
 

 

Modeling Emergent Border-Crossing Behaviors during Pandemics 
 
Eunice E. Santosa, Eugene Santos Jr.b, John Koraha, Jeremy E. Thompsonb, Qi Gub, Keum Joo Kimb, 

Deqing Lib, Jacob Russellb, Suresh Subramanianc, Yuxi Zhangb and Yan Zhaob 
aInstitute of Defense & Security, University of Texas at El Paso; bThayer School of Engineering, 

Dartmouth College; cDepartment of Computer Science, University of Texas at El Paso  

ABSTRACT  

Modeling real-world scenarios is a challenge for traditional social science researchers, as it is often hard to capture the 
intricacies and dynamisms of real-world situations without making simplistic assumptions. This imposes severe 
limitations on the capabilities of such models and frameworks. Complex population dynamics during natural disasters 
such as pandemics is an area where computational social science can provide useful insights and explanations. In this 
paper, we employ a novel intent-driven modeling paradigm for such real-world scenarios by causally mapping beliefs, 
goals, and actions of individuals and groups to overall behavior using a probabilistic representation called Bayesian 
Knowledge Bases (BKBs).  To validate our framework we examine emergent behavior occurring near a national border 
during pandemics, specifically the 2009 H1N1 pandemic in Mexico. The novelty of the work in this paper lies in 
representing the dynamism at multiple scales by including both coarse-grained (events at the national level) and fine-
grained (events at two separate border locations) information. This is especially useful for analysts in disaster 
management and first responder organizations who need to be able to understand both macro-level behavior and changes 
in the immediate vicinity, to help with planning, prevention, and mitigation. We demonstrate the capabilities of our 
framework in uncovering previously hidden connections and explanations by comparing independent models of the 
border locations with their fused model to identify emergent behaviors not found in either independent location models 
nor in a simple linear combination of those models.    
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1. INTRODUCTION  
Complex system theory has introduced a paradigm shift in the modeling and analysis of various natural and social 
systems. This shift from the prevalent reductionist thought has helped in the development of models with better fidelity. 
According to Magee1, a complex system may be defined as: “a system with numerous components and interconnections, 
interactions or interdependence that are difficult to describe, understand, predict, manage, design, and/or change.” Miller 
and Page make a useful distinction between merely complicated systems and complex systems2, p. 9. Complicated systems 
can have numerous moving parts, traits and characteristics, all of which complicate analysis, but they have one trait that 
is invaluable to aiding their study: they are reducible. Complicated systems can be taken apart and examined component 
by component, and then reassembled to understand the whole. Complex systems resist this reductionist approach, and the 
components within, when considered separately, do not sum to the overall functionality observed with the whole.  Their 
overall characteristic, function, or behavior may be considered as a form of emergence—as Miller and Page put it, 
emergence exists when “individual, localized behavior aggregates into global behavior that is, in some sense, 
disconnected from its origins.”2, p. 44 Emergence especially complicates modeling efforts, as it is a challenge to 
understand and represent the cause and effect relationships involved. 

However, it is clear that incorporating the notion of emergence is critical to modeling complex systems, particularly for 
complex social systems3, p. 5. Natural disaster management is a specific domain where emergence is often observed and 
not well understood. Consider a spontaneous chain of individuals working together to fight natural disasters, such as the 
residents of Des Moines in Iowa stacking thousands of sandbags to deter flooding in 19934 or the famous bucket 
brigades formed to fight fires. Sometimes these are efforts directed by a strong leader, but other times they are emergent 
behaviors that surface mysteriously out of need. The challenge is to model the social system with relevant structure and 
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properties so that appropriate emergent behaviors will take form at the appropriate time. Adding to the difficulty in 
modeling emergence is the additional challenge that emergent properties are easier to identify or detect than to explicitly 
model. Because of the non-reductionist nature of complex systems, modeling only macro-level system characteristics 
does not accurately represent emergence. On the other hand, frameworks that focus on micro-level characteristics often 
make simplistic assumptions and consequently do not lead to the emergence of interest. To effectively model complex 
social systems and dynamics, emergence must be a factor. When we couple the elusive nature of emergent properties 
with the difficulties involved with modeling complex social scenarios, we begin to comprehend the research challenges 
of this problem domain.  Social systems are particularly challenging to model because even simple social scenarios 
involving multiple actors and events usually contain a very large collection of information, some relevant to successfully 
modeling the situation, and some not. Moreover, the relevant background and contextual specifications of the actors is 
usually incomplete. Social scenarios will also involve uncertain information, which increases the difficulty of modeling. 
Clearly, any model attempting to analyze real world social situations must be able to handle the accompanying uncertain 
and incomplete information found in such scenarios. 

