ABSTRACT

Title of Document: HIGH-PERFORMANCE 3D IMAGE
PROCESSING ARCHITECTURES FOR
IMAGE-GUIDED INTERVENTIONS

Omkar Dandekar, Ph.D., 2008

Directed By: Professor Raj Shekhar (Chair/Advisor),
Professor Shuvra S. Bhattacharyya (Co-advisor),
Department of Electrical and Computer Engineering
Minimally invasive image-guided interventions (IGls) are time and cost
efficient, minimize unintended damage to healthy tissues, and lead to faster patient
recovery. Advanced three-dimensional (3D) image processing is a critical need for
navigation during I1Gls. However, achieving on-demand performance, as required by
IGls, for these image processing operations using software-only implementations is
challenging because of the sheer size of the 3D images, and memory and compute
intensive nature of the operations. This dissertation, therefore, is geared toward
developing high-performance 3D image processing architectures, which will enable
improved intraprocedural visualization and navigation capabilities during 1Gls.
In this dissertation we present an architecture for real-time implementation of
3D filtering operations that are commonly employed for preprocessing of medical

images. This architecture is approximately two orders of magnitude faster than

corresponding software implementations and is capable of processing 3D medical
images at their acquisition speeds.

Combining complementary information through registration between pre- and
intraprocedural images is a fundamental need in the IGI workflow. Intensity-based
deformable registration, which is completely automatic and locally accurate, is a
promising approach to achieve this alignment. These algorithms, however, are
extremely compute intensive, which has prevented their clinical use. We present an
FPGA-based architecture for accelerated implementation of intensity-based
deformable image registration. This high-performance architecture achieves over an
order of magnitude speedup when compared with a corresponding software
implementation and reduces the execution time of deformable registration from hours
to minutes while offering comparable image registration accuracy.

Furthermore, we present a framework for multiobjective optimization of
finite-precision implementations of signal processing algorithms that takes into
account multiple conflicting objectives such as implementation accuracy and
hardware resource consumption. The evaluation that we have performed in the
context of FPGA-based image registration demonstrates that such an analysis can be
used to enhance automated hardware design processes, and efficiently identify a
system configuration that meets given design constraints. In addition, we also outline
two novel clinical applications that can directly benefit from these developments and
demonstrate the feasibility of our approach in the context of these applications. These
advances will ultimately enable integration of 3D image processing into clinical

workflow.

HIGH-PERFORMANCE 3D IMAGE PROCESSING
ARCHITECTURES FOR IMAGE-GUIDED INTERVENTIONS

By

Omkar Dandekar

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2008

Advisory Committee:

Professor Raj Shekhar, Chair/Advisor
Professor Shuvra S. Bhattacharyya, Co-advisor
Professor Rama Chellappa

Professor Manoj Franklin

Professor Yang Tao

© Copyright by
Omkar Dandekar
2008

Dedication

To my Mother, Mangal, Himani, and the memories of my late Father,
for their love and support

Publications

W. Plishker, O. Dandekar, S. Bhattacharyya, and R. Shekhar, “Towards a
heterogeneous medical image registration acceleration platform,” IEEE

Transactions on Biomedical Circuits and Systems, (in preparation), 2008.

R. Shekhar, O. Dandekar, V. Bhat, R. Mezrich, and A. Park, "Development of
CT-guided minimally invasive surgery,” Surgical Innovation, (in

preparation), 2008.

O. Dandekar, W. Plishker, S. S. Bhattacharyya, and R. Shekhar,
“Multiobjective optimization for reconfigurable implementation of medical
image registration,” International Journal of Reconfigurable Computing,
(under review), 2008.

P. Lei, O. Dandekar, D. Widlus, P. Malloy, and R. Shekhar, “Incorporation of
PET into CT-guided liver radiofrequency ablation,” Radiology, (under
revision), 2008.

O. Dandekar, W. Plishker, S. S. Bhattacharyya, and R. Shekhar,
“Multiobjective optimization of FPGA-based medical image registration,”
presented at IEEE Symposium on Field-Programmable Custom Computing
Machines, 2008.

O. Dandekar and R. Shekhar, “FPGA-accelerated deformable image
registration for improved target-delineation during CT-guided interventions,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 1 (2), 2007, pp.
116-127.

O. Dandekar, C. Castro-Pareja, and R. Shekhar, “FPGA-based real-time 3D
image preprocessing for image-guided medical interventions,” Journal of
Real-Time Image Processing, vol. 1 (4), pp. 285-301, 2007.

W. Plishker, O. Dandekar, S. Bhattacharyya, and R. Shekhar, “Towards a
heterogeneous medical image registration acceleration platform,” presented at
IEEE Biomedical Circuits and Systems Conference, 2007, pp. 231-234.

O. Dandekar, K. Siddiqui, V. Walimbe, and R. Shekhar, “Image registration
accuracy with low-dose CT: How low can we go?,” presented at IEEE
International Symposium on Biomedical Imaging, 2006, pp. 502-505.

C. R. Castro-Pareja, O. Dandekar, and R. Shekhar, “FPGA-based real-time
anisotropic diffusion filtering of 3D ultrasound images,” in SPIE Real-Time
Imaging, 2005, pp. 123-131.

S. Venugopal, C. R. Castro-Pareja, and O. Dandekar, “An FPGA-based 3D
image processor with median and convolution filters for real-time

applications,” in SPIE Real-Time Imaging, 2005, pp. 174-182.

Acknowledgements

I would like to express my sincere gratitude to Dr. Raj Shekhar for his
guidance and financial support throughout my graduate education at The Ohio State
University, the Cleveland Clinic, and University of Maryland. He has been the perfect
mentor for my doctoral research, and a person from whom | have learnt a lot during
the past five years. He ensured that | master not only the intricacies of medical image
processing, but also put a strong emphasis on developing the qualities necessary for
effective dissemination of scientific research and results. Beyond doubt, he has
played the most important role in shaping my technical writing and presentation
skills. All throughout my graduate career he has made himself available at any
moment when | needed his inputs and feedback for my work or anything else. The
time spent working with Dr. Shekhar has truly been the most rewarding career
experience of my life.

I would also like to thank my dissertation committee members, Prof. Shuvra
Bhattacharyya, Prof. Rama Chellappa, Prof. Manoj Franklin, and Prof Yang Tao for
their cooperation and support. I would especially like to thank Prof. Bhattacharyya for
his help and collaboration in my work that resulted in an important chapter of this
dissertation. The research work reported in this dissertation was partly supported by
U.S. Department of Defense (TATRC) under grant DAMD17-03-2-0001.

My research at the University of Maryland would not have been
possible without the support and encouragement of Drs. Rueben Mezrich, Adrian
Park, Eliot Siegel, Khan Siddiqui, Nancy Knight, Faaiza Mahmoud, Steve Kavic, and

all clinical staff at the University of Maryland and Baltimore VA. Whenever |

requested, they have spared valuable time from their busy schedules for discussions
with me, and have been immensely helpful especially during the clinical validation
studies. Dr. Siddiqui, in particular, was instrumental in providing clinical perspective
on some of the research problems I have explored.

I would like to thank Prof. Jogikal Jagadeesh for allowing me to work in his
lab during my first two years at the Ohio State University, and for his crucial
guidance during early stages of my graduate education. | am also thankful to Dr.
Carlos R. Castro-Pareja, Dr Vivek Walimbe, Dr William Plishker, Dr. Jianzhou Wu,
Peng Lei, and Venkatesh Bhat from Dr. Shekhar’s research group for providing
valuable help and inputs at various times during my research.

My parents have always been the biggest source of inspiration in my life.
They have always stressed the importance of education and instilled in me the virtues
of honest and dedicated effort, for which I will forever be indebted to them. Their
love and constant encouragement has been an important driving force throughout my
life. 1 would like to thank my sister, Mangal, for her kind words of encouragement
from time to time during the last few years. | would like to especially mention my
long time friends Mukta, Prashant, Sandip, Siddharth, Rahul, Rakhi, and Vinayak, for
always being there with me.

Last, and most importantly, | would like to thank Himani — my wife and my
best friend. She has shown incredible patience and understanding throughout the
course of my graduate studies. 1 would not have been able to successfully complete
my doctoral program without the constant encouragement and motivation she

provided. My achievements are my tribute to her unconditional love and support.

Vi

Table of Contents

DT [oF: 4[] o DO PR USSR ii
o] o] =11 o 1SS ST ii
ACKNOWIEAGEMENES........eiiieiecee e reene e Y
1o (o) O] 41 (=]] SRR vii
LIS OF TADIES ...ttt X
LIS OF FIQUIES ...ttt Xiii
Chapter 1: INtrOAUCTIONoviiie et ns 1
IR O 1 T VT OSSR 1
1.2. Contributions of this DiSSErtationccccvueiererenene s 3
1.2.1. Real-time 3D ImMage PreproCeSSINgcceoueueriererieriisiesiieeeieseesie e 4
1.2.2. Hardware-Accelerated Deformable Image Registration...............cccccveueee. 5
1.2.3. Framework for Optimization of Finite Precision Implementations............ 6

1.3. Outline of this DiSSEItatioNccerueriiiiisisieieee s 7
Chapter 2: Background and Related WOrKccooiieiineninisineeeee e 9
2.1. Image-Guided INtErVENTIONScceeiiiiiieeie e 9
2.1.1. Role of Preprocedural IMaging.........ccccueiereierenineiineeeeee s 10
2.1.2. Need for Image Registration............cccevvveviiieiiece e 12

2.2. Classification of Image RegiStration...........cccevuereiireninenisieieese e 13
2.2.1. Image Registration using Extrinsic Information..............cccccooveveiieinnen. 14
2.2.2. Image Registration using Intrinsic Information.............cccceeeviieniinnnnn. 15

2.3. Intensity-Based Image Registration............ccccovvvvieieeve e 17
2.3.1. Transformation MOdEIS..........cccooeiieiiiieiieree e 18
2.3.2. Image Similarity MEASUIESccccviieiierie et 22
2.3.3. Optimization AIGOrthMS ..o 26

2.4, IMAQgE PrePrOCESSING ..c..eivviiveeieeieitee it ettt ste et eeae e te et enteeseesreennas 28
2.4.1. Anisotropic Diffusion FIltering.........ccoccooviieiininini e 30
2.4.2. Median Filtering........ccoeiiiiiee e 31

2.5. Optimization of Finite Precision Implementations.............cccceoeveneninennnnnns 32
2.5.1. Optimal Wordlength Formulation.............cccccevveiiieieccc e, 33
2.5.2. Simulation-Based Optimal Wordlength Search............cccocoveiiiniinnnnn. 34
2.5.3. Multiobjective Optimization..........c.cccoviveiiiiie i 35

2.6. REIAEA WOTK ..ottt 37
2.6.1. Real-Time Image PreproCeSSINGccvveveieeieeieseesieeiesreesreeseesseesae e e 37
2.6.2. Acceleration of Image RegiStrationccoceovereneniienineneseeeeeeeee 40
2.6.3. Optimization of Finite Precision Implementations.............c.cccccevevvevnnnen. 43
Chapter 3: Real-time 3D ImMage ProCESSING.......c.ciirerierierieriesiesiesieeeeee e 47
3L MOTIVALION ..ttt bbb 47
3.2. Filtering AlgOrithms.........ccooiiiiiiiiiiiieee s 50
3.2.1. Anisotropic Diffusion FIltering.........cccceccvivieieeieiiie e 50
3.2.2. Median Filtering.......ccoouiiiiiiie e 51

3.3. ATCRITECIUTE. ...ttt bbb 52

vii

3.3.1. Memory Controller and Brick-caching Scheme ..., 54

3.3.2. 3D Anisotropic Diffusion FIItering........cccccvevevivereiiesieeie e 58
3.3.3. Median Filtering.......ccoouiiiiiiie s 64
3.4. Implementation and RESUILS...........cevverieiieiiee e 68
3.4.1. Effects of Finite Precision Representation............cccocceveveenienesieeseeniennns 69
3.4.2. Hardware REQUITEIMENTS.ccuviiereeiieeieseesieeiesiee e ae e e see e e e sns 73
3.4.3. Filtering Performanceccooiiiiieiiiie e 75
3.5, SUMIMAIY ..o e sbb e be e e anres 78
Chapter 4: Hardware-Accelerated Deformable Image Registration............cccccceeuenee. 80
4.1 MOTIVALION ...ttt bbbttt n e 80
4.2. Algorithm for Deformable Image Registration..........ccccocevvevenieienncenieseene 83
4.2.1. Calculating MI for a Subvolume...........ccovevieiiie e 85
4.3. Acceleration APPrOACHcoiiiieiiiiiee e 86
A4, ATCRITECTUIE. ...t bbbt 88
A.4.1. VOXEl COUNTET ...ttt sttt 89
4.4.2. Coordinate TransSformation...........cccooeveriiinenisiee e 90
4.4.3. Partial Volume INterpolation............ccocevieieiiinieniee e 92
4.4.4,1Mage MEMOIY ACCESSceiiirieiirieiiieiesieeesite e e st e s e e sbee e 94
4.4.5. Updating Mutual HiStOgramccooeeveiienenninie e e 99
4.4.6. Entropy CalCulationccccoveiieiiiiesece e 105
4.4.7. Operational WOrKFIOWcooooiiiiie s 108
4.5. Implementation and ReSUILS..........cccveiiieiiceciecece e 111
4.5.1. EXECULION SPEEU......ceiiiiiiiitieiieeiesiee ettt sttt 114
4.5.2. Performance COMPAriSON.........c.ccverueiieieesieeieseesieeeesseesseesesseessesseesses 117
4.5.3. Qualitative Evaluation of Deformable Image Registration 122
4.0, SUMMIATY ..etiieiiit ettt sttt ettt e e as e e sa b e e e nab e e s nbb e e e bbeesbneeanbnee s 124
Chapter 5: Framework for Optimization of Finite Precision Implementations........ 126
T8 I |V [0 Y 1 oo SRR 126
5.2. Multiobjective OptimizZation............ccccciveiiiiie i 129
5.2.1. Problem Statement.........cccveiiieiieieee e 129
5.2.2. Parameterized Architectural DeSigncccocvvvieiveve i i 131
5.2.3. Multiobjective Optimization Frameworkcccccoovvoiieieninininnnnns 134
5.3. EXperiments and RESUILS...........ccvivieiiiiiic e 142
5.3.1. Metrics for Comparison of Pareto-optimized Solution Sets.................. 146
5.3.2. Accuracy of Image RegiStrationcccccvevviiiiieeiesie e 148
5.3.3. Post-synthesis Validation.............c.coeiiiiniiiiieicesc e, 150
5.4, SUMIMAIY ..vii ittt ettt e b e b e e st e e sa b e e sab e e e nbbe e e bbeesbneeanes 154
Chapter 6: Clinical APPIICALIONS..........cooiiiiiiiic e 156
6.1. Radiation D0OSE REAUCLIONccvivveiiiiiiiiieieiee e 157
6.1.1. IMOTIVALION....c.viiiiieie ettt e e sreenbeanee s 157
6.1.2. D0Se ReduCtion Strategy.........cccveieereiieiieie s sre e 158
6.1.3. Evaluation of Registration Accuracy with Low-Dose CT...........cccco.e.. 159
6.1.4. EXPEIIMENTSocvviiiiiiieeiceic st ete ettt ste et ba e e e reesteenee s 163
B.1.5. RESUITSeiitieieieie ettt aneenne e 164
6.1.6. SUMMAIY ..vviieiiiiesiit ettt ssb e nab e e ba e e e nes 167
6.2. Incorporation of PET into CT-Guided Liver Radio-Frequency Ablation 168

viii

B.2.1. MOLIVALION ... 168

6.2.2. Registration of PET and CT.......cccooiveieiieiree e 170
6.2.3. EXPEITMENTS ..ottt sttt et 171
B.2.4. RESUITS.....oeiieiiie it 174
6.2.5. SUMMAIY ..ottt ettt sttt e e beeanne s 178
Chapter 7: Conclusions and FUture WOrK...........cccveieriveieiie e 180
7.1 CONCIUSION ..ottt ettt b e 180
7.2, FULUIE WOTK ...ttt 185
BIDHOGrapY ... e 189

Table 2.1:

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 3.5:

Table 3.6:

Table 3.7:

Table 3.8:

Table 3.9:

Table 4.1:

List of Tables

Broad classification of image registration in the context of IGI......... 13
Software execution time of 3D anisotropic diffusion filtering and 3D
median filtering of 8-bit images for common kernel sizes (N)........... 48
Average error in intensity per voxel for a Gaussian filtered image
resulting from fixed-point representation of Gaussian coefficients.... 69
Average error per sample of diffusion function resulting from fixed-
point representation of diffusion coefficients employed in the
presented arChiteCIUIE.ccvveiv i 70
Average error in intensity per voxel for anisotropic diffusion filtered
resulting from fixed-point representation of Gaussian coefficients and
the diffusion FUNCLIONcovviiiii 72
Hardware requirements of the architecture for real-time 3D image
PrEPIOCESSING. c.veivvevieieetteeteeste e ste et e et e steeste e e s raesteareesbaentesneesreeeennes 73
Hardware requirements for the components of the linear systolic
implementation of the 3D median filtering...........cccoocevvveviveveiieinenne. 74
Execution time of 3D anisotropic diffusion filtering and 3D median

LT 1L] T TSRS 75
Performance comparison of the 3D anisotropic diffusion filtering
KEINEL....e s 76
Performance comparison of the 3D median filtering kernel............... 78
Configurations of LUT-based entropy calculation module that were

considered in the presented architecture.ccccecvevvvivesiecce s, 106

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 6.1:

Table 6.2:

Operational workflow for performing volume subdivision—based
deformable image registration using the presented architecture....... 109
Comparison of mutual information calculation time for subvolumes at
various levels in volume subdivision—based deformable registration
AIGOTTENML L. 115
Execution time of deformable image registration.............cccccceceenee 116
Performance comparison of the presented FPGA-based
implementation of intensity-based deformable image registration with
an equivalent software implementation and prior approaches for
acceleration of intensity-based registration.ccoccevvvneniinneene. 121
Design variables for FPGA-based architecture. Integer wordlengths are
determined based on application-specific range information, and

fractional wordlengths are used as parameters in the multiobjective

optimization frameWorK.ccceevveieiieie e 136
Number of solutions explored by search methods............c.cccccueee.... 142
Parameters used for the EA-based search............ccccoovvvieiiienennns 143

Validation of the objective function models using post-synthesis
results. The wordlengths in a design configuration correspond to the
FWLs of the design variables identified earlier.............c.ccccoveenennnn 151

Execution time for deformable image registration using low-dose CT.

