

ABSTRACT

Title of Document: HIGH-PERFORMANCE 3D IMAGE

PROCESSING ARCHITECTURES FOR
IMAGE-GUIDED INTERVENTIONS

Omkar Dandekar, Ph.D., 2008

Directed By: Professor Raj Shekhar (Chair/Advisor),

Professor Shuvra S. Bhattacharyya (Co-advisor),
Department of Electrical and Computer Engineering

Minimally invasive image-guided interventions (IGIs) are time and cost

efficient, minimize unintended damage to healthy tissues, and lead to faster patient

recovery. Advanced three-dimensional (3D) image processing is a critical need for

navigation during IGIs. However, achieving on-demand performance, as required by

IGIs, for these image processing operations using software-only implementations is

challenging because of the sheer size of the 3D images, and memory and compute

intensive nature of the operations. This dissertation, therefore, is geared toward

developing high-performance 3D image processing architectures, which will enable

improved intraprocedural visualization and navigation capabilities during IGIs.

In this dissertation we present an architecture for real-time implementation of

3D filtering operations that are commonly employed for preprocessing of medical

images. This architecture is approximately two orders of magnitude faster than

corresponding software implementations and is capable of processing 3D medical

images at their acquisition speeds.

Combining complementary information through registration between pre- and

intraprocedural images is a fundamental need in the IGI workflow. Intensity-based

deformable registration, which is completely automatic and locally accurate, is a

promising approach to achieve this alignment. These algorithms, however, are

extremely compute intensive, which has prevented their clinical use. We present an

FPGA-based architecture for accelerated implementation of intensity-based

deformable image registration. This high-performance architecture achieves over an

order of magnitude speedup when compared with a corresponding software

implementation and reduces the execution time of deformable registration from hours

to minutes while offering comparable image registration accuracy.

Furthermore, we present a framework for multiobjective optimization of

finite-precision implementations of signal processing algorithms that takes into

account multiple conflicting objectives such as implementation accuracy and

hardware resource consumption. The evaluation that we have performed in the

context of FPGA-based image registration demonstrates that such an analysis can be

used to enhance automated hardware design processes, and efficiently identify a

system configuration that meets given design constraints. In addition, we also outline

two novel clinical applications that can directly benefit from these developments and

demonstrate the feasibility of our approach in the context of these applications. These

advances will ultimately enable integration of 3D image processing into clinical

workflow.

HIGH-PERFORMANCE 3D IMAGE PROCESSING
ARCHITECTURES FOR IMAGE-GUIDED INTERVENTIONS

By

Omkar Dandekar

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Raj Shekhar, Chair/Advisor
Professor Shuvra S. Bhattacharyya, Co-advisor
Professor Rama Chellappa
Professor Manoj Franklin
Professor Yang Tao

© Copyright by
Omkar Dandekar

2008

 ii

Dedication

To my Mother, Mangal, Himani, and the memories of my late Father,

for their love and support

 iii

Publications

• W. Plishker, O. Dandekar, S. Bhattacharyya, and R. Shekhar, “Towards a

heterogeneous medical image registration acceleration platform,” IEEE

Transactions on Biomedical Circuits and Systems, (in preparation), 2008.

• R. Shekhar, O. Dandekar, V. Bhat, R. Mezrich, and A. Park, "Development of

CT-guided minimally invasive surgery," Surgical Innovation, (in

preparation), 2008.

• O. Dandekar, W. Plishker, S. S. Bhattacharyya, and R. Shekhar,

“Multiobjective optimization for reconfigurable implementation of medical

image registration,” International Journal of Reconfigurable Computing,

(under review), 2008.

• P. Lei, O. Dandekar, D. Widlus, P. Malloy, and R. Shekhar, “Incorporation of

PET into CT-guided liver radiofrequency ablation,” Radiology, (under

revision), 2008.

• O. Dandekar, W. Plishker, S. S. Bhattacharyya, and R. Shekhar,

“Multiobjective optimization of FPGA-based medical image registration,”

presented at IEEE Symposium on Field-Programmable Custom Computing

Machines, 2008.

