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Abstract  This article is a fairly comprehensive document on the numerical solution of nonlinear equations. The 

aim of this paper is to unify all numerical methods for solving nonlinear equations and complete the Najafi-Nikkhah 

method [1,2] and generalize the famous methods for solving systems of nonlinear equations. So, the available 

methods in this field, are being investigated and it will be indicated that how these techniques, despite the apparent 

dispersion, all are obtained from a unified idea, and this unified pattern would help find new techniques in a 

systematic way. All current methods require that the initial starting point or points to be close to the solution 

appropriately, but for the equations with complicated appearance finding the initial guess would not be easy. So, this 

article intends to provide an appropriate response for this fundamental issue for the first time. An algorithm is 

proposed to complete the Najafi-Nikkhah technique [1,2], and declares the procedure to make the initial guess 

become closer to the solution, even if they are far away from each other. Then, the procedure could be completed by 

one of the common methods available in this field. Dispersion of the current methods causes the confusion in the 

case of using them. Therefore, these methods should be compared with some criteria to determine the use of them in 

the practical applications. In the next section of this article, these criteria together with some comparisons including 

a series of tables and diagram would be provided. Finally, in the last section, generalization of the current methods 

for solving the nonlinear equation with a singular unknown to the methods for solving the systems of nonlinear 

equations would be investigated. Then, the generalization of the modified Najafi-Nikkhah method for the systems of 

nonlinear equations will be presented which can reduce the dependency of the initial guess to the solution, 

significantly. 
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1. Introduction 

Since now, many different techniques have been 

proposed for solving nonlinear equation of f(x) =0. But, in 

practice, the question is how to unify all these techniques. 

First, general information about the available methods 

would be discussed. The Available numerical methods can 

be classified into two main categories: 

1. A set of techniques that uses successive derivatives 

of f(x) function in the specified point. 

2. A set of techniques that uses the function value in 

some different points. 

However, a person might be interested in offering a 

new technique which uses the combination of two 

aforementioned techniques. The first class generally has 

better performance, meaning convergence for more initial 

points and higher convergence speed. The problem is 

performing the derivative operation, which is not a simple 

task in all cases. The latter is usually used when the 

objective is finding the real roots merely. The first class 

usually generates both real and complex root, however, it 

could not be used in a controlled manner for finding the 

real roots merely. 

If the all points on the second class become close to 

each other, they could be converted to their equivalent in 

the first class. As an example, consider the false position 

technique [3]: 
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This method requires two initial points. If these two 

point become closer to each other, that is: 

 n n 1x x h 0    (2) 

The method converts to the Newton-Raphson method 

[4] immediately: 
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In general, in order to convert the techniques of the first 

class to their equivalent in the latter, it should be referred 

to the numerical approximation of the derivative, the 

examples of which is provided in the following table: 
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Table 1. Formula for numerical approximation of the derivative 
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So, in order to calculate the new order of derivative in 

the first class, at least a new point in the equivalent 

method of the second class is required. The rate of the 

convergence for the method using the n-th derivative is 

n+1. However, this would not mean the same speed of 

convergence for all these methods. 

2. Classifying Methods 

The available methods can be categorized from another 

outlook. 

1. A class which uses the first order derivative in one or 

two initial points like, secant [5], false position [3] 

and Newton-Raphson [4] methods. 

2. A class which uses two sequential derivatives in a 

point or three separate points [6-13]. 

3. A class which combines the first class idea in each 

iteration several times and use them simultaneously 

[14-20], the Ostrowski method [14,15,16] is the most 

famous method of this class. 

2.1. Discussion first class 

If y = f (x), then x can be written in terms of the inverse 

Taylor series around an arbitrary point x0 as follows: 
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In which: 
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So, in the case of y=0, the aforementioned series can be 

rewritten as follows, which in fact is the root of the 

equation in terms of the initial guess x0 
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This relationship is the basis of unifying all the existing 

methods. 

2.2. Discussion Second Class 

The first three terms of the equation (5) are the unifying 

factors of the second class methods. Indeed, all these 

methods somehow should ultimately be a generator of the 

three. For clarity, it is better to analyze the various 

methods of this category further. 

