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Abstract
In elections employing electronic voting machines, we
have observed that poor procedures, equipment failures,
and honest mistakes pose a real threat to the accuracy of
the final tally. The event logs kept by these machines can
give auditors clues as to the causes of anomalies and in-
consistencies; however, each voting machine is trusted to
keep its own audit and ballot data, making the record un-
reliable. If a machine is damaged, accidentally erased,
or otherwise compromised during the election, we have
no way to detect tampering or loss of auditing records
and cast votes.

We see a need for voting systems in which event logs
can serve as robust forensic documents, describing a
provable timeline of events leading up to and transpiring
on election day. To this end, we propose an auditing in-
frastructure that draws on ideas from distributed systems
and secure logging to provide a verifiable, global picture
of critical election-day events, one which can survive in-
dividual machine malfunction or malice. Our system,
the Auditorium, joins the voting machines in a polling
place together in a private broadcast network in which
all election events are logged redundantly by every ma-
chine. Each event is irrevocably tied to the originating
machine by a digital signature, and to earlier events from
other machines via hash chaining.

In this paper we describe in detail how to conduct an
election in the Auditorium. We demonstrate our system’s
robustness to benign failures and malicious attacks, re-
sulting in a believable audit trail and vote count, with
acceptable overhead for a network the size of a polling
place.

1 Introduction
The ongoing debate over electronic voting systems fo-
cuses, by and large, on the trustworthiness of their soft-
ware implementation. Could an insider build a voting

machine which appears correct and passes certification,
but still violates the integrity of the vote or the anonymity
of the voter? Could an outsider with knowledge of an
exploitable flaw in an otherwise honest machine do the
same? Certainly the answer to these sorts of questions
is “yes,” and recent research [22, 29, 41, 21, 11, 18, 19]
has rightly investigated the dangers posed by faulty or
malicious voting software.

In this work we consider a different facet of the elec-
tion correctness problem. Leaving aside the issue of vot-
ing machine correctness, we instead investigate the au-
ditability of elections conducted with electronic voting
systems. When the results of an election are in doubt,
the usual course of action is to perform a recount. When
so-called direct recording electronic (DRE) voting ma-
chines are in use, the data surveyed during such a recount
is purely electronic, and hence, fundamentally mutable.
Any party in possession of the machine or its flash mem-
ory cards or the tabulation system might be able to alter
or destroy votes. What does it mean to recount votes
whose provenance cannot be proven?

The problem extends beyond ballots. It is common
for DRE machines to keep an an event log to support post
facto analysis when the correct operation of the machines
comes into question. These logs, which record and
timestamp interesting events such as “election started”
or “ballot cast,” can provide critical clues to the events
of election day, especially when the vote tally is unusual
or inconclusive. That is, of course, unless they’ve been
tampered with, in which case they prove nothing at all.

We see a need for voting systems in which event logs
can serve as robust forensic documents, describing a
provable timeline of events leading up to and transpiring
on election day. To this end, we propose an auditing in-
frastructure that draws on ideas from distributed systems
and secure logging to provide a verifiable, global picture
of critical election-day events, one which can survive
individual machine malfunction or malice. Voting ma-
chines in our system are joined together on a broadcast



network, entirely separate from the Internet, in which all
election events are logged redundantly by every machine.
Each event is irrevocably tied to the machine it came
from by a digital signature, and to previously-announced
events from other machines via hash chaining.

The result is a resilient, tamper-evident timeline of
events that can be believed during an audit. Because all
auditable events are broadcast, we call this secure shared
timeline infrastructure the Auditorium. Much like the pa-
pal conclave [28, 34]—in which the election of the Pope
is conducted in open view of all electors—events in the
Auditorium are observed by all voting machines on the
network, even though the contents of individual votes are
sealed. After an election is over, the Auditorium records
from all participating machines can be used to identify
and correct procedural and technical problems that can-
not be detected in conventional paper audit trails.

While it is clearly necessary to improve the software
engineering standards to which DRE systems are held,
even a perfectly bug-free and trustworthy DRE software
stack is susceptible to operator error and hardware fail-
ure. The Auditorium is thus an essential complement to
other secure-voting techniques. We are in the process
of developing the Auditorium as a part of VoteBox, our
project to develop a voting machine software platform
for both security and human factors research.

In the next section of this paper, we describe the ex-
periences and problems that have motivated our thinking
and prompted the design for Auditorium, which is the
focus of Section 3. In Section 4, we discuss the security
properties of our system in the face of the kinds of every-
day failures that call results into question; we also iden-
tify and address a few “mega attacks” that challenge any
voting system, and consider the unavoidable possibility
of malicious or faulty software. We outline our current
and future research directions in Section 5. Section 6
concludes.

2 Background
In March 2006 we were fortunate enough to be asked
to investigate the results of a primary election in Webb
County, Texas. The voters in this jurisdiction were given
the option to vote on paper or using the county’s new
iVotronic touch-screen DRE systems, manufactured by
Election Systems & Software (ES&S). The second-place
finisher in a local judicial race found that he received a
smaller share of the DRE vote than the paper vote, and so
contested the electronic election results. Officials there-
fore impounded the voting machines and allowed us to
examine the systems for signs of tampering, malfunc-
tion, or other inexplicable irregularities. We submitted
our final report [42] to the court.

In the limited time available, we were unable to find
any direct evidence of tampering, nor of any malicious or

faulty code in the software or firmware of the machines.
Due to the malleable nature of electronic storage in pa-
perless DREs (and, as was recently demonstrated [18],
the ability of malicious software to erase itself from a
DRE after the damage is done), it is fundamentally im-
possible to be sure that no such tampering or malice oc-
curred.

We did, however, discover anomalous and incomplete
information in the event logs kept by the iVotronic ma-
chines. These logs, stored in a proprietary format on the
flash memory inside the voting machines, exist to pro-
vide some degree of auditability after the election is over.
When the polls close, poll workers copy the contents of
the voting machines onto CompactFlash memory cards,
which are then transferred to a general-purpose PC run-
ning the ES&S tabulation software. An example of its
output, given one machine’s binary event log, is shown
in Figure 1. We examined both the text logs emitted by
the tabulation software and the raw binary logs stored on
the machines themselves.

2.1 Lost votes

Figure 1 shows something unexpected. While polls
opened for the primary election around 7 AM on March
7, 2006, this particular machine was cleared and entered
into service at about 3:30 PM that same day. This could
be entirely innocuous: perhaps this machine was simply
unneeded until the early afternoon, at which point poll
workers activated it.

