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Role of the basolateral amygdala in memory consolidation
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Abstract

Typically, emotionally charged events are better remembered than neutral ones. This paper reviews data indicating that the amygdala
is responsible for this facilitation of memory by emotional arousal. Pharmacological and behavioral studies have shown that the release
of adrenal stress hormones facilitates memory consolidation. The available evidence suggests that this effect depends on a central action
of stress hormones involving the release of the neuromodulators noradrenaline (NA) and acetylcholine in the basolateral complex of the
amygdala (BLA). Indeed, BLA lesions block the memory modulating effects of stress hormones. Moreover, microdialysis studies have
revealed that BLA concentrations of NA and acetylcholine are transiently (2 h) elevated following emotionally arousing learning episodes.
Last, post-learning intra-BLA injections of�-adrenergic or muscarinic receptor antagonists reduce retention. These results have led to the
hypothesis that NA and acetylcholine increase the activity of BLA neurons in the hoursafter the learning episode. In turn, the BLA would
facilitate synaptic plasticity in other brain structures, believed to constitute the storage sites for different types of memory. Consistent with
this, post-learning treatments that reduce or enhance the excitability of BLA neurons respectively decrease or improve long-term retention on
various emotionally charged learning tasks. However, a number of issues remain unresolved. Chief among them is how the BLA facilitates
synaptic plasticity elsewhere in the brain. The present review concludes with a consideration of this issue based on recent advances in our
understanding of the BLA. Among other possibilities, it is suggested that rhythmic BLA activity at the theta frequency during arousal as well
as the uniform conduction times of BLA axons to distributed rhinal sites may promote plasticity in co-active structures of the temporal lobe.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Probably everyone has realized that emotions affect mem-
ory. This commonplace experience was confirmed in con-
trolled laboratory studies: emotional arousal generally im-
proves memory (Heuer and Reisberg, 1990; Burke et al.,
1992; reviewed inChristianson, 1992). The present review
examines data suggesting that the amygdala is responsible
for the modulation of memory by emotions. It also consid-
ers the cellular mechanisms that might underlie this phe-
nomenon. However, it will not address whether the amyg-
dala is a critical site of plasticity for some forms of learning
such as in Pavlovian fear conditioning. For reviews on this
issue, seeBlair et al. (2001)andWalker and Davis (2002).

2. Memory consolidation and emotions

2.1. Memories form slowly over time

From invertebrates (Krasne, 1978) to humans (Cahill,
2000), long-term memory for an event can be enhanced or
reduced by manipulations performed in the minutes to hours
after learning. This has led to the suggestion that memories
form slowly over time, a process termed memory consol-
idation. The first evidence of this came whenMueller and
Pilzecker (1900)reported that memory of recently learned
information is disrupted by learning of other material shortly
after the first learning. Later on, susceptibility of recently
formed memories to post-learning manipulations was also
seen with electroconvulsive shocks (Duncan, 1949; Gerard,
1949), protein synthesis inhibitors (Agranoff et al., 1966),
drug injections (McGaugh, 1966) and electrical stimulation
of discrete brain regions (reviewed inMcGaugh and Gold,
1976).

Moreover, it was found that depending on the type of
post-learning manipulations, memory consolidation could
not only be reduced but also enhanced (McGaugh and Gold,
1976). A key feature of these studies was that the effect
of the post-learning treatments decreased as the interval be-
tween the learning and the treatment increased (McGaugh,
1973; McGaugh and Gold, 1976). Also, the fact that these
treatments were applied after training (but days before test-
ing) excluded the possibility that they affected performance
during acquisition or retention tests.

2.2. Emotional arousal facilitates memory consolidation

Various interpretations were proposed for these results.
However, the observation that emotionally arousing events

are often remembered vividly whereas others are forgotten
(reviewed inChristianson, 1992) led Gold and McGaugh
(1975) to suggest that post-learning treatments might be
interfering with or potentiating a mechanism regulating
memory. They reasoned that there would be a biological
advantage to delay memory consolidation until the sig-
nificance of an experience could be evaluated. Thus, they
hypothesized that the brain is endowed with systems that
affect the development and maintenance of memories even
though they are not their storage sites. By facilitating or
dampening memory consolidation, these modulatory sys-
tems would serve a highly adaptive process allowing “. . .

organisms [to] select from recent experiences those that
should be permanently stored” (Gold and McGaugh, 1975,
p. 375).