2.2.1. Householder Technique [7] 

This technique generates the first three terms of the 

equation (5) exactly, but it is not an efficient method 

compared to other methods in this class.  

2.2.2. Schroder Technique [8] 

In Newton-Raphson equation, if the alternative term of 
 ( )

  ( )
 is replaced instead of f(x), the Schroder relation is 

produced as follows: 
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According to the following series: 
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The equation (6) would be approximated as follows: 
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If Equation (8) is compared with equation (5), it 

becomes evident that equation (8), instead of generating 

the third term of the equation (5), that is
 (  )    (  )

   (  ) 
, 

generates
 (  )    (  )

  (  ) 
, and that is why this method become 

divergent usually. However, in the case of conveyance, 

the rate is almost appropriate compared to other methods. 

2.2.3. Halley Method [9] 

This method is similar to Schroder method [8], except 

that in Newton- Raphson method [4],  ( )is replaced with 
 ( )

√  ( )
 and so, we have: 
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If the above equation is approximated by equation (7): 
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As it can be seen, in this method, unlike the Schroder 

method, the first three term of equation (5) will appear. 

This method is more stable compared to the other two 

methods, Householder [7] and Schroder [8]. 

2.2.4. Ridder Method [11] 

This method is applied for finding the real roots, and in 

this context, it is fairy appropriate and acceptable method 

in comparison with the other methods: 
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In which                and the values of  (    ) 

and  (    ) should have different signs [11]. Referred to 

the same idea discussed in the introduction, if the three 

points are completely close to each other, the equivalent 

relation could be obtained as follows: 
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If the following series is used, this relation serves better 

results than Halley relation [9]. 
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It can be written: 
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2.2.5. Muller Method [12] and Its Relation with 
Halley’s Irrational Formula [10] 

Similar to the Ridder relation [11], three points are used 

in this method, so according to the computational cost in 

each iteration and the convergence rate, it gains less score 

compared to Ridder method. 

 n n 1

n 1 n 2

x x
q

x x



 





 

        2
n n 1 n 2A qf x q 1 q f x q f x      

        
2 2

n n 1 n 2B (2q 1)f x 1 q f x q f x       

    nC x1 q f   

  n 1 n n n 1
2

2C
x x x x .

max(B B 4AC)
   

 

 (15) 

Just like the Ridder method, by making the points 

closer to each other, an equivalent method can be derived 

as follows: 
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The above equation is exactly Halley’s Irrational 

Formula [10]. In comparison to the other similar methods, 

this is a relatively good method. In order to relate this 

equation to equation (5), a more general case will be 

discussed in Laguerr method [13]. 

2.2.6. Laguerr Method [13] 

Although this method has been proposed for 

polynomials, but it can be used in the general case, too:  
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m is an arbitrary value, but usually the best case is 

achieved when m=2, which gives the Halley’s Irrational 

Formula. In the following discussion, it would be clear 

that why the above equation is correct for each m, also the 

relation with equation (5) would be observed: 
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We have: 

 

 

 

   
   

 

 

 

   

 

n
n 1 n '

n

''
2 n n

2'
n

''
n n n

n ' 2'
n n

f x
x x

f x

m
.

f x f x
1 m 1 m 1 .m.

f x

f x f x f x1
x . 1

2f x f x

  

 
 
 
 
 

  
       
  

 
    
 
 

 (19) 



68 American Journal of Numerical Analysis  

 

2.2.7. Najafi-Nikkhah Method [1,2] 

In general, the method is as follows: 
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In which, G(x) is an arbitrary function, that should 

satisfy the following condition [1,2]: 
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Two particular cases have been offered for G(x) [1,2]: 

1_ G(x)=xk: 

 
 

 

''
n

n '
n

f x
k 1 x

f x
   

 
 

 

1
k

n
n 1 n '

n n

f xk
x x 1 .

x f x


 
  
 
 

 (22) 

This method is the fastest method for solving 

polynomial equation. However, in comparison to other 

similar methods, it is considered a good method. 