However, the machine might also have been accepting
votes since 7 AM like the other machines in that precinct,
but was wiped clean in the afternoon. Because the ma-
chine is trusted to keep its own audit and vote data—
both of which can be erased or otherwise undetectably
altered—we cannot be sure that votes were not lost.

There exists a procedure to mitigate against this sort
of ambiguous vote record, albeit a fragile one. Official
election procedures direct poll workers to print a “zero
tape” on each machine before it is entered into service
on election day, and a “results tape” once the polls are
closed. Each tape reveals (in addition to the election-
specific, per-race tallies) the contents of the machine’s
protected count, a monotonic counter inside the machine
that is incremented any time a ballot is cast and, accord-
ing to the manufacturer, cannot be decremented or re-
set even if the machine is cleared. This is a feature first
found on mechanical (lever-based) voting machines.

It should therefore be possible (assuming the counter
resists tampering) to compare the difference in the count
on the zero and result tapes and the number of ballots
recorded on that machine in between. If the numbers are
not equal, votes cast on election day were lost, or votes
cast on other days are being treated as legitimate, or both.

Unfortunately, the system does not require that these



Votronic PEB# Type Date Time Event

5140052 161061 SUP 03/07/2006 15:29:03 01 Terminal clear and test
160980 SUP 03/07/2006 15:31:15 09 Terminal open

03/07/2006 15:34:47 13 Print zero tape
03/07/2006 15:36:36 13 Print zero tape

160999 SUP 03/07/2006 15:56:50 20 Normal ballot cast
03/07/2006 16:47:12 20 Normal ballot cast
03/07/2006 18:07:29 20 Normal ballot cast
03/07/2006 18:17:03 20 Normal ballot cast
03/07/2006 18:37:24 22 Super ballot cancel
03/07/2006 18:41:18 20 Normal ballot cast
03/07/2006 18:46:23 20 Normal ballot cast

160980 SUP 03/07/2006 19:07:14 10 Terminal close

Figure 1: An iVotronic event log. The machine in question has the serial number 5140052; several different PEBs (special
administrative access tokens) were used over the course of the day. Noteworthy: the machine was cleared and entered into service
at about 3:30 PM on election day.

tapes be printed, nor that they be properly stored. In the
case of machine 5140052, we were unable to locate a
zero tape; the results tape showed a protected count of
12, and we observed 6 votes in the final tally from that
machine, so a maximum of 6 votes were lost. It is quite
possible that no votes were lost, and that the other 6 votes
were votes cast at other times for other purposes (e.g.,
other elections or tests). We cannot be sure, and had
the machine been in service for many years, its protected
count would be much higher, correspondingly inflating
our best upper bound on the number of lost votes.

2.2 Other anomalies and ambiguities

We encountered several machines whose logs attest that
votes were cast on those machines on or before March
6, the day before the primary election. Some of these
machines showed what appeared to be a normal voting
pattern, with the exception that every vote was cast on the
6th. Inspection of those machines (an example is shown
in Figure 2) revealed that their hardware clocks were off
by one day, implying that the votes in question were in
fact cast during the election on the 7th. We do not know
for sure; anyone with access to the machines prior to the
election could have cast these ballots illegitimately.

Other machines (e.g. Figure 3) with votes cast on the
wrong day fit a different pattern. In each case, two votes
were recorded: one ballot in the Republican primary
election and one in the Democrat primary. For each bal-
lot, the particular candidates chosen were the same each
time. We learned that this is the profile of a machine
under “logic and accuracy” test; election officials would
cast a couple of ballots and satisfy themselves that the
machines were working. Somehow these test votes were
being counted in the official election tally.

We also saw evidence of procedural failures which call

into question the accuracy of the vote tally. In Figure 1,
the event described as Super ballot cancel represents a
situation where a “supervisor” (poll worker) had to abort
an in-progress voting session. This typically happens
when voters “flee,” that is, they leave the polling place
without completing a ballot. In this event, poll work-
ers are under instruction to cancel the incomplete ballot
and to record on a paper log the reasons for having done
so. These paper logs were rarely kept in this particular
primary election, so we have no way to confirm the legit-
imacy of the cancellation. (It is not possible to cancel a
vote after it has been successfully cast.)

We conclude from these experiences that electronic
voting systems generate a great deal of auditing data that
can shed light on irregular results. Because the data for
the entire county was available in digital form, we were
able to analyze a large amount of election auditing data
at great speed, a feat that would have been far more diffi-
cult if we relied on paper records kept in each precinct by
poll workers. Despite their usefulness, however, we are
still able to prove neither the accuracy nor completeness
of these event logs.

2.3 Requirements for auditable voting systems

If we wish to design voting systems which survive mis-
takes and failures to provide an unambiguous result, we
must formalize the required properties of such a system.
In an auditable voting system:

R1 Each machine must be able to account for ev-
ery vote. Any ballot to be included in the final tally
must be legitimate; that is, it must provably have been
cast while the polls were open. It must also be possi-
ble to prove, by examining the auditing records, that no
legitimate votes have been omitted from the tally. This



Votronic PEB# Type Date Time Event

5142523 161061 SUP 02/26/2006 19:07:05 01 Terminal clear and test
161115 SUP 03/06/2006 06:57:23 09 Terminal open

03/06/2006 07:01:47 13 Print zero tape
03/06/2006 07:03:41 13 Print zero tape

161109 SUP 03/06/2006 10:08:26 20 Normal ballot cast
03/06/2006 12:39:05 20 Normal ballot cast
03/06/2006 14:49:33 20 Normal ballot cast
03/06/2006 15:59:22 20 Normal ballot cast
03/06/2006 18:01:45 20 Normal ballot cast
03/06/2006 18:10:24 20 Normal ballot cast
03/06/2006 18:26:52 20 Normal ballot cast
03/06/2006 18:29:18 20 Normal ballot cast
03/06/2006 18:39:41 20 Normal ballot cast
03/06/2006 18:44:24 20 Normal ballot cast

161115 SUP 03/06/2006 19:29:00 27 Override
03/06/2006 19:29:00 10 Terminal close

Figure 2: Machine showing the wrong date. These votes appear to be cast on the day before the election; when we inspected
the machine we found that its hardware clock was off by one day, implying that these are likely to be valid election-day votes.

Votronic PEB# Type Date Time Event

5145172 161061 SUP 03/06/2006 15:04:09 01 Terminal clear and test
161126 SUP 03/06/2006 15:19:34 09 Terminal open
160973 SUP 03/06/2006 15:26:59 20 Normal ballot cast

03/06/2006 15:30:39 20 Normal ballot cast
161126 SUP 03/06/2006 15:38:37 27 Override

03/06/2006 15:38:37 10 Terminal close

Figure 3: Likely test votes. This machine also shows votes cast on March 6, the day before the election. When we inspected this
machine, however, its hardware clock was set to the correct date.

property should extend beyond votes to other important
events, such as ballot cancellation.