In our efforts to incorporate emergence in computational social science models and apply them to the disaster 
management domain, we have employed an intent model which represents actors’ intentions by modeling their beliefs, 
goals, and actions using the probabilistic representation and reasoning capabilities of Bayesian knowledge bases (BKBs). 
By modeling actor intentions, we are able to build a comprehensive model of an actor’s likely course of action based on 
interactions with other actors and unfolding events. Actors within our model can be single individuals, groups of people, 
or governmental, corporate, or other non-governmental organizations. BKBs are particularly effective for modeling actor 
intentions because they can handle uncertainty and incompleteness5. Knowledge of scenario intricacies is usually 
incomplete and uncertain, even for thoroughly explored historical situations, not to mention currently unfolding events. 
In this paper, we employ the intent model to analyze the emergent migratory behaviors of populations in a disaster 
management scenario. In particular, we model the intentions of the Mexican populace to analyze the motivations and 
factors affecting their decisions during the H1N1 pandemic of 2009. This is built on our previous work on the 2009 
H1N1 pandemic6. The Mexican, U.S. and other governments, international organizations, and local governmental and 
private groups can all affect the actions and reactions of populations confronted with a pandemic. Compounding the 
chaotic dynamics of a pandemic is the existence of a national border, with the possibility of a safe haven just on the other 
side. All of these factors contribute to an exceedingly complex situation, with the population trying to make decisions 
that would keep themselves and their families safe, and numerous other international, national, and private groups trying 
to anticipate those actions in order to best prepare for contingencies. As we modeled this scenario, we also recognized 
that, due to the non-linear interactions of actors within this complex social system, there could very well be behaviors 
that modelers and analysts might not anticipate, which motivates the need for detecting emergent behavior. Upon further 
investigation, we found that behaviors we had not anticipated in our model were actually evident due to the new 
inferences created during BKB fusion. Owing to the dynamic nature of BKB fusion and the representational and 
modeling capabilities of the intent models, our modeling framework provides a suitable platform for emergent behaviors 
that can be substantially beneficial to scenario analysis, yet elusive to traditional modeling. 

In the next section, we briefly review the evolution of emergence as a concept for study, and then explain the use of 
BKBs and related algorithms for successfully employing them in our intent model in the following section. In Section 4, 
we describe our approach to identifying the occurrence of emergence within our model, and then explain our 
experimental setup and results in Section 5. Conclusions follow in Section 6. 

2. EMERGENCE BACKGROUND 
In order to establish the groundwork for later discussions, we shall first provide some background information on 
emergence and the current state of the art in modeling emergence. The core concept at the heart of emergent behavior 
was identified as early as 350 B.C. by Aristotle when he noted “…the totality is not, as it were, a mere heap, but the 
whole is something beside the parts…”7. In essence, Aristotle was noting that complex systems, in particular life forms, 
amount to more than what all the individual pieces produce separately. With the study of complex systems beginning in 
the 1960s8–11, the foundation was laid for the importance of emergence as a concept.  Emergence has been addressed in a 
number of widely different scientific fields. Hexmoor, et al. 12 proposed an architecture intelligent agent, and presented 
the principles used for building GLAIR (Grounded Layered Architecture with Integrated Reasoning). The authors 
distinguished three levels of behavior control and generation, namely Knowledge Level, Perceptuo-Motor Level, and 
Sensori-Actuator Level. They then investigated computational and representational power regarding response time and 
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control complexity. In the model, a computer agent chooses physical actions that are preprogrammed for the robot. In 
addition, the agent was instructed to perform higher-level tasks and, in the midst of accomplishing those tasks, expected 
to have behaviors emerge. An example of an emergent behavior in the study is "moving toward an object" that is learned 
and consequently used in the agent's repertoire of actions. While we can certainly see the emergent component to this 
research, it is focused purely on individual behaviors and not on social behavior. In contrast, Mataric13 characterizes 
emergent behavior as not explicitly programmed in, but resulting from local interactions among components. In 
particular, the study focused on how a specific type of emergent collective behavior can be driven by simple local 
interactions. She describes a synthetic approach to designing and testing a variety of social interactions and cultural 
scenarios, and validates it through an autonomous robot simulation. Basic interactions addressed in the paper were: 
collision avoidance; following; dispersion; aggregation; homing; and flocking. Mataric manages to address emergence in 
a fundamentally social setting; the emergence is centered around instinctive, natural behaviors of less-than-human social 
creatures. The bigger challenge is to capture emergent behavior in complex human societies. These efforts go a long 
ways towards advancing insight into emergence as a concept, but leave much to be explored regarding human social 
emergence. 