2_ G(x)=kx: 
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In the case of the exponential function appears in the 

equations, this method would be more favorable than 

other methods. 
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So, this method generates the first three terms of the 

equation (5). 

2.2.7. Modified Najafi-Nikkhah Method 

2.2.7.1. Modification of the method in the case of small 
values for   (  ) 

Due to the existence of   (  ) in the denominator, if it 

reaches close to the zero, the method would be slowing 

down or even divergent. To fix this problem, first the 

Taylor expansion of the function f (x) in terms of function 

G(x) should be considered:  
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In which: 
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In this case, the term of   (  ) and also the value of 

  (  ) can be neglected. So: 
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By putting the above expression equal to zero, we can 

achieve: 
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2.2.7.2. Algorithm for finding suitable starting point 

One of the main problems that can be seen in all of the 

existing methods is finding the starting point that ensures 

the convergence of the method. In this section an 

algorithm is proposed that in most cases solve this 

problem. It is assumed that the value of the|  ( )|is very 

great for an initial guess, meaning that the initial guess is 

so far from the root, since otherwise, there is no need for 

these procedures. 

In the equations of (22) and (23), the proposed 

functions for G(x), were the particular cases. However, 

they might be appropriate for polynomials and exponential 

functions, but in general, they would not be appropriate. In 

the general case, selection of the G (x) is dependent on the 

main equation and is determined based on the behavior of 

the f (x). Two more general cases can be considered: 

1. G(x) =A(x) k. in this case, with respect to the condition 

(21) we have:  
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2. G(x) =exp (k.A(x)). Again, due to the condition (21) 

we have: 
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Suppose that f(x) is the sum of a constant number such 

as  , and several functions, that each of them is the 

product of a number of other functions. 
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The basic idea is that the function f (x) to be viewed as 

a vector that is the sum of the vectors in the form of   ( ). 

So, if among these vectors, a vector like   ( )could be 

found that has the largest absolute value of projection on 

the f(x), with the assistance of the equation (23), a 

function in the form of below can be used instead of f(x) 

for finding the initial guess: 

  
 

 
    

'
kk0

0 p p 0k 1
p 0

f x
f (x) f x h x h x

kh x


    (31) 

In which the value of the k can be calculated from 

equation (28) or (29). However, in most cases, k will be 

approximately equal to 1. So, in order to simplify the 

calculation, the procedure of finding k can be discarded. 

By putting the equation (29) equal to zero, the value of the 

  ( ) would obtained, which can be assumed to be equal 

to C1. Now, according to equation (30) we can write: 

     
m

p pj pj 1

i 1

Ln h x B (x)Ln g (x) Ln(C )



   (32) 

By comparing the equations (30) and (32), it can be 

observed that the equation similar to the first one is 

reached, except that the value of the new function is 

significantly close to zero due to the usage of Ln function. 

In this case, there are two choices. The new equation can 

be solved by the same conventional methods or, once 

again, this algorithm is used and these procedures be 

repeated. The producer is continued up to equations in the 

form of the below is reached: 

   tM x C  (33) 

In which, Ct is a constant value, and M(x) is function, 

the inverse of which is a well-known function. With an 

example, it would be clearer: 

      1 2f x h x h x   

  
 

x
1 5

1
h x 120.e .

x 3



 

    x 5 2
2h x x .tg x 1    (34) 

The initial point is considered x0=34. For this initial 

guess we have: 

 

 

 

 

9
1

44
2

44

h 34 2.4456 10

h 34 3.22021 10

f 34 3.22021 10

 

 

  

 

It Can be seen that with this choice, | (  )|  has a 

considerable distance to zero and none of the conventional 

methods would converge simply. So, the proposed 

modified algorithm should be applied. Considering that 

the largest  ih x  is  2h x , according to the equation (32) 

we can write: 

       2
1 1x 5 Ln x Ln tg x 1 21.6117     

Solving this equation with the conventional methods is 

very simple and quickly converges to x1=5.20219, for 

which: 

 
 

