation and 
stays away from vacuum. On the other hand, when the initial data is large, even away from 
vacuum, solutions may develop vacuum instantaneously as t > 0 or approach the vacuum 
states indefinitely. In this case, the specific volume r = 1/p may become a Radon measure 
or an L 1 function, rather than a BV function (cf. [332]). 

In particular, we emphasize again that, as discussed in Section 2.6, the BV bound gener- 
ically fails for multidimensional hyperbolic conservation laws. In general, for multidimen- 
sional conservation laws, especially the Euler equations, because of complex interactions 
among shocks, rarefaction waves, vortex sheets, and vorticity waves, solutions of (1.1) are 
expected to be in the following class of entropy solutions: 

(i) u(t, x) 6 A//(R~_ +1) or LP(Ra++I), 1 ~< p ~< cx~, 
(ii) u(t, x) satisfies the Lax entropy inequality 

#~ := Otr/(u(t, x)) + Vx. q(u(t,  x)) ~< 0 in the sense of distributions, (8.1) 

for any convex entropy-entropy flux pair (7, q) :Rn --+ R x R d so that rl(u(t, x)) and 
q(u(t, x)) are distributions. 

One of the main issues in conservation laws is to study the behavior of solutions in 
this class to explore all possible information on solutions, including large-time behavior, 
uniqueness, stability, and existence of traces, with neither specific reference to any partic- 
ular method for constructing the solutions nor additional regularity assumptions. 

The Schwartz lemma infers from (8.1) that the distribution #~ is in fact a Radon mea- 
sure, 

div(z,x) (rl(u(t, x)), q(u(t,  x))) ~ ./~ (~d+l). 
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Furthermore, when u E L ~ this is also true for any C 2 entropy-entropy flux pair (r/, q) 
(r/not necessarily convex) if (1.1) has a strictly convex entropy, which was first observed 
in [51]. 

More generally, we have the following definition. 

DEFINITION. Let 79 C R N be open. For 1 ~< p ~< ec, F is called a 79MP(79) field if 
F E LP(79; IR N) and 

IIFII~M,'(~) :---IIFIIL,(7~;RN) + II divFIl~(7~) < ~ ,  (8.2) 

and the field F is called a 79Mext(79)-field if F 6 .M(79; ]l~ N) and 

IIFl179MeXt(~) :--I](F, divV)ll~(z)) < ~ .  (8.3) 

Furthermore, for any bounded open set 79 C R N, F is called a 79M~oc(IRN) field if 
ext N 79Mext F E 79M p (79), and F is called a 79Mlo c ( IR)  if F E (79). A field F is simply called 

a 79M field in 79 if F E 79M p (79), 1 <~ p <~ co, or F E 79Mext(79). 

It is easy to check that these spaces, under the respective norms IIFIIT~Mp(7~) and 
IIFllDMext(Z)) are Banach spaces. These spaces are larger than the space of BV fields. The 
establishment of the Gauss-Green theorem, traces, and other properties of BV functions 
in the 1950s (cf. [133]; also [8,144,330]) has significantly advanced our understanding of 
solutions of nonlinear partial differential equations and related problems in the calculus of 
variations, differential geometry and other areas, especially for the one-dimensional theory 
of hyperbolic conservation laws. A natural question is whether the 79M fields have similar 
properties, especially the normal traces and the Gauss-Green formula to deal with entropy 
solutions for multidimensional conservation laws. At a first glance, it seems impossible 
due to the Whitney paradox [338]. 

EXAMPLE 8.1 (Whitney paradox [338]). The field 

--Y2 Yl ) 
F(yl ,Y2)- -  y2 + y2' y2 + y2 

belongs to 79M~o c (~2), however, for I2 - (0, 1) • (0, 1), 

fs? div F - 0 =/= f F .  n dT-/1 = rt 
s2 2 '  29 

if one understands F .  n in the classical sense. This implies that the classical Gauss-Green 
theorem fails. 

EXAMPLE 8.2. For any/z i E .A,4 (R), i - 1, 2, with finite total variation, 

F(yl ,  Y2) - (/Zl (Y2),/z2(Yl)) E 79Mext(•2). 
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A nontrivial example of such fields is provided by the Riemann solutions of the one- 
dimensional Euler equations in Lagrangian coordinates for which vacuum generally de- 
velops (see [69]). 

On the other hand, motivated by various nonlinear problems from conservation laws, as 
well as for rigorous derivation of systems of balance laws with measure source terms from 
the physical principle of balance law and the recovery of Cauchy entropy flux through the 
Lax entropy inequality for entropy solutions of hyperbolic conservation laws by capturing 
entropy dissipation, a suitable notion of normal traces and corresponding Gauss-Green 
formula for divergence-measure fields are required. 

Some earlier efforts were made on generalizing the Gauss-Green theorem for some 
special situations, and relevant results can be found in [9] for an abstract formulation 
for F ~ L ~ ,  Rodrigues [283] for F ~ L 2, and Ziemer [358] for a related problem for 
div F E L 1; also see [ 12,36] and [359]. In [67], an explicit way to calculate the suitable nor- 
mal traces was first observed for F 6 79M ~ under which a generalized Gauss-Green the- 
orem was shown to hold, which has motivated the establishment of a theory of divergence- 
measure fields in [67,69,83,84]. 

8.2. Basic properties of  divergence-measure fields 

Now we list some basic properties of divergence-measure fields. 

PROPOSITION 8.1. (i) Let {Fj } be a sequence in 79M p (79) such that 

Fj  - - - F  

Fj --- F 

inL r (79;R u) forl<~p< loc 

in L eCloc (79; RN) for  p -- oe. 

Then 

IIFIIL,(V) ~<lim inf IIFjlIL~(D), 
j----> oo 

I div FI (79) <~ lim inf I div Fj 1(79). 
j--> (x~ 

(ii) Let {Fj} be a sequence in 79Mext(79) such that 

Fj ~ F in .AAloc(79; It{N). 

Then 

IFI(D) ~ l i m  inf IFjI(79), j---> ~ 
[ div F[ (79) ~< lim inf [ div Fj [(79). 

j-+oQ 

In particular, if  F has compact support in 79, then 

(8.4) 

(8.5) 

I divFjl(D) --+ I divFl(D) as j --+ oo. 
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This proposition immediately implies that spaces ~DM p (D), 1 ~ p ~< cx~, and DMext(D) 
are Banach spaces under norms (8.2) and (8.3), respectively. 

PROPOSITION 8.2. Let {Fj} be a sequence in DM(D) satisfying 

lim I div FjI(D) : I div FI (D) 
j---~ e~ 

and one of the following three conditions 

Fj ---~ F 

Fj  --~F 

Fj  --~F 

P (D; I~ N in Llo c ) for 1 <~ p < cxz, 

in Llo~c (D; R N) for p = cx~, 

in Mloc(V; RN)- 

Then, for every open set s C D, 

I d ivF l (~  n 7)) >~ lim sup I d i v F j l ( ~  n D).  
j--+ cx~ 

(8.6) 

In particular, if l divFl(3~2 n D ) = 0 ,  then 

Id ivFl (S2) :  lim IdivFjl(s j----~ ~ 
(8.7) 

We now use the standard positive symmetric mollifiers co "I[~ N ----> ~ satisfying 

-- J~ co(y) dy = 1 co(y) 6 C~(]~N), co(y) ~> O, co(y) co([y]), N 

suppw(y) C B1 = {y 6 R N" lyl < 1}. 

We denote 

w e ( y ) =  6-No) (Y) ,  Fe = F ,  co e, (8.8) 

that is, 

Fe(Y)--e--Nf~N F(x)w(Y - x )  dx - f ~ e  N F(y + ex)w(x) dx. (8.9) 

Then F e 6 C~ (f2; I~ N) for any Y2 C D when e is sufficiently small. We recall that, for any 
f, g 6 LI(I~N), 

finN fe  g d x -  f~N f ge dx. (8.10) 

The following fact for DM fields is analogous to a well-known property of BV functions. 
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PROPOSITION 8.3. Let F E 79M(79). Let t2 C 7) be open and ] divFl(0t'2) = 0. Then, for  
any q9 E C (79; IR), 

lim (div V e , ~o Xs2) --  (div F,  ~o Xs2 ). 
c---> 0 

Furthermore, i fF E 79Mext(79) and ]F[(0t'2) = 0, then, for  any ~0 E C(79; ~ N ) ,  

l i m  (Fe,  ~oXs2) - (F,  ~pXs2). 
8--+0 

Now we discuss some product rules for divergence-measure fields. 

PROPOSITION 8.4. Let F = (F1 . . . . .  FN) E 79M(79). Let g E BV M L~(79) be such that 
(i) Oyj g (y) is I Fjl-integrable, for each j = 1 . . . . .  N, 

(ii) the set of  non-Lebesgue points of  0fig(y) has ]Fjl-measure zero, 
(iii) g(y) is (IF] +]divFl)-integrable, 
(iv) the set of  non-Lebesgue points of  g(y) has (IF] + ] divFl)-measure zero. 

Then gF E 79M(79) and 

div(gF) = g div F + F .  X7g. (8.11) 

In particular, i fF E 79Me~(79), then gF E 79M~(79) for any g E BV A L~(79);  moreover, 
if g is also Lipschitz over any compact set in 79, then 

div(gF) = g div F + F .  Vg. (8.12) 

In fact, for F E 79M~(79), one may refine the above result to yield that (8.12) holds 
a.e. in a more general case, not only for local Lipschitz functions. In this case, we must 
take the absolutely continuous part of Vg. For g E BV, let (Vg)ac and (Vg)sing denote the 
absolutely continuous part and the singular part of the Radon measure Vg, respectively. 
Then we have the proposition. 

PROPOSITION 8.5. Given F E 79M ~ (79) and g E BV A L ~ (7)), the identity 

div(gF) = ~ div F + F .  Vg 

holds in the sense of Radon measures in 79, where ~ is the limit of  a mollified sequence for g 
through a positive symmetric mollifier, and F . V g is a Radon measure, absolutely contin- 
uous with respect to ]Vg], whose absolutely continuous part with respect to the Lebesgue 
measure in 79 coincides with F .  (Vg)ac almost everywhere in 79. 

8.3. Normal traces and the Gauss-Green formula 

We now discuss the Gauss-Green formula for 79M fields over s C 79 by introducing a suit- 
able notion of normal traces over the boundary 0 s of a bounded open set with Lipschitz 
deformable boundary, established in [67,69]. 
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DEFINITION 8.1. Let ~ C I~ N be an open bounded subset. We say that 0~2 is a de- 
formable Lipschitz boundary, provided that 

(i) for any x 6 0 ~2, there exist r > 0 and a Lipschitz m a p / "  II~ N-  1 __+ R such that, after 

rotating and relabeling coordinates if necessary, 

f3 Q(x, r) - {y EIR N" F(Yl . . . . .  YN-1) < YN} N Q(x, r), 

where Q(x, r) - {y E ]~N .  lYi - xi] ~ r, i -- 1 . . . . .  N}, 
(ii) there exists q J ' 0 ~  • [0, 1] --~ ~ such that qJ is a homeomorphism, bi-Lipschitz 

over its image, and qJ (co, 0) - co for any co E 0 ~ .  The map qJ is called a Lipschitz defor- 
mation of the boundary 0 ~2. 

