
A Tutorial on Feature Oriented Programming
and the AHEAD Tool Suite 

Abstract. Feature oriented programming (FOP) is the study of feature mod-
ularity and its use in program synthesis. AHEAD is a theory of FOP that is
based on a fundamental concept of generative programming that functions
map programs. This enables the design of programs to be expressed compo-
sitionally as algebraic expressions, which are suited for automated analysis,
manipulation, and program synthesis. This paper is a tutorial on FOP and
AHEAD. We review AHEAD’s theory and the tool set that implements it.

1 Introduction

Software engineering (SE) is in a perpetual crisis. Software products are increasing in
complexity, the cost to develop and maintain systems is skyrocketing, and our ability
to understand systems is decreasing. A basic goal of SE is to successfully manage and
control complexity; the “crisis” indicates that SE technologies are failing to achieve
this goal. There are many culprits. One surely is that today’s software design and
implementation techniques are simply too low-level, exposing far more detail than is
necessary to make a program’s design, construction, and ease of modification simple.
Future software design technologies will need to do better, and it should not be surpris-
ing that they will be different from those of today.

Looking to the future, SE paradigms will likely embrace:

• generative programming (GP)

• domain-specific languages (DSLs)

• automatic programming (AP)

GP is about automating software development. Eliminating the task of writing mun-
dane and rote programs is a motherhood to improved programmer productivity and
program quality. Program synthesizers will transform input specifications into target
programs. These specifications will not be written in Java or C# — which are too low-
level — but rather in high-level notations called DSLs that are specific to a particular
domain. DSL programs are known to be both easier to write and maintain than their
low-level (e.g., Java) counterparts. Ideally, DSLs will be declarative, allowing their
users to define what is needed and leave it up to the DSL compiler to produce an effi-
cient program automatically that does the how part. But placing the burden of program
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synthesis on a DSL compiler should not be taken lightly. This involves the problem of
AP; it is a technical problem of great difficulty, as little progress has been made in the
last 25 years to produce demonstrably efficient programs from declarative specs.
Advancement on all three fronts (GP, DSLs, and AP) are needed before the crisis in SE
will noticeably diminish.

While it is wishful thinking that simultaneous advances on all three fronts is possible,
it is worth noting that a spectacular example of this futuristic SE paradigm was real-
ized over 25 years ago — ironically around the time when most people were giving up
on AP [2]. Furthermore, this work had a fundamental impact on commercial applica-
tions. The example is relational query optimization [20]. SQL is a prototypical DSL: it
is a declarative language for retrieving data from tables. An SQL compiler translates
an SQL statement into a relational algebra expression. A query optimizer accom-
plishes the goal of automatic programming by applying algebraic identities to auto-
matically rewrite — and hence optimize — relational algebra expressions. The task of
translating an optimized expression into an efficient program is an example of genera-
tive programming.

Relational optimizers revolutionized databases: data retrieval programs that were hard
to write, hard to optimize, and hard to maintain are now produced automatically. There
is nothing special about data retrieval programs: all interesting programs are hard to
write, optimize, and maintain. Thus if ever there was a “grand challenge” for SE, it
would be to replicate the success of relational query optimization in other domains. 

AHEAD is a theory of feature oriented programming (FOP) that shows how the con-
cepts and framework of relational query optimization generalize to other domains.
ATS is a suite of tools that implement the AHEAD theory.

1.1 Background

How do you describe a program that you’ve written to a prospective customer? You
are unlikely to recite what DLLs you’re using — because the customer would unlikely
have any interest in such details. Instead, you would take a more promising tact of
explaining the features — increments in program functionality — that your program
offers its clients. This works because clients know their requirements and can see how
features satisfy requirements.

Programs come in different flavors, e.g., entry-level through deluxe. The differences
between these categories are the presence or absence of features (or more commonly,
sets of features). Entry-level versions have a minimal feature set; deluxe advertises the
most.

But if we describe programs by features or differentiate programs by features, why
can’t we build programs (or program families) from feature specifications? In fact, we
can. This is the area of research called product-lines. The ability to add and remove
features suggests that features can be modularized. While it is possible to construct
product-lines without modularizing features (e.g., through the extensive use of #if-
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#endif preprocessor declarations), we focus on a particular sub-topic of product-line
research that deals with feature modularization. By making features first-class design
and implementation entities, it is easier to add and remove features from applications.
(In fact, this is a capability that most of us wish we had today — the ability to add and
remove features from our programs. We don’t have it now; the purpose of this paper is
to explain how it can be done in a general way). It happens that feature modularity
goes far beyond conventional notions of code modularity. This, among other things,
makes it a very interesting topic.

Feature oriented programming (FOP) is the study of feature modularity and program-
ming models that support feature modularity. A powerful form of FOP is based on a
methodology called step-wise development (SWD). SWD is both simple and ancient: it
advocates that complex programs can be constructed from simple programs by incre-
mentally adding details. When incremental units of change are features, FOP and
SWD converge. This is the starting point of AHEAD and ATS. But what is a feature?
How is it represented? And how are features and their compositions modeled?

1.2 A Clue

Consider any Java class C. A class member could be a data field or a method. Class C
below has four members m1—m4.

class C {
member m1;
member m2;
member m3;
member m4;

} (1)

Have you ever noticed that there is no unique definition for C? The members of C could
be defined in a single class as above, or distributed over an inheritance hierarchy of
arbitrary height. One possibility is to have class C1 encapsulate member m1 and C23
encapsulate members m2 and m3:

class C1 { member m1; }
class C23 extends C1 {

member m2;
member m3;

}
class C4 extends C23 { member m4; }
class C extends C4 {} (2)

From a programmatic viewpoint, both definitions of C, namely (1) and (2), are indes-
tinguishable. In fact, we could further decompose C23 to be:

class C2 extends C1 { member m2; } 
class C3 extends C2 { member m3; }
class C23 extends C3 {} 

and the definition of C would not change; it would still have members m1—m4. More-
over, there’s nothing really special about the placement of member m1 (or m2 …) in this



4

hierarchy. If method m1 references other members, as long as these members are not
defined lower in the inheritance chain than m1, m1 can appear in any class of that chain.

If you recall your high school or college courses on algebra, you may recognize these
ideas. Consider sets and the union operation. We can define the sets:

C1 = { m1 }
C2 = { m2 }
C3 = { m3 }
C4 = { m4 }
C23 = C2 ∪  C3
C = C1 ∪  C23 ∪  C4 = C1 ∪  C2 ∪  C3 ∪  C4

Union is commutative, which means that the order in which the union of sets is taken
doesn’t matter. This is similar to, but not the same as, inheritance because as we saw, a
method can be added only as long as members it references are not defined in sub-
classes. 

Something a bit closer to inheritance are vectors and the vector operations of addi-
tion(+) and movement(→). Suppose we define vectors in 4-space:

C1 = (m1,0,0,0)
C2 = (0,m2,0,0)
C3 = (0,0,m3,0)
C4 = (0,0,0,m4)

You know about vector addition; vector movement is the path that is followed when
laying vectors end-to-end. Vector addition is commutative; vector movement is not:

C = (m1,m2,m3,m4) = C1 + C2 + C3 + C4
C1 + C2 + C3 + C4 = C4 + C3 + C2 + C1
C1 → C2 → C3 → C4 ≠ C4 → C3 → C2 → C1

Inheritance has the flavor of both vector arithmetic and vector movement.