Emergence has become a critical component to the analysis of complex systems in numerous areas of scientific study. 
Bar-yam14 defines emergent properties as system properties that do not reside in any subsystem, but rather in the whole 
system. Meaningful definitions of strong emergent properties and multi-scale formalism were presented. Strong 
emergence follows an ensemble perspective, in which physical systems are only meaningful as ensembles rather than 
individual states. For example, a string of bits including a parity bit was mentioned since it has a property that would be 
found in observations of the state of the system as a whole. In addition, regarding emergence of collective behaviors, a 
collective constraint can be caused when the environment interacts with the system. The mathematical characterization 
presented in the paper captures the multi-scale variety of subsystems. Strong emergent properties result in oscillations of 
multi-scale variety with negative values. Social systems, including various allocation, optimization, and functional 
requirements on the behavior of a system, can be examples of collective constraints. Bar-yam greatly furthered 
understanding of emergent properties within complex systems, establishing a useful foundation for further discovery and 
application to a wide-range of complex systems, including the social systems of interest here. 

Finally, emergence has become an interest in the study of disaster management. Provitolo and Dubos-paillard4 propose a 
typology of behaviors observed during catastrophes, and identify the common properties for those behaviors. They 
framed emergent behaviors with respect to a time continuum defined by pre-catastrophe, catastrophe and post-
catastrophe phases. They also proposed how emergent behaviors can either be transformed to another type of emergent 
behavior, transformed to a non-emergent behavior, or simply vanish. The behaviors in catastrophic situations, which 
were represented as a function of the cognitive factors and of the adaptive capacity of individuals, were identified as 
emerged. They also categorized emergent human behaviors into four different classes depending on their social feedback 
and influence for integrating interdisciplinary approaches of scientific communities. The authors’ efforts in this area 
apply directly to social emergence, and establish a framework for defining categories of emergent behavior specific to 
disaster situations. The authors do not, however, attempt to model those situations, nor predict what behaviors might 
emerge. The work by Casper, et al.15 focuses on identifying circumstances where emergent behavior is desired for 
managing disasters, and how organizational leadership contributes to enhance disaster response and recovery operations. 
Eight different incidents were analyzed for identifying leadership themes. Five themes impacting self-organizing 
behavior were identified. By developing the capacity for self-organization, and promoting an organizational culture, 
emergency management officials can lead responses to complex incidents more effectively. While this is certainly an 
interesting study in the individual behaviors of leaders during crisis, it provides little insight into the complex behaviors 
of the multitudes of actors in a disaster scenario. 

Intent modeling, on the other hand, offers the ability to address complex social systems. The most difficult aspects of 
complex social systems center on uncertainty, incompleteness, and emergence. It has been previously demonstrated that 
BKBs and intent modeling provide unique competencies for handling uncertainty and incompleteness in various 
scenarios16–21. The most exciting breakthrough of recent import concerns the ability of BKB fusion to yield unexpected 
and unplanned behaviors through the interaction of disparate influences within a scenario. Moreover, the intent modeling 
framework provides the capability to represent various social, political and economic (which are considered to part of 
culture in our methodology) factors that are relevant to the actors and behaviors being modeled. This is the crux of the 
research discovery being reported here. 
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3. INTENT FRAMEWORK 
To examine emergent behavior, modeling the behaviors of actors within the scenario is an elementary step to take. To 
find emergent behaviors, we must first have actors that react to events within the scenario. To this end, an intent model6 
is employed to represent the likely actions of those actors. The intent model makes use of a probabilistic representation 
called Bayesian knowledge bases (BKBs), where knowledge pieces are encoded through special graphs with nodes 
tagged either with the knowledge of interest, or with probabilities associated with that knowledge. Multi-scale modeling 
is accomplished both through explicitly modeling distinctly different scales of information, and through fusing local 
micro-scale BKB fragments to form a regional intermediate-scale. In the similar manner, regional scales models may in 
turn be used to generate macro-scale state or national models. To complete the necessary foundation for the intent model, 
we next provide the fundamental theory of BKBs, as well as the algorithms we use to integrate multiple BKB fragments 
while at the same time maintaining probabilistic soundness. Finally, we present the framework of intent-driven 
modeling, in which individual intent is inferred from computational reasoning through BKBs. 