R2 A machine’s audit data and cast ballots must
survive that machine’s failure. The overall system
must defend against the loss of critical election data due
to malfunction, loss, destruction, or tampering with indi-
vidual machines.

Others have designed single-machine tamper-evident
ballot storage systems [26, 8], but we go a step further
and require that all auditing records kept by voting ma-
chines be tamper-evident. Molnar et al. [26] propose
a number of other desirable properties for vote storage
mechanisms; we discuss these properties in Section 5.3.

We argue that R1 and R2 are sufficient to detect and re-
cover from the procedural errors that we have observed
and that can cast doubt upon even legitimate election re-
sults. In the following section, we will describe our de-
sign for a system which meets these requirements.

3 Auditorium

3.1 How we learned to stop worrying and love the
network

Our solution to the problems of resilient, believable au-
dit records revolves around the idea that we can improve
auditability by connecting voting machines to one an-
other. The general idea of networking the polling place
does not originate with us; some electronic voting sys-
tems (the Hart InterCivic eSlate, for one) already support
the use of a network. However, the elections community
has historically been very suspicious of networks, and
with good reason: any unjustified increase in the poten-
tial attack surface of a voting machine is inexcusable.

A network could make possible two kinds of
previously-infeasible attacks: voting machines could be
attacked from outside the polling place, and a single
compromised voting machine can now attack others from
the inside. If a polling place is networked, it must not be
reachable from the Internet, obviating an outside attack.



Such an “air gap” is already an important part of military
computer security practices and is sensible for electronic
voting.

The “inside attack” is an interesting case. An attacker
needs physical access to only one machine (perhaps the
one on which the attacker is voting) in order to install ma-
licious code, which can then spread via the network. We
observe that the network is not necessary for this kind
of attack. One of the chief features of DRE voting ma-
chines is the speed with which they may be tallied; this
speed comes from some sort of communication between
machines, whether in the form of a network or simply ex-
changed memory cards. The Diebold AccuVote-TS sys-
tem uses flash memory cards for this purpose and Feld-
man et al. [18] found that this card-swapping was an ef-
fective way to spread a “voting machine virus.” Yasinsac
et al. [43] found a similar vulnerability with the ES&S
system. In the end, the lack of a network does not guar-
antee isolation of any faulty or malicious voting machine.
We recognize that a networked voting system is neces-
sarily still more vulnerable; in the following sections we
will show the security properties that justify this addi-
tional risk.

3.2 Secure logging

We now build up our design for an auditable voting sys-
tem from essential building blocks, of which the first is
secure logging. Our requirement R1 would be satisfied
by a voting machine able to produce a tamper-evident
record of ballots cast and other pertinent events. A first
step is a secure log, such as those described by Bellare
and Yee [5] and Schneier and Kelsey [35]. Each event in
a secure log is encrypted with a key that is thrown away
so that, if attackers gain control of a machine, they should
be unable to read log messages written in the past (that
is, before the attack). Encryption keys are generated de-
terministically from one another, starting with an initial
key that is retained by a trusted party. To read the logs,
the sequence of keys can be re-generated, and log entries
decrypted, given the initial key.

The inability of untrusted parties to read previous log
entries, termed perfect forward secrecy, is not necessary
for electronic voting, where the pertinent data is a public
record. Instead, we need forward integrity [5], the prop-
erty that an attacker may not undetectably remove, add
to, or alter auditing records committed before the attack.
This can be achieved with hash chaining. Each event
Ei includes hash(Ei−1), the result of a collision-resistant
cryptographic hash function applied to the contents of
the previous event.

If the contents of Ei−1 are hard to predict (for exam-
ple, a random nonce is included), the time at which Ei

was committed to the log is now backward-constrained:
it must succeed the time of Ei−1. When event Ei+1 in

turn incorporates the hash of event Ei, Ei is now forward-
constrained as well. Thus, each event Ei, containing log
data di, has the form [di, nonce, hash(Ei−1)]. (Naturally,
there must exist a special event E0 from which the first
real event E1 derives; it can be defined as a well-known
arbitrary value, such as a string of zeros of appropriate
length.)

3.3 Entangled timelines

Moving beyond the realm of a node’s own timeline, we
now consider ways to reason about multiple timelines in
a distributed system (such as a polling place). The con-
cept of fixing events from foreign, untrusted timelines in
the reference frame of local events originates in the log-
ical clocks of Lamport [23]. Maniatis and Baker make
this scheme tamper-proof by fusing it with hash-chaining
to form what they call “timeline entanglement” [24]. An
entangled timeline is a secure log which includes, among
the links in its hash chain, events from the secure logs of
other (possibly untrusted) parties. Alice might, for exam-
ple, send an event to Bob, who can now mix that infor-
mation into his next event. Now Bob can prove to Alice
that his event succeeds hers in time.

Much like including a copy of today’s newspaper in a
photograph to fix it in time for any skeptical auditor, en-
tangled timelines allow parties to fix the events of others
in their own timelines. By following links of hash chains
to and from a foreign event in question, a node should be
able to eventually reach events in its own timeline that
provably precede and succeed it.

3.4 Auditorium: n-way entanglement and replica-
tion

With entangled timelines, we are able to satisfy require-
ment R1 without the need of either a trusted auditor hold-
ing a base key or a trusted timestamping service. We
have still not met the burden of R2, however; we can
detect erasure, but not recover the records.

To this brew of concepts we therefore add insight from
peer-to-peer research: in a world where disk and net-
work are cheap and abundant, we have the luxury of
widespread replication. While debate continues as to
whether these criteria hold in the wider Internet, we ar-
gue that it is certainly true for electronic voting: even the
low-end computers used in DREs are mostly wasted on
the task of voting.

We introduce a simplification of the entangled time-
line scheme that is practical for small networks such as a
group of voting machines in a polling place. Rather than
periodically exchanging a fraction of their events along
with hash-chain precedence proofs (as in Maniatis and
Baker), our nodes broadcast every state change that we
will ever want to reason about or recover. This notion
forms the kernel of the Auditorium: Every event is heard
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Figure 4: Flow of time in the Auditorium. Participants A, B, and C experience a shared flow of time (a). Solid arrows denote
direct temporal precedence; for example, X ← Y illustrates an event Y that incorporates hash(X), proving that event X must
precede event Y in time. The abstraction of a shared timeline is achieved by replicating local events to remote nodes (b); dotted
lines represent Auditorium broadcasts.

and recorded by every participant, and each new event
is entangled with the last. The resulting abstraction—a
single shared flow of time—is illustrated in Figure 4.

