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MICHAEL C. LASKOWSKI AND SHIRIN MALEKPOUR

Abstract. We sharpen Hájek’s Completeness Theorem for theo-
ries extending predicate product logic, Π∀. By relating provability
in this system to embedding properties of ordered abelian groups
we construct a universal BL-chain L in the sense that a sentence
is provable from Π∀ if and only if it is an L-tautology. As well we
characterize the class of lexicographic sums that have this univer-
sality property.

1. Introduction

Predicate product logic is a variant of first-order logic wherein sen-
tences are assigned a truth value in the closed interval [0, 1]. In product
logic the truth value of a conjunction ϕ&ψ of sentences is equal to the
product of the truth values of ϕ and ψ, which is natural in certain
applications (e.g., if ϕ and ψ describe independent events).

In [H] Petr Hájek laid the groundwork for a proof theory for this
logic. He defined an axiom system Π∀, which consists of a (recursive)
list of ‘Basic Logic’ axioms BL∀, together with two additional axiom
schema:

(1) (ϕ ∧ ¬ϕ) → 0̄ and

(2) ¬¬χ→ ((ϕ&χ→ ψ&χ) → (ϕ→ ψ))

The basic logic axioms are valid in many different predicate fuzzy logic
systems, while the two additional axioms are valid in Product Logic
(as well as conventional two-valued logic) but distinguish it from Gödel
logic and Lukasiewicz logic.

As for semantics, Hájek defined a BL-chain as a linearly ordered
residuated lattice satisfying certain properties. Here, however, we fol-
low the treatment set out in [LS1] and [LS2] and define a BL-chain
to be an ordered abelian semigroup (L,+,≤, 0, 1) in which 1 is both
the maximal element of the ordering and the identity element of the
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semigroup, 0 is the minimal element of the semigroup, and whenever
a < b there is a maximal c such that b+c = a. By defining b⇒ a to be
1 whenever b ≤ a and the maximal c such that b+ c = a otherwise, one
readily sees that this definition is equivalent to the definition proposed
by Hájek in [H].

Following Hájek, fix a predicate language τ . For a given BL-chain L,
an L-structure M is a triple 〈M, (mc)c, (rP )P 〉, where M is a nonempty
set, mc is an element of M for each constant symbol c ∈ τ , and rP :
Mn → L is a function for every n-ary predicate symbol P ∈ τ . Given
an L-structure M, one recursively defines a function ||ϕ||M to every
τ(M)-sentence ϕ by demanding that ||ϕ&ψ|| = ||ϕ||+||ψ||; ||ϕ→ ψ|| =
||ϕ|| ⇒ ||ψ||; ||∃xϕ(x)|| = sup{||ϕ(a)|| : a ∈ M}; and ||∀xϕ(x)|| =
inf{||ϕ(a)|| : a ∈ M}. (In the clauses above, and whenever it is clear,
we suppress the subscript on ||ϕ||.) In general, there is no reason why
the requisite suprema and infima need exist. Again, following Hájek,
we call an L-structure M safe if in fact all the suprema and infima
needed to compute ||ϕ|| do exist for all τ(M)-sentences ϕ.

A theory T is simply a set of formulas. We say that an L-structure
M is a model of T if ||ϕ(ā)|| = 1 for every ϕ ∈ T and every ā from M
of the requisite length. In [H] Hájek proves the following results that
we use freely:

Theorem 1.1 (Deduction Theorem). For any theory T extending BL∀
and sentences ϕ, ψ, T ∪ {ϕ} ⊢ ψ if and only if T ⊢ ϕk → ψ for some
positive integer k (where ϕk denotes the k-fold conjunction ϕ& . . .&ϕ).

Theorem 1.2 (Completeness Theorem). T ⊢ ϕ if and only if ||ϕ||M =
1 for all BL-chains L and all safe L-structures M that model T .

In this paper we obtain several strengthenings of Hájek’s complete-
ness theorem for theories extending Π∀, the strongest of which is Theo-
rem 2.9. As is usual in the study of provability, in order to understand
the logical consequences of the theory Π∀, one must include nonstan-
dard models as well. In this context, this means defining a class of
BL-chains that are generated from ordered abelian groups.

Definition 1.3. Let (G,+,≤) be any ordered abelian group. LetN(G)
be the subsemigroup with universe {a ∈ G : a ≤ 0}. Let L(G) denote
the BL-chain with universe N(G)∪{−∞} in which + and ≤ are inher-
ited from G with the additional stipulations that −∞ is the minimal
element of L(G) and that a+(−∞) = −∞ for all a ∈ L(G). The ‘top’
element of L(G) is the zero element of G, and the ‘bottom’ element of
L(G) is −∞.
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It is readily verified that L(G) is a BL-chain for any ordered abelian
group G. (In fact, for any a < b in L(G) there is a unique c such that
b + c = a.) Furthermore, any L(G)-structure is necessarily a model
of Π∀. In order to describe a converse, we need to specify when two
structures can be identified.

