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Abstract

We introduce a new foundation for game theory based on so-called open
games. Unlike existing approaches open games are fully compositional: games
are built using algebraic operations from standard components, such as players
and outcome functions, with no fundamental distinction being made between
the parts and the whole. Open games are intended to be applied at large scales
where classical game theory becomes impractical to use, and this thesis therefore
covers part of the theoretical foundation of a powerful new tool for economics
and other subjects using game theory.

Formally we define a symmetric monoidal category whose morphisms are
open games, which can therefore be combined either sequentially using cate-
gorical composition, or simultaneously using the monoidal product. Using this
structure we can also graphically represent open games using string diagrams.
We prove that the new definitions give the same results (both equilibria and off-
equilibrium best responses) as classical game theory in several important special
cases: normal form games with pure and mixed strategy Nash equilibira, and
perfect information games with subgame perfect equilibria.

This thesis also includes work on higher order game theory, a related but
simpler approach to game theory that uses higher order functions to model
players. This has been extensively developed by Martin Escardé and Paulo
Oliva for games of perfect information, and we extend it to normal form games.
We show that this approach can be used to elegantly model coordination and
differentiation goals of players. We also argue that a modification of the solution
concept used by Escard6 and Oliva is more appropriate for such applications.
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Chapter 0

Introduction

0.1 Acknowledgements

Top billing goes to my family (including Jeni, who says hi); my supervisor
Paulo Oliva; my second supervisor Edmund Robinson; my closest collaborators
Viktor Winschel and Philipp Zahn; my other coauthors Neil Ghani, Mehrnoosh
Sadrzadeh and Evguenia Spritz; and my other colleagues in Theory Group at
QMUL, especially my fellow PhD students in CS420 that was.

Over the past three and a half years I have had gained from talking with
many people. The following list is probably incomplete: Alessandro Abate,
Samson Abramsky, Valeria de Paiva, Martin Escard6, Jeremy Gibbons, Helle
Hvid Hansen, Peter Hines, Aleks Kissinger, Clemens Kupke, Alexander Kurz,
Pierre Lescanne, Adrian Mathias, Arno Pauly, Dusko Pavlovié¢, Alex Smith.

I gratefully acknowledge that my PhD studies were funded by EPSRC doc-
toral training grant EP/K50290X/1.

0.2 A note on style

To begin with, in this introduction I will refer to myself in the first person. Once
the thesis proper begins in chapter 1 I will return to using the third person.

I feel very fortunate to be writing a thesis in my native language, and I
plan to take advantage of it. The writing throughout is intentionally slightly
less formal® than would be reasonable in a publication, and in this introduction
much less so.

When T read (Atiyah 2008) I was overly influenced by point 5 under ‘style’,
namely “Identify papers you have enjoyed reading and imitate their style”, even
to the expense of the previous point, “Be as clear and succinct as possible while
being clear and easy to understand”. I immediately thought of (Girard 2001)
and the book (Hoyte 2008), which have both strongly influenced the way I
think about logic and programming respectively; both contain a mixture of
formal mathematics or computer science with vivid intuitions and downright
aggressive personal opinion that borders on philosophy. I have not carried my
style to nearly that extreme, but I hope that some of it is visible.

!For example, there are many footnotes.



0.3. INTENDED AUDIENCE

My opinion is that the definition-theorem-proof style of mathematics inher-
ited from Bourbaki will soon (but not quite yet) belong in a past age when
theorem provers were not practical to use, and that in the future the style of
a typical publication in mathematics will need to change to account for the
fact that human-checked proofs are unacceptably unreliable? compared with
machine-checked proofs. I hope that the outcome is that style will become
more informal and focus more on intuition, in contrast to what seems to be
happening now (for example, in the homotopy type theory community) with
papers written in the ugly syntax of literate proof assistant scripts.

I have intentionally written in continuous prose, rather than dividing into
sections labelled ‘definition’, ‘theorem’ and ‘proof’, to reflect the way that math-
ematics is actually done: plausible definitions, theorems and proof ideas are used
to adjust each other until a fixpoint is reached. For example, the proof idea may
come first, followed by a definition encapsulating the hypotheses found to be
needed to make the proof go through, with the theorem coming last. The proofs
in this thesis are indeed checked by hand, although I trust the experimental ev-
idence discussed in §0.7 more than I trust my ability to write correct proofs.
Since in some cases several variant or false definitions are given, the ‘official’
one will always be distinguished by a bold font.

0.3 Intended audience

It is very strange to write about ‘intended audience’ in a thesis, when the rule
of thumb is that it will be read by (at most) my supervisor and examiners.
However I intend to continue using my thesis as a reference on compositional
game theory even after papers are published, in particular because chapter 2
contains far more informal text than would be reasonable in a publication, and
I think the informal text is very important. Therefore, I will write here about
what background knowledge is assumed.

This thesis contains nontrivial amounts of both pure mathematics (by which
I mean the study of mathematical objects for no other reason than their inher-
ent beauty) and applied mathematics® (by which I mean mathematics moti-
vated and influenced by modelling problems). An idealised reader has some
background knowledge in both game theory and category theory, but I expect
that most readers will be familiar with one, but not the other.

The category theory required to read this thesis is mostly monoidal cat-
egories, for which the usual reference is (Mac Lane 1978). Alternatively, a
self-contained introduction to monoidal category theory that emphasises the
process-oriented view" used in this thesis can be found in (Coecke 2006). Cat-

2The use of uncertified mathematics in economics, for example, should soon come to be
seen as reckless behaviour. See the editor’s report on (Lescanne and Perrinel 2010), and
Lescanne’s response to it, both currently available from Lescanne’s website, for an interesting
anecdote on the response to certified proofs in academic economics.

3My personal view is that beauty can be unreasonably effective in applications. For a good
example of this, compare purely functional programming to some false start such as object
oriented programming. More vividly, there is no reason why the ‘rising sea’ approach might
not be applicable to very difficult problems in applied mathematics, for example with better
models of human behaviour arising most easily as a special case of some very abstract theory.
Monoidal bicategories, mentioned in §2.2.1, certainly fit that bill in terms of abstraction.

“The view of arrows of a monoidal category as processes is almost synonymous with the



0.4. OVERVIEW OF THE THESIS

egory theory in this thesis is largely treated as a means to an end, as an ax-
iomatic approach to compositionality and a way to easily prove the soundness
of the string diagram language in §2.3. Readers who are category theorists will
be able to tell that I am not a category theorist: in particular, no attempt is
made to abstractly study the properties of the category of games, the reasoning
being very concrete and often by example.

The game theory that is needed as background is also very small, and is
discussed in §0.6. A list of topics reads like half of an undergraduate course
in game theory: normal form, extensive form, pure and mixed strategies, Nash
equilibria, subgame perfect equilibria. It is more important to have an intuition
for game theory than any specific piece of mathematical theory, for which a
good introduction is (Kreps 1991).

0.4 Overview of the thesis

The thesis is divided into three large chapters, each of which is divided into
three sections, each of which is divided into many subsections. Each section
begins with a ‘discussion’ subsection that gives motivation and background. The
serious part of the thesis consists of chapter 2 and chapter 3, with chapter 1 as
a sort of extended introduction.

The subject of this thesis is two new approaches to game theory, which can
be called the ‘higher order’ approach and the ‘compositional’ approach. Higher
order game theory is chronologically prior and much simpler, and can serve
as an introduction to the modes of thinking needed for compositional game
theory, which is much more complicated and unfamiliar. In principle it should
be possible to begin reading at chapter 2 and locally follow hyperlinks back
into chapter 1 when necessary to refer to definitions and notations. I do not
recommend this, however.

The main objects of study in higher order game theory are so-called quan-
tifiers and selection functions, which are introduced and studied in isolation in
§1.1. Simultaneous or normal form higher order games are studied in §1.2, and
sequential or perfect information games in §1.3. The contents of §1.2 is closely
based on (Hedges et al. 2015b), and §1.3 is closed based on (Escardé and Oliva
2011) (and therefore is not my own work), with §1.1 being a mixture of the two.

Open games, the objects of study in compositional game theory, are intro-
duced in §2.1. This is a section heavy on definitions, introducing the definitions
of open games, decisions, computations and counits. Sequential and parallel
composition of open games are studied in §2.2, including some important the-
orems about how composition behaves. This is applied in §2.3 to give a string
diagram language for specifying games. The whole of chapter 2 is based on the
preprint (Ghani and Hedges 2016).

The purpose of chapter 3 is to formally connect open games to standard game
theory, which previously is done only informally. In §3.1 normal form games,
both with pure and mixed strategies, are shown to be a special case of open
games. The same is done for perfect information games with pure strategies in
63.2, together with some sketched ideas for extending to imperfect information.

quantum computation group in Oxford, and I learned it from a steady stream of seminar
speakers coming from Oxford to Queen Mary. It is one of two ways that I think about
category theory, the other being functional programming (see §0.7).



0.5. PUBLICATIONS

Finally, §3.3 returns to more theoretical considerations by exploring a possible
solution concept for arbitrary open games, which gives a connection between
compositional game theory and higher order game theory.

0.5 Publications

At the time of submission I have three publications: (Hedges 2013), (Hedges
2014) and (Hedges 2015a). Of these, the last is on a different topic, and this
thesis contains little material from the first two.”

On the other hand, this thesis does contain large amounts of material from
the preprints (Hedges et al. 2015b) and (Ghani and Hedges 2016). A third
preprint (Hedges and Sadrzadeh 2016) is not related to this topic. Two further
preprints, (Hedges 2015b) and (Hedges et al. 2015a), are not currently under
review and have not been kept up to date.

0.6 Background: game theory

There is a tendency for theoretical computer scientists, when writing about
game theory, to refer mostly to the oldest references on the subject, such as (von
Neumann and Morgenstern 1944).6 To a computer scientist, the term ‘game’
may mean’ ‘normal form game’, or it may mean ‘extensive form game’, in the
latter case often with information sets quietly ignored. In particular, though, the
computer scientist will ignore the fact that game theory is a large research areas
within economics, which itself is a subject of comparable size to all of computer
science. Another mistake that a computer scientist can make, perhaps even
simultaneously, is to equate (academic) economics with game theory. These are
both errors that I am still in the process of trying to overcome myself.

With that being said, essentially all of the game theory needed to follow this
thesis can be found in (von Neumann and Morgenstern 1944). For a more con-
cise introduction written by (and therefore readable by) computer scientists® I
recommend (Leyton-Brown and Shoham 2008). To computer scientists I would
also recommend (Kreps 1991) which, being short on mathematics and long on
economic intuition, is likely to be very different to the way they think about
the subject. Of the various weighty reference books on game theory, the one I
use is (Fudenberg and Tirole 1991). Failing that, of course there are endless lec-
ture notes and slides online written for undergraduates in economics, computer
science, mathematics, engineering, ...

For the closely related two types of game theory covered in this thesis, namely
higher order and compositional, I would like to be clear about how they relate to
what I will call classical game theory, by which I mean game theory as covered
by these references. The questions are: which features are common? What new

5Both of these papers predate when I understood monad algebras. Reworking them to
follow (Escardé and Oliva 2015) is work in progress.

5To be fair, when economists write about computability, they also tend to write as though
the subject began and ended with Turing. Of course these are sweeping generalisations, and
I don’t mean to insult members of either subject: on the contrary, I believe that each has a
lot to offer and learn from the other.

7 . . . .
I am ignoring game semantics here (see §0.8).
8 . . .
Of course, von Neumann also worked in computer science, among many subjects.

10



0.6. BACKGROUND: GAME THEORY

features are gained? What features are lost? Which problems are solved, and
which are not?

I will begin with the features common to all approaches. A game consists
of players or agents, who act in a way that is constrained by some rules or
protocol. By this I mean that when each player moves, they have a collection
of possible moves, and a collection of possible things they could observe about
the past. A strategy for each player is a mapping from possible observations
to possible moves, possibly allowing certain side effects such as probabilistic
choices or belief updating. Then a ‘solution’ of the game is an equilibrium,
which is a choice of strategy for each player that is stable or non-self-refuting,
or equivalently is a fixpoint of a best response function. In general a game may
have zero, one or many equilibria. In justifying the solution as a prediction
of real world behaviour we assume that the rules of the game and the perfect
rationality of the players are common knowledge”.

A built-in feature of classical game theory is that a choice of strategy for
each player will determine a real number for each player called a utility, and
the perfect rationality of the players is defined to mean that they act such
as to maximise their utility. This is discussed further in §1.2.5. Both higher
order and compositional game theory generalise away from this, replacing real
numbers with arbitrary objects and allowing rationality to be defined in far
more general ways which become part of the specification of a game. I will offer
three arguments in favour of doing this. The first is that by abstracting away
from a nontrivial but inessential feature, namely real analysis and optimisation,
the theory is genuinely simplified, and the significant issues become clearer.
The second is that new modelling techniques become available, such as the
coordination and differentiation games in §1.2.9 and §2.3.11. The third is that
this is a necessary step for compositionality: taking two players who perfectly
maximise and composing them together will typically produce a system that
does not perfectly maximise.'”

Since this is in some sense a strict generalisation, we can still revert back
to the special case by taking outcomes to be real numbers and considering only
agents who maximise real numbers. Indeed, §3.1 and §3.2 of this thesis do
exactly that. But what is lost is any piece of theory that begins by assuming
that outcomes are utilities and that players maximise. It may even be that
we lose the vast majority of all of the literature on game theory this way. To
give perhaps the most serious but elementary example, it is impossible to define
strategic dominance in general for higher order or compositional games.

Higher order game theory, as a subject which naturally grew out of applica-
tions in proof theory, is not really intended to solve any problem in game theory.
One feature that stands out, however, is the ability to write very short and el-
egant functional programs that compute subgame perfect equilibria of perfect
information games, including certain infinite games (Escardé and Oliva 2010b;
2012). The coordination and differentiation games of §1.2.9 and (Hedges et al.
2015b), in addition, constitute an ‘application’ of higher order game theory.

Compositional game theory, on the other hand, has been consciously de-

9The phrase “it is common knowledge that X” means that “all players know that X”
together with “all players know that all players know that X”, and so on.

1074 is tempting to link this issue with macroeconomics, for example with recessions in the
real economy, but I don’t think that is reasonable.

11



0.6. BACKGROUND: GAME THEORY

signed as an attack on a specific problem: compositionality. This is the principle
that a system should be built by composing together smaller subsystems, and
that the behaviour of a system is entirely determined by the behaviour of the
subsystems and the ways in which they are composed, and therefore it is possi-
ble to reason about the system by structural induction on its decomposition. To
a computer scientist compositionality is such a fundamental idea that it is most
often not even mentioned. For example, every serious programming language
is compositional: a program is built from code blocks composed using sequenc-
ing, loops, functions and so on, and the program’s behaviour is determined by
the behaviour of the code blocks together with the constructs used to compose
them. T will discuss the principle of compositionality in considerable detail in
§0.9.

Compositionality, however, is an alien concept in game theory, because there
is no meaningful formal sense in which a game is built from composing together
smaller components. Put bluntly, this is why it is feasible to create a reasonably
robust software system containing millions of lines of code, but it is not feasible
to work with game theoretic models of comparable scale and complexity. I
am not aware of any literature that has come close to identifying the lack of
compositionality as a problem in game theory, but nevertheless it is a very
serious problem, and it is the problem that is solved in this thesis.

In order to talk systematically about which problems are not solved, I will
refer to chapter 5 of (Kreps 1991) for a discussion of the problems of game theory.
With the exception of the section titled ‘What are a player’s payoffs?’, which
relates to the generalised rationality described above, neither higher order nor
compositional game theory contributes anything to these well-known problems.
I will divide these into two classes: the problems relating to ‘the rules of the
game’, and the problems relating to equilibrium analysis.

Problems with the ‘rules of the game’ include:

e A game-theoretic model must have fixed rules, and game theory is unable
to model unrestricted negotiation, for example;

e Similarly, it is difficult to model the ability of players to dynamically
modify the rules;

e The predictions of the model can be extremely sensitive to apparently
small changes in the rules;

e The structure of the game, by default, is common knowledge.

Regarding the last point, in higher order game theory each player’s quantifier
or selection function is assumed to be common knowledge, and in compositional
game theory the entire structure of a string diagram is assumed to be common
knowledge. I hope that the usual technique of using Bayesian games and uni-
versal type spaces can be generalised to compositional game theory, but that is
entirely work for the future.

The central problem of equilibrium analysis is that there is no generally
accepted mechanism by which a particular equilibrium can be selected by the
players, in some cases even when there is exactly one equilibrium. Both higher
order and compositional game theory are fundamentally equilibrium-based, and
suffer from the same, familiar problems with equilibrium analysis, and I will say
nothing more about it.

12
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0.7 Background: functional programming

Compositional game theory was almost entirely developed by me during an in-
tense two weeks in February 2015 (when I was living in Mannheim), in which
time I felt like the Haskell interpreter ghci became a sort of extension of my
brain. I already had working implementations11 of the definitions in §2.1 and
§2.2, and experimental verification of the results in §3.1 and §3.2, and even
more that is not covered in this thesis, before I had even written down the defi-
nitions in mathematical language, let alone proved any theorems. The ability to
rapidly typecheck and experimentally test many different definitions was crucial
in eventually arriving at the definitions that work, and I still genuinely struggle
to understand the resulting definitions (particularly those in §2.1) intuitively.

Although the functional programming point of view was built into compo-
sitional game theory from the start, I have tried my best to minimise it in the
presentation in this thesis, because the intersection of the intended audience
(see §0.3) with functional programmers might vanish. In particular, monads
have mostly been replaced with their Kleisli categories. However, here I will
describe my intuitions for the use of functional programming in game theory.

The fundamental intuition I use is Moggi’s thesis (Moggi 1991), which can
be paraphrased as follows: there is a correspondence between

1. Computations that input a value of type X, possibly carry out side effects,
and output a value of type Y

2. Functions of type X — TY for a suitable monad T'
3. Morphisms in hom¢(X,Y") for a suitable category C

The passage from 2 to 3 is to take the Kleisli category C = Klp. The passage
from 1 to 2, which involves choosing a suitable monad, is part of the art of
functional programming. See also (Plotkin and Power 2002).

I will give one prototypical example, which is nondeterminism. Nondeter-
ministic choice is the ability of a program to return a result that is not uniquely
determined by its input. Instead, for each input the program has a set of out-
puts that might possibly occur. If this set is empty then the program can never
return a result, which can be interpreted either as nontermination or as excep-
tional termination. The corresponding monad is the powerset monad &2, and
functions of type X — ZY form a useful model of nondeterministic programs.
The category that corresponds to this is Klgz» = Rel, the category of sets and
relations, via forward images of relations.

An important idea which is foundational to my research is that side effects,
or equivalently monads, are ubiquitous in game theory, and that identifying and

M1 Will make the Haskell code available in the future, after it has been tidied up and
rewritten in the light of more recent ideas. By far the biggest difficulty with my prototype
is that Haskell’s type system does not unify naturally isomorphic types, and so the type X
might appear in an isomorphic form such as

(Ix1)x(1—->(1x1)x1)x(1x1—=>Xx1)
with the element x : X written isomorphically as

(G %), A (5, %), %)), A, %) (2, %))

and the isomorphisms must be written and carried around manually.

13
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classifying them is a useful thing to do. The most important examples are the
selection and continuation monads, but they are not intuitive and will be left
for chapter 1. More intuitively, consider a player who makes an observation'?
from a type X and then makes a choice from a type Y.

A pure strategy for the player is a function X — Id Y, where Id is the identity
monad IdY =Y, whose Kleisli category is Set. A mixed strategy is a function
X — 9Y, where 2Y is the set of probability distributions on Y. The monad
2 is called the probability distribution or (finitary) Giry monad (Giry 1982),
and it is introduced in §2.1.3, along with its Kleisli category SRel. The Haskell
implementation of probability I use is described in (Erwig and Kollmansberger
2006).

From this viewpoint it is natural to also consider players who make truly
nondeterministic choices, without a probability distribution. Such a player has
a set of possible choices for each possible observation, and her'® strategies have
type X — £Y, and are morphisms of Rel. Several computer scientists writing
about game theory have independently had the idea of nondeterministic players
(LaValle 2006, Pavlovic 2009, Hedges 2014), although there is little significant
theory.14 In Haskell the most common implementation of nondeterminism uses
lists'?, although there are many alternatives.

If the player makes use of a prior of type A then her strategy has type X —
Rd, Y, where Rd is the reader monad, which acts on sets by Rd, Y = A = Y.
If her strategy moreover has the ability to update the prior with a posterior after
making the observation then it has type X — St Y, where the state monad St
isSty,Y=A—-Y x A.

This Bayesian updating or learning is more complicated than the other ex-
amples, because St 4 is the only example listed that is a noncommutative monad.
In this thesis only commutative monads will be considered, for simplicity. By
corollary 4.3 of (Power and Robinson 1993), a monad is commutative iff its
Kleisli category is symmetric monoidal, which justifies the choice in §2.1.2 to
parameterise the definition of open games by an arbitrary symmetric monoidal
category. More general premonoidal categories also destroy the connection with
string diagrams, although see (Jeffrey 1997) and discussion in §0.10.

This point of view is shared with (Pavlovic 2009), which moreover refers to
Freyd categories (Power and Thielecke 1999). The heavier machinery of Freyd
categories is avoided in this thesis by using weak products (see §2.1.2), which is
stronger than necessary but is satisfied by the most important examples.

1201 readers who are game theorists, X is the set of information sets owned by the player,
and the strategies we consider are behavioural strategies. The functional programming view-
point makes behavioural strategies X — Z7Y far more natural to consider than mixed strate-
gies 2(X — Y), which means that the assumption of perfect recall is essential. Throughout
this thesis, the term ‘mixed strategy’ really means ‘behavioural strategy’ in the context of
dynamic games.

13See 80.11.

MNondeterminism is related to extreme-case optimisation, in contrast to average-case opti-
misation, in (LaValle 2006) and (Hedges 2014), and fixpoints of monotone functions are used
in (Pavlovic 2009).

5 The covariant powerset functor & = (— B) is not a monad (or even a functor) construc-
tively.

14



0.8. BACKGROUND: LOGIC FOR SOCIAL BEHAVIOUR

0.8 Background: logic for social behaviour

In this section I will give a brief literature review of applications of logic and
theoretical computer science to game theory. For lack of a better name, I will call
this research topic ‘logic for social behaviour’ after workshops held in Leiden in
2014, Delft in 2015 and Ziirich in 2016. Another event that should be mentioned
in this context is the 2015 Dagstuhl workshop ‘Coalgebraic semantics of reflexive
economics’ (Abramsky et al. 2015). Many researchers in this area also consider
applications to social choice theory, especially preference aggregation, but I
will mention only (Abramsky 2015), which links Arrow’s famous impossibility
theorem with category theory.

A starting point is (Pavlovic 2009), which proposes to study game theory
using ideas from program semantics, in particular viewing games as processes
which can have side effects such as state and probabilistic choices. That paper
suggests a larger research programme called ‘abstract game theory’ in which
this thesis can be located, although see §2.1.1.

An approach to infinitely repeated games using coinduction was introduced
in (Lescanne and Perrinel 2012) and continued in (Abramsky and Winschel
2015) and the working paper'® (Blumensath and Winschel 2013). Infinite and
coalgebraic games are mentioned only briefly in this thesis, in §2.2.1. However,
given that coinduction and bisimulation are the correct techniques for reasoning
about infinite processes, it is likely that they will continue to be important in
game theory. In particular, if trying naively to verify that some strategy of
an infinite game is an equilibrium, then infinitely many properties must be
checked; however a finitary proof technique based on bisimulation should be
expected to work. As yet, coalgebraic game theory has not been connected
with the classical approach to repeated games using real analysis, as covered
for example in (Fudenberg and Tirole 1991), and the very extensive literature
on repeated games. An unrelated application of coalgebra to game theory is
(Moss and Iglizzo 2004), which shows that universal Harsanyi type spaces are
also final coalgebras.

Another line of work begins with (le Roux 2014), connecting two-valued
games and determinacy theorems with real-valued games and existence theo-
rems.'” In (le Roux and Pauly 2014) this is moreover connected with synthetic
topology (Escardé 2004), which is related to ideas I am working on involving
computably compact sets of probability distributions in game theory, which are
not in the scope of this thesis.

Practical experience of applying functional programming techniques to eco-
nomic modelling is described in (Botta et al. 2011), (Tonescu and Jansson 2013)
and (Boudes et al. 2015). More generally, (Erwig and Kollmansberger 2006)
describes the application of functional programming to mathematical modelling
in biology. I directly quote the last sentence of that paper: “In particular, the
high-level abstractions allowed us to quickly change model aspects, in many

161y its current form that paper ends with a 10-page essay which amounts to a manifesto
for new approaches to game theory.

" This connects the two cultures that began with the founding work of Zermelo on winning
strategies (Schwalbe and Walker 2001) and immediately diverged. One contains Borel games
and determinacy in set theory, dialogical semantics in logic and game semantics in computer
science. The other is game theory, which is otherwise related to these topics only in trivial
ways.
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0.9. ON COMPOSITIONALITY

cases immediately during discussions with biologists about the model.” Due to
the close connections between game theory and computational effects described
in §0.7, I expect the gains of using functional programming to increase in the
future.

Finally, algorithmic game theory (Nisan et al. 2007) is a large topic that
studies the computational complexity of Nash equilibria and other constructions
in game theory, which began with the result in (Daskalakis et al. 2006) that
computing approximate Nash equilibria is infeasible. Algorithmic game theory
can be contrasted with the semantic approach to game theory that this thesis
represents, but will likely be an essential ingredient in the research project
outlined in §0.10.

0.9 On compositionality

This section is essentially an essay, loosely based on a talk I gave at Logic
for Social Behaviour 2016 in Ziirich, after the vast majority of the thesis was
written.

The term compositionality is commonplace in computer science, but is not
well-known in other subjects. Compositionality was defined in §0.6 as the princi-
ple that a system should be designed by composing together smaller subsystems,
and reasoning about the system should be done recursively on its structure.
When I thought more deeply, however, I realised that there is more to this prin-
ciple than first meets the eye, and even a computer scientist may not be aware
of its nuances.

It is worthwhile to spend some time thinking about various natural and
artificial systems, and the extent to which they are compositional. To begin
with, it is well-known that most programming languages are compositional. The
behaviour of atomic'® statements in an imperative language, such as variable
assignments and IO actions, is understood. Functions are written by combining
atomic statements using constructs such as sequencing (the ‘semicolon’ in C-like
syntax), conditionals and loops, and the behaviour of the whole is understood
in terms of the behaviour of the parts together with the ways in which they are
combined. This scales sufficiently well that a team of programmers can broadly
understand the behaviour of a program consisting of hundreds of millions of
individual atomic statements.

When the software industry began software was unstructured, with no in-
termediate concepts between atomic statements and the entire program, and
much of its history has been the creation of finer intermediate concepts: code
blocks, functions, classes, modules. Compositionality is not all-nor-nothing, but
is slowly increased over time; nor is it entirely well-defined, with many tradeoffs
and heated debates in the design and use of different language features. Even
with a modern well-designed language it is possible to write bad code which
cannot be easily decomposed; and even though there are many design patterns
and best practice guidelines, good software design is ultimately an art.

Going beyond software, consider a physical system designed by human en-
gineers, such as an oil refinery. An individual component, such as a pump or
a section of pipe, may have a huge amount of engineering built into it, with

18 C . .
The term ‘atomic’ is used naively here, and does not refer to concurrency.
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detailed knowledge of its behaviour in a wide variety of physical situations. It is
then possible to connect these components together and reuse knowledge about
the components to reason about the whole system. As in software, each com-
ponent has an ‘interface’; which is a high level understanding of its behaviour,
with unnecessary details being intentionally forgotten.