Every event is cryptographically signed by its origi-
nator to prevent forgery. The use of signatures in con-
junction with entanglement prevents later repudiation of
events, or even repudiation of the time at which those
events occurred. A log entry Ei from node A there-
fore has the form A.sign([di, nonce, hash(Ei−1)]), where
A.sign(X) denotes X signed with A’s public key.

As a part of our simplification, we forego the multiple-
phase protocol used by Maniatis and Baker to exchange
precedence proofs; the result is that the shared time-
line may naturally diverge due to asynchrony. For ex-
ample, Bob and Charlie may both publish events in-
cluding a hash of Alice’s last message. We say that
these two events are contemporaneous; that is, they can-
not be distinguished in time because they directly suc-
ceed the same event. If Alice wants to broadcast an-
other event, she has a choice: should her event in-
clude the hash of Bob’s event or Charlie’s? She must
choose both in order to forward-constrain both events in
time. Therefore, her message should merge the time-
lines by including the hash of any prior event not al-
ready constrained. We thus allow an event Ei to include
the hashes of any number of prior unconstrained events:
Ei = A.sign([di, nonce, [hash(E j), hash(Ek), . . .]]).

3.5 The Auditorium broadcast network

To create the abstraction of a broadcast channel, our im-
plementation uses a fully-connected network of point-to-
point TCP sockets. Every participating node in a network
of size n is connected to every other, resulting in a com-
plete graph (Kn) of connections. Any new message gen-
erated by a participant should be sent on every open con-
nection. To illustrate: if Alice, Bob and Charlie comprise
an Auditorium instance and Alice wishes to announce an
event to the Auditorium, she sends her message to Bob

and Charlie. We further specify that messages should fol-
low a gossip protocol; any node receiving a “new” event
(one whose hash it has never before seen) should forward
it to every other participant. In our example, Bob and
Charlie would each forward the new event to the other;
upon receiving what is now an “old” event, no more for-
warding would take place.

Such a network, quadratic in the number of open con-
nections, is hardly the only way we could have provided
the broadcast abstraction, and is certainly not the most
scalable. For the problem of voting, however, n is quite
small (see Section 4). We chose this mechanism be-
cause it is extremely robust and simple to implement. We
need no complex tree-construction algorithms or main-
tenance operations; every node is simply connected to
every other, and shares new messages with them all.

Because new messages are flooded on every link,
nodes hear about the same message from every other
node in the system. This flurry of seemingly-redundant
traffic has the extremely valuable benefit of provid-
ing robustness to Byzantine faults in timeline entangle-
ment [24]; a node might attempt to reveal divergent time-
lines to different neighbors, but in the Auditorium this
duplicity will be quickly exposed as conflicting mes-
sages are exchanged among their recipients. We discuss
ways to apply more sophisticated overlay networks to
this problem, accepting some fragility in exchange for
scalability, in Section 5.

3.6 Voting in the Auditorium

As we have described it thus far, Auditorium is a general-
purpose auditable group communication system, so we
must now specify a protocol for holding an auditable
election inside the Auditorium. The next several sec-
tions detail the voting protocol; the pertinent messages
are summarized in Figure 6.



3.6.1 Opening the polls and authorizing ballots

Each polling place will receive a number of voting ma-
chines using the Auditorium system (hereafter referred
to as VoteBoxes, after our prototype voting machine soft-
ware), as well as at least one controller machine running
a special election-control application. Figure 5 illustrates
our polling place concept.

The VoteBoxes have identical software configurations;
they differ only in their unique identifiers (assigned by
the manufacturer) and in their cryptographic keys. Each
public key is encapsulated into a certificate signed by a
trusted certificate authority (held, for example, by the ad-
ministrator in charge of elections). The corresponding
private key is used for signing messages in the Audito-
rium protocol. Similar properties hold for controller ma-
chines; spares of each may be kept (in storage or active
and on the network) to be brought into service at any
time.

On election day, the machines are connected to power
and to the network and booted. Nodes self-select IP ad-
dresses and discover one another using untrusted Ether-
net broadcast packets; once discovery is complete, nodes
build a fully-connected network such that every pair of
nodes maintains an open TCP connection. Nodes join-
ing the network later engage in a similar bootstrapping
process. We omit a full discussion of the network boot-
strapping algorithm due to space limitations.

When the election is to begin, the controller announces
a polls-open message. At this point the polling place is
ready to accept votes. Once a voter has signed in with
poll workers, the poll workers in turn use the controller’s
user interface to authorize a particular VoteBox terminal
to present the correct ballot for the voter. This is done
with an authorized-to-cast message, which includes the
ballot definition for that voter’s precinct, a nonce, and
the ID of the particular VoteBox the voter is to use. (Poll
workers will then direct the voter to the correct machine.)
All of these messages are broadcast to and recorded by
every other VoteBox.

3.6.2 Casting and cancelling ballots

The VoteBox uses the ballot definition inside the au-
thorization message to present a voting interface to the
voter. When the voter has finished making selections and
presses the final “cast ballot” button in the UI, the Vote-
Box announces a cast-ballot message, which contains the
original authorization nonce for that ballot as well as an
encrypted cast ballot containing the voter’s selections.
We discuss the nature of the encryption in Section 3.6.3.

Between the authorized-to-cast and cast-ballot mes-
sages we necessarily rely on the correct operation of the
VoteBox software to faithfully capture and record the
voter’s selections. Of course, faulty software might well
tamper with or corrupt the vote before it is broadcast. We

consider this threat in Section 4.4.
We now add another message to the protocol in order

to provide meaningful feedback to the voter that a ballot
has been successfully cast. The controller will acknowl-
edge the receipt of a legitimate encrypted cast ballot by
announcing a received-ballot message including the ap-
propriate authorization nonce. This has several benefits:
it allows the voting machine to display a confirmation
message to the user; it de-authorizes the nonce, ensuring
it cannot be used again to cast a legitimate ballot; and it
tightly constrains the cast ballot in time by entangling the
cast-ballot message with one from the controller’s time-
line.

If the voter flees (that is, decides to leave without cast-
ing a ballot), the appropriate procedure may be for a poll
worker to cancel that outstanding ballot using the con-
troller. The controller will then announce a cancelled-
ballot message, which contains the nonce of the autho-
rization to be revoked. No subsequent cast-ballot mes-
sage corresponding to the authorization (viz., including
its nonce) will be considered legitimate. Likewise, the
controller will never send an authorized-to-cast message
for a machine with an outstanding authorization; the pre-
vious ballot must first be either cast or cancelled before
a new one can be authorized.