Definition 1.4. Fix a predicate language τ . An L-structure M and an
L′-structure M′ are identified if M = M ′, mM

c = mM
′

c for all constant
symbols c ∈ τ , and

||ϕ||M = ||ϕ||M′

for all τ(M)-formulas ϕ.

The intuition behind identifying such structures is that ‘extra ele-
ments’ of L or L′ are irrelevant if they never appear in the computation
of the truth of any τ(M)-sentence. The following proposition is funda-
mental to our analysis.

Proposition 1.5. Any L-structure M that is a model of Π∀ (i.e., a
model of the empty theory over Π∀) can be identified with an L(G)-
structure M′ for some ordered abelian group G.

Proof. Let B = {||ϕ|| : ϕ ∈ τ(M)} and let S = B \ {0, 1}. It is
readily checked that B is closed under + and ⇒, hence (B,+,≤, 0, 1)
is itself a BL-chain. Additionally, it follows from M being a model
of Π∀ that the ordered abelian semigroup (S,+,≤) is cancellative and
satisfies a+ b < a for all a, b ∈ S. Thus, by either Lemma 2.3 of [LS1]
or Theorem 4.1.8 of [H], S is the set of negative elements of an ordered
abelian group G. Then M can be identified with an L(G)-structure for
any such G.

Thus, a formula ϕ is provable from Π∀ if and only if ϕ is an L(G)-
tautology for every ordered abelian group G. With our eye on improv-
ing this result, we describe a certain class of ordered abelian groups.

Definition 1.6. For (J,<) any linear order, the lexicographic sum
(RJ ,+,≤) is the ordered abelian group of functions f : J → R whose
support is well-ordered (i.e., {j ∈ J : f(j) 6= 0} is a well-ordered subset
of J). Addition is defined componentwise and the ordering on RJ is
lexicographic.

The Hahn embedding theorem states that every ordered abelian
group naturally embeds into a lexicographic sum. Moreover, Clifford’s
proof of this result (see [C]) shows that the embedding can be chosen
in a very desirable fashion, which we describe below.
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Definition 1.7. Let G be any ordered abelian group. For a, b ∈ G, we
say a and b are equivalent, written a ∼ b, if a = b = 0, or a, b > 0 and
there is a positive integer n such that na ≥ b and nb ≥ a, or a, b < 0 and
there is a positive integer n such that na ≤ b and nb ≤ a (the notation
na is shorthand for adding a to itself n times.) For a, b ∈ N(G) we
write a << b when a < nb for all n ∈ ω.

It is easily checked that ∼ is an equivalence relation on G and that
the equivalence classes are convex subsets of G. The ∼-classes are
called the archimedean classes of G. Since G is a group, the behavior
of ∼ on the set of negative elements determines the behavior of ∼ on
all of G. Our notation is slightly nonstandard, as here the elements a
and −a are in different archimedean classes whenever a 6= 0. Note that
<< defines a strict linear order on the archimedean classes of N(G).

It is easily checked that if f : G → H is a strict order-preserving
homomorphism of ordered abelian groups, then a ∼ b if and only if
f(a) ∼ f(b) for all a, b ∈ G. However, if we want our embedding
to preserve suprema and infima, we require an additional property.
Specifically, call a strict, order-preserving homomorphism f : G → H
an archimedean surjection if for every b ∈ H there is a ∈ G such that
f(a) ∼ b. Our interest in this notion is given by the following two
results.

Lemma 1.8. If f : G→ H is an archimedean surjection, X ⊂ G, and
a, b ∈ G satisfy a = sup(X), b = inf(X), then f(a) = sup(f(X)) and
f(b) = inf(f(X)). Moreover, if X is a cofinal (coinitial) subset of G,
then f(X) is a cofinal (coinitial) subset of H.

Proof. By symmetry, inversion, and translation, it suffices to show
that if X is a set of positive elements from G and inf(X) = 0G, then
inf(f(X)) = 0H . So fix such a set X ⊆ G. Since f is strictly order-
preserving every element of f(X) is positive, so 0H is a lower bound.
Now choose r ∈ H, r > 0H . It suffices to find some a ∈ X such that
f(a) < r. Before demonstrating this, we establish the following claim:

Claim. For every positive b ∈ G there is a ∈ X such that 2a < b.
Proof. Fix b > 0. Choose any c ∈ X such that c < b and let

d = b− c. There are now two cases. First, if 2d ≤ b then take a to be
any element of X less than d. Second, if b < 2d, then let e = b− d and
choose a ∈ X with a < e. Then 2a < 2e = 2b − 2d ≤ b and the claim
is proved.