Denote 0~2s --- qJ(0Y2 • {s}), s E [0, 1], and denote Y2s the open subset of Y2 whose 

boundary is 0 Y2s. 

REMARK 8.1. The domains with deformable Lipschitz boundaries clearly include 
bounded domains with Lipschitz boundaries, the star-shaped domains and the domains 
whose boundaries satisfy the cone property. It is also clear that, if ~2 is the image through 
a bi-Lipschitz map of a domain ~ with a Lipschitz deformable boundary, then Y2 itself 
possesses a Lipschitz deformable boundary. 

For D M  p fields with 1 < p ~< c~, we have the following theorem. 

THEOREM 8.1. Let F E D M  p (D), 1 < p <<, c~. Let C2 C D be a bounded open set with 
Lipschitz deformable boundary. Then there exists a continuous linear functional F . n over 
Lip(0~2) such that, for  any ~b E Lip(I~U), 

(F.  n, q~)os2 -- (divF, ~b)s2 + fs2 V~b. Fdx .  (8.13) 

Moreover, let n ' O  (0 ~2 x [0, 1 ]) - +  I[~ N be such that n(x) is the unit outer normal to 0 ~s  
at x E O~2s, defined for  a.e. x E O(0Y2 x [0, 1]). Let h" I~ u ----> I[~ be the level set function 
of  0 s that is, 

I O for  y E Il~N -- ~2, 

h ( y ) ' - -  1 f o r y  ~ C2 - qJ(OY2 • [O, 1]), 

s f o r y E O ~ s , O < ~ s < ~ l .  

Then, for  any ~ ~ Lip(0 ~2), 

(F.  n, 7r)~s2 - - lim - 
s~0 s (0s-2 x (0,s)) 

,5' ( ~ ) V h  .Fdx ,  (8.14) 

where C(~p) is any Lipschitz extension of  7r to the whole space I~ N . 
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In the case p = oo, the normal  trace F .  n is a func t ion  in L~ satis fying 

IIF. nllL~(an)~ CIIFIIt~(n) 

f o r  some constant  C independent  o f F .  Furthermore,  f o r  any f ie ld  F E 79M ~ (S2), 

/ ,  

( F . n ,  ~P)0n - -ess  lim / (F.  n)(gr o t/-/(1) d']-/N-1 
s--*O J o s L 

f o r a n y  lp E LI(s'2). 

(8.15) 

Finally, f o r  F E 7PM p (S-2) with 1 < p < oo, F .  n can be ex tended to a cont inuous  l inear 

func t iona l  over W 1-1/ p' p A L ~ ( O S-2 ). 

EXAMPLE 8.3. The field 

F(yl ,  y2) - ( s i n ( ~  1 ) ' s i n ( y l  y2 
Yl -- Y2 

belongs to D M  ~ (•2). It is impossible to define any reasonable notion of traces over the 
line yl = y2 for the component sin(1/(yl - y2)). Nevertheless, the unit normal nr to the 

1 1 , r )  n r  is line Yl - Y2 - r is the vector ( ,/~, ,/~) so that the scalar product F(yl yl - �9 

identically zero over this line. Hence, we find that 

F .  n _= 0 over the line yl = y2 

and the Gauss-Green formula implies that, for any r E C 1 (R2), 

O--(divFly,  >y2, r  F .  VCdy. 
. l > y 2  

This identity could also be directly obtained by applying the dominated convergence theo- 
rem to the analogous identity obtained from the classical Gauss-Green formula. 

As indicated by Examples 8.1 and 8.2, it is more delicate for fields in D M  1 and 7~M ext. 
Then we have to define the normal traces as functionals over the spaces Lip(v, 0 #2) with 
9 />  1 (see [309]). 

For 1 < V ~< 2, the elements of Lip(v, 0#2) are (N + 1)-components vectors, where 
the first component is the function itself, and the other N components are its "first-order 
partial derivatives". In particular, as a functional over Lip(v, 0 #2), the values of the normal 
trace of a field in D M  1 or 79M ext on 0#2 depend on not only the values of the respective 
functions over 0 #2 but also the values of their first-order derivatives over 0 #2. To define the 
normal traces for F E D M  1 (S2) or 79Mext(s2), we resort to the properties of the Whitney 
extensions of functions in Lip(v, 0#2) to Lip(v, RN). 

We have the following analogue of Theorem 8.1 which covers fields in D M  1 and D M  ext. 
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THEOREM 8.2. Let F e 79M 1 (7)) or 79Mext(79). Let Y2 C 79 be a bounded open set with 

Lipschitz deformable boundary. Then there exists a continuous linear functional F . n over 
Lip(y, 0~2) for  any 7' > 1 such that, for  any r ~ Lip(y, RN), 

( F . n ,  r = (divF, r + (F, Vr  (8.16) 

Moreover, let h :R N --+ R be the level set function as defined in Theorem 8.1; and in 

the case that F ~ 79Mext(79), we also assume that Oxi h is [Fi I-measurable and its set of  

non-Lebesgue points has I Fi I-measure zero, i = 1 . . . . .  N.  Then, for  any ~ ~ Lip( V, 0,(-2), 
y > l ,  

1 
( F . n ,  7t)~s2 - - l i m  - (F  s 

s ~ 0  s ' (0~2 x ( 0 , s ) ) '  
(8.17) 

where s 6 Lip(v, ~N) is the Whitney extension of  d/ on OY2 to RN. 

REMARK 8.2. In general, for F E 79M1(79) or 79Mext(79), the normal trace F .  n may 
be no longer a function. This can be seen in Example 8.1 for F 6 79M~oc(IK 2) with ~ -- 
{y: y2 + y2 < 1, y2 > 0}, for which F . n  is a measure over OY2. 

As a corollary of the Gauss-Green formula for 79M ~ fields, we have the following 
proposition. 

PROPOSITION 8.6. Let s C ]1~ N be a bounded open set with Lipschitz boundary and 

F1 e 79M~(f2),  F2 E 79MOC(R N - ~ ) .  

Then 

FI(y), y ~  f2, 
F ( y ) -  F2(y), y 6 R N -- ~ ,  (8.18) 

belongs to 79M ~ (RN),  and 

IIFII79M~(~N) ~ [[F1[I79M~fS2) § 11F21179M~(~N_~) 

+ IIF1 �9 n -  F2. nllL~(Of2)7-[ N-1 (OY2). 

The analysis above over sets with Lipschitz boundary has been extended to the analysis 
over sets of finite perimeter for F 6 79M ~ (7)). 

DEFINITION 8.2. Let E be an s subset of ]t~ N. For any open set 79 C ]~N, 
we say that E is a set of finite perimeter in 79 if the characteristic function of E, XE, belongs 
to BV(79). We refer to a set of finite perimeter in ]K N simply as a set of finite perimeter. 
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REMARK 8.3. If E is a set of finite perimeter in 79 C It{ N, then VXE (the gradient of XE 
in the sense of distributions) is a vector-valued Radon measure in 79. We denote the total 
variation of VXE as IVxEI. It can be shown (cf. [8,132]) that 

VxE = nEIVxEI, 

where nE is the measure-theoretic inward unit normal to E. 

DEFINITION 8.3. Let E be a set of finite perimeter in 79 C ]I~ N. The reduced boundary 
of E, denoted as O'E, is the set of all points y E supp(IVxE l) A 79 such that 

(i) fs(y,r)IVxEI > 0 for all r > 0; 

(ii) limr~o(fB(y,r) VXE/ fB(y , r ) IVxe l )  -- ne(y) ;  

(iii) Ine(y) l - -  1 .  

We recall that the space of functions of bounded variation, B V, in fact represents an 
equivalence class of functions so that changing the value of a function in this class on a set 
of z;N-measure zero does not change the function itself. From Definition 8.2, it follows that 
the same is true for sets of finite perimeter. Since we are concerned with only equivalence 
classes of sets, we assume here that a set of  finite perimeter E is the representative given 
by the following proposition, which can be found in [1 44]. 

PROPOSITION 8.7. I f  E C ~ N  is a Borel set, then there exists a Borel set E equivalent 
to E, which differs only by a set of  s zero, such that 

0 < IffS O B(y, r)l < CON rN (8.19) 

for all y ~ 0 E and all small r > O, where O) N is the measure of the unit ball in N N . 

DEFINITION 8.4. For every ot E [0, 1] and every/2N-measurable set E C •N, define 

E~ { y 6 R N lim I E N B (y ' r ) I } --- �9 = ot , (8.20) 
~ o  IB(y, r)l 

the set of all points with density ot 6 [0, 1 ]. We now define the essential boundary of E, 
OSE, as 

OS E __ ~N \ ( g  0 (..) El) .  (8.21) 

The sets E ~ and E 1 may be considered as the measure-theoretic exterior and interior of E, 

which motivate the definition of essential boundaries. 

REMARK 8.4. If E is a set of finite perimeter in 79 C I~ N, it has been shown (cf. [8]) that 

O*E C E 1/2 C 0 sE, 

) - 0 ,  
(8.22) 

(8.23) 
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and 

]V)(E ] = ~ - / N - 1 L 0 * E .  (8.24) 

DEFINITION 8.5. Let f E L 1 (79) and a 6 IR N . We say that fa(Yo) is the approximate limit 
of f at Yo 6 79 restricted to Ha := {y 6 IR N" y" a >~ 0} if, for any 6 > 0, 

I{Y ~ ]~N. If(Y) -- fa(Y0)l < 6} n B(y0, r) N Hal 
lira = 1. (8.25) 
r~0  IB(y0, r) n Hal 

DEFINITION 8.6. We say that Yo 6 79 is a regular point of a function f ~ BV(79) if there 
exists a vector a E R N such that the approximate limits fa(Yo) and f-a(Yo) exist. The 
vector a is called a defining vector. 

If Y0 is a regular point of f e BV(79), then there are two possibilities 

either f a ( Y o ) -  f-a(Yo) or fa(Yo) :fi f-a(Yo). 

It can be proved (cf. [330]) that, in the first case, any b 6 ]t~ N is a defining vector and 
fb(Y0) -- fa(Y0); in the second case, a is unique up to the sign, i.e., the only defining 
vectors are a and - a .  

REMARK 8.5. A classical result in the BV theory says that ,]. .~N-1 almost every y 6 79 is a 
regular point of f ~ BV(79); see [8,132,330]. 

DEFINITION 8.7. Given f 6 L~oc(79 ), we define 

f ( y )  . -  lim fE (y), (8.26) 
e----> 0 

where fe  := f ,co e with co e (y) = 8 -NO)(y / s )  for the standard positive symmetric mollifier 
co defined in (8.8). 

REMARK 8.6. It can be proved that, if f ~ BV(79), then f is defined at each regular point. 
Moreover, if Y0 is a regular point of f ,  then 

1 
f(Yo) = ~ ( fa(Yo)+ f-a(YO)), 

where a is a defining vector (cf. [330]). 

If E is a set of finite perimeter in 79, we have from Remark 8.6 that )(E is defined 
7-/N- 1-almost everywhere. In fact, we have 

l 
�89 i fy  6 8*E, 

)(E(Y) -- 1 if y 6 E l, 

0 if y ~ E ~ 

(8.27) 
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We recall here that ,]_~N-1 (Os E \ O* E) -- O. 

