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Abstract 
We consider the problem of finding an optimum path from 
each node in the network to a destination node in the net-
work. Typically, each edge in the network is assigned a 
value, e.g. bandwidth or delay, and a metric function is ap-
plied consecutively to the edges in the path, e.g. minimum 
or maximum functions. The result is the path's metric. 
However, some metric functions have conflicts, and pre-
vent all nodes from obtaining an optimum value 
simultaneously. Conditions to ensure that a metric function 
is conflict-free have been presented in the literature. In this 
study, we consider the more general problem where the 
optimality of the path is not a function of the edge weights 
but a function of the path itself. We therefore define a path 
ranking function, and give sufficient conditions for the 
ranking to be conflict free. Furthermore, a distributed 
algorithm is presented to obtain the optimum path from 
each node to the destination.  

1. Introduction 
One of the most significant factors affecting the per-

formance of computer networks is the choice of routing 
algorithm. It is most significant, since its purpose is to find 
an optimum path between any pair of nodes in the net-
work. Due to the importance of this algorithm, it must be 
chosen carefully, along with the metric that is used to 
measure the desirability of each path. 

One of the fundamental principles of routing is known 
as the optimality principle [1][12], which states the fol-
lowing. Consider any pair of nodes u and w in the network, 
and an optimum path P from u to w. Then, if v is a node in 
P, then the subpath of P from v to w is also an optimum 
path from v to w. A consequence of this principle is the 
following: 

• if each node independently chooses a neighbor along 
the optimum path to the destination, then all edges of 
the form (node, chosen neighbor to destination) form 
a spanning tree T, with the destination as its root. 

• T contains an optimum path from every node to the 
destination. 

Hence, the above implies that there are no inconsisten-
cies between the choice of path made by each node u, and 
the choice of path of any ancestors of u in T. Thus, a node 

can be greedy, and always choose as its next hop to the 
destination the neighbor which yields the best path to the 
destination.  

The wide range of traffic types to be supported by future 
networks has created a demand for a variety of routing 
metrics, which measure the desirability of a path. Thus, 
metrics may vary from minimum cost metrics [4] to maximum 
bottleneck bandwidth [3][5][13]. Thus, in addition to choosing 
a routing algorithm, the choice of routing metric is important 
for the applications. For a general discussion on a variety of 
routing metrics and algorithms, see [2]. 

However, while some metrics do satisfy the optimality 
principle, others do not. The minimum cost metric, where we 
desire a path whose sum of the cost of its edges is minimum, 
does satisfy the optimality principle (assuming all edge costs 
are positive and non-zero). On the other hand, as pointed out 
in [6], the maximum bandwidth metric, where we desire a path 
whose bottleneck bandwidth is the maximum, does not satisfy 
the optimality principle. This is illustrated in Figure 1. Here, 
one of the optimum paths from u to the destination r is (u, v, 
w, r). However, none of the optimum paths from v to w 
contain (v, w, r).  

Furthermore, not only do some metrics not satisfy the 
optimality principle, their choice of paths to the destination 
may be conflicting. For example, assume that the metric is the 
pair (bandwidth, distance), where we desire the path with 
greatest bottleneck bandwidth, and whose distance is the 
smallest (a.k.a. "shortest widest path"). In Figure 1, there is a 
single optimum path from u to r, namely, (u, v, w, r), and there 
is a single optimum path from v to r, namely, (v, x, z, r). Thus, 
there is a conflict at node v. 

In [6], necessary and sufficient properties were presented 
for these types of conflicts to be avoided, and hence, for a 
metric to define an optimum path for all nodes in the network. 
These properties may hold even though the optimality 
principle does not. For example, the maximum bandwidth 
metric does satisfy these properties, and thus is conflict free.  

However, since the optimality principle does not hold, 
nodes cannot simply pick any neighbor along an optimal path 
as their next hop to a destination, since this may cause a loop. 
For example, an optimum path for x is (x, y, z, r), and an 
optimum path for y is (y, x, z, r). Thus, if x and y choose each 
other as the next hop, a loop is introduced. This may be solved 
by having each node choose as its next hop the neighbor along 
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the shortest optimum path. Thus, both x and y would 
choose z as their next hop. 

The model of routing metrics discussed in [6] covers 
the usual metrics of assigning a value to each edge in the 
network, and the metric of a path consists on the consecu-
tive application of a function (e.g. min or max) to the val-
ues of the edges in the path. This model, however, does not 
cover other metrics that may take into consideration the 
identities of the nodes along the path. This consideration is 
important in policy-based routing, where traffic is directed 
to or away from particular nodes in the network, irrespec-
tive of the quality of the edges along the path. The Border 
Gateway Protocol [10] used in the Internet is a particular 
example of policy-based routing. 

In this paper, we consider routing metrics where the 
desirability of a path is a function that is not restricted to 
the weight of the edges in the path. Instead, we consider a 
function, which we call rank, whose input is a sequence of 
nodes (i.e. a path) and returns an integer, which expresses 
the desirability of the path. 