As a third example, an organisation made of human beings, such as a com-
pany or university, is also built in a compositional way, demonstrating that
engineering is not a requirement. It is possible to understand the behaviour of
a department without knowing the details of how the behaviour is implemented
internally. For example, a software engineer can use a computer without know-
ing the exact process through which the electricity bill is paid, and will probably
not even be aware if the electricity provider changes. This is another example
of reasoning via an interface.

Clearly interfaces are a crucial aspect of compositionality, and I suspect that
interfaces are in fact synonymous with compositionality. That is, composition-
ality is not just the ability to compose objects, but the ability to work with
an object after intentionally forgetting how it was built. The part that is re-
membered is the ‘interface’, which may be a type, or a contract, or some other
high-level description. The crucial property of interfaces is that their complexity
stays roughly constant as systems get larger. In software, for example, an inter-
face can be used without knowing whether it represents an atomic object, or a
module containing millions of lines of code whose implementation is distributed
over a large physical network.

For examples of non-compositional systems, we look to nature. Generally
speaking, the reductionist methodology of science has difficulty with biology,
where an understanding of one scale often does not translate to an understanding
on a larger scale. For example, the behaviour of neurons is well-understood, but
groups of neurons are not. Similarly in genetics, individual genes can interact
in complex ways that block understanding of genomes at a larger scale.

Such behaviour is not confined to biology, though. It is also present in eco-
nomics: two well-understood markets can interact in complex and unexpected
ways. Consider a simple but already important example from game theory.
The behaviour of an individual player is fully understood: they choose in a
way that maximises their utility. Put two such players together, however, and
there are already problems with equilibrium selection, where the actual physical
behaviour of the system is very hard to predict.

More generally, I claim that the opposite of compositionality is emergent
effects. The common definition of emergence is a system being ‘more than
the sum of its parts’, and so it is easy to see that such a system cannot be
understood only in terms of its parts, i.e. it is not compositional. Moreover I
claim that non-compositionality is a barrier to scientific understanding, because
it breaks the reductionist methodology of always dividing a system into smaller
components and translating explanations into lower levels.

More specifically, I claim that compositionality is strictly necessary for work-
ing at scale. In a non-compositional setting, a technique for a solving a problem
may be of no use whatsoever for solving the problem one order of magnitude
larger. To demonstrate that this worst case scenario can actually happen, con-
sider the theory of differential equations: a technique that is known to be effec-
tive for some class of equations will usually be of no use for equations removed
from that class by even a small modification. In some sense, differential equa-
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tions is the ultimate non-compositional theory.

Of course emergent phenomena do exist, and so the challenge is not to avoid
them but to control them. In some cases, such as differential equations, this
is simply impossible due to the nature of what is being studied. The purpose
of this thesis is to demonstrate that it is possible to control emergent effects in
game theory, although it is far from obvious how to do it. A powerful strategy
that is used in this thesis is continuation passing style, in which we expand
our model of an object to include not only its behaviour in isolation, but also
its behaviour in the presence of arbitrary environments. Thus an emergent
behaviour of a compound system was already present in the behaviour of each
individual component, when specialised to an environment that contains the
other components.

As a final thought, I claim that compositionality is extremely delicate, and
that it is so powerful that it is worth going to extreme lengths to achieve
it. In programming languages, compositionality is reduced by such plausible-
looking language features as goto statements, mutable global state, inheritance
in object-oriented programming, and type classes in Haskell. The demands
placed on game theory are extremely stronglgz seeing a game as something
fundamentally different to a component of a game such as a player or outcome
function breaks compositionality; so does seeing a player as something funda-
mentally different to an aggregate of players; so does seeing a player as some-
thing fundamentally different to an outcome function. This thesis introduces
open games, which include all of these as special cases.

0.10 The future of compositional game theory

This section is partly based on a funding application I wrote, and will sketch a
research programme about the theory and applications of composing games. I
will begin with an unreasonably optimistic best-case vision of the future, and
work backwards. This work of speculative fiction is based on long discussions
with Viktor Winschel and Philipp Zahn, mostly in the pub.

Suppose an economist wants to create a mathematical model of some eco-
nomic system, say, a new market. Using her experience as a working economist,
she analyses the market and divides it into a number of interacting components.
Most of these component markets are well known and have been extensively
studied, and she recognises the last component as behaving similarly to part of
another market that was recently studied by a colleague.

She opens her software suite and loads these known models, most of which
come pre-installed, and the last downloaded from a source repository accom-
panying her colleague’s research paper. Each of these specifies an open game,
whose ports specify how it communicates with an arbitrary environment, which
is graphically represented on the screen by a bead with open strings. Although
she has never heard the phrase ‘category theory’ except in a cryptic footnote
in the software’s documentation, she draws strings connecting the beads, in
a way corresponding to her intuition about how the component markets are
communicating and influencing each other.

¥0f course, these demands have been written retrospectively.
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Behind the scenes, the software compiles the string diagram to an interme-
diate representation, and then to Haskell, which is compiled and optimised by
ghc.

The economist begins by specifying a plausible strategy profile, for example
by drawing a finite state automaton, and then plays the game with the strategy
profile to obtain a plot showing a probability distribution on outcomes. She
tests this against real econometric data and finds that it does not fit the data.
She then replaces some parameter in the strategy profile by a variable, and runs
an automated optimisation procedure. This takes 30 minutes to complete, and
still does not fit the data well.

By tracing the results through the string diagram, viewing plots of the data
flowing along the intermediate strings, she determines that her colleague’s model
is at fault. She ‘zooms in’ to that model in the editor, seeing visually the
information flow inside that model. It consists of many standard components
interacting, each of which itself can be opened as a string diagram for editing.
She manually tunes several quantitative parameters, and qualitatively changes
the logic of the information flow in a few places, in an iterative process, at each
stage comparing the simulation results to the econometric data.

Finally, she obtains a model and a strategy profile that is a good fit for
the data. The next day, a three-hour computation confirms that the strategy
profile is an equilibrium, suggesting that the model is stable. From here, she can
answer questions of economic interest. For example, she can simulate economic
events such as changing the structure of the market in some way, or changing
the response of a neighbouring market. She can test the existing strategy profile
with the modified game, and the software will determine which agents now have
incentive to deviate. In some cases, she is able, through a mixture of intuition
and automatic optimisation procedures, to find a new equilibrium to which the
old strategy profile will plausibly settle given the changes made to the game.
This constitutes an economic prediction, about how the market will respond to
a given event once it settles back into equilibrium.

Realistically, of course, this is very optimistic. However I believe the de-
scription of the technology is entirely plausible; the main question is whether
nontrivial and reasonably accurate predictions about macroeconomic systems
can be made using such a compositional game model, and whether composition-
ality of games is a good model for compositionality of macroeconomic systems.
I conjecture that computations made from a user-supplied strategy profile can
be done efficiently, in time linear in the size of the game; although to compute
an approximate equilibrium from nothing we run into the fundamental problem
that equilibria of both perfect information and normal form games are expensive
to compute.

I will now discuss what needs to be done for this vision of the future to come
true, with the exception of the economic questions, which are far outside of my
expertise. These divide into theoretical problems and implementation.

A direct translation of the definitions in §2.1 and §2.2 into a programming
language will consist of combinators for composing games, and each game will
implement the play, coplay and best response functions, each taking as one
input a strategy profile implemented as a tuple of functions. In particular, the
play function will convert a strategy profile into a distribution of strategic plays
(in the case of probabilistic choice), and the best response function can be used
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to decide whether a given strategy is a Nash equilibrium.20 The prototype

described in §0.7 already has these features, and it is not difficult to imagine
other features such as search and optimisation algorithms sitting above these
primitive features, although it might be more difficult to make these run in a
feasible amount of time.

The software Quantomatic (Kissinger et al. 2014) is currently able to reason
about string diagrams using graph rewrite rules, but it does not convert the
string diagram into the logical language of composition and tensor, which is
what is needed in game theory.21 I propose an extensible, language-independent
API implementing the logical language of morphisms of monoidal categories,
which can be used as an intermediate language between Quantomatic (or similar
software) and several backends. For example, different code generators could
target MATLAB for FVect, Maple for Rel and Haskell for Game(C).

Far more work is needed on the theoretical side. A typical example of a game
in practical economics may have several awkward features simultaneously: de-
pendent types, infinite repetition, incomplete information, learning, irrational-
ity, ...

For such practical examples, each of these needs to be represented in com-
positional game theory, in compatible ways. For several of these problems,
my preferred approach is to apply intuition from functional programming and
change the underlying category to successively add new features. Informally,
I think of this in terms of ‘effects stacks’. A simple example may have prob-
abilistic choice at the bottom of the stack, following by learning, followed by
nondeterminism, followed by selection. As the first step, probabilistic choice is
the monad

WX =9X

introduced in §2.1.3. The second step is to apply the state monad transformer
T,X =St X =A—=Ti (X xA)=A— (X x A)

Alternatively, this point can be reached using Lawvere theories rather than
monad transformers®>. Adding nondeterminism to a stack involving probability
is not straightforward, but there are two approaches discussed in (Varacca and
Winskel 2006). An alternative possibility is to use synthetically compact sets
(Escardé 2004) to represent nondeterminism, which leads to

X = (X)) =(A—=2(X xA) —-B) > A— 2(X x A)

which is a monad due to the unpublished fact that for every monad T there is
a distributive law

AiTo gy — Fgol

20 pe prototype decides Nash equilibria rather than subgame perfect equilibria, by imple-
menting the first variant definition in §2.2.3. Deciding subgame perfection naively is impossible
in general, because there may be too many subgames to search.

*'From discussions with Mehrnoosh Sadrzadeh I understand that the lack of this feature is
also a bottleneck in quantum linguistics.

22 Monad transformers are deprecated by theoretical computer scientists (with good reason),
but in my opinion they are still useful as one tool in a larger toolbox for building effects stacks,
especially when the stack involves infinitary effects such as continuations and selections.
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Finally, selections can be added using the generalised selection monad in (Es-
cardé and Oliva 2015)23, resulting in

X = 75X
=(X = R)->TyX
=(X—>R) - ((A=>2(X xA)—>B)—A— 2(X xA)

where R is a suitable algebra of T}, ultimately derived from the expectation
operator E : R — R.

Although this looks complicated, machinery exists in functional program-
ming to work with compound monads like this. I think it will be necessary
to make a systematic study of this before serious applications of compositional
game theory in economics become possible. In general, the Kleisli categories
of noncommutative monads are symmetric premonoidal (and moreover closed
Freyd). It may be that for premonoidal categories, string diagrams in the sense
of (Jeffrey 1997) are impractical and should be replaced with a form of arrow
notation (Paterson 2001). However, in an effects stack in which each player has
their own state variable that is private to the other players (such as Bayesian
beliefs), any computations done by different players will commute past each
other. This results in far more allowed topological moves on string diagrams
than for general premonoidal categories, and so I suggest that the software will
also need to keep track of allowed moves on a string diagram, based on which
morphisms of the category commute.

0.11 Notation and conventions

Function application is written without brackets whenever it is unambiguous,
and the function set arrow — associates to the right, soif f : X - Y — Z
then faxy = (f(z))(y). A-abstractions are denoted A(x : X).t, where x is the
abstracted variable and X its type. The scope of the abstraction extends as far
as possible to the right, and binds tighter than everything except parentheses
and the equals sign. The application of a selection function to a A-abstraction,
for example, is written eA(x : X).t.

Binary and arbitrary products are written x and ][], binary and arbitrary
coproducts are written + and Y, and both bind tighter than —, so for example
A x B — C+ D means (A x B) = (C + D). Projections from a product are
written 7, and injections into a coproduct are ¢. If z : T[], ; X; then I write x; for
mx : X;. Similarly, if f: X — [],.; Y, then I write f; for m; 0 f : X = Y;. The
type with one element is 1, and its element is * : 1. The subscript —i, as in z_;,
f—i, m_; is used for projection onto Hj# X;. The notation (z;,2_;), common in
game theory, additionally uses the natural isomorphism X; x ]| ki X; =11 N X;
implicitly.

I sometimes pretend that categories are stricter than they really are, espe-
cially in chapter 3, in order to avoid the problems with isomorphisms mentioned
in §0.7. For example, I will pretend that (X xY)x Z = X x (Y x Z) and write
an element of either in the form (z,y,z). Similarly, if f: X — 1 —- Y I will

%The selection monad transformer in (Hedges 2014) is the special case when R is a free
algebra. Note that [0, 1] is the free Z-algebra on two generators, but R is a non-free Z-algebra.
Algebras of 2 are called convex sets, see (Fritz 2009, Jacobs et al. 2015).
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sometimes write fx for fxx, and if g : X x 1 — Y I will sometimes write gx for
g(x,*). This is a tradeoff between correctness and manageable notation, and I
am still unsure what the best approach is, short of using a proof assistant.

I distinguish carefully between ‘types’ X, which are sets, and ‘sets’ A C X,
which are functions A : X — B where X is a type and B is the type of booleans
containing 1 and T. To confuse matters, however, I often also use the term
‘set’ to refer to a type when the difference is harmless, because there is so much
social inertia behind the ‘set’ terminology. If A C X and x : X, then the
notation & € A is shorthand for Ax = T, and {z : X | ---} is shorthand for its
characteristic function. X = X — B is the set of all subsets of the type X.

P[a = z] : [0,1] is the probability that a random variable o : 2X is equal to
x : X. Here Z is the probabilistic analogue of &, defined in §2.1.3. If o : IR
then E[a] : R is the expected value of a.

Some symbols are reserved for particular uses. Types of plays or moves are
denoted X, Y, Z and types of outcomes are denoted R, S, T. X is the set of
strategy profiles of a game, and o is a strategy profile. P is a play function,
which converts a strategy profile into a play, and B is a best response function,
which takes a strategy profile to its set of best responses. R is a response
function (§2.1.7) and C is a coplay function (§2.1.4), which appear only in the
context of open games. ¢ and § are single-valued selection functions, F is a
multi-valued selection function, ¢ and 1 are single-valued quantifiers, and ® is
a multi-valued quantifier. ¢ is an outcome function, which takes a play to an
outcome. 7% is the unilateral deviation operator. G and H are open games, and
D is a decision.
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Chapter 1

Higher order game theory

1.1 Decision theory

1.1.1 Discussion

The purpose of chapter 1 of this thesis, which is largely based on (Hedges
et al. 2015b) and (Escardé and Oliva 2011), is to introduce the reader to a
particular way of thinking about game theory. Although it is logically self-
contained, readers unfamiliar with game theory should read it together with
another source, such as (Leyton-Brown and Shoham 2008) or (Kreps 1991),
that gives a more classical introduction with motivation and standard examples.
Readers already familiar with game theory could begin reading at chapter 2 and
follow hyperlinked references into this part when necessary.

Suppose we have some situation in which an agent is choosing a move of type
X. After the choice is made, she receives some outcome, say of type R. For
example, if we are representing preferences by utilities, we would take R = R.
The outcome depends not just on the agent’s choice, but also on the choices
of other agents, the ‘rules’ of the situation, and the agent’s own preferencesl.
The first key concept of this thesis is that these additional dependencies will be
abstracted away into a single function k£ : X — R mapping choices to outcomes.
This function will be called a (strategic) context?.

If we view an agent as computing a move, the context represents the com-
putation done afterwards by the environment. This leads us to the principle
that strategic contexts are delimited continuations. Furthermore the structure
of game theory, and especially the definition of Nash equilibrium (§1.2.3), is
such that many of our definitions have explicit access to the context. A compu-
tation which has access to its calling environment by means of a continuation is
precisely a continuation passing style computation. Throughout this thesis, and
especially in §2.2 we will see that the mathematical structure of game theory
can be usefully improved by allowing more things to depend on an arbitrary
continuation. This is the principle, perhaps the most important single idea in
this thesis, that game theory wants to be in continuation passing style.

L The dependence of the outcome on the agent’s preferences comes from the fact that the
outcome may represent the agent’s subjective ‘rating’ of the physical outcome (see §1.2.5).

2However7 in §2.1.5 we will generalise the term ‘context’.
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We will describe agents by their behaviour on each context. There are two
options, which lead respectively to ‘quantifiers’ and ‘selection functions’: we can
map the context to either the good outcomes, or the good moves. We will see
in §1.2 that the latter is preferred for technical reasons, and so we will adopt
the following slogan: to know an agent is to know her preferred moves in every
context.

1.1.2 Quantifiers

Consider a sentence of predicate logic of the form
Iz : X).kx

Here k is a predicate, which either holds or does not hold for each element of
the domain of quantification X. Thus, we can view k as a function k: X — B,
where B = {L, T} is the type of booleans. Since the meaning of our sentence
is invariant under a-renaming, it depends only on the value of the function k,
and thus could be unambiguously3 written with the point free syntax k. For
comparison, there is a familiar example of point free syntax in measure theory4:

[ kdn= [ ka)aut)

Since Jk has a value of type B and depends only on k : X — B, we can say
that 3 is a particular function

F3:(X—->B)—B
To be precise, 3 is the function of this type defined by

T ifkx =T for some z: X
Jk =

1 otherwise

We can do the same thing with the universal quantifier: it is a function
V:(X—B)—B

defined by

VE = T ifkx=Tflorall z: X
)L otherwise

Abstracting from these two cases leads to the definition of a generalised quan-
tifier in (Mostowski 1957) as an arbitrary function of type (X — B) — B.
This is generalised one step further in (Escardé and Oliva 2010a), by al-
lowing the type of booleans B to be replaced by an arbitrary type R. The
most important new example that this gains us is maximisation of real-valued
functionals k£ : X — R: by the same reasoning as before, the expression

max kx
x: X

3H0wever, notice that the type X has become implicit in the syntax; we could more clearly
write Ix k.

“See the integration quantifier in section §1.1.5.
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can be written as max k, and we can view max as a function
max: (X - R) >R
In summary, we define a quantifier on a set X as an arbitrary function
w: X

where #zX = (X — R) — R. We will view ¢ as a function that takes each
context k : X — R to an agent’s preferred outcome given that context. We
should always5 think of this as an outcome that is in the image of the context,
that is, it is an outcome that can actually occur given that context.

For example, the quantifier max : ;X models a classical economic agent
who maximises utility, in the sense that the preferred outcome is the one that
is maximal among those that can be attained. In this sense, quantifiers can
be seen as a generalisation of utility maximisation, which abstracts away the
irrelevant fact that we are working with the ordered real numbers, and allows
us to focus on the important structure.

The existential quantifier 3 : # X is also an instance of maximisation, this
time over the discrete order L < T. We also observe that min : JRX is a
quantifier, and that V : 3 X similarly minimises’ over the order 1L < T.

1.1.3 The continuation monad

In §1.1.2 we introduced the type #pX = (X — R) — R. The operator J#% is
well known in programming language theory where it is called the continuation
monad (Moggi 1991). This means that we have unit maps n : X — #zX, and
for each function f : X — #RY a Kleisli extension f* : #rX — HRY.
Explicitly, these are given by

nr=Mk: X — R).kx

and
FFo=Mk:Y = R).o\z: X).frk

A Kleisli arrow ¢ : X — J#RY is viewed as a computation of type X — Y in
continuation passing style. This means that after the function X — Y has
terminated the result is passed to a continuation ¥ — R, and the computation
is allowed to have first class access to its continuation. This point of view is
detailed in (Hedges 2015b).

The structure of the continuation monad is related to game theory in (Es-
card6 and Oliva 2011, Hedges 2014), but we will not do so in this thesis, because
of the argument in (Hedges et al. 2015b) and §1.2 for preferring selection func-
tions to quantifiers.

SThis is always the case for attainable quantifiers (§1.1.5), and all reasonable quantifiers
are attainable.

The fact that V is an instance of min is often surprising when seen for the first time. If &
only takes the value T then mink = T, but if k£ takes the value 1 somewhere then mink = L.
This is precisely the definition of Vk.
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1.1. DECISION THEORY

1.1.4 Selection functions

Just as a quantifier gives the best outcome in a context, so a selection function
gives the best move. Thus, a selection function is a function € : # X where

IrX=(X - R) =X

The selection function corresponding7 to the existential quantifier is the Hilbert
epsilon operator®. In the Hilbert calculus e(x : X).kx is a term that, by defini-
tion, satisfies k if possible. We can informally define € : #Zp X by

. some z : X satisfying kx if such = exists
ER =
arbitrary otherwise

By the axiom of choice, we can obtain such a function e satisfying this specifi-
cation.

Similarly, the selection function corresponding to max is argmax : #pX,
which chooses some point at which a function is maximised. This is ordinarily
written as

arg max k = arg max kx
z: X
Again, because a function may attain its maximum at many9 points, we gener-
ally need the axiom of choice to actually obtain arg max as a function.”

Although mathematically speaking selection functions are often about opti-
mality, it will sometimes be useful to think in anthropomorphic terms of satis-
faction. To talk about the value pk, we say that if an agent is choosing in the
context k : X — R, then she is satisfied with the outcome k. Similarly, she is
satisfied with making the move k. If the agent has a quantifier ¢ that chooses
an outcome @k ¢ Im(k) that is not attainable by any move then the agent’s
preferences in the context k are unrealistic, because she will never be satisfied
with any outcome that can actually occur. !

1.1.5 Attainment

We have given two types of functions that can be used as models of agents, and
now we will study the relationship between them. We begin by noticing that a
selection function e defines a quantifier € by the equation

ek = k(ck)

7Quantiﬁers and selection functions generally come in pairs, as explained in §1.1.5.

8The Hilbert epsilon symbol was used as a primitive in Hilbert’s e-calculus, and again in
Bourbaki’s set theory. See for example (Mathias 2002).

9 A discontinuous function may not have an attained maximum, but because discontinuous
functions do not exist in nature, we do not need to worry about this.

0 The function arg max is itself discontinuous, and as per the previous footnote it cannot
exist in nature. This is not yet an issue in practice, because we can replace the reals with
some approximation such as the rationals or floating point numbers. True reals become
important with repeated games, where completeness is needed to ensure convergence of the
utility functions.

Hgor a vivid example of unrealistic preferences, suppose I am satisfied only with the outcome
in which I become a millionaire, but there is no choice I can make that leads to that outcome.
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1.1. DECISION THEORY

This defines a map ~ : _#rX — X, which can be proved to be a morphism
of monads, see lemma 6.3.6 of (Escardé and Oliva 2010a), where the selection
monad _Zy is defined in §1.3.2.

We will say that the selection function € attains the quantifier ¢ just if
¢ = g, and we will call the quantifier ¢ attainable if it is attained by some
selection function.'

As a first example, the Hilbert epsilon operator ¢ attains the existential
quantifier. This generalises Hilbert’s definition of the existential quantifier as
Jk = k(ek). For if 3k = T then we have at least one = : X satisfying kz = T,
and so x = ek has this property. Conversely, if 3k = L then there is no such z,
and so x = ek is some arbitrary point, which has kz = 1. As a second example,
it is easy to see that arg max attains max, essentially by definition.

For a less trivial example, consider the definite integration operator13.

JREAR
/k:/olkxdx

The mean value theorem tells us that if p : [0, 1] — R is integrable then there is
some point x : [0, 1] with the property that

km:/k‘

We can apply the axiom of choice to form a selection function € : _#g|0, 1] that
takes each k to such an z. Thus, f is an attainable quantifier. This is given as
an example in (Escardé and Oliva 2010a).

For a second interesting example, also from (Escardé and Oliva 2010a) sup-
pose we work in a setting (such as a cartesian closed category of domains) in
which every endomorphism k : X — X has a canonical fixpoint, computed by
a function

defined by

fix: ( X >X)—> X

In this case we have R = X, and _#x X = Jx X, and so fix can be seen as both'*
a quantifier and a selection function. Moreover, because fix k is guaranteed to be
a fixpoint of k we have k(fix k) = fix k, and hence fix : _#y X attains fix : #x X.

1.1.6 Multi-valued variants

Quantifiers were generalised yet another step in (Escardé and Oliva 2011), by
allowing the quantifier to return a set of results,

®:(X > R)—> ZR

12Typically, a single quantifier is attained by many selection functions, as is the case for 3
and max.

13To deal with J being undefined on arguments that are not integrable, we can restrict its
domain (§1.1.6).

' This is a situation in which we need to be careful about types. Although fix: #x X and
fix : #x X might at first appear to be the same function, it is not even a well formed claim to
say that they are equal, because the types have different monad structures. Quantifiers and
selection functions support different game-theoretic solution concepts, and the games defined
by these two (apparently equal) operators have different sets of equilibria, as we will see in
§1.2.10.
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1.1. DECISION THEORY

We will call a function with this type a multi-valued quantifier. Similarly,
in (Hedges et al. 2015b) and (Hedges et al. 2015a), selection functions were
generalised to multi-valued selection functions

E: (X —>R)—> X

Multi-valued quantifiers were introduced in (Escardé and Oliva 2011) for
applications in game theory and the proof of Beki¢’s lemma. For example,
the max quantifier is single-valued for a total order such as R, but is multi-
valued for a preorder such as R" with x <, y <= 1z, < y,. The step from
single-valued to multi-valued selection functions makes it harder to work with
sequential games (because we lose the monad structure, see §1.3), but easier to
work with simultaneous games. Thus, §1.2 will focus on multi-valued selection
functions, but §1.3 on single-valued selection functions.

We will give two important examples of multi-valued selection functions.
The first is the multi-valued variant of arg max,

argmax : (X - R) - £X
which chooses all points at which its argument is maximised:
argmaxk = {x : X | kx > ka' for all 2’ : X'}

Notice that under reasonable hypotheses15 arg max k is nonempty.
The second example is the multi-valued fixpoint operator

fix: (X - X)—> 22X

defined by
fixk={z: X |z =ka}

The fixpoint operator on sets (as opposed to posets) is naturally multivalued,
because a function may have zero, one or many fixpoints, and no preferred
fixpoint.

It is a subtle question whether we should allow multi-valued quantifiers and
selection functions to return the empty set on any input. For some applications
in game theory it is useful to suppose that the sets are always non-empty. We
will call such a multi-valued quantifier or selection function total, after (Hedges
2013). For example arg max on a finite set is total, and in §1.2.9 we will extend
fix to a total selection function by defining its behaviour differently on a context
with no fixpoints. This is the approach taken in (Hedges et al. 2015b).

On the other hand, there are situations where it is unreasonable to require
totality, such as when working with games of imperfect information with pure
strategies, so that equilibria may not exist. We will define the domain of a
multi-valued quantifier or selection function to be the subset of X — R on which
it returns a nonempty set. This will be denoted by dom(E) or dom(®). For
example, the domain of arg max on a compact space X contains all continuous
functions. Of course, a multi-valued quantifier or selection function can be
restricted to a total one on its domain. This is the approach taken in (Hedges
2013).

151f X is finite then arg max k is nonempty for all k. If X is compact then argmaxk is
nonempty if k is continuous.
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1.1.7 Multi-valued attainment

Multi-valued quantifiers and selection functions also support a concept of at-
tainment, namely that E: (X — R) —» £X attains ¢ : (X — R) — PR if for
all £ : X — R we have

{kxz | x € Ek} C Ok

This definition gives the expected attainments: for example, the multi-valued
arg max attains max (where max is a single-valued quantifier viewed as a multi-
valued quantifier by returning singletons), and the multi-valued fixpoint opera-
tor attains itself.