Since f is an archimedean surjection we can choose b ∈ G such that
f(b) ∼ r. Fix a positive integer n so that f(b) ≤ nr. By iterating the
Claim several times we can find an a ∈ X such that na < b. Hence
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nf(a) = f(na) < f(b) ≤ nr, so f(a) < r as required. The ‘moreover’
clause is proved similarly.

Proposition 1.9. If f : G → H is an archimedean surjection and M

is any L(G)-structure, then there is a (unique) L(H)-structure M′ with
the same universe as M that satisfies

f(||ϕ||M) = ||ϕ||M′

for all τ(M)-sentences ϕ.

Proof. Take M′ to have universe M and let mM
′

c = mM

c for all
constants c ∈ τ . For every predicate symbol P , let rM

′

P = f(rMP ). One
recursively checks that

f(||ϕ||M) = ||ϕ||M′

for all τ(M)-sentences ϕ, using the previous Lemma to show that quan-
tifiers are well behaved.

The following theorem can be read off from the main result in [C].

Theorem 1.10 (Clifford’s proof of the Hahn embedding theorem). Let
G be any ordered abelian group and let J consist of the archimedean
classes of the negative elements of G with the induced ordering. Then
there is an archimedean surjection f : G→ RJ .

One special case is worth noting. If G = (0) is the trivial group,
then J = ∅ and R∅ is trivial as well. In this case L(R∅) = {0, 1}, hence
L(R∅)-structures are classical two-valued structures.

In order to connect the results in this section we introduce the notion
of isomorphism of structures in the same predicate language τ . The
novelty is that a structure has two distinct sorts (its universe and the
associated BL-chain) so an isomorphism itself should be a two-sorted
object. Specifically, we say that an L-structure M is isomorphic to an
L′-structure M′ if there is a BL-chain isomorphism g : L → L′ and a
bijection f : M →M ′ such that

||ϕ(f(a1), . . . , f(an))||M′ = g(||ϕ(a1, . . . , an)||M)

for all τ -formulas ϕ(x1, . . . , xn) and all (a1, . . . , an) ∈ Mn. That said,
the Corollary below follows immediately from our previous results.

Corollary 1.11. Every model of Π∀ is identified with a structure that
is isomorphic to an L(RJ)-structure for some (possibly empty) linear
order (J,<).

Corollary 1.12. A formula ϕ is provable from Π∀ if and only if ϕ is
an L(RJ)-tautology for every linear order (J,<).
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2. Closed models and lexicographic sums

Together with Hájek’s Completeness Theorem, Corollary 1.11 tells us
that if we want to semantically determine whether a formula is provable
from a theory T extending Π∀ it suffices to look at structures whose
associated BL-chain arise from lexicographic sums. In this section we
analyze the sets of tautologies for each of the lexicographic sums RJ . In
order to compare these sets of tautologies we need a suitable notion of
embedding between lexicographic sums. Archimedean surjections are
very nice, but unfortunately an archimedean surjection between lexico-
graphic sums RJ and RK exists only when the linear orders (J,<) and
(K,<) are isomorphic. Thus, we both weaken our notion of embedding
and strengthen our requirements on the class of ‘suitable’ structures.

Definition 2.1. A BL-chain embedding is a strict, order-preserving
homomorphism f : L → L′ of the BL-chains L and L′. Such an
embedding respects 0 if, moreover, for every subset X ⊆ L, if inf(X) =
0L then inf(f(X)) = 0L′ . If M is an L-structure and f : L → L′ is a
BL-chain embedding, then f(M) is the L′-structure M′ with universe
M , mM

′

c = mM

c , and rM
′

P = f(rMP ).

The reader is cautioned that without extra conditions being placed
on either the embedding or the structure, it is possible that the image
of a safe L-structure under a BL-chain embedding need not be safe.
If f : G → H is a strict, order preserving homomorphism of ordered
abelian groups, then f extends naturally to a BL-chain embedding
(also called f) from L(G) to L(H) by positing that f(−∞) = −∞. It
is easily checked that this induced embedding respects 0 if and only if
the mapping of ordered abelian groups is coinitiality preserving.

Definition 2.2. Fix a BL-chain L and a predicate language τ .

(1) An L-structure M is strongly closed1 if for all τ(M)-formulas
ϕ(x) with one free variable, there are a, b ∈ M such that
||ϕ(a)|| = ||∃xϕ(x)|| and ||ϕ(b)|| = ||∀xϕ(x)||.

(2) An L-structure M is closed if for all τ(M)-formulas ϕ(x) with
one free variable, there are a, b ∈ M such that ||ϕ(a)|| =
||∃xϕ(x)|| and either ||ϕ(b)|| = ||∀xϕ(x)|| or ||∀xϕ(x) = 0||.