This proposal was supported by studies showing that
administration of adrenal stress hormones after learning
could facilitate retention (Gold et al., 1975a) in appeti-
tively or aversively motivated tasks (reviewed inMcGaugh,
2002a). However, there was an inverted-U relationship be-
tween hormonal levels and retention performance (Gold
and van Buskirk, 1978a,b). As predicted by the consoli-
dation hypothesis, the effects of stress hormones and their
pharmacological analogs were time-dependent, their impact
on retention decreasing as the interval between training
and hormone treatment increased. Moreover, systemic ad-
ministration of �-adrenergic receptor antagonists blocked
the effects of emotional arousal on long-term declarative
memory (Cahill et al., 1994; Nielson and Jensen, 1994).
These results raised the possibility that, when released
during a stressful episode, these hormones could act ret-
rogradely to affect memory of that event. In other words,
the extent of consolidation would depend on the moti-
vational or arousing consequences of an experience, as
expressed by the release of stress hormones (Gold and
McGaugh, 1975).

3. The amygdala mediates the effect of arousal on
memory consolidation

3.1. The facilitating effects of stress hormones on memory
depend on the amygdala

Early studies relying on electrical stimulation of discrete
brain structures first hinted that the amygdala can modulate
memory consolidation (Goddard, 1964; McDonough and
Kesner, 1971; Gold et al., 1975b; reviewed inGold and
McGaugh, 1975). However, lesion studies provided definite
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evidence that the amygdala mediates the facilitating effects
of stress hormones on memory. Indeed, it was found that
lesion or inactivation of the basolateral complex of the
amygdala (BLA) but not of the central nucleus of the amyg-
dala (CEA) block the memory modulating effects produced
by adrenalectomy (Roozendaal et al., 1998) as well as pe-
ripheral glucocorticoid (Roozendaal and McGaugh, 1996a;
Roozendaal et al., 1996) or diazepam (Tomaz et al., 1992)
administration. Moreover, similar results were observed
with stria terminalis lesions (Liang and McGaugh, 1983;
Liang et al., 1990; Roozendaal and McGaugh, 1996b), a
major output pathway of the amygdala.

In addition, it was observed that post-learning treatments
that presumably reduced or enhanced excitability of the
BLA but not the CEA respectively decreased or improved
retention. For instance, reduced retention was seen with local
intra-amygdala injections of lidocaine (Salinas et al., 1993;
Parent and McGaugh, 1994), GABAa and GABAb agonists
(Castellano et al., 1989; Coleman and McGaugh, 1995;
Salinas and McGaugh, 1995, 1996), 6-cyano-7-nitroquino-
xaline-2,3-dione (CNQX);Mesches et al., 1996), and�-ad-
renergic receptor antagonists (Roozendaal et al., 1999).
Enhanced retention was seen with intra-amygdaloid injec-
tions of bicuculline (Dickinson et al., 1993), agonists of
�-adrenergic (Ferry et al., 1999; Ferry and McGaugh, 1999;
Hatfield and McGaugh, 1999) and muscarinic (Salinas
et al., 1997) receptors.

3.2. The amygdala is not the storage site of
emotionally-facilitated memories

Although altering amygdala activity immediately after
learning affects long-term retention, BLA lesions performed
later have no effects (Liang et al., 1982; Parent et al., 1995).
This implies that the amygdala is not the storage site of these
memories. Otherwise stated, this observation suggests that
the memory modulating effects of the amygdala manipula-
tions listed inSection 3.1do not result from alterations of
memory storage in the amygdala but in other structures that
presumably constitute the storage site of particular forms of
memories (reviewed inCahill and McGaugh, 1998). In this
context, it should be pointed out that the BLA has an as-
tonishingly promiscuous connectivity, especially in primates
(Young et al., 1994).

Another factor supporting the view that the amygdala is
not the storage site of many of the emotionally-modulated
memories is the sheer variety of learning tasks in which
this phenomenon was observed. The list includes aversively
and positively motivated tasks, hippocampal-dependent and
independent tasks, as well as inhibitory avoidance (reviewed
in McGaugh, 2002b).

The study ofPackard et al. (1994)nicely illustrates this
point. They showed that immediate post-learning injection
of amphetamines in the BLA increases hippocampal stor-
age of spatial information (hidden platform water maze
task) and caudate storage of response information (visible

platform water maze task). Yet, intra-amygdala injections
of lidocaine just before testing retention had no effect on
either task (Packard et al., 1994). Moreover, pre-retention
lidocaine injection in the hippocampus or caudate only
blocked the memory potentiating effects of intra-amygdala
amphetamine injection in the hidden or visible plat-
form water maze task, respectively (Packard and Teather,
1998).

Collectively, these results suggest that, in emotionally
arousing conditions, the amygdala, under the direct or in-
direct influence of peripheral stress hormones, facilitates
long-term memory consolidation in other brain structures
where memories are actually stored.