As Proposition 8.8 indicates, 

d ivF << ,]__{N-1 for F �9 D M ~ ( D ) .  

Thus, the values of )(e on the set OSE \ O*E can be ignored. This fact is essential in the 
proof of the Gauss-Green formula for D M  ~ fields over sets of finite perimeter. 

PROPOSITION 8.8. Let F �9 7)All ~ (7)). Then the Radon measure div F in 7) is absolutely 
continuous with respect to the (N  - 1)-Hausdorff  measure ~_~X-1. That is, if  A C 7) be a 
Borel measurable set such that ~__{U-1 (A) --O, then [ divF[(A) - -0 .  

PROOF. Since there are Borel measurable sets 7)+ and D_,  7)+ U 7)_ = 7), such that 
div F is a nonnegative measure over 7)+ and a nonpositive measure over D_ ,  one may 
assume A C 7)+ and hence ] divF](A) = (d ivF)+(A)  = divF(A).  Also, since (divF)+ is 
a Radon measure, it suffices to prove the assertion for any compact A. 

Now, for any ~ > 0, we can find a finite number J of balls of radius less than ~ such that 

J J 

A cUB(yi ' r i ) ,  Z r  N - ,  <(~, 
i=1 i=1 

since ,]._{N-1 (A) - -0 .  Then we may apply the Gauss-Green formula for D M ~ fields over 
the set 

J 

-- ~8 ---- U B(yi; ri) 
i=1 

with Lipschitz deformable boundary and any function ~b �9 C~(]I~ N) that is identically equal 

to one over S-2~. Then 

J 

[ divF(S-2~) I ~ IIFII~ N-1 (0n~) ~ CIIFII~ ~ r/N-1 ~ ~CIIFII~. 
i=1 

Now, since Xs2~ ----> XA pointwise in 7) as 3 --> 0 (recall that A is compact), one has 

I divFl(A) -- div F(A) - 0. 

This completes the proof. [5] 

Now, Proposition 8.5 immediately implies the following proposition. 

PROPOSITION 8.9. Let F �9 7)All ~ (7)). I f  E ~ 7) is a set o f  finite perimeter in 7), then 

div(xEF) - )(E div F + F .  VXE, (8.28) 
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where F . VXE = w - lime_,o F �9 V(XE) e for  (XE) e = %E * W e. Furthermore, the measure 

F .  V XE is absolutely continuous with respect to the measure IV XEI, 

THEOREM 8.3. Let F ~ 79M ~ (79). I f  E ~ 79 is a bounded set o f  finite perimeter, then 
there exists an 7-[u-l-integrable function (denoted by) F .  n ~ L ~ ( O  s E; 7-/N-l) such that 

fE ~ divF = -f0s E F.  V----~ : - f s  e F . n  dT-/N-1 . (8.29) 

Then we have the following Gauss-Green formula. 

THEOREM 8.4 (Gauss-Green formula). Let F ~ 79A4 ~ (79). Let E ~ 79 be a bounded set 

o f  finite perimeter. Then there exists an 7-[u-l-integrable function 

F . n on 0 s E 

such that, f o r  any cp ~ C(~ (I~N), 

fE 1 ~b d i v F -  - - f ' E  F.  nO dT-/N-1 - fE  l F.  Vcp dy. 

THEOREM 8.5 .  Let C2 C E ~ 79 be bounded open sets where E is a set o f  finite perimeter  

in R u . Let F1 E 79M c~ (79) and F2 E 79M ~ (IR u - ~ ) .  Then 

FI(y), y~E, 
F(y) - Fz(y), y 6 ]~N _ ~ - ,  (8.30) 

belongs to 79MC~ (RN) ,  and 

IIFIIT~M~(~N) 

IIFIlIT~M~(E) + IIF2117~M~(RN_~-) + IIFI" n -  F2.nIIL,(OSE;7_tN-,). 

The normal trace over a surface of finite perimeter, introduced by Chen and Torres [83], 
can be understood as the weak-star limit of the normal traces in Theorem 8.1 by Chen 
and Frid [67] over the Lipschitz deformation surfaces of the surface, which implies their 
consistency. 

Some entropy methods based on the theory of divergence-measure fields presented 
above have been developed and applied for solving various nonlinear problems for con- 
servation laws and related nonlinear equations. These problems especially include 

(1) stability of Riemann solutions, which may contain rarefaction waves, contact dis- 
continuities, and/or vacuum states, in the class of entropy solutions of the Euler equations 
for gas dynamics in [69,70,86], 

(2) decay of periodic entropy solutions for hyperbolic conservation laws in [65], 
(3) initial and boundary layer problems for hyperbolic conservation laws in [67,82, 

83,329], 
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(4) rigorous derivation of systems of balance laws from the physical principle of balance 
law and the recovery of Cauchy entropy flux through the Lax entropy inequality for entropy 
solutions of hyperbolic conservation laws by capturing entropy dissipation in [84], 

(5) nonlinear degenerate parabolic-hyperbolic equations in [37,73,81,248]. 
One of the entropy methods is to identify Lyapunov-type functionals and employ the 

Gauss-Green formula to establish the uniqueness and stability of entropy solutions; see 
[69,70,86]. In this regard, some related Lyapunov-type functionals have been identified 
for small B V solutions obtained by the Glimm scheme, the wave-front tracking scheme, 
and the vanishing viscosity method; see [20,33,111,167,204,210] and the references cited 
therein for the details. It would be interesting to apply the theory of divergence-measure 
fields to developing more efficient entropy methods for solving more various problems 
in partial differential equations and related areas whose solutions are only measures or 
L P functions. 

For more details, see [67,69,83,84]. 

Acknowledgments 

Gui-Qiang Chen's research was supported in part by the National Science Foundation un- 
der Grants DMS-0244473, DMS-0204225, DMS-0426172, INT-9987378, and an Alexan- 
dre von Humboldt Foundation Fellowship. 

References 

[ 1] R.K. Agarwal and D.W. Halt, A modified CUSP scheme in wave~particle split form for unstructured grid 
Eulerflows, Frontiers of Computational Fluid Dynamics, D.A. Caughey and M.M. Hafez, eds, Wiley, New 
York (1994), 155-168. 

[2] S. Alinhac, Temps de vie des solutions rfgulibres des 6quations d'Euler compressibles axisym~triques en 
dimension deux [Life spans of the classical solutions of two-dimensional axisymmetric compressible Euler 
equations], Invent. Math. 111 (1993), 627-670. 

[3] S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Birkh~iuser, Boston (1995). 
[4] H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine 

Angew. Math. 325 (1981), 105-144. 
[5] H.W. Alt, L.A. Caffarelli and A. Friedman, A free-boundary problem for quasilinear elliptic equations, 

Ann. Sc. Norm. Sup. Pisa C1. Sci. (4) 11 (1984), 1-44. 
[6] H.W. Alt, L.A. Caffarelli and A. Friedman, Compressible flows of jets and cavities, J. Differential Equa- 

tions 56 (1985), 82-141. 
[7] L. Ambrosio and C. De Lellis, Existence of solutions for a class of hyperbolic systems of conservation 

laws in several space dimensions, Int. Math. Res. Not. 41 (2003), 2205-2220. 
[8] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, 

Oxford Math. Monogr., Clarendon Press, Oxford University Press, New York (2000). 
[9] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. 

Mat. Pura Appl. (4) 135 (1983), 293-318. 
[10] V.I. Arnold, Mathematical Methods in Classical Mechanics, 2nd Edition, Springer-Verlag, New York 

(1989). 
[11] M. Artola and A. Majda, Nonlinear development of instabilities in supersonic vortex sheets, I: The basic 

kink modes, Phys. D. 28 (1987), 253-281; II: Resonant interaction among kink modes, SIAM J. Appl. 
Math. 49 (1989), 1310-1349; Nonlinear kink modes for supersonic vortex sheets, Phys. Fluids A 1 (1989), 
583-596. 



92 G.-Q. Chen 

[12] C. Baiocchi and A. Capelo, Variational and Quasi-Variational Inequalities, Applications to Free-Boundary 
Problems, Vols 1 and 2, Wiley, Chichester-New York (1984). 

[13] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 
63 (1977), 337-403. 

[14] J.M. Ball, A version of the fundamental theorem for Young measures, PDEs and Continuum Models 
of Phase Transitions, Nice, 1988, Lecture Notes in Phys., Vol. 344, Springer-Verlag, Berlin-New York 
(1989), 207-215. 

[ 15] G. Ben-Dor, Shock Wave Reflection Phenomena, Springer-Verlag, New York (1991). 
[ 16] H. Berestycki, L. Caffarelli and L. Nirenberg, Uniform estimates for regularization offree boundary prob- 

lems, Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., Vol. 122, Dekker, 
New York (1990), 567-619. 

[ 17] H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in un- 
bounded domains, Ann. Sc. Norm. Sup. Pisa C1. Sci. (4) 25 (1997), 69-94; Monotonicity for elliptic 
equations in unbounded Lipschitz domains, Comm. Pure Appl. Math. 50 (1997), 1089-1111; Inequalities 
for second-order elliptic equations with applications to unbounded domains I, Duke Math. J. 81 (1996), 
467-494. 

[18] L. Bers, Existence and uniqueness of subsonic flows past a given profile, Comm. Pure Appl. Math. 7 
(1954), 441-504. 

[ 19] A.V. Betsadze, Equations of the Mixed Type, Macmillan, New York (1964). 
[20] S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Preprint 

(2001). 
[21 ] A. Blokhin and Y. Trakhinin, Stability of strong discontinuities in fluids and MHD, Handbook of Mathe- 

matical Fluid Dynamics, Vol. 1, S. Friedlander and D. Serre, eds, Elsevier, Amsterdam, The Netherlands 
(2002), 545-652. 

[22] G. Boillat, La propagation des ondes, Gauthier-Villars, Paris (1965). 
[23] G. Boillat, Chocs caractgristiques, C. R. Math. Acad. Sci. Paris 274 (1972), 1018-1021. 
[24] G. Boillat, Involutions des syst~mes conservatifs, C. R. Math. Acad. Sci. Paris 307 (1988), 891-894. 
[25] G. Bouchitt6 and G. Buttazzo, Characterization of optimal shapes and masses through Monge- 

Kantorovich equation, J. Eur. Math. Soc. 3 (2001), 139-168. 
[26] E Bouchut, On zero pressure gas dynamics, Advances in Kinetic Theory and Computing, Ser. Adv. Math. 

Appl. Sci., Vol. 22, World Scientific, River Edge, NJ (1994), 171-190. 
[27] E Bouchut and E James, Duality solutions for pressureless gases, monotone scalar conservation laws, 

and uniqueness, Comm. Partial Differential Equations 24 (1999), 2173-2189. 
[28] U. Brauer, Breakdown of smooth solutions of the three-dimensional Euler-Poisson system, J. Math. Phys. 

39 (1998), 1050-1074. 
[29] Y. Brenier, Hydrodynamic structure of the augmented Born-Infeld equations, Arch. Ration. Mech. Anal. 