1 1

2 1

| h (x ) | 420.91

h x 0.2997




 

It can be seen that by using only one step of the 

proposed algorithm, how close the initial guess become to 

the root. But in some cases, a function like   ( ) could 

not be found among   ( )that is a main constituent of f(x). 

in these cases, G(x) can be chosen as below: 

     
αm i

ii 1
G x h x


  (35) 

In which,    is the ratio of the  ( ) magnitude to the 

sum of the   ( ) at the point   , which represents the 

influence of   ( )  in generating the f(x) at the desired 

point: 

 
 

 

0

01

i
i m

ii

h x

h x







 

Then, according to the equation (25), f (x) could be 

approximated as follows: 

      
 

 
    

'
0

0 0'
0

f x
f x H x f x G x G x

G x
     (36) 

And by using the idea applied in obtaining the equation 

(32), and according to the equations (30), (35) and (36), 

we can write: 

 

     

    

 
 

 
 

m

i i

i 1

nm i

i ij ij

i 1 j 1

0 '
0 0'

0

Ln G x α .Ln h x

α .B x .Ln g x

f x
Ln G x G x

f x



 





 
  
 
 



  (37) 

For the simplicity, for each i that leads to       , it 

can be assumed zero. The continuation of the procedure is 

exactly the same as the procedure mentioned for solving 

equation (32). The algorithm was in fact an attempt to 

convert the sum of a series of functions to the product of 

functions, and using the properties of the Ln(x). In this 

way, the equations are projected to a new space, in which 

the absolute of the functions are smaller. An example 

would clarify the compliance of f(x) and H(x) in the 

selected range for   . 

Example:        1 2 3 12000f x h x h x h x     

Table 2 

     ( )   ( )   ( )          

12   
  ( )

  
    (

 

  
) (

 

   
)

 

 0.00276056 0.685007 0.312232 

        
α α α1 2 3

1 2 3G x h x .h x .h x  
    H x 1.89433.G x 12000   
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Figure 1. Compatibility between f(x) and H(x) around    

As it was mentioned earlier, in order to simplify the 

calculation,   could be considered zero. 

2.2.8. Unifying the Proposed Techniques 

According to the all explanation that was introduced up 

to this section, and considering equation (5), a quite 

unique relation for generating and explaining the various 

methods can be proposed, suppose the following relation: 

 
 

 

   

 

''
n n n

n 1 n ' 2'
n n

f x f x .f x
x x .M

f x f x


 
  
 
 

 (38) 

In which, for| |   : 

  
2

i
i

i 3

x x
M x 1 b x

2 2





     

 i i 1
i i 1b x b x 

  (39) 

By choosing different M(x), new methods can be 

obtained easily. For instance, consider the following few 

examples: 

 

 

 

     

n 1

3

n
n

2' ''3
n n n

1
M x x

3
1 x

2

f x
x

3
f x f x .f x

2

 



 



 (40) 

 

 

 

 

   

 

n 1

''
n n n

n ' 2'
n n

x
M x exp x

2

f x f x .f x
x .exp

f x 2f x


 

  
 

 
  
 
 

 (41) 

 

 

 

       

n 1

n
n ' 2' ''

n n n n

2 x
M x x

1 x

f x 1
x . 1

f x f x f x .f x




 


 
   
  

 (42) 

It should be noted that the majority the available 

methods include functions such as M (x) which generate 

the two first terms of the equation (39) exactly and the 

third term, approximately. This explanation is true about 

equations (41) and (42), too. M(x) can be named the 

generating function. This generating function can be 

observed for the available methods in the following table: 

Table 3. Generating functions 

M(x) Name Of the Method 
1 Newton-Raphson 

  
 

 
 Householder 

1+x Schroder 
 

  
 
 

 Halley 

 

√   
 Ridder Eq.12 

 

  √    
 Muller-Halley’s Irrational 

 

  √(   )  (   ) 
 Laguerr 

 
  (   )

 
 Nikkhah-Najafi ( )     

 

√  
 
 

 
 

 
Eq. 40 

   (
 

 
) Eq. 41 

   

