
Generating Large-Scale Neural Networks Through
Discovering Geometric Regularities

Jason Gauci
Evolutionary Complexity Research Group

School of EECS
University of Central Florida

Orlando, FL 32836
jgauci@cs.ucf.edu

Kenneth Stanley
Evolutionary Complexity Research Group

School of EECS
University of Central Florida

Orlando, FL 32836
kstanley@cs.ucf.edu

ABSTRACT
Connectivity patterns in biological brains exhibit many re-
peating motifs. This repetition mirrors inherent geomet-
ric regularities in the physical world. For example, stimuli
that excite adjacent locations on the retina map to neu-
rons that are similarly adjacent in the visual cortex. That
way, neural connectivity can exploit geometric locality in the
outside world by employing local connections in the brain.
If such regularities could be discovered by methods that
evolve artificial neural networks (ANNs), then they could
be similarly exploited to solve problems that would other-
wise require optimizing too many dimensions to solve. This
paper introduces such a method, called Hypercube-based
Neuroevolution of Augmenting Topologies (HyperNEAT),
which evolves a novel generative encoding called connec-
tive Compositional Pattern Producing Networks (connec-
tive CPPNs) to discover geometric regularities in the task
domain. Connective CPPNs encode connectivity patterns
as concepts that are independent of the number of inputs or
outputs, allowing functional large-scale neural networks to
be evolved. In this paper, this approach is tested in a simple
visual task for which it effectively discovers the correct un-
derlying regularity, allowing the solution to both generalize
and scale without loss of function to an ANN of over eight
million connections.

Categories and Subject Descriptors:

I.2.6[Artificial Intelligence]: Learning–Concept Learn-
ing, Connectionism and neural nets

C.2.1[Computer-Communication Networks]: Network
Architecture and Design–Network Topology

General Terms: Experimentation, Algorithms

Keywords: Compositional Pattern Producing Networks,
NEAT, HyperNEAT, large-scale artificial neural networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

1. INTRODUCTION
How did evolution, an unguided search process, discover

structures as astronomically complex and sophisticated as
the human brain? An intriguing possibility is that physi-
cal properties of the universe constrain the space of physi-
cal cognitive structures and the problems they encounter to
make such discovery likely. In particular, the physical ge-
ometry of space provides a bias toward brain-like solutions.

The geometry of space is effectively three-dimensional Cart-
esian. An ubiquitous useful property that results from Carte-
sian geometry is the principle of locality. That is, what hap-
pens at one coordinate in space is often related to what hap-
pens in adjacent locations. This fact is exploited effectively
in biological brains, wherein the physical world is often pro-
jected onto Cartesian arrays of neurons [5]. Just by virtue
of the neurons that are related to nearby events in space
also being near each other, it becomes likely that many rele-
vant operations can be performed through local connectivity.
Such connectivity is natural in a physical substrate in which
longer distance requires more resources, greater accuracy,
and better organization. That is, the properties of physical
space inherently bias cognitive organization towards local
connectivity, which happens to be useful for solving prob-
lems that are projected from the physical world. Thus it
may not be simply through brute-force search that the hu-
man brain employs significant local connectivity [14, 24].

This hypothesis suggests that techniques for evolving ar-
tificial neural network (ANN) structure should implement a
means for evolution to exploit the task geometry. Without
such a capability, even if useful regularities are inherent in
the task, they offer no advantage or accessible bias to the
learning method. Thus the ability to exploit such structure
may be critical for genuinely sophisticated cognitive appa-
ratus to be discovered.

If large-scale ANNs that exploit geometric motifs are to
be evolved with computers, a powerful and efficient encod-
ing will be necessary. This paper introduces a novel genera-
tive encoding, Hypercube-based NeuroEvolution of Augment-
ing Topologies (HyperNEAT), for representing and evolv-
ing large-scale ANNs that exploit geometric regularities in
the task domain. HyperNEAT employs the NEAT method
[19] to evolve a novel abstraction of developmental encod-
ing called connective Compositional Pattern Producing Net-
works (connective CPPNs), which compose simple canonical
functions into networks that can efficiently represent com-
plex connectivity patterns with regularities and symmetries.

997

This approach is tested in a variable-resolution visual task
that requires discovering a key underlying regularity across
the visual field. HyperNEAT not only discovers the regular-
ity, but is able to use it to generalize and apply its solution at
higher resolutions without losing performance. The conclu-
sion is that connective CPPNs are a powerful new generative
encoding for evolving large-scale ANNs.

2. BACKGROUND
This section provides an overview of CPPNs, which are

capable of generating complex spatial patterns in Cartesian
space, and then describes the NEAT method that is used to
evolve them. These two topics are foundational to the novel
approach introduced in this paper, in which CPPNs evolve
patterns that are interpreted as ANN connectivities.

2.1 Compositional Pattern Producing Networks
In biological genetic encoding the mapping between geno-

type and phenotype is indirect. The phenotype typically
contains orders of magnitude more structural components
than the genotype contains genes. Thus, the only way to
discover such high complexity may be through a mapping
between genotype and phenotype that translates few dimen-
sions into many, i.e. through an indirect encoding. A most
promising area of research in indirect encoding is develop-
mental and generative encoding, which is motivated from
biology [2, 3, 9]. In biological development, DNA maps to a
mature phenotype through a process of growth that builds
the phenotype over time. Development facilitates the reuse
of genes because the same gene can be activated at any lo-
cation and any time during the development process.