When you think about an operation for inheritance, what you are really defining is an
operation for class extension. A class extension can add new members and extend
existing methods of a class. Here’s an example. Suppose a program P has a single class
B that initially contains a single data member x:

class B { int x; } // program P

Suppose an extension R of program P adds data member y and method z to class B. Let
us write this extension as:

refines class B { // extension R
int y; 
void z() {...} 

} (3)

where “refines” is a keyword modifier to mean extension. The composition of R with
P defines a new program N with a single class, namely B, with three members:
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class B { // program N
int x;
int y;
void z() {...}

} (4)

In effect, this composition is expressed by the following inheritance chain, called an
extension chain:

class BP { int x; }

class BR extends BP {
int y;
void z() {...}

}

class BN extends BR {} (5)

where subscripts indicate the program or extension from which that fragment of B is
defined.

We can express these ideas algebraically in terms of “values” and “functions”. Pro-
gram P is a value — it defines a base artifact. An extension is a function that maps pro-
grams, so R is a function. A composition is an expression. We can model (5) as the
equation N = R(P) or N = R•P, where •  denotes function composition.

We can express our previous example about class C in this manner. Here is one way: let
C1 be a value and C2, C3, and C4 be the extensions:

class C { member m1; } // value C1
refines class C { member m2; } // function C2
refines class C { member m3; } // function C3
refines class C { member m4; } // function C4

Now, class C of (1) can be synthesized by evaluating the expression C4•C3•C2•C1. The
expression — C4•C3•C2•C1 — is called the design of C. Taking this idea further, we see
that C23 has an obvious representation as a composite function or composite extension:

C23 = C2•C3

which represents the code:

refines class C {
member m2;
member m3;

}

There are loose ends to tie up before a bigger picture emerges. First, there’s scalability.
The effects of a program extension need not be limited to a single Java class. In fact, it
is common for a “large-scale” extension to encapsulate multiple class extensions as
well as new classes. That is, such an extension would augment existing classes of a
program with new members and extend existing methods, but would also introduce
new classes that could be subsequently augmented.
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Second, program extensions have meaning when they encapsulate the implementation
of a feature. Have you ever added a new feature to an existing program? You discover
that you often have to extend a number of classes, as well as add new classes to a pro-
gram. Well, a feature is a “large scale” program extension.

Third, in product-line design, features are stereo-typical units of application design
that can be composed with other features to produce customized programs. A model of
a product-line — called a domain model — is a set of values and functions each repre-
senting a particular feature, that can be composed to synthesize customized programs.

Fourth, recall that a key to the success of relational query optimizers is that they used
expressions to represent program designs. That is, a data retrieval program is defined
by a composition of relational algebra operations. To see the generalization, a domain
model is an algebra — a set of operations (“values” and “functions”) whose composi-
tions define the space of programs that can be synthesized. Given an algebra, there will
always be algebraic identities among operations. These identities can be used to opti-
mize algebraic expression definitions of programs, just like relational algebra expres-
sions can be optimized. (Some domains will have more interesting optimizations than
others).

Fifth, what is design? If you think about it, this is a really hard question to answer,
because it is asking for a clear articulation of a deeply intuitive idea. Our discussions
offer a simple answer: a program is a value. The design of a program is the expression
that produces its value. If multiple expressions produce the same value, then these
expressions represent equivalent designs of that program.

Now, let’s consider a more precise way to express these ideas.

2 A Model of FOP

Salient ideas of FOP as expressed by two models: GenVoca and its successor AHEAD.

2.1 GenVoca

GenVoca is a design methodology for creating application families and architecturally-
extensible software, i.e., software that is customizable via feature addition and removal
[3]. It follows traditional step-wise development with one major difference: instead of
composing thousands of microscopic program extensions (e.g., x+1⇒inc(x)) to yield
admittedly small programs, GenVoca scales extensions so that each adds a feature to a
program, and composing few extensions yields an entire program.

In GenVoca, programs are values and program extensions are functions. Consider the
following values that represent base programs with different features:

f // program with feature f
g // program with feature g

A program extension is a function that takes a program as input and produces a fea-
ture-augmented program as output:
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i•x // adds feature i to program x
j•x // adds feature j to program x

A multi-featured application is an equation that is a named expression. Different equa-
tions define a family of applications, such as:

app1 = i•f // app1 has features i and f
app2 = j•g // app2 has features j and g
app3 = i•j•f // app3 has features i, j, f

Thus, the features of an application can be determined by inspecting its equation.

Note that a function represents both a feature and its implementation — there can be
different functions with different implementations of the same feature:

k1•x // adds k with implementation1 to x
k2•x // adds k with implementation2 to x

When an application requires the use of feature k, it is a problem of expression optimi-
zation to determine which implementation of k is best (e.g., provides the best perfor-
mance)1. It is possible to automatically design software (i.e., produce an expression
that optimizes some criteria) given a set of constraints for a target application [8]. This
is automatic programming.

Although GenVoca values and functions seem untyped, constraints do exist. Design
rules are domain-specific constraints that capture syntactic and semantic constraints
that govern legal compositions. It is common that the selection of a feature will disable
or enable the selection of other features. More on design rules later.

2.2 AHEAD

AHEAD, or Algebraic Hierarchical Equations for Application Design, embodies four
key generalizations of GenVoca. First, a program has many representations besides
source code, including UML documents, makefiles, BNF grammars, documents, per-
formance models, etc. A model of FOP must deal with all these representations.

Second, each representation is written in its own language or DSL. The code represen-
tation of a program may be represented in Java, a machine executable representation
may be bytecodes, a makefile representation could be an ant XML file, a performance
model may be a set of Mathematica equations, and so on. An FOP model must support
an open-ended spectrum of languages to express arbitrary program representations.

Third, when a feature is added to a program, any or all of the program’s representations
may be updated. That is, the source code of a program changes (to implement the fea-
ture), makefiles change (to build the feature), Mathematica equations change (to pro-

1. Different equations represent different programs and equation optimization is over the space of semanti-
cally equivalent programs. This is identical to relational query optimization: a query is represented by a rela-
tional algebra expression, and this expression is optimized. Each expression represents a different, but
semantically equivalent, query-evaluation program.
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file the feature), etc. Thus, the concept of extension applies not only to source code
representations, but other representations as well.

Fourth, FOP models must deal with a general notion of modularity: a module is a con-
tainment hierarchy of related artifacts. A class is a module (1-level hierarchy) that
contains a set of data members and methods. A package or JAR file is a module (2-
level hierarchy) that contains a set of classes. A J2EE EAR file is a module (3-level
hierarchy) that contains a set of packages, HTML files, and descriptor files. Going fur-
ther, a client-server program is also a module (a multi-level hierarchy) that contains
representations of both client and server programs.

Given the above, a generalization of GenVoca emerges. A “value” is a module that
defines a containment hierarchy of related artifacts of different types written in poten-
tially different languages. An “extension” is function that maps containment hierar-
chies. Thus, whenever an extension is applied to a program (i.e., an AHEAD value),
any or all of the representations in this module (containment hierarchy) will be updated
and new artifacts added. Thus, as AHEAD extensions are applied, all of the represen-
tations of the resulting program remain consistent. This is exactly what we need.

The notations of AHEAD extend those of GenVoca. A model M is a set of features that
are “values” or “functions” called units:

M = { a, b, c, d, … }

Individual units may themselves be sets, recursively:

a = { x, y, z }
z = { r, q }
...

The nesting of sets models a containment hierarchy or module. The composition of
units is defined by the Law of Composition. That is, given units X and Y:

X = { ax, bx, cx }
Y = { ay,  cy, dy }

The composition of Y and X, denoted Y•X, is formed by “aligning” the units of X and Y
that have the same name (ignoring subscripts) and composing:

Y•X = { ay•ax, bx, cy•cx, dy } // Law of Composition (6)

That is, artifact a of Y•X is the original artifact ax composed with the extension ay; arti-
fact b of Y•X remains unchanged from its original definition bx, etc. Composition is
recursive: if units represent sets, their compositions are expanded according to (6).