3.3. The BLA-mediated modulation of memory
consolidation occurs in humans

It appears that the modulation of memory by the BLA is
also present in humans. For instance, emotionally arousing
stories are better recalled than neutral ones, and this effect
is absent in subjects with amygdala lesions (Cahill et al.,
1995; Adolphs et al., 1997). In further agreement with
animal work, the beneficial effect of emotional arousal on
long-term memory is abolished by systemic post-training
administration of�-adrenergic receptor antagonists in hu-
mans (Cahill et al., 1994) while epinephrine facilitates
memory (Cahill and Alkire, 2003). Moreover, imaging
studies have found a high correlation between long-term
recall of emotionally arousing or neutral material and the
amount of amygdala activation observed when these stim-
uli were first presented (Cahill et al., 1996; Canli et al.,
2000; Hamann et al., 1999). These and other findings sug-
gest that, in emotionally arousing conditions, the amygdala
promotes memory storage processes in brain areas that are
involved in declarative memory (Cahill, 2000; Cahill and
McGaugh, 1998).

Although ethical considerations limit the scope of inves-
tigations in human subjects, access to introspective reports
offers insights into the mechanisms underlying the facili-
tation of memory by emotions. Much anecdotal evidence
indicates that emotional stress is followed by intrusive
re-experiencing of the arousing event. Following a car acci-
dent for instance, subjects report repetitive and involuntary
mental re-enactment of the events leading to the crash.
Cahill (2000) has proposed that this “ruminative” pro-
cess may be critical to understand the effect of emotional
arousal on memory. He pointed out that this delayed and
protracted reaction to emotional stress is reminiscent of the
time course of emotional responses evoked by repetitive
amygdala stimulation: they develop gradually during the
stimulus and outlast the period of stimulation (Zbrozyna,
1972), for hours according to some reports in humans
(Mark et al., 1972).

While the origin of these ruminative thoughts remains un-
known, their importance for memory consolidation is obvi-
ous. Such rehearsal can only facilitate memory. Whether a
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similar phenomenon occurs in animals also remains to be
determined.

4. What is the link between the release of adrenal
stress hormones and the basolateral amygdala?

4.1. Anatomical data

Glucocorticoids freely pass the blood brain barrier and
there is a moderate density of glucocorticoid receptors in the
BLA (Sarrieau et al., 1986; Honkaniemi et al., 1992). Thus,
direct glucocorticoid actions in the BLA are possible. Un-
fortunately, to the best of my knowledge, the electrophysio-
logical effects of glucocorticoids have not been investigated
in the amygdala so far. In the hippocampus, glucocorticoids
were reported to reduce inhibitory chloride currents by en-
hancing desensitization of GABAa receptors (Shen et al.,
2000) and presynaptically reducing GABA release proba-
bility (Teschemacher et al., 1997). In addition, glucocor-
ticoids were reported to increase NMDA currents (Wong
and Moss, 1994). Both effects are consistent with the possi-
bility that glucocorticoids enhance BLA excitability during
stress.

While glucocorticoids cross the blood brain barrier,
adrenaline does not. Then, how does peripheral adrenaline
alter memory consolidation? Based on evidence that there
are�-adrenergic receptors on the ascending vagus (Schreurs
et al., 1986), it was proposed that peripheral adrenaline
might cause noradrenaline (NA) release in the amygdala via
projections of the vagus to noradrenergic neurons of nucleus
tractus solitarius (NTS;McGaugh, 2002a). Consistent with
this idea, it was found that reversible NTS lesions attenuate
the memory modulating effects of post-training adrenaline
(Williams and McGaugh, 1993). Moreover, adrenergic acti-
vation of the NTS potentiates amygdala NA release and en-
hances retention performance in emotionally arousing and
spatial memory tasks (Clayton and Williams, 2000). How-
ever, tract-tracing studies have revealed that NTS projects
to the CEA but not the BLA (Ricardo and Koh, 1978),
suggesting that another target of NTS must be involved.
One likely possibility is the direct projection of NTS to
the locus coeruelus (Van Bockstaele et al., 1999), the main
source of NA inputs to the amygdala (Fallon and Ciofi,
1992). This is consistent with the fact that intra-amygdaloid
injections of �-adrenergic antagonists interfere with the
memory modulating effects of peripheral adrenaline
(see above).

However, the response to stress presumably has a central
origin. Thus, when attempting to explain the facilitating ef-
fects of emotional arousal on memory, we should not only
look for the indirect effects of stress hormones, but also for
direct modulatory effects in the BLA that might be gener-
ated centrally as part of the stress response. To gain insight
into this possibility, we will consider the results of micro-
dialysis studies.

