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Abstract  
For the purpose of activity-based travel demand forecasting, the representativeness of the base 
year synthetic population is critical to the accuracy of subsequent simulation outcomes.  To 
date, the conventional approach for synthesizing the base year population is based on the 
methodology first developed by Beckman et al. (1996).  In this paper, we discuss two issues 
associated with this conventional approach.  The first issue is often termed as the 
zero-cell-value problem, and the second issue is related to the inability to control for 
statistical distributions of both household and individual-level attributes.  We then present a 
new population synthesis procedure that addresses the limitations of the conventional 
approach.  The new procedure is implemented into an operational software system and is 
used to generate synthetic populations for the Dallas/Fort-Worth area in Texas.  Our 
validation results show that, compared to the conventional approach, the new procedure 
produces a synthetic population that more closely represents the true population.         
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1 Introduction 

Microsimulation is a mechanism for reproducing or forecasting the state of a dynamic, 
complex, system by simulating the behavior of the individual actors in the system.  There 
has been growing interest in using microsimulation to address policy-relevant issues in 
several fields.  For example, economists have employed microsimulation models of 
household income structure to analyze tax policies (e.g. Creedy et al. 2002).  Urban and 
regional scientists have used microsimulation to assess the impacts of employment and 
welfare policy changes (e.g. Martini 1997).  Transportation engineers and planners are 
employing microsimulation, coupled with activity-based travel demand models, to analyze the 
effects of various demand management policies (e.g. Bhat et al. 2004, Hensher et al. 2004, 
Los Alamos National Laboratory 2005). 
 
In general, microsimulation involves two major steps: (1) constructing a microdata set 
representing the characteristics of the decision agents of interest, and (2) simulating the 
decision agent’s behavior of interest to the analyst and updating decision agents’ 
characteristics based on mathematical and/or rule-based models.  This paper is concerned 
with the methodology used to accomplish the first step of microsimulation, often known as 
population synthesis.  For the purpose of activity-based travel demand forecasting, the 
decision agents to be microsimulated are usually households, and the constituent household 
members, residing in a study area.  Naturally, the representativeness of the synthesized 
population for the base year of the simulation is critical to the accuracy of the ultimate 
simulation outcome.  

  
To date, the conventional approach to synthesize base year population is based on a 
methodology originally developed by Beckman et al. (1996).  This approach involves 
integrating aggregate data from one source with disaggregate data from another source.  The 
aggregate data are typically drawn from aggregate census data, such as the Summary Files 
(SF) of the U.S. and the Small Area Statistics (SAS) file of the U.K..  These data are in the 
form of one-, two-, or multi-way cross tabulations describing the joint aggregate distribution 
of salient demographic and socio-economic variables at the household and/or the individual 
levels.  The disaggregate data, on the other hand, usually represent a sample of households 
with information on the characteristics of each household and each person in it.  Examples 
include the Public-Use Microdata Samples (PUMS) of the U.S. and the Sample of 
Anonymized Records (SAR) of the U.K..  Beckman et al.’s population synthesis approach 
uses the disaggregate data as “seeds” to create individual population records that are 
collectively consistent with the cross tabulations provided by the aggregate data.  This 
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conventional approach has been incorporated in most deployment initiatives of activity-based 
travel simulation systems, particularly in the United States. 

   
Most existing population synthesizers based on the conventional approach are 
application-specific in that they have been developed to create a synthetic population for a 
fixed combination of variables and for a given geographical area.  The lack of re-usability of 
these population synthesizers implies a need to re-implement a synthesizer whenever the 
activity-based travel simulation approach is applied to a new study area.  This can be rather 
cumbersome, and can impede the widespread adoption of the activity-based approach.  Thus, 
it is highly desirable to develop a flexible and reusable population synthesizer. 
 
The current study is motivated by the emerging need for a reusable population synthesizer, as 
well as the very limited advancements in synthesizing methodology since Beckman et al.’s 
original contribution.  Specifically, our objectives are twofold.  First, we discuss a number 
of issues underlying the Beckman et al. approach and discuss possible solutions to resolve 
these issues.  Second, we describe proposed modifications and enhancements to the 
Beckman et al. approach in the context of designing a flexible and generic population 
synthesis tool.     
 
The remainder of this paper is organized as follows.  Section 2 discusses the conventional 
approach to solving the population synthesis problem.  Section 3 examines a number of 
issues related to the implementation and application of this conventional approach.  Section 
4 describes a generic algorithm that we propose for population synthesis.  Section 5 presents 
validation results for our proposed algorithm.  Section 6 concludes with summary remarks 
and a discussion of directions for future research.   

2 Conventional Approach 

The conventional population synthesis procedure typically starts with identifying the 
socio-demographic attributes desired of the synthesized households and/or individuals.  
These are the attributes considered to significantly impact the behavioral outcome of 
individuals.  For the purpose of the subsequent discussion, let the number of attributes 
desired for the synthesized households be H and denote the attributes by a vector of variables 
V={ }.  For example, H can be 2, and the attributes may be V={Household size, 
Household income}. Similarly, let the number of individual-level attributes be P and denote 
the attributes by a vector of variables U={ }.  The variables are typically 

HVVV ,,, 21 K

PUUU ,,, 21 K
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defined as categorical variables, for example, a 6-way classification of household type or a 
7-way classification of race.  
 