To see the connection with inheritance, consider the following inheritance hierarchy
which is a class representation of (6). Assume a and c are methods, where ay and cy

extend (or override) their super-methods ax and cx:
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class X {
member ax;
member bx;
member cx;

}

class Y extends X {
member ay;
member cy;
member dy;

}

class Y•X extends Y {}

How the composition operator •  is defined depends on the artifact type. •  is polymor-
phic: it can be applied to all artifacts (i.e., all artifacts can be composed/extended) but
what composition/extension means is artifact type dependent (i.e., how makefile arti-
facts are extended will be analogous to but not the same as how code artifacts are
extended). This means that different tools implement •  for code and makefiles.

AHEAD representations lead to simple tools and implementations. While there are
many ways in which containment hierarchies can be realized, the simplest way is to
map containment hierarchies to file system directories. Thus a feature might encapsu-
late many Java files, class files, HTML files, etc. Feature composition corresponds to
directory composition.

Recognize what AHEAD represents: it is a structural model of information — it is not
just a model of code synthesis. Its premise is that if a program can be understood in
terms of features, so too can all of its representations — code and otherwise. We can
choose to interpret individual terms of AHEAD expressions as code files or code
directories, but we are free to consider other representations as well. A familiarity with
relational query optimization bares this out: the optimizer reasons about a program in
terms of performance representations of relational operations (i.e., cost functions),
while the code generator produces a program from code representations of these same
operations [4]. Reasoning about programs often relies on different representations of
programs. AHEAD provides a mathematical foundation for expressing their inter-rela-
tionships.

We’ll explore examples of these ideas in the following sections.

3 A Simple Example

Consider a family of elementary post-fix calculators2. Calculators in this family are
differentiated on (a) the arithmetic values BigInteger or BigDecimal that can be spec-
ified and (b) the set operations that can be performed on them, which includes addi-
tion, division, and subtraction.

An AHEAD model that describes this family is C:

2. Modeled after Hewlett-Packard calculators.
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C = { Base, BigI, BigD, Iadd, Idiv, Isub, Dadd, Ddivd, Ddivu, Dsub }

The lone value in this model is Base, which defines an empty calc (short for “calcula-
tor”) class (Figure 1a). The extensions BigI and BigD introduce a 3-level stack of Big-
Integer or BigDecimal objects, respectively (Figure 1b-c).3 BigI and BigD are
mutually exclusive as the stack variables introduced by both have the same name, but
are of different types. Thus, calculators either work on BigInteger or BigDecimal
numbers, but not both. 

The extensions Iadd, Idiv, and Isub respectively introduce the BigInteger addition,
division, and subtraction methods to the calc class (Figure 1d-e). The extensions Dadd,
Ddivd, Ddivu, and Dsub do the same for BigDecimal methods (Figure 1f-g). Note that

3. A BigInteger is an unlimited precision integer; a BigDecimal is an unlimited-precision, signed
decimal number.

class calc { }

refines class calc {
   void divide() {
      e0 = e0.divide( e1 );
      e1 = e2;
   }
}

import java.math.BigDecimal;

refines class calc {
   void divide() {
      e0 = e0.divide( e1, 

BigDecimal.ROUND_DOWN );
e1 = e2;

   }
}

(a) Base/calc.jak

(d) Idiv/calc.jak

(f) Ddivd/calc.jak

Figure 1. Files from the C model

refines class calc {
   void add() {
      e0 = e0.add(e1);
      e1 = e2;
   }
}

(e) Iadd/calc.jak
and Dadd/calc.jak

import java.math.BigDecimal;

refines class calc {
   static BigDecimal 

zero = new BigDecimal("0");
   BigDecimal e0 = zero, e1 = zero, 

e2 = zero;

   void enter( String val ) {
      e2 = e1;
      e1 = e0;
      e0 = new BigDecimal(val);
   }

   void clear() {
      e0 = e1 = e2 = zero;
   }

   String top() { return e0.toString(); }
}

(c) BigD/calc.jak

import java.math.BigInteger;

refines class calc {
   static BigInteger zero = BigInteger.ZERO;
   BigInteger e0 = zero, e1 = zero, e2 = zero;

   void enter( String val ) {
      e2 = e1;
      e1 = e0;
      e0 = new BigInteger(val);
   }

   void clear() {
      e0 = e1 = e2 = zero;
   }

   String top() { return e0.toString(); }
}

(b) BigI/calc.jak
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there are two mutually exclusive BigDecimal division extensions: Ddivd and Ddivu.
Ddivd rounds answers down, Ddivu rounds up.

As you may have already noticed, these files look like Java programs, but the language
that we are using is not Java but an extended Java language called Jak (short for
“Jakarta”). Jak files have .jak extensions, like Java files have .java extensions.

A calculator is defined by an equation. Here are a few calculator definitions:

i1 = Iadd•BigI•Base
i2 = Isub•Iadd•BigI•Base
i3 = Idiv•Iadd•BigI•Base
d1 = Dadd•BigD•Base
d2 = Dsub•Dadd•BigD•Base
d3 = Ddivd•Dadd•BigD•Base

Calculator i1 offers BigInteger addition. i2 also supports subtraction. i3 has BigIn-
teger addition and division. d1—d3 are the corresponding calculators for BigDecimal
numbers using rounded-down division. The code generated for the i3 calc class is
shown in Figure 2.4

4. Note: the term “layer” in Figure 2. is used interchangeably with “feature” in AHEAD.

layer i3;

import java.math.BigInteger;

class calc {
   static BigInteger zero = BigInteger.ZERO;
   BigInteger e0 = zero, e1 = zero, e2 = zero;

   void add() {
      e0 = e0.add(e1);
      e1 = e2;
   }

   void clear() {
      e0 = e1 = e2 = zero;
   }

   void divide() {
      e0 = e0.divide( e1 );
      e1 = e2;
   }

   void enter( String val ) {
      e2 = e1;
      e1 = e0;
      e0 = new BigInteger(val);
   }

   String top() { return e0.toString(); }
}

Figure 2. i3/calc.jak
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Model Exercises
[1] What other calculator features could be added to C? What would be their Jak defi-

nitions? Look at the BigInteger and BigDecimal pages in the J2SDK documenta-
tion for possibilities.

[2] Suppose the size of the stack was variable. How would this be expressed as an
extension? What modifications of existing extensions would be needed?

[3] Modify model C so that BigDecimal round-up and round-down are features, which
could parameterize operations like division.

[4] How would C be modified to permit the synthesis of a program that would invoke
the calculator from the command-line? From a GUI?

Tool Exercises

An AHEAD model C corresponds to a directory C, and each unit U in C corresponds to
a subdirectory of C, namely C/U. The contents of a unit in our example is merely a
calc.jak file. The AHEAD directory structure of C is:

C/Base/calc.jak // see Figure 1a
C/BigI/calc.jak // see Figure 1b
C/BigD/calc.jak // see Figure 1c
C/Iadd/calc.jak // see Figure 1d
C/Idiv/calc.jak // see Figure 1e
C/Isub/calc.jak
C/Dadd/calc.jak // see Figure 1d
C/Ddivd/calc.jak // see Figure 1f
C/Ddivu/calc.jak
C/Dsub/calc.jak

Although we provide no calc.jak files for Isub and Dsub, they are easy to write. In
fact, they are almost identical to the calc.jak files for Iadd and Dadd.5 

The composer tool is used to evaluate equations and has many optional parameters.
For our tutorial, we need to reset one of these parameters. Create in the model direc-
tory a file called composer.properties. Its contents is a single line (which says when
composing Jak files, use the jampack tool):

unit.file.jak : JamPackFileUnit

To evaluate an equation, run composer in the model directory. The order in which
model units are listed on the composer command line are inside-to-outside order, and
the name of the composition is given by the target option. Thus, to evaluate i3 use:

> cd C
> composer --target=i3 Base BigI Idiv Iadd

5. So why not just define one layer to represent both? This could be done with our current tools, as they are
preprocessors. In future tools, these files will be different, because the types of variables for e1—e3 will
need to be explicitly declared. When this occurs, the corresponding files will indeed be different.
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The result of the composition is the directory C/i3, which contains a single file,
calc.jak, shown in Figure 2. Note that the order in which units are listed on the com-
poser command line is in reverse order in which they are listed in an equation — base
first, outermost extension last. (This is a legacy oddity of AHEAD tools that has never
been changed. Sigh.)