Execution time for deformable image registration using

intraprocedural CT and preprocedural PET images..........ccccceevvennene 176

Xi

Table 6.3:

Table 6.4:

Interexpert variability in landmark identification across 20 image
pairs. PETaLco corresponds to the software implementation of the
AIGOTTENML L. 177
Interexpert variability in landmark identification across 20 image
pairs. PETaLco corresponds to the FPGA-based implementation of the

AIGOTTENML Lo 178

Xii

Figure 1.1:

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

List of Figures

A typical IGI workflow and the scope of this dissertation work........... 3
Two examples of pre- and intraprocedural image pairs. The arrows
indicate the targets that are visible in preprocedural images but not
visible in intraprocedural IMAageS.cccvevvviieiieii e 11
An example of volumetric image guidance using intraprocedural
multislice CT and preprocedural MR.cccoviviiiiicieie e, 12
Flowchart of image similarity—based image registration.................... 17

Example of preprocessing techniques employed prior to intensity-

based image registration.cccceevieieiie i 29
Pareto front in the context of multiobjective optimization. 36
A median filtering example using majority voting technique. 52

Block diagram of the FPGA-based real-time 3D image preprocessing
V] (= 1 PRSPPI 53
Typical voxel access pattern for neighborhood operations—based image
PFOCESSING. ©uveeuveitieiteeite et e ste et e et e s et e et e st e et e e esraetesreesbaeeesneesreeneennes 54
Block diagram showing the input image memory and the input buffer
CONFIQUIALION. ... e 56
Pictorial representation of the notation used in the brick-caching
SCRBME. ... 57
Top-level block diagram of 3D anisotropic diffusion filtering. This

diagram indicates paths that are executed in parallel.......................... 60

Xiii

Figure 3.7:

Figure 3.8:

Figure 3.9:

Figure 3.10:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:

Figure 4.8:

Figure 4.9:
Figure 4.10:

Figure 4.11:

Block diagram of the embedded Gaussian filter bank (for N =7,
corresponding Gaussian kernel Size iS5).......ccccovvvevveeiiivii i, 61
Pipelined implementation of an individual Gaussian filter element
(Gaussian Kernel Size = 5)....cccoceiiiiiiiiiiee s 62
A single stage (processing element) of the linear systolic median
FIItering Kernel.. ..o 65
Linear systolic array architecture for median filter kernel using
majority Voting teChNIQUE.ccooiiiiiiiie e 68
Pictorial representation of hierarchical volume subdivision-based
deformable image registration and associated notation. 83
Pictorial representation of the acceleration approach.c.cccoeee.... 86

Top-level block diagram of the architecture for accelerated

implementation of deformable image registration.ccccccoeerennee. 88
Functional block diagram of voxel counter.cccooveveiieineienen, 89
Functional block diagram of coordinate transformation unit. 91
Fundamentals of interpolation schemes...........c.ccoovevviicciccc e, 92
Functional block diagram of partial volume interpolation unit. 94

Voxel access patterns of the reference and floating images encountered

during image registration.cccceeeviieiecie e 95
Organization of the reference image Memory.c..cccocceevvevvevecnnenn, 97
Organization of the floating image memory...........ccccccevvveievieeieennenn, 98

Pipelined implementation of MH accumulation using dual port

[001=] 04 [0] V2SO RPRUPRPPRRPIS 100

Xiv

Figure 4.12:

Figure 4.13:

Figure 4.14:

Figure 4.15:

Figure 4.16:

Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Figure 5.7:

Figure 5.8:

Preaccumulate buffers to eliminate RAW hazards in MH accumulation
PIPEIINE. . 102
A flow diagram of steps involved in calculating MHgest. .«...vevenee... 103
Error in entropy calculation corresponding to the two configurations of
the multiple LUT—based implementation.cccccoveiieiiiinnnnne 107
Qualitative validation of deformable registration between iCT and

preCT images performed using the presented FPGA-based solution.

Qualitative validation of deformable registration between iCT and PET
images performed using the presented FPGA-based solution. 123
Examples of parameterized architectural design style...................... 133
Framework for multiobjective optimization of FPGA-based image
FEOISTIAtION. .eiiiiiiie et 134
Comparison of the area values predicted by the adopted area models
with those obtained after physical synthesis.cccooevviiciiennenn, 141
Pareto-optimized solutions identified by various search methods.... 144
Qualitative comparison of solutions found by partial search and EA-
DASEA SEACH. ...viiiciiicee s 145
Quantitative comparison of search methods using the ratio of non-
dominated individuals (RNI).cccooiiiiiiiiececeee e, 147
Quantitative comparison of search methods using cover rate. 148
Relationship between MI calculation error and resulting image

FEQISLIAtION BITON......vi ettt 149

XV

Figure 5.9:

Figure 6.1:

Figure 6.2:

Figure 6.3:

Figure 6.4:

Figure 6.5:

Figure 6.6:

Figure 6.7:

Figure 6.8:

Results of image registration performed using the high-speed, FPGA-
based implementation for design configurations offering various
FEQISLIAtION BITOIS. ...eeeiiieie ittt 153
Integration of deformable registration into IGI workflow................. 156

Important steps for evaluating registration accuracy with low-dose CT.

Low-dose CT images generated by the dose-simulator.................... 160
Comparison of techniques for preprocessing low-dose CT images.. 162
Qualitative comparison of registration accuracy with low-dose CT. 165
Average registration error with respect to dose using software and
FPGA-based implementations.cccooeverienieninnienese e 166
Graphic illustration of the quantitative validation approach used in the
context of deformable registration between intraprocedural and
PreproCedural PET.ooi i 173
Registration of intraprocedural CT and preprocedural PET images
using the FPGA-based implementation of deformable image

FEOISTIAtION. .veeviiiiie e 176

XVi

Chapter 1: Introduction

1.1. Overview

Image-guided interventions (IGIs), including surgeries, biopsies, and
therapies, have the potential to improve patient care by enabling new and faster
procedures, minimizing unintended damage to healthy tissue, improving the
effectiveness of the procedures, producing fewer complications, and allowing for
clinical intervention at a distance. As a result, IGls has been identified by clinical
experts to have a significant impact on the future of clinical care [1]. With further
invention and development of imaging and image processing techniques, innovative
minimally invasive image-guided inventions will replace conventional open and
invasive techniques. Continuous three dimensional (3D) imaging and visualization for
intraprocedural navigation, critically important to the success of IGI, has been
technologically difficult until recently. However, the advances in medical imaging
technology and visualization capabilities, leading to improved imaging speed and
coverage, have prompted developments in imaging protocols and enabled volumetric
image-guided procedures.

The efficiency and efficacy of IGls is critically dependant on accurate and
precise target identification and localization. Lack of clear target delineation could
lead to lengthy procedures, larger than necessary safety margins and unintended
damage to healthy tissue—factors that undermine the very motivation behind IGIs.
Intraprocedural imaging techniques provide a rich source of accurate spatial

information that is crucial for navigation but often suffer from poor signal-to-noise

ratio (SNR) and poor target definition from background healthy and/or benign tissue.
As in most clinical protocols, IGIs are preceded by one or more preprocedural
images, containing additional information, such as contrast-enhanced structures or
functional details such as metabolic activity, which are used for diagnosis,
treatment/navigation planning, etc. Combining this functional and/or contrast
information with intraprocedural morphological and spatial information, through co-
registration between pre- and intraprocedural images, has been shown to improve the
intraprocedural target delineation [2-6].

Achieving this registration between intraprocedural and preprocedural images
is a fundamental need during the IGI workflow. Moreover, given the on-demand
nature of IGls, this alignment should be achieved sufficiently fast so as not to affect
the clinical workflow. Earlier approaches to meet this need primarily employed rigid
body approximation, which can be less accurate because of non-rigid tissue
misalignment between these images. Intensity-based deformable registration is a
promising option to correct for this misalignment. These algorithms are automatic,
which is an important aspect that enables their easy integration into many
applications; However, the long execution times of these algorithms have prevented
their use in clinical workflow. In addition, since this technique is based on intensity-
based alignment between images, it is sensitive to the SNR of the images to be
registered. Consequently, the images (in particular, intraprocedural images that are
characterized with poor SNR) need to be preprocessed and de-noised before they can
be registered. This workflow for providing improved visualization during IGls is

illustrated in Figure 1.1.

Preprocedural Scope of this Dissertation
contrast-enhanced CT
(or other modalities) Framework for o
Multiobjective Con?rlbutlon =
Optimization High Speed
Deformable
Contribution #3 Registration

>

FPGA-based
Real-time Image
A Preprocessing
CT Scanner % —
(or ot_h_er Intraprocedural non-contrast CT Comtrlution: ¥
RSHIOER) & e = (or other modaliies) l ___ g

€« -

Rendering/Visualization oo
; Tracking
Engine

Figure 1.1: A typical IGI workflow and the scope of this dissertation work

Registered Image

The overall goal of this dissertation work is to improve the identification and
localization of targets during image-guided interventions through automatic, fast, and
accurate deformable image registration between preprocedural and intraprocedural
images. With this accurate registration and fusion of complementary information an
interventionist will be able to visualize accurately aligned anatomical structures (such
as vasculature) and/or functional (metabolic) activity not natively present in the

routine intraprocedural scans and thereby improving the targeting capability.

1.2. Contributions of this Dissertation

The specific goal of this dissertation work is to develop and validate the core
components of this advanced image processing system, which will enable improved
visualization and target-delineation during image-guided procedures. These core
components are identified in Figure 1.1. First, we employ reconfigurable hardware

platform to develop an architecture for real-time implementation of image

preprocessing techniques commonly used in the context of IGI. Second, we develop
an field-programmable gate array (FPGA)-based architecture for accelerated
implementation of intensity-based deformable image registration. Third, we propose a
multiobjective optimization framework to analyze conflicting tradeoffs between
accuracy and hardware complexity of finite precision implementations of signal
processing application, such as presented in this work. Finally, we demonstrate the
feasibility of developing novel IGI applications leveraging the aforementioned
components.

In the following sections we elaborate further on the main contributions of this

dissertation.

1.2.1. Real-time 3D Image Preprocessing

Image preprocessing, which consists of filtering and de-noising, is a
prerequisite step in many image processing applications. Especially in the context of
IGI, where intraprocedural images are characterized by poor signal-to-noise ratio,
image preprocessing is required prior to advanced image analysis operations such as
registration, segmentation, and volume rendering. Moreover, the interactive nature of
IGIs necessitates equivalent image processing speed so that these operation can be
performed in a streamlined manner without any additional processing latency.

Most reported techniques for accelerated implementation of image processing
algorithms have primarily focused on one-dimensional (1D) or two-dimensional (2D)
cases [7-11]. These techniques do not adequately address the need for accelerating
these operations in 3D, which is required for providing volumetric image-guidance

during minimally invasive procedures. Furthermore, some of the earlier techniques

used for acceleration cannot be extended to 3D, whereas for some others the 3D
extension is nontrivial.

This dissertation presents an FPGA-based novel architecture for accelerated
implementation of common image preprocessing operations. This architecture is
reconfigurable and supports multiple filtering kernels such as 3D median filtering,
and 3D anisotropic diffusion filtering within the same framework. The architecture
presented in this work is faster than earlier reported techniques, supports larger kernel
dimensions, and is capable of meeting the real-time data processing need of most
IGls. Although developed in the context of 1Gls, this architecture is general-purpose
and can be applied to meet preprocessing needs of many medical as well as non-

medical applications.

1.2.2. Hardware-Accelerated Deformable Image Registration

Image registration between preprocedural images (acquired for diagnosis and
treatment planning) and intraprocedural images (acquired for up-to-date spatial
information) is an inherent need in the 1GI workflow. Accurate and fast registration
between these images will enable the fusion of complementary information from
these two image categories and can enable improved treatment site identification and
localization and navigation during the procedure.

Several fiducial or point-based, mechanical alignment-based and intensity-
based rigid alignment techniques [12-16] have been proposed for this purpose. Some
of these techniques are not automatic and almost all of them employ the rigid body
approximation, which is often not valid due to tissue deformation between these two

image pairs. Deformable image registration techniques can compensate for both local

deformation and large-scale tissue motion and are the ideal solution for achieving the
aforementioned image registration. Some studies, in particular, have independently
underlined the importance of deformable image registration for IGIs [17-19].
However, despite their advantages, deformable image registration algorithms are
seldom used in current clinical practice due to their computational complexity and
associated long execution times (which can be up to several hours).

This dissertation presents a novel FPGA-based architecutre for accelerated
implementation of a proven automatic and deformable image registration algorithm,
specially geared toward improving target delineation during image-guided
interventions. This architecture accelerates calculation of image similarity, a
necessary and the most time consuming step in image registration, by greater than an
order of magnitude and thereby reducing the time required for deformable registration
time from hours to minutes. This design is tuned to offer registration accuracy
comparable to that achievable using software implementation. Furthermore, we
validate this high-speed design and demonstrate its feasibility in the context of
clinical applications such as computed tomography (CT)-guided interventional
applications. This accuracy, coupled with the speed and automatic nature of this
approach represents a first significant step toward assimilation of deformable

registration in the 1GI workflow.

1.2.3. Framework for Optimization of Finite Precision Implementations

An emerging trend in image processing, and medical image processing, in
particular, is custom hardware implementation of computationally intensive

algorithms for achieving high-speed performance. The work presented in this

dissertation has a similar spirit in the context of advanced image processing required
during IGIs. For reasons of area-efficiency and performance, these implementations
often employ finite-precision datapaths. Identifying effective wordlengths for these
datapaths while accounting for tradeoffs between design complexity and accuracy is a
critical and time consuming aspect of this design process. Having access to optimized
tradeoff curves can equip designers to adapt their designs to different performance
requirements and target specific devices while reducing design time.

This dissertation proposes a multiobjective optimization framework developed
in the context of FPGA-based implementation of medical image registration. Within
this framework, we compare several search methods and demonstrate the
applicability of an evolutionary algorithm-based search for efficiently identifying
superior multiobjective tradeoff curves. In comparison with some earlier reported
techniques, this framework allows non-linear objective functions, multiple fractional
precisions, supports a variety of search methods, and thereby captures more
comprehensively the complexity of the underlying multiobjective optimization
problem. We also demonstrate the applicability of this framework for the image
registration application through synthesis and validation results using Altera Stratix Il
FPGAs. This strategy can easily be adapted to a wide range of signal processing
applications, including areas of image and video processing beyond the medical

domain.

1.3. OQutline of this Dissertation

The rest of the dissertation is organized as follows: Chapter 2 provides

background on image-guided interventions, image preprocessing, and image

registration; and presents related work in the context of the contributions of this
dissertation. In Chapter 3, FPGA-based architecture for real-time implementation of
3D image processing techniques such as median filtering and anisotropic diffusion
filtering are presented. Chapter 4 deals with deformable image registration. We
outline the intensity-based deformable image registration algorithm and present a
novel architecture for accelerated implementation of this algorithm. In Chapter 5, a
framework for multiobjective optimization of limited precision implementations of
signal processing algorithms is presented. Chapter 6 introduces some novel image-
guided procedures and demonstrates the feasibility of our approach in the context of

these applications. Finally, in Chapter 7 conclusions and future work are presented.

Chapter 2: Background and Related Work

2.1. Image-Guided Interventions

IGIs began to emerge in the last quarter of the 20th century, picked up pace in
the 1990s, and may become routine in the 21st century. Minimal invasiveness is the
defining characteristics of these procedures. This feature can lead to less patient
morbidity, time and cost efficient procedures, faster recovery and improve the
procedure outcomes. During these procedures, the internal anatomy is accessed
through a single or few small holes on the patient’s skin rather than though large
incisions. The interventionist introduces the appropriate tool (electrode or biopsy
needle, or/and endoscope) through this port and tries to navigate his/her way to the
target (typically a malignant spot) in order to deliver a localized treatment or take out
a sample for further investigation. Now, because the access to the internal anatomy is
through a single port, the only way to visualize the location, orientation and the path
of approach of the tool is by using external imaging techniques (that is there is no
direct visual feedback).

Any intraprocedural imaging technique used must be near real-time and thus
allow tracking underlying anatomy and flexible instruments and catheters as and
when required (“on-demand” performance) during the procedure. 2D Ultrasound
(US) and CT fluoroscopy have been conventionally used to guide placement of
biopsy needles and therapy delivery devices during 1Gls [18, 20, 21]. However,
technological improvements such as multi-slice CT scanners, interventional MR, 3D

ultrasound (US), isocentric C-arms and other advanced imaging systems have enabled

the application of IGI to clinical domains such as interventional radiology,
neurosurgery, orthopedics, ENT surgery, cranio- and maxillofacial surgery and other
surgical specialties [22-24]. For example, Philips medical systems, one of the leading
medical imaging equipment manufacturers, has announced a 256-slice CT scanner
[25] which provides higher imaging speed (up to 8 volumes/s) and coverage (8 cm) is
ideally suited for performing CT-guided procedures. Availability of easy access MR
scanners, such as open-configuration MR scanner from GE Healthcare [26] along
with its improved imaging speed has enabled development of MR-guided procedures.
Image quality and acquisition speed of 3D ultrasound have also been enhanced
through use of latest transducer technology and digital reconstruction and it can now
be used for providing image-guidance during procedures. Moreover, real-time
volumetric visualization capabilities, that enable interactive display of images during
the procedure, are also now available [27, 28]. As a result, an emerging trend in IGI
workflow is to use volumetric imaging modalities for providing real-time
intraprocedural guidance. This dissertation, therefore, focuses on 3D image

processing and registration in the context of IGls.