This observation has inspired an active field of research in
generative and developmental systems [3, 4, 7, 9, 10, 12, 13,
20, 22]. The aim is to find an abstraction of natural develop-
ment for a computer running an evolutionary algorithm, so
that Evolutionary Computation can begin to discover com-
plexity on a natural scale. Prior abstractions range from
low-level cell chemistry simulations to high-level grammati-
cal rewrite systems [20].

Compositional Pattern Producing Networks (CPPNs) are
a novel abstraction of development that can represent so-
phisticated repeating patterns in Cartesian space [16, 17].
Unlike most generative and developmental encodings, CPPNs
do not require an explicit simulation of growth or local inter-
action, yet still exhibit their essential features. The remain-
der of this section reviews CPPNs, which will be augmented
in this paper to represent connectivity patterns and ANNs.

Consider the phenotype as a function of n dimensions,
where n is the number of dimensions in physical space. For
each coordinate in that space, its level of expression is an
output of the function that encodes the phenotype. Figure
1a shows how a two-dimensional phenotype can be generated
by a function of two parameters. A mathematical abstrac-
tion of each stage of development then can be represented
explicitly inside this function.

Stanley [16, 17] showed how simple canonical functions
can be composed to create networks that produces complex
regularities and symmetries. Each component function cre-
ates a novel geometric coordinate frame within which other
functions can reside. The main idea is that these simple
canonical functions are abstractions of specific events in de-
velopment such as establishing bilateral symmetry (e.g. with
a symmetric function such as Gaussian) or the division of
the body into discrete segments (e.g. with a periodic func-

fx
y

value
at x,y

x

y

f...

...

(applied at
each point)

(a) Mapping
x y

output pattern

(b) Composition

Figure 1: CPPN Encoding. (a) The function f takes

arguments x and y, which are coordinates in a two-

dimensional space. When all the coordinates are drawn

with an intensity corresponding to the output of f , the

result is a spatial pattern, which can be viewed as a phe-

notype whose genotype is f . (b) The CPPN is a graph

that determines which functions are connected. The con-

nections are weighted such that the output of a function

is multiplied by the weight of its outgoing connection.

(a) Symmetry (b) Imperf. Sym. (c) Rep. with var.

Figure 2: CPPN-generated Regularities. Spatial pat-

terns exhibiting (a) bilateral symmetry, (b) imperfect

symmetry, and (c) repetition with variation are depicted.

These patterns demonstrate that CPPNs effectively en-

code fundamental regularities of several different types.

tion such as sine). Figure 1b shows how such a composition
is represented as a network.

Such networks are called Compositional Pattern Produc-
ing Networks because they produce spatial patterns by com-
posing basic functions. While CPPNs are similar to ANNs,
they differ in their set of activation functions and how they
are applied. Furthermore, they are an abstraction of devel-
opment rather than of biological brains.

Through interactive evolution, Stanley [16, 17] showed
that CPPNs can produce spatial patterns with important
geometric motifs that are expected from generative and de-
velopmental encodings and seen in nature. Among the most
important such motifs are symmetry (e.g. left-right symme-
tries in vertebrates), imperfect symmetry (e.g. right-handed-
ness), repetition (e.g. receptive fields in the cortex [24]), and
repetition with variation (e.g. cortical columns [8]). Figure
2 shows examples of several such important motifs produced
through interactive evolution of CPPNs.

These patterns are generated by applying the right ac-
tivation functions (e.g. symmetric functions for symmetry;
periodic functions for repetition) in the right order in the
network. The order of activations is an abstraction of the
unfolding process of development.

2.2 CPPN-NEAT
Because NEAT was originally designed to evolve increas-

ingly complex ANNs, it is naturally suited to doing the
same with CPPNs, which are also represented as graphs.
The NEAT method begins evolution with a population of
small, simple networks and complexifies them over genera-
tions, leading to increasingly sophisticated solutions. While
the NEAT method was originally developed to solve difficult

998

control and sequential decision tasks, yielding strong perfor-
mance in a number of domains [19, 21, 18], in this paper it
is used to evolve CPPNs. This section briefly reviews the
NEAT method. See also Stanley and Miikkulainen [19, 21]
for detailed descriptions of original NEAT.

NEAT is based on three key ideas. First, in order to
allow network structures to increase in complexity over gen-
erations, a method is needed to keep track of which gene is
which. Otherwise, it is not clear in later generations which
individual is compatible with which, or how their genes
should be combined to produce offspring. NEAT solves this
problem by assigning a unique historical marking to every
new piece of network structure that appears through a struc-
tural mutation. The historical marking is a number assigned
to each gene corresponding to its order of appearance over
the course of evolution. The numbers are inherited during
crossover unchanged, and allow NEAT to perform crossover
without the need for expensive topological analysis. That
way, genomes of different organizations and sizes stay com-
patible throughout evolution.

Second, NEAT speciates the population, so that individu-
als compete primarily within their own niches instead of with
the population at large. This way, topological innovations
are protected and have time to optimize their structure be-
fore competing with other niches in the population. NEAT
uses the historical markings on genes to determine to which
species different individuals belong.

