
Certi�cation of Compiler Optimizations

using Kleene Algebra with Tests

Dexter Kozen�
�

and Maria�Cristina Patron�

� Computer Science Department� Cornell University� Ithaca NY ����������� USA	
Email
 kozen�cs�cornell�edu

� Center for Applied Mathematics� Cornell University� Ithaca NY ����������� USA	
Email
 mpatron�cam�cornell�edu

Abstract� We use Kleene algebra with tests to verify a wide assort�
ment of common compiler optimizations� including dead code elimina�
tion� common subexpression elimination� copy propagation� loop hoist�
ing� induction variable elimination� instruction scheduling� algebraic sim�
pli�cation� loop unrolling� elimination of redundant instructions� array
bounds check elimination� and introduction of sentinels	 In each of these
cases� we give a formal equational proof of the correctness of the opti�
mizing transformation	

� Introduction

Kleene algebra �KA� is the algebra of regular expressions� It was �rst introduced
by Kleene in ���� 	�
 and further developed in the ���� monograph of Conway
	�
� It has reappeared in many contexts in mathematics and computer science

see 	�
 and references therein�

In 	�
� an extension of KA called Kleene algebra with tests �KAT� was in�
troduced� This system combines programs and assertions in a simple� purely
equational system� In 	��
 it was shown that KAT strictly subsumes proposi�
tional Hoare logic� is of no greater complexity� and is deductively complete over
relational models �Hoare logic is not�� Moreover� KAT requires nothing beyond
the constructs of classical equational logic� in contrast to Hoare logic� which
requires a specialized syntax involving partial correctness assertions�

KAT has been applied successfully in various low�level veri�cation tasks in�
volving communication protocols� basic safety analysis� source�to�source program
transformation� and concurrency control 	���� �
� A useful feature of KAT in this
regard is its ability to accommodate certain basic equational assumptions re�
garding the interaction of atomic instructions� This feature makes KAT ideal for
reasoning about the correctness of low�level code transformations�

In this paper we show how KAT can be used to verify a variety of common
compiler optimizations� dead code elimination� common subexpression elimina�
tion� copy propagation� loop hoisting� induction variable elimination� instruction

�

Supported by National Science Foundation grant CCR��������	



scheduling� algebraic simpli�cation� loop unrolling� elimination of redundant in�
structions� array bounds check elimination� and introduction of sentinels� In each
of these cases� we give a formal� machine�veri�able equational proof of the cor�
rectness of the optimizing transformation�

The veri�cation of compiler optimizations is more than just a theoretical
exercise� We were led to these investigations by recent work in typed assembly
language �TAL� 	��
� proof�carrying code �PCC� 	��
� and e�cient code certi�
�cation �ECC� 	�
� These are systems that provide a means for an untrusted
compiler to convince a trusted veri�er that the object code it produces meets
certain safety requirements�

PCC is the most powerful of these systems� It is quite �exible in the security
policies it can express� but a signi�cant problem is the size of certi�cates 	��
�
ECC addresses this issue by taking advantage of compiler conventions� giving
a signi�cant reduction in certi�cate size� In ECC� the production and veri�ca�
tion of certi�cates is very e�cient and invisible to both the code producer and
consumer� However� these savings come only at a cost of reduced expressiveness
and compiler dependence� In particular� whereas TAL and PCC deal well with
optimizing transformations� ECC� being more dependent on the form of the ob�
ject code produced by the compiler� is less robust with respect to code motion�
To verify optimized code� ECC would require the certi�cate to include a concise
description of the sequence of optimizing transformations that were performed�
along with a machine�veri�able justi�cation of these transformations� Such an
extension might be based on the system KAT as described here�

In the last section� we discuss an interesting paradox that arises in connection
with dead variables� those whose current value will never be used� This paradox
is the source of a potentially dangerous pitfall in informal reasoning� A formal
treatment in KAT helps to illuminate this pitfall�

� Kleene Algebra and Kleene Algebra with Tests

In this section we brie�y review the de�nitions of Kleene algebra and Kleene
algebra with tests
 see 	�
 for a more thorough introduction�

��� Kleene Algebra �KA�

The following axiomatization is from 	�
� A Kleene algebra �K� �� �� �� �� �� is
an idempotent semiring under �� �� �� � satisfying

� � pp� � p� ���

� � p�p � p� ���

q � pr � r � p�q � r ���

q � rp � r � qp� � r� ���

where � refers to the natural partial order on K�

p � q
def
�� p� q � q�



These axioms say essentially that � behaves like the re�exive transitive clo�
sure operator of relational algebra or the Kleene asterate operator of formal
languages� The operation � gives the supremum with respect to �� All the op�
erators are monotone with respect to ��

Besides basic properties of � such as � � a�� a � a�� a�a� � a�� and
a�� � a�� we will �nd the following two identities particularly useful�

p�qp�� � �pq��p ���

�p� q�� � p��qp��� � �p�q��p�� ���

These identities are called the sliding rule and the denesting rule� respectively�
In addition� the following result will prove useful�

Lemma �� In any Kleene algebra� xy � xyx� xy� � x�yx���

Proof� We show independently that

xy � xyx� xy� � x�yx�� ���

xyx � xy � x�yx�� � xy�� ���

To show ���� by ��� it is enough to show xy � xyx � x � x�yx��y � x�yx���
Reasoning under the assumption xy � xyx� we have

x� x�yx��y � x� �xy��xy by the sliding rule ���

� x� �xy��xyx by the assumption xy � xyx

� �� � �xy��xy�x distributivity

� �xy��x by ���

� x�yx�� by the sliding rule ����

For ���� reasoning under the assumption xyx � xy� we have by distributivity
and ��� that x� xyxy� � x� xyy� � x�� � yy�� � xy�� thus by ���� �xy��x �
xy�� The right�hand side of ��� then follows from the sliding rule ����

��� Kleene Algebra with Tests �KAT�

A Kleene algebra with tests is a Kleene algebra with an embedded Boolean
subalgebra� Formally� it is a two�sorted structure �K� B� �� �� �� �� �� �� such
that

� �K� �� �� �� �� �� is a Kleene algebra

� �B� �� �� �� �� �� is a Boolean algebra
 and
� B � K�

The Boolean complementation operator � is de�ned only on B�
The elements of B are called tests� We will denote arbitrary elements of K

by the letters p� q� r� s� t� u� v� � � � and tests by a� b� c� d� � � � �



When applied to arbitrary elements of K� the operators �� �� �� � refer to non�
deterministic choice� composition� fail and skip� respectively� Applied to tests�
they take on the additional meaning of Boolean disjunction� conjunction� falsity
and truth� respectively� These two usages do not con�ict�for example� sequen�
tially testing b and c is the same as testing their conjunction bc�and their
coexistence permits considerable economy of expression�

For applications in program veri�cation� the standard interpretation would
be a KA of binary relations on a set and the Boolean algebra of subsets of
the identity relation� One can also consider trace models in which the Kleene
elements are sets of traces �sequences of states� and the boolean elements are
sets of states �traces of length ���

The encoding of the while program constructs is as in Propositional Dynamic
Logic 	�
�

p 
 q
def
� pq

if b then p else q
def
� bp��bq

while b do p
def
� �bp���b�

The following result� also observed in 	�
� follows directly from Lemma ��
Intuitively� if the execution of the program q does not a�ect the value of the test
b� then neither does q��

Lemma �� In any KAT� if bq � qb� then bq� � �bq��b � q�b � b�qb���

Proof� If bq � qb� then by Boolean algebra bq � bbq � bqb� thus bq� � b�qb�� by
Lemma �� The other equations follow from the sliding rule ��� and symmetry�

��� KAT and Hoare Logic

Hoare logic is a system for deriving partial correctness properties of compound
programs compositionally from properties of their constituent parts� Tradition�
ally� these properties are expressed by partial correctness assertions �PCAs� of
the form fbg p fcg� where b and c are assertions in the underlying assertion lan�
guage and p is a program� Intuitively� the PCA fbgpfcg says that if the property
b holds at the start of execution of p� and if p halts� then c must be true in the
halting state�

As mentioned in the introduction� KAT subsumes Hoare logic 	��
� The PCA
fbg p fcg is expressed bp�c � �� or equivalently� bp � bpc� Intuitively� bp�c � � says
that there is no halting computation of p satisfying precondition b and postcon�
dition �c� and bp � bpc says that testing c after executing p with precondition b
is always redundant�

In traditional Hoare logic� atomic programs are assignments x �� e and the
only atomic assumption is the assignment rule fP 	x�e
gx �� e fPg� Hoare logic
operates by deriving PCAs involving compound programs inductively� using the
assignment rule as an axiom� The operation of KAT is analogous� except that the
assumptions and conclusions are equations between programs� and the form of



the assumptions can be more general� Theorems of KAT are universally quanti�ed
Horn formulas of the form �

V
i
pi � qi� � p � q� In our applications below� the

pi � qi are typically premises that involve atomic instructions and tests that
are immediately self�evident� and the conclusion p � q is the equivalence of the
unoptimized and optimized code fragments�

In our optimization examples� there are certain kinds of premises that occur
frequently� For example� we often need to know that two atomic instructions
that do not a�ect each other can occur in either order� This would be expressed
in KAT by a commutativity condition of the form pq � qp� We would take
this assertion as a premise on the left�hand side of the Horn formula above�
Another common example is the fact that after loading a register with a value�
that register contains that value� This is expressed by an equation of the form
p � pa� where p is the load instruction and a is the assertion that the register
contains the value� This assertion allows us to introduce new assertions into an
annotated program and delete them when they are no longer needed� As a �nal
example� the fact that if a register already contains a value� then there is no
need to load it again would be encoded as an equation of the form ap � a� This
premise allows us to delete redundant instructions�

We use such atomic premises extensively in the derivations of Section ��
In all cases the truth of the premise is directly evident� Moreover� it has been
observed that in the decision procedure for KAT� premises of the form p � � can
be eliminated without loss of e�ciency 	�� ��
�

� Verifying Optimizations in KAT

In this section we consider several examples of common compiler optimizations
and show how they can be encoded and veri�ed in KAT� In each case� we give the
program fragments before and after the optimizations� their translations into the
language of KAT� and an equational proof that the two fragments are equivalent�

��� Dead Code Elimination

Dead code elimination is a code transformation that removes unreachable in�
structions� Let us start with a very simple example� Consider the program
p 
 if a then q� This is expressed in KAT as p�aq � �a�� The �a in this expres�
sion represents the implicit else clause� Suppose we know that the test a is
always false after the execution of p� This would imply that the test of the if
statement is false in the program above� so q would never be executed� We could
remove it to obtain the optimized fragment p�

The assumption that the test a is always false after the execution of p is
expressed in KAT by the identity p � p�a� or equivalently pa � �� Intuitively�
immediately after the execution of p� we must always be in a state in which �a
holds� In this case� executing the guard �a after p is always redundant
 equiva�
lently� executing the guard a after p aborts the computation�



Reasoning in KAT under the assumption p � p�a� we have

p�aq � �a� � p�a�aq � �a� � p�aaq � p�a�a � p�q � p�a � � � p�a � p�a � p�

Thus the KAT expressions representing the two program fragments are equal�
For the case of a while loop� consider the fragment p 
 while a do q� which

is encoded in KAT as the expression p�aq���a� Again� suppose that the test a is
always false after the execution of p
 that is� p�a � p� This means that the while
loop will never be executed� and we should again be able to obtain the optimized
fragment p�

As above� reasoning in KAT under the assumption p � p�a� we have

p�aq���a � p�a�aq���a � p�a�� � aq�aq����a � p�a�a� p�aaq�aq���a

� p�a� p�q�aq���a � p�a� � � p�a � p�

Both of these cases give examples of how assumptions about atomic programs
and tests �here p � p�a� are used to derive the equivalence of the unoptimized
and optimized programs� We have essentially given purely equational proofs of
the universal Horn formulas p � p�a� p�aq��a� � p and p � p�a� p�aq���a � p�

��� Common Subexpression Elimination

Common subexpression elimination is a code transformation that avoids redun�
dant evaluation of the same expression by using the result of the �rst computa�
tion� For example� consider the program fragment i �� expr 
 j �� expr � where
expr is an expression not containing i� We wish to show that this can be replaced
by i �� expr 
 j �� i�

Consider the following programs and tests�

p
def
� i �� expr

q
def
� j �� expr

r
def
� j �� i

w
def
� make j unde�ned

a
def
�� i � expr

b
def
�� i � j�

We wish to prove that pq � pr� We can postulate the following premises�

�p � �pa atomic PCA fexpr � exprg i �� expr fi � exprg

aq � aqb atomic PCA fi � exprg j �� expr fi � jg

br � b there is no need to assign j �� i if i � j already

r � wr j is dead immediately before the assignment j �� i

qw � w an assignment to a dead variable is redundant�

The �rst two of these are both instances of the Hoare assignment rule� Under
these premises� we can reason equationally as follows�

pq � �pq � �paq � �paqb � �paqbr � �paqr

� �pqr � pqr � pqwr � pwr � pr�



��� Copy Propagation

Copy propagation is a code transformation that eliminates an assignment of the
form j �� i and replaces all further references to j by references to i� For example�
consider the program fragment

i �� expr 
 j �� expr 
 k �� � � j � �

where i and j do not occur in expr � By common subexpression elimination
�Section ����� the second assignment can be replaced by j �� i�

First we argue that we can replace the last assignment by k �� � � i � ��
Letting p� q� r� and s denote the assignments i �� expr � j �� i� k �� � � j��� and
k �� � � i � � respectively� we wish to show that pqr � pqs� It su�ces to show
that qr � qs� Consider the program and tests

a
def
�� � � j � � � � � i� �

b
def
�� k � � � i� �

w
def
� make k unde�ned�

As above� we postulate the following premises�

�q � �qa atomic PCA f� � i� � � � � i� �g j �� i f� � j � � � � � i� �g

ar � arb atomic PCA f� � j � � � � � i� �g k �� � � j � � fk � � � i� �g

bs � b there is no need to assign k �� � � i� � if k � � � i� � already

s � ws k is dead immediately before the assignment k �� � � i� �

rw � w an assignment to a dead variable is redundant�

The �rst two of these are instances of the Hoare assignment rule� Using these
assumptions� we can reason as follows�

qr � �qr � �qar � �qarb � �qarbs � �qars

� �qrs � qrs � qrws � qws � qs�

Moreover� if we know that j is a dead variable� we can optimize further by

removing the assignment to j� obtaining the optimized code ps� Letting v
def
�

�make j unde�ned�� we wish to show that pqsv � psv� We have sv � vs� since j
does not occur in s� and qv � v� since if j is dead� the assignment is redundant�
This allows us to conclude pqsv � pqvs � pvs � psv�

��� Loop Hoisting

Loop hoisting is a transformation that involves moving code out of loops� It can
take one of two forms� in the �rst form� an expression whose value does not
depend on the number of times through the loop need not be evaluated inside
the loop� but can be evaluated once before the �rst execution of the body of the



loop� In the second� an expression whose value is not used anywhere inside the
loop need not be evaluated inside the loop� but can be evaluated once after the
loop�

As an example of the �rst type of transformation� consider the following
program fragment�

sum �� � 
 p
while � � i � n do f

sum �� sum � i � expr 
 q
i �� i� � 
 s

g

where expr is an expression not containing i or sum� Let k be a new variable�
This fragment is equivalent to the fragment

sum �� � 
 p
k �� expr 
 u
while � � i � n do f

sum �� sum � i � k 
 r
i �� i� � 
 s

g

Formally� �k is a new variable� is captured by saying that k does not appear in
any expression in the �rst fragment and that k can be made unde�ned immedi�
ately after the execution of the fragment�

De�ne the program and tests

a
def
�� � � i � n

b
def
�� k � expr

w
def
� make k unde�ned�

We would like to show p�aqs���aw � pu�ars���aw� Postulating the assumptions

u � ub k � expr after k �� expr � since k does not occur in expr

b � bu if k � expr already� no need to assign k �� expr

bq � qb since sum does not occur in expr

bs � sb since i does not occur in expr

br � rb since sum does not occur in expr �

using Lemma � and copy propagation �Section ���� we can argue as follows�

pu�ars�� � pub�ars�� � pub�abrs�� � pub�aburs��

� pub�abqs�� � pub�aqs�� � pu�aqs���

Now since w commutes with a� �a� q� and s� we have by Lemma � that w�aqs�� �
�aqs��w� Also� uw � w since there is no need to assign to a dead variable� Thus

pu�aqs���aw � puw�aqs���a � pw�aqs���a � p�aqs���aw�



In conclusion� pu�ars���aw � p�aqs���aw� which is what we had to prove�
As an example of the second type of transformation� consider the following

program in which the computation p inside the loop and the test a do not use i�

while a do f
i �� r 
 u
p 
 p
r �� r � � 
 q

g
i �� r 
 u

Since i is assigned a di�erent expression each time the loop is executed� the
previous example does not apply� Nevertheless� since i is not used in the rest of
the loop� we still obtain the optimized code�

while a do f
p 
 p
r �� r � � 
 q

g
i �� r 
 u

We would like to prove �aupq���au � �apq���au� De�ning the atomic program

w
def
�� �make i unde�ned�� we have the following postulates�

u � wu i is dead just before the assignment i �� r

wpq � pqw p and q do not refer to i

wa � aw a does not refer to i

w�a � �aw a does not refer to i

uw � w an assignment to a dead variable is redundant�

Reasoning under these assumptions using the sliding rule ��� and Lemma ��

�aupq���au � �awupq���awu � �waupq��w�au � w�aupqw���au � w�auwpq���au

� w�awpq���au � �apq��w�au � �apq���awu � �apq���au�

��� Induction Variable Elimination

This is a loop optimization that replaces multiplicative operations inside the
loop with less expensive additive ones� This type of optimization might arise in
matrix algorithms� For example� consider the program

i �� init 
 u
j �� i � expr� 
 q
while a do f
i �� i� expr� 
 p
j �� i � expr� 
 q

g



where i and j do not occur in expr
�
and expr

�
� Note that whenever i is increased

by expr�� j is increased by expr� � expr�� The optimized code is

i �� init 
 u
j �� i � expr� 
 q
while a do f
i �� i� expr� 
 p
j �� j � expr� � expr� 
 r

g

Using the transformation of Section ���� we can further optimize to obtain

i �� init 

j �� i � expr� 

m �� expr� 

n �� expr� � expr� 

while a do f
i �� i�m 

j �� j � n 


g

To establish the equivalence of the �rst two programs� we need to prove

uq�apq���a � uq�apr���a�

It su�ces to prove q�apq�� � q�apr��� Consider the tests

b
def
�� j � i � expr��

b�
def
�� j � expr� � expr� � �i� expr�� � expr�

c
def
�� j � expr� � expr� � i � expr�

We have the assumptions q � qb
 b � bq
 b � b� from basic number�theoretic
reasoning
 cr � crb� an instance of the Hoare assignment rule
 and bp � bpc�
which follows from b � b� and the instance fb�g p fcg of the Hoare assignment
rule� In addition� we have cq � cr� which is an instance of the property that if
two expressions have the same value� then the assignment of either expression
to the variable j has the same e�ect� This would hold even if j occurred in
both expressions� Here� j does not occur in the expression i � expr �� and using