2.1.1. Role of Preprocedural Imaging

Intraprocedural imaging techniques provide (or, are a rich source of) accurate
spatial information which is crucial for navigation but offer poor target identification
from the background healthy and/or benign tissue (see Figure 2.1). Most image-
guided procedures are preceded by a preprocedural image which is used for
diagnosis, treatment/navigation planning, etc. These preprocedural images are

primarily acquired under different (often slow) imaging protocol and typically contain

10

additional information, such as contrast-enhanced structures or functional information
such as metabolic activity which is used for diagnosis and tissue differentiation prior
to the treatment. Figure 2.1(a) shows contrast-enhanced structures in a preprocedural
image which are not clearly visible in intraprocedural images. Figure 2.1(b) illustrates
the metabolic activity shown in the PET scans which can be used to identify
cancerous tumors. Availability of this functional and contrast information from the
preprocedural images can be used to augment the purely morphological and spatial
information from the intraprocedural images which will greatly improve the
intraprocedural target delineation [2-6, 29]. Therefore, there is a clear need to
combine this complementary information from the pre and intraprocedural images to

facilitate this task.

Preprocedural contrast-enhanced CT Preprocedural PET

(a) (b)
Figure 2.1: Two examples of pre- and intraprocedural image pairs. The arrows
indicate the targets that are visible in preprocedural images but not visible in
intraprocedural images.

11

2.1.2. Need for Image Registration

Aligning or registering the intraprocedural images with the preprocedural
image is a fundamental need in the 1GI workflow. In fact, image registration has been
identified as an enabling technology for image-guided surgical and therapeutic
applications [30]. Figure 2.2 shows an example of volumetric image-guidance using
image registration between volumetric CT and magnetic resonance imaging (MRI)
scans for a neurosurgical application. There are, however, many technological and
logistic challenges in achieving this image registration. First, the intra- and
preprocedural images to be registered are acquired at different times and using
different scanners. As a result, there is invariably misalignment of anatomical

structures between these two images. This misalignment is caused because of the

Figure 2.2: An example of volumetric image guidance using intraprocedural
multislice CT and preprocedural MR.

12

systemic offsets in scanner coordinate systems and due to non-rigid anatomical
changes arising from pose and diurnal variations at the time of image acquisition.
Second, the images to be combined can be of two completely different modalities
(such as PET and CT). Furthermore, given the on-demand nature of 1GI applications
this registration should be achieved in a reasonably fast time. In summary, accurate,
multi-modal, and fast image registration is essential for IGls [17, 31]. The following

section provides an overview of image registration.

2.2. Classification of Image Registration

Medical image registration is the process of aligning two images that
represent the same anatomy at different times, from different viewing angles, or using
different imaging modalities. Image registration is an active area of research and over
the last several decades there have been numerous publications outlining various
methodologies to perform image registration and its applications. Maintz and
Viergever [32] and Hill et al. [33] have presented a comprehensive summaries of the
entire gamut of the image registration domain. In general, image registration can be
classified based on image dimensionality, nature of registration basis, nature of

transformation models, type of modalities involved, etc. From the context of 1GlI,

Table 2.1: Broad classification of image registration in the context of 1GI.
Reglstrgtlon Method Retrospective Automatic Deformable Compgte
Basis based on Intensive
Extrinsic Fiducial N Y N N
Information Stereotactic N Y N N
Landmark Y N Y N
Intrinsic ~ Segmentation
Information Or Surface Y N Y N
Intensity Y Y Y Y

13

however, we broadly classify image registration into two main approaches. First,
techniques based on extrinsic information and second, techniques based on
information that is intrinsic to the image. We briefly describe these two techniques
and outline some popular image registration methods in each category. A summary of

this classification is also presented in Table 2.1.

2.2.1. Image Registration using Extrinsic Information

Methods based on extrinsic information rely on information that is not
natively a part of the medical image. This includes artificial external objects that may
be attached to the patient and are within the field of view of the image. These objects
are designed such that they are clearly visible and accurately detectable in all of the
pertinent modalities that are to be registered. As a result, the registration of the
acquired images is usually easy, fast, and can be automated with relative ease. In
addition, because the registration involves simply establishing correspondence
between external objects, it can be achieved explicitly without a need for complex
optimization techniques. One major limitation of these methods, however, is that they
are not retrospective. This means that advanced planning is required and provisions
must be made at the time of preprocedural imaging for that image to be used at a later
point. Furthermore, due to the nature of the registration these methods are mostly
limited to rigid transformation model only.

Stereotactic frame is another commonly used external object. There are many
reported image registration applications, especially in the context of neurosurgery,
that employ a stereotactic frame to establish spatial correspondence between images

[34, 35]. These methods employ a frame screwed rigidly to the patient’s skull that is

14

usually fitted with imaging markers that are visible in imaging modalities such as CT,
MRI, and X-ray. Visibility of these markers in both pre- and intraprocedural images
will then allow registration of these images using a least-square based alignment
technique. These techniques have been shown to be relatively accurate for rigid
anatomy such as the brain [36], but are relatively more invasive. Less invasive
techniques using markers attached to the skin have also been reported [37], but they
tend to offer less accurate image registration because skin can move. More recently,
there have also been efforts toward developing systems based on optical tracking
methods that will allow frameless stereotaxy [38]. Despite these advances, these
methods are fundamentally limited to providing only rigid alignment between a pair

of images.

2.2.2. Image Registration using Intrinsic Information

These methods are based on intrinsic properties and contents of patient-
generated images. Registration may be based on a limited set of identified salient
points (landmarks), on the alignment of segmented anatomical structures
(segmentation or feature based) such as organ surfaces or directly based on the image
intensity values (voxel property based).

Landmark-based registration [35, 39, 40] involves identification of the
locations of corresponding points within different images and determination of the
spatial transformation with these paired points. These landmarks are usually
identified by a user in an interactive fashion. Landmark-based methods are often used
to find rigid or affine transformations. However, if the sets of points are large enough,

they may be used for more complex non-rigid transformations as well. Registration

15

methods based on landmark identification can be retrospective, but they are not fully
automatic becasue they require user interaction.

Segmentation-based image registration methods are based on extracting
matching features and organ surfaces from the two images to be registered. These
features and organ surfaces are then used as the only input for the alignment
procedures. The alignment between the features/surfaces can be either based on rigid
transformation models or achieved using deformable mapping. The rigid model-
based approaches are more popular and a ‘head-hat’ registration method based on this
approach has been successfully applied to the registration of multimodal images such
as PET, CT, and MR [41-43]. Popular segmentation-based techniques that involve
deformable mapping of surfaces, such as the ones based on snakes or active contour
models, have been shown to be effective in intersubject and atlas registration, as well
as for registration of a template to a mathematically defined anatomical model [44,
45]. Segmentation-based techniques are retrospective, support multi-modal
registration, and are computationally efficient. However, the accuracy of registration
is dependant on the segmentation accuracy. Moreover, these methods are not fully
automatic as the segmentation step is often performed semi-automatically.

Voxel property-based methods, which are based on image intensity values, are
the most interesting methods in the current research. Theoretically, these are the most
flexible of the registration methods since they use all of the available information
throughout the registration process. In addition, these methods can be completely
retrospective, fully automatic, allow multi-modal registration and generally are more

accurate. The following section provides a detailed overview of intensity-based image

16

registration. Although these methods have existed for a long time, their extensive use
in clinical applications with 3D images has been limited because of associated
computational costs. This dissertation work addresses this aspect through the use of

hardware acceleration.

2.3. Intensity-Based Image Registration

Image registration that is based on voxel intensities is the most versatile,

powerful, and inherently automatic way of achieving the alignment between two

images. This method attempts to find the transformation T that optimally aligns a
reference image RI, with coordinates x, y, and z, and a floating image Fl under a
image similarity measure F. This process is summarized in the following equation

and is represented pictorially in Figure 2.3.

T =argmax F(RI(x, y,z), FI(T (X, Y, 2))) (2.2)
Reference Modified Floating
Image (A) Image (A') Image (B)

Image
Similarity
Measure

Transformation

Model (T) @

Similarity Measure
Optimized?

Figure 2.3: Flowchart of image similarity—based image registration.

17

In the case of intensity based registration, the similarity measure F, which
provides a numerical value to indicate the degree of misalignment between the
images, is completely based on voxel intensities in the reference and the floating
images. Image transformation T maps the reference image voxels into the floating
image space. Depending on the transformation model employed, this mapping is
either rigid, affine, or deformable. The optimization algorithm, on the other hand,
searches for the best transformation parameters that optimally align the given two
images. These three components form an integral part of intensity-based image

registration and are described in the following sections.

2.3.1. Transformation Models

A transformation model provides a way to describe the misalignment between
the reference and the floating images. The ability of image registration to accurately
represent and recover this misalignment is fundamentally limited by the nature of the
transformation model employed. For example, rigid transformation model typically
offers inferior image registration accuracy as compared with computationally
intensive, non-rigid transformation models, if the underlying misalignment is non-
rigid. A comprehensive survey on image transformation models can be found in [46,
47]. The following subsections describe the transformations most commonly used in

intensity-based image registration.

2.3.1.1. Rigid and Affine Models

Affine or linear registration is a combination of rotation, translation, scaling

and shear parameters that map the reference image voxels into floating image space.

18

Voxel scaling and shearing factors are constant for rigid registration, which is a
special case of affine transformation, and as such are excluded from optimization
process. Both these transformation models can be represented using a 4 x 4
transformation matrix. For example, a rigid transformation matrix Tgiona Can be

constructed as:

rxx rxy rxz d X
— ryx ryy ryz d y (2 . 2)
global rZX rZy rZZ d z ,
0 0 1

where rjj entries represents the components of the rotation matrix, while the d; entries
represent the translation parameters. The coordinate transformation of a reference

image voxel V into floating image space (V,) can then simply be achieved through

matrix multiplication:

V=T V. (2.3)

Techniques based on rigid and affine transformation models have been successfully
employed previously [47-49]. These techniques, however, offer limited degrees of

freedom in the transformation model.

2.3.1.2. Deformable Models

The strength of the deformable transformation models comes from the large
number of degrees of freedom they offer for representing the misalignment between
images. This allows modeling of not only gross misalignment between the images,
but also local deformations. As a result, image registration techniques based on
deformable transformation models are inherently capable of correcting for local

misalignments and therefore are more accurate.

19

Methods based on physical models perform image transformation by
considering a set of internal and external forces and obtaining the corresponding
deformation by applying these forces to a given model based on differential
equations. Some examples of physical models used for image transformation found in
the literature are elastic body [50], viscous fluid [51] and incompressible flow (optical
flow) [44]. Some methods based on finite element models have also been employed
for image registration, which apply predefined physical models to represent
deformation in the images [52, 53]. The key idea is to divide the image into subsets,
each with some defined physical properties. For example, a subset can be labeled as
rigid, while some others can be labeled as fluid (elastic). During the transformation
process, the shape of rigid tissues will not change, while the shape of fluid tissues will
vary according to their corresponding properties such as viscosity. Image
transformation techniques using physical models have been successfully applied to
deformable image registration. However, most of these techniques involve solving
partial differential equations and are particularly computationally complex.

Another popular method to represent deformable transformation model is to
use mathematical basis functions. These transformation techniques use basis
functions to define the correspondence between the original and the transformed
image. The basis functions may be defined in either Fourier or Wavelet domain, and
the deformation field is modeled using trigonometric or wavelet basis functions,
respectively. Ashburner and Friston [54] have reported a method based on this
approach. The deformation between the two images may also be modeled in the

spatial domain using polynomials. Polynomial-based image transformation

20

techniques use a global transformation function defined by a transformation matrix
that contains the transformation coefficients and a polynomial vector that contains the
components of the polynomial used to model the transformation. The simplest case of
polynomial-based image transformation is the affine transformation, which uses first-
degree polynomials. By increasing the degree of the polynomials, it is possible to
model complex non-rigid transformation as well. However, this method is seldom
employed due to difficulty in modeling small local transformations and that higher-
degree polynomials suffer from several artifacts [46]. These drawbacks are addressed
by spline-based representation. Splines are inherently continuous and consist of
piecewise-polynomial functions. Splines are a generalization of the polynomial-based
approach to image transformation in the sense that a polynomial representation is a
spline with just one segment. Using piecewise-polynomial functions allows modeling
of local deformations accurately without using high-order polynomials. Two different
spline families that have been used extensively in the literature to model 3D
transformations are thin-plate splines and B-splines. Kim et al. [55] and Rohr et al.
[56] have reported methods based on thin-plate splines to perform deformable image
registration. However, one major drawback of thin-plate splines is that they have
infinite support. This means that even small local changes are propagated throughout
the entire image, an effect that is undesirable in medical image registration. In
comparison, B-splines offer finite support. For this reason, B-splines are currently the
preferred basis functions for modeling deformable transformations [57, 58]. A
limitation with B-spline-based transformations is that they tend to fail at tracking

rotation of local features. Moreover, algorithms based on B-splines tend to be

21

computationally intensive due to additional complexity associated with B-spline
interpolations.

More recently, some algorithms based on hierarchical image subdivision
approaches have been reported [59, 60]. These algorithms achieve deformable
registration through registering image subvolumes using a locally linear
transformation and then applying quaternion-based interpolation to obtain the
transformation field. Algorithms based on such transformation models allow the
modeling of internal rotations better than the spline-based approaches. These
algorithms are computationally efficient and yet are capable of recovering local
deformations. The deformable registration algorithm considered in this dissertation is
also based on hierarchical volume (3D image)-subdivision. This algorithm and the

architecture for its accelerated implementation is describes in Chapter 4.

2.3.2. Image Similarity Measures

An important component of image registration is the metric that quantitatively
determines how similar two images are. This metric can then be used to judge how
well a pair of images is aligned and also to guide the optimization procedure during
image registration. In the case of intensity-based image registration this metric, or
image similarity measure, is computed using the voxel intensities of the images
involved in registration. There are many reported intensity-based similarity measures.
These can be broadly classified into measures using only image intensities (for
example, mean of square difference of intensities), measures using spatial (or
neighborhood) information (for example, pattern intensity or gradient-based

measures) and measures based on information theory (mutual information).

22

The following sections briefly describe some widely used similarity measures.
We use the following notation for this description. The images to be aligned are
reference image (RI) and the floating image (FI). A transformation T is applied to the
voxels of the reference image. An image similarity measure is calculated over the

region of overlap (X,) between the RI and the FI and X represents the location of a
voxel in RI. N represents the number of RI voxel that belong to X,. The
notations p,, , p,, , and p,, ., represent the individual probability distribution function

(PDF) of RI, individual PDF of FI, and the mutual PDF of RI and FI, respectively.

2.3.2.1. Sum of Squared Intensity Differences (SSD)

One of the simplest ways to achieve image alignments is to minimize the
intensity difference between the RI and FI. The sum of squared intensity differences

(SSD) measure tries to achieve that. The SSD between the two images is defined as:

SSD(RI,FI):\/% Y (RI(X) - FI(T(X)))’. (2.4)

XeXq
As expected this measure will be minimized when two images are aligned well.
However, this measure is limited to work with images with same intensity patterns, or
in other words, for mono-modality image registration. Furthermore, Holden et al. [48]

have shown this similarity measure to be error-prone in the presence of noise.

2.3.2.2. Normalized Cross-Correlation (NCC)

If the assumption that registered images differ only by Gaussian noise is
replaced with a less restrictive one, namely that there is a linear relationship between

the two images, then the optimum similarity measure is the normalized cross-

23

correlation. Cross-correlation in both space and frequency domains has been used as a

voxel similarity metric. Cross-correlation in the space domain is defined by:

1 = (RIX)~RI)(FI(T (%)~ FI)
NCC(RI, FIl) :W“XD (2.5)

O, O

RI Fl

where RI and FI are the mean intensities of the RI and FI respectively, whereas

o, and o, represent the standard deviations of Rl and FI, respectively:

ow =2 (RICD-RI), 2.6)
1 . —
%n =N 2 (FI(x)-F1) . (2.7)

Computation of this similarity measure can be time consuming as it requires
calculating the mean and the standard deviation as well as the cross-correlation
coefficient for the entire 3D images. Because of this high computational cost of
performing cross-correlation, spatial domain correlation is usually performed between
a whole image and a small portion of the other image. Cross-correlation is an
effective voxel similarity measure for images with low noise, but it high calculation
requirements make it a poor choice for real-time applications. Furthermore, it may not
yield optimal performance when applied to noisy images [46], such as ultrasound and

low-dose CT.

2.3.2.3. Mutual Information (M)

Mutual information is a popular image similarity metric based on information theory.
The rationale behind this similarity measure is to consider image registration as the

process of maximizing the amount of information common to RI and FI, or

24

minimizing the amount of information present in the combined images. When the
images are perfectly aligned, the corresponding structures from both images will
overlap, minimizing the combined-information. The use of mutual information for
image registration was introduced by Collignon et al. [61] and Viola and Wells [62].
The Ml is defined by:

MI(RI, F1) =h(RI)+h(FI)=h(RI, Fl), (2.8)

where the individual and mutual entropies are calculated as:

h(RI) ==X p, (X)-In(pg, (X)), (2.9)
h(F1) ==X p, (X)-In(p, (X)), (2.10)
h(RIIFI)z_ZZ pRI,FI (X)'In(pRI,FI (X)) (211)

A comprehensive survey of Ml-based registration was presented by Pluim et al. [47].
Mutual information is a very effective similarity measure for multimodal image
registration because it can handle nonlinear information relations between data sets
[63]. Holden et al. [48] have demonstrated that mutual information-based techniques
are, in general, superior to other techniques for deformable image registration.