   
 Eq. 42 

2.3. Evaluation of the Third Class 

The methods of the third class, use more than one recursive 

relation in each iteration. The most famous method of this 

class is Ostrowski method [14,15,16] that for the order of 

convergence of 4 is written as follow [14,15]: 

 
 

 

n
n n '

n

f x
y x

f x
   

 
 

   
n

n 1 n
n n

n n

f y
x y

f x 2f y

x y

  




 (43) 

Both of the aforementioned equations are written based 

on the Newton-Raphson method, however, in the second 

step, both of the previous point and obtained value from 

the first relation have been used. In the second equation, 
 (  )   (  )

     
 is replaced with    (  ) .The basis of this 

approximation is the following equation: 

  
   

 
 n n '

n n'
n

f x f x
f y f y

2 2f x
   (44) 

Ostrowski equation for the order of convergence of 6 is 

as follows [16]:  

 

 

 

   

 

n
n n '

n

n n

n n

n
n n

f x
y x

f x

f x 2f y
μ

x y

f y
z y

μ

 






 

 

 
 n

n 1 n

f z
x z

μ
    (45) 

The general idea of such methods is the use of the 

Newton-Raphson relation, repeatedly. Similar methods 
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have been proposed by Sharma and Guha [17], Chun and 

Ham [18], Kou and Wang [19] based on this general idea. 

In general, the convergence rate of the third class methods 

is lower than the second class methods, which have been 

discussed in a dimensionless comparison in the following 

section. In order to clarify the discussion, comparison 

criteria for the methods are proposed. 

3. Criteria for Comparison of the Methods 

For comparing the methods, some criteria should be 

considered, some of them are as follows: 

3.1. Is the Intended Method be able to 

Generate only the Real Roots? 

Sometimes only the evaluation of the real roots is 

required. As was explained in the beginning of the context, 

all the methods of first and second class can be converted 

to each other regarding to equation (2) and Table 1, so, 

this criterion is neglected.  

3.2. Order of Convergence 

Convergence order associated with the convergence 

rate directly, however, this does not mean that if the 

convergence order is bigger, the method is necessarily 

faster. Based on the classification of this article, the 

convergence order of the first and second class is 

maximum 2 and 3, respectively. For the third class, the 

minimum order is 4. But in general, if it is used alone, this 

criterion is not appropriate. 

3.3. Number of Required Starting Point and 

Number of Differentiation Order 

According to Table 1, if the order of differentiation 

lowers one order, at least a new initial point is required. 

So, for example, if the method is used one starting point 

and two step differentiation, it can be converted to a 

method that uses three starting point without any need for 

differentiation. Parametrical differentiation is sometimes 

difficult, but if it is possible, its performance would be 

better. On the other hand, finding starting points that 

satisfy  (  )  (  )   , is sometimes difficult, too. In 

these cases, methods using first and second order 

differentiation and they do not require checking this 

condition are superior. 

3.4. The Number of Operations in Each Iteration 

The main criterion can be proposed, is the number of 

the operation to converge to one of the roots for different 

starting points on the complex plane or real axis (in the 

case of real roots only), and also for which values of 

starting points, it becomes divergent. So the number of the 

operations in each method should be determined. The 

operations can be classified as follows: 

1- Addition and subtraction 

2. Multiplication and division 

3. Power (Over 2) and roots 

4. Computing the functions (exp, Ln…) 

5. Computing the successive derivatives for initial 

points (  ),   (  ),   (  ) 

For each of these five categories, weight should be 

determined. Suppose that the number of operations of the 

above class is n1 to n5, and the assigned weight is W1 to 

W5, respectively. 

Table 4. weight of the above operations in each iteration 

W5 W4 W3 W2 W1 

x 4 4 2 1 

The column 5 in the above table is an unknown value, 

which depends on the complexity of the studied function. 