By analogy to the overline operator = : #g — g, given a multi-valued
selection function E : (X — R) — £ X we can define the ‘smallest’ multi-valued
quantifier £ : (X — R) — ZR attained by E, namely

Ek = {kx | v € Ek}

Equivalently, Ek is the forward image of Ek under k. However, in the multi-
valued case we can also do this in reverse, converting a quantifier ® into the
‘largest’ selection function ® attaining it, namely

Ok = {z: X | kx € Pk}

As suggested, the types (X — R) - ZX and (X — R) — ZR both
carry a partial order structure inherited from the powerset operator. Given
multi-valued selection functions E;, Ey : (X — R) - £ X we will say that E;
refines F,, and write F; C F,, if for every k : X — R we have E1k C FEyk.
Similarly, for quantifiers we will say that ®; refines ®, and write ®; = ®,. With
this notation, we can say that E attains ® iff E C ®.

We can view a single-valued selection function € : #r X as multi-valued by
setting Ek = {ek}, and so we can talk about refinement between single-valued
and multi-valued quantifiers. Specifically, we say that ¢ refines F iff for all k we
have ek € Fk. By the axiom of choice, a multi-valued selection function has a
singled-valued refinement iff it is total. This also applies to quantifiers.

The overline operators define a Galois connection between the refinement
orders. Given a selection function E : (X — R) — ZX and a quantifier
®: (X > R) > ZR,

EC® < EFLCO®

The proof is straightforward, by showing that both sides are equivalent to the
claim that for every k: X — R and = : X, if z € Ek then kx € ®k.
The double overline operator on total quantifiers is the identity, because

Ok = {ka | v € Dk} = {ka | kx € Bk} = kN Imk

On selection functions, following order-theoretic terminology we will think of

"= as a closure operator, and a selection function E satisfying F = E will be
called closed. We will see examples of closed selection functions in §1.2.5; and
non-examples in §1.2.9.
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1.1.8 Modifying the outcome type

The operator #p defined in §1.1.4 is contravariant in the outcome type R, in
contrast to the continuation monad J#%, which is not functorial in R. Moreover,
the action of _#x on morphisms of outcomes has a clear game-theoretic reading.

Given a selection function € : _#rX and a function f : § — R, let f-e: #FgX
be the selection function

fre=Ak:X > 9)e(fok)

This can easily be shown to commute with the other operations on _#g, includ-
ing the product of selection functions (§1.3.3). The selection category operator
FrC defined in §1.3.2 can therefore be considered as a presheaf of categories
C°? — Cat.

This also applies to multi-valued selection functions, where the selection
function E : (X — R) - £ X changes to

f-E=Ak:X = 8).E(fok)

If we take f to be the projection 7, : RY — R then the multi-valued selection
function argmax : (X — R) — £ X changes to

7 -argmax = ANk : X — R™) {a: X | ko > k;a' for all 2/ : X}

which is the selection function modelling an agent who maximises the ith co-
ordinate while ignoring the others. This selection function is used in (Hedges
et al. 2015b).

We will return to this idea in §3.3.

1.2 Normal form games

1.2.1 Discussion

A definition of game was given in (von Neumann and Morgenstern 1944) that is
general enough for most purposes, the so-called extensive form games. At this
point we will not introduce extensive form games formally, but we will discuss
some of the important concepts.

A game consists of players, who make choices. The choices made by all
players, together with the rules of the game, determine an outcome. The choices
made by the players are constrained by the fact that each player has (usually
different) preferences over the outcomes, and each player acts in such a way as
to bring about their preferred outcome. We will model preferences of players by
quantifiers or selection functions, which abstracts away more specific definitions
such as preference relations or utilities used in standard game theory.

In order to make an informed choice the player needs to know which outcomes
will occur for a given choice, but to know this, she needs to know what the
other players will choose. However, the other players are reasoning in the same
way, and need to know what she will choose, and so we have a circularity.
The circularity is resolved by a solution concept, each of which is a proposed
definition for what it means for a player to choose rationally, under various
assumptions about the other players.
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1.2. NORMAL FORM GAMES

The game may have some dynamic structure in which some players can
observe (possibly partial information about) the choices of some other players
before making their own choice. A strategy for a player is a function that
chooses a move, contingent on observed information. Strategies can be used to
abstract away the details of how players interact with each other.

Given an arbitrary game, we can define a new game called its normalisa-
tion. In this new game, the choices are precisely the strategies of the previous
game. Given a strategy for each player, we can ‘play out’ the strategies to
determine a choice for each player in the old game, which in turn determines
an outcome. The new game is played simultaneously, with no player able to
make any direct observations. Thus, games with dynamic structure can be
disregarded, and we can focus on simultaneous games only.

For example, suppose the first player chooses x : X, and then the second
player perfectly observes it and chooses y : Y, with the outcome being ¢(z, y).
In the normalisation, simultaneously the first player chooses a strategy'® o, : X
and the second player chooses a strategy o4 : X — Y, with the outcome being
ql(01»0’2) = q(oy,0907).

The most standard solution concept for simultaneous games is called the
Nash equilibrium. This is unable to distinguish between an extensive form game
and its normalisation, in the sense that it gives the same ‘solutions’ (rational
choices) for both. However there are more refined solution concepts, such as
subgame perfect equilibrium, which can distinguish an extensive form game
from its normal form. Thus, it is still important to study extensive form games.

This section is based almost entirely on (Hedges et al. 2015b).

1.2.2 Games, strategies and unilateral continuations

We begin with a collection I of players. FEach player ¢ : I has a nonempty set
X, of moves. We also have a set R of outcomes, and an outcome function

q:HXi%R

[

Since the game is played simultaneously, a strategy for each player is simply a
move o; : X;. The function ¢ (together with its type) completely specifies the
rules of a normal form game. We will leave the specification of the players until
§1.2.3.

A strategy profile is a tuple of strategies for each player,

o: 1_[)(Z
i1

A play is a tuple of moves (which has the same type) and playing the strategy
profile o results in the play Po = o, so strategies are ‘played out’ by the play

function'’
P=id: [[X; > [[ X
21 a1

18 The notation is chosen carefully here. x : X should be thought of as a choice, and oy : X
as a strategy. For the first player in particular (who makes no observation, and cannot use
side effects such as randomness), choices and strategies happen to coincide, but they should
still be distinguished carefully.

'"This is our first encounter with play functions, which appear in full generality in §2.1.4.
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1.2. NORMAL FORM GAMES

The play Po = o is called the strategic play of the strategy o, and is the play
that results from all players playing according to o. Each strategy o additionally
determines an outcome ¢(Po) = go.

We will next define unilateral continuations, which have proved to be a
useful tool for reasoning about higher order games. They were introduced in
(Hedges 2013)18, in which it is shown that the majority of the proof of Nash’s
theorem amounts to showing that the unilateral continuations satisfy certain
topological properties. They are also heavily used in (Hedges et al. 2015b).

Suppose we have a fixed strategy profile . We can now define unilateral
continuations in which all but one player use o, and the remaining player unilat-
erally deviates to some other move. The ith player’s unilateral continuation

from o is the function
U'lo:X; = R

given by
%qui =q(z;,0_;)

The notation (x;,0_;), which we will now introduce here, is standard in game
theory and useful for reasoning about unilateral deviation. The subscript in o_;
means that we project o onto the subspace [],; X;. We will sometimes write
the projection operator as

N
j=1

1<G<N
i#i

The notation (z;,0_;) fills the ‘missing’ ith entry with z;, and is defined by the

equation
x; ifi=j
(xivg—i)j = { '

o otherwise

Although this could be ambiguous and is often disliked by those who strive for
type safetylg, this notation will come into its own in §3.1 and §3.2.

The purpose of a unilateral continuation is that the behaviour of all other
players has been abstracted into a single function, allowing us to reduce a game-
theoretic problem to a decision-theoretic one. A different definition of unilateral
context that is suitable for sequential games will be given in §1.3.5. The con-
tinuations introduced in §2.1.5 are more general, because they can model any
number of deviating players.

1.2.3 Nash equilibria of normal form games

The preferences of the player i : I can be modelled either using a multi-valued

quantifier

or a multi-valued selection function

1811 that paper they are known as ‘unilateral contexts’.
195ee §3.2.1 for remarks on reasoning about this notation with a proof assistant.
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In any context k : X; — R, the value of the quantifier @,k is the set of outcomes
that player ¢ considers to be good in the context k. Similarly, if we use selection
functions then F;k is the set of moves that player i considers to be good in the
context.

The unilateral continuation %;’c : X; — R is the context in which player i is
unilaterally deviating from the strategy profile o. If the player is implemented
by a multi-valued quantifier then the set of outcomes that the player considers
good, and can be attained by unilaterally deviating, is ®;(%,%c). The outcome
that actually occurs if the player does not deviate is ¢(Po) = go. Therefore, if

qo € (% 0)

then the player is already satisfied with the outcome and has no incentive to
unilaterally deviate. If this condition holds for each player i : I then we will call
o a quantifier equilibrium.

On the other hand, if we implement players using multi-valued selection
functions, then we have a set of good moves E;(%,?c). This is the set of moves
which it would be rational for player i to choose, given that all other players
use o. The actual move chosen by player i is o, so player ¢ has no incentive to
unilaterally deviate if

0 € E(%o)

If this condition holds for all 7 : I then we call o a selection equilibrium.

If we could model the players either by quantifiers ®;, or by selection func-
tions E; that attain ®; (in the sense of §1.1.7), then every selection equilibrium
is a quantifier equilibrium. To see this, if 0; € E;(%,%0) and E; attains ®;, then

qo = Ufoo; € (o)

We can therefore say that the selection equilibrium is an equilibrium refine-
ment of the quantifier equilibrium. In particular, if we have players modelled
by selection functions E; then we can define quantifier equilibria using the quan-
tifiers ;.

The converse of this holds, and hence quantifier and selection equilibria
coincide, if our selection functions are of the form E; = ®,, where the overline
operator is the one defined in §1.1.7. To see this, suppose ¢ is a quantifier
equilibrium, so we have

40 = Uloo; € 0,(%'0)

Then o € ®,(%0) and hence we have a selection equilibrium for the selection
functions ®;.

Given a strategy profile o, we will say that player ¢ is non-pivotal if the
unilateral continuation %%c : X; — R is constant. If o is a quantifier equi-
librium then any deviation (z;,0_;) by a non-pivotal player results in another
quantifier equilibrium. Selection equilibria in general do not share this property.

We will see this in practice in §1.2.10.

1.2.4 Best responses

An important concept in the foundations of game theory is that of a best
response function. This is a function B : ¥ — &Y, where X is the type of
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strategy profiles of a game, such that the fixpoints of B pick out some solution
concept. The informal specification of a game’s best response function is that
Bo should be the set of strategy profiles ¢’ such that for each player i, it is
rational for player i to use the strategy o, in the sense of having no incentive
to unilaterally deviate, under the assumption that the other players are using
o_;.

For a normal form game as defined in §1.2.2, we can define the best response
function
B:[[x,—»2]][x,
id i

in two different ways, which lead to quantifier and selection equilibria. If our
players are defined by multi-valued quantifiers ®; : (X; — R) — &R then we
can use the definition

Bo = {0/ : HXi
[

A fixpoint of this B is a strategy profile satisfying

Uloo; € ®;(% o) for all i : I}

Uloo; € ©;(U o)

for each 7 : I. Since %,’00; = qo, this is precisely the definition of a quantifier
equilibrium.

Alternatively, if our players are specified by multi-valued selection functions
E;: (X; > R) —» £X,, we define the best response function by

Bo = [[ Ei(%0)

il
A fixpoint o € Bo of this satisfies
0; € Ey(%0)

for each 7 : I, and so is a selection equilibrium.

There are two reasons for focussing on best response functions. A technical
reason is that it is sometimes possible to prove existence theorems for a solution
concept by applying a fixpoint theorem to a suitable best response function.
Nash’s theorem has this form, and is discussed in §1.2.6, but this is not some-
thing that will be emphasised in this thesis.

A second, more philosophical reason is that having the same best response
function seems to be a necessary condition to consider two games to be equiv-
alent. Although there is no formal theory of this (although see §2.2.1), in §3.1
and §3.2 we will use equality of best response functions as an informal criterion
for two games to be considered the same.

Best response functions are introduced in generality in §2.1.5.

1.2.5 Classical games

In classical normal form games, each play determines a real number for each
player called that player’s utility. The utility is a numerical rating of the
player’s preference for that play, and players with rational preferences, in the
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sense of the von Neumann-Morgenstern utility theorem (von Neumann and Mor-
genstern 1944), act as if they maximise some real utility. It is important to
realise that utilities need not physically exist, and in particular utility should
not be identified with monetary profit (which is usually called ‘payoff’). This
point is made strongly in section 1.1 of (Kreps 1990).

In this setting, the outcome of a play consists of a real number for each
player, and so we take R = RI, with the outcome function having type

q: H X, — R’
il
We can think of each player i : I as having her own personal outcome function

g: [[X,»R
j=1

defined by ¢; = m; o ¢ where 7, is the ith projection R 5 R.
Player 7 acts to maximise the ith coordinate, and so we could model her
with the maximising quantifier

P, : (X, - R") - 2R’

given by
®;k = {kx | k;x > k;a' for all 2’ : X}

or alternatively with the maximising selection function
Ei:(Xi%RI)%@Xi

given by
Bk ={z: X;| kx> ka' forall z': X;}

(see §1.1.8).

Notice that E; = ®,, and hence quantifier and selection equilibria coincide
for a classical game. An equilibrium o (of either kind) satisfies the conditions,
for each 7 : I, that

40 = (%qiaxl)i

for each possible unilateral deviation z’ : X;. Since %qiaa?/ = qi(a?/,a_i), we
see that this is precisely the ordinary definition of a pure strategy Nash equilib-
rium (Leyton-Brown and Shoham 2008). Thus, our two solution concepts both
coincide with the ordinary one in the case of classical games.

The best response function for a classical normal form game is?

Bo = {a’ : HXZ'
i1

We get this irrespective of whether we use the quantifier or selection function
forms, and fixpoints of this B give precisely the pure strategy Nash equilibria.

The same reasoning applies if we replace R with an arbitrary set R with
a rational preference relation >. A rational preference relation is another

q;(or,0_;) > q;(z;,0_;) for all i : T and 2’ : XZ}

To be clear, the condition for a best response is not qi(a;,afi) > gq;o. The function
returns ‘best’ responses, not ‘better’ responses.
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name for a total preorder, that is, a relation that is transitive and total but not
necessarily antisymmetric. We will write a = b if we have a < b and b < a for
some a # b : R. For example, if we take R’ with the order a =<; biff a; < b,
then =, is a rational preference relation which has a ~ b iff a; = b;.>"

A rational preference relation on R is the same as a total order on -
equivalence classes. Thus, given a continuation k£ : X — R, we have a set
of optimal outcomes, namely the maximal equivalence class

Ok = {kx | kx > ka' for all 2’ : X'}

This defines a multi-valued quantifier, and similarly we have a multi-valued
selection function attaining it.

1.2.6 Mixed strategies

In this section we will turn aside from the development of higher order game
theory in order to introduce mixed strategies, which will be used in §3.1. It is
still an open problem how mixed strategies should be modelled in the higher
order framework.

Consider a classical normal-form game with a finite number of players, la-
belled 1 <17 < N, so the outcome function has type

N
g: [[Xi = RY
=1

We will also assume that the sets X; are finite®>. A mixed strategy for player
i is a probability distribution on X;. We will write this as o, : X, where the
probability distribution operator & is properly introduced in §2.1.3. A mixed

strategy profile is a tuple
N

Given a mixed strategy profile o, for each player i we obtain a probability
distribution on utilities. This can be used to obtain an expected utility for
the ith player, which is given by

N
Elgo] = Z ((qx)i . H]P’ [o; = xl]> ‘R

N
[T X5

where we use the fact that the X, are finite to ensure convergence. The nota-
tion g;o0 means the application of the non-stochastic function ¢; to the random
variable o. Formally, the functor 2 is acting on g; (see §2.1.3).

A mixed strategy Nash equilibrium is a mixed strategy profile in which
no player can increase her expected utility by unilaterally deviating to some

21put another way, a player is indifferent between outcomes that differ only in the utility
of other players. This formally encodes the assumption that players are selfish.

22Recall that we have an overriding assumption that sets of moves are nonempty (§1.2.2).
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other move®>. Equivalently, a mixed strategy Nash equilibrium is a fixpoint of
the best response function

N N
B:[[2x;,—» 2]] 72X

i=1 i=1

given by
N
Bo = {U/ : H@Xi Elg;(o7,0_)] = Elg; (27, 0,)]
i=1
forall 1 <i< N and z : X;

Nash’s famous existence theorem, namely that mixed strategy equilibria al-
ways exist under only the finiteness condition we have given, is proved in (Nash
1951) by applying the Kakutani fixpoint theorem (Kakutani 1941) to this func-
tion B. A generalisation of this method for certain higher order games was
given in (Hedges 2013). However, there is no known sense in which we can
consider mixed equilibria of an arbitrary higher order game. This will be called
the problem of mixed extensions. For example, the passage from the deter-
ministic to the probabilistic arg max operator appears not to be categorically
natural, and for other selection functions it is unclear what the probabilistic
equivalent should even be.

1.2.7 Voting games

We are now going to introduce an extended example from (Hedges et al. 2015b),
which illustrates the use of selection functions that are different from argmax,
and argues that selection equilibrium (as supposed to quantifier equilibrium) is
the correct solution concept for higher order games in normal form.

We will consider an election with three voters and two candidates. The set
of candidates is X = {a,b}. We will consider the election as a game in which
the three voters simultaneously24 choose a candidate. The outcome of the game
is precisely the candidate who received the most votes. Thus, we take the set of
outcomes to also be X, and the outcome function to be the majority> function
q: X S X,

We will denote the three voters by ¢ = 1,2,3. The preferences of the voters
are defined by multi-valued selection functions E; : (X — X) — £ X, or by the
multi-valued quantifiers E;. We will investigate how the selection and quantifier
equilibria vary as we choose different combinations of selection functions.

2 The reason we consider only unilateral deviations to moves, rather than strategies, is
that the unilateral continuations are multilinear, and hence are maximised at a vertex of the
simplex of strategies, which correspond to moves (or degenerate strategies). It is unclear
whether this generalises to more complicated situations than mixed strategies, such as when
strategies can mutate a state variable, or to behaviours other than maximisation.

24 The term simultaneous does not refer to physical time, but to the knowledge of the players
at the time of choosing. Elections in the real world are simultaneous in this sense.

25 The choice of three voters and two candidates was made precisely so that the majority
function is well-defined without needing a tie-breaking rule.
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If player i is rational, then by definition she has a rational preference rela-
tion° =, on X. Since X contains two elements, there are precisely three rational
preference relations, where respectively a is preferred to b, b is preferred to a, and
both are equally preferred. The last case, when player i is indifferent between
a and b, is described?” by the multi-valued selection function

Epph = X

that always returns the set of all moves. For the remaining two cases, we can
fix an ordering a = b and write the corresponding selection functions as arg max
and argmin with respect to this ordering. We can get all possible rational
behaviours by choosing F;, Fy and F5 from arg max, argmin and F, ..

As a first example, take the three selection functions to be F; = arg max,
Ey; = argmin and E3 = E,, so the first judge prefers a, the second prefers
b and the third is indifferent. Consider a strategy profile ¢ = (01, 05,03) :
X x X x X. For each of these, we can calculate for ¢ = 1,2,3 the unilateral
contexts %o : X — X, namely

%1(1‘7951 = q(z1, 09, 03)

%QqUxZ = q(01, 29, 03)
%3(10953 =q(o1,05,73)

Using the definition in §1.2.3, we see that ¢ is a selection equilibria iff

o, € argmax(%,’o) = argmax q(z1,04,03)
x: X

oy € argmin(%, 0) = argmin q(o, x5, 03)
To: X
03 € By (%s'0) = X
where the third condition is trivial.

Since there are only 8 strategy profiles, we can simply enumerate them and
calculate the equilibria by brute force. We will begin by checking that the
obvious strategies (a, b, a) and (a, b, b), where each player votes for her preferred
candidate, are selection equilibria. In this case the unilateral contexts are

U (a,b,a)z; = q(x1,b,a) = 7,
%Qq(a'v b7 a)xZ = Q(a7 L, Cl) =a
Applying the selection functions gives

arg max(%,"(a,b,a)) = argmaxz, = {a}
x: X

arg min(%,'(a,b,a)) = argmina = {a, b}
Tyt
Since a € arg max(%,*(a,b,a)) and b € arg min(%, (a,b,a)), we have a selection
equilibrium. We can similarly verify that (a,b,b) is a selection equilibrium.

26 A total preorder.

27Eazb is the argmax operator for the rational preference relation with a =~ b, because
every element of the order is maximal in every context.
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1.2.8 Modelling with selection functions

However, this game has additional equilibria that are less plausible. Consider
for example the strategy (a, a, a). Classically, this is an equilibrium because the
second player, who is the only player who might have incentive to deviate, is in
fact not pivotal and so cannot increase her utility with any deviation. This is
also captured by the selection equilibrium, because the second player’s unilateral
context is the constant function

02/2(1 (av a, a)xQ = q(av T, a) =a

The minimum value that ¢(a,z,,a) can take is a, and this minimum is at-
tained at zo = a,b. Thus we have argmin(% (a,a,a)) = {a,b}, and since
a € argmin(%,' (a,a,a)) we see that player 2 has no incentive to unilaterally
deviate.

If we as a modeller decide that this is implausible, one classical method® is to
modify the preferences of the players. In the initial formulation, the preferences
of player 2 are given by a rational preference relation a <, b on the type of
outcomes R = X. However, we can pass from this to a rational preference
relation <5 on the type of plays X x X x X, given by

(xlaZanS) 5/2 (xllvxéaxé) — Q(xlax%x?)) 52 Q(xllaxéaxg)

Thus, a play is preferred iff it leads to a preferred outcome. In this preference or-
der, we have implausible equivalences such as (a,a,a) ~4 (a,b,a). The solution
is to manually modify the preference relation. For example, we could replace
<4 with a lexicographic relation <4 which first takes preferred outcomes, and
then if the outcomes are equivalent, uses the preference on moves b =5 a. This
models a player who will always vote b, except in the strange context®” in which
voting a leads b to win the contest, and voting b leads a to win.

When using selection functions, the idiomatic way to approach this prob-
lem is to use selection refinements (§1.1.7). Specifically, we refine player 2’s
multi-valued selection function argmin : (X — X) — £X to the single-valued
selection function

b if b€ argmink
€2k = .
a otherwise

Much more detail about this is given in (Hedges et al. 2015b). A particular
advantage of higher order game theory that can be exploited is that we never
need to assume that the notion of rationality implemented by a selection function
is equivalent to maximising over a rational preference relation, so rational and
non-rational behaviour can be treated on an equal footing.30

28 Another method that is used in practice is simply to ignore equilibria that are considered
implausible, making the ‘model’ a mixture of formal game theory and informal economic
intuition.

29This is tactical voting, and can never arise in the toy model that we are considering.

301t is often straightforward to ‘rationalise’ a non-rational selection function by enlarging
the set of outcomes and modifying the outcome function, with the consequence that the
advantages of selection functions are often only methodological. It is interesting to compare
this to the discussion of similar ‘rationalisations’ of bounded rationality models in (Spiegler
2011).
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1.2.9 Coordination and differentiation

The main contribution of (Hedges et al. 2015b) is the demonstration that co-
ordinating and differentiating behaviour of players in the voting game can be
modelled by selection functions that do not arise from rational preference rela-
tions, specifically fixpoint and non-fixpoint operators. Specifically, coordinating
behaviour is modelled by the selection function Eg, : (X — X) — £X given
by

{z: X |2z =ke} if nonempty
Eﬁxk = .
X otherwise

and differentiating behaviour by

5 L {z:X |z #kz} if nonempty
nonfix™ 7 x otherwise
Notice that {x : X | x # ka} is empty iff k is the identity function X — X.

In the scenario of the voting game, a player modelled by Fg, aims to wvote
for the winner, and as such they are a Keynesian agent, after (Keynes 1936),
chapter 12. Keynes’ example of coordinating preferences in economics is as
follows: suppose for simplicitly that the financial success of a company is de-
pendent only on the number of investors it attracts. An investor, therefore, has
no preferences over different companies, but rather must aim to go with the
majority of other investors. Similarly, a player modelled by E,..ax iS & punk,
whose only aim is to vote against the majority.

These selection functions are total variants of their refinements

Bk ={z: X |z =kx}

Exllonﬁxk = {[E : X ‘ T 7é kl’}

which are not total (see §1.1.6). The intuition behind returning X in the excep-
tional case, rather than & or some arbitrary default value such as {a}, is that in
this case the player is indifferent and hence should be satisfied with any choice.
In practice this has been checked by brute force, by showing that these exact
definitions of Fg, and E, .4, agree with the informal specification of a player
who aims to vote with or against the majority.

Unlike arg max and arg min, the selection functions FEg, and F,,,ax are not
closed (see §1.1.7). To give a specific counterexample, consider the context
k: X — X given by kx = a. The fixpoints of k are Fgq k = {a}. Then

Egok = {ka |z € {a}} = {a}

and L
Egk = {z: X | kz € {a}} = {a,b}

Thus Egyk # Eggk. Similarly,

Enonﬁxk = {b} # {CL7 b} = Enonﬁxk

This relates to the choices not being pivotal in the constant context (see §1.2.3).

40



1.2. NORMAL FORM GAMES

1.2.10 Illustrating the solution concepts

As a second example, we will take E; = Fgy, Fy = F 5 and E3 = arg max.
Thus we have a Keynesian agent, a punk, and a rational player who prefers a.
This game has 4 selection equilibria, namely

(a,a,b), (a,b,a),(b,b,a),(b,b,b)

Of these, (a,a,b) and (b,b,b) are implausible and can be ruled out by refining
arg max as described in §1.2.8. With (a, b, a) all three voters have achieved their
aim: the first is in the majority, the second is in the minority and the third has
her preferred outcome. In (b,b,a) player 2 is unable to be in the minority
because she is pivotal, and so she is satisfied with the choice of b. Player 2’s
unilateral context is

%QQ(bv b,a)ry = q(b,5,a) = 29

and %,'(b,b,a) has no non-fixpoints, and so E,g.ix(% (b,b,a)) = {a,b} by
definition. This selection equilibrium could be ruled out if desired out by refining
E, onfx to return the actual set of non-fixpoints, even if empty.

Now, suppose we define the preferences instead by the multi-valued quan-
tifiers E,, Fy, E5. The four selection equilibria remain as quantifier equilibria
(see §1.2.3), but there are two additional quantifier equilibria which are not se-
lection equilibria, namely (a, a, a) and (b, a, a). We will focus on the latter as an
example. The unilateral context for the first player with this strategy profile is

02/1(1(1% a,a)r; = q(r1,0,a) = a

The strategy profile is not a selection equilibrium because player 1’s choice is
not a fixpoint, in other words,

b ¢ {a} = Eg (% (b,a,a))

However, the quantifier equilibrium uses outcomes rather than choices, and the
outcome is a fixpoint:

q(ba a, a) =ac {a} = Efﬁx(%lq(b? a, G,))

According to the definition in §1.2.3, taking ®, = E;, this makes (b,a,a) a
quantifier equilibrium. Alternatively, this can be seen as player 1 not being
pivotal (§1.2.3) and deviating from the more plausible equilibrium (a, a, a).

For a third example, we will take F, = Ey = E3 = Fg,, giving a game
in which no players have preferences over the candidates but all aim to vote
with the maujority.31 Intuitively the equilibria of this game should be (a,a,a)
and (b,b,b), and indeed these are exactly the selection equilibria. However,
every strategy profile of this game is a quantifier equilibrium. This is essentially
a tautology: no matter how the players vote, the majority choice is in the
majority. This is an example where the selection equilibrium makes a useful
prediction that agrees with intuition, but the quantifier equilibrium makes no
prediction.