A Dbroadly used variant of mutual information is called normalized mutual
information. The advantage of this similarity measure over mutual information is its
overlap-independence. It was introduced by Studholme et al. [64] as:

h(R1)+h(FI)

NMI(RI, FI) = "R FD

(2.12)

There are several other intensity-based similarity measures beyond the ones
listed and described here. These include ratio of image uniformity, pattern intensity,

entropy of the difference image, etc. Mutual information, in comparison, is versatile,

25

inherently multimodal, and accurate; and hence has emerged as a popular choice for
both rigid and deformable image registration. In particular, the deformable
registration algorithm, being accelerated through custom hardware implementation in

this dissertation work, is also based on MI. See Chapter 4, for additional details.

2.3.3. Optimization Algorithms

Optimization algorithms are used to navigate the search space of
transformation parameters and to identify the optimal combination of transformation
parameters that best aligns a pair of images. It must be noted, that most often the
number of parameters to be searched for is more than one and this requires multi-
dimensional optimization algorithms. Another desired feature of an optimization
algorithm is that it requires fewer number of objective function evaluations. In the
case of intensity-based image registration, the objective function to be optimized is
the voxel similarity function. This calculation, usually, is compute intensive and
hence faster convergence is ideal. We briefly summarize common multidimensional
optimization scheme employed in the context of image registration.

The downhill simplex method, first introduced by Nelder and Mead [65] is an
unconstrained nonlinear optimization technique. A simplex is a geometrical figure
defined by N+1 points in an N-dimensional space. The simplex method starts by
placing a regular simplex in the solution space and then moves its vertices gradually
towards the optimum point through an iterative process. The downhill simplex
algorithm searches for the optimum value through a series of geometrical operations
on the simplex. Examples of these operations include reflection, reflection and

expansion, contraction, multiple contractions etc. Shekhar et al. [49, 66] and Walimbe

26

et al. [60, 67] have reported successful use of this optimization technique for voxel
similarity—based image registration.

Univariate optimization method tries to solve the multidimensional
optimization problem by breaking it into multiple one-dimensional optimization
problems. This is achieved by optimizing the variables, one variable at a time and
then repeating this step until convergence. This method is simple, but can suffer from
poor convergence in the presence of steep valleys in the search space. Powell’s
method builds upon the univariate method with an important distinction, that the
search direction does not have to be parallel with any of the variable axes. Thus, it is
possible to change multiple variables at the same time. This can achieve faster
convergence and effectively eliminate the convergence problem of the univariate
method. This algorithm has widely been used for optimizing intensity-based image
registration [47, 68, 69].

Optimization based on genetic algorithms is a technique that mimics the
genetic processes of biological organisms. Over many generations, natural
populations evolve according to the Darwinian principles of natural selection and the
“survival of the fittest”. Common operations involved in this method are crossover,
mutation and fitness evaluation. By following this process, genetic algorithms are
able to adapt starting solutions and ultimately find the optimal solution. These
techniques are capable of efficiently searching a complex optimization space.
However, representation of solutions in a genetic algorithm framework can be

challenging and limit their effectiveness especially in the context of deformable

27

registration (due to large number of parameters). Examples of genetic algorithm-—
based optimization for image registration can be found in [70, 71].

Optimization using simulated annealing techniques involves minimization
methods based on the way crystals are generated when a liquid is frozen by slowly
reducing its temperature [65]. These algorithms work distinctly from the techniques
described earlier, in that they do not strictly follow the gradients of the similarity
measure. Instead, they move randomly, depending on the “temperature” parameter.
While the “temperature” is high, the algorithm allows greater variations in the
variables to be optimized. As the “temperature” decreases, the algorithm further
constrains the variation of the variables until a global optimum is reached. In general,
simulated annealing techniques are more robust than earlier described methods.
However, these techniques may require a large number of iterations to converge,
especially in the presence of local minima. Some applications of simulated annealing

techniques for image registration are described in [72, 73].

2.4. Image Preprocessing

As described in the previous section, intensity-based image registration (both
rigid and deformable) utilizes similarity measures that are based on the voxel
intensities of the images to be registered. As a consequence, these similarity measures
are sensitive to quality of the images involved. Images with poor SNR can affect the
calculation of a similarity measure and result into less-accurate image registration.
While some similarity measures such as Ml and NMI are less sensitive to noise,

Holden et al. [48] have demonstrated that most intensity-based similarity measures

28

(and resulting accuracy of image registration) are adversely affected in the presence
of noise.

To address this aspect, several techniques for preprocessing images prior to
image registration have been described. While some techniques focus on identifying a
region or structures of interest in the images and exclude structures that may
negatively influence the registration results [48, 49, 74], most preprocessing
techniques rely on spatial-domain filtering operations on the images. Some reported
techniques have employed low-pass filtering to remove speckle noise in ultrasound
images, thresholding or filtering to remove noise, and blurring to correct for
differences in the intrinsic resolution of the images [49, 64, 75]. All these spatial
filtering techniques have shown to be effective in improving the image quality and
the accuracy of image registration.

In the context of IGI, which is the primary application of the work presented
in this dissertation, low-dose computed tomography (CT) and 3D ultrasound have
emerged as the preferred intraprocedural volumetric imaging modalities. These
modalities, although sufficiently fast for intraprocedural use, suffer from quantum

noise and speckle noise respectively. Furthermore, due to presence of metallic tools

Ultrasound Image Filtered US Image | Low-dose CT Image Filtered CT Image
Anisotropic Diffusion Filtering Median Filtering
Figure 2.4: Example of preprocessing techniques employed prior to intensity-
based image registration.

29

such as needles and catheters and associated photon scattering effects, intraprocedural
CT images also suffer from metal artifacts. As a result, these images must be
preprocessed and enhanced prior to registration with preprocedural images and
subsequent visualization. Toward this end, anisotropic diffusion filtering and median
filtering have been shown to be effective. Figure 2.4 shows an example application of
these filtering operations. In particular, anisotropic diffusion filtering has been
successfully applied for preprocessing of ultrasound, CT, and low-dose CT images
[76-78]. Similarly, median filtering has been employed, both in spatial and sinogram
domains, to reduce or eliminate metal artifacts and for filtering low-dose CT images

[79, 80]. In this dissertation we, therefore, focus on these two filtering techniques.

2.4.1. Anisotropic Diffusion Filtering

Anisotropic diffusion filtering is an iterative process which progressively
smoothes an image while maintaining the significant edges. The nonlinear anisotropic
diffusion algorithm for edge-preserving image smoothing was first proposed by
Perona and Malik [81]. For a 3D image | with intensities I (V,t), where V is a vector
in the 3D space and t is a given point in time (for the purposes of modeling the

diffusion process), the diffusion process is described by the following equation:

E:div(c(V,t)-Vl (V.1)), (2.13)

where c is the diffusion coefficient and takes a value between zero and 1. In general,
the diffusion coefficient is defined as a function of the image gradient (i.e.,

c= f(|VI|)). For noisy images, Whitaker and Pizer [82] showed that gradient

estimates taken from the image itself tend to be unreliable and proposed, instead, the

30

use of a Gaussian-filtered version of the image to calculate the gradient values. Their
proposed Gaussian filter has a standard deviation a(t) that decreases as the time (t)
increases, thus resulting in a multiscale approach. Dorati et al. [83] demonstrated the

usefulness of Whitaker and Pizer’s approach to 3D ultrasound image preprocessing.

The diffusion coefficient that uses the Gaussian-filtered image (indicated as G(o(t)))
is then defined as:
c= (VG (o (1)1 (v.1))- (2.14)

Several diffusion functions have been proposed in the literature. The two most

widely used are:

. —exp [\Ve(a(tll)q(v,t)‘} | 215
and
C, = 1+(‘VG(G(t;)°I(V’t)]M _l. (2.16)

These diffusion functions depend on the gradient of the Gaussian-filtered image,
while the parameter K adjusts the levels at which edges are diffused or preserved, to

achieve the desired filtering effect.

2.4.2. Median Filtering

Median filtering is a nonlinear technique commonly used to eliminate speckle
noise from ultrasound and impulse noise from other noisy images. This technique is

called non-linear because it can not be represented as a direct convolution operation.

31

This technique is based on rank-ordering of the intensity values present in an image.
In addition, this filter is an edge-preserving filter. The advantage of this technique
when compared to most linear (convolution-based) smoothing operators is that it
smooths areas within a particular object, while preserving its edges. This feature is
important, especially in the context of medical image registration, since it generally
improves the accuracy of the image registration, segmentation, and visualization
operations by preserving anatomical boundaries, while reducing random noise in the
interiors of the structures. However, such filters, due to their nonlinear nature, tend to
be computationally more intensive as compared with linear filtering operations.

The 3D realizations of these preprocessing operations, despite their
effectiveness, can take several seconds when implemented in software. Consequently,
for seamless integration into the 1GI workflow these techniques must be accelerated
so that their performance is comparable to the acquisition speed of intraprocedural
images. This dissertation addresses this need through real-time implementation of 3D

realizations of these operations as described in Chapter 3.

2.5. Optimization of Finite Precision Implementations

An emerging trend in image processing, and medical image processing, in
particular, is custom hardware implementation of computationally intensive
algorithms in the quest to achieve real-time performance. The work presented in this
dissertation has a similar spirit in the context of advanced 3D image processing
required during IGIs. For reasons of area (and power)-efficiency and performance,
these implementations often employ limited-precision datapaths. In comparison, the

original algorithms are often developed in software using the double-precision

32

representation. Identifying effective wordlengths for these datapaths while accounting
for tradeoffs between design complexity and accuracy is a critical and time
consuming aspect of this hardware design process. This problem of converting
floating-point implementations into fixed-point (or other limited precision
representations) through identification of optimum wordlengths is an important
problem in signal processing applications and has received considerable attention in
the literature. Cantin et al. [84] and Todman et al. [85] provide a comprehensive
review of techniques to identify optimal wordlengths. We briefly summarize some

important approaches here.

2.5.1. Optimal Wordlength Formulation
Consider a system with minternal variables and a wordlengthw, associated
with each variable. Further, each variable can take values between the lower (w,)

and upper (w,,) bound on the wordlength such that w, e(w, ,w,). Each

in: !
in;

wordlength is an integer variable, and the wordlength configuration for the entire

system can then be represented using a wordlength vector W(W € 1™) such as

{w,w,,---,w_}. Furthermore, W e (W

min !

W_); where W_ ={w

min ! Wminz IR Wminm}

and W_ ={w__,w_ ,---,w,_ }. Consider a function H associated with the system

ax; ? T Tmax, ! max,

that defines the hardware implementation cost associated with a wordlength
configuration W . Also, consider that the performance of this limited-precision,

quantized system is characterized by function p(W) and that the system must
achieve a certain performance P . The wordlength optimization problem can then be

presented as:

33

argmin H(W), such that p(W)>P_ . (2.17)

W €(Wrin Winax)
It must be noted that this formulation, for simplicity, considers only one objective

function H with respect to a predefined performance criterion P_ . The more general

multi-objective formulation is briefly described below and revisited in detail later in
the context of FPGA-based implementation of deformable image registration (see

Chapter 5).

2.5.2. Simulation-Based Optimal Wordlength Search

Optimal wordlength configuration that meets a certain performance criterion
can be identified by solving analytical expressions, when the performance function

p can be represented analytically. Some earlier reported approaches have adopted

this technique [86-90]. However, if the performance function can not be represented
analytically, which is often the case for practical complex systems, simulation-based
methods can be used to search for the optimal configuration. This involves searching
the design space (defined by the wordlength vector ranges) and finding a solution that
satisfies the design criteria. Some popular methods in this category are briefly
described below. A detailed description of these methods can be found in [84, 91].

An exhaustive search attempts every possible combination of wordlengths
between the predefined lower and upper bounds and evaluates the performance of
each combination through simulation. The optimum wordlengths can then be selected
from the simulation results. An exhaustive search is guaranteed to find the global
optimal configuration, however, the number of solutions explored and the associated

execution time increase exponentially as the number of variables increases.

34

Another method, proposed by Sung and Kum [92] searches for the first
solution that satisfies a given performance requirement or an error criterion. These
method starts with an initial guess for the system configuration based on uni-variable
simulations. The wordlength of each variable, as provided by this initial guess, is then
sequentially incremented by one until a configuration that meets the error criterion is
found. Although, this method is more efficient than the exhaustive search, finding the
globally optimal configuration is not guaranteed.

A sequential search method [84, 93] that takes into account the performance
sensitivity to determine the direction of the search is another way to approach this
problem. This method starts with an initial guess based on uni-variable simulations;
however, the further search direction is determined by the sensitivity of the
performance to each variable. This sensitivity is estimated by calculating the gradient
of the system performance with respect to all the variables and the search progresses
in the direction of the variable (that is wordlength of that variable is incremented) that
offers most improvement. It is also possible to consider hardware cost sensitivity

instead of the performance sensitivity in this search method.

2.5.3. Multiobjective Optimization

One of the limitations of the optimization formulation described above is that
search methods based on this formulation are limited to finding a single solution that
satisfies a design objective. Most real-world problems (including the wordlength
optimization problem), however, can have several objectives (that generally conflict
with each other) that need to be achieved at the same time. For example, in the case

of finite-precision implementations, hardware resource requirements and the

35

implementation accuracy are two such conflicting objectives. Because of the
conflicting nature of the involved objectives, multiobjective optimization problems do
not normally have a single optimal solution and even necessitate a new definition of
optimality.

The most commonly adopted notion in multiobjective optimization problems
is that of Pareto optimality. A vector of decision variables x” e F is Pareto optimal if
there does not exist another solution x eTFsuch that fi(x) <fi(x"), for all i, and
fi(x) < fj(x"), for at least one j, where f; represents an objective function defined for
every xel. This definition of optimality almost always provides a set of solutions
called the Pareto-optimal set. The set of vectors x” corresponding to the solutions in
the Pareto-optimal set are called non-dominated solutions. This concept is pictorially
illustrated in Figure 2.5.

Formulating the wordlength optimization as a multiobjective problem has
merit because it allows finding a set of Pareto-optimal configurations representing
strategically-chosen tradeoffs among the various objectives. This allows a designer to
choose an efficient configuration that satisfies given design constraints and provides

ease and flexibility in modifying the design configuration as the constraints change.

A

Pareto Front o Dominated
e Non-dominated

Objective 2

Objective 1
Figure 2.5: Pareto front in the context of multiobjective optimization.

36

For example, Leban and Tasic [94] used error, delay, and area as objectives. Han and
Evans [91] performed optimization of area and error through linear aggregation,
while Givargis et al. [95] considered power and execution performance trade-off for
system-on-chip architecture through series of monobjective optimizations. There are
also some heuristic techniques that take into account tradeoffs between hardware cost
and implementation error and enable automatic conversion from floating-point to
fixed-point representations [96]. In this dissertation work, we develop a framework
for multiobjective optimization of finite precision implementations. This framework
has been developed for optimization of the FPGA-based image registration and has

been validated through post-synthesis evaluation.

2.6. Related Work

2.6.1. Real-Time Image Preprocessing

Image preprocessing plays a crucial role in image understanding based
systems, video processing, and in the medical imaging domain. Over last two decades
much work was done on implementing image processing components in hardware. A
detailed description of various single instruction multiple data (SIMD) and multiple
instruction multiple data (MIMD) architectures can be found in [97, 98]. With
availability of variety of computing platforms such as digital signal processors
(DSPs), graphics processing units (GPUs), and FPGAs some of the image processing
algorithms have also been mapped to these platforms for achieving superior
performance. Most reported techniques, however, focus on 1D or 2D realizations and

do not adequately address the need for accelerating these operations in 3D. Moreover,

37

because of the larger 3D neighborhoods (N® as opposed to N or N?), data input
requirements are increased and the performance achieved for 1D or 2D realizations
may not translate to their corresponding 3D implementations. This additional
complexity, coupled with the sheer size of 3D images (typically 2-5 million voxels),
makes achieving real-time performance extremely challenging. Consequently, only a
few designs for high-speed implementation of 3D image preprocessing techniques
have been reported in the literature. We focus on implementations of anisotropic
diffusion and median filtering and summarize those efforts here.

Rumph et al. [10] implemented the 2D nonlinear diffusion process on a
graphics hardware. The primary focus of this work was to achieve acceleration
through parallelism and better memory bandwidth. Gijbels et al. [8], on the other
hand, have reported a VLSI architecture based on linear array technique for
implementation of iterative diffusion process. A similar VLSI-based approach was
also reported recently for 1D nonlinear signal processing [11]. Accelerated
implementations of 3D anisotropic diffusion filtering using computing clusters have
also been reported. Bruhn et al. [99, 100] have reported an approach using a 256-node
Myrinet cluster, whereas Tabik et al. [101] have explored multiple parallel
programming paradigms built on message passing and shared-memory architectures.
Both these techniques have yielded near-linear speedups.

Accelerated implementations of median filters based on searching, sorting,
and bit-level methods have previously been reported in the literature. We particularly
focus on bit-level methods because they are well suited to finding the median of large

3D neighborhoods in hardware. Bit-level methods for median filtering can be

38

classified into the bit-serial sorting, bit-serial searching, threshold decomposition, and
majority voting—based methods. Bit-serial sorting is performed using sorting
networks such as the odd-even exchange network and reduced bubble sort network
[102, 103]. Bit-serial searching [104], also called the radix method, involves a bit-by-
bit search to find the median. The threshold decomposition method [105] provides a
modular and parallel design, but the hardware requirements grow exponentially with
the number of bits used to represent images. Majority voting methods are based on
determining bit-wise majority starting from the most significant bits (MSBs). Lee and
Jen [9, 106] have described a novel binary majority gate that can determine the
majority of binary input signals using an inverter circuit. A compact majority voting
circuit using an adder array to count the number of 1s and a threshold comparator to
determine an individual bit of the median is described by Benkrid et al.[7]. Variations
on this approach have been described in the literature [107-109]. Systolic array
architectures for bit-level sorting networks have been shown to improve concurrency
of the bit-serial sorting designs [102, 103, 110-113]. The median filter design
presented in this work is a combination and 3D extension of bit-serial searching and
majority voting approaches.