As mentioned earlier, the synthesis of socio-demographic attribute values involves integrating 
an aggregate dataset with a disaggregate dataset.  The aggregate dataset comprises a set of 
cross-tabulations that, at a relatively fine spatial resolution (for example, census blocks), 
describe the one-, two-, or multi-way distributions of some, but not all, of the desired 
socio-demographic attributes.  We refer to these attributes with known distributions as the 
control variables and the spatial units for which the aggregate distribution information is 
available as the target areas.  The disaggregate dataset, on the other hand, provides 
information about all the socio-demographic variables of interest, but only for a sample of 
households and individuals.  The spatial units for which this disaggregate information is 
available – hereafter referred to as the seed areas - are typically larger than the target areas 
(e.g. the PUMS data is available for the Public Use Microdata Areas, or PUMA, which are 
areas of no less than 100,000 population).  For ease in discussion, we assume that each target 
area t can be uniquely mapped to a single seed area st.   
 
The basic population synthesis procedure entails repeating the following steps for each target 
area t in the study region: 

Step 1. Estimate the K-way joint distribution, where K is the number of control 
variables, such that the resulting distribution (a) satisfies the marginal 
distributions known about the control variables for t (as informed by the 
aggregate dataset) and (b) preserves the correlation structure observed in the 
sample households associated with st (from the disaggregate dataset).   

Step 2. Select and copy sample households (and their constituent members) from st 
into t so that the resulting joint distribution is consistent with the distribution 
obtained in Step 1.   

Each of these two steps is further discussed below. 

2.1 Estimating the Complete Distribution  
The problem of estimating a full contingency table (i.e. the complete distribution across all 
control variables), based on known marginal distributions, has been studied since as early as 
1940.  Deming and Stephan (1940) were the first to apply the now well-known iterative 
proportional fitting procedure (IPFP) as a way for estimating the cell probabilities pij in a 
two-dimensional contingency table, given a sample of n observations in the disaggregate data 
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and known marginal totals pi. and p.j from the aggregate data. The IPFP begins by initializing 
the cell probabilities with the proportion of observations found in the sample: 

( )
ijijp π=0 , where nnijij /=π .. ...................................................................................(1) 

Each subsequent iteration consists of stepping through the list of marginal distributions and 
scaling the current cell estimates to make the current table estimate consistent with the 
marginal distribution (see, for example, Fienberg, 1970, and Beckman et al., 1996, for a 
detailed discussion of the algorithm).  The iterations continue until the relative change in cell 
values between successive iterations is small.  As Mosteller (1968) pointed out, the 
interaction structure of the initial cell values as defined by the cross product ratios is 
preserved at each iteration I: 
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Furthermore, according to Ireland and Kullback (1968), the IPFP produces estimates of the 
pij’s that minimize the discrimination information:  

( ) (∑∑ /ln=,
i j

ijijij pppI ππ ). ......................................................................................(3) 

In other words, the procedure yields the constrained maximum entropy estimates of the pij’s, 
and the resulting contingency table is the one least distinguishable from the contingency table 
given by the sample (Wong, 1992). The procedure has been shown to converge at the optimal 
solution and is easily extended to estimating contingency tables of higher number of 
dimensions (Ireland and Kullback, 1968).  
 
Beckman et al. (1996) were the first to apply the IPFP to solve the population synthesis 
problem.  In their paper, they provided a detailed example illustrating how the procedure 
may be applied to generate the full multi-way distribution for a set of household-level control 
variables , where , leaving all the individual-level socio-demographic variables in 
U uncontrolled.  Values for the uncontrolled variables are directly ‘copied’ from sample 
households and individuals.  The sample data that provided the observed correlation 
structure is the PUMS and the marginal totals are extracted from a number of census 
summary tables.  This IPFP-based procedure developed by Beckman et al. has since been 
used in most activity and travel simulation studies to date.      

V ′ VV ⊆′
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2.2 Selecting Sample Households   
The K-way joint distribution resulting from the IPFP gives the relative proportion of each 
homogenous grouping of households in t.  In Beckman et al. (1996), the table of proportions 
(which are values between 0 and 1) is then converted into a table of integer values 
representing the expected numbers of households to be created for each demographic group.  
The conversion (sometimes referred to as integerization) of the multi-way distribution table 
can be achieved by multiplying the proportions by the total number of household expected for 
the target area.  The values are then rounded up (or down) to the next larger (or smaller) 
integer values.  The rounding inevitably introduces deviations from the original correlation 
structure and marginal totals.  Subsequent adjustments to the rounded values are usually 
required if the resulting marginal totals are to be perfectly consistent with the original 
marginal totals.   
 