For determining this value, the number of the iterations 

corresponding to the four previous case for f( ),   ( ) and 

   ( )  should be computed separately. So, for each 

iteration, a parameter like the below one can be obtained: 

 
5

i i

i 1

1
μ n W

100


   (46) 

The coefficient of   can be an appropriate criterion for 

comparing the methods due to the required operation in 

each iteration. Comparison with this criterion is performed 

in a dimensionless space. Coefficient of 
 

   
 is multiplied 

to place the values of   in a more suitable range. A table has 

been set that implies these operations for the considered 

class. It should be noted that in this calculation, addition, 

subtraction, multiplication and division of numbers is 

ignored. Also, optimization by changing the variables that 

might repeat in the method has been done, if possible. 

Table 5. comparison the number of operations in each iteration 

Rate of convergence 100   f(xn), f’(xn), f’’(xn) Other functions √
 

       +,- Name Of the Method 

        7+2x 2 0 0 2 3 Secant False position 

2 3+2x 2 0 0 1 1 Newton-Raphson 

3 10+3x 3 0 0 4 2 Schroder 

3 9+3x 3 0 0 4 1 Householder 

3 10+3x 3 0 0 4 2 Halley 

3 22+3x 3 2 | | 1 3 4 Halley’s Irrational 

3 51+3x 3 2 | | 1 14 11 Muller(Real Roots) 

3 14+3x 3 0 1 3 4 Laguerr 

3 16+3x 3 0 1 4 4 Ridder(Real Roots) 

3 12+3x 3 0 1 3 2 Ridder(Eq 12) 

3 18+3x 3 0 1 6 2 NajafiNikkhah ( )     

3 13+3x 3 Ln(x) 0 4 1 NajafiNikkhah ( )     

4 10+3x 3 0 0 3 4 Ostrowski (rate 4) 

6 13+4x 4 0 0 4 5 Ostrowski (rate 6) 

6 19+4x 4 0 0 6 7 Sharma and Guha 

6 21+5x 5 H(x) 0 6 5 Chun and Ham 

3 12+3x 3 0 1 3 2 Eq 40 

3 13+3x 3 exp(x) 0 4 1 Eq 41 

3 9+3x 3 0 0 4 1 Eq 42 
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Example: suppose that f(x) is a polynomial that we 

intend to determine the roots: 

   5 4 3f x x 20x 30x 200x 1      

We suppose        , that              and 

Y         . In the following plots, the vertical axis 

indicates . These figures are plotted for the mentioned 

methods and are arranged in terms of their performance 

for this example. The criteria for the performance of the 

methods are the smaller   and stability of the method. 

That’s why the schroder method is in the fifth position 

despite the smaller value of  , because of its instability 

near the roots of the equation. 

 

Figure 2. Comparion the performance of some methods 

Note: this comparison has been performed in a dimensionless space to measure the performance of the methods compared to each other. 
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3.5. Evaluation of stability 

Different methods can be compared in terms of the 

convergence range in the complex plane. For this purpose, 

the example of section 2.2.7.2, equation (34) can be used. 

Stability of these methods for the mentioned example is 

investigated for  <50. The following figures are plotted in 

the range of          and Y           and arranged 

due to the stability of the method and smaller values for  . 

It can be observed that the order of the plots is quite 

different with the previous case, in which the number of 

the iterations in the dimensionless space was considered. 

All these diagrams indicate instability in particular ranges, 

or show an ascending trend by increasing the real part of 

the initial guess, which implies the increasing number of 

the operations that is not preferable. 

 

Figure 3. Comparion the stability of some methods 

Now, notice the following diagram plotted based on the explained method in section 2.2.7.2: 
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Figure 4. Stability of modified Najafi-Nikkhah method 

In this example, in order to solve the equation (32), 

maximum 5 iterations have been used in Najafi-Nikkhah 

method, which has been considered in computation of  . 

As it can be observed, although the diagram is plotted in 

the larger range (X [0,180]) compared to previous 

diagrams, number of operations remain constant by 

increasing X, in addition, no instability is observed and 

the number of the operations is less than other methods. In 

fact, the proposed algorithm in section 2.2.7.2 ensures 

stability in most cases. 