4.2. Microdialysis and pharmacological studies
implicate noradrenaline and acetylcholine

A variety of neuromodulators are released in larger quan-
tities during emotional arousal than in control conditions.
These include serotonin (Kawahara et al., 1993; Amat et al.,
1998), dopamine (Hori et al., 1993; Young and Rees, 1998;
Inglis and Moghaddam, 1999), NA (Tanaka et al., 1991;
Quirarte et al., 1998; Williams et al., 2000), and acetyl-
choline (ACh;McIntyre et al., 2003). Of these various mod-
ulators, only antagonists of�-adrenergic (reviewed inFerry
and McGaugh, 2000) and muscarinic receptors (Power et al.,
2000; Salinas et al., 1997) were reported to block the poten-
tiating effects of arousal on memory. Consequently, I now
consider the origin and actions of NA and ACh in the BLA.

4.2.1. Noradrenaline effects in the basolateral amygdala
Most NA inputs to the BLA originate in the locus

coeruleus (Pickel et al., 1974; Fallon et al., 1978). Abundant
evidence indicates that the discharge rate of locus coeruleus
neurons increases during stress (Abercrombie and Jacobs,
1987a,b). Moreover, there is high correlation between the
firing rate of locus coeruleus neurons and NA concentra-
tion in their projection sites (Berridge and Abercrombie,
1999). Thus, the increased NA concentration observed in
the amygdala following stress (see references above) con-
stitutes a likely candidate for BLA mobilization during
emotional arousal.

Yet, NA was reported to have overall inhibitory effects
on BLA neurons. Indeed, NA inhibits epileptiform dis-
charges in the amygdala of kindled rats (McIntyre and
Wong, 1986; Stoop et al., 2000). This effect of NA results
from a predominant�2-mediated presynaptic inhibition
of glutamate release in the BLA. According toFerry et
al. (1997), the effects of�-adrenoreceptor activation are
comparatively less important: they include (1) a reduction
in spike frequency accommodation via the inhibition of
some subtypes of Ca2+-dependent K+ currents and (2) a
presynaptic facilitation of excitatory synaptic transmission
(Huang et al., 1996; Ferry et al., 1997) resulting from a
potentiation of some voltage-gated Ca2+ channels subtypes
(P and/or Q;Huang et al., 1996). These studies suggest that
cAMP-dependent protein kinase A (PKA) mediates both
effects, but in different cellular compartments.

4.2.2. Effects of acetylcholine in the basolateral amygdala
Since muscarinic receptor activation in the amygdala has

been implicated in memory consolidation (see above), we
now consider the effects of ACh on plasticity. Cholinergic
projections from the basal forebrain to the cerebral cortex
have been implicated repeatedly in cortical plasticity (Bakin
and Weinberger, 1996; Bjordahl et al., 1998; Kilgard and
Merzenich, 1998). For instance, paired presentation of nox-
ious and auditory stimuli produce a long-lasting shift in
the best frequency of auditory cortical neurons toward the
frequency of the conditioned stimulus (Weinberger, 1998).
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Moreover, this effect is blocked by cortical applications of
muscarinic antagonists (Gao and Suga, 2000; Ji et al., 2001).

Because the BLA is reciprocally connected to the sub-
stantia innominata (Krettek and Price, 1978; Jolkkonen
et al., 2002; reviewed inAmaral et al., 1992), it is not only
in a position to facilitate ACh release in the cerebral cortex
(Dringenberg and Vanderwolf, 1996) but also to be influ-
enced by basal forebrain cholinergic inputs. Data consistent
with both possibilities were obtained (Power and McGaugh,
2002; Power et al., 2002). Also, single unit studies of
immunohistochemically identified basal forebrain neurons
have revealed that cholinergic cells increase their firing rate
during EEG activation (Duque et al., 2000; Manns et al.,
2000). Presumably, the same occurs during stress (McIntyre
et al., 2003).

Like NA, ACh has complex pre- and postsynaptic ac-
tions on BLA neurons. Muscarinic receptor activation
produces a profound presynaptic inhibition of excitatory
synaptic transmission (Yajeya et al., 2000), the reduc-
tion of various K+ conductances (K+ leak, M-current,
gKCa2+ ; Washburn and Moises, 1992), the potentiation of
a hyperpolarization-activated inward rectifier K+ current
and the activation of a Ca2+-independent mixed cationic
conductance (Yajeya et al., 1999). In addition, activation
of nicotinic receptors produces a rapid depolarization of
GABAergic BLA interneurons (Washburn and Moises,
1992) and presynaptically enhances glutamate and GABA
release (Girod et al., 2000; Barazangi and Role, 2001). On
the basis of these results, it is unclear whether the net effect
of ACh is a facilitation or a depression in the BLA.