3.6.3 Ballot storage and encryption

Cast ballots are part of the Auditorium event timeline,
and so their order can by definition be reconstructed.
This clearly poses a tradeoff with the anonymity of the
voter; in general, perfect anonymity tends to stand in
the way of auditing. Our system mitigates this partic-
ular threat to anonymity by sealing the contents of cast
ballots. In our current design, we employ conventional
public-key encryption to control access to the plaintext
of each ballot. No attacker in possession of the Audi-
torium logs—perhaps a network eavesdropper, or a ma-
licious party in possession of a VoteBox after election
day—can recover any votes, even though all votes are
dutifully logged by every VoteBox in the polling place.

Some jurisdictions require each polling place to pro-
duce its own legible election results once the polls close,
forcing us to allow decryption in the polling place. By
encrypting ballots with a public key held by the con-
troller machine, we can enable the controller to decrypt
the ballots found in its own log and print the current
tally. Alternatively, rather than trusting the controller,
each VoteBox could keep counters and announce them
on demand; these running tallies could always be ver-
ified against the Auditorium logs after the election is
over. (Furthermore, if requests for these totals were inap-
propriately made while the election was ongoing, every
VoteBox would record that fact in its logs.)

Precincts may also be required to produce a full paper
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Figure 5: Configuration of machines in a polling
place. A number of VoteBoxes are connected to one an-
other and to a controller machine by the Auditorium broad-
cast network. A redundant controller is also on the network
in case of failure; similarly, VoteBoxes may be swapped out
at any time.

record of each cast ballot. In this case we must of course
be careful not to print those ballots themselves in the or-
der they were found in the log, lest we compromise the
anonymity of the votes. A straightforward way to deter-
ministically erase the order of the ballots is to sort them
lexicographically [6], although this still requires trust in
the controller to perform the sort. Sophisticated crypto-
graphic techniques may be able to shuffle the votes or
produce partial vote totals without fully trusting any one
machine. We discuss these issues further in Section 5.3.

By contrast, Molnar et al. [26] use a dedicated write-
only hardware device to store plaintext ballots in such
a way that their order is destroyed (thus preserving
anonymity) and that tampering with the finalized vote
record is evident. Such a system might be combined
with our design, for example, as an attachment to the
controller or to the VoteBoxes themselves. Similarly,
history-hiding append-only signatures—as proposed re-
cently by Bethencourt et al. [8]—are software-only cryp-
tographic functions that accomplish the same task. If
each VoteBox announces the contents of these vote stores
at the end of the day, voter anonymity will still be prop-
erly preserved.

Unfortunately, the history-hiding properties of these
ballot storage techniques are problematic for auditing
purposes. Ballots that should not be counted (e.g., be-
cause they were cast on the wrong day) are scrubbed
of their context and become indistinguishable from le-
gitimate votes. With our secure timeline-based design
we therefore choose to preserve voting history, allowing
election officials to reconstruct the exact voting order if
necessary for an audit. (Different jurisdictions have dif-
ferent voter anonymity requirements. Certainly, thresh-
old cryptographic schemes could be used to require the
cooperation of multiple, independent parties before the
plaintext votes are revealed in order.)

If the veracity of any Auditorium record (machine
events or votes) comes into question, auditors can exam-
ine the Auditorium logs on the controller and the Vote-
Boxes involved. Of course, every message is signed
by its sender before being broadcast. This signature is
logged, along with the rest of the received message. In
Section 5.3 we discuss other relevant cryptographic is-
sues and techniques.

3.6.4 Heartbeats; closing the polls

It’s possible that a quiescent polling place will go a long
time (minutes or even hours) between legitimate elec-
tion events. This will result in a loss of temporal res-
olution when later examining the audit logs; to address
this, the controller will send periodic heartbeat messages
to help fix surrounding events in wall-clock time. Vote-
Boxes also send heartbeat messages that include addi-
tional state, such as the battery level and the protected
count. If a VoteBox observes that one of its open TCP
connections has been reset, it announces a disappeared
message to document the loss of connectivity to the peer
at the other end of the socket. All of these messages aid
auditors who might be trying to reconstruct the state of
the polling place at any given time during the day.

When it is time to close the polls, the poll worker in-
structs the controller to wait until there are no further out-
standing ballots before broadcasting a polls-closed mes-
sage. This establishes an end to legitimate voting, and
places each VoteBox in its post-election shutdown mode.

3.7 VoteBox: a platform for electronic voting re-
search

We are currently in the process of developing VoteBox, a
from-scratch Java implementation of an electronic vot-
ing system. In addition to allowing us to experiment
with novel security infrastructures like the Auditorium,
the VoteBox lets us explore other aspects of the voting
machine design space.

For example, VoteBox takes advantage of the pre-
rendered user interface technique pioneered by Yee et
al. [44] as a way to dramatically reduce the amount of
trusted code in a voting machine. We take this notion
a step further, distributing pre-rendered ballot definition
files to voting machines on demand using Auditorium
messages (see Section 3.6.1).

Because the ballot definition is supplied with each vote
authorization, we are free to release the resources associ-
ated with it once the voter has cast a ballot. This naturally
provides a valuable security property identified by Sastry
et al. [33], namely that no state may leak from one voter’s
session to the next. In fact, in the VoteBox we release all
references to the user interface module between voters;
the Java virtual machine prevents future execution from
ever again reading the contents of that memory.



(join votebox-id public-key-certificate ...) Sent by any node as part of the bootstrapping process.
(polls-open) Sent by the controller to start an election.
(heartbeat timestamp status) Sent periodically by all nodes to fix events in time.
(disappeared node-id) Sent by a node to announce loss of a direct peer link.
(authorized-to-cast

votebox-id nonce ballot-definition)
Sent by the controller to authorize one voting machine to
cast one specific ballot.

(cancelled-ballot votebox-id nonce) Sent by the controller to retract an authorization.
(cast-ballot nonce encrypted-choices) Sent by a VoteBox to cast a completed ballot.
(received-ballot nonce) Sent by the controller to acknowledge a cast ballot (ending

the authorization).
(polls-closed) Sent by the controller to end an election.

Figure 6: Auditorium messages for electronic voting. Messages are listed in rough order of their likely occurrence in a real
election.