Third, NEAT begins with a uniform population of simple
networks with no hidden nodes, differing only in their ini-
tial random weights. Speciation protects new innovations,
allowing diverse topologies to gradually complexify over evo-
lution. Thus, NEAT can start minimally, and grow the nec-
essary structure over generations. A similar process of grad-
ually adding new genes has been confirmed in natural evolu-
tion [11, 23] and shown to improve adaptation [1]. Through
complexification, high-level features can be established early
in evolution and then elaborated and refined as new genes
are added [11].

For these reasons, in this paper the NEAT method is used
to evolve increasingly complex CPPNs. CPPN-generated
patterns evolved with NEAT exhibit several essential motifs
and properties of natural phenotypes [15]. If such properties
could be transferred to evolved connectivity patterns, the
representational power of CPPNs could potentially evolve
large-scale ANNs, as explained in the next section.

3. HYPERNEAT
The spatial patterns in Section 2.1 present a challenge:

How can such spatial patterns describe connectivity? This
section explains how CPPN output can be effectively in-
terpreted as a connectivity pattern rather than a spatial
pattern. Furthermore, this novel interpretation allows neu-
rons, sensors, and effectors to exploit meaningful geometric
relationships. The next section introduces the key insight,
which is to assign connectivity a geometric interpretation.

3.1 Geometric Connectivity Patterns
The main idea is to input into the CPPN the coordinates

of the two points that define a connection rather than in-
putting only the position of a single point as in Section 2.1.
The output is interpreted as the weight of the connection
rather than the intensity of a point. This way, connections
can be defined in terms of the locations that they connect,
thereby taking into account the network’s geometry.

Connective
CPPN(evolved)

x1 y1 x2 y2

3) Output is weight
between (x

1
,y

1
) and (x

2
,y

2
)

1) Query each potential
connection on substrate

0,0 1,0-1,0

0,-1 1,-1-1,-1

0,1 1,1-1,1

...

...

Substrate

-1,1 0,1
 ...
-1,1 -1,0
 ...
-1,1 0,0
 ...
0.5,-1 1,-1
 ...

2) Feed each coordinate pair into CPPN

Figure 3: Hypercube-based Geometric Connectivity

Pattern Interpretation. A grid of nodes, called the

substrate, is assigned coordinates such that the center

node is at the origin. (1) Every potential connection in

the substrate is queried to determine its presence and

weight; the dark directed lines shown in the substrate

represent a sample of connections that are queried. (2)

For each query, the CPPN takes as input the positions

of the two endpoints and (3) outputs the weight of the

connection between them. In this way, connective CPPNs

produce regular patterns of connections in space.

For example, consider a 5×5 grid of nodes. The nodes are
assigned coordinates corresponding to their positions within
the grid (labeled substrate in figure 3), where (0, 0) is the
center of the grid. Assuming that these nodes and their po-
sitions are given a priori, a geometric connectivity pattern is
produced by a CPPN that takes any two coordinates (source
and target) as input, and outputs the weight of their connec-
tion. The CPPN is queried in this way for every potential
connection on the grid. Because the connection weights are
thereby a function of the positions of their source and target
nodes, the distribution of weights on connections through-
out the grid will exhibit a pattern that is a function of the
geometry of the coordinate system.

A CPPN in effect computes a four-dimensional function
CPPN(x1, y1, x2, y2) = w, where the first node is at (x1, y1)
and the second node is at (x2, y2). This formalism returns a
weight for every connection between every node in the grid,
including recurrent connections. By convention, a connec-
tion is not expressed if the magnitude of its weight, which
may be positive or negative, is below a minimal threshold
wmin. The magnitude of weights above this threshold are
scaled to be between zero and a maximum magnitude in the
substrate. That way, the pattern produced by the CPPN
can represent any network topology (figure 3).

The connectivity pattern produced by a CPPN in this way
is called the substrate so that it can be verbally distinguished
from the CPPN itself, which has its own internal topology.
Furthermore, in the remainder of this paper, CPPNs that
are interpreted to produce connectivity patterns are called
connective CPPNs while CPPNs that generate spatial pat-
terns are called spatial CPPNs. This paper focuses on neural
substrates produced by connective CPPNs.

Because the CPPN is a function of four dimensions, the
two-dimensional connectivity pattern expressed by the CPPN
is isomorphic to a spatial pattern embedded in a four-di-
mensional hypercube. Thus, because CPPNs generate reg-
ular spatial patterns (Section 2.1), by extension they can be
expected to produce geometric connectivity patterns with
corresponding regularities. The next section demonstrates
this capability.

999

(a) Sym. (b) Imperf. (c) Repet. (d) Var.

Figure 4: Connectivity Patterns Produced by Connec-

tive CPPNs. These patterns, produced through inter-

active evolution, exhibit several important connectivity

motifs: (a) bilateral symmetry, (b) imperfect symmetry,

(c) repetition, and (d) repetition with variation. That

these fundamental motifs are compactly represented and

easily produced suggests the power of this encoding.

3.2 Producing Regular Connectivity Patterns
Simple, easily-discovered substructures in the connective

CPPN produce important connective motifs in the substrate.
The key difference between connectivity patterns and spa-
tial patterns is that each discrete unit in a connectivity pat-
tern has two x values and two y values. Thus, for example,
symmetry along x can be discovered simply by applying a
symmetric function (e.g. Gaussian) to x1 or x2 (figure 4a).