Note that if M is strongly closed then it is closed, and if it is closed
then it is safe. The following Lemma is proved by an easy induction
on the complexity of ϕ (cf. Proposition 1.9).

1Strongly closed structures are also called witnessed in the literature, e.g., [H2].
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Lemma 2.3. If M is a closed L-structure and f : L → L′ respects 0,
then ||ϕ||f(M) = f(||ϕ||M) for all τ(M)-sentences ϕ. In particular, M

models T if and only if f(M) models T for any theory T .

Similarly, if M is a strongly closed L-structure, then the conclusions
of Lemma 2.3 apply for any BL-chain embedding. This observation
yields a slight strengthening of Corollary 1.11. At the end of this
section we will achieve a far stronger result.

Lemma 2.4. If T extends Π∀ and T 6⊢ σ, then there is a nonempty

ordering (J,<) and an L(RJ)-structure M that models T , yet ||σ||M <
1. In particular, any such RJ is infinite and divisible.

Proof. In light of Corollary 1.11 we need only consider what hap-
pens if there is an L(R∅)-structure M that models T with ||σ||M < 1
(hence equal to 0). Then (trivially) M is strongly closed. Thus, if
(J,<) is arbitrary and f : L(R∅) → L(RJ) is any BL-chain embedding
(i.e., f(0) = 0 and f(1) = 1) then f(M) models T and ||σ||f(M) < 1.

At first blush it seems like the notion of being strongly closed is
more natural than that of being closed, but the example below, which
exploits the fact that → is discontinuous at (0, 0), indicates that one
cannot prove Theorem 2.6 for such structures.

Example 2.5. Take σ to be (∀xR → S) → (∃x(R → S)) where R and
S are unary predicate symbols. Then there are closed structures M in
which ||σ||M < 1, yet ||σ||M = 1 for every strongly closed structure M.

Theorem 2.6. Let T be any theory extending Π∀ and let σ be any
sentence. If T 6⊢ σ then there is a closed model M of T such that
||σ||M < 1. Furthermore, if the language is countable then M can be
chosen to be countable as well.

Before proving Theorem 2.6 we state and prove two proof-theoretic
lemmas about the axiom system Π∀. In keeping with the spirit of
the paper, our proofs of these facts will be model theoretic in nature.
However, in [M] the second author proves these lemmas directly from
the axiom system.

Lemma 2.7. Suppose that T is a theory extending Π∀, σ is a sentence,
c is a constant symbol that does not appear in either T or σ, and T ∪
{∃xϕ(x) → ϕ(c)} ⊢ σ. Then T ⊢ σ.

Proof. Let τ denote the language of T ∪ {σ} and let τc = τ ∪ {c}.
Let M be an L(RJ)-structure in the language of τ that models T in
which J 6= ∅. In particular, RJ is infinite and divisible as an abelian
group.
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Because of Lemma 2.4, in order to show that T ⊢ σ it suffices to
show that ||σ||M = 1. Since L(RJ) is infinite and divisible, 1 is an
accumulation point of RJ , so it suffices to prove that ||σ||M ≥ ǫ for
every ǫ ∈ L(RJ)), ǫ < 1.

For each a ∈ M , let Ma denote the expansion of M to a structure
in the language τc formed by setting mMa

c = a. As notation, let θ(y)
abbreviate ∃xϕ(x) → ϕ(y). Since T ∪ θ(c) ⊢ σ, it follows from the
Deduction theorem that we can fix a positive integer k such that T ⊢
θ(c)k → σ. Since M is a model of T , each Ma is a model of T , hence
||θ(c)k → σ||Ma

= 1 for all a ∈ M . Reflecting back to M, this implies
||θ(a)k → σ||M for all a ∈M , hence

k||θ(a)||M ≤ ||σ||M for all a ∈M

Now fix an ǫ < 1. From our comments above, it suffices to show that
k||θ(a)||M ≥ ǫ for some a ∈M .

But ||∃xϕ(x)||M = sup{||ϕ(a)||M : a ∈ M}, so there is some a ∈ M
so that ||ϕ(a)||M ≥ ||∃xϕ(x)||M + ǫ/k (this makes sense since RJ is
divisible). It follows that k||θ(a)||M ≥ ǫ and the lemma is proved.

Lemma 2.8. Suppose that T is a theory extending Π∀, σ is a sentence,
c is a constant symbol that does not appear in either T or σ, and both

T ∪ {∀xϕ(x) → 0} ⊢ σ and T ∪ {ϕ(c) → ∀xϕ(x)} ⊢ σ. Then T ⊢ σ.