4.3. Long-term effects of neuromodulators

The studies reviewed above focused on the immediate
effects of NA and ACh. Yet, several lines of evidence
suggest that the memory enhancing effects of NA and
ACh depend on increases in excitability that outlast the
period of behavioral arousal and persist after the con-
centration of these modulators has returned to control
levels. Indeed, the time-window when intra-amygdala in-
jections of �-adrenergic and muscarinic antagonists can
reduce retention is shorter than that observed with lido-
caine injection (at least 6 h;Parent and McGaugh, 1994)
or tetrodotoxin (2 days;Sacchetti et al., 1999). This is
consistent with the fact that NA levels return to baseline
values within 2 h of an emotionally arousing event (Quirarte
et al., 1998). These considerations raise the possibility
that NA and/or ACh, in addition to the effects described
above, have delayed and long-lasting excitatory actions
that persist long after emotionally arousing events. Consis-
tent with this, there is evidence implicating the activation
of �-adrenoreceptors and the classical cAMP pathway in
long-term regulation of neuronal excitability and synaptic
transmission.

Indeed, a number of neuromodulators that are positively
coupled to adenylyl cyclase and cAMP formation can af-

fect the behavior of neurons by activating cAMP-dependent
PKA (Levitan, 1994). The particular response produced by
PKA activation depends on substrate proteins that are spe-
cific to each cell type, but include proteins taking part in neu-
rotransmitter release and synthesis, ionotropic receptors and
ionic channels (Gray et al., 1998; Soderling and Derkach,
2000). Although previous studies have generally focused
on the immediate actions of these neuromodulators, much
data suggest that their effect can outlast the period of ag-
onist application. For instance, PKA activation by sero-
tonin in aplysia neurons produces long-term inhibition of
two types of K+ channels (Klein et al., 1982; Siegelbaum
et al., 1982), partly accounting for the sensitization of the
gill withdrawal reflex (Kandel and Schwartz, 1982). Sim-
ilarly, in colliculi neurons, transient application (<5 min)
of �-adrenergic receptor agonists produces a long-lasting
(>2 h) inhibition of a non-inactivating K+ current, leading
to a prolonged enhancement of excitability (Fagni et al.,
1992; Ansanay et al., 1995; Milhaud et al., 1998). Anal-
ysis of the biochemical steps involved revealed that the
K+ channel inhibition resulted from a transient increase
in cAMP formation and PKA activation (<10 min) asso-
ciated with a prolonged inhibition of phosphatase activity.
However, protein synthesis could not be ruled out (Ansanay
et al., 1995).

Evidence for such long-term modulation of neuronal
excitability by the�-adrenoreceptor–cAMP–PKA pathway
was also obtained in the BLA. In these studies,�-adrenergic
receptor antagonists and inhibitors of cAMP-dependent
PKA prevented the late phase of long-term potentiation
(L-LTP) whereas isoproterenol, a�-adrenergic receptor
agonist, as well as forskolin, an adenylyl cyclase activa-
tor, induced L-LTP and stimulated the phosphorylation of
cAMP response element-binding (CREB) proteins (Huang
and Kandel, 1998; Huang et al., 2000). The involvement of
this transcription factor (reviewed inMayr and Montminy,
2001) is consistent with the fact that protein synthesis in-
hibition prevented L-LTP in the same experiments (Huang
et al., 2000).

In summary, there is abundant evidence supporting the
notion that activation of�-adrenergic receptors can have
long-term effects in the BLA, at first through protein phos-
phorylation and, in the long-term, through protein synthe-
sis. However, it remains unclear whether NA, as opposed to
pure �-adrenergic receptor agonists, would have the same
effect.

5. How does increased basolateral activity facilitate
memory consolidation?

In addition to the problem of identifying the neuromod-
ulators that mobilize the BLA during and after emotional
arousal, another unresolved issue is how does the BLA facil-
itate memory consolidation in target structures? This enigma
can be broken down in a number of related questions.
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5.1. Relation between task requirements and the
particular population of basolateral amygdala
neurons involved in memory modulation

First, are distinct populations of BLA cells recruited in
different types of tasks or do all BLA cells, irrespective
of their projection site(s), behave similarly during emo-
tional arousal? The finding that not only BLA but also stria
terminalis lesions block the memory modulating effects
of adrenal stress hormones (Roozendaal and McGaugh,
1996a,b) implies that BLA actions in target structures are
involved. Because different nuclei of the BLA (lateral,
basolateral and basomedial nuclei) have distinct extrinsic
projections (reviewed inPitkänen, 2000), one would an-
ticipate that different subsets of BLA cells are involved
depending on the storage site of the particular memory
that is probed by the task. For instance, in the visible
platform water maze task believed to depend on a striatal
storage site (Packard and Teather, 1998), one would pre-
dict that the lateral amygdala is not involved since it has
little if any striatal projections (Royce, 1978; Russchen
et al., 1985). However, little work has been done to test this
idea.