The human brain is roughly symmetric at a gross resolu-
tion, but its symmetry is imperfect. Thus, imperfect sym-
metry is an important structural motif in ANNs. Connec-
tive CPPNs can produce imperfect symmetry by composing
both symmetric functions of one axis along with an asym-
metric coordinate frame such as the axis itself. In this way,
the CPPN produces varying degrees of imperfect symmetry
(figure 4b).

Another important motif in biological brains is repetition,
particularly repetition with variation. Just as symmetric
functions produce symmetry, periodic functions such as sine
produce repetition (figure 4c). Patterns with variation are
produced by composing a periodic function with a coordi-
nate frame that does not repeat, such as the axis itself (figure
4d). Repetitive patterns can also be produced in connectiv-
ity as functions of invariant properties between two nodes,
such as distance along one axis. Thus, symmetry, imper-
fect symmetry, repetition, and repetition with variation, key
structural motifs in all biological brains, are compactly rep-
resented and therefore easily discovered by CPPNs.

3.3 Substrate Configuration
CPPNs produce connectivity patterns among nodes on

the substrate by querying the CPPN for each pair of points
in the substrate to determine the weight of the connection
between them. The layout of these nodes can take forms
other than the planar grid (figure 3) discussed thus far. Dif-
ferent such substrate configurations are likely suited to dif-
ferent kinds of problems.

For example, Churchland [6] calls a single two-dimensional
sheet of neurons that connects to another two-dimensional
sheet a state-space sandwich. The sandwich is a restricted
three-dimensional structure in which one layer can send con-
nections only in one direction to one other layer. Thus, be-
cause of this restriction, it can be expressed by the single
four-dimensional CPPN(x1, y1, x2, y2), where (x2, y2) is in-
terpreted as a location on the target sheet rather than as
being on the same plane as the source coordinate (x1,y1).
In this way, CPPNs can be used to search for useful patterns
within state-space sandwich substrates (figure 5), as is done
in this paper.

0,0 1,0-1,0

0,-1 1,-1-1,-1

0,1 1,1-1,1

0,0 1,0-1,0

0,-1 1,-1-1,-1

0,1 1,1-1,1

Source (x
1
,y

1
)

Target (x
2
,y

2
)

Figure 5: State-Space Sandwich Substrate. The two-

dimensional grid configuration depicted in figure 3 is only

one of many potential substrate configurations. This

figure shows a “state-space sandwich” configuration in

which a source sheet of neurons connects directly to a

target sheet. Different configurations are likely suited to

problems with different geometric properties. The state

space sandwich is particularly suited to visual mappings.

(a)5 × 5 Concept (b) 7 × 7 Concept
Bias x1 y1 x2 y2

Sigmoid

Sigmoid

Linear

Sigmoid

Sine Gaussian

Sigmoid
Sigmoid

(f) CPPN

Figure 6: An Equivalent Connectivity Concept at Dif-

ferent Substrate Resolutions. A connectivity concept is

depicted that was evolved through interactive evolution.

The CPPN that generates the concept at (a) 5 × 5 and

(b) 7 × 7 is shown in (c). This figure demonstrates that

CPPNs represent a mathematical concept rather than a

single structure. Thus, the same connective CPPN can

produce patterns with the same underlying concept at

different substrate resolutions (i.e. node densities).

Because connective CPPN substrates are aware of their
geometry, they can use this information to their advantage.
By arranging neurons in a sensible configuration on the sub-
strate, regularities in the geometry can be exploited by the
encoding. Biological neural networks rely on such a capa-
bility for many of their functions. For example, neurons
in the visual cortex are arranged in the same retinotopic
two-dimensional pattern as photoreceptors in the retina [5].
That way, they can exploit locality by connecting to adjacent
neurons with simple, repeating motifs. Connective CPPNs
have the same capability.

3.4 Substrate Resolution
As opposed to encoding a specific pattern of connections

among a specific set of nodes, connective CPPNs in effect
encode a general connectivity concept, i.e. the underlying
mathematical relationships that produce a particular pat-
tern. The consequence is that same connective CPPN can
represent an equivalent concept at different resolutions (i.e.
different node densities). Figure 6 shows a connectivity con-
cept at different resolutions.

For neural substrates, the important implication is that
the same ANN can be generated at different resolutions.
Without further evolution, previously-evolved connective CPPNs
can be re-queried to specify the connectivity of the substrate
at a new, higher resolution, thereby producing a working

1000

solution to the same problem at a higher resolution! This
operation, i.e. increasing substrate resolution, introduces a
powerful new kind of complexification to ANN evolution. It
is an interesting question whether, at a high level of abstrac-
tion, the evolution of brains in biology in effect included
several such increases in density on the same connectivity
concept. Not only can such an increase improve the imme-
diate resolution of sensation and action, but it can provide
additional substrate for increasingly intricate local relation-
ships to be discovered through further evolution.

3.5 Computational Complexity
In the most general procedure, a connective CPPN is

queried for every potential connection between every node
in the substrate. Thus, the computational complexity of
constructing the final connectivity pattern is a function of
the number of nodes. For illustration, consider a N × N
state-space sandwich. The number of nodes on each plane
is N2. Because every possible pair of nodes is queried, the
total number of queries is N4.

For example, a 11 × 11 substrate requires 14,641 queries.
Such numbers are realistic for modern computers. For ex-
ample, 250,000 such queries can be computed in 4.64 seconds
on a 3.19 Ghz Pentium 4 processor. Note that this substrate
is an enormous ANNs with up to a quarter-million connec-
tions. Connective CPPNs present an opportunity to evolve
structures of a complexity and functional sophistication gen-
uinely commensurate with available processing power.