31This scenario is the closest to the original Keynes beauty contest.
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For a final example, take Ey = Ey = F5 = E_ s8¢ This models a population
consisting entirely of punksBQ. Of course, in any particular play a majority of the
punks will always fail in their aim to be in the minority. The selection equilibria
of this game are precisely the ‘maximally differentiated’ strategy profiles, namely
all strategy profiles except for (a,a,a) and (b,b,b). Once again, every strategy
profile is a quantifier equilibrium, because

_ ) {kz |2 # kz} if nonempty
| Imk otherwise

E

nonfix

If we take for example player 1 with the strategy profile (a, a, a), the unilateral
context is %, (a,a,a)x; = a, and so

Enonﬁx(%lq(aa a, a)) = {02/1(1(@7 a, a)b} = {Q(b7 a, a)} = {a}

This gives us a second example in which the selection equilibrium makes a useful
and intuitive prediction, whereas the quantifier equilibrium makes no prediction.

On the basis of these examples, we choose to use selection equilibria rather
than quantifier equilibria as the default solution concept for higher order games.
This is essentially the argument of (Hedges et al. 2015b). This approach is more
general than (Escardé and Oliva 2011), which (naively) takes the quantifier
equilibrium as its solution concept.

1.3 Sequential games

1.3.1 Discussion

The theory of sequential games defined by selection functions was the starting
point of higher order game theory. It was first developed in (Escardé and Oliva
2010a), with the presentation in this section based on (Escardé and Oliva 2011).
In particular it is not the work of the author, but is included for completeness.

The type of single-valued selection functions, introduced in §1.1.4, carries
the structure of a strong monad. Moreover the type of single-valued quantifiers
carries a different strong monad structure, namely the continuation monad (see
§1.1.3). The key result about higher order games is that the monad operations
on these types are compatible with the game-theoretic interpretation, and in
particular there is a monoidal product operator that implements the backward
induction algorithm (and which moreover extends to unbounded games), which
is the standard method in game theory to calculate subgame perfect equilibria
of games of perfect information.

We will use the term sequential game to refer to games of perfect infor-
mation with the added restriction that the player choosing at each stage, and
the set of moves available to her, is independent of the previously chosen moves.
This rules out standard examples such as the market entry gaume.33

In a sequential game the players are ordered, with each player being able to
observe the choices made by previous players before making her own choice. We

32Neil Ghani has pointed out that, in fact, punks don’t vote.

33Genemlly speaking, type theoretic approaches to game theory have difficulty with this
sort of example. Multi-agent influence diagrams (Koller and Milch 2003), for example, cannot
represent the market entry game. This exact issue is the focus of (Botta et al. 2013).
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can easily adapt the unilateral continuations from §1.2.2 in order to define Nash
equilibria for sequential games. However, sequential games can have implausible
Nash equilibria in which players make so-called incredible threats, in which a
player can rule out branches of the game tree by contingently making a mutually
destructive move. Subgame perfect equilibria rule this out, by forcing play to be
rational even in branches that are not reached by playing the strategy. Every
sequential game with finitely many players has at least one subgame perfect
equilibrium, a result that is proved constructively using backward induction.

The method in this chapter of computing subgame perfect equilibria using
the product of selection functions generalises to games with infinitely many
players, so long as the outcome function is topologically continuous. These
‘unbounded sequential games’ are crucial to the application of selection functions
in proof theory (Powell 2013, Oliva and Powell 2014; 2015), and are discussed
from a game-theoretical point of view in (Escard6 and Oliva 2012). However,
backward induction for unbounded games relies crucially on subtle aspects of
higher type computability, namely bar recursion, and for simplicity in this thesis
we will focus only on games with finitely many players. See also the discussion
in §2.2.1 of infinitely repeated games as coalgebras. 4

1.3.2 The category of selection functions

Just as quantifiers form the continuation monad %%, so selection functions form
the selection monad _#y where

IrX=(X—->R) =X
Explicitly, the unit maps 7 : X — _#pX are given by
nt=MAk:X — R).x
and the Kleisli extension of f: X — #gY is
ffe=Xk:Y = R).f(e\z: X).k(fzk))k

It is difficult to give a direct proof that #p is a monad, and the proof in
(Escardé and Oliva 2010a), which also applies to the selection monad trans-
former in (Hedges 2014), uses the fact that the monad laws are equivalent to
the category axioms for the Kleisli category. This proof is simple enough to
reproduce here.

Given a locally small category C and a fixed object R, we will define a new
category #rC called a selection category. The objects of #rC are exactly
the objects of C, and the hom-sets are given by

hom 4 ¢(X,Y) = home (Y, R) — home(X,Y)
In particular, using the fact that Set is enriched in itself gives

homfRSet(X7 Y) =Y 2R > (X=>Y)=X - ZRY

34 The relationship between corecursion and bar recursion seems to be an open question.
One possibility is that corecursion provides the appropriate general method to verify that a
strategy is an equilibrium, whereas bar recursion or products of selection functions provides the
appropriate general method to compute equilibria from scratch. Progress towards answering
this question was recently made in (Capretta and Uustalu 2016) with the notion of a ‘barred
coalgebra’.
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The identity on X is given by
idyk =idy

where the left hand idy is the identity in hom 4 ¢ (X, X), and the right hand
is in hom¢ (X, X). The composition of £ : homy(Y,R) — hom¢(X,Y) and
d : home(Z, R) — home (Y, Z) is given by

(6oe)k = dk oe(k o dk)
The category axioms can be proved very compactly. The left unit law is

(idy ce)k =idykoe(koidyk) =idy oe(koidy) = ek
The right unit law is
(eoidx)k =¢ckoidx(kock) =ckoidyx = ¢k
and the associativity law is
(yo(doe))k=~ko(doe)(konrk)

=~kod(kovk)oe(kovkod(konk))

= (yod)koe(ko(yod)k)

=((yod)oe)k

The selection category #zC will appear again in §3.3.5. _#zC can also be
given a premonoidal product, which we will now introduce.

1.3.3 The product of selection functions

In §1.1.4 we introduced single-valued selection functions as elements of the type
e: JpX=(X—-R)—> X

In §1.3.2 we proved that #g is a monad. In (Escard6 and Oliva 2010a) it is
moreover proved that #Zg is a strong monad. In particular this means that it
is a monoidal monad, in the sense that it has a prernonoidad35 product operator

X: IpX X JRY — Zr(X xY)

This operator is called the binary product of selection functions, and is
explicitly defined by
(e x )k = (a,ba)
where
a=ce\z:X).k(z,bx)
br =6Ay : Y).k(z,y)

This can be folded to any finite number of selection functions ¢; : #r X,

by

N N
Xe=eax X g
j=i j=i+1

with the base case D(j,v:N g; =e¢n.

35 The product of selection functions is written ® elsewhere in the literature, but we will
write it as X to emphasise that it is noncommutative, and avoid confusion with the tensor
product of open games introduced in §2.2.6, which is very different. This notation for a
premonoidal product is from (Power and Robinson 1993).
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1.3.4 Sequential games

Since our players now choose sequentially, we will number them 1,..., N. Just
as for normal form games (§1.2.2), a sequential game consists of choice types
X;, and an outcome function

N
q:HXi%R

=1

where R is a type of outcomes.
We will, similarly, model the players by multi-valued selection functions

E, :(X;— R)— £X,

This is the role taken by single-valued quantifiers in (Escardé and Oliva 2010a)
and by multi-valued quantifiers in (Escard6 and Oliva 2011). Since the same
reasoning about coordination and differentiation games applies as in §1.2.10 and
(Hedges et al. 2015b), we will use multi-valued selection functions rather than
quantifiers.

The first difference between sequential and normal form games is that strate-
gies become nontrivial. When player ¢« makes her choice, she can directly observe
the choices made by all players ;7 < i. Thus, player ¢’s strategy is a function

j<i
and the type of strategy profiles is
N

Y= HXJ-—>X¢

i=1 \j<i

A play, however, is still a tuple in Hf\il X;.

Given a strategy, we can play it to obtain its strategic play. Notice that if
o : Y then o is simply a choice o; : X, because the tuple Hj<1 X is the unit
type. Similarly o5 : X; — X5, so we can apply o4 to o; to obtain the second
player’s choice, o407 : X5. This can be extended by course-of-values recursion:

N
Pz [[X
=1

(Po); = 0;((Po)y,...,(Po)i_1)

This is our second example of a play function (the first being the identity func-
tion in §1.2.2), and is again a special case of the play functions introduced in
§2.1.4.

1.3.5 Subgame perfection
A partial play is defined to be a tuple

xl,...,xi_llnX]‘

j<i

45



1.3. SEQUENTIAL GAMES

for some 1 < ¢ < N. Notice that the empty sequence is considered a partial
play, but a play is not considered a partial play. Partial plays are in bijection
with subgames, which are games that can be obtained by replacing some initial
segment of players by fixed choices.

Given a strategy profile o, we can extend a partial play to a play called its
strategic extension by o¢. This is similar to a unilateral deviation, except
that instead of a single player ¢ deviating, all players j < ¢ deviate. In the
strategic extension vy of x = xq,...,x;_; by o, the first i — 1 players are forced
to use the partial play, but subsequent players use . The definition is by the
course-of-values recursion

) z; if j<i
(VI)J: o o oo .
o'j((l/z)lr--a(ym)jfl) lf]ZZ

If i = 1 then z is the (unique) partial play of length 0, in which case Po = v°.
We will now modify the unilateral continuations introduced in §1.2.2 for use
with sequential games. Instead of simply having a single function

U:%— X, - R

for the ith player’s unilateral continuation, we must instead have one for each
partial play of length ¢ — 1. This will be defined by

%qu'{,Ci = q(yg,xi)

forz=x,...,2;,_4.
A subgame perfect equilibrium is a strategy profile o that is an equi-
librium in every subgame. That is, for every partial play x = z,...,x,;_;, the

next move played by o, namely o;x, is rational according to the selection func-
tion F;, in the context in which player ¢ unilaterally deviates in the subgame
induced by z. Explicitly, 0 must satisfy the conditions

0T € El(%rqa)

for all partial plays z = xq,...,2;_1.
Equivalently, a subgame perfect equilibrium is a fixpoint of the best response
function B : ¥ — &%, where

Bo={0o":%|oix € E;(%Jo) for all v = xq,...,2;_ 1}

1.3.6 Backward induction

We will now prove the theorem that deserves to be called the fundamental
theorem of higher order game theory, that the product of selection functions
computes a play that is rational according to subgame perfect equilibrium.

Suppose each F; is refined by a single-valued selection function €; : _#ZgX;,
in the sense of §1.1.7, so ¢;k € E;k for all k: X; — R. Then

(3¢)-

is the strategic play of a subgame perfect equilibrium.
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This has been proven in (Escardé and Oliva 2010a; 2011), but we will give
the proof again here, because the technique is important and will be used again
in §3.2.4 and §3.3.4. Specifically, we will prove that the strategy profile o defined
by the course-of-values recursion

01(3717 Ce X)) = Ei(%q

9517»--7%‘710’)

is subgame perfect, and that its strategic play is ([)( f\il Ei> q. Subgame perfec-

tion is immediate, because for every partial play x,...,x;_; we have
_ q q
O—i(xla s 71'1’—1) - gi(%wl,m,zi,la) € Ei(%ml,.“,wi,lo—)

For the second part, we will prove the stronger fact that for any partial play
Lyyewy Li—1,

N
o N
D< Ej qzl,...,mi,I = (V:cl,...,a:i,l)j:i

j=i

by strong induction on N — ¢, where
N
qwlv‘wmi—l : HXJ — R
j=i

is defined by
qa;l,“.,wi,l(xia s N) = (T, T, Ty, TN
The original claim follows, because the empty partial play has the property
(Va)j-vzl =1’ =Po

This is the characteristic of the proof technique we are using: to prove a property
of a sequential game, work by bar induction on the tree of subgames. For games
with finitely many players, this is equivalent to fixing a partial play of length
i — 1 and working by strong induction on N — 4, ending eventually with the
empty partial play, whose induced subgame is the game itself.

In the base case, we have a partial play x;,...,xn_1, and

N

X ei|a =eng = (vz )it
J L1500 TN -1 Nzy,...,xn_ Tysetn_1/J=N

j=N

because by the definition of (v; ), in §1.3.5,
(Vgl,...,xN,l)N = UN((V;I,...,Q;N,I)D R (Vgl,...,a:N,l)N—l)
:UN(QCl?"'?‘TN—l)

By the definition of o this is & (%}

ooz, 0)- Finally, we have

q —
21,y = Qoy,on
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because for all xx : Xy,

@/qu,...,xN,IUCUN = Q(l/gl,...,xN)
= (W7, oy )to- (V2 ey )N)
=q(z1,...,2pN)
=qz,...xn_ TN

This completes the base case of the proof.

1.3.7 The inductive step

For the inductive step, we take a partial play z;,...,z;_;. Unfolding the prod-
uct of selection functions once gives

N N
D( Ej qa:lv"’wi—l = g X D< gj qiﬂlwuﬂiz‘—l = (a”ba)
j=i j=it+1

where
a=¢e;Nx; Xi)'Qzl,...,wi_l,a:i (bx;)

N

br; = D( €| Quysnnsiym;
Jj=i+1

The inductive hypothesis gives us
N
br; = (Vgl,...,xi,l,:ci)j=i+l

for all z; : X;. We must prove that

N
(a, ba/) = (Vgl,..»,l’ifl )‘7:1

which is to say that

a = (Vgl,.,,,a:i_l)i

N
ba = (Vgl,...,zi,l)j:iﬂ
We will first prove that for all z; : X,
%qu,.“,zi,laxi = qazl,“.,wi,l,mi (bxz)

The left hand side by definition is

q _ o

%zl,...,ziflo-xi - Q(le,...,:ci,l,xi)

and the right hand side, by the inductive hypothesis, is
o N
QZl,‘..,ZEi_l T4 (b'rz) = qwl,...,a:i_l,wi ((V:cl,...,:ci_l T )j:iJrl)
and these are equal because
o N o N
le,...,xi,l,xi((Vxl,...,xi,l,:ci )j=i+1) = q(xlv sy Li—1y Ly (Vxl,...,mi,l,;ci )j:i-i—l)
ag
= Q(le,.“,zi_l,a:i)
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1.3. SEQUENTIAL GAMES

From this we immediately get

(1/;’1’ .,mi_l)z = O-i((ygl,..‘,w,;_l)lv B (Vgl,...,mi_l)iq)
=0i(T1,---, i)
251‘(%1(11, ,m,b,lal)
=g\ (z; ¢ Xi)'Qacl,A..,:ci,l,xi (bx;)
=a

which is the first of the two conditions to be proved.
In order to prove the second condition

N
ba = (Vgl,...,z,-,l)j:z'ﬂ

we use the inductive hypothesis to get
ba = (Vgl,...,mi_l,a)j’v:i-&-l
and so we will prove by strong induction on j > i that
V)i = Wy ey ya)j
(Notice that this also trivially holds for j < i.) In the base case we have
Vo a)i =a= Vg, 4 )i

by the previous result. For the inductive step,

(Vgl,...,:ri_l,a)j = Uj((ygl,...,w,;_l,a)lv R (Vgl,...,zi_ha)jfl)
= O'j((ygl,m,:rifl)lv RN (Vgl,...,zi,l)jfl)

= (Vgl,,..,:c,i,l )j

This completes the entire proof.
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Chapter 2

The algebra and geometry
of games

2.1 Open games

2.1.1 Discussion

In this section we define open games, our objects of study. The barrier to entry
is high: this section is quite abstract, and although we focus on examples and
intuitions inline with the theory, we must wait until §2.3.9 before giving even
the most trivial examples from game theory textbooks. Moreover the definitions
we develop here bear no apparent relation whatsoever to the usual, familiar
definitions of game due to von Neumann (Leyton-Brown and Shoham 2008), or
the higher order games introduced in chapter 1, and a large part of this thesis
will be spent developing the reader’s intuition for how these objects behave
and how they should be used in mathematical modelling. To some extent the
investment in abstraction will not pay off in the scope of this thesis, which is
setting the groundwork for serious applications.

There are two key pieces of intuition that should be understood before be-
ginning this section. The first is that a game should be seen as a pmcess.l In
particular a game should be a process that maps observations to choices: a game
should input whatever information is observable, compute a decision and then
output that decision. We remain agnostic about what is meant by ‘computa-
tion’ using the familiar technique of modelling a computation as a morphism of
a suitable axiomatically-defined category. In this informal games-as-processes
description we can already see that a game may consist of an aggregate of play-
ers: the game-process may distribute its input to a collection of sub-processes,
each of which has only partial access to the true input, and which run in parallel
to compute choices.

The idea of viewing games as processes, and hence as morphisms of a suitable
category, first appears (to the author’s knowledge) in (Pavlovic 2009). Our

L This view may already be surprising to readers familiar with game semantics, in which
games are objects and (relative) winning strategies are morphisms. See for example (Hyland
1997).
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2.1. OPEN GAMES

implementation, however, is quite different.? With the theory here we are able
to take the logical next step and view sequential and parallel play of games as
sequential and parallel composition of processes.

The second key piece of intuition, which is shared with higher order game
theory and which we reiterate from §1.1.1, is that all of our computation is done
relative to a delimited continuation. A game is a process that runs in a calling
environment, and after a process has terminated with a decision the calling en-
vironment will use that decision to compute an outcome for the process. This
computation taking decisions to outcomes is the process’ continuation, and it
is one of the most fundamental principles of game theory that this computa-
tion is known to the playersS, hence the processes run in continuation passing
style. We will uniformly use the term ‘continuation’ to refer to what is vari-
ously called a ‘utility function’, ‘payoff function’; ‘payoff matrix’* or ‘outcome
function’. However continuations are more general, and include for example
contexts in which other players are making rational choices. This ability to re-
duce multi-player situations to single-player situations, by abstracting away the
other players into something akin to an outcome function, is a crucial ingredi-
ent of compositional game theory. The outcomes-as-continuations view strongly
informed the definitions in this section, and other parts of the theory.

The entirety of chapter 2 is essentially based on (Ghani and Hedges 2016).

2.1.2 The underlying model of computation

We will now introduce our model of computation: symmetric monoidal cate-
gories. The definitions in this section will be made with respect to an arbitrary
symmetric monoidal category, which will be instantiated with particular ex-
amples in later sections. This should be seen in the context of premonoidal
categories and the computational A-calculus (Moggi 1989), restricted to com-
mutative side effects.

We will begin with a category with finite products, which for simplicity
we will take to be the category Set of sets and functions. Given a monad
T : Set — Set, we can form the Kleisli category KI(T), whose objects are sets
and whose morphisms are Kleisli arrows,

homyq () (X,Y) = X = TY

The unit morphisms of KI(T') are the units of T, and the composition of mor-
phisms in KI(7T') is given by Kleisli extension.
A monoidal monad is a monad T equipped with a product operator

:TXXTY - T(X xY)

natural in X and Y. If the diagram

’In that paper the ‘processes’ are closer to our continuations, while the act of computing
a choice is delegated to a fixpoint operator.

3The failure of this is called ‘incomplete information’, and is crucial to many applications
of game theory because it is not a reasonable assumption about the real world. This is not in
the scope of this thesis, however.

A payoff matrix represents a linear payoff function, via the linearity of expectation. An
unrelated usage of the same term appears in dialogical semantics, in which the ‘matrix’, or
quantifier-free part of a prenexed formula, is another example of a continuation of a game.
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2.1. OPEN GAMES

TX xTY

T(X xY)
OTX,TY TaX,y

TY x TX —2 L T(Y x X)

commutes then T is called a commutative monad, and this can be used to
make KI(T) into a symmetric monoidal category (Power and Robinson 1993).
The unit object of KI(T") is I = 1, the set with one element, and the object
X ®Y is the cartesian product X x Y.

Categories of the form KI(T') have some additional structure we will need,
namely that the monoidal product is a weak product: we have canonical
deleting morphisms

!X : hOIIlKl(T) (X, I)

and copying morphisms
AX N homKl(T)(X,X ® X)

given by composing the unique maps in Set with the units of 7. These are not
true products, but uniqueness is the only condition that fails.” Asa consequence,
we also get canonical projections

7r1:X®Y—>X®!Y Xl 25X

and
Xy X2 1oy My
The justification and intuition for considering such a category as a ‘model
of computation’ is described in §0.7. For the remainder of this chapter, C is
going to refer to an arbitrary category with weak products. One example is
Set, which translates into game-theoretic terms as pure strategies. Another
example is SRel, which gives mixed strategies and which we will not describe.

2.1.3 The category of stochastic relations

We begin with the finitary probability distribution monad & : Set — Set.
The underlying functor acts on sets by

72X =< a:X —[0,1] | supp(«) is finite, Z ar =1
xesupp(a)

where supp(a) = {z : X | ax # 0}. We consider values’ a : 2X as random
variables of type X, and use the notation P [ow = z] for ax : [0,1]. The action

5 . . .
In the language of functional programming, we can delete or copy data in many ways,
but there is only one canonical way, namely the way that doesn’t use side effects.
6Sce the statement of Moggi’s thesis in §0.7.
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2.1. OPEN GAMES

on morphisms f: X — Y is given by

P(Zfa=y]= > Pla=a]
z€supp(a)
fr=y

This makes Z into a functor.
The monad unit § : X — ZX creates unit mass distributions,

1 ifz=4

]P’[é:z::z/]{

0 otherwise

The Kleisli extension of a function f : X — 2Y is given by

Plffa=yl= Y Plfz=y

zesupp (o)

This makes Z into a monad on Set. Finally, we have a monoidal product
®: 92X x 2Y = 2(X xY) given by

Pla®p = (z,y)] =Pla=1]- P[5 =y

With these operations, Z is a commutative monad on Set, and so its Kleisli
category is symmetric monoidal. We will refer to the Kleisli category as SRel,
the category of sets and stochastic relations. This is a variant of the usual
notion of stochastic relations, which is defined in (Panangaden 1999) using sub-
probability rather than probability distributions. The distribution monad used
here is the same one used in the study of convex sets (Fritz 2009, Jacobs et al.
2015), and is a ﬁnitary7 version of the Giry monad on the category of measure
spaces (Giry 1982). Although subprobability distributions might be interesting
in this setting, allowing choices to fail with some probability, we will use true
probability distributions to remain close to Nash’s original assumptions.

2.1.4 Open games

We can now give the definition of an open game. A type of an open game is of
the form

G:(X,5) — (Y,R)

where X,Y, R, S are objects of C. For now this is purely formal; later we will
make open games into the morphisms of a category whose objects are pairs. In
§2.3.5 we will introduce an alternative notation for this, namely

G:X®S" -Y®R"

Each of the four objects of C should be read in a different way. We view

X as the type of observations that can be made by G, and Y as the type of
. 8 . .

moves or choices”, hence a game maps observations to choices. The types R

"Recall that Nash’s existence theorem uses only finite sets of strategies, so this is not a
restriction. We would need to use the Giry monad if we were following the generalisation of
Nash’s theorem to compact sets of strategies in (Glicksberg 1952).

8We continue to use these terms interchangeably.
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2.1. OPEN GAMES

and S, on the other hand, are ‘dual’ or ‘contravariant’ types. A useful intuition
is that a type appearing in the right component of a pair represents a type whose
elements are elements of R in the future, and which a rational player is reasoning
about. We view R as the type of outcomes of G, that is, the type of values
about which the players in G have preferences. The type S, dually, represents
outcomes that are ‘generated’ by G and returned to the calling environment.

We now finally arrive at the central definition of this thesis, that of an open
game, which we will often simply call a game. An open game of type

G:(X,5) — (Y,R)
is, by definition, a 4-tuple
g = (¥g,Pg, Cg,Bg)
where
e Y is a set, called the set of strategy profiles of §
e P;:YX; = home(X,Y) is called the play function of G
e C;: 35 — home (X ® R, S) is called the coplay function of G

e B; : hom(I,X) x home(Y,R) = X5 — #P3; is the best response
function of G

In general we impose no conditions whatsoever on these components. In prac-
tice, however, we will restrict to games which are freely generated by the con-
structions considered in this section and §2.2, which gives some implicit restric-
tions.”

The most straightforward parts of this definition are the first two compo-
nents. It is intuitive that a game has a set of strategy profiles and that, given a
strategy profile and an observation, we can run the strategy profile on the ob-
servation to obtain a choice. To give a simple concrete example with C = Set,
suppose Y = A x B, and define

Y=X-2A4)x(XxA—B)

and
P(Uh 02)93 = (017, 09(z,017))

This represents a two-player game of perfect information'’: first the value z is
input, then the first player observes this and chooses a, and then the second
player observes both = and a and chooses b, and finally the pair (a,b) is output.

Probably the most mysterious part of the definition is the coplay function.
The basic idea is that the coplay function takes a utility in the future and
transforms it to a utility less far in the future. It is completely unclear, however,
why this should depend on an observation and a strategy. The only explanation
that will be given is that the dependence on the observation is used only to

“Readers who care about foundations can be reassured that there will only be set-many
freely generated games of a fixed type, out of class-many arbitrary games.

10However7 the input x that is observed by both players is not expressible in classical game
theory.
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2.1. OPEN GAMES

define the counit game in §2.1.9, which transforms an observation into a utility.
The dependence on a strategy profile is a consequence of this, since to define
coplay for an aggregate it is necessary to have access to the play functions of
the components, which requires a strategy proﬁle.11

2.1.5 The best response function

The final part of the definition of an open game, and the part which needs the
most explanation, is the best response function. In classical game theory the
best response function of a game is a function B : ¥ — 2%, where ¢’ € Bo
means that each player i would be satisfied to play her component o, in response
to the situation in which every other player j plays the strategy o;. When this
happens we say that ¢’ is a ‘best response’ to o. An equilibrium can be defined
as a strategy which is a best response to itself, that is to say, a fixpoint of
the multi-valued function B. The best response functions in §1.2.4 and §1.3.5
behave in this way.

We can quite easily replace Bg for open games with an ‘equilibrium set
function’

Eg : home (1, X) x hom (Y, R) — P3¢

by defining Eg(h, k) to be the set of fixpoints of Bg(h, k). This is the approach
taken in (Ghani and Hedges 2016). If we do this, the remaining definitions in
this section can be made correctly, without reference to best responses. However
we choose to always carry around the best response function, which after all
contains more information, for the reasons given in §1.2.4: it provides a method
to prove existence theorems (although see §3.3.7), and it gives a finer notion of
equivalence between games (although see §2.2.1). If we were studying ‘abstract
game theory’™® more seriously we could investigate the idea that the string
diagrams in §2.3.5 can be interpreted in two'* different categories, and the best
response function is forgotten by an identity-on-objects functor.

One of the fundamental ideas of this thesis (see §1.1.1 and §2.1.1) is that
games should only be defined relative to a continuation. This leads to the
idea of allowing a continuation as an additional parameter to the best response

function, namely
Bg : hOch(Y, R) — Eg — @Zg

Here we see in full generality what is meant by the term ‘continuation’ in this
thesis: it is nothing but a function from choices to outcomes.'” The importance
of working relative to a truly arbitrary continuation, rather than an arbitrary-
but-fixed continuation such as an outcome function, is that when we define
Bgko in terms of the best response functions of its components, we will use

“More succinctly, the definition is correct because it works (see the remainder of this thesis
for details). The exact combination of definitions that works is very subtle and fragile, and is
by far the most important contribution of this thesis.

2o example, one of the hypotheses of the Kakutani fixpoint theorem, used to prove the
Nash existence theorem, is that our multivalued function should have convex values. Best
response functions are indeed convex in the appropriate setting, but mere sets of equilibria
are badly behaved, consisting only of isolated sets of points in typical examples.

13 This phrase is from (Pavlovic 2009).

' The same idea could also work for the Nash and subgame-perfect variants of categorical
composition, and possibly many other variant definitions.