Once the expected number of households in each demographic group is determined, each 
sample household associated with the corresponding seed area st is assigned with a probability 
of being selected into the target area t.  The probability is typically a function of the sample 
weight associated with the household record, the expected number of households to be 
generated for the given demographic group, and the number of other households in the sample 
that belong to the same demographic group.  Based on the probability values, sample 
households are then randomly drawn either with or without replacement using a Monte Carlo 
procedure.  The random draw continues until the expected number of households has been 
obtained for each demographic group. 
 
When a sample household is selected for the target area, its attribute values for the controlled 
variables as well as the uncontrolled, but desired, variables are used to create a synthetic 
household for the target area.  Values for the person-level variables are also used to create 
the synthetic individuals that make up the household.     

3 Implementation and Application Issues 

In this section, we discuss two issues that arise from implementing and applying the basic 
algorithm described in the preceding section.  If left unaddressed, these issues may 
significantly diminish the representativeness of the synthesized population. 
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3.1 Incorrect zero cell values  
The first issue is inherent to the process of integrating aggregate data with sample data, and 
the problem occurs when the demographic distribution derived from the sample data is not 
consistent with the distribution expected of the population.  Specifically, consider a 
demographic group that is present in the population as represented by the aggregate data but 
not represented in the sample of the disaggregate data.  The cell in the contingency table that 
corresponds to this demographic group will take an initial value of zero and will remain zero 
throughout the IPFP iterations.  However, such ‘incorrect’ zero cell values will prevent the 
iterations from ever reaching the given marginal totals of the aggregate data.  Consequently, 
the IPFP will fail to converge.   
 
There are a number of ways to get around this issue.  The first, and perhaps the easiest, 
approach is to terminate the IPFP when a pre-specified maximum number of iterations have 
been reached.  Although this implies that the procedure does not exit at proper convergence, 
the resulting contingency table estimates usually satisfy the marginal totals reasonably well 
with a large enough maximum-iteration threshold value.  The second approach for 
overcoming the issue involves replacing the incorrect zero cell values with small, positive, 
values (e.g. 0.01).  This ‘tweaking’ – as referred to in Beckman et al. (1996) – allows the 
IPFP to converge at the expense of an arbitrarily introduced bias in the underlying correlation 
structure.  However, according to Beckman et al. (1996), who evaluated and compared the 
tweaking approach against the maximum threshold approach, the former did not outperform 
the latter and was therefore not recommended.  The third approach is to reduce the 
occurrences of ‘incorrect’ zero cell values by appropriately defining the variable class 
intervals.  For example, compared to a 12-way classification of household type, a more 
aggregate 6-way classification will provide a less sparse contingency table, which is likely to 
contain fewer incorrect zero cell values.  This more aggregate classification, however, results 
in a coarser representation of household types throughout the microsimulation process.  In 
view of this trade-off between the accuracy of the IPFP results and the level of detail in 
population representation, one needs to examine the statistical distributions underlying the 
data and define the control variables accordingly.  This process would be aided with a 
population synthesizer that allows the user to explore and modify his/her choice of control 
variables without making any code-level changes. 

3.2 Individual-Level Variables Uncontrolled 
The second issue relating to Beckman et al.’s approach arises from the fact that the approach 
can control for either household-level or person-level variables, but not both.  This is 
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because Step 2 of the algorithm is designed to account for only one contingency table; yet the 
data available for population synthesis typically do not support the estimation of a single 
contingency table that represents the joint distribution of household-level and individual-level 
attributes.  For example, the U.S. census SF1 provides separate tables on the marginal 
distribution of household size – a household-level attribute – and the marginal distribution of 
gender – a person-level attribute.  Since the household size table contains household counts 
and the gender table contains person counts, it is conceptually infeasible to construct a 
two-dimensional contingency table of household size by gender.  This is why past efforts of 
population synthesis have accounted for only the household-level contingency table during 
the sample household selection stage, leaving the individual-level variables uncontrolled.  
This means, for example, the resulting gender distribution in the synthesized population is 
likely to deviate from the known gender distribution given by SF1.  The deviation could 
severely affect the accuracy of the subsequent microsimulation outcome.  Thus, a 
methodology that controls both the household- and individual-level distributions is needed.     

4 Proposed Algorithm and Implementation Considerations 

In this section, we describe a population synthesizing system that has been developed in view 
of the two issues discussed in Section 3.  This system features: 

1. Generic data structures and accompanying functions to help circumvent the incorrect 
zero cell value problem by providing users the capability to specify their choice of 
control variables and class definitions at run-time; and 

2. An overall algorithm modified from Beckman et al.’s basic algorithm to allow 
simultaneous control for household- and person-level variables.   

These two aspects of the proposed system are discussed in detail below. 