3.6 Evolving Connective CPPNs
The approach in this paper is to evolve connective CPPNs

with NEAT. This approach is called HyperNEAT because
NEAT evolves CPPNs that represent spatial patterns in hy-
perspace. Each point in the pattern, bounded by a hyper-
cube, is interpreted as a connection in a lower-dimensional
graph. NEAT is the natural choice for evolving CPPNs be-
cause it is designed to evolve increasingly complex network
topologies. Therefore, as CPPNs complexify, so do the regu-
larities and elaborations (i.e. the global dimensions of varia-
tion) that they represent in their corresponding connectivity
pattern. Thus, HyperNEAT is a powerful new approach to
evolving large-scale connectivity patterns and ANNs. The
next section describes initial experiments that demonstrate
the promise of this approach in a vision-based task.

4. EXPERIMENT
Vision is well-suited to testing learning methods on high-

dimensional input. Natural vision also has the intriguing
property that the same stimulus can be recognized equiva-
lently at different locations in the visual field. For example,
identical line-orientation detectors are spread throughout
the primary visual cortex [5]. Thus there are clear regulari-
ties among the local connectivity patterns that govern such
detection. A repeating motif likely underlies the general ca-
pability to perform similar operations at different locations
in the visual field.

Therefore, in this paper a simple visual discrimination
task is used to demonstrate HyperNEAT’s capabilities. The
task is to distinguish a large object from a small object in
a two-dimensional visual field. Because the same principle
determines the difference between small and large objects
regardless of their location in the retina, this task is well
suited to testing the ability of HyperNEAT to discover and
exploit regularities.

The solution substrate is configured as a state-space sand-
wich that includes two sheets: (1) The visual field is a two-
dimensional array of sensors that are either on or off (i.e.
black or white). (2) The target field is an equivalent two-
dimensional array of outputs that are activated at variable
intensity between zero and one. In a single trial, two objects,
represented as black squares, are situated in the visual field
at different locations. One object is three times as wide and
tall as the other (figure 8a). The goal is to locate the cen-
ter of the largest object in the visual field. The target field
specifies this location as the node with the highest level of
activation. Thus, HyperNEAT must discover a connectivity
pattern between the visual field and target field that causes
the correct node to become most active regardless of the
locations of the objects.

An important aspect of this task is that it utilizes a large
number of inputs, many of which must be considered si-
multaneously. To solve it, the system needs to discover the
general principle that underlies detecting relative sizes of ob-
jects. The right idea is to strongly connect individual input
nodes in the visual field to several adjacent nodes around the
corresponding location in the output field, thereby causing
outputs to accumulate more activation the more adjacent
loci are feeding into them. Thus, the solution can exploit
the geometric concept of locality, which is inherent in the ar-
rangement of the two-dimensional grid. Only a representa-
tion that takes into account substrate geometry can exploit
such a concept. Furthermore, an ideal encoding should de-
velop a representation of the concept that is independent
of the visual field resolution. Because the correct motif re-
peats across the substrate, in principle a connective CPPN
can discover the general concept only once and cause it to
be repeated across the grid at any resolution. As a result,
such a solution can scale as the resolution inside the visual
field is increased, even without further evolution.

4.1 Evolution and Performance Analysis
The field coordinates range between [−1, 1] in the x and

y dimensions. However, the resolution within this range,
i.e. the node density, can be varied. During evolution, the
resolution of each field is fixed at 11 × 11. Thus the con-
nective CPPN must learn to correctly connect a visual field
of 121 inputs to a target field of 121 outputs, a total of
14,641 potential connection strengths. If the magnitude of
the CPPN’s output for a particular query is less than or
equal to 0.2 then the connection is not expressed in the sub-
strate. If it is greater than 0.2, then the number is scaled to
a magnitude between zero and three. The sign is preserved,
so negative output values correspond to negative connection
weights.

During evolution, each individual in the population is
evaluated for its ability to find the center of the bigger ob-
ject. If the connectivity is not highly accurate, it is likely
the substrate will often incorrectly choose the small object
over the large one. Each individual evaluation thus includes
75 trials, where each trial places the two objects at different
locations. The trials are organized as follows. The small ob-
ject appears at 25 uniformly distributed locations such that
it is always completely within the visual field. For each of
these 25 locations, the larger object is placed five units to
the right, down, and diagonally, once per trial. The large
object wraps around to the other side of the field when it hits
the border. If the larger object is not completely within the

1001

visual field, it is moved the smallest distance possible that
places it fully in view. Because of wrapping, this method of
evaluation tests cases where the small object is on all pos-
sible sides of the large object. Thus many relative positions
are tested for a total number of 75 trials on the 11 by 11
substrate for each evaluation during evolution.

Within each trial, the substrate is activated over the entire
visual field. The unit with the highest activation in the tar-
get field is interpreted as the substrate’s selection. Fitness
is calculated from the sum of the squared distances between
the target and the point of highest activation over all 75
trials. This fitness function rewards generalization and pro-
vides a smooth gradient for solutions that are close but not
perfect.

To demonstrate HyperNEAT’s ability to effectively dis-
cover the task’s underlying regularity, two approaches are
compared.