Another possibility is that the memory modulating effects
of the BLA depend on projections to one or more structures
with promiscuous projections. In support of this scenario,
recent work suggests that interfering with prefrontal activ-
ity with local injections of the glutamate receptor antagonist
CNQX blocks the memory enhancing effects of post-training
NA injections in the BLA and reciprocally (Liang, 2001).
Similarly, immunotoxic lesions of basal forebrain choliner-
gic neurons block the BLA-mediated enhancement of mem-
ory consolidation in the inhibitory avoidance task (Power
et al., 2002).

Yet, other data suggests that, in some circumstances at
least, specific groups of BLA neurons might be involved
in the modulation. In several studies, BLA lesions were re-
ported to abolish the memory facilitation produced by drug
injections in particular projection sites of the BLA. To cite
a few examples, this is the case of the facilitated inhibitory
avoidance retention produced by 8-Br-cAMP injections in
the entorhinal cortex (Roesler et al., 2002) or by gluco-
corticoid infusions in the hippocampus (Roozendaal and
McGaugh, 1997). Although these experiments lend them-
selves to other interpretations, they are compatible with the
idea that these entorhinal or hippocampal manipulations re-
cruited a subset, by opposition to the entire pool, of BLA
neurons.

Finally, even though different pools of BLA neurons
might be critical for the memory modulating effect depend-
ing on the task, it is possible that emotional arousal recruits
BLA cells indiscriminately. According to this scenario, the
BLA would send the same signal in all emotionally arousing
tasks; the particular environmental contingencies and neu-
ronal networks involved in coding them would determine
which type of memories is (are) facilitated.

5.2. Changes in basolateral activity produced by
emotional arousal

Irrespective of where the BLA acts to facilitate mem-
ory consolidation, it appears unlikely that emotional stress
involves a dramatic and general increase in the firing
rate of BLA neurons. Indeed, electrophysiological studies
have revealed that BLA neurons are subjected to pow-
erful inhibitory pressures: (1) interneurons that generate
large-amplitude inhibitory synaptic potentials (Lang and
Paré, 1997a; Samson et al., 2003) and (2) projection cells
endowed with a Ca2+-dependent K+ current that can be
activated by sub-threshold synaptic inputs (Lang and Paré,
1997b; Danober and Pape, 1998; Chen and Lang, 2000).
Moreover, the reversal potential of GABAa responses is
much closer to spike threshold in BLA interneurons than in
projection cells (Lang and Paré, 1998; Martina et al., 2001).
This difference arises from cell type specific chloride home-
ostatic mechanisms whereby the prevalent regulators of
the intracellular chloride concentration are cation-chloride
cotransporters that accumulate chloride in interneurons and
extrude chloride in projection cells (Martina et al., 2001).

As a result, the spontaneous firing rate of BLA projection
cells is unusually low (Paré and Gaudreau, 1996). In fact,
emotional arousal produced by the anticipation of a noxious
stimulus is only accompanied by a modest increase in firing
rate (Paré and Collins, 2000). However, the discharges of
simultaneously recorded BLA neurons were reported to be-
come more synchronized through a modulation at the theta
frequency (Paré and Collins, 2000).

Two non-exclusive factors probably contribute to the
appearance of theta oscillations in the BLA during the
anticipation of noxious stimuli. First, BLA neurons are en-
dowed with intrinsic membrane properties that predispose
them to oscillate or reverberate in this range of frequencies
(Paré et al., 1995b; Pape and Driesang, 1998). Second,
the BLA receives synaptic inputs from the rhinal cortices
and hippocampal formation (reviewed inMcDonald, 1998)
where rhythmic neuronal activity in the theta range has
been observed (Mitchell and Ranck, 1980; Buzsáki et al.,
1983; Alonso and Garcia-Austt, 1987; Collins et al., 1999).
Finally, it should be noted that the propensity of rhinal and
hippocampal areas to generate theta activity increases dur-
ing EEG-activated states and arousal (Green and Arduini,
1954; Collins et al., 1999).

Therefore, it is possible that the theta activity of amygdala
neurons during emotional arousal promotes memory by fa-
cilitating interactions between neocortical storage sites and
the declarative memory system of the temporal lobe.

How would periodic amygdala activity at the theta fre-
quency play this role? First, as mentioned above, glutamater-
gic projection neurons of the BLA have extremely low fir-
ing rates (Paré and Gaudreau, 1996), even during emotional
arousal (Paré and Collins, 2000). Thus, the temporal clus-
tering of neuronal discharges at the theta frequency greatly
enhances the depolarization produced by BL activity on
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target structures. Second, it is important to realize that much
of the temporal lobe is oscillating at the theta frequency dur-
ing emotional arousal (Paré and Gaudreau, 1996; Alonso
and Garcia-Austt, 1987) and that amygdala and hippocam-
pal theta are highly correlated (Paré and Gaudreau, 1996;
Pape and Stork, 2003). Third, coherent oscillations cause
short recurring time-windows that facilitate synaptic inter-
actions between phase-locked oscillators. Fourth, coincident
presynaptic versus postsynaptic activity is critical to synap-
tic plasticity (Malenka, 1994).