[5] Validate your Model Exercise solutions by implementing them using AHEAD
tools.

3.1 Translating to Java

The jak2java tool converts Jak files to their Java counterparts:

> cd i3
> jak2java *.jak

The above command-line translates all Jak files (in our case, there is only one file —
calc.jak) to their Java equivalents. Of course, these generated files can be compiled
in the usual way:

> javac *.java

Note there are Jak files (i.e., those that refine classes and interfaces) that cannot be
translated to Java, as they have no Java counterpart. jak2java translates only Jak
classes and interfaces.

3.2 Design Rules

New arithmetic operations could be added to C to enlarge the family of calculators. At
the same time, it becomes increasingly clear that not all compositions are meaningful.
In fact, it is quite easy to deliberately or unintentionally specify meaningless composi-
tions, but composer is usually quite happy to produce code for them. We need auto-
mated help to detect illegal compositions. 

This is not a problem specific to calculators, but rather a fundamental problem in FOP.
The use of a feature in a program can enable or disable other features. Design rules are
domain-specific constraints that define composition correctness predicates for fea-
tures. Design rule checking (DRC) is the process by which design rules are composed
and their predicates validated. AHEAD offers two different tools for defining and eval-
uating design rules: drc and guidsl. drc is a first-generation tool [9]; guidsl is a next-
generation tool that we will highlight here.

The theory behind both tools is the use of grammars to define legal sequences (i.e.,
compositions) of features. A grammar for model C is:

C : Type Base ;

Type : BigInt+ BigI
| BigDec+ BigD ;

BigI : Iadd | Idiv | Isub ;

BigD : Dadd | Ddivu | Ddivd | Dsub ; (7)
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where tokens are units of C. A sentence of this grammar specifies a particular sequence
or composition of features. The set of all sentences defines the model’s product-line,
i.e., the set of all possible expressions or compositions of features.

Like any grammar, some sentences are semantically invalid. To weed out incorrect
sentences, a grammar is augmented with attributes. Conditions for correct sentences
(or correct compositions) are predicates defined over these attributes. That is, these
predicates filter out syntactically incorrect sentences. The core theory behind both
tools are attribute grammars, a well-understood technology.

In the case of our C model, syntactic correctness is almost all that is needed. The only
additional constraint — which is simple enough to have been expressed by an addi-
tional grammar rule — is the mutually exclusive nature of Ddivu and Ddivd; at most
one of these features can appear in a decimal calculator.

As an aside, product-line researchers are familiar with feature diagrams, i.e., trees
whose terminal nodes are primitive features and non-terminal nodes are compound
features. So what is the connection between grammars and feature diagrams?
Although feature diagrams were introduced by Kang, et al in the early 1990s [13] and
“GenVoca” grammars, like (7), were introduced in 1992 [3], it was not until 2002 that
de Jonge and Visser noticed that feature diagrams are graphical representations of
grammars [11]. In fact, grammars provide an added benefit beyond feature diagrams in
that they tell us the order in which features are composed, which is important to
AHEAD and step-wise development. So if you’re a fan of feature diagrams, you will
see that the tools and ideas we present here are directly applicable to your interests.

3.2.1 The guidsl Tool
guidsl is a next generation tool for design rule checking [10]. The key idea is that a
tree grammar (i.e., a grammar where each token appears at most once in a sentence and
which itself can be depicted as a tree) can be represented as a propositional formula.
Moreover, any propositional constraints on the use of features can be added to this for-
mula. Amazingly, an FOP domain model reduces to a single propositional formula,
whose variables correspond to primitive and compound features! 

Here’s why this is impor-
tant. First, we have a com-
pact representation of an
FOP domain model: it is a
grammar (which encodes
syntactic/ordering con-
straints) plus a set of prop-
ositional formulas that
constrains sentences to
legal compositions. The
entire guidsl specification for the C model is shown in Figure 3. The ::Name phrase in
a guidsl specification is a way to assign a name to a production.

C : Type Base :: Main ;

Type : BigInt+ BigI :: BigInteger
| BigDec+ BigD :: BigDecimal ;

BigInt : Iadd | Idiv | Isub ;

BigDec : Dadd | Ddivu | Ddivd | Dsub ;

%% // arbitrary propositional formulas below

Ddivu or Ddivd implies not (Ddivu and Ddivd);

Figure 3. C.m -- the guidsl Model of C
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Second, one of the hallmarks of feature oriented designs is the ability to declaratively
specify programs in terms of the features that it offers. guidsl takes a model specifica-
tion (a .m file) and synthesizes a Java GUI. As a user selects features in the GUI,
guidsl uses a logic truth maintenance system to propagate constraints so that users
cannot specify incorrect programs. (guidsl is, in effect, a syntax-directed editor that
guarantees compilable programs [21]). Further, because a domain model is a proposi-
tional formula, satisfiability solvers (or SAT solvers) can be used to help debug mod-
els. (A SAT solver is a tool that determines if there is a truth assignment to boolean
variables that will satisfy a propositional formula). We believe that SAT solvers will be
invaluable assets in future FOP tools.

To generate a declarative language for our calculator, run guidsl on the C model file:

> guidsl c.m

The GUI that is synthesized is shown in Figure 4.

Model Exercises
[6] How would you change the guidsl file if

both Add and Subtract operations were
always included if either is selected? Simi-
larly for Divide and Multiply?

Tool Exercises
[7] Implement your solution to [6].

[8] To see an explanation (in the form of a proof)
why certain features have been automatically
selected or deselected, run guidsl, go to
Help, and select “Display reason for var-
iable selection”. Now drag your cursor
over a variable that has been greyed out (i.e.,
whose value was automatically selected). In
the text area at the bottom of the selection
panel, you’ll see the explanation/proof for
that variable’s value.

[9] Alter the C.m file of Figure 3 by eliminating the propositional constraint and mod-
ifying the grammar specification to account for the mutual exclusion of Ddivd and
Ddivu. Test your solution to see the impact of this change. (Hint: your GUI front-
end will change).

4 Other ATS Tools and Program Representations

So far, you have seen the composer, jampack (which is called by composer), jak2java,
and guidsl tools. Now let’s look at the mixin, unmixin, and reform tools.

Figure 4. Declarative GUI 
for Model C
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4.1 mixin

mixin is another tool, besides jampack, that can compose Jak files. Edit the
unit.file.jak line in the composer.properties file to be:

unit.file.jak : MixinFileUnit

This is the default setting for unit.file.jak. If composer doesn’t see a com-
poser.properties file, it uses mixin to compose Jak files.

Let’s re-evaluate the i3 equation to see how mixin works:

> cd C
> composer --target=i3 Base BigI Idiv Iadd

This is the same command as before. However, the calc.jak file that is produced is
quite different and is shown in Figure 5.

The idea behind mixin is simple: each extension is mapped to class in an extension
(inheritance) chain. Each class is prefaced by a SoUrCe statement which indicates the
name of the feature and the actual file from which the class was derived. Thus, in Fig-
ure 5 four Jak files were composed to yield the calc class; this class is the terminal
class of a four-class extension chain. All other classes are abstract — meaning that
they can’t be instantiated and whose purpose is only to contribute members to the final
class in the chain. Note that class names are mangled (i.e., by appending $$<feature-
Name>) to make them unique. 