4.1 Data structures and operations 
The proposed population synthesis system was designed using the object-oriented 
programming (OOP) paradigm, which promotes highly modular computer code and facilitates 
direct mapping from real-world objects to programming components.  The core data objects 
in our system design are of three types: Variable, Table, and Tables.  A Variable object 
represents a control variable and can either be a household-level or person-level 
socio-demographic variable.  A variable is characterized by a text label, an ID, and its size 
(i.e. the number of values it can possibly take).  A Table object represents an aggregate 
cross-tabulation that provides the marginal distributions of the control variables.  A table is 
characterized by an array of variable IDs that define the cross-tabulation and a variable-size 
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multi-dimensional matrix of cell values that describes the actual tabulation.  A Tables object 
represents a collection of the Table objects that need to be merged to form the complete 
contingency table.   
 
A number of implementation details are worth noting here.  First, we allow the attribute 
values characterizing the Variable, Table, and Tables objects to be determined at run-time as 
opposed to being hard-coded in the program.  This approach provides flexibility to 
experiment with different choices of control variables and/or reusability to apply the system 
to an entirely different empirical context.  Second, we develop a recursive algorithm that 
wraps around the IPFP to merge any given two tables with common variables (see Figure 1).  
A recursive algorithm is an algorithm that solves a problem by calling itself with "smaller" 
input values and that has a base part to compute the solution for the smallest input without 
making any calls to itself.  In Figure 1, the lines of code between the IF and ELSE statements 
form the recursive part of the algorithm that ‘strips off’ variables common to two input tables.  
The lines between the ELSE and END-IF statements form the base part where the IPFP is 
performed on two tables that have no variables in common.   Third, the synthesizer is built 
with an error reporting mechanism that tracks any non-convergence problems encountered 
during the IPFP and informs the user of the locations of any incorrect zero cell values.   
 

 

PROCEDURE MergeTables 

IF Table1 and Table2 have a variable Vk in common, THEN 

Initialize NewTable to an empty table 

FOR each value (denoted as i) of Vk

Extract Table1’ from Table1 that satisfies Vk=i 

Extract Table2’ from Table2 that satisfies Vk=i 

CALL MergeTables with Table1’ and Table2’ RETURNING NewTable’ 

Append NewTable’ to NewTable 

END-FOR 

ELSE 

 DETERMINE NewTable by performing IPFP on Table1 and Table2 

 RETURN NewTable 

END-IF 

END-PROCEDURE 

FIGURE 1  A recursive procedure for merging any two contingency tables with common 
variables.  
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4.2 Proposed Algorithm 
Figure 2 provides an overview of the algorithm that we have developed for creating the 
synthetic population for a given target area.  The algorithm includes a number of major 
steps: (1) determine the household-level multi-way distribution, (2) determine the 
individual-level multi-way distribution, (3) initialize the household- and individual-level 
counts, (4) compute selection probabilities, (5) select a sample household, (6) check 
household desirability, (7) add the selected households to the target area, and (8) update the 
household- and individual-level counts.  We discuss each of these steps is in turn below.  
An example is also provided in the Appendix to demonstrate the application of our proposed 
algorithm. 

4.2.1 Determine Household-Level Multi-Way Distribution 

Given the aggregate (e.g. U.S. Census Summary Tables) and disaggregate (e.g. U.S. PUMS 
data) input data, this step creates the full multi-way distribution across all the household-level 
control variables using the IPFP-based recursive procedure outlined in Figure 1.  We denote 
each cell in the resulting household-level multi-way distribution by HH[v1, v2, …, vk, …], 
where the index vk is the value of the kth household-level controlled variable, vk = 1, …, Mk.  
HH[v1, v2, …, vk, …] gives the expected number of households with attribute values of (v1, v2, 
…, vk, …) in the target area. 

4.2.2 Determine Individual-Level Multi-Way Distribution 

This step creates the full multi-way distribution across all the individual-level controlled 
attributes, also using the procedure presented in Figure 1.  We denote each cell in the 
resulting individual-level multi-way distribution by POP[v1, v2, …, vl, …], where the index vl 
denotes the value of the lth individual-level variable, vl = 1, …, Nl.  POP[v1, v2, …, vl, …] 
thus gives the expected number of individuals with attribute values of (v1, v2, …, vl, …) in the 
target area.  It should be noted that the cell values in both HH and POP will be used as they 
are without being rounded to integer values.   
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FIGURE 2  Overview of the proposed population synthesis algorithm. 

4.2.3 Initialize Household- and Person-Level Counts 

Two multi-way tables, HHI and, POPI are used to keep track of the numbers of households 
and individuals belonging to each demographic group that have been selected into the target 
area during the iterative process.  At the start of the process, the cell values in the two tables 
are initialized to zero to reflect the fact that no households and individuals have been created 
for the target area.  During subsequent iterations, these cell values will be updated as 

Determine multi-way distribution for 
HH-level controlled variables  

(Section 4.2.1) 

Determine multi-way distribution for 
person-level controlled variables 

(Section 4.2.2) 

Compute selection probabilities based 
on HH-level target distribution  

(Section 4.2.4) 

Randomly select a PUMS HH based on 
selection probabilities  

(Section 4.2.5) 

Is the selected 
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Update HH- and individual-level  
count tables  

(Section 4.2.8) 

No 
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Add a copy of this HH to  
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HH-level 
Summary Tables

PUMS  Person-level 
Summary TablesRecords 

Initialize HH- and person-level counts 
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Loop until the 
desired number 
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reached

 11



households and individuals are selected into the target area (see Section 4.2.8 for further 
discussion of the updating procedure).  