Finally, the VoteBox system is intended to support hu-
man factors research and experimentation. Studies have
been conducted into the usability of currently-deployed
voting systems, both electronic [4, 16] and conven-
tional [17, 20], but in order to improve upon these de-
signs, researchers need a platform upon which to pro-
totype new interface ideas and test their effects. Be-
cause of the VoteBox’s generalized pre-rendered inter-
face architecture, interface designers can alter the visual
appearance of the voting system without touching the
code. For more sophisticated modifications, including
non-visual interface experimentation, VoteBox provides
a well-documented, modular Java implementation. In
separate branches of the software we have added clearly-
identified blocks of code for recording the precise timing
and nature of the user’s actions, as well as other data cru-
cial to usability research.

4 Discussion
A full evaluation of our system is necessarily dependent
upon a human factors study of efficiency and accuracy
for poll workers and voters. We focus here on evaluating
the scalability and security properties of a voting system
built on Auditorium.

4.1 Performance

Our chief concern is security, but we must first engage in
some back-of-the-envelope calculations to affirm that our
system is well matched to the computational resources of
a polling place. For our calculations we will assume that
an individual machine casts at most one ballot every 3
minutes.

We further assume a polling place with 10 voting ma-
chines, which is the highest concentration of electronic
machines per polling place in the United States found in
a 2004 survey [10]. There is a trend in the United States
toward “voting centers” in which many small polling
places are consolidated into one large facility serving
multiple precincts [39]. These centers may require hun-

dreds of voting machines, which for scaling purposes can
easily be segmented into a number of smaller disjoint
Auditorium networks. Even if a polling place has only
a single voting machine, perhaps due to a small precinct
or perhaps because the DRE is present only for voters
unable to use paper ballots, Auditorium still provides en-
tanglement between events from the controller and the
DRE. Likewise, a precinct-based optical ballot scanner
could participate in the Auditorium protocol alongside a
controller and a DRE.

4.1.1 Network load

The most burdensome part of our design is the all-to-
all connectivity graph. Each message a node wishes to
broadcast in the Auditorium results in roughly n2 mes-
sages on the network. More exactly, the originating node
sends the message to n− 1 neighbors, each of which will
forward the same message to their other neighbors, re-
sulting in n − 2 more messages for each. Each of these
messages should be old news to its recipient by this point,
and so the flood stops here. The total number of mes-
sages sent is therefore n + (n − 1)(n − 2); we round up to
n2 (100) for our hypothetical polling place.

Assuming ballots are cast every 3 minutes on each of
10 machines, we have 200 ballots per hour, or 600 mes-
sages per hour (since each cast ballot is the result of an
authorized-to-cast, cast-ballot, received-ballot message
exchange). Since each Auditorium broadcast results in
roughly 100 actual message transmissions, we now have
60,000 messages per hour, or about 17 messages per sec-
ond. Add to this the periodic heartbeat messages, which
(if issued every 5 minutes by each node) bring our total
to 20 messages/sec.

Most messages should be on the order of 1 KB, so
this corresponds to a maximum cross-sectional network
bandwidth requirement of roughly 164 kbps, which a 10-
baseT Ethernet hub can handle with plenty of headroom
for other incidental messages (node join, polls closing,
etc.) in the Auditorium.



Not every message fits in one or two packets, how-
ever; the authorized-to-cast message, in particular, con-
tains a complete ballot definition, which in our proto-
types (including all pre-rendered UI elements) is roughly
a megabyte in size. This traffic now dominates our band-
width calculations; 200 ballots per hour result in up to
20,000 cast-ballot messages per hour, or about 6 per sec-
ond, which is about 50 megabits and requires a faster
network.

If further experimentation shows that bandwidth is a
problem, we offer the following optimization. Because
the largest part of a ballot definition is its collection
of pre-rendered images, these can be distributed to ma-
chines ahead of time. An authorized-to-cast message
would then include only the logical ballot definition it-
self, which in turn references these images. We can cer-
tify image files by including the cryptographic hash of
each image in the ballot definition (or in the image’s file-
name itself, making images self-certifying). In this way
we can be sure that even though a ballot definition does
not carry its own images, the correct image will be dis-
played.

4.1.2 Processor load

The VoteBox is designed to run atop general-purpose
computer hardware, so the computational effort needed
to participate in Auditorium must be within the bounds
of such a system.

We used OpenSSL’s built-in speed microbenchmark
tool on an unloaded 300 MHz Pentium II with 256 MB
RAM (OpenSSL 0.9.7e compiled with -march=i686,
Linux kernel 2.6.8). This is not a fast computer by mod-
ern standards; we use it as a model of the kind of horse-
power we believe can be inexpensively provided using
low-end, commodity CPUs.

Our test machine can perform 796 1024-bit RSA ver-
ifications and 42 signatures per second; it encrypts 5
MB of data per second with AES-256. SHA-1 can di-
gest 20 MB of data per second. Based on the demands
of our deployment scenario, our target hardware is more
than sufficient; a deployment of Auditorium requiring
substantially greater cryptographic performance could be
achieved straightforwardly by provisioning hardware ad-
equate to the task.

4.1.3 Storage

Storage is the least expensive and most plentiful resource
in a VoteBox; assuming our worst-case hypothesis from
Section 4.1.1, a machine might receive 5 messages per
second, of which a third contain large ballot files, but
because most of these are duplicates (thanks to flood-
ing), we need store very few. We rely on our original
estimate of 200 ballots per hour, or 2400 per day (as-
suming the polling place is open for 12 hours), which

means 4800 small messages (cast-ballot and received-
ballot; heartbeats are on this order of magnitude as well)
and another 2400 large messages (authorized-to-cast).
The large messages dwarf the smaller ones, so we have
roughly 2400 MB of data to store, supportable even with
solid-state flash memory. With a hard drive we have
the luxury of preserving this data forever; a VoteBox
with a hard drive needs no “clear” function, making it
still harder to accidentally destroy election records. A
caching strategy for ballot definitions, as described in
Section 4.1.1, would reduce even this requirement con-
siderably; storing only small messages now, we need on
the order of a few megabytes, allowing even flash mem-
ory to operate without needing a “clear” function.

4.2 Robustness to failure and attack

The Auditorium design was prompted by irregularities
and ambiguities that we discovered in a real election, as
described in Section 2. We now consider the possible
causes, both benign and malicious, of those problems
and show how the Auditorium allows us to detect, record,
and recover from them.

A1 Early machine exit. Scenario: A VoteBox sud-
denly departs the Auditorium network. The machine
may be inoperable and any storage lost. Response:
All ballots cast from the failed machine are replicated
on other VoteBoxes and on the controller; they can be
counted as part of the final tally. Note also that be-
cause VoteBoxes are interchangeable, a machine may be
brought in from storage or from another precinct to re-
place the failed machine.