172 (2004), 65-91. 
[30] Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal. 35 (1998), 

2317-2328. 
[31] E Brenner, The Cauchy problem for the symmetric hyperbolic systems in Lp, Math. Scand. 19 (1966), 

27-37. 
[32] A. Bressan, The unique limit of the Glimm scheme, Arch. Ration. Mech. Anal. 130 (1995), 205-230. 
[33] A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford 

University Press, Oxford (2000). 
[34] A. Bressan, An ill-posed Cauchy problem for a hyperbolic system in two space dimensions, Rend. Sem. 

Mat. Univ. Padova 110 (2003), 103-117. 
[35] A. Bressan, T.-E Liu and T. Yang, L ! stability estimates for n x n conservation laws, Arch. Ration. Mech. 

Anal. 149 (1999), 1-22. 
[36] E Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York (1991). 
[37] R. Btirger, H. Frid and K.H. Karlsen, On a free boundary problem for a strongly degenerate quasilinear 

parabolic equation arising in a model for pressure filtration, SIAM J. Math. Anal. 34 (2002), 611-635. 
[38] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries, L Lipschitz free 

boundaries are C 1,~, Rev. Mat. Iberoamericana 3 (1987), 139-162; II. Flat free boundaries are Lipschitz, 



Euler equations and related hyperbolic conservation laws 93 

Comm. Pure Appl. Math. 42 (1989), 55-78; III. Existence theory, compactness, and dependence on X, 
Ann. Sc. Norm. Sup. Pisa C1. Sci. (4) 15 (1989), 583-602. 

[39] L.A. Caffarelli and A. Friedman, Continuity of the density of a gas flow in a porous medium, Trans. Amer. 
Math. Soc. 252 (1979), 99-113. 

[40] S. Cani6, B.L. Keyfitz and E.H. Kim, Free boundary problems for the unsteady transonic small disturbance 
equation: Transonic regular reflection, Methods Appl. Anal. 7 (2000), 313-335; Free boundary problems 
for a quasilinear degenerate elliptic equation: Regular reflection of weak shocks, Comm. Pure Appl. Math. 
55 (2002), 71-92. 

[41] S. Cani6, B.L. Keyfitz and G. Lieberman, A proof of existence of perturbed steady transonic shocks via a 
free boundary problem, Comm. Pure Appl. Math. 53 (2000), 484-511. 

[42] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York (1988). 
[43] T. Chang and G.-Q. Chen, Diffraction ofplanar shock along the compressive corner, Acta Math. Sci. 6 

(1986), 241-257. 
[44] T. Chang, G.-Q. Chen and S. Yang, 2-D Riemann problem in gas dynamics and formation of spiral, Non- 

linear Problems in Engineering and Science - Numerical and Analytical Approach, Beijing, 1991, Science 
Press, Beijing (1992), 167-179. 

[45] T. Chang, G.-Q. Chen and S. Yang, On the Riemann problem for two-dimensional Euler equations I: 
Interaction of shocks and rarefaction waves, Discrete Contin. Dyn. Syst. 1 (1995), 555-584; H: Interaction 
of contact discontinuities, Discrete Contin. Dyn. Syst. 6 (2000), 419-430. 

[46] T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Longman/Wiley, 
Harlow-New York (1989). 

[47] J.S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University 
Press, Cambridge (1970). 

[48] J.-Y. Chemin, Dynamique des gaz ~ masse totalefinie, Asymptot. Anal. 3 (1990), 215-220. 
[49] J.Y. Chemin, Remarques sur l'apparition de singularit~s dans les ~coulements eul~riens compressibles, 

Comm. Math. Phys. 133 (1990), 323-329. 
[50] G.-Q. Chen, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III), Acta Math. Sci. 

6 (1986), 75-120 (in English); 8 (1988), 243-276 (in Chinese). 
[51] G.-Q. Chen, Hyperbolic systems of conservation laws with a symmetry, Comm. Partial Differential Equa- 

tions 16 (1991), 1461-1487. 
[52] G.-Q. Chen, The method of quasidecouplingfor discontinuous solutions to conservation laws, Arch. Ra- 

tion. Mech. Anal. 121 (1992), 131-185. 
[53] G.-Q. Chen, Remarks on global solutions to the compressible Euler equations with spherical symmetry, 

Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 243-259. 
[54] G.-Q. Chen, Compactness methods and nonlinear hyperbolic conservation laws, Some Current Topics 

on Nonlinear Conservation Laws, Stud. Adv. Math., Vol. 15, Amer. Math. Soc., Providence, RI (2000), 
33-75. 

[55] G.-Q. Chen, Vacuum states and stability of rarefaction waves for compressible flow, Methods Appl. Anal. 
7 (2000), 337-362. 

[56] G.-Q. Chen and J. Chen, Vacuum states and global stability of rarefaction waves for the Euler equations 
for compressible fluids, Preprint, Northwestern University (2005). 

[57] G.-Q. Chen, J. Chen and K. Song, Existence and stability of two-dimensional transonic flows through a 
bounded nozzle for the full Euler equations, Preprint, Northwestern University (2005). 

[58] G.-Q. Chen and C.M. Dafermos, The vanishing viscosity method in one-dimensional thermoelasticity, 
Trans. Amer. Math. Soc. 347 (1995), 531-541. 

[59] G.-Q. Chen and C.M. Dafermos, Global solutions in L ~ for a system of conservation laws of viscoelastic 
materials with memory, J. Partial Differential Equations 10 (1997), 369-383. 

[60] G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for non- 
linear equations of mixed type, J. Amer. Math. Soc. 16 (2003), 461-494; Steady transonic shocks and 
free boundary problems in infinite cylinders for the Euler equations, Comm. Pure Appl. Math. 57 (2004), 
310-356. 

[61] G.-Q. Chen and M. Feldman, Existence and stability of multidimensional transonic flows through an 
infinite nozzle of arbitrary cross-sections, Preprint, December (2003); Preprint 2004-069, available at 
http://www.math.ntnu.no/conservation/2004. 



94 G.-Q. Chen 

[62] 

[63] 

[64] 

[65] 

[66] 

[67] 

[68] 

[69] 

[70] 

[71] 

[72] 

[731 

[74] 

[75] 

[76] 

[77] 

[781 

[79] 

[80] 

[81] 

[82] 

[831 

[84] 

G.-Q. Chen and M. Feldman, Free boundary problems and transonic shocks for the Euler equations in 
unbounded domains, Ann. Sc. Norm. Sup. Pisa C1. Sci. (5) 3 (2004), 827-869. 
G.-Q. Chen and M. Feldman, Global solutions to shock reflection by blunt wedges for potential flow, 
Preprint, Northwestern University (2005). 
G.-Q. Chen and H. Frid, Large-time behavior of entropy solutions in L c~ for multidimensional conserva- 
tion laws, Advances in Nonlinear Partial Differential Equations and Related Areas, G.-Q. Chen et al., eds, 
World Scientific, Singapore (1998), 28-44. 
G.-Q. Chen and H. Frid, Decay of entropy solutions of nonlinear conservation laws, Arch. Ration. Mech. 
Anal. 146 (1999), 95-127. 
G.-Q. Chen and H. Frid, Large-time behavior of entropy solutions of conservation laws, J. Differential 
Equations 152 (1999), 308-357. 
G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. 
Mech. Anal. 147 (1999), 89-118. 
G.-Q. Chen and H. Frid, Vanishing viscosity limit for initial-boundary value problems for conservation 
laws, Nonlinear Partial Differential Equations, Evanston, IL, 1998, G.-Q. Chen and E. DiBenedetto, eds, 
Contemp. Math., Vol. 238, Amer. Math. Soc., Providence, RI (1999), 35-51. 
G.-Q. Chen and H. Frid, Extended divergence-measure fields and the Euler equations for gas dynamics, 
Comm. Math. Phys. 236 (2003), 251-280. 
G.-Q. Chen, H. Frid and Y. Li, Uniqueness and stability of Riemann solutions with large oscillation in gas 
dynamics, Comm. Math. Phys. 228 (2002), 201-217. 
G.-Q. Chen and J. Glimm, Global solution to the compressible Euler equations with geometrical structure, 
Comm. Math. Phys. 179 (1996), 153-193. 
G.-Q. Chen and E-T. Kan, Hyperbolic conservation laws with umbilic degeneracy (I), (II), Arch. Ration. 
Mech. Anal. 130 (1995), 231-276; 160 (2001), 325-354. 
G.-Q. Chen and K.H. Karlsen, L 1-framework for continuous dependence and error estimates for quasilin- 
ear anisotropic degenerate parabolic equations, Trans. Amer. Math. Soc. 357 (2005), to appear; Quasilin- 
ear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients, Comm. 
Pure Appl. Anal. 4 (2005), 241-266. 
G.-Q. Chen and E LeFloch, Entropies and flux-splittings for the isentropic Euler equations, Chinese Ann. 
Math. Ser. B 22 (2001), 145-158. 
G.-Q. Chen and P. LeFloch, Compressible Euler equations with general pressure law, Arch. Ration. Mech. 
Anal. 153 (2000), 221-259; Existence theory for the isentropic Euler equations, Arch. Ration. Mech. Anal. 
166 (2003), 81-98. 
G.-Q. Chen, C.D. Levermore and T.-E Liu, Hyperbolic conservation laws with stiff relaxation terms and 
entropy, Comm. Pure Appl. Math. 47 (1994), 787-830. 
G.-Q. Chen and T.-H. Li, Global entropy solutions in L ~ to the Euler equations and Euler-Poisson 
equations for isothermal fluids with spherical symmetry, Methods Appl. Anal. 10 (2003), 215-243. 
G.-Q. Chen, B.-H. Li and T.-H. Li, Entropy solutions in L c~ for the Euler equations in nonlinear elasto- 
dynamics and related equations, Arch. Ration. Mech. Anal. 170 (2003), 331-357. 
G.-Q. Chen and H. Liu, Formation of delta-shocks and vacuum states in the vanishing pressure limit of 
solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal. 34 (2003), 925-938; Concen- 
tration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic 
fluids, Phys. D 189 (2004), 141-165. 
G.-Q. Chen and T.-E Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws, Comm. 
Pure Appl. Math. 46 (1993), 255-281. 
G.-Q. Chen and B. Perthame, Well-posedness for non-isotropic degenerate parabolic-hyperbolic equa- 
tions, Ann. Inst. H. Poincar6 Anal. Non Lin6aire 20 (2003), 645-668. 
G.-Q. Chen and M. Rascle, Initial layers and uniqueness of weak entropy solutions to hyperbolic conser- 
vation laws, Arch. Ration. Mech. Anal. 153 (2000), 205-220. 
G.-Q. Chen and M. Torres, Divergence-measure fields, sets of finite perimeter, and conservation laws, 
Arch. Ration. Mech. Anal. 175 (2005), 245-267. 
G.-Q. Chen, M. Torres and W. Ziemer, Cauchyflux, balance laws, and divergence-measurefields, Preprint, 
Northwestern University (2005). 