15 he simplicity should not diminish the importance of the outcomes-as-continuations idea.
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continuations k" that actually depend on the strategy profile o as well as on
k. Thus, allowing continuations to vary is at least as important as allowing
strategies to vary.

If we define the best response function in this way we again obtain a logically
sound theory. However this definition contains a serious error, because nontrivial
examples can only be written if the best response function is also allowed to
depend on the observation made. A pair

(h,k) : home (I, X) x home (Y, R)

will be called a context'® for the game G, and we can roughly think of h and k
as the past'” and future behaviour of the calling environment. There is another
major subtlety here, namely that the best response function does not depend
on a pure observation but on the computation of an observation, which may
have side effects. If T is a commutative monad on the category of sets, and
C is its (symmetric monoidal) Kleisli category, then the observation is a value
of type T X rather than X ¥ For example if we have probabilistic choice as a
side effect by taking C = SRel (see §2.1.3) then we need to consider probability
distributions over possible observations, because elements of homggre (I, X) are
random variables of type X. If we try to use pure observations instead, we find
that we cannot define categorical composition in §2.2.2.

Finally, we come to a family of variants that are much more important.
The definition of best response as a multivalued function and an equilibrium
as a fixpoint is classical, and is sufficient for working with pure, mixed and
nondeterministic strautegies.19 This idea, however, does not stand up to more
complex side effects such as learning.20 If we write the multivalued function
instead as

Bg : hOch(I,X) X hOmc(Y,R) — Eg — Eg — B

then the better definition is to replace the booleans B with some other (in
general noncommutative) algebraic structure B. If we only care about Nash
equilibria then we can take B to be a monoid, however for reasoning about
subgame perfection it seems that B should be some kind of ‘noncommutative
complete semilattice’. A typical example would be of the form B = T'B, where
T’ is another (strong, not necessarily commutative) monad on the category of
sets, which can be different to 7', the monad with C = KI(T').*" Since it is still
unclear what the appropriate definition should be we will use the simpler one
by default.

16 his generalises contexts in higher order game theory, which consist only of a continuation.

7 The symbol h is a mnemonic for history.

8 This is unsurprising when working with monoidal categories but striking when working
in Haskell, where it is relatively unusual to see a monad in a contravariant position.

9The crucial property that these effects share is that the real numbers can be made into
an algebra of the corresponding monad: identity for pure strategies, expectation for mixed
strategies and supremum/infimum for nondeterministic strategies.

2gince any nontrivial economic model will likely involve at least learning, the simpler
definition is suitable for toy examples only.

21We can think of T as the effects allowed by the players, such as learning, and T’ as the
effects allowed by the economist, such as choosing a prior.
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2.1.6 Closed games

The reason for the terminology open game introduced in §2.1.4 is that an open
game is open to its environment, in the sense that information can pass back and
forth. However, if one of X, Y, R, Sin G : (X,S) — (Y, R) is equal to the tensor
unit I in C, then the flow of information is restricted, and if all are equal to I
then no information can pass between the game and its environment. A closed
game is therefore defined®” to be an open game of type G : (I,I)— (I,1).

Looking ahead to the result in §2.2.7, that open games are morphisms of
a monoidal category whose objects are pairs of sets, and whose tensor unit
is (I,1), a closed game can equivalently be called an abstract scalar. This
terminology is from (Abramsky and Coecke 2004, Abramsky 2005), and we will
use it interchangeably with ‘closed game’. See also (Kelly and Laplaza 1980).

Closed games are particularly interesting when I is terminal in C. The cat-
egories Set and SRel both have this property, although Rel (which models
nondeterminism) does not. In this case, closed games have a very simple formu-
lation: the play and coplay functions become trivial, and the game is described
entirely by its set X of strategy profiles, and its best response function, whose
type reduces to

Bg : Eg — yzg

A game in the intuitive, informal sense can be described by this data (see §1.2.4),
and correspondingly there is no notion of information being shared with the
environment in classical game theory, which suggests that games in the usual
sense should be thought of as closed games.

A closed game G over any category has a canonical history and a canonical
continuation, namely both being given by id;. Thus we can give a solution
concept for closed games: an equilibrium of G is a strategy profile o : £g with
o € Bg(id;,id;)o. This solution concept will be used in §3.1 and §3.2, where
we see that it includes pure and mixed Nash and subgame perfect equilibria as
special cases.

2.1.7 Decisions

In this section we see our first examples of open games, the decisionsQS, which
are one-player games. Every nontrivial game contains decisions as components,
representing the players of the game.

Decisions, by definition, are games of the form

D:(X,I) - (Y,R)

where the player makes an observation from X and makes a choice from Y,
with preferences over outcomes in R. Formally, the requirements for a game
with this type to be a decision are

e ¥p =home(X,Y)

22 Games are not doors, or topologies: every closed game is open, although it is reasonable
to think of closed games as a degenerate case of open games.

23 This term comes from decision theory, which mathematically is the study of one-player
games, but in practice is the applied study of modelling issues that are logically prior to game
theory.
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e Pro=0:hom.(X,Y)
o Cpo =!ygr:home (X ®R,I)
e Bp(h, k) : home(X,Y) = Zhome(X,Y) is constant
Consequently, to define a decision is to define a function
R : hom¢ (7, X) x home (Y, R) — &2 home(X,Y)

Such a function will be called a rationality function, and defines the best
response function of a decision by

Bp(h, k)o = R(h, k)

Since a decision always consists of a single player and never an aggregate, a
strategy is simply a mapping from observations to outcomes. The fact that the
strategy is a morphism of C means that the strategy can have side effects, such
as probabilistic choice (see §1.2.6). The condition on Py is simply that playing
the strategy involves applying it as a function to the observation.

The only possibly unexpected condition is that on Bp. The idea of best
responses (see §1.2.4) is that B(h, k)o should be the set of strategy profiles ¢’
such that, for each player, playing using ¢’ is a rational response to the situation
in which every other player is playing using o. Since a decision involves only
one player any property of ‘every other player’ is vacuous, and so o is not used
in the definition.”

The definition of a decision is already at the right level of generality25 that an
arbitrary multi-valued selection function (§1.1.6) can be considered as a decision
in Game(Set). First, notice that a decision 2 : I — Y ® R" over C = Set is
defined by a rationality function

R:Y—R)—2Y

which is precisely the type of a multi-valued selection function (see §1.1.6).
More generally, a multi-valued selection function E : (Y — R) — ZY can be
converted into a decision Dy : X — Y ® R* for an arbitrary set X, using the
response function

R(z,k)={c: X - Y |ox € Ek}

The resulting decision models a player whose rationality is defined by F.

2.1.8 Preliminary examples of decisions

We will give two example families of decisions representing classically rational
players, respectively with pure and mixed strategies. In the first case, we take
C = Set. We will fix a rational preference relation®® < on a set R, representing

24Pyt another way, in a one-player game there is nothing for a strategy to be a best response
to.

%5 One point of view is that the generalisation from utility maximisation to selection functions
was a necessary step en-route to compositional game theory.

20Recall that a rational preference relation is a total preorder, that is, a total order in which
we may have r # v with 7 < v’ and 7’ < 7. Thus =< can be viewed as a total order on
equivalence classes.
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a player’s preferences for different outcomes in R, where r > 7’ means that the
outcome 7 is considered at least as good as the outcome r’. We will also fix an
arbitrary set X and a finite set Y. To define a decision

D:(X,1) = (Y,R)
is to define a rationality function
R: X x(Y—-R)— Z(X—=>Y)
We define a particular family of decisions by the response functions
R(z,k)={c: X =Y | k(oz) = ky for all y : Y}
We will now explicitly give the data defining D. Its strategies are ¥p = X — Y,
and its play function Pp : (X - Y) —» (X = Y) is Ppox = ox. Its coplay
function Cp : (X - Y) —» (X x R — 1) is Cp(o, (x,r)) = *. Its best response

function
Bp: XXxY->R—=>(X—-Y)—>2X->Y))

is given by
Bp(z,k)o={c' : X =Y |k(c'z) = ky for all y : Y}

For our second family of examples we will use C = SRel (defined in §2.1.3).
For an arbitrary set X and finite set Y we define a decision

D:(X,1) = (V,R)

modelling a player who maximises expected utility (see §1.2.6). To specify such
a decision is to specify a response function

R: 72X x (Y - 9R) - 2 (X — 2Y)
where Z is the distribution monad (see §2.1.3). We use the particular function
R(h,k)={c: X — 2Y |E[k"(c"h)] > E[ky] for all y : Y}

where E : 2R — R is the expectation operator, and —* is the Kleisli extension
of 2. Explicitly, we have the strategy set ¥p = X — 2Y. The play function

Pp: (X - 2Y)— (X - 2Y)
is given by P[Ppox = y] = P[ox = y]. The coplay function
Cp: (X —=2Y)—= (X xR—21)
is given by P[Cpo(z,r) = *] = 1. The best response function
Bp: 2X x (Y - 2R) - (X - 9Y) - P(X — 2Y)
is given by

Bp(h,k)o = {0’ : X = 2Y | E[k"(c"h)] > E[ky] for all y : Y'}
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2.1.9 Computations and counit

Besides decisions, the other atomic games we will consider are computations
and counits. These components are unable to make strategic decisions, and
in particular only have one strategy, which behaves trivially. Their purpose,
however, is to control the information flow in a game. Examples of computa-
tions include outcome functions, identities, copying and deleting. The counits
serve to connect forward-flowing to backward-flowing data, that is, identifying
a particular forward-flowing value as the value that some player is reasoning
about.
Formally, a computation is a game

(f,9) : (X,8) = (Y, R)

defined by morphisms f : home(X,Y) and ¢ : hom¢(R,S). After we have
defined a symmetric monoidal category of games in §2.2.7, this will give us a
symmetric monoidal embedding of C x C" (see §2.2.9). The definition is given
by

irg =1=1{*}
® P(f,q)* = f : hOHlC(X, Y)

o C(s 4% home(X ® R, S) is given by the composition

XoR2B R4S

By, (h, k) = {x} for all h and k

The conditions ¥ s 5y = 1 and By 4)(h, k)% = {*} implement the idea that (f, g)
is ‘strategically trivial’. The fact that * € B 4 (h, k)* means that * is always
an equilibrium of a computation. The idea behind this is that a strategy for an
aggregate game should never fail to be an equilibrium because of a computation,
because a computation has no preferences. Rather, if a strategy fails to be an
equilibrium, it should always be because some player has incentive to deviate.
We expand on this idea in §2.2.8.

The conditions on P ;) and C(s 4y determine the information flow, which
is explained in more detail in §2.2.11. When C = Set, the coplay function of a
computation is simply

Cipgx(x,m) = gr

Next, for each object X of C we define a counit ey : (X, X) — (I,I) by
° ZEX =1={x}

e P__x=!yx:homg(X,I)

e C. *x=py:home(X®I,X)

e B, (h,k)x = {x} for all h and k

The intuition behind this definition is similar to that for computations. If
C = Set, the coplay function is C, *(z,*) = . Counits will not play a major
role in this thesis, although see §2.2.10 and §2.3.6.
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2.2 The category of games

2.2.1 Discussion

In §2.1 we introduced many definitions, especially of open games (§2.1.4), de-
cisions (§2.1.7), computations and counits (§2.1.9). In this section we will add
algebraic structure, giving two ways to compose games: categorical composi-
tion, which is a primitive form of sequential play of games, and tensor product,
which is a primitive form of simultaneous play. We will prove that these obey
the axioms of a symmetric monoidal category. In §2.3 this algebraic structure
will be investigated further.

Readers who are not category theorists can treat these two operations as
rather like sequential and parallel composition operators in process algebra27,
similar to those in (Blumensath and Winschel 2013), with the axioms we check
simply being technical conditions for the string diagram language introduced in
§2.3.5 to be sound.

On the other hand, category theorists may wonder about the canonicity of
the operations, that is to say, why we use this particular symmetric monoidal
category and not some other, and whether a mathematically cleaner, more ax-
iomatic treatment is possible. The answer to this is simply no, our operations
are not canonical. In §2.2.3, for example, we discuss alternative definitions of
categorical composition, and in §3.3.7 it is suggested that the most basic defini-
tions in §2.1.4 will need to be changed to deal with dynamic games with mixed
strategies.

Nevertheless, one important direction that we will not consider in this the-
sis is to additionally consider morphisms between games, so that we have a
monoidal bicategory (Schommer-Pries 2009). This is formally needed in several
places where we unreasonably assume that the underlying category C is strict
monoidal. More importantly, when considering infinite games such as repeated
games, a natural approach is to define the game as a terminal coalgebra of a
functor which precomposes a finite approximation to the repeated game with
one additional stage. Because a terminal coalgebra is defined by a universal
property of objects, this requires 2-cells between games. There are several pos-
sible definitions that could be used, however, and at the present time it is not
clear which are useful.”® One possibility that would be elegant, but is only
speculation, is that solutions of games (see §3.3.2) are global points, and that
backward induction of solutions (§3.3.4) is an instance of horizontal composi-
tion of 2-cells. A bicategory of games would also provide a formal theory of
equivalences and refinements between games, as discussed in §1.2.4.

2.2.2 Categorical composition of games

Now we come to our first aggregation operation, categorical composition, which
models sequential play of games. Given a pair of games G : (X, T) — (Y, 5) and
H:(Y,S) = (Z,R), we need to define a composition Ho G : (X,T) — (Z,R).
This is a primitive form of composition in which the intermediate choice at Y is

2T An earlier, failed attempt at a compositional game theory by the author took this as a
starting point and used series-parallel partial orders (Bechet et al. 2005) as part of the data
specifying a game.

28Neil Ghani is currently working on this problem.
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hidden; the more intuitive sequential composition that produces plays of type
X ®Y will be recovered using tensor product and identities® in §3.2.2. The
game H o G is an aggregate whose players consist of the players of G together
with the players of . This means that a strategy profile for H o G should
consist of a strategy profile for G together with a strategy profile for 4, that is,
Yog = Xg X Uy

Since the play is sequential, the observation that is made by #H should be
the choice that is made by G. This motivates the definition of the play function
of H o G, namely that Pyg(o, 7) should be the composition
Pgo

— Y

Py

X Z

Using the categorical composition in C appropriately sequences the effects that
can be used by the two components. For example if G and H both contain
players who can make probabilistic choices, the play function of H o G gives the
appropriate probability distribution on Z taking into account the probability
distribution on Y.

The coplay function of H o G, on the other hand, is hard or impossible to
justify on intuitive grounds. We define Cyg(0, T) to be the composition

XRCyt

XEPTOR v oY @ R 29T, x o 5 S9% 1

XoR2%" xoxoR

(where we are assuming that C is strict monoidal). When C = Set, this is given
explicitly by

C’Hog(07 T) (SE7 ’I’) = CgO’(ZL', CHT(PQU{E, 7’))
This will be discussed in §2.2.11.

For now we will also give the best response function without motivation, but
it will be discussed in detail in the next section. The definition is

Byog(h, k)(0,7) = Bg(h, kyo)o x | By(Pgo' oh k)T
o’l:Eg
where k., is the composition

Yy 2 yey X8 vy oz YEh vy o R ST g

With this definition of composition, we obtain a category™ Game(C) whose
objects are pairs of objects of C and whose morphisms are open games, where
the identity on (X, R) is the computation (idy,idp) and the composition is that
given above. This will be proved in §2.2.4 and §2.2.5.

2 This is splitting the atom of game theory.
301f we are being pedantic then composition is not associative because

YZo(rog) = Bz X (B X Bg) # (B2 X Bgy) X Xg = Z(Zom)og

Rather, Game(C) should be a bicategory whose 2-cells are an appropriate sort of morphisms
between games (see §2.2.1). However this is not a work on category theory, and it would be
overcomplicated and unenlightening to use bicategories here, so we will simply pretend that
the cartesian monoidal category of sets is strict monoidal.
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2.2.3 Best response for sequential compositions

In order to give a definition of By,og(h, k) (o, 7), we need to define what it means
for a strategy profile (¢/,7") to be a best response to (o, 7), in the context
consisting of a history h : home (7, X) and a continuation & : home(Z, R).

The idea is that we have a fixed situation in which the strategy profile played
is (o,7), and then one player unilaterally deviates to a component of o or 7.
This means that if we have a player in G deviating to a component of o’ we
know that every player in H is playing 7, and vice versa.

The first condition is that ¢’ should be a best response to o, in a modified
context in which we extend the continuation k backwards in time using the fact
that we know that H will be played using 7. Therefore we define® the extended
continuation k., to be the composition

YQRPyT Y ®k

Yy 2 yey Yoz Xk yer S g

For the second condition we need that 7' is a best response to 7 in an
appropriate context. The same continuation k can be used without modification,
and the history can be extended forwards using the fact that G will be played
with o, namely as the composition

1 x Be%y

This leads to the possible definition

/
o o' € Byl kro)o and
B”Hog(ha k)(o,T) = {(U ST Yg X Yy e BH(PQJ oh, k)T

which can be written equivalently as
BHog(h7 k)(aa T) = Bg(h, kTO)G X BH(PgO' o hv k)T

Here we face a significant design choice. If we made this definition then
very few changes would need to be made to this thesis. Assuming that when
a player in H is deviating to 7', the players in G use o, leads to a theory of
games supporting a solution concept based on Nash equilibrium. However our
games are dynamic, and it is widely recognised in game theory32 that Nash
equilibrium is not a suitable solution concept for dynamic games. In particular,
in a Nash equilibrium earlier players can make so-called ‘non-credible threats’
to later players.

The usual solution to this problem is to use subgame-perfect equilibria (see
§1.3.5). This is an equilibrium refinement of Nash: every subgame-perfect equi-
librium is a Nash equilibrium, but not vice versa.*” In classical game theory, the
usual method is to define ‘subgames’ as subtrees of the game tree, and define a
subgame-perfect equilibrium to be a strategy which induces a Nash equilibrium
when restricted to any subgame.

31 This is the only place in which the coplay function is actually used. All of the machinery
and the difficult interpretation of coplay begins with the fact that a function of the appropriate
type is needed here.

32 This hardly needs a reference, but see for example (Leyton-Brown and Shoham 2008).

331n particular, the Nash equilibria which are not subgame-perfect are precisely the ones
containing non-credible threats.
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One possibility, therefore, would be to extend the data specifying a game
with a recursively-built collection of subgames, and quantify over this collection
when defining the best-response function. However, a simpler solution is pos-
sible. An apparent alternative would be to quantify over the type of histories,
and say that a best response should be valid for every possible history, not just
the ones that arise from the strategy profile. For classical game theory this
works™*, but for us it is too strong. Consider, for example, a game defined (over
the category of sets, for simplicity) as a composition of the form

Bl (x o x,1) 25 (Y, R)

(X, 1)
where D is a decision. Now the earlier component does not contain a player
and cannot make strategic decisions, so our intuition about threats is no longer
valid. No matter what the starting history is, and no matter what this game
is precomposed with, the player making the decisions can only ever observe
histories of the form (z, ). It is therefore too strong to require that the player’s
strategy should be rational for histories not of this form.

This example, however, suggests the solution: the image of the play function,
as the strategy profile of the first component varies, gives precisely those histories
for the second component that can possibly arise. Now we can return to the
original problem: defining what it means for (¢’,7") to be a best response to
(o,7) in the context (h, k). The second condition becomes that 7' should be a
best response to 7 now in a variety of contexts: all those of the form (R’ k),
where A’ is of the form PgJ” o h, where ¢” is an arbitrary strategy profile for
G. Putting this together and rewriting it, we get the stated definition

Byog(h, k) (0,7) = Bg(h, kyo)o x (| By(Pgo' oh k)T
a'/:Eg
2.2.4 The identity laws

We will now prove that Game(C), as defined in §2.2.2, is a category, beginning
with the identity laws. Let G : (X, S) — (Y, R) be a game. We first prove that
(ide ldR) © g = g

For the strategy sets,

L(idy, idg)og = Hg X Vidy,idy) = Hg X 1 =g
For the play function,
P(ideidR)OgU = P(id%idﬁz)* oPgo =idy o Pgo = Pgo
For coplay, by definition Cyq,, id,)og0 is the composition

XQPgo®R
_—

XoR2 xoxoR X9oY @R

X®Clidy ,idp) ¥ Cgo
%X@RL}S

3410 classical game theory a ‘history’ can be defined as a path starting at the root of the
game tree, and such paths are in bijection with subtrees.
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which, expanding the definitions further, is

X®Pgo®R X®my
—

XoR2®E xo xR X@Y @R 22" xRS g

The first part of this is the identity on X ® R, so it is equal to Cgo.
For best response we have by definition
Blidy, idp)og (h K)o = Bg(h.kyo)o x [ By, iap Pgo’ o b k)
0'/:29
For each o : Xg,
/
B(idy, idg) (PgO' o h, k)* = {*}
therefore
B(idy,idR)oQ(ha k)o =Bg(h, kxo)o x {x} = Bg(h, kso)o
under the natural isomorphism g x 1 = ¥g. The continuation Ky, is given by

Y®P(idy,idg)* idy,idg) ¥
%

Cc
Yy 2 vy Yovy X2 ygRr = R
Expanding the definitions and simplifying, this is

Y2 yvey X8 vy o R ™ R

which is equal to k.
For the other identity law, we will prove that G o (idy,idg) = G. For the
strategy sets,

YGo(idy,ids) = S(idy,idg) X g = 1 X Xg = Xg
For the play function,
Pgotidy,idg)0 = PgooPia, iay) = Pgooidyx = Pgo
For coplay we have that Cgqiay,iaq)0 is the composition

XQP i *QR
(dx 1) X®X®R

XoR2*F xoXoR

X®Cgo idy,idg) ¥

C(
X®s5 S
Expanding and simplifying, this is

Cgo T
XoR2" xoxoRrR 229 x o5 ™2 8

which is equal to Cgo.
For best response we have

Bgo(idy, ide) (1 )0 = Bay iag) (hkoo)x x [ Bg(Pay, a0 ©h,k)o
o' Say,idg)
= {x} x Bg(P(iay, iaz)* © h, k)o
=Bg(P(ay,iag)* 0 M, k)o
= Bg(idx o h,k)o
= Bg(h, k)o
In summary, we have proved that the identity for composition on an object
(X, R) is (ld){7 ldR)
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2.2.5 Associativity

Consider games
(W,U) 5 (X,T) 25 (Y, 5) = (Z.R)

We will prove that
Io(?—[og) = (IO’H)OQ

This associativity law is not obvious, especially because of the best response
function of a composition.

The cases of the strategy sets and play functions are immediate from the
associativity of cartesian product and composition:

ZIO(’HOQ) = E’Hog X ZI = Eg X EH X EI = Eg X ZZOH = E(IOH)OQ
and

P1o(200) (0, 7,0) = Prv o Py g0, 7)
= PI’U o P'HT o PgO'
=Pz, (m,v) o Pgo
= P(IOH)OQ (07 T, U)

For coplay, by definition Cz,(30g)(0, 7,v) is the composition

WP g(0,7)®R
%

WoR2M wewer WoY ®R
WRCrv W@S Cyog(0,T) U
which is Wep n
wWeRrR22E wewer L2 o xeRr

WoPnT®R oy o R Y2 weo s 2 wew e S
WRPgo®S WCyT
— —_—

WoXes WeT 2%

On the other hand C(zo3)og(0, 7,v) is

Aw®R WePgo®R
_

WQR——WRWRR WoXR

WRCzon (T,0) W@T Cgo U

which is WP R
W o R 2228 o w g gp LEeTOR,

WRAx®QR
_—

WeoX®R

WeoXoXoRLEXEPwTOR v o X oY @R

WRXRCrv WRCyT Czo

WeX®Ss Wl —U

and these two morphisms are equal by the comonoid laws for A.* For another
perspective on this part of the proof, see §2.2.11.

35Since this is not a thesis on category theory, detailed proofs by diagram chasing will not
be included for assertions like this that a complicated pair of morphisms are equal.
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For best response we have

BIO(HOQ) (h, k) (O’, T, U)
- B’Hog (h7 kvo)(av T) X m BZ(PHO_C, (J/a TI) © ha k)?)

(a/,‘r/):EHOg
= Bg(h’ (kvo)ro)a
X m By (Pga' oh, k)T x m B;(Py7 oPgo’ o h,k)v

U,:Zg a/:Eg
T/ZZH

and

B(IOH)og(h7 k)(aa T, U)
= Bg(h, k(r,000)0 X [ Brow(Pgo' oh,k)(r,v)

’7
o :Xg

= Bg(h7 k:(m))o)a

x [ [ Bu®Pgo' oh ko) x [ Bz(Pyr oPgo’ o h, kv
o‘l:Eg T/:ErH

= Bg(h7 k:(m))o)a
X m By (Pgo’ o h, k)T x ﬂ B (Py7 oPgo’ o h k)

o’l:Eg U//:Eg
T Xy

Here &, is the composition

Yy 2 yey X8 y oz YEh y o g S2% g

and (k). is the composition

XQPy T

X 2% x o x XOPT, x gy 20K

vo X ® S C’HT T
which expands to

X2 xox X, x oy X2, xov ey

XQYPzv X®Y®ZX®Y®k X®Y®RX®CIU X®S Cyrt T

On the other hand k(, ), is the composition

X®PIO’H (T,’U) XQk CIO’H (T,'U)
— s

X2 xoX X @z 28k x g p Sz p

which expands to

X2 xox X, x oy 2P0 v o7 X85 v o R

Ax®R X®PyT®R
s G

2xOR v 9 X9 R XQY @RI X8 220,

Then (kyo)ro = K(r,v)0, and we are done.
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2.2.6 Tensor product of games

Besides the categorical composition introduced in §2.2.2, the other aggregation
operator we will consider is a tensor (or monoidal) product. Given an arbitrary

pair of games
G: (X1, 8) = (Y1, Ry)

and
H : (XQ,SQ) — (Y27R2)

we can form their tensor product
g®7‘[ . (Xl ®X2,Sl ®SQ) — (Yl ®}/2,R1 ®R2)

Since the weak product ® of C can be extended componentwise to pairs of
objects, this will give us a monoidal product on Game(C), the category defined
in §2.2.2. Whereas H o G behaves like the sequential play of G and H, the
purpose of G ® H is to behave like the simultaneous play.

Just as for sequential composition, a strategy profile for an aggregate of two
games consists of a strategy profile for each game, thus

Ygen = Hg X Xy

The play function can be defined using the tensor product of morphisms in C,
by
Pgen(o,7) =Pgo @ Pyt

Similarly, the coplay function is
Cg®’H : Zg X E'H — hOch(Xl ®X2 ® R]_ & RQ, Sl ® Sz)

where Cggy, (0, 7) is given by

CgoRCyrt
e

X, ®X,®R, @Ry — X, ® R, ® X, @ Ry S, ® S,

To define the best response function

BQ®H : homC(I,X1 ®X2) X homc(Yl ®}/2,R1 ®R2) — Zg X E'H
— P(Lg x Xy)

essentially the same reasoning applies as in §2.2.3, except that we are now
working with simultaneous games, and with selection equilibria (in the sense of
§1.2.3), rather than subgame perfect equilibria. Given h : hom¢ (I, X; ® X,),
we can take the canonical projections of it to form the component histories
hy : home (1, X;) and hy : home (I, X5). More importantly, given a continuation
k : home (Y, ®Y5, Ry ®R,), a history h : home (I, X; ® X,) and a strategy profile
(0,7) : Bg x Xy, we can form smaller continuations® in which each component
may deviate from the strategy, while the other stays fixed. The continuation
for the first player is denoted kg, (p,) : home(Y7, Ry), and is defined by the
composition

Y, S el 22y 0X, 25 Y 0, 5 Ri@ Ry ™ Ry

36 These are generalised forms of the unilateral continuations introduced in §1.2.2.
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Similarly, the continuation k,;,)g : home(Ys, Ry) for the second player is

~ h, QY. PgoQ®Y;
Y, SIev, 22 x oy, 227% v 0y, 55 R @Ry 25 Ry
Given these definitions, the best response function for the tensor product is
given by

Bggw(h k) (o, 7) = Bg(h1, kgr(n,))o X Byy(ha, ko(n)e)T

This definition will be refuted in §3.3.7, however.