A2 Late machine entry. Scenario: A VoteBox enters
the Auditorium after the election has started; it claims
to have recorded no votes. (See Figure 1 for a real-life
example.) Possible causes: (1) A machine was brought
on-line during the day to assist additional voters or to re-
place a failed machine. (2) A machine was erased, pos-
sibly by accident, destroying legitimate votes cast earlier
in the day. Response: We can look at the logs of other
VoteBoxes and of the controller to see if the machine in
question cast any votes earlier in the day. Any such votes
can be safely counted in the final tally, and the cause
of the machine’s erasure investigated after the election.
Any new votes cast by the machine after joining will be
recorded as normal.

A3 Machine re-entry. Scenario: A VoteBox leaves
the network and re-enters it some time later. Possible
causes: Machine crash; temporary isolated power or net-
work interruption. Response: The response is identical
to that for early machine exit and late machine entry. The
logs held by the controller and other VoteBoxes regard-
ing the previous activity of the re-entered machine are



tamper-evident. The log on the machine in question may
have missed messages during its downtime and thus may
have a gap, but it will quickly re-join the global entan-
glement and continue to participate in voting.

A4 Extraneous cast ballots. Scenario: A VoteBox
appears to have votes cast on the wrong day. Possible
causes: (1) Clock set wrong. (2) Test votes acciden-
tally considered as possible real votes. (3) Intentional,
malicious attempt to subvert the correct tally by stuffing
the ballot box with illegitimate votes before or after the
election. Response: For (1), if the votes are valid, their
local (erroneous) timestamps are irrelevant; they will be
provable successors to the polls-open event and prede-
cessors of the polls-closed event. The situations (2) and
(3), based on our definition of legitimate votes, will be
detected when the logs are analyzed. A vote cast outside
of the temporal bounds of the election (e.g. a test vote or
a stuffed ballot) will have no provable link to the entan-
gled timeline, nor will it succeed a valid authorized-to-
cast message, so it will be considered illegal.

A5 Electrical failure. Scenario: Electricity fails at
the polling place. Response: This is a known problem
with electronic voting machines of any sort. Most mod-
ern DREs have battery backups; there is no reason the
controller and network switch can not also be backed up
in this way (perhaps as simply as plugging them into a
UPS). Battery status is part of the heartbeat message,
so the controller can display the status of each VoteBox.

4.3 Mega attacks

We now investigate a class of possible (if implausi-
ble) threats to election integrity we term “mega attacks.”
These require either widespread collusion or overwhelm-
ing force in order to execute, but the risk—attackers able
to exert total control over the outcome of an election—is
just as extreme. Most voting systems, electronic or oth-
erwise, are vulnerable to such attacks; our goal for voting
in the Auditorium is to be able to recover from these at-
tacks where possible, and to detect them in any case.

M1 Switched results. Scenario: The night before the
election, parties in control of all election hardware use
the hardware to conduct a secret election with a chosen
outcome. On election day, voters cast ballots as normal,
but the attackers substitute the results of the secret elec-
tion (including cast ballots and entangled logs) when the
polls are closed. Response: This attack is equally effec-
tive against paper ballots, and should be addressed with
human procedures. For example, no single party should
be allowed unsupervised custody of the machines to be
used on election day. Alternatively, distribution of con-
trollers should be delayed until election morning.

We can also use the properties of the Auditorium to

detect this attack. On the morning of the election, the
election administrator can distribute to each polling place
a nonce to be input into each controller. This nonce, hard
to guess but easy to input, might take the form of a few
English words. The controller would require the user
to input the nonce before opening the polls; the nonce
would then be embedded in the polls-open message. Any
audit can examine the polls-open message to see if the
nonce is correct (modulo minor keying errors by the poll
workers). A sleeopver conspiracy would be unable to
guess the correct nonce to inject into their polls-open
message, and thus the Auditorium record of their secret
election will be detectably invalid.

A similar defense will thwart attackers who run a se-
cret election and switch the results after election day.
We do this by immediately publishing the hash value of
the polls-closed message. Copies may go to election ob-
servers, newspapers, and so forth. This effectively seals
the results of the legitimate election, making it impossi-
ble to substitute new results later.

M2 Shadow election. Scenario: Similar to the
switched-results attack, a conspiracy of election workers
substitutes false election results for the real ones. Instead
of conducting the election the night before, they conduct
the secret election on election day as a “shadow” of the
real one, so they have access to any nonces used to vali-
date the date of the election. Response: In order to con-
duct a shadow election, the attackers will need to dupli-
cate the entire voting apparatus, down to the private keys
used by each VoteBox to sign messages. (Creating new
keypairs won’t work; the correct keys are enclosed in cer-
tificates signed by election officials.) To make this dupli-
cation difficult, we must investigate hardware-based pro-
tection schemes, such as trusted platform module (TPM)
chips which resist extraction of key material. We discuss
TPM further in Section 5.2.

M3 Booth capture. Scenario: Armed attackers take
control of the polling place by force and stuff ballots un-
til the police arrive. Response: Western readers may find
this attack implausible, but such events are not uncom-
mon in fledgling democracies and have occurred in India
as recently as 2004 [31]. Attackers have two potential
goals: (1) cast fraudulent ballots; (2) destroy legitimate
ballots. We can mitigate the danger of (1) by estimating
when the attack took place (perhaps we allow poll work-
ers to broadcast an “election compromised” Auditorium
message, rather like an alarm button at a bank) and dis-
carding votes cast after that point.

In the case of (2), we can recover votes from any ma-
chine not destroyed, but we cannot recover from com-
plete destruction of the polling place. The only defense
would be a network link to an offsite location (over which
Auditorium messages would be broadcast, just as within



the polling place). By removing the air-gap between the
precinct network and the “outside world,” we greatly in-
crease the attack surface of the polling place, thereby in-
troducing unacceptable risk.

In either case, this attack is trivially detectable, if not
always recoverable.

4.4 Software tampering

Finally we consider software tampering, a critical issue
with any form of electronic voting. Though this work fo-
cuses on issues of auditability arising when correct vot-
ing systems fail or are used incorrectly, we must consider
how to deal with the introduction of malicious code into
the overall system.

Our design for Auditorium makes it very hard for a
malicious node to corrupt the entangled record. Hash
chaining prevents insertion of spurious events; digital
signatures prevent forgery. Digital signatures also allow
VoteBoxes to unambiguously identify the source of each
message, so a node wishing to deny service by, for exam-
ple, filling up the disks of its peers with junk messages
can be effectively ignored by other nodes. As shown in
Section 3.5, the gossip protocol of the Auditorium makes
it impossible for a malicious node to maintain multiple
divergent timelines without being detected. Any of the
above events or other unusual activity, if found in the au-
dit logs, will necessitate impounding and further investi-
gation of the equipment used in the election.