• O. Dandekar and R. Shekhar, “FPGA-accelerated deformable image

registration for improved target-delineation during CT-guided interventions,”

IEEE Transactions on Biomedical Circuits and Systems, vol. 1 (2), 2007, pp.

116-127.

 iv

• O. Dandekar, C. Castro-Pareja, and R. Shekhar, “FPGA-based real-time 3D

image preprocessing for image-guided medical interventions,” Journal of

Real-Time Image Processing, vol. 1 (4), pp. 285-301, 2007.

• W. Plishker, O. Dandekar, S. Bhattacharyya, and R. Shekhar, “Towards a

heterogeneous medical image registration acceleration platform,” presented at

IEEE Biomedical Circuits and Systems Conference, 2007, pp. 231-234.

• O. Dandekar, K. Siddiqui, V. Walimbe, and R. Shekhar, “Image registration

accuracy with low-dose CT: How low can we go?,” presented at IEEE

International Symposium on Biomedical Imaging, 2006, pp. 502-505.

• C. R. Castro-Pareja, O. Dandekar, and R. Shekhar, “FPGA-based real-time

anisotropic diffusion filtering of 3D ultrasound images,” in SPIE Real-Time

Imaging, 2005, pp. 123-131.

• S. Venugopal, C. R. Castro-Pareja, and O. Dandekar, “An FPGA-based 3D

image processor with median and convolution filters for real-time

applications,” in SPIE Real-Time Imaging, 2005, pp. 174-182.

 v

Acknowledgements

I would like to express my sincere gratitude to Dr. Raj Shekhar for his

guidance and financial support throughout my graduate education at The Ohio State

University, the Cleveland Clinic, and University of Maryland. He has been the perfect

mentor for my doctoral research, and a person from whom I have learnt a lot during

the past five years. He ensured that I master not only the intricacies of medical image

processing, but also put a strong emphasis on developing the qualities necessary for

effective dissemination of scientific research and results. Beyond doubt, he has

played the most important role in shaping my technical writing and presentation

skills. All throughout my graduate career he has made himself available at any

moment when I needed his inputs and feedback for my work or anything else. The

time spent working with Dr. Shekhar has truly been the most rewarding career

experience of my life.

I would also like to thank my dissertation committee members, Prof. Shuvra

Bhattacharyya, Prof. Rama Chellappa, Prof. Manoj Franklin, and Prof Yang Tao for

their cooperation and support. I would especially like to thank Prof. Bhattacharyya for

his help and collaboration in my work that resulted in an important chapter of this

dissertation. The research work reported in this dissertation was partly supported by

U.S. Department of Defense (TATRC) under grant DAMD17-03-2-0001.

 My research at the University of Maryland would not have been

possible without the support and encouragement of Drs. Rueben Mezrich, Adrian

Park, Eliot Siegel, Khan Siddiqui, Nancy Knight, Faaiza Mahmoud, Steve Kavic, and

all clinical staff at the University of Maryland and Baltimore VA. Whenever I

 vi

requested, they have spared valuable time from their busy schedules for discussions

with me, and have been immensely helpful especially during the clinical validation

studies. Dr. Siddiqui, in particular, was instrumental in providing clinical perspective

on some of the research problems I have explored.

I would like to thank Prof. Jogikal Jagadeesh for allowing me to work in his

lab during my first two years at the Ohio State University, and for his crucial

guidance during early stages of my graduate education. I am also thankful to Dr.

Carlos R. Castro-Pareja, Dr Vivek Walimbe, Dr William Plishker, Dr. Jianzhou Wu,

Peng Lei, and Venkatesh Bhat from Dr. Shekhar’s research group for providing

valuable help and inputs at various times during my research.

My parents have always been the biggest source of inspiration in my life.

They have always stressed the importance of education and instilled in me the virtues

of honest and dedicated effort, for which I will forever be indebted to them. Their

love and constant encouragement has been an important driving force throughout my

life. I would like to thank my sister, Mangal, for her kind words of encouragement

from time to time during the last few years. I would like to especially mention my

long time friends Mukta, Prashant, Sandip, Siddharth, Rahul, Rakhi, and Vinayak, for

always being there with me.