Note that the use of a path rank function is more gen-
eral than metrics based solely on edge weights. This is be-
cause a metric based on edge weights would assign the 
same metric to two different paths of equal length whose 
edge weights are the same. However, a path rank function 
may assign to them different ranks. Thus, path rank func-
tions subsume edge metrics, and in consequence, some 
path rank functions will not satisfy the optimality princi-
ple. 

Given that some path rank functions will not satisfy the 
optimality principle, the goal of this paper is to obtain suf-
ficient conditions on the rank function such that a) no con-
flicts occur in the rank function, i.e., an optimum route can 
be obtained for every node in the network, and b) a simple 
distributed algorithm exists that allows each node to 
choose its next hop neighbor to the destination. 

For readability and space restrictions, all proofs may be 
found in the appendix. 

2. Path Selections 
A network N is represented as an undirected graph (V, 

E), where the node set V represents the set of computers in 
the network, and the edge set E represents the set of com-
munication links in the network. For simplicity, we assume 
that N is connected. The results are easily extended when 
this is not the case. 

A path in V is a sequence of nodes from V. A network 
path P in N is a sequence of nodes in V where each pair of 
consecutive nodes in P is an edge in E. We denote by 

head(P) the first node in the path of P.  
We denote by P:Q the path obtained by concatenating 

paths P and Q. Also, we denote by P(v, w) the sub-path of P 
starting at node v and ending at node w. 

Without loss of generality, we assume there is a single 
destination node in the network, which we call the root node. 
A path P in network N is rooted iff the last node in P is the 
root node, i.e., P = vk, vk-1, … , v0 where v0 = root. 

Let v = head(P), and assume node v has chosen P as its 
path to the root. Then, node v routes data messages to its 
neighbor w where w is the next node after v in P. 

We assume each node v has a set of paths, denoted by 
Sel(v), which are acceptable to v. That is, the path chosen 
from v to the root must be chosen from this set. In this section, 
we make no assumption as to how Sel(v) is chosen. In the next 
section, we define a specific set Sel(v) as the optimum paths 
with respect to a ranking function. 

More formally, a path selection is a pair (V, Sel), where:  

• V is a set of nodes, with a distinguished root node. 
• Sel() is a function, which takes a node v, v ∈ V - { root} , 

and returns a non-empty set of rooted paths over V, 
whose initial node is v. 

Without loss of generality, we assume Sel(v) ≠ ∅ for all v. 
If node v routes its data messages towards its neighbor w, 

then the remainder of the path which is followed by the data 
messages from v depends on the next hop choice made by w, 
and so on. This choice of next hop neighbors must be 
consistent to avoid undesirable conditions such as loops. We 
define this consistency formally as follows. 

A rooted path P is selectable in (V, Sel) iff P ∈ Sel(v), 
where v = head(P). A path selection (V, Sel) is satisfiable in 
network N, N = (V, E), iff there exists a spanning tree T of N, 
such that, for any v, v ∈ V, the rooted path from v to the root 
node along T is a selectable path in (V, Sel). We refer to this 
spanning tree as a satisfiability tree of (V, Sel) in N. 

Thus, each node v should choose as its next hop neighbor 
its parent in T. This guarantees that the path followed by the 
data messages of v is a selectable path. However, a path 
selection may not be satisfiable in some networks, and thus, it 
may not have a satisfiability spanning tree. Next, we present 
sufficient conditions to ensure the satisfiability of a path 
selection.   

A path selection (V, Sel) is consistent iff it satisfies the 
following condition. For all v, w, P, and Q, where P ∈ Sel(v), 
w ∈ P, and Q ∈ Sel(w), 

 P(v, w):Q ∈ Sel(v) 

A path selection (V, Sel) is sound iff it satisfies the 
following condition. For all v, P, Q, R, where P:Q:R ∈ Sel(v) 
and Q is a cycle, 

 P:R ∈ Sel(v)  

Theorem 1 
A path selection (V, Sel) is satisfiable in network N, N = 
(V,E), if each of the following conditions hold: 

1. (V, Sel) is consistent 
2. (V, Sel) is sound 
3. For every v ∈ V, there exists a P, P ∈ Sel(v), such that P 

is a network path in N. 
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Figure 1: Routing for maximum bandwidth 
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♦ 
Corollary 1 
Let (V, Sel) and  N be defined as in Theorem 1. Also, let 
each node v, v ∈ V, choose as its next hop to the root a 
neighbor w, where w is the first node of path P, and P is 
the shortest network path in Sel(v). Then, this choice of 
next hops form a satisfiability tree T for (V, Sel) in net-
work N.  
♦ 

Theorem 1 states that if a path selection is consistent 
and sound, and each node has at least one selectable path, 
then a satisfiability tree may be found. Thus, all nodes may 
forward their data to the root along an acceptable path. 

Since some path selections may not satisfy the opti-
mality principle, nodes cannot simply pick as their next 
hop neighbor any neighbor along a selectable path. Corol-
lary 1 states that if the neighbor chosen is any neighbor 
along the shortest selectable path, then a satisfiability tree 
is constructed. 