• HyperNEAT: HyperNEAT evolves a connective CPPN
that generates a substrate to solve the problem (Sec-
tion 3).

• Perceptron Neat (P-NEAT): P-NEAT is a reduced
version of NEAT that evolves perceptrons (i.e. not
CPPNs). ANNs with 121 nodes and 14,641 (121×121)
links are evolved without structure-adding mutations.
P-NEAT is run with the same settings as HyperNEAT,
since both are being applied to the same problem. Be-
cause P-NEAT must explicitly encode the value of each
connection in the genotype, it cannot encode under-
lying regularities and must discover each part of the
solution connectivity independently.

This comparison is designed to show how HyperNEAT
makes it possible to optimize very high-dimensional struc-
tures, which is difficult for directly-encoded methods. Hy-
perNEAT is then tested for its ability to scale solutions to
higher resolutions without further evolution, which is impos-
sible with direct encodings such as P-NEAT.

4.2 Experimental Parameters
Because HyperNEAT extends NEAT, it uses similar pa-

rameters [19]. The population size was 100 and each run
lasted for 300 generations. The disjoint and excess node co-
efficients were both 2.0 and the weight difference coefficient
was 1.0. The compatibility threshold was 6.0 and the com-
patibility modifier was 0.3. The target number of species
was eight and the drop off age was 15. The survival thresh-
old within a species is 20%. Offspring had a 3% chance
of adding a node, a 10% chance of adding a link, and every
link of a new offspring had an 80% chance of being mutated.
Recurrent connections within the CPPN were not enabled.
Signed activation was used, resulting in a node output range
of [−1, 1]. These parameters were found to be robust to
moderate variation in preliminary experimentation.

5. RESULTS
The primary performance measure in this section is the

average distance from target of the target field’s chosen po-
sition. This average is calculated for each generation cham-
pion across all its trials (i.e. object placements in the visual
field). Reported results were averaged over 20 runs. Better
solutions choose positions closer to the target. To under-
stand the distance measure, note that the width and height
of the substrate are 2.0 regardless of substrate resolution.

HyperNEAT and P-NEAT were compared to quantify the
advantage provided by generative encoding on this task.

During evolution, both HyperNEAT and P-NEAT improved
over the course of a run. Figure 7a shows the performance
of both methods on evaluation trials from evolution (i.e. a
subset of all possible positions) and on a generalization test
that averaged performance over every possible valid pair of
positions on the board. An input is considered valid if the
smaller and the larger object are placed within the substrate
and neither object overlaps the other.

The performance of both methods on the evaluation tests
improved over the run. However, after generation 45, on
average HyperNEAT found significantly more accurate so-
lutions than P-NEAT (p < 0.01).

HyperNEAT learned to generalize from its training; the
difference between the performance of HyperNEAT in gener-
alization and evaluation is not significant past the first gen-
eration. Conversely, P-NEAT performed significantly worse
in the generalization test after generation 51 (p < 0.01).
This disparity in generalization reflects HyperNEAT’s fun-
damental ability to learn the geometric concept underlying
the task, which can be generalized across the substrate. P-
NEAT can only discover each proper connection weight in-
dependently. Therefore, P-NEAT has no way to extend its
solution to positions in the substrate on which it was never
evaluated. Furthermore, the search space of 14,641 dimen-
sions (i.e. one for each connection) is too high-dimensional
for P-NEAT to find good solutions while HyperNEAT dis-
covers near-perfect (and often perfect) solutions on average.

5.1 Scaling Performance
The best individuals of each generation, which were eval-

uated on 11×11 substrates, were later scaled with the same
CPPN to resolutions of 33 × 33 and 55 × 55 by requery-
ing the substrate at the higher resolutions without further
evolution. These new resolutions cause the substrate size
to expand dramatically. For 33 × 33 and 55 × 55 resolu-
tions, the weights of over one million and nine million con-
nections, respectively, must be optimized in the substrate,
which would normally be an enormous optimization prob-
lem. On the other hand, the original 11 × 11 resolution on
which HyperNEAT was trained contains only up to 14,641
connections. Thus, the number of connections increases by
nearly three orders of magnitude. It is important to note
that HyperNEAT is able to scale to these higher resolutions
without any additional learning. In contrast, P-NEAT has
no means to scale to a higher resolution and cannot even
learn effectively at the lowest resolution.

When scaling, a potential problem is that if the same acti-
vation level is used to indicate positive stimulus as at lower
resolutions, the total energy entering the substrate would
increase as the substrate resolution increases for the same
images, leading to oversaturation of the target field. In con-
trast, in the real world, the number of photons that enter the
eye is the same regardless of the density of photoreceptors.
To account for this disparity, the input activation levels are
scaled for larger substrate resolutions proportional to the
difference in unit cell size.

Two variants of HyperNEAT were tested for their ability
to scale (figure 7b). The first evolved the traditional CPPN
with inputs x1, y1, x2, and y2. The second evolved CPPNs
with the additional delta inputs (x1−x2) and (y2−y1). The
intuition behind the latter approach is that because distance
is a crucial concept in this task, the extra inputs can provide
a useful bias to the search.