In this dissertation work, we introduce a novel FPGA-based architecture of 3D
anisotropic diffusion filtering. In addition, this work develops an architecture for 3D
median filtering kernel, which is faster than existing solutions and is capable of
supporting higher 3D kernel sizes. Our solution is compact, easily deployable and is

capable of processing the intraprocedural images faster than their acquisition speeds.

39

2.6.2. Acceleration of Image Registration

Intensity-based automatic image registration is a key component of modern
medical imaging. Fast and accurate image registration can enhance many diagnostic
and interventional applications. However, this task is also computationally intensive
due to dimensionality of the images involved and memory-bound nature of the
operation. It is this aspect that has limited the integration of intensity-based image
registration (and that of deformable nature, in particular) in clinical applications. To
address this aspect many researches have independently attempted to accelerate
intensity-based image registration. Classification of these acceleration attempts has

been reported by Plishker et al. [114]. We briefly summarize these attempts here.

2.6.2.1. Multi-Processor and Supercomputer—Based Approaches

Image registration problem lends itself well for acceleration through parallel
implementation. Inherent data-parallel nature (same operations to be performed on
every voxel of an image) of these algorithms makes them readily amenable to
parallelization. The majority of earlier reported attempts to accelerate intensity-based
deformable registration have primarily employed a multiprocessor approach. Ourselin
et al. [115] reported a parallel implementation of affine registration using a 10-
processor cluster that provided a 6-fold speedup. Stefanescu et al. [116] implemented
Demons algorithm [44] on a similar cluster of 15 2-GHz Pentium CPUs and achieved
an 11-fold speedup for non-rigid image registration between a pair of magnetic
resonance images. Similarly, Ino et al. [117] have reported a fast implementation of
MI-based deformable registration using a 128-processor cluster. Another acceleration

approach has been to use supercomputers, which offer a high degree of parallelism.

40

Warfield et al. [118] performed deformable registration on a Sun supercomputer in 15
sec. However, interactive segmentation of the brain surface in the intraprocedural MR
images took several minutes. Moreover, this implementation was specific to brain
MR images because of high surface correspondence. Rohlfing et al. [57] have
reported a speedup of 40 for a splines-based deformable registration algorithm using a
64-processor shared-memory supercomputer (SGI Origin 3800). Although these
solutions delivered high performance by virtue of parallelization, the speedup
achieved per processor was less than unity. Moreover, these solutions may not be cost

effective, and because of their size, are unlikely to be suitable for clinical deployment.

2.6.2.2. Graphics Processor (GPU)-based Approaches

The recent emergence of powerful graphics processors (GPUs) has enabled a
new direction for accelerating computationally intensive applications. Modern GPUs
offer an array of processing elements that can offer customized data parallel
processing. Many high level languages, such as Cg, Brook, CUDA, are emerging to
aid the task of programming GPUs. This has enabled the use of GPUs for many other
applications such as image registration beyond graphics domain. Strzodka et al. [119]
reported the first implementation of image registration using the graphics hardware.
This implementation accelerated a gradient flow—based image registration using
graphics hardware. However, it was limited to registration of 2D images only and
offered only limited speedup. Kohn et al. [120] have reported another implementation
of gradient-flow based image registration that supports 3D images. Although, this
implementation offered moderate speedup for rigid registration, the performance

achieved for 3D deformable image registration was poor. Plishker et al. [121] have

41

employed GPUs for applying transformations to images during rigid registration. This
implementation achieved 3-fold improvement in execution time over a CPU-based
implementation. More recently, Vetter et al. [122] have reported acceleration of MI-
based multimodal registration using graphics hardware. Although, this
implementation achieved accuracy comparable to that achieved using a software
implementation, the speedup achieved was only about 5-fold. In summary, these
reported solutions demonstrate how this promising platform can be utilized for certain
image registration techniques. However, the architecture of GPUs along with their
lack of efficient scatter operation is not optimally suitable for operations such as
accumulation which is a prerequisite (accumulation of the mutual histogram [MH])
for calculation of MI. As a result, GPU-based solutions, despite being compact and
low-cost, may not provide substantial acceleration for calculation of MI, which is the

most versatile and robust image similarity measure.

2.6.2.3. Other Approaches

Emerging multi-core processors are able to accelerate medical imaging
applications by exploiting the parallelism available in their algorithms. Ohara et al.
[123] have implemented an MI-based 3D rigid registration algorithm on the Cell
Broadband Engine (CBE) processor, which has nine processor cores on a chip and
has a 4-way SIMD unit for each core. By exploiting the highly parallel architecture
and its high memory bandwidth, this implementation with two CBE processors can
compute MI around 11-times faster than a sequential implementation. However, this

implementation does not support deformable image registration.

42

General purpose hardware languages and compilers for transforming high-
level descriptions into hardware are becoming increasingly popular. Streams-C,
Handel-C, Mitrion-C are examples of such tools. These tools allow direct translation
of code developed using high-level languages such as C, Java, or Matlab into efficient
hardware implementations. Although, these techniques have provided considerable
speedup for applications involving matrix operations, linear algebra, and search, their
performance in complex applications requiring architectural insights has been limited.
For example, Jiang et al. [124] have reported a method for acceleration of splines-
based deformable image registration using Handel-C. The converted design, when
implemented using a Xilinx device, could achieve speedup a of only 3.2 when
compared with an equivalent software implementation.

In comparison with the techniques mentioned above, this dissertation work
presents a novel FPGA-based architecture for high-speed implementation of MI-
based deformable 3D image registration. This architecture is capable of accelerating
MI calculation by a factor of 40 using a single computing element. Consequently, the
execution time for deformable image registration is reduced from hours to a few
minutes. Furthermore, this implementation is accurate, automatic, compact, and

completely retrospective.

2.6.3. Optimization of Finite Precision Implementations

With the need for real-time performance in signal processing applications an
increasing trend is to accelerate computationally intensive algorithms using custom
hardware implementation. The architectures presented in this dissertation, for

accelerated implementation of image preprocessing and image registration, fall into

43

the same category. A critical step in going to a custom hardware implementation is
converting floating-point implementations to fixed-point realizations for performance
reasons. This conversion process is an inherently multidimensional problem, as
several conflicting objectives, such as area and error, have to be simultaneously
minimized. By systematically deriving efficient tradeoff configurations, one can not
only reduce the design time [125] but can also enable automated design synthesis [96,
126]. Furthermore, these tradeoff configurations will allow designers to identify
optimized, high quality designs for reconfigurable computing applications. The work
presented in this dissertation develops a framework for optimizing tradeoff relations
between hardware cost and implementation error in the context of FPGA-based image
registration.

Earlier approaches to optimizing wordlengths used analytical approaches for
range and error estimation [86-90]. Some of these have used the error propagation
method (e.g., see [89]), whereas others have employed models of worst-case error
[87, 90]. Although, these approaches are faster and do not require simulation,
formulating analytical models for complex objective functions, such as MI, is
difficult. Statistical approaches have also been employed for optimizing wordlengths
[127, 128]. These methods employ range and error monitoring for identifying
appropriate wordlengths. These techniques do not require range or error models.
However, they often need long execution times and are less accurate in determining
effective wordlengths.

Some published methods search for optimum wordlengths using error or cost

sensitivity information. These approaches are based on search algorithms such as

44

“Local,” “Preplanned,” and “Max-1" search [84, 93]. However, for a given design
scenario, these methods are limited to finding a single feasible solution, as opposed to
a multiobjective tradeoff curve. In contrast, the techniques we present in this
dissertation are capable of deriving efficient tradeoff curves across multiple objective
functions.

Other heuristic techniques that take into account tradeoffs between hardware
cost and implementation error and enable automatic conversion from floating-point to
fixed-point representations are limited to software implementations only [96]. Also,
some of the methods based on heuristics do not support different degrees of fractional
precision for different internal variables [87]. In contrast, the framework presented in
this dissertation allows multiple fractional precisions, supports a variety of search
methods, and thereby captures more comprehensively the complexity of the
underlying multiobjective optimization problem.

Other approaches to solve this multiobjective optimization problem have
employed weighted combinations of multiple objectives and have reduced the
problem to mono-objective optimization [91]. This approach, however, is prone to
finding suboptimal solutions when the search space is nonconvex [129]. Some
methods have also attempted to model this problem as a sequence of multiple mono-
objective optimizations [95]. The underlying assumption in this approximation,
however, is that the design parameters are completely independent, which is rarely
the case in complex systems. Modeling this problem as an integer linear

programming formulation has also been shown to be effective [86]. But this approach

45

is limited to cases in which the objective functions can be represented or
approximated as linear functions of design variables.

Evolutionary algorithms (EAs) have been shown to be effective in solving
various kinds of multiobjective optimization problems [130, 131] but have not been
extensively applied to finding optimal wordlength configurations. An exception is the
work of [94], which employs mono-objective EAs. In contrast, our work
demonstrates the applicability of EA-based search for finding superior Pareto-
optimized solutions in an efficient manner, even in the presence of a non-linear
objective function, such as MI. Moreover, our optimization framework supports
multiple search algorithms and objective function models; and can easily be extended
to a wide range of other signal processing applications. This optimization framework,
which is developed and validated in the context of FPGA-based 3D image

registration, is described in detail in Chapter 5.

46

Chapter 3: Real-time 3D Image Processing

This chapter presents an FPGA-based architecture for real-time
implementation of 3D image pre-processing techniques commonly employed in IGI.
First, we outline the filtering algorithms that are being accelerated in this work. Next,
we present the architecture for their real-time implementation. Finally, we describe
the realization of this architecture, analyze the effects of finite precision
implementation, and compare the performance of this implementation with earlier

reported efforts.

3.1. Motivation

Real-time and high-quality three-dimensional (3D) intraprocedural
visualization is a critical need for 1Gls. Recent advances in computer and transducer
technology have made high-speed 3D imaging possible with high resolution and
acquisition speed. Notably, low-dose computed tomography (CT) and 3D ultrasound
have emerged as the preferred volumetric imaging modalities during many image-
guided procedures [18, 132-135]. The advent of multislice CT allows high-resolution
and high-frame-rate volumetric imaging of the operative field. In the continuous
volumetric mode, multislice CT is capable of acquiring images with 256 x 256 x 64
dimensions and resolutions of 0.625 mm, 8 times per second. Similarly, advances in
transducer technology have led to improvements in the field of 3D ultrasound
imaging, which can now acquire images with 128 x 128 x 128 dimensions and
resolution of 1 mm, 20 times per second. These intraprocedural images, acquired

during the procedure for navigation, represent the most current anatomical

47

information but often suffer from poor signal-to-noise ratio. To achieve desired
accuracy for I1Gls, these intraprocedural 3D images, therefore, must be preprocessed
and enhanced before they can be used for advanced image processing operations such
as segmentation, registration, and visualization. Toward this end, anisotropic
diffusion filtering and median filtering have been shown to be effective in enhancing
and improving the visual quality of these images. It is important to note that the
interactive nature of 1GIs necessitates equivalent image processing speed so that these
procedures can be performed in a streamlined manner without any additional
processing latency.

The aforementioned filtering techniques are based on neighborhood (window)
operations. For volumetric (3D) images, these neighborhoods are considerably larger
(N3), thus increasing the complexity of filtering operations. This complexity, coupled
with the sheer size of intraprocedural volumetric images, results in execution times of
several seconds for software implementations running on general-purpose
workstations (Table 3.1). This processing speed is only a fraction of the acquisition

speed of the intraprocedural images and is clearly unacceptable to meet the real-time

Table 3.1: Software execution time of 3D anisotropic diffusion filtering and 3D
median filtering of 8-bit images for common kernel sizes (N).
. Voxel
. Execution .
. Kernel Image size . processing
Filter kernel . time
size (N) (voxels) (seconds) rate
(MH2)
3D anisotropic 7 128 x 128 x 128 2.28 0.92
diffusion filter 256 x 256 x 64 4.58 0.92
3 128 x 128 x 128 0.85 2.46
3D median 256 x 256 x 64 1.59 2.63
filter 5 128 x 128 x 128 3.01 0.7
256 x 256 x 64 5.67 0.74

48

requirements of IGls. Previously reported techniques for accelerated implementation
of these filtering operations primarily focused on one-dimensional (1D) or two-
dimensional (2D) filters [7-11], with only a few implementations attempting to
accelerate these operations in 3D.

This dissertation presents an FPGA-based architecture for real-time
processing of intraprocedural 3D images. Earlier attempts to accelerate 3D
anisotropic diffusion filtering were targeted toward multiprocessor clusters [100,
101]. Despite the near-linear speedup offered by these techniques, the need to employ
up to 256 processors to achieve real-time performance makes them less suitable for
clinical deployment. In this dissertation, we introduce a novel FPGA-based
implementation of 3D anisotropic diffusion filtering. The developed solution is
compact, easily deployable, and capable of processing the intraprocedural images
faster than acquisition speeds. Some researchers have recently reported high-speed
implementations of 3D median filtering using graphics processing units [136] and
FPGAs [137]. This work presents an FPGA-based 3D median filtering module that is
faster than currently existing solutions and supports higher 3D kernel sizes (3,5,7).
The designed architecture can achieve a processing rate close to 200 Megavoxels per
second for both the 3D anisotropic diffusion and 3D median filtering, which is
equivalent to about 50 processing iterations or operations per second for images of
size 256 x 256 x 64. Consequently, this design is capable of meeting the real-time

data processing need of most IGls.

49

3.2. Filtering Algorithms

This section briefly describes the 3D image preprocessing algorithms that are
being accelerated in the current work. The architecture for their real-time

implementation is presented in the subsequent section.

3.2.1. Anisotropic Diffusion Filtering

As described earlier, anisotropic diffusion filtering is an iterative process

which progressively smoothes an image (1(v,t)) while maintaining the significant

edges. This process can be summarized by the following equation:

%zdiv(c(v,t)-VI (V.1)), (3.1)

where c is the diffusion coefficient. Since the intraprocedural images typically have
poor SNR, the current implementation employs Gaussian-filtered version of the
image to estimate the gradient values, as proposed by Whitaker and Pizer [82]. The
corresponding discrete expression, which is implemented in our design, for this

filtering operation (shown for a 2D case for simplicity) is:

0[| (X+1, y,t)_ I (Xx y’t)]
J[1(x=1,y,t) = 1(x,y,1)] (3.2)
LG Y+LY - 1%y,] |

JLH(x y=1t) = 1(x,y,1)]

c([le(x+Ly,t) =15 (X, y,t)
+c(|IG(x—1, y,t) =I5 (%, y,t)
(|

(

I(X, Y, t+At) = 1(X,y,t)+At «

+c(|lg(x, y+1,t)—15(x,y,t)
+C([lg(x, y=1,t)—15(x,y,t)

~————

where | is the Gaussian-filtered version of the image, cis the discrete realization of

the chosen diffusion function, and the time step At controls the rate and stability of
the diffusion process. Gerig et al. [138] calculated maximum values for At for

different neighborhood structures. For a 3D realization, diffusion is calculated in a 3D

50

space with 6-connected neighborhood, and that configuration corresponds to a

maximum At value of 1/7, which is implemented by the presented design.

3.2.2. Median Filtering

The 3D median filter design presented in this dissertation is based on a
combination of bit-serial searching and majority voting approaches. This section
describes this median finding scheme by means of an example. The algorithm is
executed in b (for b-bit images) steps, where each step finds 1 bit of the resulting
median value starting from the most significant to the least significant bit.
Specifically, at the j™ step, the majority bit (‘0 or “1”) amongst the j ™ significant
bits of all the input elements in the neighborhood is calculated and represents the j™
bit of the median of the neighborhood (0 < j <b-1).

At a given step, when a bit of a input element differs from the majority bit
calculated at that step, the bit value for that element is fixed in subsequent steps and is
considered to be masked with its current bit value. Bits already masked in a previous

step are not altered in subsequent steps (i.e., if the j™ bit of input value n,
represented using b bits as: n,,n, ,---n,, is masked, then the algorithm considers

n; =n;, Vi< j). The process of finding the median using this approach is illustrated

in Figure 3.1. In this example, for simplicity, we consider a small input neighborhood
consisting of only five elements with four bits per voxel (b =4); therefore, only four
processing steps are required. Processing starts at the MSB position of the data
elements. The bits of the data elements being considered for calculating the majority

bit at any step are indicated in gray in the figure. The masking operation that takes

51

Neighborhood : {4,9,5,7,0}; 4-bits per voxel (b=4)

Input

|
Neighborhood | Processing Stage 1 | | Processing Stage 2 | | Processing Stage 3 | : [Processing Stage 4 |
|
MSE }==-vnuees LSB MSE }=snneees LSB MSE }-=evene-- LsB] | [mSB}-eneeeees LSB
- (=) |
|
4 0 1 0]o0 0 1 o]0 0 1 0| o0 | 0 1 0 0
_— |
9 1 0 0 1 1 : 1 /5/ /
jasmi] I
5 0 1 0 0 1 0 1 0 1 0 1 | 0 1 0 1
— |
7 0 1 1 0 1 1 1 0 1 1 1 [0 1 1
|| | /’
0 oflofo olofo 0 : 0
Majority = 0 Ma]onty 1 MaJonty 0 Majority = 1
[Median = Oxxx Median=01xx | MK | Megian=010x | MK | pegian = 0101
Bits used to calculate the majority Masked bits. Not used in
bit at an individual stage majority calculation

Figure 3.1: A median filtering example using majority voting technique.

place at the end of every step is indicated by arrows. The masked bits are shown to be
crossed out. One bit of the median is determined at every processing stage starting
from the MSB position, and the results from all the stages are combined to produce

the final median value.