3.1 Bayesian Knowledge Bases (BKBs) 

The knowledge used by individuals in their decision making, along with other aspects of their behavior, can be 
represented by BKBs, which are represented by directed graphs with correlated context. BKBs are an alternative 
representation to Bayesian networks (BNs). BKBs and BNs are similar in that they both are probabilistic models adept at 
computing likelihoods for uncertain information; BKBs differ from BNs in their ability to allow incompleteness and 
cycles in their context-specific information. Graphs representing BKBs are composed of two types of nodes: one type 
(support node or S-node) represents probabilistic information, while the other (instantiation node or I-node) denotes the 
context relevant to the probabilistic relationship. Arcs denote causal relationships between two connected nodes18. For 
example, the simple information regarding “if I believe local border control becomes strict, I would consider crossing the 
border illegally” can be represented by a couple of I-nodes including “Local border control becomes strict” and “Cross 
border illegally” and S-nodes as shown in Figure 1. Note that I-nodes represent possible instantiations of random 
variables (RVs), and thus an I-node equates to a single RV state. Again, from Figure 1, the I-node “Cross border 
illegally” represents the state “illegally” of the RV “cross border.” In a similar fashion, there could be an I-node “Cross 
border legally” which would represent the state “legally” for the same RV “Cross border.” 

BKBs are simpler and more concise than BNs, since they can maintain partial information consistently and facilitate 
reasoning with less complexity. Unlike BNs, BKBs are completely capable of handling incomplete probabilistic 
information, which is invaluable to modeling real-world situations, where not only is uncertainty prevalent, but also 
where complete information is absent even for well-known historical situations. As in BNs, reasoning with BKBs is 
based on the calculation of joint probabilities over the possible inferences. Unlike BNs, a complete probability 
distribution is not required in order for BKBs to compute inferences. Here, an inference is a subgraph of a BKB, 
including at most one I-node of each RV and the associated S-nodes. The idea of inferencing plays an important role in 
two forms of reasoning with BKBs, belief revision and belief updating. The goal of belief revision is to find the most 
probable outcome of the world that contains all the evidence18, and the goal of belief updating is to update the posterior 
probability of an I-node given evidence. For more information about the algorithms and their complexity, please refer to 
22. 

3.2 Intent modeling with BKBs 

Intent can be derived by combining the actions, beliefs, and goals that are pursued by individuals. In BKBs, individual 
intent can be inferred from probabilistic reasoning with appropriate sets of evidence23,24. We make use of the adversarial 
intent inferencing (AII) model of Santos and Zhao5 to create BKB fragments. Actor beliefs, goals, and actions are 
captured using the AII structure, which can also be applied to other cultural information. This information is represented 
using four categories: 

• Axioms (X): what the actors believe about themselves.   

• Beliefs (B): what the actors believe about others. 

• Goals (G): what the actors hope to achieve. 

• Actions (A): the actions the actors may carry out to fulfill their goals. 
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We have surveyed the literature of emergence in general, and defined some of the most critical tools and methods needed 
to advance our research, specifically looking at BKB reasoning, intent modeling, and BKB fusion. While these 
approaches were critical to arriving at this point in our research, the crucial discovery is related to how our intent model, 
and more specifically how BKB fusion, enable investigators to probe beyond the expected bounds of explicitly 
modeling, and delve into the most puzzling aspects of complexity theory, that of emergence. It is now time to discuss in 
detail how we define and detect emergence within our model.  

 
Figure 2. BKB from Juarez (left) and Nogales (right) before fusion 

4. MODELING EMERGENT BEHAVIOR 
While we have already discussed the concept of emergence in general, we have yet to define the notion of emergence 
within our own intent model. The following paragraphs provide our definition of emergence as well as the algorithm we 
use to automatically detect emergence. 

4.1 Emergent Behavior 

One of the key capabilities of the intent framework is to uncover hidden connections between independent local models 
by identifying emergent behaviors activated through micro-level interactions. As introduced in the previous sections, we 
apply BKBs to model individual knowledge, behavior, and intentions. Emergent behaviors in BKBs can be defined as 
new behaviors occurring when fusing individual BKBs, where such behaviors can neither be found in the independent 
local models nor in a simple linear combination of those models. For instance, we consider two actors that are adjacent to 
each other. Inferencing over their separate knowledge bases we find that both actors’ most probable action is to decide 
not to cross the border. However, after considering their interaction through fragment fusion, the most probable 
collective behavior changes to choosing to cross. Such a result cannot be predicted by linearly combining their individual 
decisions. The reason that BKBs can be used to model such emergent behavior is that new inferences/knowledge can be 
generated in the process of BKB fusion. Back to the example shown in Figure 3, the dotted rectangle encloses a new 
inference composed partially from Juarez and partially from Nogales. From a probabilistic perspective, the emergent 
behavior is made apparent because the joint probability of the new inference is large enough to dominate the belief 
revision result, and thus change the most probable outcome in the fused model into a new state. Later we actually define 
this particular example of emergence as strong emergence, but first we define a subtler form of emergence as weak 
emergence.  
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Figure 3. BKB after fusion 