Euler equations and related hyperbolic conservation laws 95 

[851 

[86] 

[87] 

[88] 

[89] 

[901 
[91] 

[92] 

[93] 

[94] 

[95] 
[96] 

[97] 
[98] 

[991 

[100] 
[101] 
[102] 
[103] 

[104] 

[lO5] 

[1061 

1107] 

[108] 

[109] 

[11o] 

[111] 
[112] 

[113] 

G.-Q. Chen and D. Wagner, Global entropy solutions to exothermically reacting, compressible Euler equa- 
tions, J. Differential Equations 191 (2003), 277-322. 
G.-Q. Chen and D. Wang, The Cauchy problem for the Euler equations for compressible fuids, Handbook 
of Mathematical Fluid Dynamics, Vol. 1, S. Friedlander and D. Serre, eds, Elsevier, Amsterdam, The 
Netherlands (2002), 421-543. 
G.-Q. Chen, Y. Zhang and D. Zhu, Stability of supersonic vortex sheets in steady Euler flows past Lipschitz 
walls, Preprint, Northwestern University (2005). 
G.-Q. Chen, Y. Zhang and D. Zhu, Existence and stability of supersonic Euler flows past Lipschitz wedges, 
Arch. Ration. Mech. Anal. (2005), submitted. 
S.-X. Chen, Asymptotic behavior of supersonic flow past a convex combined wedge, Chinese Ann. Math. 
Ser. B 19 (1998), 255-264. 
S.-X. Chen, Supersonic flow past a concave double wedge, Sci. China Ser. A 41 (1998), 39-47. 
S.-X. Chen, Global existence of supersonic flow past a curved convex wedge, J. Partial Differential Equa- 
tions 11 (1998), 73-82. 
S.-X. Chen, Existence of stationary supersonic flows past a point body, Arch. Ration. Mech. Anal. 156 
(2001), 141-181. 
S.-X. Chen, E Xin and H. Yin, Global shock waves for the supersonic flow past a perturbed cone, Comm. 
Math. Phys. 228 (2002), 47-84. 
I.-L. Chern, J. Glimm, O. McBryan, B. Plohr and S. Yaniv, Front tracking for gas dynamics, J. Comput. 
Phys. 62 (1986), 83-110. 
A.J. Chorin, Vorticity and Turbulence, Springer-Verlag, New York (1994). 
A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, Berlin- 
Heidelberg-New York (1979). 
J.D. Cole and L.E Cook, Transonic Aerodynamics, Elsevier, Amsterdam, The Netherlands (1986). 
E Constantin, Some mathematical problems of fluid mechanics, Proc. Internat. Congress of Mathemati- 
cians, Ztirich, 1994, Vols 1 and 2, Birkh~iuser, Basel (1995), 1086-1095. 
E Coquel and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure 
laws in fluid dynamics, SIAM J. Numer. Anal. 35 (1998), 2223-2249. 
R. Courant and K.O. Friedrichs, Supersonic Flow and Shock Waves, Springer-Verlag, New York (1962). 
R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience, New York (1953). 
M.S. Cramer and A.R. Seebass, Focusing of a weak shock at an ar6te, J. Fluid Mech. 88 (1978), 209-222. 
B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals, Lecture Notes 
in Math., Vol. 922, Springer-Verlag, New York (1982). 
C.M. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation 
laws, Indiana Univ. Math. J. 26 (1977), 1097-1119. 
C.M. Dafermos, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal. 70 (1979), 
167-179. 
C.M. Dafermos, Quasilinear hyperbolic systems with involutions, Arch. Ration. Mech. Anal. 94 (1986), 
373-389. 
C.M. Dafermos, Solutions in L ~176 for a conservation law with memory, Analyse Math6matique et Appli- 
cations, Gauthier-Villars, Paris (1988), 117-128. 
C.M. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws, Arch. Ration. 
Mech. Anal. 107 (1989), 127-155. 
C.M. Dafermos, Large time behavior of periodic solutions of hyperbolic systems of conservation laws, 
J. Differential Equations 121 (1995), 183-202. 
C.M. Dafermos, Entropy and the stability of classical solutions of hyperbolic systems of conservation laws, 
Recent Mathematical Methods in Nonlinear Wave Propagation, Montecatini Terme, 1994, Lecture Notes 
in Math., Vol. 1640, Springer-Verlag, Berlin (1996), 48-69. 
C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin (2000). 
C. De Lellis, E Otto and M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar 
conservation laws, Arch. Ration. Mech. Anal. 170 (2003), 137-184. 
S. Demoulini, D.M. Stuart and A.E. Tzavaras, A variational approximation scheme for three-dimensional 
elastodynamics with polyconvex energy, Arch. Ration. Mech. Anal. 157 (2001), 325-344. 



96 G.-Q. Chen 

[1141 

[1151 

[116] 

[1171 

[118] 

[1191 

[1201 

[121] 

[122] 

[1231 

[124] 

[1251 

[1261 

[127] 

[1281 

[129] 
[1301 

[1311 

[1321 

[133] 
[1341 

[135] 
[136] 

[137] 

[138] 

[1391 

[140] 

R.L. Deschambault and I.I. Glass, An update on nonstationary oblique shock-wave reflections, actual 
isopicnics and numerical experiments, J. Fluid Mech. 131 (1983), 27-57. 
X. Ding, G.-Q. Chen and R Luo, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics 
(I), (II), Acta Math. Sci. 5 (1985), 483-500, 501-540 (in English); 7 (1987), 467-480, 8 (1988), 61-94 
(in Chinese). 
X. Ding, G.-Q. Chen and R Luo, Convergence of the fractional step Lax-Friedrichs scheme and Godunov 
scheme for isentropic gas dynamics, Comm. Math. Phys. 121 (1989), 63-84. 
X. Ding, T. Zhang, C.-H. Wang, L. Hsiao and T.-C. Li, A study of the global solutions for quasilinear 
hyperbolic systems of conservation laws, Scientica Sinica 16 (1973), 317-335. 
R. DiPerna, Existence in the large for quasilinear hyperbolic conservation laws, Arch. Ration. Mech. 
Anal. 52 (1973), 244-257. 
R. DiPerna, Decay and asymptotic behavior of solutions to nonlinear hyperbolic systems of conservation 
laws, Indiana Univ. Math. J. 24 (1975), 1047-1071. 
R. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Differ- 
ential Equations 20 (1976), 187-212. 
R. DiPerna, Decay of solutions of hyperbolic systems of conservation laws with a convex extension, Arch. 
Ration. Mech. Anal. 64 (1977), 1-46. 
R. DiPerna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J. 28 (1979), 
137-188. 
R. DiPerna, Convergence of viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983), 
1-30. 
R. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Ration. Mech. Anal. 88 
(1985), 223-270. 
G. Dong, Nonlinear Partial Differential Equations of Second Order, Transl. Math. Monogr., Vol. 95, Amer. 
Math. Soc., Providence, RI (1991). 
W. E, K. Khanin, A. Mazel and Y. Sinai, Invariant measures for Burgers equation with stochastic forcing, 
Ann. of Math. (2) 151 (2000), 877-960. 
W. E, Y. Rykov and Y. Sinai, Generalized variational principles, global weak solutions, and behavior with 
random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. 
Phys. 177 (1996), 349-380. 
B. Engquist and W. E, Large time behavior and homogenization of solutions of two-dimensional conser- 
vation laws, Comm. Pure Appl. Math. 46 (1993), 1-26. 
L. Euler, Institutiones Calculi Integralis, III, Petropoli (1790). 
L.C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. 
Edinburgh Sect. A 111 (1989), 141-172. 
L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional 
Conf. Ser. in Math., Vol. 72, Amer. Math. Soc., Providence, RI (1990). 
L.C. Evans and R.E Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions, CRC 
Press, Boca Raton, FL (1992). 
H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin-Heidelberg-New York (1969). 
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Ser. Math. Appl., Vol. 26, Oxford 
University Press, Oxford (2004). 
A.E Filippov, Differential equations with discontinuous right-hand side, Mat. Sb. 51 (1960), 99-128. 
R. Finn and D. Gilbarg, Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial 
differential equations, Acta Math. 98 (1957), 265-296. 
J. Francheteau and G. M6tivier, Existence de chocs faibles pour des systbmes quasi-lindaires hyper- 
boliques multidimensionnels, Ast6risque, Vol. 268, Soc. Math. France, Paris (2000). 
S. Friedland, J.W. Robbin and J. Sylvester, On the crossing rule, Comm. Pure Appl. Math. 37 (1984), 

19-38. 
K.O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 
345-392. 
K. Friedrichs and R Lax, Systems of conservation laws with a convex extension, Proc. Natl. Acad. Sci. 
USA 68 (1971), 1686-1688. 



Euler equations and related hyperbolic conservation laws 97 

[141] I.M. Gamba and C.S. Morawetz, A viscous approximation for a 2-D steady semiconductor or transonic 
gas dynamic fow: Existence theorem for potential flow, Comm. Pure Appl. Math. 49 (1996), 999-1049. 

[142] I.M. Gamba, R. Rosales and E. Tabak, Constraints on possible singularities for the unsteady transonic 
small disturbance (UTSD) equations, Comm. Pure Appl. Math. 52 (1999), 763-779. 

[143] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd Edition, 
Springer-Verlag, Berlin (1983). 

[ 144] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkh~iuser, Basel (1984). 
[145] J. Glimm, Solutions in the large for nonlinear hyperbolic system of equations, Comm. Pure Appl. Math. 

18 (1965), 95-105. 
[ 146] J. Glimm, The interaction of nonlinear hyperbolic waves, Comm. Pure Appl. Math. 41 (1988), 569-590. 
[147] J. Glimm, Nonlinear waves: Overview and problems, Multidimensional Hyperbolic Problems and Com- 

putations, Minneapolis, MN, 1989, IMA Vol. Math. Appl., Vol. 29, Springer-Verlag, New York (1991), 
89-106. 

[148] J. Glimm, C. Klingenberg, O. McBryan, B. Plohr, D. Sharp and S. Yaniv, Front tracking and two- 
dimensional Riemann problems, Adv. Appl. Math. 6 (1985), 259-290. 

[149] J. Glimm and P.D. Lax, Decay of Solutions of Nonlinear Hyperbolic Conservation Laws, Mem. Amer. 
Math. Soc., Vol. 101, Amer. Math. Soc., Providence, RI (1970). 

[150] J. Glimm and A. Majda, Multidimensional Hyperbolic Problems and Computations, IMA Vol. Math. 
Appl., Vol. 29, Springer-Verlag, New York (1991). 

[ 151 ] J. Glimm, G. Marshall and B. Plohr, A generalized Riemann problem for quasi-one dimensional gas flow, 
Adv. Appl. Math. 5 (1984), 1-30. 

[152] J. Glimm, H.C. Kranzer, D. Tan and EM. Tangerman, Wave fronts for Hamilton-Jacobi equations: The 
general theory for Riemann solutions in R n , Comm. Math. Phys. 187 (1997), 647-677. 

[153] E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, 
Springer-Verlag, New York (1996). 

[i54] S. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of 
hydrodynamics, Mat. Sb. 47 (1959), 271-360. 

[155] S. Godunov, An interesting class of quasilinear systems, Dokl. Akad. Nauk SSSR 139 (1961), 521-523; 
English transl.: Soviet Math. 2 (1961), 947-949. 