1002

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

A
ve

ra
ge

 D
is

ta
nc

e
F

ro
m

 T
ar

ge
t

Generation

P-NEAT Generalization

P-NEAT Evaluation

HyperNEAT Generalization

HyperNEAT Evaluation

(a) P-NEAT and HyperNEAT Generalization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

A
ve

ra
ge

 D
is

ta
nc

e
F

ro
m

 T
ar

ge
t

Generation

No Delta Input, Low Res

No Delta Input, High Res

No Delta Input, Very High Res

Delta Input, Low Res

Delta Input, High Res

Delta Input, Very High Res

(b) HyperNEAT Generation Champion Scaling

Figure 7: Generalization and Scaling. The graphs show performance curves over 300 generations averaged over

20 runs each. (a) P-NEAT is compared to HyperNEAT on both evaluation and generalization. (b) HyperNEAT

generation champions with and without delta inputs are evaluated for their performance on 11× 11, 33× 33, and 55× 55

substrate resolutions. The results show the HyperNEAT generalizes significantly better than P-NEAT (p < 0.01) and

scales almost perfectly.

While the deltas did perform significantly better on aver-
age between generations 38 and 70 (p < 0.05), the CPPNs
without delta inputs were able to catch up and reach the
same level of performance after generation 70. Thus, al-
though applicable geometric coordinate frames provide a
boost to evolution, HyperNEAT is ultimately powerful enough
to discover the concept of distance on its own.

Most importantly, both variants were able to scale al-
most perfectly from 11 × 11 resolution substrate with up
to 14,641 connections to a 55× 55 resolution substrate with
up to 9,150,625 connections, with no significant difference
in performance after the second generation. This result is
also significant because the higher-resolution substrates were
tested on all valid object placements, which include many
positions that did not even exist on the lower-resolution sub-
strate. Thus, remarkably, CPPNs found solutions that lose
no abilities at higher resolution!

High-quality CPPNs at the 55 × 55 resolution contained
on average 8.3 million connections in their substrate and
performed as well as their 11× 11 counterparts. These sub-
strates are the largest functional structures produced by evo-
lutionary computation of which the authors are aware.

CPPN encoding is highly compact. If good solutions are
those that achieve an average distance under 0.25, the aver-
age complexity of a good solution CPPN was only 24 con-
nections. In comparison, at 11 × 11 resolution the average
number of connections in the substrate was 12,827 out of the
possible 14,641 connections. Thus the genotype is smaller
than the evaluated phenotype on average by a factor of 534!

5.2 Typical Solutions
Typical HyperNEAT solutions developed several different

geometric strategies to solve the domain. These strategies
are represented in the connectivity between the visual field
and the target field. For example, one common strategy
produces a soft halo around each active locus, creating the
largest overlap at the center of the large object, causing it to
activate highest. HyperNEAT discovered several other re-
peating motifs that are equally effective. Thus, HyperNEAT
is not confined to a single geometric strategy. Because Hy-
perNEAT discovers how to repeat its strategy across the

substrate, solutions were able to generalize by leveraging
substrate geometry.

Examples of the halo activation pattern are shown in fig-
ure 8, which also shows how the activation pattern looks at
different resolution substrates generated by the same CPPN.
This motif is sufficiently robust that it works at variable res-
olutions i.e. the encoding is scalable.

Although HyperNEAT generates ANNs with millions of
connections, such ANNs can run in real time on most mod-
ern hardware. Using a 2.0GHz processor, an eight million
connection networks takes on average 3.2 minutes to create,
but only 0.09 seconds to process a single trial.

6. DISCUSSION AND FUTURE WORK
Like other direct encodings, P-NEAT can only improve by

discovering each connection strength individually. Further-
more, P-NEAT solutions cannot generalize to locations out-
side its training corpus because it has no means to represent
the general pattern of the solution. In contrast, HyperNEAT
discovers a general connectivity concept that naturally cov-
ers locations outside its training set. Thus, HyperNEAT
creates a novel means of generalization, though substrate
geometry. That is, HyperNEAT exploits the geometry of the
problem by discovering its underlying regularities.

Because the solution is represented conceptually, the same
solution effectively scales to higher resolutions, which is a
new capability for ANNs. Thus a working solution was pos-
sible to produce with over eight million connections, among
the largest working ANNs ever produced through evolution-
ary computation. The real benefit of this capability however
is that in the future, further evolution can be performed at
the higher resolution.

For example, one potentially promising application is ma-
chine vision, where general regularities in the structure of
images can be learned at low resolution. Then the resolution
can be increased, still preserving the learned concepts, and
further evolved with higher granularity and more detailed
images. For example, a system that identifies the location
of a face in a visual map might initially learn to spot a circle
on a small grid and then continue to evolve at increasingly
high resolutions with increasing face-related detail.

1003

(a) Sensor Field
(object placement)

(b) 11x11 Target Field
(12,827 connections)

(c) 33x33 Target Field
(1,033,603 connections)

(d) 55x55 Target Field
(7,970,395 connections)

Figure 8: Activation Patterns of the Same CPPN at Different Resolutions. The object placements for this example

are shown in (a). For the same CPPN, the activation levels of the substrate are shown at (a) 11 × 11, (b) 33 × 33, and

(c) 55× 55 resolutions. Each square represents a neuron in the target field. Darker color signifies higher activation and

a white X denotes the point of highest activation, which is correctly at the center of the large object in (a).