Malicious software on a single VoteBox would not
be able to cast unattended votes without a corrupt con-
troller, as only the controller can generate the necessary
authorized-to-cast message. Of course, the Vote-
Box could show the voter his or her correct selection
while quietly casting a vote for somebody else. Ad-
dressing this concern requires mechanisms beyond the
Auditorium, such as a trusted platform module (TPM,
described in Section 5.2), voter-verified paper ballots
(VVPB), or end-to-end cryptographic verification tech-
niques (see Section 5.3). All of these techniques are com-
plementary to Auditorium, and can easily integrate with
our system.

5 Future work
5.1 Human factors research

As we have found in practice, anomalous election events
can be caused by a failure to follow proper procedures.
If incorrect operation is impossible but correct operation
is also challenging, our system is still a failure, so we
must also investigate the usability of VoteBoxes and con-
trollers.

From the poll worker’s perspective there is even more
to study: we must design and evaluate the interface of
the controller. We intend to enumerate the tasks a poll
worker must perform, and then test human subjects for

efficiency and accuracy at completing those tasks. We
anticipate Auditorium will improve poll worker compli-
ance with procedures due to the console’s global view on
voting machine state and ability to assist in polling place
supervision.

5.2 Trusted computing

The use of trusted-computing technologies like the
Trusted Platform Module (TPM) offers us an opportunity
to reason at runtime about the configuration of the ma-
chine. We can use it to securely boot the system into a
known, trusted configuration [2] or to deny crucial ser-
vices and data (such as cryptographic keys) to a corrupt
or uncertified system [25, 9]. By requiring a signed,
fully-certified software stack in order to boot a VoteBox,
election officials can prevent uncertified software from
being used on election day (a problem that arose in Cali-
fornia in 2003 [46]).

A TPM also allows us to protect sensitive data from
tampering, even by our VoteBox software. We can use
the TPM as a secure co-processor, signing Auditorium
entries without divulging key material. Secure registers
in the TPM might be used to hold data such as the Vote-
Box machine ID, or the machine’s protected count; the
TPM 1.2 standard specifies a monotonic counter [40] that
may suffice.

A fundamental feature of a TPM is its ability to gen-
erate attestations (i.e., cryptographically signed state-
ments) as to the present state of the computer system.
These attestations can be broadcast, perhaps as part of
the heartbeat messages, allowing Auditorium hosts to
log each others’ known software state. We could also
leverage purely software attestation systems, such as Pi-
oneer [37, 36], where machines will challenge one an-
other to perform computations based on their state and
will carefully time the results. If a VoteBox fails to prop-
erly attest to its state, then its votes may well be corrupt.
While election officials would need to decide what to do
with those records, the controller could detect this situa-
tion on election day and subsequently refuse to authorize
any new votes on the suspect machine.

5.3 Cryptography

While our system makes use of well-understood crypto-
graphic operations such as one-way hash functions and
public-key signatures and encryption, we believe that
more exotic cryptography may be added to our system
to provide additional properties. For example, threshold
encryption [38] can be employed to further protect sealed
cast ballots. In such a scenario, at least one share of
the decryption key should be held by a party outside the
polling place, to limit a local attacker’s ability to com-
promise the anonymity of the vote.

The Auditorium is also a strong complement to other



cryptographic voting techniques. It is useful in any de-
sign that demands a ballot broadcast channel or “bul-
letin board.” Additionally, it is compatible with voting
systems that improve voter verifiability, including voter-
visible cryptographic ballot systems such as those pro-
posed by Chaum [13, 14] and Rivest [30]. Our system
could also leverage techniques, such as Adida and Wik-
ström [1], using homomorphic encryption [15, 7, 3] and
verifiable mixes [12, 32, 27] to securely derive sorted
or shuffled plaintext ballots from our ordered ciphertext
ballots. This mixing process could be performed after
the election was over, by “trustees” of the election, or
it could be performed by the VoteBoxes in the polling
place, depending on when and where it was deemed nec-
essary to have access to plaintext ballots.

A related but more fundamental problem is the use of
non-determinism in cryptography. If the same plaintext
always yields the same ciphertext, that would damage the
ability of the cryptography to hide a voter’s intent. On
the other hand, if a random number is used to initialize
the crypto system, as is standard practice, this random
number could then serve as a subliminal channel, allow-
ing a malicious machine to reveal something about the
voter’s intent. A suitable solution is to embed the cryp-
tosystem in trusted hardware, where software tampering
cannot affect it. Many TPM chips offer the appropriate
functionality.

5.4 Auditorium applications

Voting is the first application of the Auditorium infras-
tructure. We intend to investigate other domains in which
small groups of nodes need to share a global, trustwor-
thy perspective on fine-grained system state changes or
other ordered events. For example, collaboration soft-
ware could take advantage of Auditorium to mediate si-
multaneous changes by different users. We have proto-
typed a collaborative word processor called Editorium
that uses a timeline of editing operations to allow authors
to work together on a single document.

More generally, any application which can leverage
a secure shared channel for distributing temporally-
sensitive information can potentially leverage Audito-
rium. For example, the CATS accountable network stor-
age system [45] requires such a publishing medium for
disseminating state commitments of participants; the au-
thors suggest a possible implementation based on gossip
and secure broadcast, which is a perfect match for Audi-
torium.

6 Conclusion
We stress that our work is a complement to other ongoing
voting security research. With the Auditorium we do not
attempt to solve the problem of untrusted software, al-
though trusted computing technologies, voter-verifiable

paper ballots, and good software design practices can all
be combined with Auditorium to address it. Nor do we
address the problem of justifying to voters that their bal-
lots are counted as cast.

Instead, we have focused on a problem that is not
merely theoretical: that of auditing the procedures fol-
lowed and events encountered in a polling place on elec-
tion day. Secure logs allow us to reason about the time
at which events occurred. Entanglement allows us to ex-
tend this reasoning to the entire polling place, and help us
to fix the events of any one voting machine in the time-
frame of another (for example, the election controller).
Broadcast and replication offer us the opportunity to cap-
ture auditing data in many places, providing many redun-
dant accounts of the course of the election. With these
techniques, we can be sure that auditing data heard in the
Auditorium is able to survive a number of quite common
polling place failures (as well as a number of uncom-
mon ones). Perhaps most importantly, our design can be
added to electronic voting systems in use today, includ-
ing those used in the election whose auditing anomalies
inspired our work.
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