Proof. Fix τ , τc and M as in the proof of the Lemma 2.7. As
before, it suffices to prove that ||σ||M = 1. First, if ||∀xϕ(x)||M = 0,
then M would be a model of T ∪ {∀xϕ(x) → 0} ⊢ σ and ||σ||M = 1 by
our hypothesis. So we assume that ||∀xϕ(x)||M 6= 0. As notation, let
ψ(y) abbreviate ϕ(y) → ∀xϕ(x) and, for each a ∈ M , let Ma denote
the expansion of M satisfying mMa

c = a. As in the proof of Lemma 2.7
choose k so that T ⊢ ψ(c)k → σ. As in that argument, by considering
each of the Ma’s and reflecting back to M, we obtain that

k||ψ(a)||M ≤ ||σ||M for all a ∈M

Now fix an ǫ < 1.
Since ||∀xϕ(x)||M = inf{||ϕ(a)|| : a ∈ M} and ||∀xϕ(x)||M 6= 0,

there is some a ∈ M so that ||∀xϕ(x)||M ≥ ||ϕ(a)|| + ǫ/k (again RJ is
divisible). As before, this implies that k||ψ(a)||M ≥ ǫ. Since ||σ||M ≥
||ψ(a)||M and ǫ < 1 was arbitrary, it follows that ||σ||M = 1.

Proof of Theorem 2.6. We follow the proof of Hájek’s Complete-
ness Theorem (Theorem 5.2.9 of [H]). Therein, given T and σ in the
language τ , he first augments τ by adding one new constant symbol for
each formula in the original language. Then, in Lemma 5.2.7 he itera-
tively constructs an extension T ′ of T in this expanded language that
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is complete (i.e., for every pair (ϕ, ψ) of sentences, either T ⊢ (ϕ→ ψ)
or T ⊢ (ψ → ϕ)) and Henkin (i.e., for every formula ϕ(x) with one
free variable if T 6⊢ ∀xϕ(x) then there is a constant symbol c such that
T 6⊢ ϕ(c)) while still preserving that T ′ 6⊢ σ. In our context, we do
precisely the same thing, but by iteratively using Lemmas 2.7 and 2.8
to handle each formula ϕ(x) we additionally require that T ′ satisfy two
additional requirements:

• For all ϕ(x) in the expanded language there is a constant symbol
c such that T ′ ⊢ ∃xϕ(x) → ϕ(c) and

• For all ϕ(x) in the expanded language either T ′ ⊢ ∀xϕ(x) → 0̄
or there is a constant symbol c such that T ′ ⊢ ϕ(c) → ∀xϕ(x).

Then, just as in Hájek, one can canonically construct a structure M

whose universe consists of the constant symbols of the expanded lan-
guage. In his context M was safe, M model of T ′ (hence the reduct to
the original language is a model of T ) and ||σ||M < 1. It is easy to see
that with the addition of the two extra properties noted above, M is
closed.

We close this section by indicating a general construction and then
an application of it which asserts the existence of a ‘universal’ BL-chain
in the context of predicate product logic.

Fix a language τ . Given any BL-chain L and any L-structure M =
(M,mc, rP ), we form a first-order, two-valued structure that encodes
all of this data. Specifically, let

M = (M,L,+,≤, 0, 1,mc, rP )

be the two-sorted structure in which {+,≤, 0, 1} refer to the BL-chain,
each mc points to an element in the M -sort, and rP : Mn → L is the
map described by M for each n-ary P ∈ τ .

Many of the notions discussed in this paper are first-order in this
language. If M

′ = (M ′, L′, . . . ) is elementarily equivalent to the struc-
ture M defined above, then L′ = (L′,+,≤, 0, 1) is a BL-chain and M

′

describes an L′-structure M′ with universe M ′. One can check that
M is safe (resp. closed) if and only if M′ is safe (closed). Using the
algebraic characterization of such semigroups in Proposition 1.5, the
BL-chain L is equal to L(G) for some ordered abelian group if and
only if L′ = L(G′) for some group G′. Furthermore, if M is an el-
ementary substructure of M

′ (in the usual first-order sense) one can
inductively argue that ||ϕ||M = ||ϕ||M′ for all τ(M)-sentences ϕ.

Theorem 2.9. If τ is countable, T ⊇ Π∀ and T 6⊢ σ, then there is a
countable, closed L(RQ)-structure M that models T but does not model
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σ. In particular, a sentence σ is an L(RQ)-tautology if and only if σ is
provable from Π∀.

Proof. Fix τ , T , and σ as in the hypotheses. By Lemma 2.4 there
is a nonempty (J,<) and a closed L(RJ)-structure M that models T ,
but ||σ||M < 1. Form the first-order structure M = (M,L(RJ), . . . )
described above. Let M0 be any countable elementary substructure of
M. Note that by elementarity the BL-chain associated to M0 is equal
to L(G) for some infinite ordered abelian group G.