3.3. Architecture

We present an FPGA-based architecture that is capable of performing 3D
anisotropic diffusion and 3D median filtering of intraprocedural images faster than
their acquisition speed. A top-level block diagram of this architecture is shown in
Figure 3.2. Input and output images are stored in two independent external memory
banks, and the memory controller, input and output image buffers, and the filtering
modules are implemented using an FPGA. The presented architecture supports two
filtering modules, one for 3D anisotropic diffusion filtering and the other for 3D
median filtering. The filtering module can be selected and reconfigured statically,

whereas the memory controller and the image buffers are designed to be common to

52

Memory

Bank 1 Input
(DDR2 Buffer }
DRAM)

|
External I
|
|
|

Direction Programmable Filtering Module
Select Logic (3D Anisotropic Diffusion, 3D Median) |

Output | |
Buffer
FPGA

L
Figure 3.2: Block diagram of the FPGA-based real-time 3D image preprocessing
system.

Image Memory

Memory
Bank 2
(DDR2
DRAM)

all supported filtering modules. The role of input and output memory banks can be
switched at runtime, thus enabling execution of consecutive filtering operations (or
iterations) without additional data transfers between the memory banks.

In order to achieve real-time performance, it is imperative to aim at a
throughput of one processed (output) image voxel per clock cycle. Because both
anisotropic diffusion and median filtering involve neighborhood operations, meeting
this throughput requirement is challenging, given that an entire neighborhood (N*
voxels, where N is the filter kernel size) must be accessed in order to compute one
output voxel. Moreover, adjoining neighborhoods must be continuously fetched from
the input memory bank as next output voxels are computed sequentially. These
neighborhoods are read by the memory controller from the input image memory bank
and are stored into the input buffer inan N x N x N arrangement.

The filtering module receives the neighborhood to be processed in a pipelined
fashion: N xN new voxels every clock cycle. Once the filtering module pipeline is
full (after N clock cycles), the filtering module computes one output voxel per clock
cycle. The sequential input neighborhoods are continuously processed, and the

resulting output voxels are stored into the output buffer. The memory controller then

53

transfers these resultant voxels to the output image memory in a burst of one image
row at a time. The memory controller uses a brick-caching scheme, specifically
devised to meet the high input data rate required by this task. This brick-caching
scheme takes advantage of the fact that adjacent neighborhoods share
N x N x (N —1) voxels and only N xN new voxels need to be supplied every clock
cycle for continuous neighborhood processing. The implementation of this scheme is
described in the following sections. For the remainder of this chapter, we use the

following notations: image dimensions are represented as N, xN, xN,. The

parameter b indicates the number of bits used to represent the voxel intensity in the
image, and N is the filter kernel size with corresponding neighborhood size of N*.
.Input and output images are arranged in the memory banks along the z—y—x order,
with rows of the memory aligned with the z direction of the image. The output voxels

are also calculated in z—y —x order.

3.3.1. Memory Controller and Brick-caching Scheme

Memory organization and neighborhood access techniques are often the
limiting factors in 3D image processing systems [139-142]. However, most practical

filtering techniques employ standard neighborhood operations that require block-

LAX

3D -
Neighborhood

(processing |_ —_ o | —_
window) Ve

|
Lz:’,,,,,;,f |
|

N,
|

Figure 3.3: Typical voxel access péftérn for neighborhood operations—ba
processing.

54

sequential voxel access, as shown in Figure 3.3. The presented FPGA-based
architecture uses a raster scan order distribution of voxels in the image memory,
along with a brick-caching scheme to take advantage of this block-sequential access
pattern. For every output voxel calculation, an entire neighborhood of N xN x N
voxels must be accessed. This neighborhood cannot be retrieved in a single burst
access of a sequentially organized image memory. Moreover, in a pipelined
implementation, data must be continuously fetched for successive neighborhood
operations. To sustain the high data rate required to achieve real-time processing
speeds, this architecture employs a brick-caching scheme that loads the image into the

input buffer that stores an N x(N +1) array of image rows (i.e., it stores up to
N x (N +1)x N, voxels). This input buffer is implemented using high-speed and dual-

ported memory blocks internal to the FPGA. The input buffer can be accessed in a
single clock cycle, which enables fast updates and reads. Figure 3.4 shows the block
diagram of the input image memory and the input buffer, which consists of an

N x (N +1) array of internal memory blocks, each holding N, voxel intensity values.
We use the following terminology: a brick is an N x N x N, block of image intensity
values stored in the internal buffer. A brick plane is an N x1x N, section of a brick. A

brick slice is an N xNx1 section of a brick. A brick row (or simply row) is a

1x1x N, section of a brick. Each row corresponds to and contains one input image
row containing N, voxels. The pictorial representation of this terminology is shown

in Figure 3.5. Bricks are loaded into the buffer one brick row at a time for an

available brick plane and are then fed to the filtering pipeline one brick slice at a time.

55

Input Image Nx(N+1)xN; Input Buffer
Memory Bank Ready A A A A A
ﬂag v "':,1 "‘:_I '"'"." ""‘. o "“_.' "
{} 1] |) NxN
1] & slice brick slice
Memory :> 11 N
Controller 1 ks MUX >
] i
] i To filtering
— pipeline
1
0
Lg
indicates empty brick planes indicates brick planes
(available for brick caching) containing valid data

Figure 3.4: Block diagram showing the input image memory and the input buffer
configuration.

The input buffer, therefore, can store a whole brick plus an extra brick plane. The
brick-caching operation is described below.
The memory controller fills up the input buffer row by row. Each row

contains N, voxels, and thus transfer of each row takes t.,, =t +N,/W clock cycles,

Row

where t_ is the number of clock cycles necessary to start a burst memory transfer and

lat
W is the effective data bus width in terms of number of voxels (e.g., double-data-rate
[DDR] dynamic random access memory [DRAM] will offer twice the effective bus
width of single-data-rate DRAM with a similar configuration). After the first row is
cached in, the controller starts caching the row next to it in the x direction. A

complete brick plane (N image rows, Nx1xN,voxels) can be loaded in

to.. = N -to,, clock cycles. Associated with every brick plane is a ready flag. This

Plane Row

flag serves a dual purpose; when “1’, it indicates the availability of data for that
particular brick plane, and, when “0’, it indicates that the brick plane is empty and
available for caching image voxels. After one brick plane is loaded into the input

buffer, the memory controller sets the corresponding ready flag and starts loading the

56

s s brick - NNxNz voxels

"7 | brick slice - N1 voxels
[brick plane - Nx1<Nz voxels

(N+1)

-+
N

Figure 3.5: Pictorial representation of the notation used in the brick-caching
scheme.

next brick plane (along the y direction). Once a complete N x N x N, brick is available

in the input buffer, it is fed into the filtering module pipeline one brick slice (N x N
voxels) at a time.

The filtering module pipeline operates on one N xN xN neighborhood at a
time and is fed with a new brick slice every clock cycle. Loading an entire
N x N x N, brick into the filtering module pipeline thus takes N, clock cycles. While
this operation is in progress, the memory controller loads the next brick plane (along
the y direction) into the buffer plane that is not being used for processing (indicated
by the ready flag), which requires tpane Clock cycles. After processing of all the

neighborhoods in the N xNxN, brick is complete, the processing window shifts
along the y dimension of the image, and the processing of the new neighborhoods

begins. Simultaneously, the ready flag corresponding to the brick plane that is no
longer used is set to “‘0’. This available brick plane in the input buffer is then used for
caching the next image rows (along y direction). In this fashion all brick planes in the

input buffer are cyclically used for brick caching during processing. These steps

57

continue until the processing window reaches the end of the column (i.e., until y =
Ny). At this point, the processing window moves along the x direction. To accomplish

this, data in the internal buffers are invalidated, and the complete N x N x N, brick in

the next column is cached, which requires a pipeline stall. After the initial brick in the
new x coordinates is loaded, the processing continues as described earlier. The
processing of the entire 3D image is completed accordingly. For continuous pipelined
operation with minimum stalls, the memory controller must provide the next brick
plane before the processing of the previous brick is completed. Therefore, the
relationship expressed in the following equation must be met:

N-(tg +N, /W)-T . <N,-T

mem —

(3.3)

lat proc !
where Tpem IS the clock period of the external memory clock and Tproc IS the clock
period of the internal filtering pipeline. The left-hand side of Eq. (3.3) refers to the
total time required to load a new brick plane. The right-hand side refers to the total
time required to process a whole brick. Assuming that efficient burst accesses

(supported by most modern dynamic memories) are being used (which implies:
t.. < N, /W), the following relationship must be maintained to minimize pipeline
stalls:

N-T <W-T (3.4)

proc *

3.3.2. 3D Anisotropic Diffusion Filtering

This architecture supports 3D anisotropic diffusion filtering by pipelined
implementation of the 3D extension of the formulation shown in Eg. (3.2). As

indicated by that formulation, we use a Gaussian-filtered version of the image for

58

improved diffusion coefficient estimation. Our design implements this Gaussian
filtering at runtime using an embedded 3D Gaussian filtering module. Figure 3.6
shows a top level block diagram of the 3D anisotropic diffusion filtering module. This
filtering pipeline operates on N x N x N voxel neighborhoods. On each clock cycle,
the input data buffer feeds an N xN voxel neighborhood (brick) slice into the
pipeline. The center voxel intensity value is passed to the delay element for
accumulation at the end of the pipeline per Eq. (3.2). The 3 x 3 voxel neighborhood
located at the center of the incoming N x N neighborhood is passed to the image
gradient calculator, which calculates the image gradients with respect to each of the
6-connected neighbors of the center voxel. The embedded Gaussian filtering module
calculates, in parallel, the Gaussian-filtered values for each of the six-connected
neighbors and passes them to the diffusion coefficient calculator, which calculates the

diffusion coefficients ¢, corresponding to each of the input gradients. Taking

advantage of the parallelism native to FPGAs, these operations are executed in
parallel, and, as a result, this filtering module can calculate the output at the rate of
one voxel per clock cycle. The resulting voxel intensity values are fed into the output

buffer, and the memory controller then stores them in the output memory bank.

3.3.2.1. Embedded Gaussian Filtering Module

Equation (3.5) shows the formula to calculate the coefficients of a 3D
Gaussian filter kernel, where o is the standard deviation of the Gaussian function
and d is the Euclidean distance between the desired coefficient location and the kernel

center. For a choseno, the coefficient values depend exclusively on the Euclidean

59

; LUT-based
| Ga;;;:rran Diffusion Co.5
o Bank | Coefficient
NxNx=N Calculator
Neighborhood (cx VI(v.t)o.s
centered at

I(v,t)

Y

Image Gradient Calculator (v, t+At)

To Qutput
Image Buffer

I(v.t)

> Delay Element

Figure 3.6: Top-level block diagram of 3D anisotropic diffusion filtering. This
diagram indicates paths that are executed in parallel.

distances from the kernel center; thus, the Gaussian filter kernel exhibits symmetries

with respect to its center (i.e. it is radially symmetric).

G, (a):exp(— 20172] (3.5)

Our architecture takes advantage of these symmetries to reduce the number of

multipliers needed for implementing the 3D Gaussian kernel to k x (k +1)x (k +2)/6
from (N -2)°; where N is the size of anisotropic diffusion filtering kernel, the
corresponding size of the embedded Gaussian filtering kernel is (N -2), and
k=(N-1)/2. For example, a 5x5x5 embedded Gaussian kernel that arises in

anisotropic diffusion filtering with N =7 can be implemented using only 10
multipliers (as opposed to 125) as we reported previously [143]. For this kernel, each
individual slice (5x5 plane of the kernel) has six isodistance regions and the whole
3D kernel has 10. During filtering operation, all voxels that are equidistant from the
kernel center are multiplied against the same Gaussian coefficient. The intensities
corresponding to these voxels in the same isodistance region can, therefore, be pre-

added before being multiplied against the Gaussian coefficients. Because a 5x5x5

60

Gaussian kernel contains 10 isodistance regions, the minimum number of multipliers
necessary to implement this filter kernel is, therefore, 10.

A block diagram of the Gaussian filter bank is shown in Figure 3.7. On each
clock cycle, the input buffer feeds an N x N voxel neighborhood into the bank. This
neighborhood is decomposed into five (N —2)x (N —2) neighborhoods by the input
demux, and these neighborhoods are then passed to five embedded 3D Gaussian
filters. Figure 3.8 shows a block diagram of an embedded 3D Gaussian filter. The
pre-adder accumulates values corresponding to the isodistance groups in the incoming
(N —2)x(N —-2) neighborhood, thus compressing the neighborhood based on the
intraneighborhood plane isodistance criterion (e.g., each single 5x5slice of
a5° Gaussian neighborhood has 6 isodistance regions). These pre-added values are

then passed to (N —2) pipeline buffers, which make values corresponding to the

entire (N —2)° neighborhood available in parallel. The sorter—accumulator

aggregates these values corresponding to the isodistance groups between the slices,

| Gaussian Lo
Filter 1

T Il
EGaussian i Lol H = T
- Filter 2 A ‘ I HEHHH

| Gaussian
| Filter3

T
-

Demux

+

iL JLSXS Ne,‘g@oomaodsiL

Cross Buffer || Cross Buffer || Center Buffer

l Filtered |Values l

Gaussian
Filter 4

"

7x7 Neighborhood (from Input Buffer)

Gaussian
Filter § Center Al Center
alue

W
l
!

| Subtractor Array

6 Gradient Values (to Diffusion

Coefficient Calculator)
Figure 3.7: Block diagram of the embedded Gaussian filter bank (for N = 7,
corresponding Gaussian kernel size is 5).

61

i D

‘ Sorter - Accumulator |

o
=
o

Pre- Slice Slice

Ci
Mgy

-

Accumulated Iso-distance
) intensities

Stored s
Gaussian 10 Multiplier Array |
[ts

10
‘ Adder Tree |

+ 3D Gaussian-filtered
intensity

Figure 3.8: Pipelined implementation of an individual Gaussian filter element
(Gaussian kernel size = 5).

-

compressing them further using the isodistance criterion for the entire neighborhood
(e.g., 10 values that correspond to the 10 unique coefficients in a 5x5x5 Gaussian
neighborhood). These values are passed to the multiplier array, where they are
multiplied against their corresponding Gaussian coefficients. The adder tree then adds
the resulting values and outputs the result for the current 3D neighborhood. The
results for the subsequent neighborhoods are produced continuously as a result of
pipelined implementation of the operation. The Gaussian coefficients are
precomputed for a given value of o and are stored in internal registers using fixed-
point representation. The effect of this finite precision representation is analyzed in
the flowing section.

The results from the five individual Gaussian filters correspond to a cross-
shaped region of a neighborhood slice. In order to operate on the 3D six-connected
neighborhood, these results are passed to pipelined registers composed of two cross
buffers and the center buffer. The cross buffers store all five values in a neighborhood
slice, whereas the center buffer stores only the center value. As a result, the entire six-
connected neighborhood is available between these buffers. The buffers then send the

Gaussian-filtered, six-connected 3D voxel neighborhood to the subtractor array,

62

which calculates the six corresponding gradient values and passes them to the

diffusion coefficient calculator.

3.3.2.2. Diffusion Coefficient Calculation

As noted previously, gradients calculated after Gaussian filtering are used to

estimate the diffusion coefficients. For a b-bit image, the absolute value of the
gradient is limited to the range 0 and 2° —1. Taking advantage of this fact the desired
diffusion function is discretized in 2°steps and implemented using a lookup table
(LUT). The use of a LUT allows an efficient implementation of any diffusion
function. It must be noted that, because the dynamic range of all diffusion functions is
limited to [0,1], there is no significant loss in precision by a using a fixed-point
representation. The effect of this finite precision representation is further analyzed in

the following section.

3.3.2.3. Image Gradient and Result Calculation

Image gradient calculation is performed by an array of six parallel subtractors.
These subtractors calculate the difference between the intensity of the voxel located
in the center of the kernel against its six-connected neighbors. These values are then
multiplied against their corresponding diffusion coefficients (supplied by the
diffusion coefficient calculator) using an array of six parallel multipliers. The
resulting filtered intensity is then obtained by adding the six results from the
multipliers to the original center voxel intensity. After rounding and truncation, this
result is then sent to the output buffer and is then further saved into output memory

bank.

63

3.3.3. Median Filtering

The 3D median filtering design presented in this work is an extension of
majority finding—based implementation proposed by Benkrid et al.[7]. That design
was reported for a 2D realization and computed only one bit of the median value per
clock cycle. All bits of the median value were obtained using a feedback loop and
hence for b-bit images, this approach required bclock cycles to compute the
resulting median value. The implementation presented in this dissertation extends that
design to 3D and unrolls the feedback loop by using multiple processing stages.
Moreover, our implementation exploits the regularity of this median finding
algorithm with a systolic array architecture that allows a pipelined implementation
and, therefore, can achieve a throughput of one median value per clock cycle. Thus,
our implementation can achieve a voxel processing speed b times higher than the
previously reported architecture [7]. Our linear systolic array employs b identical
processing stages for filtering a b-bit image. Figure 3.1 illustrates execution of this
algorithm for a small example and can be used to gain further insights into its
hardware implementation. Each processing stage of our systolic array implementation
corresponds to one step of the algorithm execution. Starting from the MSB, each
stage generates one bit of the resulting median value of the neighborhood being
processed. We first describe the operation of an individual processing element and
then explain the functioning of the entire linear systolic pipeline, which contains b-

processing elements.