2.2.7 The monoidal category axioms

We will now prove that Game(C) is a symmetric monoidal category. The action
of the monoidal product on objects is to pairwise apply the monoidal product
of C, so

(X1, Ry) ® (Xy, Ry) = (X1 ® Xy, Ry ® Ry)

The action on morphisms, which are games, is exactly the construction given
in §2.2.6. The monoidal unit is (7, I), where I is the monoidal unit of C. The
symmetric monoidal category axioms underly the string diagram language for
Game(C) introduced in §2.3.5 and used in the remainder of this thesis.

In general, proving that a category is monoidal takes a significant amount of
work. We must define three families of morphisms, the left and right unitors and
the associators, prove their naturality, and then prove the commutativity of two
diagrams including the Mac Lane pentagon. To prove that a monoidal category
is symmetric monoidal we must additionally define the braiding morphisms,
prove their naturality, and prove commutativity of an additional three diagrams.

On the assumption that C is strict monoidalg7, most of this work can be
avoided. In that case we have equalities of objects

(IL,He(X,R)=I®X,J®R) =(X,R)=(X®I,RI)=(X,R)® (I,I)

and so we can take all of the unitors to be the identity morphisms (that is,
computations formed of pairs of identities, see §2.2.2), which are automatically
natural and satisfy the commutative diagrams, simply by the fact that Game(C)
is a category. Similarly we have equalities
(X1, Ry) ® (Xo, Ry)) ® (X3, R3) = (X1 ® Xy ® X3, R @ Ry ® Ry)
= (X1, By) @ ((Xy, Ry) ® (X3, R))

and so we can also take the associators to be identities.
For the braiding morphisms we take the computation

S(leRl)v(XmRz) = (SX11X2’8R27R1)
Xy @ X, By @ Ry) = (X, ® Xy, Ry @ Ry)

For a strict monoidal category the the unit law for a symmetric monoidal cate-
gory becomes trivial, so we must prove only the associativity and inverse laws.

3Tn practice, C is never strict monoidal. The correct approach is to consider Game(C)
as a monoidal bicategory (see §2.2.1), but for now we can either appeal to the Mac Lane
strictification theorem (Mac Lane 1978), or ignore the problem.
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For this, we will use the result from §2.2.9, that computations respect compo-
sition and tensor. This is not circular, because we will only use the part of the
result that does not already assume that Game(C) is a monoidal category, and
is really shorthand for copying special cases of that proof into this section.
We will begin with the inverse law. For an arbitrary symmetric monoidal
category this is
$B,A°Sap =1dagn

We take A = (X;, Ry) and B = (X5, R,), and so this is
(5)(2,)(1 ) SRl,RQ) © (SXl,X2>5R2,R1)
(X1 ® X, By @ Ry) = (Xy © Xy, By @ Ry)
Since computation is functorial (§2.2.9), this is
(8x,,X%, ©5X,,X51SRy,R, © SRy,R,)

and we can apply the inverse law of C.
The associativity axiom for a strict symmetric monoidal category is

5A,B®O
AR B®C BRARC
SA,BQC Bo
SA,C
BRC®A

In Game(C), we need to take A = (X1, R;), B = (X,, Ry) and C = (X3, R3).
As a lemma, we need the equations
(Xo, Ry) @ 5(x,,R,),(Xs,Rs) = (X2 ®@8x, x,, B2 @ 5p, g,)

and
S(X1,R1),(X2,Rz) ® (X37 R3) = (3X17X2 ® X37 SRy,R,y ® R3)

which are special cases of the fact that computation is a monoidal embedding
(§2.2.9).
Now, by functoriality, we have that the computations

((XQ’ R2) ® 8(X17R1)7(X37R3)) °© (S(leRl)a(X27R2) ® <X3’ R3))
and
(X2 ® sx, x,) © (8x,,x, ® X3), (Sry,r, ® R3) 0 (Ry ® SR, R, ))
are equal. Therefore we must need only check the equations
(Xo ®sx,,x,) 0 (5x,,x, ® X3) = 5x, x,0X,

and
(SRr,,r, ® R3) o (Ry ® SR, R,) = SR,@Rs.R,

which both hold because C is symmetric monoidal.
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2.2.8 Strategic triviality

Next, we will formalise some informal remarks that were made in §2.1.9. A
game G : (X, S) — (Y, R) will be called strategically trivial if it satisfies two
conditions. Firstly, there must be only one strategy, so £g = 1 = {x}. Secondly,
the strategy * must be trivial, in the sense that it can never fail to be a Nash
equilibrium. That is, for all contexts (h, k) : home (I, X) X hom (Y, R) we must
have

* € Bg(h, k)*

We can now give more explanation for why a strategically trivial game should
always be in equilibrium, rather than never: the compositional best response
functions in §2.2.3 and §2.2.6 both use cartesian products, and if the set of best
responses of a computation was empty, everything would cancel and the entire
game would have no equilibria. Put another way, an equilibrium of an aggregate
consists of an equilibrium of each component, with suitably modified contexts,
and so an equilibrium overall must in particular restrict to an equilibrium on
those components that are players.

We directly have that computations and counits (§2.1.9) are strategically
trivial. We will now prove that strategically trivial games are closed under both
composition and tensor. In both cases, the set of strategies is 1 x 1 = 1. For
tensor products, the best response function is

Bgaw (h, k)(x, %) = Bg(hy, kgs(ny))* X By (ha, kxn,ye)*
= {x} x{}
= {x}
and for categorical compositions, it is

Biog (h, k) (%, %) = Bg (h, kxo)% x [ | By (Pg o h, k)

*:1

{} > {+}
{x}

1

This is useful because when reasoning about strategically trivial games, we
can focus only on the play and coplay functions, since we already know the
strategy profiles and best response function. If G : (X,S) — (Y, R) is strate-
gically trivial we will moreover often write the play function of G as though it
had type Pg : hom.(X,Y) and the coplay function as Cg : hom¢(X ® R, S),
leaving the strategy * implicit.

Categorical composition of a game with a strategically trivial game is par-
ticularly simple, because the strategically trivial parts act only by transforming
the history and continuation. Suppose we have a composition of games

(x',8) 25 (x,8) % (v, R) 22 (v, R)
where H; and H, are strategically trivial. Then

Y,0600 = Xg

and
!
By,0g0t, (M k) = Bg(Pyy, o b k')
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where

Y®RP C
.y 2 yey — " yvey Y8 yeor 2R

which in Game(Set) is

Ky = Cy, (v, k(Py,y))

As can be seen, H; affects only the history, and H, affects only the continuation.
Similarly for tensor products, if we have games G : (X;,S5;) — (Y7, R;) and

H: (X, S,) — (Yo, Ry) where H is strategically trivial®®, then
Bgewu(h, k)o =Bg(h, k' )o

where

Foviev, ol 2%y ox, 2Py oy, * R @R, ™5 R,

In Game(Set), this is

Bg@%((hh hy), k)o = Bg(hh)‘(yl 2 Y1)k (y1, Pyho))o

2.2.9 Computations as a monoidal embedding

We will now prove that computation, defined in §2.1.9, gives us a monoidal
embedding
(—,—):CxC?® — Game(C)

This will be used implicitly many times in §3.1 and §3.2 to simplify calculations
by working in C rather than Game(C), and it is also needed to justify the syntax
for objects in Game(C) introduced in §2.3.5, and the string diagram notation
for computations in §2.3.6.

We will first prove that we have a bifunctor C x C°* — Game(C). In the
product category C x C°? the objects are pairs of objects of C, and the morphisms
are pairs of morphisms with the second reversed. The identity morphism on the
object (X, R) of C x C® is (idx,id ) which, lifted to a computation, is also the
the identity game on (X, R) (see §2.2.2).

The composition

(f1,f2)

(X,T) (v, 8) 1292 (7. R)

in C x C°® is, by definition,
(91,92) © (f1, f2) = (910 f1, f2092)

and we must prove that the games denoted by these two expressions are equal.
Since both are strategically trivial (§2.2.8), we need only check the play and
coplay functions. The play functions are

. g10f1
P(91°f17f2092) X == 7
and o o
X (f1.f2) (91,92)
P(gl7g2)o(f17f2) P X Y Z

38 The case where G is strategically trivial is symmetric.
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which are equal. The coplay functions are

gl f209
Pgiofy frogn) - X @R = RZ5T

and

XeP ®RR
gy XORZEE xexor — D270 X oY o R

C(glvg2)o

X®C(91v92) (flvfg)

C
X®5§———T

The latter is

XoR2% xoxorR X2 yoveRr

2Oy o R 2992, x g5 T2 5 L2

and these are equa139

Next, we must prove that the embedding also respects the monoidal struc-
ture. The monoidal unit of the product monoidal category C x C° is (I, 1),
which is also the monoidal unit of Game(C) (see §2.2.7).

Suppose (f1, fo) : (X1, 81) = (Y1, Ry) and (g1, 92) : (Xp,52) = (Yo, ) are
morphisms of C x C°. Their monoidal product is

([1®91,f2®92) 1 (X1 ©X5,8,®8;) = (Y1 ®@Y5, R @ Ry)

We must therefore prove the equality of games

(f1; f2) ® (91, 92) = (f1 ® g1, f2 ® g2)

Again both are strategically trivial, so we need only work with the play and
coplay functions. For the play function we have

P(f1af2)®(917g2) = P(f17f2) ® P(91792) = f1 ® g = P(f1®917f2®92)

For coplay, the former is
C(f17f2)®(91792) : Xl ® X2 Y Rl 0y R2 i> Xl &® Rl ® X2 X RQ

C ®C
(f1,f2) (91,92)
e L 5, R85,

which is N
XiXo®@ R @Ry — X, @R, @ Xo ® Ry

T2 @ R, ® R, f2®g2 Sl ® SQ

and the latter is

& f2®g
C(f1®917f2®92) : Xl ®X2 ® Rl ® R2 —2> Rl ® R2 #) Sl ® SQ
which is equal.
Pedantically speaking, to obtain a monoidal functor we also need to prove
that the unitors in the two categories are respected, but we will not do so here.

39This can fail if C is only premonoidal, for example because f; can have nontrivial side
effects. This may be a very serious problem and block the generalisation to noncommutative
effects such as learning (see §0.7 and §0.10).
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2.2.10 The counit law

We will now prove a result, which we will return to in §2.3.6, that connects com-
putations with the counit game, also introduced in §2.1.9. Let f : hom¢(X,Y).
Then the following diagram in Game(C) commutes:

(X,Y) _tdx S) | (X, X)

(fv ldY) Tx

v,y) — (11

This will be called the counit law. Since both games are strategically trivial,
we need only check the behaviour of the play and coplay functions.
The definitions in §2.1.9 give us

Piay) X 5 X Chapp X0X x Ly
Py X DY Clriay): X @Y 2y Dy
P i X T C..:X®l™hX
P, Y51 C., :YoILy

Composing these sequentially gives us the play functions

idy

!
PTXO(idX,f) X 5 X 5T

f !
P‘ryo(f,idy) X =Y L) I

which are equal40, and the coplay functions

Coroayyy): XTI X Xxoxor X xox = x Ly

and
Ceopotpiay) X0 T 22 x o x o1 X% y gy g1

BLLNG S S

which are both equal to
Xeolx Ly

The game denoted by these two equal expressions is important, because
when post-composed with another game it will behave like a continuation, and

1075 in §2.2.9 this can fail if C is only premonoidal, because f may have side effects. This
relates to the interpretation of this equation in §2.3.6 as a topological move on string di-
agrams, because string diagrams for premonoidal categories have fewer allowed topological
moves (Jeffrey 1997). See §0.10.
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we will generally use it when f is an outcome function. Let G : (X, S) — (Y, R)
be a game, and let &k : hom¢ (Y, R) be a continuation for G. Consider the game

(X,8) & (v, R) L (R, R) 285 (1,1)
which, by the counit law, can be equivalently written

(idy, k)

(X.9) % (Y,R) (Y,Y) 25 (1,1)

Then
Yepo(kidp)og = Xg
and for any h : hom¢(/, X) and o : £g we have
Bg(h,k)o = B, o(k,idp)og (P id))o

under the same isomorphism. To see this, the right hand side by the definition
in §2.2.3 is

BaRo(k,idR)og(haidl)U
= Bg(h, (id)x0)o ¥ () Bepo(kidn (Pgo’ o h,idp)x

o':%g
and, since ep o (k,idy) is strategically trivial, this is
By (h, (id))so)or x {4}
The final step is to see that (id;)4, = k. By definition it is

®P. po(k,idpg) Yol Y ®id; Yor Ce po(k,idp) R
_RTT R,

Y
(ldl)*OYA—Y>Y®Y
which reduces to
Yy 2 yey X yver Iy AR

and hence to k.
The equations

B, o(kidp)eg(hyid)o = Bg(h, k)o = B, oia, k)og (P, id))o

are very important because they allow us to move between ‘internal’ and ‘ex-
ternal’ views of the continuation k. We will see this used several times in §2.3,
§3.1 and §3.2, when k is an outcome or utility function.

2.2.11 Information flow in games

In §2.1 and §2.2 we have given several definitions whose intuitive justifications
have been incomplete at best. This will remain the case until chapter 3, in
which we will demonstrate that game theory can be done inside the category
Game(C). However we would also like to have a separate justification of the ‘low
level’ operations, especially for readers whose motivations come from category
theory. We have argued, for example in §2.2.3, that the definitions are not
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canonical, in the sense that there are useful variations, and so it would be naive
to expect an axiomatic definition of Game(C), for example using universal
properties.

There is, however, one known and very surprising connection to existing
mathematics. The data (Xg,Pg, Cg, Bg) specifying a game G could be divided
into two kinds of data: the strategy profiles X and best response functions Bg
are motivated in terms of game theory, whereas the play and coplay functions
Pgo, Cgo applied to a fixed strategy o are used for information flow. These
latter are strongly reminiscent of dialectica categories.

The dialectica categories are categorical models of intuitionistic logic41 intro-
duced in (de Paiva 1991), which are based on Gédel’s dialectica interpretation
(Avigad and Feferman 1998). The dialectica category’® D(Set) has as objects
relations ¢ C X x R, which in particular specifies a pair43 of sets (X, R). A
morphism from ¢ € X X S to ¢y CY x R is a pair (f,g) where

f: X—=Y

and
g: XxR—S

such that for all z : X and r : R we have

pla, g(z, 7)) = »(fz,7)

This has a notable similarity with f = Pgo and g = Cgo, if we take the relations
to be trivial (either both empty or both full). More importantly, the definition
of categorical composition is essentially the same in Game(C) as in D(C), so
the definition that was claimed in §2.2.2 to not be intuitively justifiable is in
fact largely an instance of something already known, and the proofs in §2.2.4
and §2.2.5 partly resemble the corresponding proofs for dialectica categories.

It should be mentioned that dialectica categories (and functional interpre-
tations in proof theory) can be seen in game semantic terms, see for example
(Blass 1997) and (Hedges 2015a). The relations ¢ and v are seen as games, in
the game-semantic sense of two-player win/lose games, with (f, g) being a strat-
egy for the first player (proponent) and (x,r) being a strategy for the second
player (opponent), in a relative game ¢ — 1. Then the existence of a morphism
@ — 1, which logically relates to provability of the implication, amounts to the
existence of a winning strategy for the first player for ¢ relative to . However,
this apparent connection between game theory and game semantics seems to be
only coincidental (see §0.8).

“!'Dialectica models of linear logic are better known.

“2This definition generalises to D(C) for C an arbitrary monoidal closed category (de Paiva
2007), and to an even more abstract setting in (Hyland 2002). This suggests it may be possible
to give a more axiomatic formulation of Game(C) if desired.

43 There are several constructions in category theory besides dialectica categories that take
objects to be pairs, generally to obtain some form of duality. Chu spaces are already known
to be related to dialectica categories (de Paiva 2007). The Int-construction (Joyal et al. 1996)
is better known, but has a quite different structure. That paper explicitly says that the pair
(X, R) should be considered as a formalisation of X ® R*, as we will begin to do in §2.3.5.
For remarks on duality in Game(C), see §2.3.6 and §2.3.7.
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2.3 String diagrams

2.3.1 Discussion

String diagrams are a graphical calculus that can be used to visualise informa-
tion flow in monoidal categories. Their earliest appearance may be Penrose’s
graphical tensor notation in (Penrose 1971), with another precursor being Gi-
rard’s proof nets for linear logic (Girard 1987), and the mathematical foun-
dations were formalised in (Joyal and Street 1991). They became well known
through the work of Samson Abramsky, Bob Coecke and others on quantum
information theory (Coecke 2011), and later through the work of Bob Coecke,
Mehrnoosh Sadrzadeh and others on distributional semantics in linguistics (He-
unen et al. 2013). String diagrams are also being applied in other areas such as
bialgebra (McCurdy 2012) and computability (Pavlovic 2013).

As is the case in quantum physics and linguistics, string diagrams can be used
in game theory to visualise information flow. This visualisation is a separate
issue to compositionality (although being able to compose string diagrams is a
crucial requirement), and is a separate contribution of this thesis. The concept
of information flow in games will only be introduced informally and by example,
starting in §2.3.9. The effect of the counit game on information flow, described
in §2.3.6, is particularly interesting, but again will only be discussed informally.

For readers unfamiliar with string diagrams, §2.3.2 and §2.3.3 introduce them
in an informal way that will be sufficient for our purposes. Alternatively, (Baez
and Stay 2010) is a good introduction. A survey of the many types of string
diagrams is given in (Selinger 2011), although the exact variant we introduce in
§2.3.5 does not match any of the usual definitions.

The purpose of string diagrams varies by discipline. In quantum information
theory, the emphasis is generally on the ability of string diagrams to reduce
complex calculations in tensor calculus to trivial topological deformation, a
point made forcibly in (Coecke 2005). In linguistics, there is more emphasis
on the use of string diagrams as a device for visualising the logical structure of
sentences, whereas the underlying categorical structure is used in a more formal
way by considering functorial semantics.

In game theory, we will similarly emphasise string diagrams as a visualisation
tool. However, more so than in linguistics, the algebraic expressions denoting
even simple games can be quite complicated, and we will make use of string
diagrams as a tool for making definitions. A good example is in §3.2.2, where
we will define a particular game by its (simple) string diagram, and the subse-
quent work to compute the denotation of the string diagram is quite involved.
However, this work could quite easily be automated, as described in §0.10.

2.3.2 String diagrams for monoidal categories

The basic components of string diagrams are strings and beads. A simple
string diagram has the form

P S

This string diagram denotes a morphism f : X — Y in some monoidal category.
The strings in the diagram are labelled by objects of the category, and the beads
by morphisms.
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The composition of the category is denoted by end-to-end composition of
string diagrams. If we have morphisms f : X — Y and g : Y — Z, the
composition go f : X — Z is denoted by

Notice that the associativity of composition is trivialised, because there is only
one way to graphically compose three morphisms. This is the simplest example
of a powerful fact about string diagrams, that coherence conditions in a category
are reduced to graphical identity or topological deformation.

The other way of composing morphisms, namely the tensor product, is de-
noted by side-by-side composition. If we have morphisms f; : X; — Y; and
fao : Xo — Y5, the tensor product f; ® fo : Xj ® Xy — Y] ® Y, is denoted by

Xy - -V

Again, notice that the associator of the tensor product is reduced to graphical
identity. According to these rules, the string diagram

o<

~—

could denote either (g0 f1)®(g20 f2) or (91®@g2)o(f1® f2) : X1© Xy = Z,® 2y,
but these are equal ™.
A morphism f : X; ® Xy — Y] ® Y5 ® Y3 is denoted by a bead with two

strings entering on the left and three exiting on the right:

Y;
AN

Y,
o

Ys

The unit object of the tensor product is denoted by empty space. For ex-
ample, if we have morphisms f : I — X and g : X — I, the composition

go f:I—1Iis denoted by
(O——©

1 This is the axiom that ® is a bifunctor.
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The identity morphism on an object X is denoted by simply a string labelled
with X. The coherence laws for the identity morphisms and unit object are
again reduced to topological deformations.

2.3.3 Compact closed categories

An important structure that a monoidal category C can carry, which has a
particularly elegant interpretation in string diagrams, is that of a compact closed
category. In a compact closed category we have a duality, which is*® a monoidal
functor —* : C — C°P. The prototypical example of a compact closed category
is the category of finite-dimensional vector spaces and linear maps over a fixed
field, with duality given by duality of vector spaces; another well known example
is the category of sets and relations, with duality being the identity on sets, and
giving inverse relations.

Whereas an object X is denoted by an X-labelled string running from left
to right, the dual object X™ is denoted by an X-labelled string running from
right to left. Then, given a morphism f : X — Y denoted by

¥ (P
we will denote the dual morphism f*: Y™ — X™ by its rotation:
v (D x

The tensor product is still denoted by side-by-side composition, and so for ex-
ample a morphism f: X ® S* — Y ® R in a compact closed category would
be denoted by

X\ Y
S xR

We additionally have unit morphisms nx : I — X ® X" denoted by a cap46
X

X

and counits ey : X ® X* — I denoted by a cup
X

X

43Since this is not a thesis on category theory, this is not intended to be a rigorous in-
troduction to compact closure, but rather to develop intuition that we can use starting in
§2.3.5.

46 The ‘cap’ and ‘cup’ terminology makes more sense if we draw time running from top to
bottom rather than right to left.
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The axioms of a compact closed category specify precisely that the units and
counits behave in graphically intuitive ways. For example, a bent string can be
straightened (this is called the ‘yanking equation’),

@ X

and a bead can be slid around a cap or cup:

DD

Combining these, we can topologically deform a string diagram in arbitrary
ways, for example we can equally denote a morphism f : X — Y by the string
diagram

2.3.4 Boxing and compositionality

A simple but very important observation is that string diagrams are inherently
fully compositional. Given an arbitrary string diagram, we could make it defini-
tionally equal to a single bead, preserving only the strings entering and leaving
the diagram. Such strings will be called open ports. To give an example,
suppose we have morphisms f : X — Y and ¢ : Y — Z, and we define a new
morphism

Y®Rg)oAyof: X Y ®Z
which is denoted by the string diagram

()
X D, ]
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This string diagram has an X-labelled open port entering to the left, and Y-
and Z-labelled open ports leaving to the right. If we define h: X - Y ® Z to
be this morphism, then we can replace this string diagram with

Y

VA

This amounts to forgetting the definition of h and remembering only its type,
that is to say, the types, order and variance of its open ports.

We can imagine that if we zoom in to the h-labelled bead in this string
diagram, we will come to the previous string diagram, with the open ports
being physically the same as the strings attached to the h-labelled bead (see
§0.10).

Conversely, the act of obtaining the lower string diagram from the upper
amounts to drawing a box around the entire diagram, so that the points at
which the open strings intersect the box become exactly the points at which
the strings enter and leave the h-labelled bead. We will refer to this as boxing
the string diagram, and it is the graphical analogue of making a definitional
equality.

Boxing is the aspect of compositionality that can be used to work in a
scalable way. In a more serious example, the morphism h could be a very
complicated process, which we can then use and re-use without worrying (or
even knowing) how it is defined. In software engineering, the boxed morphism
would variously be known as a ‘type’, a ‘signature’ or an ‘interface’.

2.3.5 The geometry of games

The idea behind string diagrams in game theory is that although Game(C) does
not have as much structure as the categories usually considered with string
diagrams, we will abuse notation as though we had this structure. A game
G:(X,S) — (Y, R) will be denoted by the string diagram

X Y
\
S R

That is, we are pretending that Game(C) has a duality —, and that G is a
morphism G: X ® S* =Y @ R".

This is a reasonable thing to do. If we define an operation on objects by
(X,R)" = (R, X), we find that this operation can be extended in a compatible
way to some morphisms, but not all. Thus we can consider —* to be a partial
functor, which is total on objects. Since we have a symmetric monoidal embed-
ding C — Game(C) (§2.2.9), we can write X and R for (X,I) and (R, I). Thus
R"=(I,R),and so X @ R" = (X,I)® (I,R) = (X ® I,I ® R) which, treating
natural isomorphism as though it is identity, gives X ® R* = (X, R).
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We will extend this notation in several intuitive ways. For example, if we
have a game
G: (X1 ®Xy,8 ®5,) = (Y1 @Yy, R @ Ry)

we may write it as
G: X087 ®X,®8 =Y, @R @Y, ® R}

(among many other possibilities, one for each permutation), and the string
diagram as

Xy Y

Sy R,

In general, we will be unconcerned but consistent with the order of the types in
such situations.

Of course this comes at a cost: not all topological operations on our string
diagrams preserve meaning, or even well-formedness. This is something we will
need to take extra care about. For example, in a compact closed category there
is no real distinction between ‘past’ and ‘future’, but in Game(C) they are
distinct: a game G : X — Y cannot be turned into G : I -+ X" ®Y. An
explanation for this is given in §2.3.12.

We will omit some strings when some of the types involved are the monoidal
unit. For example, if we have a decision D : (X, 1) — (Y, R) then we will write
D:X — Y ®R", and the string diagram denoting it is

Y
—_—
‘& "
A closed game could be denoted simply by a bead with no strings attached.
2.3.6 Partial duality

A computation (f,g): (X,S) — (Y, R) will be denoted by the string diagram

X (1) -y
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That is, we are pretending that (f,g) = f ® g*, where g" : S* — R" is the dual
of g. This is another case of treating —* as a partial functor, this time defined on
morphisms of C. From this point onwards we will no longer treat computations
formally as pairs (f,g), but as individual games f and g* which we tensor
together when necessary. This is an extension of the fact that computation is
a monoidal embedding (§2.2.9). For example, if g : R — S then we can write
g = (id;,g) : S* — R" and use the string diagram
S - (9)- R

since id; is denoted by empty space.
The counit game ey : (X, X) — (I, 1) can now be written ey : X®@ X" — I,
and will be denoted by a cup

X

X

The counit law
ey o (f,idy) = ex o (idy, f)

which we proved in §2.2.10 now appears as a coherence law

X

v

telling us that we can slide a computation around the counit like a bead. This
takes the same form as the coherence law for the counit of a compact closed
category (see §2.3.3), but applies only”’” to computations.

The partiality of the duality means that, unlike in a compact closed category,
we cannot rotate beads. For example, in a compact closed category we have a
valid equation

but we cannot do so here because the cap does not denote a morphism of
Game(C), so the left hand side is not a well formed string diagram.

X
Y

471t is unknown whether Game(C) contains any dualisable morphisms besides the compu-
tations.
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2.3.7 Covariance, contravariance and symmetries

This kind of duality has one strange consequence, concerning how covariant and
contravariant (or forward and backward) strings interact. If we have two strings
pointing in the same direction which cross, such as

X Y

Y X

then the denoted morphism is a symmetry oxy : X ® Y — Y ® X, or more
formally, the computation

(oxy,idp) 1 (X @Y, I) = (Y ® X, I)
Similarly, in the contravariant direction, the string diagram

Y X

X Y

denotes oxy : Y ® X* — X" ® Y, or again more formally,
(idI7UX,Y) : (I7Y®X) - (I7X®Y)
However, now consider the string diagram

X Y

Y X

The object on the left is X ® Y™, which formally denotes (X,Y). The object on
the right is Y ® X, which again formally denotes (X,Y’). Thus, the denotation
0 x y+ of this string diagram is an identity, not a symmetry.