The intent of mixin and jampack is that you can use either tool to compose Jak files.
As you’d expect, the programs of Figure 2 and Figure 5 are functionally equivalent.

Both mixin and jampack can compose files that they themselves have produced. That
is, a jampack-produced Jak file can be composed with another jampack-produced Jak
file. The same holds for mixin. Because jampack-produced Jak files have the same for-
mat as uncomposed Jak files, mixin can compose files produced by jampack. How-
ever, the reverse is not true: jampack cannot compose mixin-produced files.

4.2 unmixin

So why use mixin? Why not always use jampack? Consider a typical debugging cycle:
you compose files, use jak2java to translate Jak files to Java files, compile and run the
Java files to discover bugs. The composed Jak files are patched and the cycle contin-
ues. Eventually, you’ll want to back-propagate the changes you made to the composed
files to their original feature definitions. Knowing what feature files to update won’t
always be easy — and the problem becomes worse as the number and size of the Jak
files increases. Back-propagation is a tedious and error-prone process.

Because mixin preserves feature boundaries, it is easy to know what features to
update. In fact, with SoUrCe statements, the propagation of changes can be done auto-
matically. That’s the purpose of unmixin. The idea is that you compose a bunch of Jak
files, edit the composed files, and run unmixin on the edited files to back-propagate the
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layer i3;

import java.math.BigInteger;

SoUrCe RooT base "../base/calc.jak";
abstract class calc$$base {}

SoUrCe  BigI "../BigI/calc.jak";
abstract class calc$$BigI extends  calc$$base {
    static BigInteger zero = BigInteger.ZERO;
    BigInteger e0 = zero, e1 = zero, e2 = zero;

    void add() {
        e0 = e0.add( e1 );
        e1 = e2;
    }

    void clear() {
        e0 = e1 = e2 = zero;
    }
    void divide() {
        e0 = e0.divide( e1 );
        e1 = e2;
    }

    void enter( String val ) {
        e2 = e1;
        e1 = e0;
        e0 = new BigInteger( val );
    }

    String top() {
        return e0.toString();
    }
}

SoUrCe  Iadd "../Iadd/calc.jak";
abstract class calc$$Iadd extends  calc$$BigI {
    // adds BigIntegers
    void add() {
        // adds BigIntegers
        e0 = e0.add( e1 );
        e1 = e2;
    }
}

SoUrCe  Idiv "../Idiv/calc.jak";
class calc extends  calc$$Iadd {
    void divide() {
        e0 = e0.divide( e1 );
        e1 = e2;
    }
}

Figure 5. mixin-produced .jak file
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changes to the original feature files. For example, suppose we add a comment to the
bottom-most class in the extension chain of Figure 5:

SoUrCe  Idiv "../Idiv/calc.jak";
class calc extends  calc$$Iadd {

void divide() { 
// *new* divide and pop stack
e0 = e0.divide( e1 );
e1 = e2;

}
}

By running unmixin, this change is propagated back to the Idiv/calc.jak file:

> cd C
> unmixin calc.jak

See for yourself that the change was made. Here are things to remember about
unmixin:

• it can take any number of Jak files on its command line,

• the body of the class or interface in the command-line file will replace the body
of the class or interface in the original file,

• implements declarations are also propagated, and

• don’t change the contents of the SoUrCe statements!

unmixin updates the original uncomposed files only if changes to its composed coun-
terpart have been updated.

4.3 reform

reform is a pretty-printing tool that formats unruly Jak files (and Java files!) and
makes them unbelievably beautiful. Consider the 1-line calc.jak file:

refines class calc { void divide() { e0 = e0.divide( e1 ); e1 = e2; } }

By running:

> reform calc.jak

reform copies the original file into calc.jak~ and updates calc.jak to be:

refines class calc {
void divide() {

e0 = e0.divide( e1 );
e1 = e2;

}
}
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4.4 Equation Files

As we said earlier, AHEAD is a theory for structuring and synthesizing documents of
all kinds by composing features. We introduced Jak file (i.e., code) representations ear-
lier, and now we introduce a second.

Typing in equations on the command line to composer can be tedious, particularly if
equations involve more than a few terms. composer takes an alternative specification,
called an equation file, which is a list of units. The order in which the units are listed is
from inside-out, and the name of the equation is the name of the equation file.

For example, the equation A = B•C would be represented by the equation file A.equa-
tion whose contents is:

# base feature listed first!
C
B

Where any line beginning with # is a comment. Like other AHEAD artifacts, equation
files can be composed. File A.equation above is a “value”. An equation file that is an
extension has the special term super as one of its units. An extension of A.equation
that puts E before C and F after B is R.equation:

E
super
F

A composition of the above files is:

> composer --target=c.equation A.equation R.equation

and yields file c.equation with contents:

E
C
B
F

Intuitively, an equation file defines an architectural representation of a program as an
expression. As all program representations are extendable, we now have a means by
which to specify and manipulate program architectures. We will see how such repre-
sentations are useful later.

5 More Features of Jak Files

There are three additional features of the Jak language that you should know: Super()
references, extension of constructors, and local identifiers.

5.1 The Super Construct

To invoke a method m(int x, float y) of a superclass in Java, you write:

super.m(x,y);
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In Jak files, use the Super construct instead:

Super(int,float).m(x,y);

Super(<argument types>) prefaces a Super call and lists the argument types of the
method to be called. Consider the class foo and an extension:

class foo {
void dosomething() { /*code*/ }

}

refines class foo {
void dosomething() {

/* more before */
Super().dosomething();
/* more later */

}

In this example, the Super references the dosomething() method prior to its extension.
A jampack composition of these definitions is shown in Figure 6a. Observe that the
original dosomething() method is present in foo, except that it has been renamed,
along with its references. The corresponding mixin composition is shown in Figure 6b.
When jak2java translates Figure 6b, Super(...) references are replaced by “super”.
In general, always use the Super(...) construct to reference superclass members;
ATS tools do not recognize “super”.

5.2 Extending Constructors

A constructor is a special method and to extend it requires a special declaration in Jak
files. Consider the following file that declares a constructor:

class test {
int y;
test() { y = -1; }

}

An extension of test and its constructor is:

class foo {
final void dosomething$$one() 
{ /*code*/ }

void dosomething() 
{ /* more before */

dosomething$$one();
/* more later */

}
}

SoUrCe ...;
abstract class foo$$one {

void dosomething() 
{ /*code*/ }

}

SoUrCe  ...;
class foo extends  foo$$one  {

void dosomething() {
/* more before */
Super().dosomething();
/* more later */

}
}

Figure 6. jampack and Mixin compositions

(a)

(b)
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refines class test {
int x;
refines test() { x = 2; }

}

where “refines <constructor>” is the Jak statement that extends a particular con-
structor. The jampack composition of these files is shown in Figure 7a. That is, the
actions of the original constructor are grouped into a block and are performed first,
then the actions of the constructor extension are grouped into a block and performed
next. The semantically equivalent mixin composition is shown in Figure 7b.

5.3 Local Identifiers

Variables that are local to a feature are common. Such variables are used only by the
feature itself, and are not to be exported or referenced by other features.

Suppose a class bar declares a local variable x, and an extension of bar declares a local
variable, also named x:

jampack is smart enough to alert you that multiple definitions of x are present; mixin
isn’t that smart — and you will discover the error when you compile the translated
Java files and see there are multiple definitions of x. 

The problem we just outlined isn’t specific to AHEAD. In fact, it is an example of a
classic problem in metaprogramming, and in particular, macro expansion. The prob-
lem is called inadvertent capture — i.e., multiple distinct variables are given the same
names as identifiers. A general solution is to make sure that distinct variables are given
unique names [16].