3. Path Rankings 
Above, we made no assumptions as to how a path se-

lection (V, Sel) is chosen. The selection may reflect policy 
routing decisions, such as restricting traffic across certain 
nodes. On the other hand, it may be desirable to define the 
selection with respect to some function that assigns ranks 
to paths.  

The rank of a path may be based on a typical metric, 
such as bandwidth or delay, or it may be based on other 
factors. In particular, a ranking on paths based on a combi-
nation of a typical metric, such as bandwidth, and on pol-
icy based routing, is presented in the next section. 

Each node desires its messages to be routed along the 
highest ranked path to the root, i.e., along a path that is 
optimal with respect to the ranking function. Thus, the path 
selection would correspond to those paths that are optimal 
with respect to the ranking. Hence, the path selection may 
change as the network topology changes. 

More formally, a path ranking is a pair (V, rank), 
where rank is a function from rooted paths in V to non-
negative integers. 

Let P be a rooted path in network N, N = (V, E). P is 
said to be optimal with respect to ranking (V, rank) and 
network N, iff, for all rooted paths Q in N, where head(Q) 
= head(P), we have rank(Q) ≤ rank(P). 

A path selection (V, Sel) is optimal with respect to 
network N, N = (V, E), and path ranking (V, rank), iff, for 
all v ∈ V, and for all P ∈ Sel(v), P is optimal with respect 
to (V, rank) and N. 

Again, since an optimal path selection may not satisfy 
the optimality principle, a satisfiability tree may not exist 
for an optimal path selection. We next present sufficient 
properties to ensure that an optimal path selection is satis-
fiable. 

A path ranking (V, rank) is consistent iff it satisfies the 
following condition. For all v, w, P, and Q, where v = 
head(P), w ∈ P, w = head(Q), 

 rank(Q) ≥ rank(P(w, root)) �  rank(P(v, w):Q) ≥ rank(P) 

A path ranking (V, rank) is sound iff it satisfies the 

following condition. For all v, P, Q, R, where P:Q:R ∈ Sel(v) 
and Q is a cycle, 

 rank(P:R) ≥ rank(P:Q:R)  

Theorem 2 
Let (V, rank) be a consistent and sound path ranking, and let N 
= (V, E) be any network. Let (V, Sel) be the optimal path 
selection with respect to (V, rank) and N. Then, (V, Sel) is 
satisfiable in N. 
♦ 
Corollary 2 
Let (V, Sel) be defined as in Theorem 2. Let each node v, v ∈ 
V, choose as its next hop to the root a neighbor w, where w is 
the first node of the shortest path P in Sel(v). Then, this 
selection of next hop neighbors forms a satisfiability tree T for 
(V, Sel) in network N.  
♦ 

Theorem 2 states that if an optimal path selection is 
consistent and sound, then a satisfiability tree may be found. 
Thus, all nodes may forward their data to the root along an 
optimal path. 

Since some optimal path selections may not satisfy the 
traditional optimality principle, nodes cannot simply pick as 
their next hop neighbor any neighbor along a selectable path. 
Corollary 2 states that if the neighbor chosen is any neighbor 
along the shortest optimum path, then a satisfiability tree is 
constructed. 

4. Edge M etrics 
In this section, we consider routing metrics, which are 

based solely on weight values assigned to the edges of the 
network. In [6], a general model encompassing a wide variety 
of edge metrics is introduced. This model encompasses typical 
metrics such as maximum bandwidth, minimum cost, and 
minimum delay metrics.  

Necessary and sufficient conditions were also presented in 
[6] for edge routing metrics in this model to be free of 
conflicts. That is, a spanning tree always exists, regardless of 
network topology and weight assignment to each edge, which 
provides the best path from each node in the network to the 
destination node. 

Below, we compare the model of edge metrics with our 
model of path ranking functions. We map each instance of 
edge routing metrics into an instance of path ranking function. 
We show that if the edge routing metric is free from conflicts, 
then the corresponding path ranking function is also free of 
conflicts, and thus, its optimal selection of paths is satisfiable. 

Since path rank functions are more general than metrics 
based on edge weights, we present an example of a path 
ranking function that cannot be represented in the model of 
edge metrics. We begin by presenting the model in [6]. 

A metric is a five tuple (M, W, met, mr, <) where: 

• M is a set of metric values 
• W is a set of edge weights 
• met is a metric function whose domain is M × W and 

whose range is M  
• mr is the metric value assigned to the root node 
• < is an irreflexive, transitive and total binary relation over 

M. m ≤ m' is defined as m = m' ∨ m < m'. 
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A metric (M, W, met, mr, <) is assigned to a network 
N, by choosing a function wf that assigns to each edge (u, 
v) of N an edge weight wf(u,v) from W. 

The metric of a rooted path P is obtained by succes-
sively applying the weight function starting at the root 
node and proceeding downwards along P. That is, if P = 
vk, vk-1, … , v0, where v0 = root, then the metric value of P 
is mk, where: 

• m0 = mr 
• for each i, k ≥ i > 0, mi = mf(mi-1, wf(vi, vi-1)) 

The objective is to obtain a spanning tree T over a net-
work N, such that for each node v, the rooted path along T 
from v to the root is a maximum metric path. That is, there 
is no other path from v to the root with a greater metric.  