64

3.3.3.1. Processing Element

The processing element is the atomic unit of the proposed linear systolic array
design. A functional block diagram of the processing element at the j™ stage is shown
in Figure 3.9. The data inputs to this processing element are Data_Bits; and

Next_Data_Bits;, the N?® bits used considered for majority calculation and the (j+1)"

significant bits (from MSB) of the N°® neighborhood elements, respectively. It must
be noted that, although Next_Data_Bits; are corresponding image intensity bits,
Data_Bits; are provided by the (j-1)™ processing stage and may have been masked in
the earlier stages. The accompanying input Mask_Bits; is a binary flag that indicates
the bits in Data_Bits; that have been masked in the prior stages. A processing element
performs two important tasks. First, it computes the majority bit within the N* input
data bits (Data_Bits;); second, it performs the masking operation based on the
majority bit calculated and outputs masked data bits (Data_Bitsj:1) and the
corresponding binary flag (Mask_Bitsj+1) to be used in the next processing stage. The

units that perform these two operations are described below.

A Majority_Bit

Mask_Bits;

Data_Bits;

Mask_Bits;.
—-

Data_Bits;»:

-
4 L |
| Mask Selection Unit (MSU)]
~

Processing Element | ~_ _ _ _ _ _ _ _ __ ~

Next_Data_Bits;
Figure 3.9: A single stage (processing element) of the linear systolic median
filtering kernel.

65

Majority Finding Unit (MFU)

The MFU consists of a bit-counting circuit that counts the number of 1s in the
input bits that are considered for majority calculation (Data_Bits;). This counting is
performed using a bit adder tree customized for a chosen neighborhood size. This
count is then compared against a threshold, which is programmed to be half of the
number of elements contained in the neighborhood. The binary result of this
comparison is the j™ significant (from MSB) bit of the output median value. The
highly compact, pipelined, and customized implementation of the MFU minimizes
the combinational delay within the processing element.

Mask Selection Unit (MSU)

After the median bit has been calculated, the MSU performs the masking
operation. It computes the mask bit for each bit of Data_Bits;, based on whether it
matches with the majority bit or not. In addition, it considers and preserves the bits
that were masked in the prior stages (Mask_Bits;). Thus, the mask calculated at the "
stage (Mask_Bits;j+1) is a combination of the mask bits from the prior stages and the
mask calculated at the current stage. This masking operation is implemented using an
exclusive OR (XOR) operation and two multiplexing operations for each data bit. The
calculated mask (Mask_Bits;j+1) is then used to selectively generate Data_Bitsj.1 from
the input Next_Data_Bits;, while ensuring that values corresponding to the masked
bits are preserved. Data_Bits;+1 is then used in the next processing stage to calculate

the (j+1)" significant bit of the median value.

66

3.3.3.2. Linear Systolic Design for Median Finding

The proposed linear systolic design is realized by cascading b processing
elements for filtering b-bit images. On every clock cycle, a complete neighborhood
containing N* voxels, b-bits each, is fed to this linear systolic array. However, the
processing stage (j+1) can not perform its operation until stage j finishes its
processing and provides Data_Bits;.; and Mask_Bits;.1. Similarly, stage j produces its
output (j" significant bit of the median) one clock cycle earlier than the corresponding
output by the stage (j+1). In order to compensate for these delay and processing
latencies and to provide synchronized operation, additional line delay units and data
shift registers must be inserted at the input and output of the systolic array. Figure
3.10 shows a diagram of this configuration with b processing elements and required
delay buffers. These delays are introduced for synchronization only, and it must be
noted that as long as the input sequential neighborhoods are continuously supplied
(new N voxels every clock cycle), the systolic array design is capable of computing
one median result per clock cycle. This result is then sent to the output buffer and
subsequently saved into the output memory bank by the memory controller.

For correct operation, the Mask_Bits; input of the first processing stage (stage
1, MSB) is grounded (set to “0”), indicating that no bits from the input data
(Data_Bits;) are masked. Also, in the final processing stage (stage b, LSB),
Mask_bitsp+1 and Data_Bitsy+1 do not need to be calculated, because the next stage
does not exist. Consequently, the MSU is not needed in the final stage, which
contains only an MFU to compute the last median bit. In general, for large 3D

neighborhoods, the speed of the MFU is the limiting factor of the systolic array

67

New median value (b-bits) calculated every clock cycle

Processing Processing
— Element Element e Element Element

Stage 1 Data_Bits; Stage 2 Stage (b-1) DCata_Bits, Stage b
) ——> sy ——>

(N bits each)
New (N*<b) bits applied every clock cycle

Figure 3.10: Linear systolic array architecture for median filter kernel using
majority voting technique.

performance. In applications requiring high voxel throughput and large filtering
kernels, the operation of the MFU can be pipelined. However, in those cases the

depth of the delay elements used to synchronize the inputs and outputs of the different

processing elements must be adjusted.

3.4. Implementation and Results

The architecture described above was implemented using an Altera Stratix 1l
EP2S180F1508C4 FPGA (Altera Corp., San Jose, CA) with two external memory
banks to serve as input and output image memory. The memory banks used were 1-
GB DDR2 small-outline dual-inline memory DRAM modules with 64-bit data bus
(i.e., W =16, for b=8) running at a 200-MHz clock speed. The architecture was
designed using VHSIC hardware description language (VHDL) and synthesized using
Altera Quartus 11 6.1. The memory controller was also implemented using VHDL and

was built around the DDR2 DRAM controller megacore supplied with Altera Quartus

68

I1. Both filtering modules were custom designed using VHDL, as per the design
description in provided earlier. Functional verification and postsynthesis timing
simulation for the entire system were performed using Modelsim SE 6.2 (Mentor
Graphics, San Jose, CA). For this purpose, DDR2 DRAM simulation models
provided by Micron (www.micron.com) were used. The presented design was then
realized to support 8-bit images (b = 8) and, consequently, all results in this section
are presented for 8-bit images. The execution speed of the presented architecture was

obtained from postsynthesis timing simulation of the design.

3.4.1. Effects of Finite Precision Representation

Real-time filtering performance offered by the presented design is critical for
the time-sensitive nature of 1GIs, but of equal importance is the accuracy of the
filtering process. Most software implementations represent the arithmetic operations
involved in the filtering algorithms using a double precision floating-point format.
This format offers high dynamic range and precision, which may or may not be
required depending on the filtering technique to be implemented. Median filtering, for
example, is performed exclusively using integer data (because digital images are

represented using b-bit integer data), and, hence, there is no loss in precision by using

Table 3.2: Average error in intensity per voxel for a Gaussian filtered image
resulting from fixed-point representation of Gaussian coefficients.

Average error in intensity per voxel resulting from

Gaugsi();ntrllzrnel fixed-poi_nt representation of (_Baussian kernel coeﬁ_‘icients
8-bits 12-bits 16-bits
0.3 0.20 + 0.47 0.07+£0.26 0.004 £+ 0.06
0.5 0.63+0.68 0.02+0.11 0.004 +0.07
0.7 0.42+0.81 0.03+0.16 0.003 £ 0.06
1.0 0.21+0.47 0.001 +0.04 0.001 £ 0.03

69

a fixed-point implementation with sufficient dynamic range (i.e., using b bits for b-bit
images). Our implementation of the 3D median filtering uses b-bit integer
representation for b-bit images, and therefore provides identical results to those
provided by a software implementation.

Anisotropic diffusion filtering, however, involves operations with the data in
real format. Our implementation, for the sake of efficiency in area and execution
speed, used fixed-point representation to implement these arithmetic operations. A
general framework for analyzing optimized tradeoff relationships between hardware
resources and implementation accuracy for finite-precision designs is presented later
(see Chapter 5). For this implementation, however, given the simplicity of the
arithmetic operations and relatively minor impact of the fixed-point datapath on the
total hardware resource requirement, we employed simulation-based wordlength
search techniques. We analyzed the effect of the number of bits used for this fixed-
point representation on the filtering accuracy, by treating a software (C++)
implementation employing double-precision floating-point representation as a
reference. This analysis was performed with an 8-bit image with dimensions
256x256x64. There are two sources at which error resulting from fixed-point

precision can affect the accuracy of the filtering operation: embedded Gaussian

Table 3.3: Average error per sample of diffusion function resulting from fixed-
point representation of diffusion coefficients employed in the presented architecture.

Average error per sample of diffusion function resulting from

K fixed-point representation of diffusion coefficients
8-bits 12-bits 16-bits
10 42 x 10° + 97 x 10° 3x10°+7x10° <107
20 78 x 10° + 114 x 10° 6 x 10°+8 x 10° <10®
30 121 x 10®° + 125 x 10” 9x10°+8x10” <10®
50 196 x 10° + 116 x 107 13x 10°+7 x 107 <107

70

filtering and diffusion function calculation. To gain additional insight, we evaluated
accuracy for these individual sources and the accuracy of the anisotropic diffusion
filtering as their combined effect.

Table 3.2 presents the average error in intensity per voxel after embedded
Gaussian filtering (kernel size, N = 5) where the Gaussian kernel coefficients are
represented using the fixed-point format with the designated number of bits. Because

the Gaussian kernel was normalized, all coefficients were within the range [0,1], and,

hence, we used one bit to represent the integer part and the rest for the fractional part.
We performed this analysis for typical choices of o for a Gaussian kernel size of 5,
which corresponds to the anisotropic diffusion filtering kernel size of 7. The average
error for various choices of o with 8-bit representation is less than one intensity
value, and, as expected, the average error reduces with the increasing number of bits.
It must be noted, however, that embedded Gaussian filtering is used only to estimate
the diffusion coefficients, and, hence, small errors introduced in this operation may
not have a significant impact on the final anisotropic diffusion filtered intensity value.
Because this design supported 8-bit images, a 256-entry LUT was used to implement
the diffusion function described in the background section. We implemented this
function for reasonable choices of the parameter K, which controls the level of the
gradient at which edges are diffused or preserved. The value of K depends on the
image modality and the amount of edge preservation desired. For ultrasound and low-
dose CT images, however, its value is typically less than 20% of the intensity range.

As the selected diffusion function takes values in the range [0,1], we used one bit to

represent the integer part and the rest for the fractional part. Table 3.3 presents the

71

average error per sample of diffusion function resulting from fixed-point
representation with the designated number of bits for various choices of K. Although
the average error increases with the choice of K, its mean and standard deviations are
consistently less than 0.1% of the data range, even with representation using 8-bits.
Finally, Table 3.4 reports average error in intensity per voxel resulting from the
combined effect of finite precision implementation of both the Gaussian coefficients
and the diffusion function. For this analysis, we used the same number of bits for
fixed-point representation of both entities, with one bit for the integer part and the rest
for the fractional component. The kernel size (N) of the anisotropic diffusion filter
was chosen to be 7, with embedded Gaussian filtering with ¢ = 0.5, and the diffusion
function shown described earlier was implemented with K = 20. To evaluate error
accumulation over multiple iterations of anisotropic diffusion filtering, we performed
this analysis up to 5 iterations, which is typical for filtering of intraprocedural images.
The average error in intensity increases with the number of iterations, but its mean
and standard deviations are consistently less than 0.04% of the intensity range, even
with 8-bit representation.

Overall, our precision analysis indicates that even when using 8-bit fixed-

Table 3.4: Average error in intensity per voxel for anisotropic diffusion filtered
resulting from fixed-point representation of Gaussian coefficients and the diffusion
function

Number of Average error in intensity per voxel resulting from fixed-point

filtering representation of the Gaussian kernel and diffusion coefficients
iterations 8-bits 12-bits 16-bits

1 0.008 + 0.092 0.001 +£0.018 <0.001

3 0.021 +£0.144 0.001 £ 0.031 <0.001

5 0.030+0.171 0.002 £ 0.039 <0.001

72

point representation to perform Gaussian filtering and diffusion function calculation,
the average error in intensity is only a very small percentage of the intensity range.
Such small errors in intensity may not be significant for advanced operations such as
registration, segmentation, and visualization and are unlikely to affect the accuracy
and precision of IGIs. Our implementation, therefore, uses 8-bit fixed-point

representation for these operations.

3.4.2. Hardware Requirements

Table 3.5 lists the significant hardware requirements for the important
modules in the proposed architecture, parameterized on filter kernel size (N) and the
number of bits used to represent the voxel intensity (b). The parameter k , introduced
in the context of 3D anisotropic diffusion filtering, represents the number of unique
isodistances in the Gaussian kernel and is related to the filter kernel size N (usually
odd) as:

_(N-D
k=== (3.6)

Table 3.5: Hardware requirements of the architecture for real-time 3D image
preprocessing.

N Logic resources and performance
Significant hardware resources .
Hardware (as implemented)
module Multipliers Internal memory N Number of ALUTS fimax
(bxb bit) (bits) (% utilization) (MH2)
Input buffer N x(N+DxN.)xb 0
and controller - (N> (N +1)xN;)x 7 1957 (1.5%) 233
Output buffer 2% N 0
and controller - (2xNz)xb 7 1743 (1.5%) 233
. . kx(k+1)x(k+2)
Anisotropic 5x——M——— b 9
diffusion filter 6 (3x2°)xb 7 3824 (3%) 236
Median filter - - 5 11308 (8%) 224

73

The linear systolic array implementation of the 3D median filter requires logic
resources only, and the resource requirements for important components of this filter
kernel are listed separately in Table 3.6. These two tables indicate how the hardware
requirements of our architecture scale with the parameters N and b . As dictated by
the resource limitations imposed by the target device (Altera Stratix |l

EP2S180F1508C4) and real-time speed requirements, our current implementation can

support filter kernel sizes (N) from the list {5,7} and {3,5} for anisotropic diffusion

filtering and median filtering, respectively. The corresponding kernel sizes for the

embedded Gaussian filtering in the case of anisotropic diffusion filter supported by

our architecture are{3,5}. Table 3.5 also lists the absolute and percentage logic

resources consumed by the important modules in the architecture and the maximum

operating frequency (f__) at which these modules can run for a specific instantiation

(choice of N). The percentage logic resources are reported in reference to the target
device Altera Stratix 11 EP2S180F1508C4. The images used for this performance and
logic consumption analysis were 8-bit images (b =8). The choices for the value of
N for this analysis represent common kernel size choices and are listed in the fourth

column of the table.

Table 3.6: Hardware requirements for the components of the linear systolic
implementation of the 3D median filtering.
Hardware component Number required
Processing elements b
Data registers bx N3
Mask select registers bx N3
Data pipeline registers (b-1)x N3
Line delay elements (b—2)x(b-1)x (N3 +1)/2

74

3.4.3. Filtering Performance

The 3D median filtering module and 3D anisotropic diffusion filtering module

were synthesized for kernel sizes of {3,5} and 7, respectively, for filtering 8-bit

images. The rest of the system, including the memory controller and input and output
buffers, was parametrically synthesized to support the desired filtering operation and
kernel size. The entire system was clocked at 200 MHz, which also corresponds to the

filtering pipeline frequency (i.e., T_.=5 ns). The image memories were also clocked

proc

at 200 MHz (T

em= D NS). For this configuration, Table 3.7 reports the execution time
for 3D anisotropic diffusion filtering and 3D median filtering as obtained during
postsynthesis timing simulation of the entire system. The image sizes used for this
measurement correspond to typical dimensions of intraprocedural images.

As indicated in Table 3.7, our implementation of 3D anisotropic diffusion

filtering and 3D median filtering can easily achieve a processing rate of 46 frames per

second (fps) for images of size 256x256x64 voxels, which is a typical size of an

intraprocedural volumetric CT scan. The corresponding processing rate for

intraprocedural 3D ultrasound scan with typical dimensions of 128 x128 x128 voxels

Table 3.7: Execution time of 3D anisotropic diffusion filtering and 3D median
filtering.
Kernel . Execution Voxel
. : Image size . ;
Filter kernel size (voxels) time processing rate
(N) (ms) (MHz)
3D anisotropic 7 128 x 128 x 128 10.90 192
diffusion filter 256 x 256 x 64 21.63 194
3 128 x 128 x 128 10.75 195
3D median 256 x 256 x 64 21.44 196
filter 5 128 x 128 x 128 10.82 194
256 x 256 x 64 21.58 194

75

is around 92 fps. For iterative operations such as anisotropic diffusion filtering or
sequential filtering operations, this processing rate translates to 18 fps with five
iterations (or sequential operations) per frame, which is sufficient to meet the real-
time needs of most IGls.

Table 3.8 and Table 3.9 compare the execution speed of the presented
architecture for 3D anisotropic diffusion filtering and 3D median filtering,
respectively, against a corresponding software implementation and previously
reported high-speed implementations using different computing platforms. The
execution time has been normalized by the image dimensions for all implementations,
and the performance is presented in terms of voxel processing rate to facilitate a fair
comparison independent of image dimensions. The software implementation was
developed using C++, and its performance was measured on an Intel Xeon 3.6 GHz
workstation with 2 gigabytes of DDR2 400 MHz main memory. Although this
architecture can support various kernel sizes for the filtering operations, for
consistency the performance has been compared for a kernel size (N) common to all

implementations: N=3 for the median filtering and N=7 for anisotropic diffusion

filtering.
Table 3.8: Performance comparison of the 3D anisotropic diffusion filtering
kernel.
Filter Voxel
Implementation Platform processing rate Speedup
kernel
(MH2)
Software (C++) Xeon workstation 3D 0.92 208
Bruhn et al.
[100] 256-processor cluster 3D 105 183
Tabik etal. [101] 16-processor cluster 3D 5.66 33.9
Dandekar
et al. [144] FPGA 3D 192 -

76

As indicated by Table 3.8, our implementation of 3D anisotropic diffusion
filtering provides more than two orders of magnitude speedup over the software
implementation using a single workstation. Moreover, the performance of the current
architecture represents an improvement over a corresponding implementation using a
256-processor computing cluster reported previously [100]. Our work presented a
novel FPGA-based implementation of 3D anisotropic diffusion filtering. Salient
features of this filtering module are an embedded Gaussian filtering implementation
that minimizes the number of multipliers and a pipelined design that allows
throughput of one output voxel per clock cycle. This filtering module offers the
flexibility to support several anisotropic diffusion techniques previously reported in
the literature. For example, the multiscale approach proposed by Whitaker and Pizer
[82] can be implemented by changing the embedded Gaussian filter coefficients at the
end of each iteration, and a time-dependent diffusion function [145] can be
implemented by reprogramming the values in the diffusion function LUT. One
limitation of this filtering module is the limit on the size of the embedded Gaussian
filter kernel; implementing Gaussian kernels larger than 7 would result in
prohibitively high hardware requirements. Such large kernels, however, are
uncommon in most applications. Although this architecture performs some of the
arithmetic functions using fixed-point representation, the variation in the output
intensity values is only a small fraction of the intensity range, and these variations are
unlikely to affect the accuracy and precision of 1Gls.