4. Systems of Nonlinear Equations  

Consider the following nonlinear equation set: 

  i 1 2 nF x ,x , ,x 0 i 1,2,3, ,n     (47) 

Or its equivalent in the vector form:  

  iF X 0 i 1,2,3, ,n    (48) 

In which: 

 1 2 nX [x ,x , , x ]   (49) 

In order to generalize the proposed method in the 

previous sections to the methods capable of solving 

nonlinear equation sets, the equivalent form of  ( ),   ( )  
and    ( ) should be obtained in the multi variable case. 

Suppose  ̅  as an initial guess. Two first relations in the 

matrix relations are clearly defined in books and articles 

already.  ( )is the equivalent of the determinant of the 

Jacobi matrix.  ( ) for variable    is the determinant of a 

matrix like Jacobi, that the j-th column is replaced with 

  ( ̅ ).  

But for obtaining the equivalent for the second 

derivative with respect to    , the determinant of the Jacobi 

matrix in the general case for the initial vector  ̅ , which 

is the relation in terms of    to    variables, should be 

differentiated with respect to    . In this case, based on the 

differentiation property of the matrix determinant, we 

have: 

    
n

'' ''
x 0 k 0j

j k 1

J
F X F X

x



 


  (50) 

In which,   
  ( ̅ ) is the determinant of the matrix like 

Jacobi, that the j-th column is replaced with 
  

   
 (  ( ̅)) 

for  ̅   ̅ . So, for each variable,    

  ( ̅ )  should be 

computed separately, which leads to an excessive 

operations. However, the convergence would be modified 

significantly. By substituting these equivalents in the 

equation (5), the solution to the equation set (46) would be 

obtained. The fundamental problem is that none of these 

methods have an appropriate convergence in complicated 

equations. In the case of systems of equations, the main 

discussion is on the stability of the convergence, rather 

than its rate. The majority of these methods is sensitive to 

the initial guess. If for the initial guess  ̅ , some values of 

|  ( ̅)|  become great, most of the methods become 

divergent. To resolve this problem, again we can refer to 

the idea offered in the section 2.2.7.2. It can be assumed 

that: 

    
mi

i ij 0i
j 1

F X h X C i 1,2,3, ,n



     

  
B (X)n ijkij

ij ijkk 1
h X g (X) i 1,2,3, ,n


    (51) 

In which, the    
 are the constant values. Now,   ( ̅) 

can be chosen as follows: 

     
αm iji

i ijj 1
G X h x i 1,2,3, ,n


    (52) 

In which     are: 
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h

h







 

By extending the equation (25) to multi variable case, it 

can be written: 

        
 

 
i

i i i 0 i1 0

i 0

G X
F X H X F X A X .

G X

 
   
  

 (53) 

In which, |   ( ̅ )| is the absolute of projection of the 

  ( ̅) vector on   ( ̅) vector at  ̅   ̅ . 
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  
   
   

i i 0
i1 0 X X0

i i 0

F X F X
A X lim .

G X G X






 (54) 

Therefore, we cannot find unit value for    ( ̅ ), since 

said limit has no unit average and then we cannot calculate 

this unit, but we use some approximation for ourpurpose: 

  
 
 

 
m

i
i1 0 0

ij 1 x j

F X1
A X X

m G X


 

 
  (55) 

Then, we can write: 

 

     

    

 
 
 
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i ij ij

j 1

nm iji

ij ijk ijk

j 1k 1

i 0
i 0
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Ln G X α .Ln h X

α .B x .Ln g X

F X
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A X
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

 
    
 
 



  (56) 

If        , it can be neglected for simplicity. 

Whenever the absolute of   ( ̅ )  is significantly large, 

even for one i, equation set (57) should be solved instead 

of equation set (47). Any available method, even the 

simplest one, Newton-Raphson, can be used for solving 

this equation set. The convergence is more reliable 

compared to equation (47). After solving, the obtained 

solutions are used as the next guess. So, for each iteration, 

if the modification of the result is required based on the 

stated explanations, a corrective step is needed, which 

consists of solving a new equation set. 