4.2.4 Compute Household Selection Probabilities 

Given the target distribution (HH) and the current distribution (HHI) of households already 
selected into the target area, each PUMS sample household in the corresponding seed area is 
assigned with a probability of being selected into the target area in the current iteration.  The 
probability of household i being selected is computed by 
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In the above equation, wi is the PUMS weight associated with household i.  The vector (v1, 

v2, …, vk, …) reflects the characteristics of household i.  takes a value of 1 if the jj
vvv k

Y LL ,,,, 21

th 

household is characterized by(v1, v2, …, vk, …) (i.e., the same as the ith household), and a 
value of 0 otherwise.  The equation implies that the selection probability of a sample 
household decreases as more households from the same demographic group are selected into 
the target area. 

4.2.5 Randomly Select a Household 

Based on the probabilities computed in the previous step, a household is randomly drawn 
from the pool of sample households to be considered for “cloning” and added to the 
population for the target area. 

4.2.6 Check Household Desirability 

Given a randomly selected household characterized by (v1,v2,…, vk,…), we will add a copy of 
this household into the population for the target area if the following conditions hold: 

1. The number of such households already selected into the target area (as given by 
) is lower than a pre-specified maximum threshold.  Ideally, this 

threshold should be set to the target value given by  so that the 
number of households characterized by (v

],,,,[HHI 21 LL kvvv
],,,,HH[ 21 LL kvvv

1,v2,…, vk,…) is never higher than desired.  
However, such a condition may be undesirable for at least two reasons.  First, when 
incorrect zero cell values are found for certain demographic groups, the target total 
number of households in the area would never be met unless households of other 
demographic groups are allowed to be over-selected.  Second, since the dual goals of 
satisfying the household-level target distribution and satisfying the individual-level 
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target distribution may be conflicting in nature, fitting the synthetic population 
perfectly to the household-level target distribution may prevent the individual-level 
distribution from being satisfied to any acceptable extent.  Therefore, in the proposed 
algorithm, we allow the threshold values to exceed their respective target values by a 
user-specified percentage, hereafter referred to as the percentage deviation from target 
size (PDTS).        

2. For each person in the household, the number of such individuals already selected into 
the target area (as given by ) is lower than a pre-specified 
maximum threshold.  The threshold values are specified as (1+PDTS) of the 
corresponding target cell value .    

],,,,[POPI 21 LL lvvv

],,,,[POP 21 LL lvvv
If any of the above conditions fails, then the household is removed from the consideration set 
so that it will never be selected again. The selection probabilities of the households remaining 
in the consideration set are then updated before the next household is randomly selected. 

4.2.7 Add Household 

If the selected household satisfies the conditions described in Section 4.2.6, then the 
household is added to the pool of the synthetic population for the target area.  As part of this 
step, the household sample weight is decreased by one to implement the ‘random draw 
without replacement’ strategy. 

4.2.8 Update Household- and Individual-Level Counts 
The cell values in the count tables  and  that 
correspond to the selected household and its individuals are incremented accordingly to 
reflect the reduced desirability of such a household and individuals in subsequent iterations. 

],,,,[HHI 21 LL kvvv ],,,,[POPI 21 LL lvvv

5 Validation 

The proposed system was used to generate a synthetic population for the Dallas/Fort-Worth 
Metropolitan Area in Texas.  Census block groups and PUMA were used as the target areas 
and seed areas, respectively.  The aggregate data that provide the marginal distributions 
come from the 2000 U.S. Census SF1 Tables P20, P26, P7, and an aggregate version of P12.  
Table P20 is defined by four household-level variables: HHR_FAM, HH_TYPE, 
HH_CHILDREN, and HHR_AGE; P26 is defined by two household-level variables: 
HH_FAM and HH_SIZE; P7 is defined by the single individual-level variable P_RACE; and 
P12, which is originally defined by P_GENDER and a twenty-three-way classification of age, 
is aggregated along the age dimension to form a two-by-ten table of gender by age (P_AGE).  
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The variables that define these tables are thus considered as controlled variables (see Table 1 
for variable definitions).  The disaggregate data that inform the correlation structure between 
the control variables and provide original copies of subsequently synthesized households is 
the 2000 PUMS data. 