[156] S. Godunov, Elements of Continuum Mechanics, Nauka, Moscow (1978). 
[157] S. Godunov, Lois de conservation et integrals d'rnergie des ~quations hyperboliques, Nonlinear Hyper- 

bolic Problems, St. Etienne, 1986, Lecture Notes in Math., Vol. 1270, Springer-Verlag, Berlin (1987), 
135-149. 

[158] L. Gosse and A. Tzavaras, Convergence of relaxation schemes to the equations of elastodynamics, Math. 
Comp. 70 (2001), 555-577. 

[ 159] M. Grassin, Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J. 47 (1998), 
1397-1432. 

[160] M. Grassin and D. Serre, Existence de solutions globales et r~gulikres aux 6quations d'Euler pour un gaz 
parfait isentropique, C. R. Math. Acad. Sci. Paris 325 (1997), 721-726. 

[161] E. Grenier, Existence globale pour le systbme des gaz sans pression, C. R. Math. Acad. Sci. Paris 321 
(1995), 171-174. 

[162] C.-H. Gu, A method for solving the supersonic flow past a curved wedge, Fudan Univ. J. 7 (1962), 11-14 
(in Chinese). 

[ 163] C. Gu, D. Li, W. Yu and Z. Hou, Discontinuous initial-value problem for hyperbolic systems ofquasilinear 
equations (I)-(III), Acta Math. Sinica 11 (1961), 314-323, 324-327; 12 (1962), 132-143 (in Chinese). 

[164] M.E Hamilton, Fundamentals and applications of nonlinear acoustics, Nonlinear Wave Propagation in 
Mechanics, T.W. Wright, ed., AMD-77, Amer. Soc. Mech. Engrs, New York (1986), 1-28. 

[ 165] E. Harabetian, Diffraction of a weak shock by a wedge, Comm. Pure Appl. Math. 40 (1987), 849-863. 
[166] D. Hoff, The zero-Mach limit of compressible flows, Comm. Math. Phys. 192 (1998), 543-554. 
[167] H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, New 

York (2002). 
[168] L. Hrrmander, Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, Berlin (1997). 
[169] W.J. Hrusa and S.A. Messaoudi, On formation of singularities in one-dimensional nonlinear thermoelas- 

ticity, Arch. Ration. Mech. Anal. 111 (1990), 135-151. 



98 G.-Q. Chen 

[170] 

[171] 

[172] 
[173] 

[1741 

[175] 

[176] 
[177] 
[178] 
[179] 

[180] 

[181] 

[182] 

[183] 
[184] 

[185] 

[186] 

[187] 

[188] 

[189] 

[190] 

[191] 
[192] 

[193] 

[194] 

[1951 
[196] 

[197] 
[198] 

[199] 

[200] 

L. Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisms, World Scientific, Singapore 
(1997). 
J. Hu and EG. LeFloch, L 1 continuous dependence property for systems conservation laws, Arch. Ration. 
Mech. Anal. 151 (2000), 45-93. 
E Huang and Z. Wang, Well posedness for pressureless fow, Comm. Math. Phys. 222 (2001), 117-146. 
J. Hunter, Transverse diffraction of nonlinear waves and singular rays, SIAM J. Appl. Math. 48 (1988), 
1-37. 
J. Hunter, Hyperbolic waves and nonlinear geometrical acoustics, Trans. 6th Army Conference on Appl. 
Math. and Computing, Vol. 2 (1989), 527-569. 
J. Hunter, Nonlinear wave diffraction, Geometrical Optics and Related Topics, Cortona 1996, Progr. Non- 
linear Differential Equations Appl., Vol. 32, B irkh~iuser, Boston, MA (1997), 221-243. 
J. Hunter and M. Brio, Weak shock reflection, J. Fluid Mech. 410 (2000), 235-261. 
J. Hunter and J. Keller, Weak shock diffraction, Wave Motion 6 (1984), 79-89, 321. 
H.K. Jenssen, Blowup for systems of conservation laws, SIAM J. Math. Anal. 31 (2000), 894-908. 
E John, Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. 
Math. 27 (1974), 377-405. 
E John, Restrictions on the coefficients of hyperbolic systems of partial differential equations, Proc. Nat. 
Acad. Sci. USA 74 (1977), 4150-4151. 
E John, Blow-up for quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math. 34 
(1981), 29-51. 
E John, Nonlinear Wave Equations, Formation of Singularities, Univ. Lecture Ser., Vol. 2, Amer. Math. 
Soc., Providence, RI (1990). 
T. Kato, Nonstationaryflows of viscous and idealfluids in ~2, j. Funct. Anal. 9 (1972), 296-305. 
T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal. 
58 (1975), 181-205. 
T. Kato, Quasi-linear equations of evolution with applications to partial differential equations, Lecture 
Notes in Math., Vol. 448, Springer-Verlag, Berlin (1975), 25-70. 
S. Kawashima, A. Matsumura and T. Nishida, On the fluid dynamical approximation to the Boltzmann 
equation at the level of the Navier-Stokes equations, Comm. Math. Phys. 70 (1979), 97-124. 
J.B. Keller and A. Blank, Diffraction and reflection of pulses by wedges and corners, Comm. Pure Appl. 
Math. 4 (1951), 75-94. 
J.B. Keller and L. Ting, Periodic vibrations of systems governed by nonlinear partial differential equations, 
Comm. Pure Appl. Math. 19 (1966), 371-420. 
M. Kikuchi and Y. Shibata, On the mixed problem for some quasilinear hyperbolic system with fully 
nonlinear boundary condition, J. Differential Equations 80 (1989), 154-197. 
S. Klainerman and A. Majda, Formation of singularities for wave equations including the nonlinear vi- 
brating string, Comm. Pure Appl. Math. 33 (1980), 241-263. 
H. Koch, Mixed problems f or fully nonlinear hyperbolic equations, Math. Z. 214 (1993), 9-42. 
W. Kosinski, Gradient catastrophe in the solutions of nonconservative hyperbolic systems, J. Math. Anal. 
Appl. 61 (1977), 672-688. 
S. Kruzhkov, First-order quasilinear equations with several space variables, Mat. Sb. 123 (1970), 
228-255. 
A. Kurganov and E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without 
Riemann problem solvers, Numer. Methods Partial Differential Equations 18 (2002), 584-608. 
ED. Lax, Nonlinear hyperbolic equations, Comm. Pure Appl. Math. 6 (1953), 231-258. 
ED. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure 
Appl. Math. 7 (1954), 159-193. 
ED. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10 (1957), 537-566. 
ED. Lax, Development of singularities in solutions of nonlinear hyperbolic partial differential equations, 
J. Math. Phys. 5 (1964), 611-613. 
ED. Lax, Shock waves and entropy, Contributions to Nonlinear Functional Analysis, E.A. Zarantonello, 
ed., Academic Press, New York (1971), 603-634. 
ED. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, 
Philadelphia, PA (1973). 



Euler equations and related hyperbolic conservation laws 99 

[201] P.D. Lax, The multiplicity ofeigenvalues, Bull. Amer. Math. Soc. 6 (1982), 213-214. 
[202] P.D. Lax, Hyperbolic systems of conservation laws in several space variables, Current Topics in Partial 

Differential Equations, Kinokuniya, Tokyo (1986), 327-341. 
[203] ED. Lax and X.-D. Liu, Solutions of two dimensional Riemann problem of gas dynamics by positive 

schemes, SIAM J. Sci. Comput. 19 (1998), 319-340. 
[204] EG. LeFloch, Hyperbolic Systems of Conservation Laws: The theory of classical and nonclassical shock 

waves, Lectures Math. ETH Ztirich, Birkh~iuser, Basel (2002). 
[205] P.G. LeFloch and V. Shelukhin, Symmetries and global solvability of the isothermal gas dynamics equa- 

tions, Arch. Ration. Mech. Anal. 175 (2005), 389-430. 
[206] R.J. LeVeque, Numerical Methods for Conservation Laws, 2nd Edition, Birkh~iuser, Basel (1992). 
[207] M. Lewicka, Well-posedness for hyperbolic systems of conservation laws with large BV data, Arch. Ration. 

Mech. Anal. 173 (2004), 415-445. 
[208] M. Lewicka and K. Trivisa, On the L 1 well-posedness of systems of conservation laws near solutions 

containing two large shocks, J. Differential Equations 179 (2002), 133-177. 
[209] J. Li, Note on the compressible Euler equations with zero temperature, Appl. Math. Lett. 14 (2001), 

519-523. 
[210] J. Li and H. Yang, Delta-shocks as limits of vanishing viscosity for multidimensional zero-pressure gas 

dynamics, Quart. Appl. Math. 59 (2001), 315-342. 
[211] J. Li and T. Zhang, Generalized Rankine-Hugoniot relations of delta-shocks in solutions of transporta- 

tion equations, Advances in Nonlinear Partial Differential Equations and Related Areas, Beijing, 1997, 
G.-Q. Chen et al., eds, World Scientific, River Edge, NJ (1998), 219-232. 

[212] J. Li and T. Zhang, On the initial-value problem for zero-pressure gas dynamics, Hyperbolic Problems: 
Theory, Numerics, Applications, Ztirich, 1998, Vol. 2, Birkh~iuser, Basel (1999), 629-640. 

[213] J. Li, T. Zhang and S. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, Pitman Mono- 
graphs Surveys Pure Appl. Math., Vol. 98, Longman, Essex (1998). 

[214] T.-T. Li, On a free boundary problem, Chinese Ann. Math. 1 (1980), 351-358. 
[215] T.-T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Wiley, Chichester (1994). 
[216] T.-T. Li and W.-C. Yu, Boundary. Value Problems for Quasilinear Hyperbolic Systems, Duke University 

Press, Durham (1985). 
[217] W.-C. Lien and T.-P. Liu, Nonlinear stability of a self-similar 3-dimensional gasflow, Comm. Math. Phys. 

204 (1999), 525-549. 
[218] M.J. Lighthill, The diffraction of a blast I, Proc. Roy. Soc. London 198 (1949), 454-470. 
[219] L.W. Lin, On the vacuum state for the equations of isentropic gas dynamics, J. Math. Anal. Appl. 121 

(1987), 406-425. 
[220] E-L. Lions, Mathematical Topics in Fluid Mechanics, Vols 1 and 2, Oxford University Press, Oxford 

(1998). 
[221] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fuid, J. Math. Pures 

Appl. (9) 77 (1998), 585-627. 
[222] P.-L. Lions, B. Perthame and E Souganidis, Existence and stability of entropy solutions for the hyperbolic 

systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 49 
(1996), 599-638. 

[223] P.-L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, 
Comm. Math. Phys. 163 (1994), 169-172. 

[224] E-L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation 
laws and related equations, J. Amer. Math. Soc. 7 (1994), 169-191. 

[225] T.-P. Liu, Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws, 
Comm. Pure Appl. Math. 30 (1977), 585-610. 

[226] T.-P. Liu, Linear and nonlinear large-time behavior of solutions of hyperbolic conservation laws, Comm. 
Pure Appl. Math. 30 (1977), 767-796. 