It is thus possible that by telescoping the periods of effec-
tive synaptic interactions in short time-windows, amygdala
oscillations at the theta frequency exert a depolarizing action
that promotes synaptic plasticity in co-active structures of
the temporal lobe and neocortex. Consistent with this idea,
the conduction times of BLA axons to the rhinal cortices are
adjusted to compensate for variations in distance between the
BL complex and distinct rostrocaudal rhinal sites (Pelletier
and Paré, 2002). As a result, BL neurons can generate si-
multaneous rhythmic depolarizations at spatially distributed
rhinal sites and facilitate hebbian associations between co-
incident activity patterns.

In rats, intra-amygdala lidocaine injections up to 6 h
post-learning interfere with the facilitating effects of emo-
tion on recall assessed days later (Parent and McGaugh,
1994). Since rats normally spend significant amounts of
time sleeping in 6 h, this finding raises the possibility that
the activity of amygdala neurons during sleep also con-
tributes to the consolidation of emotional memories.

Indeed, much work indicates that the BLA and perirhinal
cortex generate highly synchronized slow oscillatory activ-
ity associated with prominent fluctuations in firing probabi-
lity during EEG-synchronized states (Paré and Gaudreau,
1996; Collins et al., 2001). In addition, the BLA gen-
erates synchronized population bursts during slow-wave
sleep and under barbiturate anesthesia (Paré et al., 1995a).
These synchronized population discharges give rise to brief,
large-amplitude potentials, termed sharp potentials, in the
rhinal cortices (Paré et al., 1995a; Collins et al., 1999) and,
after a brief delay, in the dentate gyrus (Paré et al., 1995a).

It is possible that the synchronized activity of BLA neu-
rons during sleep also contributes to the consolidation of
emotional memories. According to this view, despite stor-
age facilitation by amygdala theta during wakefulness, rep-
resentations would remain labile. Subsequent sleep activity
would, through a still undefined mechanism, consolidate
these representations.

In support of this idea, much evidence suggests that
sleep plays a pivotal role in synaptic plasticity and memory
(reviewed in Benington and Frank, 2003). For instance,
slow-wave sleep enhances cortical reorganization of ocu-
lar dominance columns following monocular deprivation
(Frank et al., 2001). Moreover, it was shown that sleep after
training is essential for the consolidation of some forms
of procedural memory such as visual discrimination skills
(Gais et al., 2000; Stickgold et al., 2000). However, the

facilitating effect of sleep is not limited to procedural mem-
ory as sleep deprivation produces marked impairments of
episodic memory (Plihal and Born, 1999).

It was proposed that the facilitating effect of sleep on
memory consolidation depends on the synchronized neu-
ronal events taking place during this state of vigilance. For
instance, one model of episodic memory (Buzsáki, 1989)
postulates that during waking, information is initially stored
in the CA3 region of the hippocampus via changes in the
strength of connections between pyramidal neurons. Later
on during SWS, synchronized population discharges of CA3
neurons in relation to events known as sharp waves would
“replay” the representations stored in the CA3 network and
via the rhinal cortices, reactivate associative cortical neurons
representing features of the event of interest. Ultimately,
this replay of stored representations would lead to long-term
synaptic changes in associative cortical networks.

Such models are consistent with the fact that the medial
temporal lobe plays a time-limited role in memory (Squire
and Cohen, 1979). Moreover, they are supported by electro-
physiological studies where evidence of sleep replay of wak-
ing activity patterns was obtained (Wilson and McNaughton,
1989).

In the case of the amygdala however, there is no
need to invoke actual storage of waking activity in the
intra-amygdaloid network. Sleep events would not “replay”
waking activities, but would recruit cortical neurons ran-
domly. Specificity of the consolidation process might be en-
sured by activity-dependent “tagging” of particular groups
of synapses in wakefulness (Frey and Morris, 1998).

5.3. Effect of increased basolateral activity on target
neurons

The above section emphasized the poor spontaneous ac-
tivity of BLA neurons. Although arousal produces some in-
crease in BLA activity and a modification of firing pattern,
the change remains modest. How could such subtle alter-
ations have a significant impact on synaptic plasticity? A
possible solution to this enigma might reside in the particu-
lar cell type contacted by amygdalofugal axons.