We now form an increasing elementary chain of countable (first-
order) structures M0 � M1 � . . . as follows: Given Mk consider the
type p(x) stating that x is in the L-sort, x > 0, but for any element
c in the L-sort of Mk, x < nc for all positive integers n. p is clearly
consistent since the L-sort of Mk has the form L(Gk) for some infi-
nite ordered abelian group Gk. So choose Mk+1 to be any countable
elementary extension of Mk that realizes p.

Let M
∗ = (M∗, L∗, . . . ) be the union of the chain, let L∗ = (L∗,+,≤

, 0, 1), and let M∗ be the L∗-structure coded by M
∗. Since M0 � M

∗,
M∗ is a closed model of T with ||σ||M∗ < 1. Also, L∗ = L(G∗) for
some ordered abelian group G∗. As well, our construction guarantees
that there is no smallest archimedean class of the negative elements
of G∗. By Theorem 1.10 we can choose (J,<) and an archimedean
surjection f : G∗ → RJ . It follows from Proposition 1.9 that f(M∗)
is closed, is a model of T , and ||σ||f(M∗) < 1. Since G∗ is countable,
J is countable. Furthermore, J has no smallest element. Thus, there
is an order-preserving coinitial map g : J → Q. This map induces a
BL-chain embedding g′ : L(RJ) → L(RQ). Since f(M∗) is a closed
L(RJ)-structure, it follows from our construction and Lemma 2.3 that
g′(f(M∗)) is a closed L(RQ)-structure that models T with ||σ|| < 1.

3. Initially dense linear orderings

In this section we obtain a dichotomy among the sets of L(RJ)-
tautologies that is related to the order type of (J,<).

Definition 3.1. A linear ordering (J,<) is initially dense if there is a
coinitiality preserving embedding f : (Q, <) → (J,<).

It is readily checked that if (J,<) is countable, then J is not initially
dense if and only if there is some a ∈ J such that {b ∈ J : b ≤ a} is
scattered. The following theorem indicate that the BL-chain L(RJ) is
universal in a strong sense whenever J is initially dense.
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Theorem 3.2. Suppose that (J,<) is initially dense. If σ is any sen-
tence and T ⊇ Π∀ is any theory that has a model that does not model σ,
then there is a closed L(RJ)-model of T that does not model σ. In par-
ticular, a sentence σ is an L(RJ)-tautology if and only if σ is provable
from Π∀.

Proof. Fix T and σ as in the hypothesis. By Theorem 2.9 there
is a closed L(RQ)-structure M that models T but does not model σ.
Fix a coinitiality preserving embedding of (Q, <) into (J,<). This
embedding naturally induces a coinitiality preserving ordered group
homomorphism f : RQ → RJ of lexicographic sums, which in turn
yields a BL-chain embedding f : L(RQ) → L(RJ) that respects 0. Since
M is closed, Lemma 2.3 implies that f(M) is the desired structure.

By contrast, Montagna [Mo] proves that the set of tautologies of
L(R1) is not arithmetical. Here we extend his method to show that the
set of L(RJ)-tautologies are not arithmetical whenever J is countable
but not initially dense. We begin our analysis with a construction that
appears in [Mo].

Let τ be a finite, relational vocabulary (for simplicity we do not
allow τ to have any constant symbols in this discussion) containing a
distinguished binary relation E. For any τ -formula ϕ, let ϕ◦ denote the
τ -formula in which every relation symbol R ∈ τ is replaced by ¬¬R.
Note that if M is any model of Π∀ then ||R◦(a1, . . . , an)||M ∈ {0, 1}
for any a1, . . . an from M and ||R◦(a1, . . . , an)||M = 1 if and only if
||R(a1, . . . , an)||M > 0. It follows by induction on the complexity of ϕ
that ||ϕ(ā)||M ∈ {0, 1} for any τ -formula ϕ and any tuple ā from M .
Moreover, the interpretation of quantifiers is as in 2-valued logic, e.g.,
||∃xϕ◦(x, ā)||M = 1 if and only if ||ϕ◦(b, ā)||M = 1 for some b ∈M .

Let Quot(τ) denote the conjunction of (finitely many) axioms assert-
ing that E◦ is an equivalence relation and that

∀x1, . . . , xn∀y1 . . . , yn(
∧

i

E◦(xi, yi) ∧R
◦(x1, . . . , xn) → R◦(y1, . . . , yn))

for each relation symbol R ∈ τ . Note that ||σ||M ∈ {0, 1} for each
σ ∈ Quot(τ) and any model M of Π∀. We call a model M of Π∀ τ -
quotientable (with respect to the distinguished relation E) if ||σ||M = 1
for all σ ∈ Quot(τ). As the name suggests, it is easily checked that
if M is τ -quotientable, then E◦ is an equivalence relation on M . As
notation, for each a ∈M , let [a] = {b ∈M : ||E◦(a, b)||M = 1} and let
M◦ = {[a] : a ∈M}. Furthermore, we can define an L({0, 1})-structure
M◦ with universe M◦ by positing that RM