[227] T.-P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57 (1977), 135-148. 
[228] T.-E Liu, Solutions in the large for the equations of nonisentropic gas dynamics, Indiana Univ. Math. J. 26 

(1977), 147-177. 
[229] T.-P. Liu, Initial-boundary value problems for gas dynamics, Arch. Ration. Mech. Anal. 64 (1977), 

137-168. 



1 O0 G.-Q. Chen 

[2301 

[231] 
[232] 

[2331 
[234] 
[235] 

[236] 

[237] 

[238] 

[239] 

[2401 

[241] 

[242] 

[243] 

[244] 

[245] 

[246] 

[247] 

[248] 

[249] 

[250] 

[251] 

[252] 

[253] 

[254] 

[255] 
[256] 

[257] 
[2581 

T.-P. Liu, The development of singularities in the nonlinear waves for quasilinear hyperbolic partial dif- 
ferential equations, J. Differential Equations 33 (1979), 92-111. 
T.-P. Liu, Quasilinear hyperbolic systems, Comm. Math. Phys. 68 (1979), 141-172. 
T.-E Liu, Nonlinear stability and instability of transonic gas flow through a nozzle, Comm. Math. Phys. 
83 (1983), 243-260. 
T.-E Liu, Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys. 28 (1987), 2593-2602. 
T.-P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108 (1987), 153-175. 
T.-E Liu, Hyperbolic and Viscous Conservation Laws, CBMS-NSF Regional Conf. Ser. in Appl. Math., 
Vol. 72, SIAM, Philadelphia, PA (2000). 
T.-E Liu and T. Yang, L 1 stability for systems of hyperbolic conservation laws, Nonlinear Partial Differ- 
ential Equations and Applications, G.-Q. Chen and E. DiBenedetto, eds, Contemp. Math., Vol. 238, Amer. 
Math. Soc., Providence, RI (1999), 183-192. 
T.-E Liu and T. Yang, L 1 stability of weak solutions for 2 • 2 systems of hyperbolic conservation laws, 
J. Amer. Math. Soc. 12 (1999), 729-774. 
T.-E Liu and T. Yang, Well-posedness theory for hyperbolic conservation laws, Comm. Pure Appl. Math. 
52 (1999), 1553-1586. 
A. Majda, The Stability of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., Vol. 275, Amer. Math. 
Soc., Providence, RI (1983). 
A. Majda, The Existence of Multidimensional Shock Fronts, Mem. Amer. Math. Soc., Vol. 281, Amer. 
Math. Soc., Providence, RI (1983). 
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, 
Springer-Verlag, New York (1984). 
A. Majda, One perspective on open problems in multi-dimensional conservation laws, Multidimen- 
sional Hyperbolic Problems and Computations, Minneapolis, MN, 1989, IMA Vol. Math. Appl., Vol. 29, 
Springer-Verlag, New York (1991), 217-238. 
A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge 
(2002). 
T. Makino, K. Mizohata and S. Ukai, Global weak solutions of the compressible Euler equations with 
spherical symmetry (I), (II), Japan J. Indust. Appl. Math. 9 (1992), 431-449; 11 (1994), 417-426. 
T. Makino and S. Takeno, Initial boundary value problem for the spherically symmetric motion of isen- 
tropic gas, Japan J. Indust. Appl. Math. 11 (1994), 171-183. 
T. Makino, S. Ukai and S. Kawashima, Sur la solution gt support compact de l'iquations d'Euler com- 
pressible, Japan J. Indust. Appl. Math. 3 (1986), 249-257. 
J. M~ilek, J. Ne~as, M. Rokyta and M. Rfi~i~ka, Weak and Measure-Valued Solutions to Evolutionary PDEs, 
Chapman and Hall, London (1996). 
C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic- 
hyperbolic equations, Arch. Ration. Mech. Anal. 163 (2002), 87-124. 
G. M6tivier, Stability of multi-dimensional weak shocks, Comm. Partial Differential Equations 15 (1990), 
983-1028. 
C.S. Morawetz, On the non-existence of continuous transonic flows past profiles I, II, III, Comm. Pure 
Appl. Math. 9 (1956), 45-68; 10 (1957), 107-131; 11 (1958), 129-144. 
C.S. Morawetz, On a weak solution for a transonic flow problem, Comm. Pure Appl. Math. 38 (1985), 
797-818. 
C.S. Morawetz, Potential theory for regular and Mach reflection of a shock at a wedge, Comm. Pure Appl. 
Math. 47 (1994), 593-624. 
C.S. Morawetz, On steady transonic flow by compensated compactness, Methods Appl. Anal. 2 (1995), 
257-268. 
C.B. Morrey, Quasiconvexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 
25-53. 
C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin (1966). 
J. Moser, A rapidly convergent iteration method and non-linear partial differential equations I, Ann. Sc. 
Norm. Sup. Pisa (3) 20 (1966), 265-315. 
I. Mtiller and Y. Ruggeri, Extended Thermodynamics, Springer-Verlag, New York (1993). 
E Murat, Compacit~ par compensation, Ann. Sc. Norm. Pisa CI. Sci. (4) 5 (1978), 489-507. 



Euler equations and related hyperbolic conservation laws 101 

[259] F. Murat, The injection of the positive cone of H- I  in W-I ,q is completely continuous for all q < 2, 
J. Math. Pures Appl. (9) 60 (1981), 309-322. 

[260] F. Murat, Compacit~ par compensation, condition n~cessaire et suffisante de continuit~ faible sous une 
hypothkse de range constant, Ann. Sc. Norm. Sup. Pisa C1. Sci. (4) 8 (1981), 69-102. 

[261] F. Murat, A survey on compensated compactness, Contributions to Modern Calculus of Variations, 
Bologna, 1985, Pitman Res. Notes Math. Ser., Vol. 148, Longman, Harlow (1987), 145-183. 

[262] T. Nishida, Global solution for an initial-boundary value problem of a quasilinear hyperbolic systems, 
Proc. Japan Acad. 44 (1968), 642-646. 

[263] T. Nishida and J. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. 
Pure Appl. Math. 26 (1973), 183-200. 

[264] T. Nishida and J. Smoller, Mixed problems for nonlinear conservation laws, J. Differential Equations 23 
(1977), 244-269. 

[265] M. Okada and T. Makino, Free boundary problem for the equation of spherically symmetrical motion of 
viscous gas, Japan J. Appl. Math. 10 (1993), 219-235. 

[266] O. Oleinik, Some Asymptotic Problems in the Theory of Partial Differential Equations, Lezioni Lincee 
[Lincei Lectures], Cambridge University Press, Cambridge (1996). 

[267] S. Osher, Shock modelling in transonic and supersonic flow, Advances in Computational Transonics, Re- 
cent Adv. Numer. Methods Fluids, Vol. 4, Pineridge, Swansea (1985), 607-643. 

[268] Y.-J. Peng, Solutions faibles globales pour l'bquation d'Euler d'un fluide compressible avec de grandes 
donn~es initiales, Comm. Partial Differential Equations 17 (1992), 161-187. 

[269] B. Perthame, Time decays: An analogy between kinetic transport, Schr6dinger and gas dynamics equa- 
tions, Nonlinear Partial Differential Equations and Their Applications, Collbge de France Seminar, 
Vol. XIII, Paris, 1994/1996, Pitman Res. Notes Math. Ser., Vol. 391, Longman, Harlow (1998), 281-293. 

[270] B. Perthame, Kinetic Formations of Conservation Laws, Oxford Lecture Ser. Math. Appl., Vol. 21, Oxford 
University Press, Oxford (2002). 

[271] W.E Pfeffer, Derivation and Integration, Cambridge Tracts in Math., Vol. 140, Cambridge University 
Press, Cambridge (2001 ). 

[272] S.D. Poisson, M~moire sur l'int~gration des equations lin6aires aux deriv~es partielles, J. l'Ecole Poly- 
technique 12 (1823), 19. 

[273] E Poupaud and M. Rascle, Measure solutions to the linear multi-dimensional transport equation with 
non-smooth coefficients, Comm. Partial Differential Equations 22 (1997), 337-358. 

[274] F. Poupaud, M. Rascle and J.-E Vila, Global solutions to the isothermal Euler-Poisson system with arbi- 
trarily large data, J. Differential Equations 123 (1995), 93-121. 

[275] T. Qin, Symmetrizing the nonlinear elastodynamic system, J. Elasticity 50 (1998), 245-252. 
[276] M.A. Rammaha, Formation of singularities in compressible fluids in two-space dimensions, Proc. Amer. 

Math. Soc. 107 (1989), 705-714. 
[277] M.A. Rammaha, On the formation of singularities in magnetohydrodynamic waves, J. Math. Anal. Appl. 

188 (1994), 940-955. 
[278] J. Rauch, BV estimates fail for most quasilinear hyperbolic systems in dimension great than one, Comm. 

Math. Phys. 106 (1986), 481-484. 
[279] A.D. Rendall, The initial value problem for self-gravitating fluid bodies, Mathematical Physics X, Leipzig, 

1991, Springer-Verlag, Berlin (1992), 470-474. 
[280] H.K. Rhee, R. Aris and N.R. Amundsen, First-Order Differential Equations, Theory and Application of 

Hyperbolic Systems of Quasilinear Equations, I, II, Prentice Hall Internat. Ser., Prentice Hall, Englewood 
Cliffs, NJ (1986); (1989). 

[281] B. Riemann, Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abh. Koenig. 
Gesell. Wiss. Goettingen 8 (1860), 43-65. 

[282] N.H. Risebro, A front-tracking alternative to the random choice method, Proc. Amer. Math. Soc. 117 
(1993), 1125-1139. 

[283] J.-E Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math. Stud., Vol. 134, Else- 
vier, Amsterdam, The Netherlands (1987). 

[284] T. Ruggeri and A. Strumia, Main field and convex covariant density for quasilinear hyperbolic systems, 
Ann. Inst. H. Poincar6 34 (1981), 65-84. 

[285] D.G. Schaeffer, Supersonic flow past a nearly straight wedge, Duke Math. J. 43 (1976), 637-670. 



102 G.-Q. Chen 

[286] D. Schaeffer and M. Shearer, The classification of 2 • 2 systems of nonstrictly hyperbolic conservation 
laws, with application to oil recovery, Comm. Pure Appl. Math. 40 (1987), 141-178; Riemann prob- 
lems for nonstrictly hyperbolic 2 • 2 systems of conservation laws, Trans. Amer. Math. Soc. 304 (1987), 
267-306. 

[287] S. Schochet, Sufficient conditions for local existence via Glimm's scheme for large BV data, J. Differential 
Equations 89 (1991), 317-354. 

[288] C.W. Schulz-Rinne, J.E Collins and H.M. Glaz, Numerical solution of the Riemann problem for two- 
dimensional gas dynamics, SIAM J. Sci. Comput. 14 (1993), 1394-1414. 

[289] L. Schwartz, Th~orie des distributions, Actualites scientifiques et industrielles 1091, 1122, Herman, Paris 
(1950-1951). 

[290] D. Serre, La compacit~ par compensation pour les systkmes hyperboliques non lin~aires de deux ~quations 
gt une dimension d'espace, J. Math. Pures Appl. (9) 65 (1986), 423-468. 

[291] D. Serre, Ecoulements de fluides parfaits en deux variables ind~pendantes de type espace. Rbflexion d'un 
choc plan par un dibdre compressif, Arch. Ration. Mech. Anal. 132 (1995), 15-36. 