5.1 Verification of IPFP  
Out of the 3372 target areas, 388 and 151 of them had the zero-cell value problem that led to 
improper convergence of the household-level and person-level contingency tables, 
respectively.  These problematic target areas are identified by the discrepancy found between 
the marginal totals in the estimated contingency tables and the control totals given by the 
summary tables.  The discrepancies were found for marginal totals corresponding to the 
following dimensions: (HH_FAM=1, HH_TYPE=5, HH_CHILDREN=0, HHR_AGE=0), 
(HH_FAM=1, HH_SIZE=4, 5, 6), and (RACE=4) – that is, the estimated sizes of these 
population groups as give by the IPFP are zero, yet the actual sizes as given by the aggregate 
data are greater than zero.  Not surprisingly, these are demographic groups relatively smaller 
than other groups (e.g. non-family households that have no children and whose householder is 
under 65 year of age and does not live alone) and, as a result, have not been represented in the 
PUMS data for the problematic target areas.  The magnitudes of the discrepancy vary for 
different target areas and for different marginal totals.  For example, the discrepancy found 
in the marginal total for RACE=4 (i.e. number of native Hawaiian and other pacific islander 
alone individuals) ranges from 1 to 10 (see Figure 3 for the distribution of discrepancies).   
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TABLE 1 Definition of the Control Variables Used in the Validation Study 

Variable Label Size Value Value Description 

HH_FAM 2 0 family 
  1 non-family 

HH_TYPE 6 0 not a household (vacant or GQ) 
  1 family: married couple 
  2 family: male householder, no wife 
  3 family: female householder, no husband 
  4 non-family: householder alone 
  5 non-family: householder not alone 

HH_CHILDREN 2 0 no own children under 18 
  1 own children under 18 years 

HHR_AGE 2 0 15-64 
  1 65 and over 

HH_SIZE 7 0 1-person 
  1 2-person 
  2 3-person 
  3 4-person 
  4 5-person 
  5 6-person 
  6 7-or-more person 

P_RACE 7 0 white alone 
  1 black African-American alone 
  2 American-Indian and Alaska Native alone 
  3 Asian alone 
  4 Native Hawaiian and other Pacific Islander alone 
  5 Some other race alone 
  6 Two or more races 

P_GENDER 2 0 male 
  1 female 

P_AGE 10 0 Under 5 years 
  1 5 to 14 years 
  2 15 to 24 years 
  3 25 to 34 years 
  4 35 to 44 years 
  5 45 to 54 years 
  6 55 to 64 years 
  7 65 to 74 years 
  8 75 to 84 years 
  9 85 and more 
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FIGURE 3  The discrepancy found in the number of Native Hawaiian / Pacific Islander per 
target area.  

5.2 Evaluation of Selection Procedures 
Four alternative implementations of the household selection procedure were evaluated and 
compared.  In the first implementation, households are selected into the target areas without 
any assessment of how well they satisfy the individual-level contingency table, POP[v1, v2, 
…, vl, …].  This represents the conventional approach of not controlling for individual-level 
variables.  The second, third, and forth implementations correspond to setting the PDTS 
(defined in Section 4.2.6) to 0, 5, and 10 for both the household- and individual-level 
distributions. 
 
In order to evaluate the performance of the selection procedures independently from that of 
the IPFP, we focus on the synthetic population generated for 62 census block groups in the 
Tarrant County that do not suffer from the zero cell value problem.  The alternative selection 
procedures are compared based on the percentage difference between the expected size of 
each distinct population group and the corresponding size found in the synthetic population.  
The percentage difference (PD) for cell ( )LL ,,,, 21 kvvv  and target area t are formally 
defined as: 

( )
],,,,[HH

],,,,[HH  ],,,,[HHI,,,,
21

2121
21,

LL

LLLL
LL

kt

ktkt
ktHH vvv

vvvvvvvvvPD −
=  , and 
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( )
],,,,[POP

],,,,[POP  ],,,,[POPI,,,,
21

2121
21,

LL

LLLL
LL

lt

ltlt
ltPOP vvv

vvvvvvvvvPD −
= .....................(5) 

In the first part of the validation exercise, we examine how the magnitudes of the percentage 
differences vary for each distinctive population groups.  This is achieved by first computing 
the absolute percentage differences (APD) for each cell and each target area: 

( ) ( )LLLL ,,,,,,,, 21,21, ktHHktHH vvvPDvvvAPD =  , and 

( ) ( )LLLL ,,,,,,,, 21,21, ltPOPltPOP vvvPDvvvAPD = .. ...............................................(6) 

We then compute the average and standard deviation using the 62 APD values (one for each 
target area) that correspond to each cell.  The averages and standard deviations for the 336 
cells in the household-level contingency table (corresponding to the number of combinations 
across household control variables in Table 1; 72262336 ××××= ) and for the 140 cells in 
the individual-level contingency table (corresponding to the number of combinations across  
individual-level control variables in Table 1; 1027140 ××= ) are plotted in Figure 4 and 
Figure 5, respectively.  In both figures, each data point corresponds to the average/standard 
deviation combinations across the 62 target areas for each table cell; and each data series 
corresponds to one of the four alternative household selection procedures.  The data points 
that are located in the top-right corner of the charts represent the cells (i.e. demographic 
groups) that are difficult to fit.  These are typically cells with target values between 0 and 1 
(for example, one of such cells represents family households of size 3 with male householder 
65 years or older, no wife, and no children under 18).  The process of selecting 0 or 1 
household/individual belonging to these demographic groups into the synthetic population 
inevitably results in deviations from the corresponding cell target values.  These deviations 
in turn result in relatively large APD values. 
  