◦

([a1], . . . , [an]) holds if and
only if ||R◦(a1, . . . , an)||M = 1. (The axioms of Quot(τ) guarantee that
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this is well-defined.) It follows by induction on the complexity of ϕ
that

M◦ |= ϕ([a1], . . . , [an]) if and only if ||ϕ◦(a1 . . . , an)||M = 1

for any choice of representatives for [a1], . . . , [an].
Let τa = {E,L, S, Z,A, P} denote the (relational) language of arith-

metic. The relations E,L, S are binary and their intended interpreta-
tions are equality, strict less than, and the graph of the successor func-
tion. Z is unary and is intended to denote the class of zero elements,
while A and P are ternary and are intended to represent the graphs of
addition and multiplication. Let N denote the standard {0, 1}-model
of arithmetic in the vocabulary τa, i.e., the universe of N is ω and each
of the relations are given their intended interpretations.

Next, let Q∗ be the finite set of τa-sentences Quot(τa), together with
modified versions of each axiom of Robinson’s Q. The modifications
are two-fold. First, they need to be written in our relational language
τa. Second, we replace each relation symbol R by R◦. So, for example,
the axiom ∀x(x < S(x)) becomes ∀x∀y(S◦(x, y) → L◦(x, y)).

It is easily checked that if M is any model of Q∗ then the two-valued
structure M◦ (which is well-defined since M is quotientable) is a model
of Robinson’s Q. Note that Robinson’s Q is strong enough to determine
the ‘standard part’ of any two-valued model of Q. In particular, if
M◦ |= Q is ‘standard’, i.e., every class is an iterated successor of the
zero class, then M◦ is τa-isomorphic to N.

Let τU = τa ∪ {U}, where U is a unary predicate. We will be in-
terested in structures M in the vocabulary τU and their reducts to
τa.

Definition 3.3. A structure M modelling Π∀ in the vocabulary τU
has a standard arithmetical part if ||σ||M = 1 for all σ ∈ Q∗ and the
associated two-valued structure M◦ is τa-isomorphic to N.

Let Ψ denote τU -sentence that is the conjunction of Q∗ with the
following five sentences:

• ψ1 := ∀x¬¬U(x);
• ψ2 := ¬∀xU(x);
• ψ3 := ∀x∀y(E◦(x, y) ∧ U(x) → U(y));
• ψ4 := ∀x∀y(L◦(x, y) ∧ U(y) → U(x));
• ψ5 := ∀x∀y(S◦(x, y) ∧ U(y) → (U(x)&U(x)&U(x))).

Lemma 3.4. If (J,<) is countable then there is an L(RJ)-model of Ψ.

Proof. Fix any countable J . Since RJ has countable coinitiality,
we can choose elements 〈bn : n ∈ ω〉 from RJ such that {bn : n ∈ ω}
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are coinitial and such that bn+1 < 3bn for each n ∈ ω. Let M be the
structure in the vocabulary τU with universe ω in which each of the
relations in La is given its ‘standard’ interpretation and ||U(n)||M = bn
for each n ∈ ω.

Proposition 3.5. Suppose that (J,<) is countable but not initially
dense and M is any LU(RJ)-model of Π∀ such that ||Ψ||M > 0. Then
M has a standard arithmetical part.

Proof. Fix such a (J,<) and M. To ease notation, we write || · || in
place of ||·||M throughout the proof of this lemma. Let ||Ψ|| = γ. Since
γ 6= 0, γ ∈ N(RJ). Since ||σ|| ∈ {0, 1} for each σ ∈ Q∗, it follows that
||σ|| = 1 for each σ ∈ Q∗. Thus, the reduct of M is τa-quotientable.
As well, since ||ψ1|| > 0 ||U(a)|| 6= 0, hence ||U(a)|| ∈ N(RJ) for all
a ∈ M . Since ||ψ2|| 6= 0, {||U(a)|| : a ∈ M} is coinitial in N(RJ).
Since ||ψi|| ≥ γ for i ∈ {3, 4, 5}, ||U(b)|| ≤ ||U(a)|| − γ whenever either
E◦(a, b) or L◦(a, b) hold, and

(3) ||U(b)|| ≤ 3||U(a)|| − γ

whenever S◦(a, b) holds. (Recall that γ is a negative element of RJ .)
Fix an element c ∈M such that ||U(c)|| ≤ 2γ. It follows from (3) that

(4) ||U(b)|| ≤ 2||U(a)||

whenever L◦(c, a) and S◦(a, b) hold.
Now assume by way of contradiction that M◦ 6∼= N. Thus M◦ |= Q,

but has nonstandard elements. By iterating (4),

(5) ||U(b)|| << ||U(a)||

whenever L◦(c, a) and L◦(a, b) hold, and [b]− [a] is nonstandard. That
is, ||U(b)|| is in a strictly smaller archimedean class than ||U(a)||. This
fact, together with the fact that {||U(a)|| : a ∈ M} is coinitial in RJ

imply that RJ has no smallest archimedean class, i.e., J has no least
element.