The way this is done in AHEAD is by using a Local_Id declaration. This declaration
lists the set of identifiers (i.e., variable names and method names) that are local to a
feature; ATS tools will mangle their names so that they will always be unique. So a
better way to define the above is:

The jampack and mixin composition of the above two files are:

class test {
int y;
int x;
test() { { y = -1; } { x = 2; } }

}

SoUrCe ...;
abstract class test$$t1 {

int y;
test$$t1() { y = -1; }

}
SoUrCe ...;
class test extends  test$$t1  {

int x;
refines test() { x = 2; }

}

Figure 7. Another jampack and Mixin composition

(a)

(b)

class bar {
int x;

}

refines class bar {
float x;

}
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where local names are replaced with their mangled counterparts so that their names no
longer conflict.

6 A More Complex Example

Consider model L, which defines a set of programs that implement linked lists:

L = { sgl, dbl, sgldel, dbldel }

The lone value is sgl which contains a pair of classes, list and node, that implement a
bare-bones singly-linked list (Figure 8a-b).

An extension of sgl is dbl, which converts the program of sgl into a doubly-linked
list. dbl is a crosscut that augments the node class with a prior pointer, adds a last
pointer to the list class, and extends the insert method so that the values assigned to
the last and prior pointers are consistent (Figure 8c-d).

The composition both = dbl•sgl yields the doubly-linked list program of Figure 9.
The code underlined originates from the dbl extension.

Local_Id x;

class bar {
int x;

}

Local_Id x;

refines class bar {
float x;

}

class bar {
   int x$$one;
   float x$$two;
}

SoUrCe ...;
abstract class bar$$one {
   int x$$one;
}

SoUrCe  ...;
class bar extends  bar$$one  {
   float x$$two;
}

refines class list {
   node last = null;

   void insert( node n ) {
      if (last == null)

last = n;
 if (first != null) 

first.prior = n;
      Super(node).insert(n);

n.prior = null;
   }
}

refines class node {
   node prior = null;
}

(c) L/dbl/list.jak

(d) L/dbl/node.jak

Figure 8. The sgl and dbl Layers

class list {
   node first = null;

   void insert( node n ) {
      n.next = first;
      first = n;
   }
}

class node {
   node   next = null;
}

(a) L/sgl/list.jak

(b) L/sgl/node.jak
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Now suppose we want to enhance the design of our list programs by adding a delete
method. sgldel does exactly this for singly-linked lists: it adds a delete method to the
list class (Figure 10a). We can use sgldel in a composition slist that defines a sin-
gly-linked list with both insert and delete methods:

slist = sgldel • sgl

To create a doubly-linked list that has both insert and delete methods requires an
extension dbldel (Figure 10b). dbldel converts the singly-linked list deletion algo-
rithm of sgldel to a doubly-linked list deletion algorithm by replacing (or overriding)
the findAndDelete method.

The following equations yield identical programs for inserting and deleting elements
from a doubly-linked list. The reason why they are equivalent is that the extensions
dbl and sgldel are independent of each other, and thus can be composed in any order.

dlist = dbldel•dbl•sgldel•sgl (8)

 = dbldel•sgldel•dbl•sgl (9)

class list {
   node first = null;
   node last = null;

   final void insert$$sgl( node n ) {
      n.next = first;
      first = n;
   }

   void insert( node n ) {
      if (last == null)
         last = n;
      insert$$sgl(n);
      x.prior = null;
   }
}

class node {
   String constant;
   node   next = null;
   node prior = null;
}

Figure 9. Composition dbl•sgl
(a) L/both/list.jak

(b) L/both/node.jak

refines class list {

   void delete( node n ) {
      if (n == first) {
        first = first.next;
      }
      else 
        findAndDelete(n);
   }

   void findAndDelete(node n) {
      node prev = first;
      while (prev != n) 
         prev = prev.next;
      prev.next = n.next;
   }
}

(a) L/sgldel/list.jak

refines class list {

   void findAndDelete(node n) {
      if( n== last)

last = last.prior;
if (n.prior != null)

         n.prior.next = n.next;
      if (n.next != null)
         n.next.prior = n.prior;
   }
}

(b) L/dbldel/list.jak

Figure 10. The sgldel and dbldel Layers
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Model Exercises
[10] Suppose other operations for traversing the list are added. How would this impact

model L? What about the operation reverse(), which reverses the order in which
nodes are listed?

[11] Suppose an “ordering” feature is added to a list, meaning that nodes have keys and
are maintained in ascending key order. How would this feature impact L?

[12] Consider a “monitor” feature, which precludes more than one thread to access a
list at a time. How would this feature impact L? How would it be defined?

Tool Exercises

The directory structure for L is:

L/sgl/list.jak // see Figure 8a
L/sgl/node.jak // see Figure 8b
L/dbl/list.jak // see Figure 8c
L/dbl/node.jak // see Figure 8d
L/sgldel/list.jak // see Figure 10a
L/dbldel/list.jak // see Figure 10b

The files of Figure 9 are the result of evaluating the equation both = dlb•sgl using the
composer tool:

> cd L
> composer --target=both sgl dbl

The generated directory structure is:

L/both/list.jak // see Figure 9a
L/both/node.jak // see Figure 9b

[13] What is a guidsl model of L?

6.1 Multi-Dimensional Models and Origami

There remains a fundamental relationship among the features of L that we have not yet
captured. Consider the following incorrect compositions:

error1 = dbl•sgldel•sgl
error2 = dbldel•sgldel•sgl

Both define programs that are partially and thus incorrectly implemented. error1 is a
program whose insert method works on a doubly-linked list, but whose delete
method works only on a singly-linked list. error2 is a program whose insert method
works on a singly-linked list, but whose delete method works for a doubly-linked list.

The problem is that if a data structure is extended (i.e., a singly-linked list becomes
doubly-linked), then all of its operations should be updated to maintain the consistency
of this extension, and not just some. That is, if a singly-linked list has both insert and
delete operations, when the structure becomes doubly-linked, both operations must



25
be updated to work on doubly-linked lists. Equivalently, if a feature adds a new
method to a data structure, then that method must work for that data structure and not
some other structure.

Although this is an elementary example, it is representative of a large class of prob-
lems in FOP, namely that a model defines a group of features that are not truly inde-
pendent and this group must be applied in lock-step — all or nothing — manner.
Whenever you notice this phenomena, realize that these groups represent “higher-
level” features.

Here’s a technique for understanding this problem. Create a matrix, called an Origami
matrix, where rows represent operations (insert, delete), and columns represent
structure variants (singleLink, doubleLink). Entries of this matrix are the features of
L (see Table 1). This matrix can be extended to handle other operations (sort, find) and
other structure variants (ordered-lists, monitors, etc.). 

Note: what we have done is to identify the orthogonal “higher-level” features as
‘data structure operations’ and ‘data structure variants’.

Suppose the rows of this matrix are composed (or folded — hence the name
“Origami”), where the corresponding entries in each column are composed (Table 2):

Study the entries of Table 2. Consider the entry in the singleLink column:
sgldel•sgl defines a singly-linked program S that has both an insert and delete
method. The entry in the doubleLink column, dbldel•dbl, defines an extension of S
that converts its insert and delete methods to work on a doubly-linked list. Thus by
composing the delete row with the insert row of Table 1, we synthesize a data struc-
ture that has multiple methods, and an extension of that data structure that consistently
updates these methods. This interpretation holds if more rows (operations) or more list
features (columns) are added.

doubleLink singleLink

insert dbl sgl

delete dbldel sgldel

Table 1  Origami Matrix for L

doubleLink singleLink

delete•insert dbldel•dbl sgldel•sgl

Table 2  Row-Composed Origami Matrix
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The columns of Table 2 can be composed to yield a 1×1 matrix whose entry is an
expression that defines a doubly-linked list with insert and delete methods (Table 3).
This expression is identical to equation (8).