As shown in Figure 4(a), the four household selection procedures are comparable in their 
household-level APD distributions.  This is because all four procedures take the 
household-level targets into account.  The procedure that considers both the household- and 
individual-level distributions with PTDS=10% results in a slightly less dispersed APD values.  
In comparison, the differences among the alternative procedures are more pronounced in 
Figure 4(b).  Without taking the individual-level target distributions into consideration, the 
conventional approach leads to the widest spread of individual-level APD values as expected.  
On the other hand, when individual-level target distributions are considered during the 
selection process, the resulting APD values are smaller and less dispersed as the PTDS 
increases.  The charts shown in Figure 4(a) and 4(b) together suggest that the proposed 
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algorithm is capable of producing synthetic populations that better represent the household 
and individual population subgroups comprising the true population.   
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FIGURE 4  Comparison of the absolute percentage differences in (a) the household-level 
contingency table and (b) the individual-level contingency table across the four alternative 
household selection procedures. 
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In the second part of our validation exercise, we are interested in how the alternative selection 
procedures compare in the overall.  For each selection procedure, the APD values computed 
by Equation (6) are averaged across all target areas and all cells to arrive at two overall 
average APD values: AAPDHH for the household-level and AAPDPOP for the individual-level.  
The four pairs of AAPD values are summarized in Table 2.  The selection procedures appear 
comparable in terms of AAPDHH.  The procedure with a PTDS value of 0 has the highest 
AAPDHH value of all, mostly due to the restrictive nature of the selection criteria.  Not 
surprisingly, the conventional procedure of not accounting for individual-level distributions 
yields the worst AAPDPOP.  The procedure with 10% PTDS outperforms the other three 
procedures in terms of AAPDHH and AAPDPOP.    
        

TABLE 2  Average Absolute Percentage Differences (AAPD) Computed for the Alternative 
Selection Procedures 

Selection 

Procedure 

Individual-level 

distribution considered 

PTDS value AAPDHH AAPDPOP

1 No N/A 29.6 267.3 

2 Yes 0% 50.2 138.4 

3 Yes 5% 30.5 164.0 

4 Yes 10% 24.0 125.3 

6 Summary and Conclusions 

A new algorithm for population synthesis has been presented in this paper.  The algorithm 
represents an extension of the conventional approach (originally developed by Beckman et al. 
in 1996) by controlling for statistical distributions defined by both household- and 
individual-level variables.  Through generic data structures and operators, our 
implementation allows the user to adjust the choice of control variables and the class 
definition of these variables at run-time.  This flexibility is especially desirable when dealing 
with the incorrect-zero-cell-value problem and when the population synthesis exercise is to be 
performed for different study areas.  It should be noted that, although our particular 
application context of interest is activity-based travel simulation, the discussion and the 
algorithm presented in this paper are relevant to microsimulation in other fields of study. 
 
Our validation results show that the proposed algorithm is capable of producing synthetic 
populations closer to the true population compared to the conventional approach.  The 
performance of the proposed algorithm, however, depends on the PDTS value used.  A 
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higher value of PDTS (10%) appears to strike a better balance at satisfying both the 
household- and individual-level multi-way distributions than lower values of PDTS (0% and 
5%).  Further validation analysis is needed to better understand the sensitivity of the 
algorithm’s performance on PDTS values and to identify ways of selecting the most 
appropriate PDTS value.  Investigation is also underway to explore other ways of 
formulating and solving the population synthesis problem as a constrained optimization 
problem, where the constraints represent the selection of sample households to meet the 
desired sizes of population subgroups.    
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Appendix 

For the purpose of illustrating the population synthesis algorithm presented in Section 4.2, we 
consider a target area of 20 households and 49 people.  Household type (HH_FAM) and 
household size (HH_SIZE) are selected as household-level control variables, while gender 
(P_GENDER) and race (P_RACE) are selected as individual-level controlled variables.  The 
PUMS sample records for the corresponding seed area are listed in Figure A.1.  Based on the 
sample records and the marginal distributions of the controlled variables, we first determine 
the complete household- and individual-level multi-way distribution tables, denoted as 
HH[HH_FAM, HH_SIZE] and POP[P_GENDER, P_RACE] respectively (this corresponds to 
the steps described in Section 4.2.1 and Section 4.2.2).  Both tables are shown in Figure A.2.  
The next step is to set up and initialize the household- and individual-level count tables, 
denoted as HHI[HH_FAM, HH_SIZE] and POPI[P_GENDER, P_RACE] respectively (this 
step corresponds to Section 4.2.3).  As shown in Figure A.3, both tables are filled with 
values of 0 to reflect the fact that no households have yet been selected into the target area.   
 A selection probability is then calculated for each sample household based on 
equation (4) (this step corresponds to Section 4.2.4).  These probability values and the 
corresponding cumulative probabilities are shown in Figure A.4.  Next, a household is 
selected based on a random number draw (this step corresponds to Section 4.2.5).  With a 
random value of 0.635, the household with SERIALNO = 13687 is selected.  Since the 
household satisfies both the household level selection condition (HHI[1,2]<HH[1,2]) and the 
individual-level selection condition (POPI[0, 0]<POP[0,0] and POPI[1, 0]<POP[1,0]), the 
household is now added to the target area (this step corresponds to Section 4.2.6 and Section 
4.2.7).  The current iteration completes with updating the count tables (see Figure A.5; this 
step corresponds to Section 4.2.8). 
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(a) PUMS Housing Unit Record 