Electron microscopic observations have revealed that
the axon terminals of BLA projection cells are enriched in
glutamate (Smith and Paré, 1994) and that they only form
asymmetric synapses, typically (and in some cases exclu-
sively), with dendritic spines (perirhinal cortex,Smith and
Paré, 1994; insula, Paré et al., 1995c; striatum,Kita and
Kitai, 1990). For electron microscopists, these are code
words for excitatory inputs to projection neurons as in-
hibitory local-circuit cells are generally spineless (Ribak,
1978; Freund et al., 1983). These ultrastructural findings
suggest that what might distinguish BLA axons from other
glutamatergic inputs is the paucity of inhibitory interneu-
rons they contact. Unfortunately, too few ultrastructural
studies have been completed to determine whether this
applies to all BLA projections.
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There are other possibilities, all of which remain to be
investigated. They are mentioned here in the hope that this
might stimulate experimentation. First, the dynamic release
properties of BLA axon terminals might favor high fidelity
transfer. In the cerebral cortex for instance, pyramidal to
pyramidal synapses show a rapid depression when repet-
itively activated (Thomson and Deuchars, 1997). Perhaps
BLA axons are more resistant to activity dependent depres-
sion due to a different release machinery and/or distinct
presynaptic inhibitory influences.

Another possibility is that the density and/or particu-
lar complement of glutamate receptors found postsynaptic
to BLA axon terminals differs from other inputs to tar-
get neurons. For instance, a higher NMDA to non-NMDA
receptor ratio would favor NMDA-dependent plasticity.
It has been proposed that a higher NMDA/AMPA ratio
contributes to the ability of prefrontal cortical neurons to
generate persistent delay activity, a property often equated
to short-term memory (Fuster and Alexander, 1971; Chafee
and Goldman-Rakic, 1998). Although this hypothesis was
not supported in the prefrontal cortex (Myme et al., 2003),
it remains to be tested for BLA synapses.

Finally, as will become clear in the next section, it is pos-
sible that the BLA does not facilitate memory consolidation
via direct interactions with storage sites, but indirectly, via
the recruitment of modulatory cell groups. This scenario is
supported by the fact that immunotoxic lesions of choliner-
gic basal forebrain neurons block the memory enhancement
produced by BLA injections of NA (Power et al., 2002).

In thinking about this issue, it should be kept in mind that,
depending on the task, the BLA might modulate memory
via different mechanisms.

5.4. Facilitation of hippocampal long-term potentiation
by the basolateral complex

Although the particular properties that allow BLA
synapses to facilitate memory remain unidentified, a wealth
of data indicate that the BLA does facilitate synaptic plas-
ticity. A rapidly growing literature indicates that the BLA
facilitates LTP of perforant path inputs to the dentate gyrus,
a cellular model of memory. Indeed, it was reported that
BLA but not CEA stimulation facilitates (Ikegaya et al.,
1995, 1996; Akirav and Richter-Levin, 1999; Frey et al.,
2001) whereas BLA lesions reduce LTP of perforant path
inputs to the dentate gyrus (Ikegaya et al., 1994). Moreover,
intra-amygdaloid injections of�-adrenergic and muscarinic
receptor antagonists have the same effects (Ikegaya et al.,
1997; Frey et al., 2001).

In a detailed analysis of this phenomenon,Frey et al.
(2001)reported that BLA stimulation only affects weak and
transient forms of LTP. LTP produced by a strong tetanus
does not require the BLA for its induction nor its mainte-
nance. Since the BLA does not project to the dentate gyrus
(Pikkarainen et al., 1999), the BLA influence on LTP of
perforant path inputs to the dentate gyrus must be indirect.

Presumably, it involves activation of noradrenergic and
cholinergic cell groups projecting to the hippocampus. How-
ever, the BLA does not project directly to the medial septum
and locus coeruleus, the main source of cholinergic and NA
inputs to the hippocampus. Thus, even the recruitment of
these modulatory cell groups by the BLA must be indirect.

6. Conclusions

To sum up, the available evidence indicates that the BLA
facilitates memory consolidation in a wide variety of emo-
tionally arousing tasks, whether their affective valence is
positive or negative. It is also clear that the BLA is not the
storage site for most of these facilitated memories. Rather
the BLA seems to affect synaptic plasticity elsewhere in the
brain. While the link between emotional arousal and BLA
activation remains uncertain, it seems to involve ACh and
NA release in the BLA.

Challenges for future studies include identifying how the
BLA affects memory consolidation and synaptic plasticity.
Different avenues of investigation are worth considering.
First, it is possible that BLA synapses have particular prop-
erties such as preferential contacts with projection cells, high
reliability release probability, or different complements of
postsynaptic glutamatergic receptors. However, as suggested
by LTP studies and the effects immunotoxic lesions of basal
forebrain cholinergic neurons, it is possible that the memory
modulation produced by BLA stimulation depends on the
indirect recruitment of modulatory ACh and NA systems.
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