4.2 Identifying emergent behavior 

As BKBs support a mathematically sound reasoning system that not only indicates the most likely outcomes given the 
evidence, but also calculates the marginal probability for each of the outcomes, we developed an algorithm based on the 
BKB framework to automatically identify emergent behaviors. In the process of defining emergence for our model, we 
found that our algorithm could detect a subtle type of emergence which is not readily observable without the assistance 
of computation. This weak emergence is valuable because it scopes the range of behaviors where a stronger, more visible 
form of emergence might exist. 

4.2.1 Weak emergence 

Using the BKB’s definition18, we can now formalize the emergent behavior modeled by BKBs. Given two BKB 
fragments ܭଵ and ܭଶ, and two evidence sets ݁ଵ and ݁ଶ, let ଵܲ(ܺ = ܺ)ଵ) and ଶܲ݁|ݔ =  ଶ) be the probabilities of the݁|ݔ
target outcome {X=x} reasoned from ܭଵ and ܭଶ respectively. Without loss of generality, we assume ଵܲ(ܺ = ܺ)ଵ) ≤ ଶܲ݁|ݔ = ܺ)′݌ ଶ). Also, let݁|ݔ = ,ଶ݁|ݔ ݁ଶ)  be the probability of {ܺ =  is the ’ܭ reasoned from a new BKB K’ where {ݔ
fusion of ܭଵ and ܭଶ.  

 
Definition 1: An emergent behavior is identified if ݌ᇱ(ܺ = ,ଶ݁|ݔ ݁ଶ) ∉ [ ଵܲ(ܺ = ,(ଵ݁|ݔ ଶܲ(ܺ =  .[(ଶ݁|ݔ

 
The intuition behind this definition is derived from the fact that emergent behavior is a consequence of non-linear 
interactions between constituents within a social system. Therefore, within our methodology, emergence is said to occur 
when the probability of the target outcome in the fused BKB is not a linear weighted sum of ݌ଵ and ݌ଶ (We assume the 
weights/reliabilities of all actors are between 0 and 1). For example, if the probabilities of “Cross border = No” from 
actor 1 and actor 2 are 0.4 and 0.5 respectively, then after fusing two actors together, we can calculate a new probability 
from the fused fragment. From the emergent behavior definition, a new probability of 0.37 will indicate that an emergent 
behavior happens as 0.37 is not within the range of [0.4, 0.5]. The proof that no new, emergent behaviors will fall within 
these bounds follows: 

PROOF 

Given: Two BKBs K1 & K2, let ݐଵ, ݐଶ  and ݐᇱ be the inference graph sets of ܭଵ, ܭଶ and the fused 
BKB ܭᇱ respectively. If there are no new inference graphs resulting from the fusing, where a new 
inference is defined as an inference in ݐ’ consisting of paths from both ܭଵ and ܭଶ, then there is no 
weak emergence. In other words, there is no weak emergence if ݐ’  is simply a union of the 
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inferences from ݐଵ and ݐଶ separately.  

Proof: Apparently, if the upper condition is satisfied, then for any inference ݏଵ in ݐଵ and ݏଶ in ݐଶ, 
the only common I-node that ݏଵ and ݏଶ could possibly share is the very bottom I-node x (i.e. x has 
no descendent S-nodes). Otherwise, let ݔ’ be another common I-node, then there will be a new 
inference in ݐ’ where the path from ݔ’ to x is from s1 and the rest is from s2, contradiction.  