The following metric properties are presented in [6].  
A metric (M, W, met, mr, <) is monotonic iff for every 

pair of metric values m and m', and for every edge weight 
value w, if m ≤ m' then mf(m, w) ≤ mf(m', w). From 
monotonicity it follows that metric(Q) ≥ metric(R) �  met-
ric(P:Q) ≥ metric(P:R) for all P, Q, and R. 

A metric (M, W, met, mr, <) is bounded iff for every 
metric value m and edge weight value w, m ≤ mf(m, w). 
From boundedness, it follows that metric(Q) ≥ metric(P:Q) 
for all P and Q. 

In [6], it was shown that a metric is both monotonic 
and bounded iff for any network N and any weight func-
tion wf, there exists a spanning tree T that provides the 
maximum metric to each node. We next show that these 
requirements on the metric imply our sufficient condition 
for optimal paths. 

Theorem 3 
Let (M, W, met, mr, <) be a monotonic and bounded metric 
assigned to network N, N = (V, E). Let Φ be a function 
from M to the positive integers, such that, for all m and m' 
in M, m < m' iff Φ(m) < Φ(m'). This is possible since the 
set M is totally ordered. For all rooted paths P in V, let 
rank(P) = Φ(metric(P)). Then: 

a) (V, rank) is consistent and sound.  
b) Let (V, Sel) be the optimum path selection with re-

spect to (V, rank) and N. Then, (V, Sel) is satisfiable 
in N. 

♦ 
From the definition of Φ, a maximum metric path in 

the network is also an optimum path with respect to the 
path ranking function and network N. From Theorem 3, 
the requirements in [6] for a maximizable metric imply our 
requirements to satisfy the corresponding optimum path 
selection. Thus, the model of path ranking functions sub-
sumes the model of routing metrics based on edge weights. 

Next, we finalize this section by presenting a simple 
example of a path ranking function whose optimal path 
selection is satisfiable, but does not satisfy the requirement 
of boundedness required for edge routing metrics. 

Let the set of nodes V be divided into two disjoint sets, 
L (leaf nodes) and  S (service providers). For each v ∈ L, 
there is a single node v' ∈ S, known as the provider of v. 

Each edge is assigned a weight in the range 1 … N-1, 
which denotes the bandwidth of the edge. The rank of a 

path P is defined as follows: 
a) if there is an edge (u, v) in P, where v ∈ L, then 

rank(P) = 0. 
b) if (a) does not apply, and the first edge of P is (v, v'), 

where v ∈ L, v' ∈ S, and v' is the provider of v, then 
rank(P) = N. 

c) if (a) and (b) do not apply, then the rank(P) is simply 
the bottleneck bandwidth of P. 

These rules represent the following scenario. Leaf nodes in 
L do not accept traffic through them unless it is absolutely 
necessary (i.e., unless the neighboring node has no other 
choice but to forward its data through this node). This is the 
motivation for rule (a). Also, each leaf node has a preferred 
provider, and it will always desire to forward its data to this 
provider. This is the motivation for rule (b). Finally, if the path 
is not going through nor originating at a leaf node, then the 
rank of the path is simply its bottleneck bandwidth (rule (c)). 

Note that if we consider the rank of a path as the metric of 
the path, then this metric does not satisfy the boundedness 
property. To see this, consider a rooted path whose first node v 
is a node in S. Let its rank be x (x ≤ N-1). If we extend this 
path to a node u, u ∈ L and v being the provider of v, then the 
rank of the path is N, i.e., the rank increases, which violates 
the boundedness property. Thus, by the results in [6] it is not 
maximizable.  

However, it is easy to show that this rank function is both 
consistent and sound, and thus, its optimal selection of paths is 
satisfiable. This appears to contradict the results presented in 
[6]. However, there is no contradiction, because the model of 
edge routing metrics does not capture the entire meaning of 
rules (a) through (c) above, since it cannot take node identities 
into consideration. Thus, the results in [6] do not apply to this 
extended model. 

5. Convergence of Optimum Routing 
In the previous sections, we have shown necessary properties 
for a path ranking to have a satisfiable set of optimum paths. 
In this section, we present a distributed algorithm to compute 
the optimum path from every node to the destination. The only 
assumption made is that the path ranking function used is 
consistent and sound. 

The algorithm is based on the periodic exchange of paths 
with neighboring nodes, as done in [11]. Each node v 
maintains a variable P, where it stores its desired path to the 
root. Each node v periodically sends its path P to its neighbors. 
Whenever a neighbor offers a better path Q to the destination, 
node v adopts Q instead. 