Fix c∗ ∈M such that L◦(c, c∗) and ||U(c∗)|| << γ. Since β + γ ∼ β
whenever β << γ, ||ψ3|| ≥ γ implies ||U(a)|| ∼ ||U(a′)|| whenever
L◦(c∗, a), L◦(c∗, a′) and E◦(a, a′). That is, the archimedean class of
||U(a)|| depends only on [a]. As well, suppose that L◦(c∗, a), L◦(a, b),
and [b] − [a] is a nonstandard element of M◦. Let d be any element in
the E◦-class of ([a]+ [b])/2 (which exists since M◦ |= Q). Then [b]− [d]
and [d] − [a] are nonstandard elements and (5) yields

(6) ||U(b)|| << ||U(d)|| << ||U(a)||
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We will obtain a contradiction by constructing a coinitiality preserv-
ing embedding f : Q → J . Let D = {n/2m : n ∈ ω \ {0},m ∈ ω} de-
note the positive dyadics. We will construct an embedding g : D →M
such that L◦(c∗, f(d)) and ||U(d′)|| << ||U(d)|| for all d < d′ from D
and {||U(d)|| : d ∈ D} is coinitial in RJ . Once we have such a g,
then f can be obtained by composing an isomorphism between (Q, <)
and (D,<) with g. Since M◦ is nonstandard and (J,<) is countable
with no minimal element we can find {an : n ∈ ω} from M such
that L◦(c∗, a0), L

◦(an, an+1), ||U(an+1)|| << ||U(an)|| for all n and
{||U(an)|| : n ∈ ω} is coinitial in RJ . We begin our construction of
g by letting g(n) = an. Now suppose {g(n/2l) : n ∈ ω, l ≤ m} have
been defined. Fix an odd n ∈ ω, say n = 2k − 1. Let dk be any
element of the E◦-class of ([g(k/2m)] + [g((k + 1)/2m)])/2. It follows
from (6) that ||U(g((k + 1)/2m))|| << ||U(dk)|| << ||g(k/2m)||, so let
g(n/2m+1) = dk.

Definition 3.6. For σ any sentence in τa, let σ∗ denote the τU -sentence
Ψ → σ◦.

Theorem 3.7. If (J,<) is countable but not initially dense, then the
set of L(RJ)-tautologies in the vocabulary τU is not arithmetical.

Proof. Fix any countable (J,<) that is not initially dense. We
argue that for any τa-sentence σ, σ∗ is an L(RJ)-tautology if and only
if N |= σ (in the usual two-valued sense). The Theorem follows im-
mediately from this by Tarski’s Theorem and the recursiveness of the
map σ 7→ σ∗.

First, suppose that σ∗ is an L(RJ)-tautology. By Lemma 3.4 we
can choose M such that ||Ψ||M > 0. By Proposition 3.5 M is τa-
quotientable and M◦ ∼= N. Since σ∗ is an L(RJ)-tautology and ||Ψ||M >
0, ||σ◦||M > 0. But, as noted earlier, this implies ||σ◦||M = 1, hence
M◦ |= σ◦. Since ¬¬ϕ is equivalent to ϕ in the class of two-valued
structures and M◦ ∼= N, N |= σ.

Conversely, suppose N |= σ. Let M be any L(RJ)-structure with
vocabulary τU . We argue that ||σ∗||M = 1. This is immediate if
||Ψ||M = 0, so assume ||Ψ||M > 0. Then, again by Proposition 3.5,
M is τa-quotientable and M◦ ∼= N. Thus, M◦ |= σ◦, so ||σ◦||M = 1,
which implies ||σ∗||M = 1.

Remark 3.8. Note that the proofs of both Proposition 3.5 and The-
orem 3.7 only require that (J,<) have countable coinitiality (and not
initially dense).
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Corollary 3.9. The following are equivalent for a countable linear or-
der (J,<).

(1) For all countable vocabularies τ , a sentence σ is an L(RJ)-
tautology if and only if σ is provable from Π∀;

(2) For all finite vocabularies τ , the set of L(RJ)-tautologies is
arithmetic;

(3) (J,<) is initially dense.

Proof. Immediate by Theorems 3.2 and 3.7.

Corollary 3.10. Let σ be any τa-sentence such that N |= σ, but Q 6⊢ σ
(in the usual proof theory of first-order logic). Let (J,<) be a countable
linear order. Then σ∗ is an L(RJ)-tautology if and only if (J,<) is not
initially dense.
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