Case 1: Only one BKB has the target I-node x. Assume x appears in K2. Then ݐ’ equals to ݐଶ 
except for the source nodes. The marginal probability of ݔ in ܭ’ is the probability sum of the 
inferences containing ݔ, where the probability of each inference is just the product of the S-nodes 
in ܭଶ times the product of the source node reliabilities for each RV. As the reliability of any 
source node is in the range [0,1], it follows that  0 = (ݔ)ଵ݌ ≤ (ݔ)′݌ ≤  (ݔ)ଶ݌

Case 2: Both ܭଵ and ܭଶ have the target I-node ݔ. From observation, ݔ is the bottom I-node in ܭ’. 
As all I-nodes but the bottom I-nodes have only one source indicator. For any variable ݒ whose 
instantiations are not the bottom I-nodes, the reliability of its corresponding source node equals to 
1. Let ܽ݌௞௜ ௞௜ܽ݌|ݔ)௜݌  ;݅ in BKB ݔ be the probability of ݇௧௛ parent of (ݔ) (ݔ)ଵ݌  ,conditional on its ݇௧௛ parent in BKB ݅. From Bayes theorem ݔ be the probability of ((ݔ) = ෍ ௞ଵଵܽ݌ (ݔ) ∗ ௞ଵଵܽ݌หݔଵ൫݌ ൯௞ଵ(ݔ)  

(ݔ)ଶ݌ = ෍ ௞ଶଶܽ݌ (ݔ) ∗ ௞ଶଶܽ݌หݔଶ൫݌ ൯௞ଶ(ݔ)  

 Then  ݌ᇱ(ݔ) = ෍ ௞ଵଵܽ݌ (ݔ) ∗ ௞ଵଵܽ݌หݔଵ൫݌ ൯(ݔ) ∗ ோೣܿݎݏ൫ݎ = 1൯௞ଵ + ෍ ௞ଶଶܽ݌ (ݔ) ∗ ௞ଶଶܽ݌หݔଶ൫݌ ൯(ݔ) ∗ ோೣܿݎݏ൫ݎ = 2൯ ௞ଶ  

where ܿݎݏோೣis the source node of the RV of which the target ݔ is an instantiation and ݎ൫ܿݎݏோೣ = ݅൯ 
is the reliability of BKB source i contributing to this variable ܿݎݏோೣ.  

Since ݎ൫ܿݎݏோೣ = 1൯ + ோೣܿݎݏ൫ݎ = 2൯ = 1, then ݌ᇱ(ݔ) = ோೣܿݎݏ൫ݎ(ݔ)ଵ݌ = 1൯ ோೣܿݎݏ൫ݎ(ݔ)ଶ݌ + = 2൯ is also bounded between [݌ଵ(ݔ),  ∎ .[(ݔ)ଶ݌

4.2.2 Strong emergence 

On the other hand, if the most probable outcomes of “Cross border” for two actors are both “No” but the new emergent 
outcome becomes “illegally”, then we know a significant emergent behavior occurs during the interaction. However, 
such outcome-switch phenomenon does not always happen when the condition of Definition 1 is satisfied. In the 
previous example, if the new probability equals 0.37, then the most probable state for “Cross border” in the fused 
fragment could still be “No”.  Therefore, to identify a strong emergent behavior, we provide the second definition as the 
following.  

 
Definition 2: let ݔଵ, ݔଶ and ݔ’ be the most probable outcomes of the target variable ܺ reasoned from ܭଵ, ܭଶ and 

the fused new BKB ܭ’ respectively, a strong emergent behavior is identified if ݔ’ ≠  .ଶݔ ≠ ’ݔ && ଵݔ 

Having defined both weak and strong behavior, it is now possible to review the automated algorithm for identifying 
those emergent behaviors within our model. 
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4.2.3 Emergence algorithm 

The complete algorithm to identify emergent behavior essentially starts first with checking for the most specific case of 
emergence. If a most probable action for the fused BKB exists that is not the most probable action for either of the fused 
BKBs, we know we have a case of strong emergence. Failing that, we then check for the existence of weak emergence, 
by checking all outcomes for the variable of interest. If any value for the fused BKB falls outside the bounds of the 
individual BKBs, we have found a weak emergence. The algorithm can be summarized as:  

Algorithm 1: result = EMERGENT-BEHAVIOR-DETECTION (ܭଵ, ,ଶܭ ܺ, ݁ଵ, ݁ଶ) 

1. let ݔଵ = MOST-PROBABLE-STATE(ܺ|ܭଵ, ݁ଵ) 

2. let ݔଶ = MOST-PROBABLE-STATE(ܺ|ܭଶ, ݁ଶ) 

3. K’ = BKB-FUSION(K1, K2) 

4. let ݔ’ = MOST-PROBABLE-STATE(ܺ|ܭ’, ݁ଵ, ݁ଶ) 