The algorithm for a non-root node v follows. 
node v  
variables 
   P : sequence of nodes { path to the root  node } 
   Q : sequence of nodes { path rcvd. from neighbors } 
repeat 
    if for every neighbor u of v, # update in channel from v to u = o 
    then 
 sanity(P); 
 for each neighbor u of v, 
  send update(v;P) to u 
 end for 
   end if 

    if receive update(Q) from any neighbor u then 
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 sanity(Q); 
 if  head(P) = u ∨ P = ∅ ∨ rank(Q) < rank(P) ∨  
     (rank(Q) = rank(P) ∧ |Q| < |P|)  
 then  
  P := Q; sanity(P); 
 end if 
   end if 
end repeat 

Above, sanity(P) is a shorthand for the following: 
 if (for all neighbors u, head(P) ≠ u) ∨  
      tail(P) ≠ root ∨ cycle(P)  then P := ∅  
 end if 

Sanity(P) is used to ensure that path P is a sensible path, 
i.e., it has no cycles, its first node is a neighbor, and the 
last node is the root. Periodically, node v forwards a copy 
of P to all its neighbors, provided the previous copy has 
already been received. Furthermore, if node v receives a 
path Q from its neighbor u, and it offers a better path than 
P, then v adopts Q as its new path. The algorithm for the 
root node follows. 
node root 
repeat 
   if (for every neighbor u, # update in channel from root to u = o)  
   then 
    for each neighbor u of v do 
  send update(root) to u 
 end for 
    end if  
end 

We next consider the correctness of the protocol. 

Lemma 1 
Let (V, rank) be a consistent and sound path ranking. 
There exists an alternative ranking, (V, rank'), satisfying 
the following properties. 

1. for all rooted paths P and Q with a common initial 
node, rank(P) < rank(Q) �  rank'(P) < rank'(Q) 

2. for all rooted paths P and Q with a common initial 
node, rank(P) = rank(Q) �  rank'(P) = rank'(Q) 

3. for all rooted paths P, where v is the first node of P, 
and all nodes w, w ∉ P, rank'(P) ≥ rank'(P:(v,w)) 

♦ 
Lemma 1 simply state that if there is a path ranking 

which is consistent and sound, then there exists another 
path ranking which orders paths in the same order as the 
original, but in addition, the rank of a path cannot increase 
if it is extended it include additional nodes. We use this 
lemma to prove the following theorem. 

Theorem 4 
Let (V, rank) be a consistent and sound path ranking. As-
sume all nodes of a network N, N = (V, E), execute the 
above algorithm. Then,  

a) The algorithm reaches a steady state, i.e., variable P 
in all nodes ceases to change. Also,  

b) Let (V, Sel) be the optimal path selection, i.e., for all 
v ∈ V, Sel(v) is optimal with respect to (V, rank) and 
N. Then, at a steady state, the union of all P variables 
of all nodes form a satisfiability tree for (V, Sel). 

♦ 
Theorem 4 states that the above algorithm will indeed 

terminate, and furthermore, the union of all P variables of 

all nodes form a spanning tree, and each path P is an optimal 
path. Thus, if each node chooses head(P) as the next hop 
neighbor, its data messages are guaranteed to follow an 
optimum path to the root. 

6. Concluding Remarks 
In [7][8], an abstraction of the BGP problem, known as 

path vector routing, is introduced. Each node has a set of paths 
to the destination which is willing to accept. This set is totally 
ordered. One problem with this protocol is that it may 
oscillate, and never establish a path to the destination. In [7] 
sufficient conditions are given to guarantee convergence. 

The difference between this work and our model is that the 
conditions presented in [7] allow the system to converge to a 
path which is not optimum for every node. Actually, it may 
converge to a solution where some nodes obtain no path to the 
destination. Our work is mostly concerned with ensuring that 
each node does indeed obtain an optimum path. 

In [9] a modified algorithm is presented which guarantees 
convergence. It does so by removing from the set of 
acceptable paths of a node those paths which at run time are 
detected to be involved in a race condition.  

The problem with the algorithm presented in [9] is that the 
removed path may later become necessary as the network 
topology changes. In our future work, we will pres??ent an 
algorithm which guarantees convergence, but without re-
moving any paths from the acceptable set. The algorithm will 
attempt at first to follow the path ordering originally given, but 
if it fails to produce a result it will switch to an alternative 
ranking built at run time which guarantees convergence. 
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Appendix - Proofs of Theorems 
Theorem 1 
A path selection (V, Sel)  is satisfiable in network N, N = (V, E) if all the following conditions hold: 

1. (V, Sel) is consistent 
2. (V, Sel) is sound 
3. For every v ∈ V, there exists a P, P ∈ Sel(v), such that P is a network path in N. 

Proof 
We prove the theorem by exhibiting an algorithm which constructs a satisfiability tree T under the assumptions of the theo-

rem. The algorithm follows. 
 