Now instead of composing rows of Table 1, let’s compose the columns, where corre-
sponding entries in each row are composed (Table 4):

The entry in the insert row, dbl•sgl, defines program D that implements a doubly-
linked list with an insert method. The entry in the delete row, dbldel•sgldel,
defines an extension of D that adds a delete method. By composing the columns of
Table 1, we have synthesized a data structure with a single (insert) method, and an
extension that adds a delete method to this structure. Again, this interpretation holds
if we add more rows (methods) or more columns (features) to Table 1. By folding the
rows of Table 4, a 1×1 matrix is produced whose lone entry is equation (9). As a gen-
eral rule, as long as the order in which rows and columns (that is, ‘data structure oper-
ation’ features or ‘data structure variant’ features) are composed is legal, the resulting
equations in a fully-folded matrix should be equivalent. (If they are not, then a dimen-
sion is missing in the design).

Origami matrices capture fundamental relationships among groups of features: to build
consistent and correct programs, it is often necessary to apply an entire group of fea-
tures at once [6]. A matrix representation of these relationships works because the set
of features along one dimension are orthogonal to those of another. In our example, the
set of methods that can be used with a data structure is orthogonal to the set of data
structure variants. 

Although this is a simple example, Origami applies at much greater levels of granular-
ity. For example, ATS has five tools — including jampack, mixin, and unmixin —
each having over 30K LOC, and totalling over 150K LOC. These tools are synthesized
by folding a 3-dimensional (8×6×8) Origami matrix.

6.2 The Meaning of Origami
Why is Origami significant? There are several reasons, all of which capture important
generalizations of equational program specifications.

doubleLink•singleLink

delete•insert dbldel•dbl•sgldel•sgl

Table 3  A Completely Folded Matrix

doubleLink•singleLink

insert dbl•sgl

delete dbldel•sgldel

Table 4  Column Composed Origami Matrix
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In earlier sections, we defined a program by a single equation. Origami generalizes this
idea, so that a program is defined by a set of k equations, one per dimension. This has a
significant impact on reducing the complexity of a program specification. Suppose
each of the k equations has n terms. Thus, a program specification in Origami is of
length O(nk). Yet, the matrix that is folded into a single expression would have O(nk)
terms! That is, Origami exponentially shortens specifications of product-line programs
[6]. Or stated another way, Origami enables very simple specifications for very com-
plex programs.

Here’s another interesting question: what is the algebraic meaning of matrix folding?
The answer is evident when we interpret the composition operator (• ) as addition [12].

Composition in AHEAD is similar to summation. Suppose to build program P, we start
with a base feature F0 and progressively add on features F1, F3, and F7. Instead of using
• , we will use + to denote composition:

P = F7 + F3 + F1 + F0 (10)

Here’s another way to represent P. Suppose F is the model that contains features F0, F1,
F3, and F7. In general Fi is the ith feature of model F. Let E be the sequence of sub-
scripts whose features we are to sum. For equation (10), E = (0,1,3,7). We could
equivalently write (10) as a summation:

P = Σi∈ E Fi

Now suppose our model is two dimensional. Let M denote a two-dimensional Origami
matrix, where Mij is the element in the ith row and jth column. When the matrix is
folded first by rows then by columns, this corresponds to summing the matrix by col-
umns then by rows. When the matrix is folded by columns and then by rows, this cor-
responds to summing by rows and then columns. Let R be the sequence of subscripts in
which rows are folded; let C be the sequence of subscripts in which columns are folded.
Origami expresses the equivalence of the summation of elements of a matrix in differ-
ent orders:

P = Σi∈ R Σj∈ C Mi,j = Σj∈ C Σi∈ R Mi,j

That is, an Origami matrix is a k-dimensional “cube”, which when summed across dif-
ferent dimensions yields a program in a product-line. Summation of matrix entries and
permuting the order in which entities are added, are familiar ideas in mathematics. The
name “Origami” is really a visual interpretation of matrix summation.

Finally, it is worth noting that Origami and multi-dimensional models are historically
related to a fundamental problem in program design called the “expression problem”.
It has been widely studied within the context of programming language design, where
the focus is achieving data type and operation extensibility in a type-safe manner. The
FOP contribution to this is to show how the idea scales to the synthesis of large pro-
grams [6][18].
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6.3 Metamodels and Model Synthesis

How are Origami matrices represented in AHEAD? Before we can answer this ques-
tion, we need to introduce an important concept in modeling called metamodels. A
metamodel is a model whose instances are themselves models. Consider model M,
which has units a, b, and c:

M = { a, b, c }

Now consider metamodel MM, which also has three units, each being a set with a single
unit:

MM = { AAA, BBB, CCC }
= { {a}, {b}, {c} }

A model can be synthesized by composing metamodel units. The MM equation for
model M is:

M = AAA•BBB•CCC

In this particular case, because there are no units in common with AAA—CCC, composi-
tion reduces to set-union. The interesting thing about metamodels is that they are iden-
tical to models. That is, a model or metamodel is a set of units, where each unit may be
a set. Further, the composition operator for units of metamodels (• ) is the same opera-
tor for units of models (• ).

An Origami matrix is a metamodel. Our example is a 2-dimensional (and in general, a
k-dimensional) array of units. A set is a hierarchy. So to represent matrices in AHEAD,
we need to encode a matrix as a tree. A 2-dimensional matrix can be decomposed first
into rows, and then each row into columns. Another way is to organize by columns
first, and then rows. Figure 11 shows these embeddings for an n×m matrix O where Oij

denotes the row i column j element of O.

6.4 Representing Origami Matrices

Now lets consider how to represent Origami matrices. Consider a row-dominant
decomposition. Figure 12a shows our example matrix, where entries are equation files
that have the same name (eqn.equation). Entry subscripts denote (to us) their true
identity. Figure 12b is the corresponding row-oriented metamodel; Figure 12c is its
AHEAD directory structure. Figure 12d-g are the contents of the equation files.

Figure 11. Matrix Embeddings in Trees

O

row1 rown

O1,1 O1,m On,1 On,m

O
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Why do we use this particular representation of a matrix? Why use equation files,
rather than embedding the actual feature directories themselves? The answer: conve-
nience. Try to create such a hierarchical directory yourself, where instead of equation
files, you have feature directories. It’s hard to navigate such a directory structure, let
alone maintain it. The simpler the representation the better. So it is common that we
have a flat model directory (where features are immediate subdirectories), and a sepa-
rate Origami directory which defines the multi-dimensional relationship among fea-
tures using equation files.

Model Exercises
[14] Expand the Origami matrix to handle more data structure operations and variants.

Tool Exercises

To fold a 2-dimensional matrix, you need to invoke composer twice: once to compose
rows and a second time for columns. (For a k-dimensional matrix, we would invoke
composer k times). So to produce the AHEAD equivalent of Table 2, we compose the
rows of the Origami model to produce model Table2 = delete•insert:

> cd Origami
> composer --target=Table2 insert delete

The resulting model Table2 is depicted in Figure 13a, and its synthesized AHEAD
directory structure in Figure 13b, and the contents of the equation files in Figure 13c-d.