More generally, if we have a string diagram which consists only of crossings
of covariant and contravariant strings, the denoted game is an identity. We will
see this in practice in the coming sections, for example in §2.3.9.

Another example of the same idea is drawing a counit with the opposite
orientation than in §2.3.6. This is justified by the topological deformation

X X
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where the right hand side is the composition € x ooy~ y, because the symmetry
Ox* x s trivial.

2.3.8 Copying and deleting information

The underlying categories C introduced in §2.1.2 are not compact closed in
general, but they do have one piece of additional structure assumed, namely
that the tensor product is a weak product. This means that we have canonical

morphisms
X

and
Ax: X > XX

for each object X. Formally, this makes each object X into a cocommutative
coalgbera. These morphisms can be lifted into Game(C) either covariantly, or

contravariantly as
%I = X"

and
Ay X" X" — X~
Thus, the covariant objects'® of Game(C) are cocommutative coalgebras, and
contravariant objects are commutative algebras.
As is usual with string diagrams, we will denote the algebraic and coalgebraic
operators by small filled circles. That is, the coalgebraic operators on a covariant
object are denoted by

X

X

and the algebraic operators on a contravariant object by their rotations

X

X

These operators are not as ubiquitous in game theory as they are, for ex-
ample, in quantum information theory49, but nearly every game will involve
copying information at some point in its definition, for example if both a player
and a utility function need to be aware of the same value.

48 A ‘covariant object’ is an object of the form (X, I), and a ‘contravariant object’ is of the
form (I, X). A general object is the tensor product of a covariant part and a contravariant
part, and carries neither an algebra or a coalgebra structure.

*23ee for example the ZX-calculus (Coecke and Duncan 2011).
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2.3.9 A bimatrix game

We have now, finally, built up enough theory to give some recognisable, textbook
examples of games. We will begin with a bimatrix game, with mixed strategy
Nash equilibrium as the solution concept.

Bimatrix games are two player classical games with mixed strategies, intro-
duced in §1.2.6. Thus we have two players, who simultaneously make choices
from sets X, Y. For simplicity, we will assume that these are finite. We addi-
tionally have utility functions ¢;,qs : X x Y — R that give the utility for each
player on each play.

The best response function for such a game is

., E[ql(allao-%)] > E[Q1($/702/)]7
B(oy,03) = { (01,03) : ZX x Y | Elgz(01,02)] > Elga(0y,y)]
forall 2’ : X and v/ : YV

and a mixed strategy Nash equilibrium is a fixpoint of this B.
A prototypical example of a bimatrix game is matching pennies. In this
example, we have X =Y = {H, T}, with

(2,9) = 1 ife=y
@z, y) = 0 ifay

and ¢y(x,y) = 1 — q;(z,y). The unique mixed strategy Nash equilibrium of
this game is the strategy profile in which both players choose either H or T
with probability %, with the expected utility for both players being % Other
well known examples of bimatrix games include the prisoner’s dilemma and
the chicken game, and can be found in myriad books and lecture notes on
introductory game theory.

In order to model a bimatrix game, let G be the game in Game(SRel)
denoted by the string diagram

R
R

X

This diagram is built from pieces that have been introduced, composed together
using the two methods that have been introduced:

e The decisions D; : I -+ X @ R" and Dy : I — Y ® R* are expected utility
maximising decisions (§2.1.8), both with histories of type I.

e The two black nodes are comultiplications (§2.3.8).
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e The two crossing points are symmetries, one of which is trivial and one of
which is nontrivial (§2.3.7).

e The beads labelled ¢; and ¢y are the utility functions considered as co-
variant computations (§2.3.6).

e The two counits are drawn with opposite orientations (§2.3.7).

If we calculate the type of strategies of G, we indeed get ¥g = X x ZY.
Because G : I — I is closed game (see §2.1.6), the best response function has
type
Moreover, Bg is equal to the best response function B of the bimatrix game
we began with. In particular, the equilibria of G are exactly the mixed strategy
Nash equilibria of the bimatrix game. The proof of this is quite involved, and
is mostly given in §3.1.7.

2.3.10 A sequential game

As a second example, we will model a two-player game of perfect information,
with players modelled by arbitrary multi-valued selection functions, giving an
instance of the sequential games defined in §1.3.4. Let X, Y and R be arbitrary
sets, and consider the game defined by the outcome function ¢ : X x Y — R
and the multi-valued selection functions

E,: (Y - R)— Z2Y
Recall that a subgame perfect equilibrium of this game is a strategy profile
(o,7): X x (X =Y)
such that
o€ El(?/()](cr, 7))

and for all x : X,
TXT E EQ(%{i) (o,7))

where
%g (o,7)x = q(z,TT)

and

02/(3) (Ua T)y = Q(Qj? y)

These are instances of the construction in §2.1.7 of a decision from a multi-valued
selection function.

Let D; : I — X ® R* be the decision in Game(Set) defined by the response
function

Rp, (x, k) = E1k
and let D, : X — Y ® R* be the decision defined by

Rp,(z,k) ={r': X =Y | 7'z € Eyk}
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Let G : I — I be the closed game in Game(Set) denoted by the string
diagram

The set of strategy profiles for this game is ¥ = X x (X — Y), and the best
response function Bg : ¥g — &3 is precisely the best response function in
§1.3.5, whose fixpoints are the subgame perfect equilibria.

This example can also be extended in a graphically intuitive way to games
of imperfect information, in which the second player can only observe some
function of the first player’s choice. The construction will be sketched in §3.2.7.

2.3.11 Coordination and differentiation games

As our final introductory example, we will return to the coordinating and dif-
ferentiating behaviour of §1.2.9. As in the voting game introduced in §1.2.7,
we will let X be finite and consider the outcomes to also be R = X. We will
consider a pair of decisions

Dﬁxvpnonﬁx T — X®X*

in Game(Set), defined by the response functions given exactly by the multi-
valued selection functions Fg, and E, .55, SO

BDﬁX (*a ki)O' = Eﬁxk

BD (*,k)O' = Enonﬁxk

nonfix

Consider the string diagram
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where D; and D, are chosen from Dg, and D, ,a¢- One way to write this
algebraically is

G=(ex®ex)o(sxx®X @X")o(Dy®Dy): I =1

The type of strategy profiles is ¥ = X x X. The best response function
B;: X x X - Z(X x X) is given by

Bg(o,7) = Bp, (%, k1)o x Bp, (x, ko)

where kyz = 7 and kyz = o are constant functions. Since o’ € Bp, (% k)0 iff
o =7,and 7’ € Bp, (%, ko)7 iff 7' = 0, if we take D; = Dy = Dy, then (o,7)
is an equilibrium of G iff ¢ = 7. Similarly, if we take D; = Dy = D, nax then
(0,7) is an equilibrium of G iff ¢ # 7. Thus we again obtain coordinating and
differentiating behaviour.

If we take D; = Dg, and Dy = D, .5« then G has no equilibria, because
for (o,7) to be an equilibrium we must have both ¢ = 7 and o # 7. It would
be interesting to consider variants of Dg, and D, .5« in Game(SRel), because
this gameSU should intuitively have a mixed strategy Nash equilibrium, but this
is not free because we cannot take the mixed extension of a selection function
(see §1.2.6).

This example demonstrates that open games can model non-classical pref-
erences described by selection functions. It is interesting because the game has
no outcome function in a very literal sense, but instead the string diagram vi-
sualises the information flow where each player directly reasons about the move
of the other. However this issue is orthogonal to compositionality, and we will
not discuss it further.

2.3.12 Designing for compositionality

We now return to theoretical considerations, having gained some intuition about
the possible examples. The fact that the counit €y is not dualisable has some
interesting consequences for information flow in Game(C). A game of type
G: X®S" - Y ®R" can be thought of as accepting a value of type X from
the past, and a value of type R from the future (see §2.1.4). If we have a value

50 This game is called the penalty game because it models a penalty shootout. The fixpoint
player is the goalkeeper who would like to coordinate, and the non-fixpoint player is the
penalty taker who would like to differentiate.
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of type R in the past (for example, because an agent’s utility is determined
entirely by events in the past) then we can use the counit to bend the string
around, as in

X\ Y

R

To put it another way: a wvalue known in the past will still be known in the
future.

On the other hand, if we only have a value of type X in the future, we cannot
use it (unlike in a compact closed category) because an agent cannot directly
observe the future, but only reason about it (which is the purpose of R). This
‘causality’ point of view serves to explain why Game(C) has the structure that
it does. Indeed, if Game(C) were compact closed it would be straightforward to
construct a paradoxical situation analogous to the grandfather paradox, in which
a strategy negates the value chosen by itself. Categories with more structure
typically get around this problem using a ‘failure’ state such as the zero vector,
the empty relation or the nonterminating computation.

This will have a major impact on design for compositionality, which may
become an important research topic in applied compositional game theory. In
63.1 and §3.2 we will show that certain known, simple classes of classical games
can be faithfully represented as closed games. The purpose of this, as described
in §0.4, is to show formally that compositional game theory is indeed game
theory. However, a practical use of compositional game theory will likely look
quite different.

In §2.3.9 we represented a bimatrix game as a closed game G : I — I. Since
the game is closed, there is no nontrivial way in which it can interact with its
environment, and consequently there is no nontrivial way to compose it with
other games. This is unsurprising, because the point was to produce a faithful
model of a classical bimatrix game, and classical bimatrix games do not interact
with their environment, that is to say, they cannot be composed.

The question of how a bimatrix game should be represented in order to
allow compositionality is a nontrivial modelling problem. Motivated by §0.10,
we want to model the bimatrix game as an open game so that it could be reused
in later, more complicated problems. The simpler half of this problem is what to
take for Y and S, the types of values flowing from the game to its environment:
a reasonable choice is Y = X' @ Y, where X’ and Y’ are the types of choices
made by the two playersSl, and S = I, because there is no useful sense in which
the bimatrix game can generate coutility.

Sy §2.3.9 X' and Y’ are called X and Y, and should not be confused with the ‘default’
use of X and Y in §2.1.4 and elsewhere.
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The type X, given suitable features™ of the underlying category C, could
vary over all nonempty finite sets, with the game being parametrically polymor-
phic in X. The decisions, as defined in §2.1.8, do indeed seem to be parametri-
cally polymorphic in X. The non-compositional example in §2.3.9 is recovered
by setting X = I.

The difficult case is R. The problem is to determine how the utility of two
concrete players should be affected by unknown events in the future. The sim-
plest way to deal with this is to take R = R ® R and use the well-understood
ubiquity of real-valued utility as a ‘universal representation’; receiving an addi-
tional utility from the future that is simply added to the utility for each player
from the game itself. The string diagram corresponding to this description is

One notable drawback of this is that the preferences of the players, which
determine the appropriate utilities, become distributed throughout the string
diagram rather than being localised. A possible alternative approach would be
to have a game that is parametric in both a type R and in a rational preference
relation on R. In any particular instantiation, the type and preference relation
could be chosen depending on the modelling problem at hand.

52 The motivating example is the type system of Haskell (see §0.7). Writing in a parametri-
cally polymorphic way is second nature to a functional programmer.
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Chapter 3

Game theory in string
diagrams

3.1 Normal form games in string diagrams

3.1.1 Discussion

In chapter 2 of this thesis we have built up an abstract theory, and this will
be continued in §3.3 when we study solvability of games. The central argument
being laid out (see §0.10) is that this approach to game theory is better than
classical approaches, at least insofar as it is more scalable. However a vital
piece of the argument is missing: other than the language used in the informal
explanations, and the examples without proof at the end of §2.3, we have not
demonstrated that open games have any connection at all with game theory.

The purpose of this chapter is to show that our theory does agree with
classical game theory in certain situations, specifically normal form games with
pure and mixed Nash equilibria, and certain extensive form games with subgame
perfect equilibria. Given a classical game theoretic situation, we should be able
to draw a string diagram that looks like the information flow in the target
situation, and which moreover denotes the same game. In order to discuss
sameness of games, without even having a common framework, we will use
the approach discussed in §1.2.4: two games will be considered the same if
they have the same sets of strategies ¥, and the same best response functions
B: Y — 2% As we saw in §2.1.6, an abstract scalar in Game(Set) or
Game(SRel) is defined precisely by ¥ and B of this type. Therefore our aim
is, given some existing notion of game, to construct an abstract scalar whose
strategies and best responses are the same.

Game theory is a large subject, with entire areas devoted to various exten-
sions and special cases of the basic definitions. For this reason there cannot
be (and nor should there be) a single theorem that subsumes classical game
theory into our new framework. For now, we are going to focus on some simple
and common special cases. In this section, we begin with normal form finite
games and pure strategies, as introduced in §1.2, and we will prove that ev-
ery such game can be translated into a string diagram, whose strategies and
Nash equilibria are the same. For additional simplicity we will work only with
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classical games (see §1.2.5), in order that this section can be understood only
in terms of classical game theory, such as is introduced in (Leyton-Brown and
Shoham 2008), without requiring knowledge of selection functions. The proofs
about Game(Set) in this section and §3.2 generalise immediately to arbitrary
selection functions, using the translation from multi-valued selection functions
to decisions in §2.1.7.

Beginning with §3.1.6, we will also show the same result for normal form
games and mixed strategies, which is the setting in which Nash proved his
famous existence theorem (Nash 1950).

3.1.2 Tensor products of decisions

Consider a finite normal form classical game, in the sense of §1.2.5. We have
N > 1 players, where the ith player makes a choice from the finite set X, and
receives a real-valued utility, which she aims to maximise. Since the choices in
normal form games take place simultaneously, no player observes any history.
Since we are intending to model pure strategies, which involve no side effects,
we will work in the category Game(Set). The choice of the ith player will
therefore be modelled by the utility-maximising decision

which is given as the first example in §2.1.8. For completeness, this is defined
by the data

[ ] ZDZ :X’L
e Ppox=o

e Cp o(r,u)=x*

Bp ko = {0/ : X, | ko' > ka' for all 2" : X}
The purpose of this section is to study the tensor product of finitely many such
decisions.

We will work by induction on IV, the number of players. Define a game

N
i=1

where (R*)®Y denotes the N-fold tensor R* @ - -- @ R*, by by

More formally, we recursively define G; = Dy, and Gy =Gy ® Dyog-
Our task is to find a closed form description of Gy . It is simple to see that
the set of strategy profiles is a cartesian product

N
S = [ X
i=1
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The play function, whose type is isomorphic to

N N
Pg : [[x = [[%
=1 =1

is given by the identity function, because in the inductive case we have

ldHN X X ianJrl = idl—[N-H

i=1 i i=1

X.

i

Notice that this is equal to the play function P for normal form games defined
in §1.2.2. The coplay function has type isomorphic to

N
Cg, : [[Xi xR" =1

i=1

and so is uniquely defined.

3.1.3 Best response for a tensor of decisions

The best response function has type isomorphic to
N N N
i=1 i=1 i=1
and is given by

Bg ko= {JI : HX,-

ki(oi,0_;) > k(2 0_;)

foralllSiSN,x/:Xi}

where k; = m; o k, and the notation (o, a/_l-) was introduced in §1.2.2. We will
prove this by induction on N, the number of players.

This is the key step to connect our games with classical normal form games,
because it has exactly the same form as the best response function in §1.2.5,
and can be stated equivalently as saying that Bg, ko is the set of best responses
to o in the N-player normal form game whose outcome function is k.

We begin with the case N = 1. Since G; = D; is a decision, by definition we
directly have

Bg ko = {0’ : X| | ko' > k&’ for all 2] : X}
To see that this is of the required form, simply note that for N = 1 we have

(zq1,0_1) = 1, and that the projection (—); is the identity.
For the inductive step, by definition of the tensor product,

BgN+1kJ = BQN®’DN+1k(U—(N+1)v JN+1)

- BgN k®UN+1J—(N+1) X BDN+1kU—(N+1)®JN+1

94



3.1. NORMAL FORM GAMES IN STRING DIAGRAMS

We introduce here the less cluttered notation kg, and &, (van® B short-
hand f(?r'k®azy+1(*) and kai(NH)(*)@ (see §2.2.6), because all histories are trivial
for decisions in normal form games.

Before we proceed further, we must explicitly calculate kg, and k

o o 7-(+1)®”
The original continuation is

N+1
ke ] xi —» Y
i=1
which we will write in the isomorphic form

N
ko J] X x Xy = RY xR
=1

The left continuation Kgon,1 Hfil X, — R" is, by the definition in §2.2.6,
given by

N o N Hf\; XiXPDN+10'N+1 N
[Ixi=]]x xt1 1% < Xna
i=1 =1 i=1
k T_(N
Ly RY xR D RY

Since Dy 1 is a decision in Game(Set) its play function is

P’DN+IUN+1* =ON+1

so this is simply
/ /
k®0N+1U = k—(N+1)(U 70N+1)

Similarly the right continuation k © : Xn+1 — R by definition is

O—(N+1)

~ Pg o (4 ¥XXni1

N
Xnyr = 1 x Xy HXi X Xnt1

i=1

TN+1

2RV xR L R
Since we have already checked in the previous section that
Pg o (vin* =011

this is explicitly
/ !/
ka,wﬂ)@a = kN+1(U—(N+1)7U)

3.1.4 Best response for a tensor of decisions, continued
We can now expand

BgN_HkO' = BgNk®UN+1O-*(N+1) X BDN+1kU—(N+1)®UN+1

The first term Bg kgy, ., 0 (n41), by the inductive hypothesis, is the set of
o Hf\[:l X, such that for all 1 <i < N and z} : X,

(k®oN+1)z‘(Uz{7 (U—(N+1))—i) 2 (k®z7N+1)i(wg7 (U—(N+1))—i)

95



3.1. NORMAL FORM GAMES IN STRING DIAGRAMS

Expanding the definition of kgoy.,,» this is

(k—(vy1))i(0h (0—(vi1))isons1) = (Boven)i(@h (0 (vg1))is Ont1)
Noticing that the composition of the projections

N+1 N

T_(N+1 T
[[x ——=]][x =X
i=1 i=1

is itself just a projection, this can be simplified to

ki(agaafiaUNJrl) = k’i(l‘;’Uﬂ'aUNH)
This notation is the obvious extension of that introduced in §1.2.2, namely
) if j =i
(25,0 4,0n11) =4 0 if1<j<Nandj#i
ony1 fj=N+1

Similarly, the second term BDN+1kU—(N+1)®UN+1 is by definition the set of
o X1 such that for all xlNH XNt
! !/
ko i@ 2 Koy ,neTN+

and this expands to

kns1(0_(n11):0") = kni1 (0 N1y, Tngr)

Putting these together, the cartesian product
BgN+1kU = BgNk®UN+1O-*(N+1) X BDN+1kU—(N+1)®UN+1

is equal to the set of o : ij;l X, such that both of these conditions hold. The
first holds for all # < N, and we notice that the second is equal to the first for
i = N 4 1. This means that the set BgNchr has exactly the form we required,
and we are done.

3.1.5 The payoff functions

It may be that the game Gy we have constructed is the properly idiomatic
representation of a normal form game as an open game, leaving the utility
function as a continuation parameter in the best response function. However, if
we have in mind some concrete utility function

N
q:HXZ- —RY
i=1

then we can use the result proved in §2.2.10, that the closed game

H=cpono(qg® R)*V) oGy I 1T
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has the property that
Bg,q0 = Byxo

Therefore Y3y = X5 and By, : ¥g, — PYg  specify the same strategies and
best responses for H as for the classical normal form game we began with. As
discussed in §3.1.1, this is precisely the aim we began with.

Because computations are a monoidal embedding, we can go further and de-
compose ¢, so that the information flow inside ¢ is visible in the string diagram.
Typically, g is constructed by beginning with a utility function

N
qi:HXZ- —R
i=1

for each player i. The tensor product of these, considered as covariant compu-

tations, is

N N N

N
Qi QKX — R
i=1 i=1 j=1
Since each of the IV utility functions requires access to all N choices, we need

to copy each choice N times and then braid them into the right order. This is
implemented by a copy followed by symmetries. For example, when N = 3 we
use

In generall, the copying is implemented by a covariant computation

N N N
®Xi%®®xj
=1

i=1 j=1

1Doing this in a somewhat compositional way is possible, but tedious. It is unavoidable
to fix the number N, and eventually we will come up against the fact that outcome functions
are fundamentally not compositional, because they refer to the totality of all players. Finding
ways to avoid this may become a significant research problem in applied compositional game
theory.
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whose play function is

Pq(SL’17...,I’N):(.’L’l,...,l’N,...,.’L’l,...,CCN)

Of course, particular features such as common subexpressions can be used to
simplify such a string diagram in many examples.

The example game in §2.3.9 has this form, but uses mixed strategies, which
we will now develop. In the remainder of this section, and in §3.2, we will
work with the open form of a game, leaving the outcome function implicit as a
continuation parameter in the best response function.

3.1.6 Stochastic decisions

The result that normal form games can be faithfully represented as open games
also holds if we change our solution concept from pure to mixed strategy Nash
equilibrium. Mixed strategy Nash equilibria of classical games were introduced
in §1.2.6. Following the example in §2.3.9 we now describe the general case,
making use of the probability distribution monad & introduced in §2.1.3.

We will now work in the category Game(SRel), where SRel is the Kleisli
category of Z. Following §3.1.2, we have a sequence of decisions

which are defined by the response function
R:(X; > 9R) —» X(2X;)

given by
Rk = {0: 2X,; | E[k*o] > E[k2'] for all 2’ : X;}

These are the expected utility maximising decisions introduced in §2.1.8. To
recall, D, has the set of strategies

Em = homggre (1, X;) = 2X;
Its play function has type
Pp : ¥p, = homggra(l, X;) = 2X; — 7X;
and is equal to the identity function, and its coplay function
Cp, : ¥p, = homgre(I @R, I) = 72X, - R — 21

and is uniquely defined as the function onto 21 = 1, the only probability
distribution on a one-element set. Finally, its best response function is

Bp, : homgge (1, ) x homggei (X, R) = Xp, — P Ep,

given by
Bp ko = {0’ : 72X, | E[k"0] > E[ka/] for all 2’ : X}
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As in §3.1.2, we will define the game

N
Gy IR X, ® (R*)®N

i=1

N
v = QD
i=1
By induction we get a closed form for the strategy set
N
Son = [[2X:
i=1

and also a closed form for the play function

N N
Py, [[2x:— 2] X
=1 1=1

given by the monoidal product of the monad 2, in other words,

N
P [Pg,0 =] = [[Plos ==
i=1
The coplay function is uniquely defined by its type
N
Cq, : [[2X: = RY —» 21

=1

again because 71 = 1.

3.1.7 Best response for a tensor of stochastic decisions
We will prove by induction that the best response function
N N N
Bg, (HXZ- — @R”) —[[2x; - 2] 2x,
=1 =1 =1

has the closed form

N
Bg, ko = {‘7/ : H-@Xi E[k’i(gz"v(hi)] > E[ki(l’;’fhi)]
i=1

forallx;:Xi,1<i<N}

This is exactly the best response function for games with mixed strategies given
in §1.2.6. In the case N =1, it is

Bg ko ={0': 2X, | Elko’] > E[ka}] for all 2} : X;}
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which holds by definition.

Note that from this point, we begin to abuse notation by leaving the Kleisli
extension of & implicit. This is standard practice in mathematics, where for
example an ordinary non-stochastic function f can be applied to a random
variable «, resulting in a random variable fa.

By the same reasoning as in §3.1.3, the condition

(0_(n+1):0n+1) € Bgy, k(0_(n+41), On41)
is equivalent to the pair of conditions
!
o-(n+1) € BgyFgoy,,0-(v+1)
and
!
ON+1 € BDNH]%,(NH)@UNH
The former, by the inductive hypothesis, is equivalent to the claim that for all
1<i<N and 2} : X;,

/ /
E[(kgoy,,)i((0Z(vi1))i (0-vi1))—i)] = El(kgoy,, )i(5 (0 (vi1)) )]
The latter, by definition of Dy, is equivalent to the claim that for all devia-

tions 33/N+1 X Na1s
/ /
E[ko,(NH)@UN-H] > ]E[ka,(NH)@xNH]
We must prove that for all 1 <i < N + 1 and z} : X,
Elk; (0}, 0_)] > Elk; (27,0 ;)]

In order to obtain this from the inductive hypothesis, it remains to prove
that

(k®0N+1)i(l‘;7 (Uf(N+1))7i) = ki(l“;, o_;)
for 1 <i < N and z} : X;, and
ko,(NJrl)@m?\H-l = kN+1(U—(N+1)a$/N+1)
for x§v+1 : Xny11. Continuing to abuse notation, for the former we can say that
(k®0N+1)i(‘T;a (OL(NH))%) = (IL(NH))i(I;’ (07(N+1))7¢70N+1)
= ky(z,0_;)
and similarly,

ko_(N_H)@x?V«H = kN+1(Uf(N+1)7$IN+1)
holds by definition. More carefully, both sides of the former are given by

P [ki(xg,a_i) = = Z H]P’ [o;=a;] | P [k(x;, T ;) =ul

RN i

u_y;:

@[l X
and the latter by
P[kni1(0-(nt1), @Ni1) = un1]

N
- Z H Ploj=a;] | P [k(z_(nv41), Pnr1) = 1]

N
u_(n41)R
N
m*(N‘Fl):HJ‘:l X
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3.2 Extensive form

3.2.1 Discussion

In §3.1 we showed that normal form games can be translated into abstract
scalars in Game(Set) or Game(SRel) in a way that preserves the pure or
mixed strategies and Nash equilibria, respectively. In this chapter, we will focus
on translating extensive form games into abstract scalars in Game(Set) while
preserving pure strategies and subgame perfect equilibria.

We give a complete proof for the case of sequential games, that is, perfect
information games in which the type of choices of a player may not depend on
the values of previous choices (see §1.3.1 and §1.3.4). In §3.2.7 we additionally
discuss the representation of imperfect information. Giving a general translation
of an arbitrary extensive form game into an abstract scalar of Game(Set) would
be more work, and is left for the future.

We will see in §3.3.7 that using the same method to translate extensive form
games with mixed strategies into Game(SRel) goes wrong, in the sense that it
gives an implausible solution concept, and that the most fundamental definitions
in §2.1 and §2.2 will need to be changed as a result. This is why we restrict to
pure strategies in this chapter.

This section is, technically speaking, the most difficult of this thesis, with
§3.2.4 and §3.2.5 being particularly dense. Verifying these proofs is made more
difficult by the fact that it is necessary for readability to leave many isomor-
phisms of sets implicit, such as when using the notation (z},z_;) for unilateral
deviation.? An implementation in a proof assistant such as Coq would be useful,
and will be even more important when scaling this style of proof beyond such
simple types of games as are considered in this thesis.”

3.2.2 Composition with perfect information
We will begin with a sequence of decisions

i—1
D QX; = X, ®R"
j=1

in Game(Set). The ith decision represents a player who observes the first i — 1
choices. Note that since the empty tensor is the identity, the first of these is
D, : I — X; ®R". We will define a game

N
Gy T - Q)X ® (R*)®N

i=1

which behaves like their perfect information composition, by induction on N.
Like for simultaneous games, the base case is G; = D;.