w
def
�� �make j unde�ned� along with the premises wq � q and rw � w� cq � cr

can be proved by

cr � crb � crbq � crbwq � crwq � cwq � cq�

The property cq � cr holds even in the more general case in which j can occur
in both expressions� We do not know how to prove this in Hoare logic or Kleene
algebra from more primitive assumptions without introducing new symbols into



the underlying programming or assertion language� However� we are content to
take cq � cr as a primitive assumption�

We have bpq � bpcq � bpcqb � bpcrb � bpcr � bpr� Since bpq � bpqb� it
follows that bapq � bapqb and bapr � baprb� Using the sliding rule ��� and
Lemma �� we then have

q�apq�� � qb�apqb�� � q�bapq��b � q�bapr��b � qb�aprb�� � q�apr���

��	 Instruction Scheduling

Unrelated instructions can be reordered so as to maximize the throughput of
a processor pipeline� For example� p 
 q and q 
 p are equivalent if there is no
dependency between the instructions p and q� The nondependency assumption
is expressed in KAT by the equation pq � qp� These assumptions can be used to
reorder instructions arbitrarily as long as no dependencies are violated�

��
 Algebraic Simpli�cation

This transformation eliminates statements corresponding to trivial algebraic
identities� which occasionally arise due to constant propagation and other pre�
vious transformations� For example� any assignment of the form i �� i � � or
i �� i � � can be eliminated� This is simply an application of an assumption of
the form ap � a and the Kleene algebra axiom �q � q�

��� Loop Unrolling

Sometimes it is possible to reduce the number of tests and jumps executed in a
loop by unrolling the loop� We can unroll the loop while a do p once to obtain
while a do fp 
 if a then pg� We have to prove �ap���a � �ap�ap � �a����a� The
following lemma of pure KAT captures the essence of this transformation�

Lemma �� In any Kleene algebra� u� � �� � u��uu���

Proof� For the direction �� by monotonicity� distributivity� idempotence� den�
esting ���� and the basic properties of �� we have

�� � u��uu�� � �uu�� � u�uu�� � u��uu��� � �u� u�� � u��

For the direction �� by ��� it is enough to prove ��u���u��uu�� � ���u��uu���
By ��� and distributivity� we have

� � u�� � u��uu�� � u�uu�� � � � uu�uu�� � u�uu�� � �uu�� � �� � u��uu���

We can now prove the equivalence of the two programs using sliding ����
denesting ���� the basic axioms� and Lemma ��

�ap�ap� �a����a � �apap� ap�a���a � ��ap�a��apap���ap�a���a

� ��� � �ap�a��ap�a�apap���ap�a���a � �apap� �ap�a��ap�aapap���ap�a���a

� �apap���ap�a���a � �apap���� � ap�a�ap�a����a

� �apap���� � ap�a� ap�aap�a�ap�a����a � �apap���� � ap�a��a

� �apap���a� ap�apap���a � �� � ap��apap���a � �ap���a�



��
 Redundant Loads and Stores

In the instruction sequence load r� i 
 store r� i� the store instruction is redun�
dant� since the �rst ensures that the value of i is the same as the contents

of register r� We obtain the optimized code store r� i� Letting p
def
� load r� i�

q
def
� store r� i� and a

def
�� r � i� we can postulate p � pa� since after loading

i into register r� the test r � i is redundant
 and aq � a� since storing r in
i is redundant if the value is already there� Under these assumptions� we have
pq � paq � pa � p�

���� Array Bounds Check Elimination

Consider the following program to initialize the elements of an array�

i �� � 
 while i � x�length do fx	i
 �� e�i� 
 i �� i� �g

A compiler has to check that array accesses fall within bounds�

i �� � u
� � test i � x �length

jtrue �
compute e�i� p
if i in bounds then x	i
 �� e�i� q
else error s

i �� i� � v
goto �

� � � � �

The bounds check inside the loop is redundant� The optimized code is

i �� � u
� � test i � x �length

jtrue �
compute e�i� p
x	i
 �� e�i� q
i �� i� � v
goto �

� � � � �

Consider also the tests

a
def
�� � � i

b
def
�� i � x �length

c
def
�� ab �� i is in bounds�

We have to prove u�bp�cq � �cs�v���b � u�bpqv���b� We see that if a is true at the
beginning of the loop� it remains true after one iteration
 that is� a�bp�cq��cs�v� �



a�bp�cq��cs�v�a� Reasoning under the assumptions u � ua� ab � c� pc � cp� and
a�bpqv� � �bpqv�a and using dead code elimination �Section ����� and Lemma ��
we have

u�bp�cq � �cs�v���b � ua�bp�cq � �cs�v���b � ua�abp�cq � �cs�v���b

� ua�cp�cq � �cs�v���b � ua�pc�cq � �cs�v���b � ua�pcqv���b

� ua�abpqv���b � ua�bpqv���b � u�bpqv���b�

Note that KAT does not contain explicit machinery for number�theoretic
reasoning
 that is a separate issue� However� as shown in this example� it does
reduce the correctness of the optimizing code transformation to a set of basic
number�theoretic assumptions on atomic programs and tests that justify the
transformation�

���� Introduction of Sentinels

Our last example is also related to arrays� Suppose we want to check if a certain
element� say T � is among the elements of a nonempty array x of length n� This
can be done by�

i �� � 
 p
while i � n and x	i
 �� T do f
i �� i� � 
 q

g
if i � n then found � true 
 t
else found � false 
 s

In order to eliminate one of the tests of the while loop� we introduce a sen�

tinel � we extend the array x by a new element initialized with T � The optimized
program is

x	n
 �� T 
 u
i �� � 
 p
while x	i
 �� T do f
i �� i� � 
 q

g
if i � n then found � true 
 t
else found � false 
 s

To prove that the two programs are equivalent� consider the tests

a
def
�� i � n

b
def
�� x	i
 �� T

c
def
�� x	n
 � T

d
def
�� i � n�

Since x	n
 will not be used further in the program� we can also use w
def
��

�make x	n
 unde�ned�� We want to prove

p�abq�� �ab�at� �as�w � up�bq���b�at� �as�w� ���



Since uw � w and u commutes with the programs p� q� s� t and the tests a and
ab� we can introduce u on the left�hand side of ��� and move it to the front of
the expression using Lemma �� It therefore su�ces to prove

up�abq�� �ab�at� �as�w � up�bq���b�at� �as�w�

Since u � uc� cp � pc� and p � pd� we have up � upcd� thus it su�ces to prove

cd�abq�� �ab � cd�bq���b� ����

Now note that cdb � a� or in other words cdb � cdba� cq � qc� and aq � aqd�
Then

cdbq � cdbaq � cdbaqd � ccdbaqd � cdbaqcd � cdbqcd�

Using Lemma � variously with x � cd and y � abq and with x � cd and y � bq�
sliding ���� and the properties cd�a � �b and cdba � cdb� we have

cd�abq�� �ab � cd�abqcd�� �ab � �cdabq��cd��a��b� � �cdabq���cd�a� cd�b�

� �cdabq��cd�b � �cdbq��cd�b � cd�bqcd���b � cd�bq���b�

This proves �����

� The Dead Variable Paradox

We conclude with some remarks about an interesting paradox concerning dead
variables �variables whose values will never be used�� This paradox is the source
of a potentially dangerous pitfall that can arise when reasoning informally about
the liveness of variables� A formal treatment in KAT helps to illuminate this issue�

The reader will have noticed that we have made extensive use of the construct

w
def
� make i unde�ned�

along with the atomic assertions pw � w and wp � p� where p is an assignment
to i of an expression not containing i� and may have wondered why we did not
use the test

d
def
�� i is a dead variable

and the assertions pd � d and dp � p instead� For example� if p
def
� i �� � and

q
def
� j �� �� we could postulate the atomic premises

p � dp i is dead immediately before the assignment p

qd � dq the assignment q does not a�ect i

pd � d an assignment to a dead variable is redundant�

then eliminate the �rst assignment to i in the program i �� � 
 j �� � 
 i �� � by
arguing pqp � pqdp � pdqp � dqp � qdp � qp�



The problem is that the proposition �i is a dead variable� is not a property of
the local state of the computation� It does not commute with other tests involving
i� which it must do in order to be a Boolean element of a Kleene algebra with
tests� and its use as a test in the context of KAT can lead to paradoxical results�

To illustrate� consider the following calculation� De�ning a
def
�� i � �� we

have p � pa� since i � � immediately after the assignment� and ap � a� since the
assignment is redundant if i � � already�We also have ad � da by commutativity�
But then pp � padp � pdap � da� which is clearly an erroneous conclusion�

Our solution to this paradox is to use w instead of d� The program w can be
regarded as an assignment of an unde�ned value to i� As such� it is a transforma�
tion of the local state� much like an ordinary assignment� Since w is a program
and not a test� it is not required by the axioms of KAT to commute with tests�

References

�	 Ernie Cohen	 Hypotheses in Kleene algebra	 Available as
ftp


ftp	bellcore	com
pub
ernie
research
homepage	html� April ����	

�	 Ernie Cohen	 Lazy caching	 Available as
ftp


ftp	bellcore	com
pub
ernie
research
homepage	html� ����	

�	 Ernie Cohen	 Using Kleene algebra to reason about concurrency control	
Available as ftp


ftp	bellcore	com
pub
ernie
research
homepage	html� ����	

�	 John Horton Conway	 Regular Algebra and Finite Machines	 Chapman and Hall�
London� ����	

�	 Michael J	 Fischer and Richard E	 Ladner	 Propositional dynamic logic of regular
programs	 J� Comput� Syst� Sci�� �����
�������� ����	

�	 Stephen C	 Kleene	 Representation of events in nerve nets and �nite automata	 In
C	 E	 Shannon and J	 McCarthy� editors� Automata Studies� pages ����	 Princeton
University Press� Princeton� N	J	� ����	

�	 Dexter Kozen	 A completeness theorem for Kleene algebras and the algebra of
regular events	 Infor� and Comput�� ������
�������� May ����	

�	 Dexter Kozen	 Kleene algebra with tests	 Transactions on Programming Languages
and Systems� �����
�������� May ����	

�	 Dexter Kozen	 E�cient code certi�cation	 Technical Report �������� Computer
Science Department� Cornell University� January ����	

��	 Dexter Kozen	 On Hoare logic and Kleene algebra with tests	 Trans� Computational
Logic� ����� July ����	 To appear	

��	 Dexter Kozen and Frederick Smith	 Kleene algebra with tests
 Completeness and
decidability	 In D	 van Dalen and M	 Bezem� editors� Proc� ��th Int� Workshop
Computer Science Logic �CSL����� volume ���� of Lecture Notes in Computer Sci�
ence� pages �������� Utrecht� The Netherlands� September ����	 Springer�Verlag	

��	 Greg Morrisett� David Walker� Karl Crary� and Neal Glew	 From System F to
typed assembly language	 In 	
th ACM SIGPLAN�SIGSIGACT Symposium on
Principles of Programming Languages� pages ������ San Diego California� USA�
January ����	

��	 George C	 Necula	 Proof�carrying code	 In Proc� 	�th Symp� Principles of Pro�
gramming Languages� pages �������	 ACM SIGPLAN
SIGACT� January ����	

��	 George C	 Necula and Peter Lee	 The design and implementation of a certify�
ing compiler	 In Proc� Conf� Programming Language Design and Implementation�
pages �������	 ACM SIGPLAN� ����	