5. if ݔ’ ≠ ≠ ’ݔ ଵ andݔ   ଶݔ 

6.         result = STRONG_EMERGENT_BEHAVIOR 

7.         return 

8. end 

9. for each possible outcome x of variable ܺ in ܭଵ and ܭଶ 

10.         let ݌ଵ  =  ܲ(ܺ = ,ଵ݁|ݔ  (ଵܭ

11.         let ݌ଶ  =  ܲ(ܺ = ,ଶ݁|ݔ  (ଶܭ

12.         let ݌’ =  ܲ(ܺ = ,ଵ݁|ݔ ݁ଶ,  (’ܭ

13.        if ݌ଶ  ≤ ≥ ’݌  ଵ݌ ଵ or݌  ≤ ≥ ’݌   ଶ݌ 

14.                    continue; 

15.        else  

16.                    result = GENERAL_EMERGENT_BEHAVIOR 

17.                    return; 

18.        end 

19. end 

20. result = NO_EMERGENT_BEHAVIOR 

The intent model provides a mathematically rigorous framework to formulate definition for various types of emergence 
and design algorithms for detecting emergence, which takes us a great deal closer to being able to understand the 
conditions under which emergence can happen, and also yield insights into possible scenario outcomes which had not 
been previously considered. This approach also provides a repeatable process for identifying opportunities for more 
detailed study of emergent phenomena. 

5. EMPIRICAL VALIDATION 
As the title of our paper suggests, we have modeled border-crossing behavior during a pandemic. More specifically, we 
examined the border-crossing behaviors of Mexican citizens during the H1N1 pandemic of 2009. This particular scenario 
is useful to model because the pandemic provides plentiful examples of external triggers to decision-making, while also 
ensuring that much macro-level behavior is available for analysis. The scenario is multi-scale, including both national-
level events and events local to the Mexican cities of Juarez and Nogales. The national-scale events were explored and 
discussed in a previous publication 6, where the focus was more on explanation-driven analysis made possible by the 
intent model. Cultural influences like age and region were considered, as well as the impetus created by national-level 
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events, to affect the probable behaviors of demographic actors within the model. The current research explores the effect 
of including local events, specific to the two border cities Nogales and Juarez, and the effects these two communities 
could have on one another. We further explore the scenario by combining the micro-scale models through BKB fusion 
into an intermediate-scale model, for detecting emergent regional behavior that is not exhibited in either of the two local 
micro-scale models, utilizing the definitions and algorithms that we have formulated for emergence within the intent 
modeling framework. 

5.1 Experimental setting 

We built cultural BKB fragments to represent various events and actions taken by national governments and international 
organizations such as the European Union (EU) and the World Health Organization (WHO). All fragments are built 
based on public information sources such as demographic reports and news articles. For details about the creation of the 
BKB fragments, please refer to Santos et al (2011)6. In contrast to our previous work6, whose main goal was to model the 
national population, we now focus on modeling changes in local actors’ border crossing behaviors and intent. In 
particular, we model two Mexican cities, Juarez and Nogales, sitting on the border with the US. These two cities were 
selected for their proximity to the US border and US communities, as well as their relative proximity to each other. The 
relative proximity would allow their individual behavior to have an effect on each other, leading to novel emergent 
behaviors. Moreover, we consider middle-aged people from the north as the target group in the simulation, since middle-
aged people account for the largest age group, and both Juarez and Nogales are in the northern region, as defined in our 
previous work6.  

Our primary interests are the changes in cross-border behavior patterns. Two key factors that may affect people’s 
decisions are considered in the simulation, “people’s migration decision” and the “local border control situation”, where 
decisions to migrate to the US highly depend on the local living conditions relative to the nearest US border city.  The 
main differences between Juarez and Nogales lie in their initial border situation and the local tendency to cross the 
border. In fact, under poor living conditions, even if Juarez people would like to migrate to the US, they are not inclined 
to cross the border due to panic27, whereas Nogales people have more motivation to risk crossing the border due to 
indications that the epidemic is worsening even across the border in Arizona28,29. Also, based on the history and 
experience of Nogales residents, border control is much tighter than in Juarez30–33. Consequently, before the breakout of 
H1N1, we expect to see that neither Juarez nor Nogales would cross the border individually. To establish the baseline 
reactions to the H1N1 pandemic, we fuse in national fragments from the previous work6 to incorporate the general 
cultural pieces, such as income information in relation to the tendency to migrate.  