Table 3.9 compares the performance of the FPGA-based 3D median filtering

operation described in this work with previously reported high-speed

77

Table 3.9: Performance comparison of the 3D median filtering kernel.

Filter Voxel processing

Implementation Platform kernel rate (MHz) Speedup
Software (C++) Xeon workstation 3D 2.63 74
Viola et al. [136] GPU 3D 0.76 257
Gallegos-Funes and
Ponomaryov [146] DSP 2b 45 43
Jiang and Crookes
[137] FPGA 3D 50 3.9
Dandekar et al. [144] FPGA 3D 195 -

implementations. The present implementation provides more than an order of
magnitude speedup over software- and GPU-based 3D implementations and DSP-
based 2D implementation. Jiang and Crookes [137] recently reported an FPGA-based
3D implementation that is capable of achieving a voxel processing rate of 50 MHz.
That design, however, was based on a partial sorting technique and cannot be easily
extended to kernel sizes beyond 3. Our implementation, in contrast, achieved a
superior voxel processing rate and is sufficiently compact to allow implementation of
kernel sizes up to 7, which is sufficient for most common image processing tasks. The
logic resources required by the described systolic array—based median filter indeed
scale up as kernel sizes get larger; but as modern FPGAs become denser and offer
improved logic capacity, this requirement is still a small percentage of the total

available resources (see Table 3.5).

3.5. Summary

This chapter presented an FPGA-based architecture for real-time
preprocessing of volumetric images acquired during 1Gls. The developed architecture

enables 3D anisotropic diffusion filtering and 3D median filtering of intraprocedural

78

images at the rate of 50 fps, which is faster than current acquisition speeds of most
imaging modalities. The solution presented offers real-time performance, is compact
and accurate, and, hence, suitable for integration into IGlI workflow. As IGI
applications become increasingly popular, intraprocedural imaging modalities
continue to offer wider coverage and higher imaging speed. Thus, there is a
corresponding need for real-time processing of these images. The real-time
performance of our design along with the throughput of one voxel per cycle can cater

to these 4D (3D + time) image processing needs.

79

Chapter 4: Hardware-Accelerated Deformable Image
Registration

Intensity-based deformable image registration plays a critical role in many
diagnostic and interventional applications requiring image combination. Despite the
advantages (such as accuracy, automation, and retrospective nature) of this approach,
these algorithms find limited use in clinical applications due to their computational
complexity. This chapter presents a novel FPGA-based architecture for accelerated
implementation of MI-based deformable registration. This architecture is capable of
reducing the execution time of MI-based deformable registration from hours to a few
minutes. First, we describe the registration algorithm that is being accelerated. Next,
we present the architecture for its high-speed implementation. Finally, we
characterize the execution performance of this architecture and provide qualitative
validation results. The optimization of this architecture for accuracy and hardware
resources is presented in Chapter 5. The quantitative validation and the clinical

applicability of this architecture are presented later, in Chapter 6.

4.1. Motivation

Combining complementary information from intraprocedural and
preprocedural images is a fundamental need in IGI applications. These images,
however, are acquired at different times and using different imaging scanners and
protocols and as a result are usually misaligned. Therefore, they need to be registered
(or aligned) for a meaningful combination and fusion of the information they contain.

Deformable image registration techniques can compensate for both local deformation

80

and large-scale tissue motion and are the ideal solution for achieving the
aforementioned image registration. Some studies, in particular, have independently
underlined the importance of deformable registration and/or soft tissue modeling for
IGIs [18, 19]. However, despite their advantages, deformable registration algorithms
are seldom used in current clinical practice. The large number of degrees of freedom
that these algorithms employ makes them extremely computationally intensive. On a
modern workstation most deformable registration algorithms can take several hours,
which is clearly unacceptable for 1GlIs requiring on-demand performance. As a result,
most earlier reported techniques for aligning preprocedural and intraprocedural
images employ rigid body approximation, which is often not valid because of
underlying nonrigid tissue deformation. In addition, some of these techniques are not
retrospective (i.e. they require some advanced planning at the time of preprocedural
imaging), which further limits their applicability.

Mutual information (MI)—-based deformable registration has been shown to be
effective in multimodality image registration because of the robustness of the
similarity measure [69]. Moreover, MIl-based image registration is automatic and
completely retrospective because it uses image intensities to achieve the alignment.
Walimbe and Shekhar [60, 67] have earlier reported an MI-based deformable
registration algorithm that utilizes volume subdivision. Hierarchical volume
subdivision—based image registration techniques are inherently faster than most other
deformable registration techniques and are more amenable to hardware acceleration.
This algorithm has been used and rigorously validated in the context of PET-CT

registration [66]. This clinical validation has demonstrated the registration accuracy

81

of the aforementioned algorithm to be comparable to a group of clinical experts and
the mean registration accuracy for the abdominal region to be superior to an earlier
reported free-form deformation (FFD)-based technique [147]. This algorithm is
theoretically general and has been shown to be effective for various applications
employing multimodal deformable registration [66, 77, 148-151]. Although
computationally efficient, software implementation of this algorithm can take several
hours, which is still slow for direct integration into the 1GI workflow. It is, therefore,
necessary to accelerate this algorithm and reduce the processing time to the order of
minutes and ultimately to seconds for its assimilation into clinical workflow.
Although, accelerated implementations of MI-based deformable registration
algorithms using very large multiprocessor clusters have been proposed earlier [57,
115, 117, 118], their per-node performance does not compare favorably with our
implementation. Furthermore, these solutions may not be cost effective and are
unlikely to be suitable for clinical deployment.

The chapter presents a novel field-programmable gate array (FPGA)-based
accelerated implementation of the aforementioned deformable registration algorithm,
specially geared toward improving target delineation during image-guided
interventions. The reported solution provides a speedup of about 40 for MI
calculation, thus reducing the deformable registration time from hours to minutes. In
Chapter 6, we demonstrate fast and successful registration of intraprocedural
abdominal CT scans with preprocedural CT and PET scans using the developed
architecture. We further demonstrate that the registration accuracy of the hardware

implementation is comparable with that using a software implementation and is on

82

the order of a few millimeters. This registration accuracy coupled with the execution
speed and compact implementation of the reported solution makes it suitable for

integration in the 1GI workflow.

4.2. Algorithm for Deformable Image Registration

Hierarchical volume subdivision-based deformable image registration
techniques are inherently faster than most intensity-based deformable registration
techniques (e.g., FFD-based techniques) and are more amenable to acceleration
through hardware implementation. 3D image registration using volume subdivision
has been proposed earlier, but the earlier implementations were limited to a locally
translation-based model. Walimbe and Shekhar [60, 67] enhanced this model by
incorporating local rotations and reported a quaternion-based scheme for interpolating
multiple 3D rigid-body transformations for deformable registration using the volume
subdivision approach. For a pair of images, one treated as reference and the other as
floating, this algorithm performs deformable registration using a series of

hierarchical, locally rigid-body registrations. The six-parameter rigid registration at

Level i=0 Level i=0 Level i=1 Level i=1 Quaternion-based
After Optimization Before Optimization After Optimization Interpolation
Reference T0
0 1
Image parent(3) T3

Subvolume j=3

Figure 4.1: Pictorial representation of hierarchical volume subdivision-based
deformable image registration and associated notation.

83

each level is optimized by maximizing the MI between the reference and floating
images (RI and FI, respectively). This hierarchical registration scheme is shown in
Figure 4.1.

The initial optimal rigid alignment (at the root level) between Rl and FI can be
represented using a transformation matrix T (where TJ.i represents the cumulative
optimal transformation at level i for subvolume j). Next, the algorithm uses a
hierarchical octree-based subdivision scheme. At each subdivision level i, the RI is
divided into 8' subvolumes, numbered from 0to 8'—1. Each of these subvolumes is

then individually registered with the FI, under transformation range constraints

i-1
parent(j) *

derived from the transformation of its parent subvolume at the earlier level T

The notation parent(j) refers to the subvolume at the previous subdivision level
i—1, which contains the current subvolume j. For example, at the root level (i=0),
there is a single subvolume (entire image) numbered j=0. After one level of
subdivision (i =1), there will be eight subvolumes numbered from j=0 to j=7. At
level i=1, parent(3) refers to subvolume numbered O at level i=0, because it
contains subvolume j =3 at the current level (i =1) of subdivision (see Figure 4.1).
The optimal alignment of the subvolume j within the FI is also determined by

maximizing MI under a six-parameter rigid-body transformation model.

Volume subdivision and subvolume registration continue until the voxel count
for an individual subvolume remains above a predefined limit (usually 16°) to yield a
statistically significant similarity measure. Thus, this algorithm achieves hierarchical

refinement of the localized matching between RI and FI. The final cumulative non-

84

rigid alignment between the image pairs is computed by quaternion-based direct
interpolation of the individual subvolume transformations at the final subdivision

level.

4.2.1. Calculating Ml for a Subvolume

Registration of a subvolume during the hierarchical refinement process is
based on maximization of the MI, which is a statistical measure. With progressive
subdivision, subvolumes at every level become increasingly smaller. The mutual
histogram (MH) corresponding to an individual subvolume becomes sparse, thus
rendering MI unreliable. The aforementioned algorithm addresses this issue by using
the MH of the entire image (all the subvolumes) to calculate MI during the

registration of a subvolume. The contribution of the current subvolume k at level i
to the MH is computed under the current candidate transformation T," (T denotes a

candidate transformation during the optimization process). The contribution to the
MH from the rest of the subvolumes remains constant during this registration process
and is derived from their parent subvolumes. Thus, Ml is computed over the entire
image with local variations corresponding to the subvolume under optimization.

Equations (4.1)-(4.3) summarize this process. The function Accumulate(T),
j=k

contributes to the MH using the voxels in a given subvolume k, using the mapping
provided by the given transformation T . The detailed description of this deformable

registration algorithm can be found in [60].

MH! = =MH! +MH! (4.1)

Totaly Subvolumey Resty

MH ;ubvolumek = ACCU[T?(U|ate(T;i) (42)
j=

85

MH! = Accumulate(T'} (4.3)

Resty vi, =k parent(j)

4.3. Acceleration Approach

The aforementioned algorithm uses MI as a measure of image similarity. Ml
is an intensity-based similarity measure and calculation of MI requires processing of
all the voxels in the RI. Registration through maximization of Ml attempts to find the
transformation that best aligns an FI with an RI. This MI-based registration typically
requires thousands of iterations (MI evaluations), depending on the image complexity
and the degree of initial misalignment between the images. Repeated Ml
computation, which requires accessing both the images (RI and Fl), is memory access
intensive, and in particular, the memory access in the FI is completely governed by
the transformation applied. This operation, therefore, does not benefit from the cache-
based memory architectures present in most modern PCs (the caches are too small to
fit 3D images). Because memory speed has not evolved at the same rate as
microprocessor speed, introduction of faster microprocessors is not expected to
significantly speed up image registration. Thus, a factor limiting the performance of
software implementations is calculating M1 for different candidate transformations.

Castro-Pareja et al. [139] have shown that, for typical medical images, accumulating

FPGA-based

T High-Speed MI Calculator

Host PC Candidate

Transformation (T)
Optimization
Algorithm

Reference
Image

Floating
Image

W W

Figure 4.2: Pictorial representation of the acceleration approach.

86

the MH and calculation of MI can take up to 99% of the total image registration time
in software. Our efforts for acceleration of this algorithm, consequently, are targeted
toward optimized and pipelined implementation of MH accumulation and Ml
calculation. This approach is pictorially represented in Figure 4.2.

In general, the execution time T required by a pipelined implementation (with

n-stages) of an operation is given as:
T=t-(ﬂ+n), (4.4)
m

where t is the latency of each stage, N is the amount of data to be processed, and
m is the number of data units processed in parallel at each stage. In the case of Ml
calculation, N represents the number of RI voxels to be processed. For typical

volumetric images (which are usually larger than 128°% it can be assumed that

N . L.
— > n, thus the main parameters that control the Ml calculation time are then t and
m

m. Supporting m >1requires a superscalar architecture and multiple processing
pipelines with individual image memory access, which is not practical. Therefore, to
provide maximum pipeline performance, our architecture focuses on reducing t, the
latency of each pipeline stage. The lower bound on t is the period of the system clock
and achieving this bound means that all the pipeline stages (including image memory
access) complete their operations in one clock cycle. The following section describes

an architecture geared toward meeting this goal for accelerated calculation of MI.

87

4.4. Architecture

MI-based image registration can be thought of as an optimization problem of
finding the best alignment between two images. During the execution of the
algorithm, the optimization process is executed from the host workstation. This host
provides a candidate transformation, while the presented FPGA-based solution
applies it to the images and performs corresponding MI computation. The computed
MI value is then further used by the host to update the candidate transformation and
eventually find the optimal deformable alignment between the RI and the FI. This
workflow is indicated in Figure 4.2. The top-level block diagram of the FPGA-based
architecture for accelerated implementation of volume subdivision-based image

registration is shown in Figure 4.3. The important modules in this architecture are

described below.

Figure 4.3:

Top-level

|
I
I
|
|4J—n- Memory Controller
|
|
I
|

From Host

E Subvolume Start ==

i Subvolume End =]

Voxel Counter

I

Transformation E
Matrix [T]

Integer Rl coordinates

Yy

Voxel coordinate transformation unit

Integer Fl coordinates
A

! for interpolation

Fractional Fl coordinates

Partial Volume Interpolator

Mutual histogram
accumulation

R and 8-FI
intensity values

mutual histogram

Valid

MHRast MHLWI MHF’!‘Or

Voxel |
Counter

Individual
histogram
accumulator

=

MHi 1

Entropy Calculator

block diagram of the
implementation of deformable image registration.

88

& Interpolation weights
for accumulation into

architecture for

accelerated

4.4.1. Voxel Counter

Calculation of MI requires processing every voxel in the RI. This can be
achieved by sequentially cycling though all the voxels in the RI. In addition, because
the implemented algorithm is based on volume-subdivision, Rl voxels within a 3D
neighborhood corresponding to an individual subvolume must also be processed
sequentially. This is implemented as follows: the host programs the FPGA-based Ml
calculator with subvolume start and end addresses. In case of the entire image (as
required for rigid registration), the start address is (0, 0, 0) whereas the end address is
equal to the dimensions of the Rl. When a subvolume needs to be processed (for
example, during subvolume optimization after image subdivision), the start and end
addresses programmed by the host correspond to that of the subvolume. The voxel
counter sequentially computes the addresses corresponding to all voxels within a
given neighborhood range (a subvolume, for example) in z—y—x order. This is
implemented using three synchronized counters, one for each dimension. A functional
diagram of this module is presented in Figure 4.4. Through pipelined implementation,

this module is capable of generating address for one RI voxel per clock cycle. This

From Host

=) () () (o) (o)

[N AN AN ¥ | A ¥ i

Control

Counter Counter Counter
(Z Direction) (Y Direction) (X Direction)

[Z Address] [Y Address] [X Address]

To Coordinate Transformation and Memory Controller

Figure 4.4: Functional block diagram of voxel counter.

89

module operates in two modes: in the reference image processing mode the address
generated is used to fetch the RI image voxels from the external image memory,
whereas in the floating image processing mode the RI address generated is

transformed to the floating image space for further processing.

4.4.2. Coordinate Transformation

The initial step in MI calculation involves applying a candidate transformation

(TJ.*‘), to each voxel coordinate (V) in a subvolume j of the RI to find the
corresponding voxel coordinates in the FI (represented using V,). This is

mathematically represented as shown in (4.5). Because the algorithm is linear at every
subvolume, this is implemented using the six-parameter rigid transformation model.
Vo =T".V (4.5)
An interesting aspect of this coordinate transformation and subsequent
operations is that they involve operations in both real (millimeter) space as well as
voxel address (image index) space. For example, the transformation (translations and
rotations) is defined in the real space, whereas the voxels to be fetched from RI and
FI are identified in voxel address space. Thus, there is a need to convert between
these address spaces during the calculation of MI. This conversion can be performed
by utilizing the voxel size information associated with each image. To circumvent the
need for performing this conversion in our FPGA-based architecture, we
appropriately scale the transformation matrix (in millimeter space) and represent it
using a mathematically equivalent matrix in voxel address space. This conversion is

performed in software by the host just prior to Ml calculation. This matrix is then fed

90

to the FPGA-based M1 calculator and the MI calculator performs all its operations in

voxel address space. This converted transformation can be represented as:

vr, vr, vr, T,]
r-xx ' r><y ’ rxz ’
vi, Vi, vi, | - vf,
p vr, vr, vr, | | 1= Rl T, Fl,
q|=|l— Ty — I~ || J-Rl, |+| = |+ Fl, | (4.6)
r vio TVt TV kR, | [V LRI
vr vr. vr “ T «
rZX ’ - rZy ’ : rZZ ' : :
7V vf, vf, | | Vf, |

In this equation, the tuple (i, j, k) represents the address of a voxel in RI space. This

address is calculated by the voxel counter. The r;s represent the components of the
rotation matrix, whereas T, s represent the components of the translation vector. vrs
and Vvf s represent the voxel sizes (in millimeters) of the reference image and the

floating image, respectively. (RI_,RI_,RI)and (FI,, FI_,FI_)represent the

cx? cx?
centers of the reference image and floating image in voxel address space,
respectively.

This transformation model is represented using a 3 x 3 rotation matrix and a

Reference Image Address

[X Addr