For the inductive step, we are given Gy and Dy, and we must produce
Gny1- In this game, Gy must play first, and then Dy must play observing the
choices of Gy. However, the choices of Gy must also be preserved in the output

2These are precisely the isomorphisms that need to be explicit in Haskell code, as discussed
in §0.7.
3See also comments in 80.2 on certified mathematics in economics.
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of Gy 1, and hence must be copied in parallel with Dy ;. We will define this
composition by the string diagram

Q)X
=1
N
Q)X
i=1 XNt
R®N
R

We will translate this diagram into monoidal category notation in stages.
The decision is

N
Dy QX = Xy @R
=1

To add the string above it we tensor with the identity

N+1

N N N
QR Xi@Dy:QRX; QX » Q) X, @R
=1 =1 =1 =1

The copying node is the computation

N N N
Anj\lexi : ®XZ - ®X1 X ®XZ
i=1 i=1 i=1

The top-right part of the diagram is therefore

N+1

N N
(@XiéaDNH) oAy, QX = Q) X, oR"
1=1 =1 =1

Before the lower-right crossing, we can tensor with the lower R®N-labelled con-
travariant string to get

N

i=1

N N+1
QX @ (R = X)X, oR" @ (R)®Y
i=1

i=1
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The crossing is the dual of the computation

o 5t REVTY L R R®N

and we must also tensor with the identity above it, to give

N+1 N+1 N+1
X107+ @ KO 8 ) = ) Xy ()0

Finally, we can give the denotation of the entire string diagram as

N+1
Oni1 =Hyp10Gn: 1 — ® X; ® (R*)®(N+l)
i=1
where
N N+1
M QX () @ o ()N
i=1
is given by

N+1 N
= <®Xi®0']1§N’R> o <<<®X ®DN+1> oA e 1X> ®(R*)®N>

3.2.3 Building the composition

Since the strategy sets of the decisions are

i—1
Sp, = [[X; = X
j=1

it can easily be seen that the strategy sets of the G, are isomorphic to the
cartesian product of these,

H HX—>X

=1 \j=1

The coplay function of Gy has type

H HX =X, | =>1—1

i=1

and hence is uniquely defined.
The play function has type

i—1 N
Po [T I]X =X | = ][%
i=1 \j=1 i=1

We will prove that Pg = P is the play function for sequential games introduced
in §1.3.4. Explicitly, we will prove that

(Pgy0)i =0i((Pgy0)1s--, (Pg,0)i—1)
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for all 1 < ¢ < N. This should be compared to the defining equation of the play
function in §1.3.4. In the base case G; = D;, the play function is by definition

(Pp,0)y =Ppo=0=0y

which satisfies the equation.
For the inductive step, we need to show that

PgN+10' = (Lﬂ, O—N-‘rlw)
where z = Pg, o_(n41). Since
PQN+1U = PHN+1UN+1 °© PQNJ—(N"Fl)
it suffices to prove that
Py onp12 = (T,08112)

To begin with, we note that

P « =id
®£\f:1 X7‘,®URNYR vazl X
and so
Py ony1 =P ON+1
N+1IN+ <(®£V:1X'i®DN+1)OAHZ.\LlX.>®(R*)®N +
=P N ON
) ) +1
(®iL, X1®DN+1)°AH£V:1 X,
Then

P o z=P o P T
(®1N:1 Xi®DN+1)°AHN N+l ® Ly X;®Dy 4y " N+ AHN X,

i=1%;

®1N:1 Xi®Dn 41 (SC, x)

= (P®f\7:1 Xix’PDN+1UN+1x>

= (z,0n417)

Having proved this, we have

(PQNHU)i = {

For i < N, the inductive hypothesis gives

(Pgyo_(n+1))i ifi <N
ont1(Pgyo_(nin) ifi=N+1

(Pgy,,0)i = (Pg o (ny1))i
= (0_(v4+1)i(Pgyo—nvg1)1s - (Pgyo_(n41))im1)
= Ui((PgN+10—)1v cees (PQN+1U)1'—1)
and for i = N + 1,
(PQNHU)NJA = UN+1(PQN<L(N+1))
=on1(Pgyo_(viny)is - (Pgyo_(vi1)w)
= 0N+1((PQN+1U)1> cees (PQN+1U)N)

104



3.2. EXTENSIVE FORM

3.2.4 Best response for the composition

We will now prove that our best response function

N
BgN : <HXZ — RN> — ZgN — gZEgN
=1

where
N

ng:H

i—1
i=1 \j=

X, — X
1

is such that BQN ko is the set of all ¢’ : EQN such that, for all players 1 <¢ < N
and all partial plays © = xq,...,2;_; of length ¢ — 1, and all possible deviations
x; : X;, we have

(U o(0in)); = (ULow,),

where @/lk is the unilateral deviation operator for sequential games, defined in
§1.3.5.

The proof is again by induction on N. In the base case we have N = 1
and we need only check i = 1 with the empty partial play and some deviation
1 : Xq. Then

(%" o0, = ko'

and
(%k0$1)1 = kxy

and we are done, because by definition Bg = Bp, takes k: X; - Rand 0 : X,
to the set of all o’ : X such that

ko' > k'

for all ' : X,
Next, by the definition of composition,

BgN+1kJ = BgN kUN+1°U—(N+1)
X m BfHN+1 (:PgNO'/7 k)O'N+1

’
o :Xg

For BgNHkU to contain some o, it must be that

oL (1) € Boy ko 00 (N1

and for all JZ(N.H)»

/ i
ony1 € Bay, (Pg 0-(nyny k)on g

The first condition, by the inductive hypothesis, is equivalent to the claim
that for all 1 <4 < N, partial plays ¢ = xy,...,2;_1 : Hj<i X, and devations
ZT; Xi7

o

k, o ko
(U ™ o vy (0L (vgn))i)s = (% ™M 0 vy my);i
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We claim that there is an equality of continuations

kﬂ o
Ue " 0_(Ny1) = T_(N41) © wro: X; 5 RY

which immediately gives us the inductive hypothesis for N +1 when 1 <1i < N.
To show this, by definition

N
k x5 - RrY

ON410
j=1

is given by
kaN+1o$ = k—(N+1)($7UN+1‘T)

Now we have

Y, ”N+100'7(N+1)$i _ kaNHo(VZ;C(iNH))
= k_ vy (e o (e )
where v is defined in §1.3.5, because by definition
%wkaxi = k(VZ,xi)

Therefore it suffices to prove that

Vi a, = aa " on (V2 ))
By definition
(Vg,:ci)N+1 = JN+1((V;-,11)17 RN (Vg,xi)N)

so it suffices to prove that

(V_;mi )j = (V;;l_(izvﬂ) )j

for 1 < j < N. This is easily proved by strong induction on j.

3.2.5 Best response for the composition, continued

We now return to the second condition for
o e BgN+1ka
namely that for all O'Z(N_H) t g
o1 € By, (Pgyo” (vi1), K)o
We claim that this is equivalent to
U§v+1 €Bp,, (PQNUZ(NJrl)v k/)UNH
where k' : Xn11 — Ris given by

/ "
Ky = k‘NH(PgNU—(NH)J?NH)
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We will prove the slightly more general claim where Pg 0’_'( N+1) is replaced

with a general play z_ ). To begin, since ®f§[l X, ® O']EN g 1s strategically

trivial,
BHN+1 (ﬁf(NH)v k)0N+1
=B <(®fv:1 X, ®Dx 4ol Xi)®(R*)®N (T_(N+1)s Ko )TN 41
where Mo
kvo o [ Xi = RV
=1

is the extended continuation defined in §2.2.2, given explicitly by

kyox = C (z, k(P

N1 . N41 « T
&1 Xi@a'RN,]RZ ®;=1 X'i®URN)]R ))

= JRN,R(k(idnlNZI th))

= (knt17, k_(n41)T)

Next, because the identity on (R*)®" is strategically trivial,

v on (T (N41)s Ko )O N

= B(@LX@DNH)oA N (xf(N%»l)a(k*o)l)UNqu

ITi=1 X;
where
(ko)1 = kyj1o
Therefore
B(®§V:1 X@DNH)oAHN:l . (ﬂﬂf(NH), kni1)on
- B®£V:1 X;®DN 1 <PAH£\’:1 Xix_(N—i_l)7 Fn1)oN+1
=Bgy xapy,, (A, x, T-v+1)s knga)on
= B®1N:1 Xi®DN+1((x—(N+1)’x—(N—&-l))a kni1)on41
=Bop, . (@ (vr1), (EN11)%(a_ yi1))@)ON+1
where

(EN+1)%(@_ (yi1)@TN+1 = kN+1(P®£\’:1 X, T—(N+1) TN41)
= k?N+1(fU7(N+1)a$N+1)

/
=kznp

for the definition of &’ given earlier.
Now, by definition of Bp, ., the condition

/ 12 /
ont1 €Bop,, (P 0= (ni1) K)ona

is equivalent to
kl(0§v+1(PgNU/—/(N+1))) > k/$N+1
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for all xy11 : X1, which is
kn1(Pgy ol invi1) oni1(Pgy 0l vi)) = k1 (Pg ol (vgnys Ev1)

It remains to show that this, universally quantified over O’Z( N+1) ¢ Xg,, implies
the remaining case of the inductive hypothesis for N + 1, namely that for all
partial plays ¢ = x1,...,zN : vazl X, and deviations Ty4q @ Xnq1,

k k
(%; (0N 112)) i1 = (% oxn 1) N
Notice that

ag

k
(% 0T N 1) Np1 = kN+1(Vz,xN+1) =knp1(T,2N41) = k/xNJrl

so we must show
!
Enii(@,oni1z) > knp (2, 2541)

for all partial plays z.
Given such an z, we take the strategy profile

(O'Z(N+1))Z'ZC/ =x;

which ignores its observation, and simply plays the move from x. We claim that
12

Pg, 0" = x. Using the characterisation of Pg  in §3.2.3, for each 1 <i < N
we have

(Pg 0 (ni1))i = (02 (nv41)i(Pgy o (vi) s (Pgy 0 (nvi1))io1)

This completes the proof.

3.2.6 Information sets

Information sets are used in (von Neumann and Morgenstern 1944) to give a
general theory of imperfect information, including games that are intermediate
between sequential and simultaneous. In general, a player may be able to observe
partial information about another player’s earlier move. That is, they may be
able to distinguish some pairs of moves, but not others.

For simplicity, we will begin with a concrete two-player game. Suppose the
set of moves for the first player is X = {x;, x5, 23} and the set of moves for the
second player is Y = {y;,yo}. The game tree for this game is
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An information set for the second player is simply a partitioning of X, that
is to say, an equivalence relation on X. The intention is that two elements of
X that are in the same equivalence class cannot be distinguished by the second
player, whereas elements in different equivalence classes can be. In this example,
the dashed line is the usual notation for specifying that two nodes are in the
same equivalence class. Thus, our partitioning of X is X/~ = {{z, x5}, {z3}}.

For simplicity, we will focus on pure strategies, although sequential equilib-
rium (Leyton-Brown and Shoham 2008) is a more common solution concept for
games with nontrivial information sets (and see §3.3.7). The informal condition
that the second player cannot distinguish between x; and x5 can be interpreted
formally as a restriction on the allowed strategies, namely that every strategy
for player 2 must be compatible with the equivalence relation. Thus, a func-
tion oy : X — Y is an allowed strategy for player 2 iff 042, = 0y25. This is
equivalent to saying that oy is actually a function oy : X/~ — Y. The set of
strategies of this game, therefore, is

Y =X x(X/~—Y)

The general definition of a subgame perfect equilibrium, including with non-
trivial information sets, is a strategy that induces a Nash equilibrium on every
subgame. For this two-stage game, this is the same as a fixpoint of the best re-
sponse function B : ¥ — 2%, where B(oy, 05) is the set of all (o7, 05) satisfying
the two conditions”

q1 (0/17 02 [0-11]) > q1 (‘T/7 02 [.’17/])
for all ' : X, and
¢5(2", 05[a"]) = go(2’,y)

for all ' : X and y' : Y. Equivalently, we can give the two conditions as

/ / I
o} = arg max g («/, 05[]
z': X

and for all 2’ : X,
/ / / /
oyl2’] = argmax gy (2, y')
yl:Y

“The notation [x] refers to the information set to which x belongs.
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3.2.7 Imperfect information in string diagrams

We will end this section by taking a more general two player game involving
imperfect information, and showing how it can be visualised as a string diagram.
The sets of moves are X and Y, and we have an equivalence relation ~ on X. A
strategy profile is a pair (0y,04) : X X (X/~ — Y). The definition of subgame
perfect equilibrium is as before.

We will implement this game using the string diagram

X
X
X
X/~ Yy
\%R
R

in Game(Set), where 7. : X — X/~ is the projection onto information sets,
7« = [x]. This should be compared to the string diagrams in §2.3.10 and §3.2.2,
which denote perfect information games in which ~ is the identity relation, and
so 7., is the identity on X. Notice how we can explicitly see that the information
flowing from D; to D, passes through the projection m,.,, where it is partially
hidden.

Since most of the analysis is the same as for the perfect information case,
we will focus on the sub-diagram

o

S~ R

~

X

which is given algebraically by

G=(X®(Dyom.))oAx: X - XY @R"
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The set of strategy profiles is ¥ = X/~ — Y, with play function
Pgox = (z,0x])
The best response function
B;: X x (X xY = R)—=X; - PYg
is calculated as
Bg(ha k)o = BX@(DQOWN)((ha h),k)o
=Bop,on_(h, K)o
=By, ([1],K)o

where k'y = k(h,y).
Since Bp, is a utility-maximising decision, this is

Bg(h,k)o = {o": X/~ = Y | k(h,o[h]) > k(h,y') for all y : Y}
and the condition can be equivalently written

o[h] = argmax k(h,y)
y':Y
This corresponds exactly to the second condition for the best response function
in §3.2.6.

3.3 Solvable games

3.3.1 Discussion

In this section we will introduce a suitable solution concept for open games,
called solvability. Although the best response function of a game contains all
of the information needed to define equilibria, it does not seem to be directly
usable as a solution concept, because there is nothing that corresponds directly
to an ‘equilibrium of an open game’. A solution of a game, on the other hand,
is defined in terms of the best response function and can be directly read as an
analogue of Nash or subgame perfect equilibria for open games.

The solvability of a game should be seen as a witness for an ezistence the-
orem. This is because a solution of an open game implies the existence of
equilibria for a class of closed games obtained by varying its continuation, that
is, for a class of games whose outcome function varies. For example, as men-
tioned in §3.3.6 there is a single open game whose solvability is equivalent to
the Nash existence theorem for bimatrix games (of fixed size).

The ultimate aim is to show that solvability is respected by the categorical
operations used to construct games, which will allow us to prove existence the-
orems by structural induction, and compute equilibria recursively.5 In §3.3.4
we will show that when applied to categorical composition this yields some-
thing akin to backward induction in classical game theory, and thereby connect
solutions with selection functions. In §3.3.6 and §3.3.7, we will discuss how
solvability behaves with respect to tensor products, which is more subtle and is
ongoing work.

5Anything less would shackle the power of compositional game theory.
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3.3.2 The definition of solvability

Let G: X ®S" - Y ® R" be a game in Game(C). We will call G solvable if,
for every continuation k : home (Y, R), there exists a strategy o : g, such that
for all histories h : hom¢ (I, X), we have o € Bg(h, k)o.

A solution of G is a function® s : home(Y,R) — Yg such that sk is a
fixpoint of Bg(h, k) for all contexts (h,k) : home (I, X) x home (Y, R). By the
axiom of choice, a game is solvable iff it has a solution.

A first technical issue with solvability is that it is not ‘aware’ of coutility,
because the definition of solvability of G does not refer to S or Cg. Consequently,
the solutions of

X Y

are independent of the computation f : S — S’

Notice that all strategically trivial games (§2.2.8) are solvable. Take a strate-
gically trivial game G : X @ S* — Y ® R, so we have ¥g = 1, and for every
h :home (I, X) and k : hom¢ (Y, R) we have

« € Bg(h, k)

Then the unique function s : home(Y, R) — g is trivially a solution.

The following is a simple but useful way to obtain new solvable games from
old. Let G : X ® 8" — Y ® R" be solvable, and let f : R - R® T be a
computation. Then

X\ Y

T R

is also solvable. When solutions are connected with selection functions in §3.3.5,
this is analogous to modifying the outcome type of a selection function (§1.1.8).
Algebraically, the game denoted by this string diagram is

YRf)o (6T : XS5 T =Y ®R"

It is obtained from G by composing and tensoring with strategically trivial
games, and so

Y(vaf)o@er) = X¢

5A strategy relative to a continuation.
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Its best response function is
By g oger) : home(I, X) x home (Y, R') = $g = #3g

given by
B(Y®f*)o(g®T*)(h, k)o = Bg(h, ko
where
Ky SR L Rer MR
Let k : hom¢ (Y, R) be a continuation for (Y @ f*)o (G ®T™). By the solvability
of G with the continuation k', we have o : Yg such that, for all i : hom (I, X),

o € Bg(h, K)o

Thus 0 € B(yg*)o(ger™) (I, k)o, as required.

3.3.3 Solvable decisions

We will now provide our first nontrivial examples of a solvable games, namely
the decisions in Game(Set) defined in §2.1.8 that maximise with respect to a
rational preference relation > on a set R. These are

D: X YRR
defined by the response function
R: XXx(Y—=R) - Z2(X—=Y)

given by
R(z,k)={0c: X =Y | k(oz) = ky for all y : Y}

We will prove that this decision is solvable, if Y is finite.

Let £ : Y — R be a continuation. Then since Y is finite and > is a rational
preference relation” there is some y : Y for which ky is maximal. Pick the
constant® strategy o : X — Y given by ox = y. Then for all h : X we have
o € Bp(h, k)o because for all 4’ : Y we have

k(ox) = ky = ky'
In Game(Set) we can prove a stronger ad-hoc result, namely that

X

‘KR

"A total preorder.

8The fact that we can use a constant strategy here seems to be related to the problem
discussed in §3.3.7.
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is also solvable. Algebraically, this game is (X ® D) o Ay, which is obtained
from D by tensoring and composing with strategically trivial games. Thus, the
strategy set is

E(X(X)'D)OAX = ED =X->Y

Its best response function, by similar reasoning as in §3.2.4, is
B(xepjon, (hk)o={c' : X Y | o' € Bp(h,k)o}
where k' : Y — R is given by k'y = k(h,y). Explicitly, this is
B(xepjon, (hk)o={c": X =Y | k(h,o'h) = k(h,y) for all y : Y'}

Now let k : X XY — R be a continuation for (X ® D) o Ax. Define a
strategy 0 : X — Y by

ox = argmax k(z,y)
yY

where arg max picks some y that attains the »-maximum. Then for every
history h : X we have
k(h,ox) = k(h,y)

by construction, and hence o € B(xgpon , (h, k)0

3.3.4 Backward induction for open games

We will now prove that solvable games are closed under categorical composition.
The proof of this result amounts to backward induction, just as does the product
of selection functions (§1.3.6). This is the main piece of evidence thus far that
solvable games are mathematically natural.

Suppose we have games

N

Y VA

T S R
with solutions
Sg . homC(Y, S) — Zg
Syt homC(Z, R) — Z’H
We define s3,,g : home(Z, R) — 3g x ¥4 by

Spogk = (SgksHkov sy.k)

where ko : home(Y,S) is the extended continuation defined in §2.2.2. We
must prove that sy¢ is a solution of H o G.

Let (h, k) : home (I, X) x home(Z, R) be a context for HoG. We must prove
that

510k € Byog(h, k) (s30gk)

This unwinds to the two conditions

Sgksﬂko € Bg(h7 ksq_‘ko)(sgksﬂko)
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and
SHk S BH(PgJ o h, ]{7)(8%1{3)

for all o : ¥g. Both of these follow immediately from the fact that sg and sy
are solutions of G and H respectively.

3.3.5 Selection functions and open games

Given a solution s : home (Y, R) — ¥g of a game G : X ® S* — Y @ R", we have
an associated selection function

Pgos:home (Y, R) = home(X,Y)

which is a morphism in hom fRC(X ,Y'), where #xC is the category of selection
functions defined in §1.3.2. We will call € a selection function for G if it has the
form € = Pg o s for a solution s of G.

We will now for the first time relate the composition in the category of
selection functions, or equivalently the Kleisli extension of the selection monad,
with game theory.9 Unfortunately, this connection does not behave well with
respect to coplay; it remains to be seen whether or not it is a useful idea.

Suppose we have games

X Y VA

R R R

whose coplay functions are the identity on R. We will prove that if ¢ is a selection
function for G and § is a selection function for #H, then doe is a selection function
for H o G, where the composition § o € is taken in the category #grC.

By hypothesis, we have a solution sg : hom¢(Y, R) — Xg of G, and a solution
s34 : home(Z, R) — X4 of H, such that ¢ = Pgosg and § = Py 0sy. The
composition of these is

(0oe)k =0koe(kodk)="Py(syk) o Pg(sg(koPy(syk)))
The solution s3,,g of H oG is defined by
S1ogk = (Sgksﬁko, Sy k)
The selection function associated to this solution is
Pyiog(830gk) = Py (syk) o Pg(sg(ksﬂko))

We get that ¢ o ¢ is precisely this, and so it is a selection function for H o G.
Here we need to use the restricted form of the coplay function of H in order to
get that

kSq_‘kO =ko P’H(‘S’Hk)

9The connection between the game theory and the product of selection functions is well
understood. However the product of selection functions is a derived operator in terms of the
more primitive Kleisli extension and strength operators, neither of which have any previously
known meaning in terms of game theory.
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rather than (in pure strategies)

ks, oy = Cu(s3k)(y, k(Py(s9.k)y))

This provides us with a high level way to think about solvability. Given an
object R of C, we consider the subcategory Gamep(C) whose objects are of the
form X @ R* for X an object of C, and whose morphisms are games whose coplay
function is constant. Then we can think in terms of functors from Gamepg(C)
to the selection category #x(C). Although it is possible to do a certain amount
of game theory in Gamepg(C) when R is suitably chosen, it is unlikely that this
way of thinking has enough benefit to offset the restriction of not having coplay
available, which limits compositionality in practice. One way in which this is
useful, however, is to understand the relationship between selection functions
and open games.

3.3.6 Tensor does not preserve solvability

In general, the class of solvable games is not closed under tensor. This is a
high level way of saying that simultaneous games do not have equilibria for
every solution concept, and in particular they do not have pure strategy Nash
equilibria.

We will give a counterexample using matching pennies, which is the simplest
game with no pure strategy equilibrium. In this game two players each simulta-
neously choose H (‘heads’) or T (‘tails’). If both players make the same choice
then player 1 wins, and if the choices are different player 2 wins. This game has
no pure strategy Nash equilibrium, because when playing a strategy in which
both choices are the same player 2 has incentive to deviate, and when playing
a strategy in which the choices are different player 1 has incentive to deviate.
(This game has a unique mixed strategy equilibrium, in which both players mix
with equal probability.)

We will formalise this game by working over Game(Set). Let X = {H, T},
and let R be the poset {0 < 1}, where 1 indicates winning and 0 indicates losing,.
The maximising decision

D:I - X®R

was proved to be solvable in §3.3.3.

We will now prove that the tensor product D ® D is not solvable. To show
this, we must exhibit a particular continuation k£ : X x X — R x R with the
property that

Bpgpk: X x X - Z(X x X)

has no fixpoints. This is equivalent to saying that the game with outcome
function k has no pure strategy Nash equilibrium. Therefore, we take k to be
the outcome function of matching pennies, namely

(1,0) ifz=y
ke, y) = {(0,1) ifex#y

This gives
BD®'Dk($7 y) = {(yaf)}
where = : X — X interchanges H and T'. This function indeed has no fixpoint.
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If we reasoned in Game(SRel) instead of Game(Set) then this does not
happen: by Nash’s theorem, the tensor product of finitely many decisions over
finite sets of choices in Game(SRel) is solvable.

3.3.7 Failure of compositional Nash’s theorem

An early motivation for introducing solvable games, besides connecting open
games and selection functions (§3.3.5), was to prove a suitable generalisation of
Nash’s theorem for open games. The fact that solvable games are closed under
composition (§3.3.4), but fail to be closed under tensor because pure strategy
Nash equilibria need not exist (§3.3.6), strongly suggests the conjecture that in
Game(SRel), all freely generated games are solvable.

This fails, however, because it is not the case that arbitrary solvable games
in Game(SRel) are closed under tensor product. This appears to result from
a much deeper issue with the definitions in §2.1 and §2.2. In §3.1 it was shown
that normal form games with mixed strategies Nash equilibria can be faithfully
represented by open games, and similarly for extensive form games and pure
strategy subgame perfect equilibria in §3.2. However, if the two are combined,
we end up with a uselessly implausible solution concept.10 The previous conjec-
ture, that all freely generated games are solvable, can be taken as a requirement
for a repaired theory.

We will end with a specific counterexample to the conjecture. Consider the
game in Game(SRel) denoted by

or G = qo(X®@Dy®@R")oD;, where X = {H,T}. D, is an ordinary decision that
maximises expected utility, and D; also maximises expected utility but chooses
a pair from X x X with a mixed strategy. The strategically trivial game ¢
(which could be decomposed into computations and counits) implements the
outcome function, which is again that of matching pennies. Specifically, the

101, retrospect this is unsurprising, because the equivalently naive generalisation of mixed
strategies to extensive form in classical game theory also fails. The standard solution concept
in that situation is sequential equilibrium (Leyton-Brown and Shoham 2008), which involves
beliefs (probability distributions on information sets giving finer information about the posi-
tion in the game tree), that undergo Bayesian updating. Because open games are inherently
dynamic games, a repaired theory of open games with mixed strategies must similarly have
Bayesian reasoning built into the definitions.
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coplay function C, : X x X — Z(R x R) is given by

~Jé(0,1) ifx=y
Cq(m’y)_{é(l,o) if 2 #y

where ¢ is the unit of the monad Z (see §2.1.3).
Since G is a scalar, its best response function has the form

Despite the fact that we are working over SRel and so we have mixed strategies
available, and the fact that G has been built from only expectation-maximising
decisions, computations and counits using composition and tensor, we will prove
that Bg has no fixpoints.

The set of strategies is

Yg=%p, x¥p, =2(X x X) x (X = ZX)

Geometrically, this is the product of a tetrahedron and a square, and hence is
closed, convex and finite-dimensional, satisfying the hypotheses of the Kakutani
fixpoint theorem.

To begin with, since q is strategically trivial we have

Bg(x,%)(0,7) = B(X®D2®]R*)0'D1(*v k)(o,7)
where k: X x X — Z(R x R) is the continuation k = %y, = ¢. This is
/
Bop, (*,ky0)0 X ﬂ B op,en (Pp,0’ 0% k)7
o D(X xX)

We will only need to focus on the second part of this. Since D; is a decision we
have Pp, o' ox =¢'. Then

BX®D2®R* (C’,v k)r = BX®D2 (U/a k)T
where k; : X x X — 2R is given by

60 if 1 = Ty

bz, 2q) =
(21, 2) {51 if 2y £ 2y

The game X ® Dy : X ® X — X ® X ® R is essentially the component of
G that causes the problems. Its best response function is
BX®’D2 (hyky)T = B’D2 (hq, k/)T

The continuation k' = (k) xnpe = X — PR is given by 'z = ky(hy,zs),
where we are abusing notation as in §3.1.7. Explicitly, using the particular k

we defined,
P[k'zy =1] =Py # xo]

Now using the definition of By,

Bxgp, (b1, k)7 = {7 : X = 92X | E[K'(7'h,)] > E[k'x] for 2, = H, T}
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Putting this together, if we had a fixpoint (o, 7) of Bg, then for every possible
history h : 2(X x X) we would have

E[ky (hy, 7hy)] = E[ky (hy, 25)]
for xo9 = H,T. We will now prove that this is impossible.
Pick some z; € supp(7H), so P[TH = z;] > 0. We will take h = dz; ® 0H,
that is, h is the probability distribution with P[h = (z;, H)] = 1. Then
k/(Thl) = k/(”ﬁl) =ky(z1,7H)

and since P[rH = z;] > 0 we have E[k;(x;,7H)] < 1. This means that player
2 has incentive to unilaterally deviate to x5 # x;, which has

]E[k/ffz] = ]E[k/(xhﬂfz)] =1
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