In order to study people’s reaction to the various events that took place during the pandemic, we fuse in BKB fragments 
representing events according to the scenario timeline. By assuming that the impact of the events declines with time, we 
gradually lower the reliability of each event after the breakout.  Two types of events are considered in this scenario--
national events and regional events. National events refer to events which affect all regions, such as “WHO raises the 
pandemic level” or “government advises people stay at home”, whereas regional events happen locally and thus only 
influence a specific region. The events we analyzed in the pandemic development with respect to Juarez and Nogales are 
shown in the scenario time line in Table 1. 
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Table 1. Description of the experiment results according to national and local events for Juarez and Nogales 

TIME EVENT SCOPE INDICATIONS 
T1 First case of H1N1 reported in Mexico – business as 

usual 
National Baseline 

T2 First deaths attributed to H1N1 – epidemic outbreak 
evident 

National Bad health condition triggers the 
tendency to cross border illegally 

T3 WHO sends experts to Mexico to work with health 
authorities 

National Increased confidence in health response 
decreases border crossing 

T4 EU advises Europeans not to travel to US or Mexico 
unless the need is urgent WHO elevates the pandemic 
alert from phase 3 to 4 

National National government policy suppresses 
the tendency to cross border both legally 
and illegally 

T5 WHO raises the pandemic level from 4 to 5 National Events enhance the belief that the 
disease is severe 

T6 School closure announced Juarez Events enhance the belief that the 
disease is severe 

T7 Pandemic level is high National Bad health condition triggers the 
tendency to cross border illegally 

T8 H1N1 conditions worsen in AZ Nogales Bad health condition triggers the 
tendency to cross border both legally and 
illegally  

T9 Mexico shuts down most parts of the country for five 
days to avoid spread of H1N1, advising citizens to 
stay in their homes 

National National government policy suppresses 
the tendency to cross border both legally 
and illegally 

T10 Travels are allowed, and businesses and government 
have reopened  

National The opportunity to cross illegally is 
increased 

T11 AZ supports two new border fences Nogales Crossing border is more difficult 
T12 Chihuahua has more H1N1 cases Juarez Bad health condition triggers the 

tendency to cross border legally and 
illegally  

T13 H1N1 deaths reported Juarez Bad health condition triggers the 
tendency to cross border legally and 
illegally 

T14 H1N1 is deadly for children Nogales Bad health condition triggers the 
tendency to cross border 

T15 More troops in AZ border Nogales Crossing border is more difficult 
T16 Border patrol agents are over-defensive Nogales Crossing border is more difficult 

 

In the experiment, we first examine how cross-border behaviors of local people are influenced by both national and local 
events independently, even when some of the events do not have a direct causal link to the variable “(A) Cross border”. 
Next, we consider the interaction and information exchange between Juarez and Nogales by fusing their individual 
fragments together (event BKBs are fused from the overall timeline). As new ideas and information could be gained 
through the interaction, we expect the collective behaviors to be different from the local models.  

5.2 Analysis of the results 

We performed inferences on the local models of Juarez and Nogales separately, assuming they act independently, and on 
their fused model. Figure 4 shows the probabilities of the behavior of border-crossings for Juarez and Nogales 
individually, and the collective behavior after considering their interaction. The results for the individual models (Figure 
4(a) and Figure 4(b)) validates our assumption that Juarez is relatively conservative, since results over time indicate that 
the border-crossing behavior in Juarez is not very sensitive to events. In most cases, the people are reluctant to cross the 
border, although local border control is relatively light. In contrast, in Nogales, the border-crossing behavior is more 
aggressive and sensitive to events. People in Nogales are more likely to cross the border whenever living conditions 
worsen. However, their movements are restricted by the stricter border control. We can observe from the results that 
compared with legal border-crossings, illegal border-crossings are more sensitive to events. Its likelihood increases when 
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groups, we seek to provide additional insights useful for planning for and recovering from natural disasters and other 
catastrophic events. In this paper, we proposed a methodology to identify emergent behaviors through a framework 
based on probabilistic knowledge representations. Our computational framework was validated through modeling and 
simulating human behaviors occurring near a national border during the 2009 H1N1 pandemic in Mexico. Based on an 
intent-driven modeling approach, we presented a multi-scale model including both national and local level events. 
Emergent behavior was identified during the pandemic by integrating individual models, and explained by analyzing 
multiple contributing factors relevant to individuals residing in two border regions (Juarez and Nogales) during the 
pandemic. Individual behaviors were inferred through BKB reasoning, and the probability contributions were considered 
for identifying emergent behaviors. 

We made certain assumptions for representing human behaviors through computational representation. Even though 
temporal aspects were incorporated through the use of event timelines, some individual time constraints were not 
considered in this study. This issue will be more rigorously addressed by employing temporal BKBs in our future 
research. In addition, we will introduce other mathematical structures, such as social networks to represent additional 
social relationships within and between groups. This will also help in conducting sophisticated what-if analysis. 
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