The following example is selected in such a way that 

solving it with the available methods is not simple. For 

solving this example, combination of the Newton-

Raphson method with the corrective method have been 

used. 

        1 1 2 11 1 2 12 1 2 13 1 2F x ,x h x ,x h x ,x h x ,x    

      2 1 2 21 1 2 22 1 2F x ,x h x ,x h x ,x   

In which: 

     3
11 1 2 2 1 1 2h x ,x x . x 200cos x x    

    2
12 1 2 1 2h x ,x 70.x .tan x 1    

    5
13 1 2 1 2h x ,x 200.x . x 100   

      21 1 2 1 2 2
1

h x , x . x x .exp x
10

   

  
 x 53 2

2 1

22 1 2
1

x . x
h x , x

x 5



 


 

The following table is set, for determining that how 

large was the absolute of   (     ) and   (     ) for the 

considered initial guess. 

Table 6 

N2 N1 
root 

|  (   
    

)| |  (   
    

)| 
 ̅  

         
    

 

2 9 -0.870608-0.711708 i 0.0208128 +0.46868 i               6.19615   

27 27 -62.6501+24.0108 i -40.5803+13.3678 i 2.16079×108        13.1244 2 

2 11 -1.03327+0.861723 i 0.481733 -0.064054 i 1.16581×108 1.16562×109 2.73205 8.9282 

2 13 -1.47867+0.0142405 i 0.277538 +0.296468 i 6.00283×1014 2.12893×1010 6.19615 15.8564 

27 27 -58.2478+5.48083 i -22.7523-2.40141 i 6.43089×1021 2.2331×1010 11.3923 15.8564 

3 10 -1.72073-0.688776 i 0.0468082 -0.456925 i 3.60393×1010 1.26166×1011 2.73205 22.7846 

11 13 -16.074+3.78677 i -2.49569+1.61887 i 1.58365×1034 1.45311×1011 18.3205 22.7846 

N1 = Number of Newton-Raphson’s iterations 

N2 = Number of improved method’s iterations 

N2 parameter indicates the number of required 

operations for solving the equation set (56). In this 

example, as it can be observed from table 7, due to the 

large values of   (     ) and   (     ). Because of the 

type of the selected equations, the value of the N2 is large, 

however, for simpler equations, N2 becomes smaller. 

In this step, in order to evaluate the behavior of this 

method for different initial guess β is defined as follows: 

  1 2
1

β . N 20N .
10

   (57) 

Due to the difficulty of computing the number of 

iterations for this example exactly, this parameter is 

merely defined to compare the relative behavior of this 

method in different points of the complex plane. Selecting 

the coefficient 20 for N2, is that it is assumed 20 iterations 

is required on average at each time of using the corrective 

method for solving equation set (56). Finally, the overall 

number of iterations is divided by 10, so the final value 

for β would be placed in an appropriate range. The 

following diagram indicates β  variation for different 

values of    
 and    

. 

 

Figure 5. βvariation for different starting values of    
 and    
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5. Conclusion 

In this article, in addition to presenting a unified 

relation for all of the famous methods comparing them 

with each other in a dimensionless space, a solution to one 

of the basic problems of the all methods has been offered. 

The dependency of the method to the initial guess is 

reduced significantly by using the presented algorithm. 

Then, all the methods, generalized for solving systems of 

nonlinear equations by defining equivalent terms. 

However, as it mentioned earlier, the equivalents for  ( ) 

and   ( ) was known before and only for     ( ), a new 

equivalent is presented. Finally, a method for solving 

nonlinear equation set is presented based on the corrective 

idea for one variable equation.  

This method is able to solve the more complex 

equations in the case of divergence of other methods. As it 

can be observed from figure 4, in the case of one variable, 

no critical problem faced, but for systems of equations, the 

method can be optimized. In addition, the problem that 

remains open is: 

Finding a method that would be able to detect all the 

roots of the equation, despite the discontinuity of the 

given equations in the specified range of the complex 

plane. None of the available methods have an exact 

control on the range of the obtained root specially for 

complex roots. Sometimes the obtained root is placed in 

the desired range, and sometimes is far from it. 
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