T : set of edges  { initially empty}  
P : sequence of edges 
u : node 
v : node 
 while nodes(T) ≠ V do  
  u := any node not in T; 
  P := a shortest satisfiable path in Sel(u); 
  v := u; 
  while v ≠ root ∧ v not in T do  
   w := next node after v in P; 
   if P(w, root) is a shortest satisfiable path of w then  
    v := w; 
   else  

Q := a shortest satisfiable path in Sel(w); 
    P := P(u, w):Q ; 

    v := w; 
   end if 
  end while 
  T := T ∪ P(u, v); 
 end while 

At all times in the algorithm, T is a tree subgraph of N and 

(i)  (∀ x, x ∈ T, T(x, root) is satisfiable)  

The algorithm augments T as follows. Any node u not in T is chosen, and its shortest satisfiable path P in Sel(u) is chosen. 
From the assumptions of the theorem, such path must exist. The algorithm then iterates over the nodes of P, starting from u and 
moving towards the root, as illustrated in Figure 2. At all times, the algorithm ensures the following, 

(ii)  (∀ x, x ∈ P(u, v), P(x, root) is satisfiable) 

where v is the iteration variable. We next show how (ii) is preserved.  
Consider the node w after v in P. We have two cases to consider for w. 

a) P(w, root) is a shortest satisfiable path of w. In this case, (ii) above still holds if we increase the range of x to include 
w, so the algorithm assigns w to v. 

b) P(w, root) is not a shortest satisfiable path of w. In this case, a shortest satisfiable path, namely, Q, is chosen. From 
the assumptions of the theorem, such path must exist. Note that for all x, x ∈ P(u, v), P(x, w):Q is satisfiable. This is 
because (V, Sel) is consistent and P(x, root) is satisfiable. Therefore, we update P to P(u, w):Q, and v is set to w. 
Thus, (ii) above continues to hold.  

However, in b) above, Q must not form a loop with P, i.e., no node in Q is a node in P(u, v). This cannot occur for the fol-
lowing reason.  

Let Q contain a node x, x ∈ P(u, v), as shown in Figure 2(b). From the consistency property and (ii), P(x, w):Q is satis-
fiable. Thus, from the soundness property, Q(x, root) is satisfiable.  

Let y be the next node after x in P (y = v in Figure 2(b)). Let R be the shortest satisfiable path of x, where y is the second 
node in R (such an R exists from the previous iterations of the algorithm). Since x chose y as its next hop, |R| ≤ |Q(x, root)|. 
From the consistency property, Q(w, x):R is satisfiable. Hence, since |R| ≤ |Q(x, root)|, w may choose Q(w, x):R as its shortest 
satisfiable path. This path goes through node y.  

By applying the same argument to y as we did to x, w may choose Q(w, y):S as its shortest satisfiable path, where S is the 
shortest satisfiable path of y, and so on, until we conclude that Q(w, x):P(x, w):U is a shortest satisfiable path of w, where U is 
a shortest satisfiable path of w. This is a contradiction, since U and Q(w, x):P(x, w):U cannot both be shortest satisfiable paths. 
Thus, Q cannot form a loop. 



ON FINDING OPTIMUM PATHS IN COMPUTER NETWORKS                                                                                                        JORGE A. COBB 

8 

The traversal of path P ends when v = root ∨ v ∈ T. Then, P(u, v) is added to T. If v = root, then no node in P, other than 
the root, is in T. From (ii), we can add P to T without violating (i). If v ∈ T, then, consider any x in P(u, v). From (ii), P(x, 
v):P(v, root) ∈ Sel(x). Also, from (i), T(v, root) ∈ Sel(v). Hence, from consistency, P(x, v):T(v, root) ∈ Sel(x). Thus, we can 
add P(u, v) to T without violating (i). 

The algorithm ends when T is a spanning tree of N, which from (i), we conclude it is a satisfiability tree. 

♦ 
Theorem 2 
Let (V, rank) be a consistent and sound path ranking, and let N = (V, E) be any network. Let Sel(v) be the set of optimal paths 
in N from v to the root. Then, (V, Sel) is satisfiable in N. 
Proof 
We show below that (V, Sel) is both consistent and sound. Since all paths in (V, Sel) are in N (by definition of optimal paths), 
then the conditions of Theorem 1 hold, and Sel(v) is satisfiable in N. 

Consider first the consistency of (V, Sel). Let P ∈ Sel(v), w ∈ P, and Q ∈ Sel(w). We are required to show that P(v, w):Q ∈ 
Sel(v). 

Since Q ∈ Sel(w), Q is an optimal path for w, thus, rank(Q) ≥ rank(P(w, root)). 
From the consistency of the rank, rank(P(v, w):Q) ≥ rank(P(v, w):P(w, root)) = rank(P). 
Since P ∈ Sel(v), P is an optimal path for v, thus rank(P) ≥ rank(P(v, w):Q)).  
Thus, rank(P) = rank(P(v, w):Q)), and since P is optimal for v, then P(v, w):Q is also optimal for v, and P(v, w):Q ∈ Sel(v). 
Consider now the soundness property. For all v, P, Q, R, where P:Q:R ∈ Sel(v) and Q is a cycle, we are required to show 

P:R ∈ Sel(v). 
From soundness of the rank, rank(P:R) ≥ rank(P:Q:R).  
From P:Q:R ∈ Sel(v), P:R is optimal, thus rank(P:Q:R) ≥ rank(P:R). 
Hence, rank(P:Q:R) = rank(P:R), so P:R is optimal, and P:R ∈ Sel(v). 