SERIALNO HWEIGHT PERSONS HHT Other 
attributes 

2599 6 2 Family: married couple … 

2797 9 3 Family: married couple … 

13687 18 4 Family: married couple … 

21197 18 1 Nonfamily: female living alone … 

15458 6 1 Nonfamily: male living alone … 

24526 6 2 Family: married couple … 

39951 15 2 Family: female householder … 

(b) PUMS Person Record 

SERIALNO PNUM SEX RACE Other attributes 

2599 1 male white alone … 

2599 2 female white alone … 

2797 1 male white alone … 

2797 2 female Some other race alone … 

2797 3 male Some other race alone … 

13687 1 male white alone … 

13687 2 female white alone … 

13687 3 male white alone … 

13687 4 male white alone … 

21197 1 female Black or African American 
alone … 

15458 1 male white alone … 

24526 1 male Asian alone … 

24526 2 female white alone … 

39951 1 male Black or African American 
alone … 

39951 2 male Black or African American 
alone … 

Figure A.1 Sample household and person records for the seed area.  
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Figure A.2 Steps 1 and 2: determine household-level and individual-level multi-way 
distribution tables for the target area.  

 

(a) HHI[H_FAM, H_SIZE] 

H_SIZE (household size)  
0 

(1 person) 
1 

(2 person) 
2 

(3 persons or more) Total 

0 (No) 0 0 0 0 

1 (Yes) 0 0 0 0 

H_FAM 
(whether 
household is a 
family) Total 0 0 0 0 

(b) POPI[P_GENDER, P_RACE] 

P_RACE   
0 

(white alone) 
1 

(black alone) 
2 

(other) Total 

0 (Male) 0 0 0 0 

1 (Female) 0 0 0 0 P_GENDER 

Total 0 0 0 0 

(a) HH[H_FAM, H_SIZE] 
H_SIZE (household size)  

0 
(1 person) 

1 
(2 person) 

2 
(3 persons or more) Total 

0 (No) 3 0 0 3 

1 (Yes) 0 8 9 17 

H_FAM 
(whether 
household is a 
family) Total 3 8 9 20 

 (b) POP[P_GENDER, P_RACE] 
P_RACE   

0 
(white alone) 

1 
(black alone) 

2 
(other) Total 

0 (Male) 16.4 7.6 3 27 

1 (Female) 14.6 7.4 0 22 P_GENDER 

Total 31 15 3 49 

Figure A.3 Step 3: initialize household-level and individual-level count tables. 
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Figure A.4 Step 4: compute the household selection probabilities. 

 

 

 

SERIALNO Probability Cumulative Probability 

2599 0.089 0.000 

2797 0.150 0.239 

13687 0.300 0.539 

21197 0.113 0.651 

15458 0.038 0.689 

24526 0.089 0.778 

39951 0.222 1.000 

(a) HHI[H_FAM, H_SIZE] 

H_SIZE (household size)  
0 

(1 person) 
1 

(2 person) 
2 

(3 persons or more) Total 

0 (No) 0 0 0 0 

1 (Yes) 0 0 1 1 

H_FAM 
(whether 
household is a 
family) Total 0 0 1 1 

(b) POPI[P_GENDER, P_RACE] 

P_RACE   
0 

(white alone) 
1 

(black alone) 
2 

(other) Total 

0 (Male) 3 0 0 3 

1 (Female) 1 0 0 1 P_GENDER 

Total 4 0 0 4 

Figure A.5 Step 8: update the household-level and individual-level count tables. 
 

 25


	Introduction
	Conventional Approach
	Estimating the Complete Distribution
	Selecting Sample Households

	Implementation and Application Issues
	Incorrect zero cell values
	Individual-Level Variables Uncontrolled

	Proposed Algorithm and Implementation Considerations
	Data structures and operations
	Proposed Algorithm
	Determine Household-Level Multi-Way Distribution
	Determine Individual-Level Multi-Way Distribution
	Initialize Household- and Person-Level Counts
	Compute Household Selection Probabilities
	Randomly Select a Household
	Check Household Desirability
	Add Household
	Update Household- and Individual-Level Counts


	Validation
	Verification of IPFP
	Evaluation of Selection Procedures

	Summary and Conclusions
	Acknowledgements
	References
	Appendix