[292] D. Serre, Spiral waves for the two-dimensional Riemann problem for a compressible fuid, Ann. Fac. Sci. 
Toulouse Math. (6) 5 (1996), 125-135. 

[293] D. Serre, Solutions classiques globales des ~quations d'Euler pour un fluide parfait compressible, Ann. 
Inst. Fourier (Grenoble) 47 (1997), 139-153. 

[294] D. Serre, Systems of Conservation Laws I, II, Cambridge University Press, Cambridge (1999). 
[295] D. Serre, Hyperbolicity of the nonlinear models of Maxwell's equations, Arch. Ration. Mech. Anal. 172 

(2004), 309-331. 
[296] W.-C. Sheng and T. Zhang, The Riemann Problem for the Transportation Equations in Gas Dynamics, 

Mem. Amer. Math. Soc., Vol. 654, Amer. Math. Soc., Providence, RI (1999). 
[297] M. Shiffman, On the existence of subsonic flows of a compressible fluid, J. Ration. Mech. Anal. 1 (1952), 

605-652. 
[298] T.C. Sideris, Global behavior of solutions to nonlinear wave equations in three dimensions, Comm. Partial 

Differential Equations 8 (1983), 1291-1323. 
[299] T.C. Sideris, Formation of singularities in solutions to nonlinear hyperbolic equations, Arch. Ration. 

Mech. Anal. 86 (1984), 369-381. 
[300] T.C. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys. 101 

(1985), 475-485. 
[301] T.C. Sideris, The lifespan of smooth solutions to the three-dimensional compressible Euler equations and 

the incompressible limit, Indiana Univ. Math. J. 40 (1991), 535-550. 
[302] T.C. Sideris, Delayed singularity formation in 2D compressible flow, Amer. J. Math. 119 (1997), 371-422. 
[303] T.C. Sideris, B. Thomases and D. Wang, Long time behavior of solutions to the 3D compressible Euler 

equations with damping, Comm. Partial Differential Equations 28 (2003), 795-816. 
[304] M. Slemrod, Resolution of the spherical piston problem for compressible isentropic gas dynamics via a 

self-similar viscous limit, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 1309-1340. 
[305] J. Smith, The Riemann problem in gas dynamics, Trans. Amer. Math. Soc. 249 (1979), 1-50. 
[306] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd Edition, Springer-Verlag, New York 

(1994). 
[307] J. Smoller and B. Temple, Global solutions of the relativistic Euler equations, Comm. Math. Phys. 156 

(1993), 67-99. 
[308] K. Song, The pressure-gradient system on non-smooth domains, Comm. Partial. Differential Equations 28 

(2003), 199-221. 
[309] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 

Princeton, NJ (1970). 
[310] B. Sturtevant and V.A. Kulkarny, The focusing of weak shock waves, J. Fluid Mech. 73 (1976), 1086-1118. 
[311 ] E. Tabak and R. Rosales, Focusing of weak shock waves and the von Neumann paradox of oblique shock 

reflection, Phys. Fluids 6 (1994), 1874-1892. 
[312] E. Tadmor, A minimum entropy principle in the gas dynamics equations, Appl. Numer. Math. 2 (1986), 

211-219. 



Euler equations and related hyperbolic conservation laws 103 

[313] E. Tadmor, Approximate solutions of nonlinear conservation laws and related equations, Recent Advances 
in Partial Differential Equations, Venice, 1996, Proc. Sympos. Appl. Math., Vol. 54, Amer. Math. Soc., 
Providence, RI (1998). 

[314] E. Tadmor, M. Rascle and E Bagnerini, Compensated compactness for 2D conservation laws, Preprint 
(2005). 

[315] S. Takeno, Initial-boundary value problems for isentropic gas dynamics, Proc. Roy. Soc. Edinburgh Sect. A 
120 (1992), 1-23; Free piston problem for isentropic gas dynamics, Japan J. Indust. Appl. Math. 12 (1995), 
163-194. 

[316] D. Tan and T. Zhang, Two dimensional Riemann problem for a hyperbolic system of nonlinear conserva- 
tion laws I: Four-J cases, J. Differential Equations 111 (1994), 203-254; II: Initial data involving some 
rarefaction waves, J. Differential Equations 111 (1994), 255-283. 

[317] D. Tan, T. Zhang and Y. Zheng, Delta-shock waves as limits of vanishing viscosity for hyperbolic system 
of conservation laws, J. Differential Equations 112 (1994), 1-32. 

[318] L. Tartar, Une nouvelle m~thode de resolution d'equations aux deriv6es partielles nonlin6aires, Lecture 
Notes in Math., Vol. 665, Springer-Verlag, Berlin (1977), 228-241. 

[319] L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear Analysis 
and Mechanics, Heriot-Watt Symposium IV, Res. Notes in Math., Vol. 39, Pitman, Boston-London (1979), 
136-212. 

[320] L. Tartar, The compensated compactness method applied to systems of conservation laws, Systems of 
Nonlinear ED.E., J.M. Ball, ed., NATO Series, Reidel, Dordrecht (1983), 263-285. 

[321] B. Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics, J. Dif- 
ferential Equations 41 (1981), 96-161. 

[322] B. Temple and R. Young, The large time existence of periodic solutions for the compressible Euler equa- 
tions, Mat. Contemp. 11 (1996), 171-190. 

[323] B. Temple and R. Young, The large time stability of sound waves, Comm. Math. Phys. 179 (1996), 
417-466. 

[324] A. Tesdall and J.K. Hunter, Self-similar solutions for weak shock reflection, SIAM J. Appl. Math. 63 
(2002), 42-61. 

[325] R. Timman, Unsteady motion in transonic flow, Symposium Transsonicum, IUTAM, Aachen, Septem- 
ber 1962, K. Oswatitsch, ed., Springer-Verlag, Berlin (1964), 394--401. 

[326] C. Truesdell, Rational Thermodynamics, 2nd Edition, Springer-Verlag, New York (1984). 
[327] A. Tzavaras, Materials with internal variables and relaxation to conservation laws, Arch. Ration. Mech. 

Anal. 146 (1999), 129-155. 
[328] M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, Stanford (1982). 
[329] A. Vasseur, Strong traces for solutions to multidimensional scalar conservation laws, Arch. Ration. Mech. 

Anal. 160 (2001), 181-193. 
[330] A. Volpert, The space BV and quasilinear equations, Mat. Sb. 73 (1967), 255-302 (in Russian); Math. 

USSR-Sb. 2 (1967), 225-267. 
[331] V. Volterra, Sulle vibrazioni luminose nei mezzi isotropi, Rend. Accad. Naz. Lincel 1 (1892), 161-170. 
[332] D.H. Wagner, Equivalence of Euler and Lagrangian equations of gas dynamics for weak solutions, J. Dif- 

ferential Equations 68 (1987), 118-136. 
[333] D. Wang, Global solutions and stability for self-gravitating isentropic gases, J. Math. Anal. Appl. 229 

(1999), 530-542. 
[334] Z. Wang and X. Ding, Uniqueness of generalized solutions for the Cauchy problem of transportation 

equations, Acta Math. Sci. (English Ed.) 17 (1997), 341-352. 
[335] Z. Wang, E Huang and X. Ding, On the Cauchy problem of transportation equations, Acta Math. Appl. 

Sinica (English Ser.) 13 (1997), 113-122. 
[336] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1973). 
[337] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 

36 (1934), 63-89. 
[338] H. Whitney, Geometric Integration Theory, Princeton University Press, Princeton, NJ (1957). 
[339] P. Woodward, Simulation of the Kelvin-Helmholtz instability of a supersonic slip surface with the 

piecewise-parabolic method (PPM), Numerical Methods for the Euler Equations of Fluid Dynamics, Roc- 
quencourt, 1983, SIAM, Philadelphia, PA (1985), 493-508. 



104 G.-Q. Chen 

[3401 

[341] 

[342] 

[3431 

[3441 

[345] 

[3461 

[347] 

[348] 

[3491 

[35Ol 

[3511 

[3521 

[3531 

[354] 

[355] 

[3561 

[357] 

[3581 
[3591 

R Woodward and R Colella, The numerical simulation of two-dimensionalfluidflow with strong shocks, 
J. Comput. Phys. 54 (1984), 115-173. 
X.-M. Wu, Equations of Mathematical Physics, Chinese Advanced Education Publishing Co., Beijing 
(1956) (in Chinese). 
G.-J. Yang, The Euler-Poisson-Darboux Equations, Yuannan University Press, Yuannan (1989) (in Chi- 
nese). 
X. Yang and E Huang, Two-dimensional Riemann problems of simplified Euler equation, Chinese Sci. 
Bull. 43 (1998), 441-444. 
L. Ying and Z. Teng, Hyperbolic Systems of Conservation Laws and Difference Methods, Chinese Scien- 
tific Publishing Co., Beijing (1991) (in Chinese). 
L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theories, Saunders, Philadelphia, 
PA (1969). 
G.I. Zabolotskaya and R.V. Khokhlov, Quasi-plane waves in the nonlinear acoustics of confined beams, 
Soviet Phys. Acoustics 15 (1969), 35-40. 
A.R. Zakharian, M. Brio, J.K. Hunter and G.M. Webb, The von Neumann paradox in weak shock refection, 
J. Fluid Mech. 422 (2000), 193-205. 
Ya.B. Zeldovich, Gravitational instability: An approximate theory for large density perturbations, Astro- 
naut. Astrophys. 5 (1970), 84-89. 
T. Zhang and Y.-E Guo, A class of initial-value problem for systems of aerodynamic equations, Acta Math. 
Sinica (N.S.) 15 (1965), 386-396. 
T. Zhang and Y. Zheng, Conjecture on the structure of solutions of the Riemann problem for two- 
dimensional gas dynamics, SIAM J. Math. Anal. 21 (1990), 593-630. 
T. Zhang and Y. Zheng, Exact spiral solutions of the two-dimensional Euler equations, Discrete Contin. 
Dyn. Syst. 3 (1997), 117-133. 
T. Zhang and Y. Zheng, Axisymmetric solutions of the Euler equations for polytropic gases, Arch. Ration. 
Mech. Anal. 142 (1998), 253-279. 
Y.-Q. Zhang, Global existence of steady supersonic potential flow past a curved wedge with a piecewise 
smooth boundary, SIAM J. Math. Anal. 31 (1999), 166-183. 
Y.-Q. Zhang, Steady supersonic flow past an almost straight wedge with large vertex angle, J. Differential 
Equations 192 (2003), 1-46. 
Y. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems, Birkh~iuser, Boston 
(2001). 
Y. Zheng, A global solution to a two-dimensional Riemann problem involving shocks as free boundaries, 
Acta Math. Appl. Sinica (English Ser.) 19 (2003), 559-572. 
Y. Zheng, Two-dimensional regular shock reflection for the pressure gradient system of conservation laws, 
Preprint (2004). 
W.R Ziemer, Cauchyflux and sets offinite perimeter, Arch. Ration. Mech. Anal. 84 (1983), 189-201. 
W.R Ziemer, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, 
Springer-Verlag, New York (1989). 