It is important to note that HyperNEAT is not restricted
to state-space sandwich substrates. The method is suf-
ficiently general to generate arbitrary two-dimensional or
three-dimensional connectivity patterns, including hidden
nodes and recurrence. Thus it applies to a broad range of
high-resolution problems with potential geometric regulari-
ties. In addition to vision, these include controlling artificial
life forms, playing board games, and developing new kinds
of self-organizing maps.

7. CONCLUSIONS
This paper presented a novel approach to encoding and

evolving large-scale ANNs that exploits task geometry to
discover regularities in the solution. Connective Composi-
tional Pattern Producing Networks (connective CPPNs) en-
code large-scale connectivity patterns by interpreting their
outputs as the weights of connections in a network. To
demonstrate this encoding, Hypercube-based Neuroevolu-
tion of Augmenting Topologies (HyperNEAT) evolved CPPNs
that solve a simple visual discrimination task at varying res-
olutions. The solution required HyperNEAT to discover a
repeating motif in neural connectivity across the visual field.
It was able to generalize significantly better than a direct
encoding and could scale to a network of over eight million
connections. The main conclusion is that connective CPPNs
are a powerful new generative encoding that can compactly
represent large-scale ANNs with very few genes.

8. REFERENCES
[1] L. Altenberg. Evolving better representations through selective

genome growth. In Proceedings of the IEEE World Congress
on Computational Intelligence, pages 182–187, Piscataway,
NJ, 1994. IEEE Press.

[2] P. J. Angeline. Morphogenic evolutionary computations:
Introduction, issues and examples. In J. R. McDonnell, R. G.
Reynolds, and D. B. Fogel, editors, Evolutionary
Programming IV: The Fourth Annual Conference on
Evolutionary Programming, pages 387–401. MIT Press, 1995.

[3] P. J. Bentley and S. Kumar. The ways to grow designs: A
comparison of embryogenies for an evolutionary design
problem. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-1999), pages 35–43, San
Francisco, 1999. Kaufmann.

[4] J. C. Bongard. Evolving modular genetic regulatory networks.
In Proceedings of the 2002 Congress on Evolutionary
Computation, 2002.

[5] D. B. Chklovskii and A. A. Koulakov. MAPS IN THE BRAIN:
What can we learn from them? Annual Review of
Neuroscience, 27:369–392, 2004.

[6] P. M. Churchland. Some reductive strategies in cognitive
neurobiology. Mind, 95:279–309, 1986.

[7] D. Federici. Evolving a neurocontroller through a process of
embryogeny. In S. Schaal, A. J. Ijspeert, A. Billard,
S. Vijayakumar, J. Hallam, and Jean-Arcady, editors,
Proceedings of the Eighth International Conference on
Simulation and Adaptive Behavior (SAB-2004), pages
373–384, Cambridge, MA, 2004. MIT Press.

[8] G. J. Goodhill and M. A. Carreira-Perpinn. Cortical columns.
In L. Nadel, editor, Encyclopedia of Cognitive Science,
volume 1, pages 845–851. MacMillan Publishers Ltd., London,
2002.

[9] G. S. Hornby and J. B. Pollack. Creating high-level
components with a generative representation for body-brain
evolution. Artificial Life, 8(3), 2002.

[10] A. Lindenmayer. Adding continuous components to L-systems.
In G. Rozenberg and A. Salomaa, editors, L Systems, Lecture
Notes in Computer Science 15, pages 53–68. Springer-Verlag,
Heidelberg, Germany, 1974.

[11] A. P. Martin. Increasing genomic complexity by gene
duplication and the origin of vertebrates. The American
Naturalist, 154(2):111–128, 1999.

[12] J. F. Miller. Evolving a self-repairing, self-regulating, French
flag organism. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2004),
Berlin, 2004. Springer Verlag.

[13] E. Mjolsness, D. H. Sharp, and J. Reinitz. A connectionist
model of development. Journal of Theoretical Biology,
152:429–453, 1991.

[14] O. Sporns. Network analysis, complexity, and brain function.
Complexity, 8(1):56–60, 2002.

[15] K. O. Stanley. Comparing artificial phenotypes with natural
biological patterns. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) Workshop
Program, New York, NY, 2006. ACM Press.

[16] K. O. Stanley. Exploiting regularity without development. In
Proceedings of the AAAI Fall Symposium on Developmental
Systems, Menlo Park, CA, 2006. AAAI Press.

[17] K. O. Stanley. Compositional pattern producing networks: A
novel abstraction of development. Genetic Programming and
Evolvable Machines Special Issue on Developmental Systems,
2007. To appear.

[18] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Real-time
neuroevolution in the NERO video game. IEEE Transactions
on Evolutionary Computation Special Issue on Evolutionary
Computation and Games, 9(6):653–668, 2005.

[19] K. O. Stanley and R. Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary Computation,
10:99–127, 2002.

[20] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial
embryogeny. Artificial Life, 9(2):93–130, 2003.

[21] K. O. Stanley and R. Miikkulainen. Competitive coevolution
through evolutionary complexification. Journal of Artificial
Intelligence Research, 21:63–100, 2004.

[22] A. Turing. The chemical basis of morphogenesis. Philosophical
Transactions of the Royal Society B, 237:37–72, 1952.

[23] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and
A. M. Weiner. Molecular Biology of the Gene Fourth Edition.
The Benjamin Cummings Publishing Company, Inc., Menlo
Park, CA, 1987.

[24] M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, and
L. R. Squire, editors. Fundamental Neuroscience. Academic
Press, London, 1999.

1004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