♦ 
Corollary 2 
Let (V, Sel) be defined as in Theorem 2. Let each node v, v ∈ V, choose as its next hop to the root a neighbor w, where w is the 
first node of the shortest path P in Sel(v). Then, this selection of next hop neighbors form a satisfiability tree T for (V, Sel) in 
network N.  
Proof 

From the proof of Theorem 2, (V, Sel) is sound and consistent, and from the definition of (V, Sel), every path in Sel(v) is in 
network N. Thus, the algorithm used in the proof of Theorem 1 may be used to find the satisfiability tree T. In the construction 
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Figure 2: Path traversal by the algorithm 
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of T, each node v chooses its neighbor w along a shortest path in Sel(v) as the next hop to the root, as desired. 

♦ 
Theorem 3 
Let (M, W, met, mr, <) be a monotonic and bounded metric assigned to network N, N = (V, E). Let Φ be a function from M to 
the positive integers, such that, for all m and m' in M, m < m' iff Φ(m) < Φ(m'). This is possible since the set M is totally or-
dered. For all rooted paths P in V, let rank(P) = Φ(metric(P)). Then: 

a) (V, rank) is consistent and sound.  

b) Let (V, Sel) be the optimum path selection with respect to (V, rank) and N. Then, (V, Sel) is satisfiable in N. 
Proof 
Note that since < is a total, irreflexive, and transitive relation on the metric values, a one to one mapping function, map, from 
metrics to non-negative integers, may be obtained such that, for every m1, m2 ∈ M, m1 < m2 iff map(m1) < map(m2). Thus, 
we define rank(P) = map(metric(P)) for all rooted paths P. 

Consider first consistency. Let P ∈ Sel(v), w ∈ P, and Q ∈ Sel(w). 
rank(Q) ≥ rank(P(w, root))  

⇔ { from the definition of rank}  
metric(Q) ≥ metric(P(w, root)) 

�  { from monotonicity of metric}  
metric(P(v, w): Q) ≥ rank(P) 

⇔ { from the definition of rank}  
rank(P(v, w):Q) ≥ rank(P) 

Thus, rank(Q) ≥ rank(P(w, root)) �  rank(P(v, w):Q) ≥ rank(P), and (V, rank) is consistent.  
Consider now boundedness. Let P = Q:R:S where x is the first and last node of R. 

true 
= { from metric boundedness}  

metric(R:S) ≤ metric(S) 
�  { from metric monotonicity}  

metric(Q:R:S) ≤ metric(Q:S). 
⇔{ from the definition of rank}  

rank(Q:R:S) ≤ rank(Q:S) 
Thus, rank(Q:R:S) ≤ rank(Q:S) holds, and (V, rank) is sound. 

♦ 
Lemma 1 
Let (V, rank) be a consistent and sound path ranking. There exists an alternative ranking, (V, rank'), satisfying the following 
properties. 
1. for all rooted paths P and Q with a common initial node, rank(P) < rank(Q) �  rank'(P) < rank'(Q) 
2. for all rooted paths P and Q with a common initial node, rank(P) = rank(Q) �  rank'(P) = rank'(Q) 
3. for all rooted paths P, where v is the first node of P, and all nodes w, w ∉ P, rank'(P) ≥ rank'(P:(v,w)) 

Proof 
Consider a directed graph G, G = (V', E'), where: 

• the nodes in V' are the rooted paths of V.  
• E' consists only of the following two types of edges:  

a) edges between paths shar ing the same first node: for any two nodes P and Q in V', if head(P) = head(Q) and 
rank(P) ≤ rank(Q), then (P, Q) ∈ E'. Note that if head(P) = head(Q) and rank(P) = rank(Q) then both (P, Q) and 
(Q, P) will exist in E'. 

b) edges between a path and its extension by one node: for every pair node w ∈ V and path P of nodes in V, 
(w:P, P) ∈ E'. 

We next argue that there is no cycle in G, where (P, Q) is an edge in G and rank(P) < rank(Q). 
The cycle in G cannot contain only edges of type (a) above. This is because the function rank returns integers, and a cycle 

would violate the total ordering property of the set of integers. 
Therefore, we can group consecutive edges in the cycle in G according to their category above, (a) or (b). For example, in 

Figure 3, edges of type (a) are solid, while edges of type (b) are dashed. Notice that all the nodes of consecutive edges of type 
(a), by definition of (a), have the same starting node. Hence, P0, A, B, and Rk all have the same starting node in V. Let this 
node be x. Similarly, Pi and Q0 have the same starting node, y, and Qj and R0 have the same starting node, z. 

Also, P0, P1, … , Pi, are increasing extensions of P0. I.e., P1 = w0:P0 for some w0 ∈ V, P2 = w1:P1 for some w1 ∈ V, etc.. 
Similarly, Q0, Q1, … , Qj are increasing extensions of Q0, and R0, R1, … , are increasing extensions of R0. 