To produce the 1×1 matrix of Table 3 or equation (8), we compose the columns
(named single and double) using the following command:

eqn.equationsgl

eqn.equationsgldel

eqn.equationdbl

eqn.equationdbldel

insert

delete

single double

Origami = { insert, delete }

insert = { singlei, doublei }

Origami/insert/single/eqn.equation // Figure 12d
Origami/insert/double/eqn.equation // Figure 12e
Origami/delete/single/eqn.equation // Figure 12f
Origami/delete/double/eqn.equation // Figure 12g

(a)

(b)

(c)

Figure 12. Row-Dominant Embedding of a Matrix

sgl super
dbl

super
sgldel

super
dbldel

(d) (e) (f) (g)

double = { singled, doubled }

singlei = { eqnsgl }
doublei = { eqndbl }

singled = { eqnsgldel }
doubled = { eqndbldel }
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> cd Table2
> composer --target=both single double
> cd both
> jak2java *.jak

[15] Represent the matrix of Figure 12a by columns, and repeat the above folding.

Model Exercises
[16] Create two different GUIs for a calculator: one uses the standard 2D keypad, a

second uses text fields to enter values and operations. A calculator will use one
(but not both) of these GUIs. Operations on both GUIs are buttons. So when a cal-
culator is extended by a new operation, its GUI will be extended also. Express this
relationship between operations and GUIs as an Origami matrix.

[17] Generalize the model in [16] that permits multiple GUIs per calculator. One idea
would use tabs, one tab per different GUI. Implement your model.

7 What’s Next?

There are many interesting topics and capabilities that we have yet to explore (or
develop) for AHEAD. Here are just a few. If you are interested in learning more about
these topics, see [1][5].

7.1 Extensible Languages

There are all sorts of non-Java extensions to the Jak language that we haven’t talked
about, including:

• metaprogramming — the ability to assign code fragments to variables, the ability
to compose code fragments via escape substitutions, hygienic macros.

• state machines — an embedded DSL for supporting the definition and extension
of state machines.

7.2 Compiler-Compiler Tools

ATS has a sophisticated set of compiler-compiler tools that are used to (a) define base
grammars, (b) define grammar extensions, and (c) to synthesize grammars by compos-

Table2 = { single, double }

single = { eqnsgldel•eqnsgl }
double = { eqndbldel•eqndbl }

(a)

Figure 13. AHEAD Origami Metamodel

Origami/Table2/single/eqn.equation // Figure 13c
Origami/Table2/double/eqn.equation // Figure 13d

(b)

sgl
sgldel

super
dbl
dbldel

(c) (d)
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ing base grammars with extensions. Grammars are yet another representation of a pro-
gram, in this case, a compiler, and ATS has tools for defining and composing
grammars and generating Java files from them. 

7.3 Generating and Optimizing MakeFiles

The idea of modules as hierarchical collections of related artifacts is powerful. A para-
digm of AHEAD that we have explored so far is that of composition: that artifacts of a
program can be composed from previously defined artifacts. But there is another way
in which program artifacts can be produced: by derivation. For example, Java files can
be produced from Jak files by the jak2java tool; class files can be produced from Java
files by the javac compiler, and so on. A general paradigm is depicted in Figure 14: an
artifact can be produced by first composing it from more elementary artifacts, fol-
lowed by a derivation. Or equivalently, it can be produced by deriving a set of artifacts
from more elementary artifacts, and then composing the derived representations6. This
leads to the following fundamental distributive algebraic relationship (11).

derive( artifacti • artifactj ) =
derive( artifacti ) • derive( artifactj ) (11)

Ultimately, we want to specify an entire program — all of its composed and derived
representations — as a set of equations. Although ATS does not yet have such a tool,
one can imagine a specification like:

Using L;

i3 = javadoc( javac( jak2java( sgldel( sgl ) ) ) ); (12)

where the Using clause tells this tool that sgldel and sgl are units in model L, and by
inference, composer should be used to compose them. The resulting module will have
.jak, .java, .class and .html files. The jak2java tool, when applied to the module
of sgldel(sgl), translates all Jak files to Java files and adds them to the module. Sim-
ilarly, the javac operation compiles all Java files and adds their .class files to the
module. The javadoc operation will generate JavaDoc .html files from the generated

6. Figure 14 can be generalized further, so that multiple output artifacts can be derived from a single input
artifact, and vice versa.

artifacti

artifactj

Artifacti

Artifactj

composedij Composedij

• •

= =

derive

derive

derive

co
m

po
se

co
m

po
se

Figure 14. Compose vs. Derive
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Java files, and so on, progressively enlarging the contents of that module/directory. In
effect, (12) is really an equational representation of a makefile! More on this shortly.

The lesson that we learned from relational query optimizers is that an expression repre-
sents a program design and expressions (and hence designs) can be optimized. In this
particular example, there really isn’t anything to optimize. There is, though, a particu-
lar sequencing of the application of the javadoc, javac, and jak2java operations that
must be imposed. (In fact, this really is the only legal ordering of these operations for
this equation). So notions of design rules also apply to tool operations. But as equa-
tions become more complicated, there is the possibility of optimization. In some of our
larger examples using Origami, generating common subexpressions among different
sets of tools arises. Evaluating common subexpressions once, and not many times, is
an important optimization that a tool should be able achieve automatically [14].

The big picture is depicted below. Given an equational representation of a program
that specifies both the artifacts that are to be composed and those that are to be derived,
a tool will expand the equations and perform optimizations to synthesize the resulting
program in an efficient manner. The tool will then produce an optimized set of equa-
tions, and a generator will translate these equations into a makefile — a functional-like
language that efficiently executes equational specifications [14].

7.4 Type Systems

As mentioned earlier, extensions are functions that appear untyped. In fact, function
inputs and outputs have definite constraints. Our tools assume that the correct types are
both being input and output. In general, this is bad assumption.

Question: how does one type a program? Should Java interfaces be used? How does
typing generalize to, say, grammar files or equation files? What is a general mecha-
nism for typing arbitrary artifacts and their extensions? We have the outlines of a solu-
tion for AHEAD, but at this time, AHEAD has no tool support.

7.5 Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) is closely related to FOP. Both deal with mod-
ules that encapsulate crosscuts of classes, and both express program extensions. FOP
uses a subset of the “advising” capabilities of AOP, namely those that use execution
pointcuts. However, the primary difference between AOP and FOP is their composi-
tion models. FOP treats aspects as functions that map programs, and uses function
composition as the means to compose aspects. This leads to algebraic representations
of programs and a simple means to perform program reasoning with aspects. 

unoptimized

equational

specification

optimizer
optimized

equational

specification

generator
efficient

makefile

representation

Figure 15. Generation and Optimization of MakeFiles
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In contrast, AOP uses a complex model of aspect composition (e.g., precedence rules)
that complicates program reasoning using aspects and makes step-wise development
difficult [19]. AOP and FOP are thus not directly comparable, but are instances of a
more general paradigm of automated software development — one that composes
aspects by FOP function composition and uses the full power of AOP pointcuts.

8 Conclusions

Just as the structure of matter is fundamental to chemistry and physics, so too must the
structure of software be fundamental to computer science. Unfortunately, our under-
standing of software structure is in its infancy. Today, software design is an art. As
long as it remains so, our ability to automate rote tasks of program design and synthe-
sis will be limited. And software engineering will be more of a craft than a discipline.

Software designs can be given mathematical precision when expressed as a composi-
tion of features. We have presented a simple and elegant theory of program design,
backed by years of implementation and experimentation, that brings together key ele-
ments in the future of software development: generative programming, domain-spe-
cific languages, automatic programming, and step-wise development. Generative
programming gives our theory its mathematical backbone: functions can map pro-
grams. Domain-specific languages give programming artifacts their form: these are the
artifacts that functions transform. Automatic programming underscores AHEAD as a
simple model that relates automated reasoning, compositional programming, and
design optimization by algebraic reasoning. And step-wise development is a practical
way of controlling complexity. AHEAD provides an algebraic foundation for under-
standing program development on a larger scale.

This paper has explored basic concepts of FOP and a (small) subset of the tools of the
AHEAD tool suite. For the most recent results, see our web site [17] and consult the
AHEAD documentation [1].
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