Consider an edge among those whose paths begin in node x, e.g., edge (A, B). Thus rank(A) ≤ rank(B). Assume that 
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rank(A) < rank(B). We must show this is not possible. 
From the definition of (a) edges, rank(P0) ≤ rank(A).  
Extend path A using the same nodes to extend P0 into Pi. Call this new path Ay (i.e., "A extended until node y"). From the 

consistency of the rank, rank(Pi) ≤ rank(Ay).  
From the definition of (a) edges, rank(Q0) ≤ rank(Pi), and hence, rank(Q0) ≤ rank(Ay). 
Extend now Ay using the same nodes to extend Q0 into Qj. Call this new path Az (i.e., "A extended until node z"). From the 

consistency of the rank, rank(Qj) ≤ rank(Az). 
From the definition of (a) edges, rank(R0) ≤ rank(Qj), and hence, rank(R0) ≤ rank(Az). 
Extend now Az using the same nodes to extend R0 into Rk. Call this new path Ax (i.e., "A extended until node x reached 

again"). From the consistency of the rank, rank(Rk) ≤ rank(Ax). Since the rank function is sound, rank(Ax) ≤ rank(A), and hence 
rank(Rk) ≤ rank(Ax) ≤ rank(A). However, from the definition of (a) edges, rank(Rk) > rank(A). Hence, a cycle is impossible. 

This argument can be extended to any number of groups of consecutive edges of type (a), or reduced to the case of only a 
single one (i.e., the case where Pi also has x as its first node, and there is no node y or z in the cycle). The argument is the same. 

Thus, since there is no cycle in the graph where one of the edges (A, B) has rank(A) < rank(B), then we may assign the 
same value of rank' to all nodes in the cycle, without violating requirements 1 and 2 of the lemma.  

Therefore, rank' is defined as follows. Consider the strongly connected components of G, and reduce each strongly con-
nected component to a single node, obtaining a new graph G'. Perform a topological sort of the graph, and assign an integer to 
each strongly connected component according to this sort. rank'(P) for any path P in V is the integer of the topological sort cor-
responding to the strongly connected component of G containing P. 

♦ 
Theorem 4 
Let (V, rank) be a consistent and sound path ranking. Assume all nodes of a network N, N = (V, E), execute the above simple 
path finding algorithm. Then,  
a) The algorithm reaches a steady state, i.e., variable P in all nodes ceases to change. Also,  
b) Let (V, Sel) be the optimal path selection, i.e., for all v ∈ V, Sel(v) is optimal with respect to (V, rank) and N. Then, at a 

steady state, the union of all P variables of all nodes form a satisfiability tree for (V, Sel). 
Proof 
First, notice that, in a system which exchanges paths to the root, regardless of the initial state of the system, eventually each P 
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variable in the network will contain either the empty sequence or a path in network N2. Thus, we assume we have reached a 
state in which each P variable is a network path and this continues to hold forever.  

From Lemma 1, we can replace the original rank function by a rank' function which does not affect the behavior of the 
protocol. However, for each path P, rank'(P) ≥ rank'(w:P) for any w, i.e., extending the path cannot increase its rank. Thus, we 
assume we are using rank' instead of rank. 

With a slight abuse of notation, we denote by rank(v), v ∈ V, to be the rank' of an optimum rooted path from v to the root, 
and we denote by length(v) to be the length of this optimum path.  

We construct a satisfiability tree T by starting from an initial tree T', which contains only the root node, and expand T' until 
it becomes a spanning tree. For each node v in T', the rooted path along T' is optimum for v. Furthermore, an edge added to T' 
is never removed.  

Consider the pairs of values (rank'(v), length(v)). Order these pairs in lexicographical ordering (i.e., order them by rank' 
value, breaking ties in favor of length). We build T' in increasing order of this pair. I.e., at all times, for any node v in T' and 
any node w not in T', rank'(v) ≥ rank'(w).  

Consider the nodes neighboring the root. Let v be the neighbor of root for which the rank of v:root is minimum. Thus, from 
the definition of rank', no path in the network can have a rank' smaller than v:root, and, since the length of the path is one, no 
shorter path exists. Thus, when v receives this path from the root, it will adopt it as its path. Notice that any other rooted path of 
v, even of the same rank' value, must have a length of at least two. This forces v to take path v:root as its path and keep it for-
ever, and all nodes w other than v have (rank'(w), length(w)) ≤ (rank'(v), length(v)). 

Consider now the general case when T' has any number of nodes. Consider the node w outside of T'; which has highest 
(rank'(w), length(w)) pair. This node must be adjacent to the nodes in T'; since otherwise, the next hop along the optimum path 
of w would have either a better rank than w or equal rank but shorter length. Let v be the node of T' adjacent to w and along the 
optimum path of w. Since v is in T', its path will never change, and it will continue to send this path to w. Since there is no 
better path that w can have, eventually w chooses the optimum path through v, and continues to have this path forever.  

Thus, eventually, T' is a spanning tree, it is stable, and all its rooted paths are optimal. 

♦ 

                                                        
2 For a proof, see C. Alaettinoglu and U. Shankar, ``Stepwise Assertional Design of Distance-Vector Routing Protocols'', in Protocol 

Specification, Testing, and Verification (PSTV) Symposium, 1993. 