Last, and most importantly, I would like to thank Himani – my wife and my

best friend. She has shown incredible patience and understanding throughout the

course of my graduate studies. I would not have been able to successfully complete

my doctoral program without the constant encouragement and motivation she

provided. My achievements are my tribute to her unconditional love and support.

 vii

Table of Contents

Dedication... ii
Publications.. iii
Acknowledgements... v
Table of Contents.. vii
List of Tables .. x
List of Figures.. xiii
Chapter 1: Introduction... 1

1.1. Overview.. 1
1.2. Contributions of this Dissertation .. 3

1.2.1. Real-time 3D Image Preprocessing .. 4
1.2.2. Hardware-Accelerated Deformable Image Registration............................. 5
1.2.3. Framework for Optimization of Finite Precision Implementations............ 6

1.3. Outline of this Dissertation .. 7
Chapter 2: Background and Related Work ... 9

2.1. Image-Guided Interventions .. 9
2.1.1. Role of Preprocedural Imaging... 10
2.1.2. Need for Image Registration... 12

2.2. Classification of Image Registration.. 13
2.2.1. Image Registration using Extrinsic Information....................................... 14
2.2.2. Image Registration using Intrinsic Information.. 15

2.3. Intensity-Based Image Registration... 17
2.3.1. Transformation Models... 18
2.3.2. Image Similarity Measures ... 22
2.3.3. Optimization Algorithms .. 26

2.4. Image Preprocessing .. 28
2.4.1. Anisotropic Diffusion Filtering... 30
2.4.2. Median Filtering.. 31

2.5. Optimization of Finite Precision Implementations .. 32
2.5.1. Optimal Wordlength Formulation... 33
2.5.2. Simulation-Based Optimal Wordlength Search.. 34
2.5.3. Multiobjective Optimization... 35

2.6. Related Work ... 37
2.6.1. Real-Time Image Preprocessing ... 37
2.6.2. Acceleration of Image Registration .. 40
2.6.3. Optimization of Finite Precision Implementations 43

Chapter 3: Real-time 3D Image Processing.. 47
3.1. Motivation.. 47
3.2. Filtering Algorithms... 50

3.2.1. Anisotropic Diffusion Filtering... 50
3.2.2. Median Filtering.. 51

3.3. Architecture.. 52

 viii

3.3.1. Memory Controller and Brick-caching Scheme 54
3.3.2. 3D Anisotropic Diffusion Filtering... 58
3.3.3. Median Filtering.. 64

3.4. Implementation and Results... 68
3.4.1. Effects of Finite Precision Representation.. 69
3.4.2. Hardware Requirements.. 73
3.4.3. Filtering Performance ... 75

3.5. Summary .. 78
Chapter 4: Hardware-Accelerated Deformable Image Registration........................... 80

4.1. Motivation.. 80
4.2. Algorithm for Deformable Image Registration.. 83

4.2.1. Calculating MI for a Subvolume... 85
4.3. Acceleration Approach .. 86
4.4. Architecture.. 88

4.4.1. Voxel Counter... 89
4.4.2. Coordinate Transformation... 90
4.4.3. Partial Volume Interpolation... 92
4.4.4. Image Memory Access ... 94
4.4.5. Updating Mutual Histogram ... 99
4.4.6. Entropy Calculation .. 105
4.4.7. Operational Workflow .. 108

4.5. Implementation and Results... 111
4.5.1. Execution Speed.. 114
4.5.2. Performance Comparison.. 117
4.5.3. Qualitative Evaluation of Deformable Image Registration 122

4.6. Summary .. 124
Chapter 5: Framework for Optimization of Finite Precision Implementations 126

5.1. Motivation.. 126
5.2. Multiobjective Optimization.. 129

5.2.1. Problem Statement .. 129
5.2.2. Parameterized Architectural Design ... 131
5.2.3. Multiobjective Optimization Framework ... 134

5.3. Experiments and Results.. 142
5.3.1. Metrics for Comparison of Pareto-optimized Solution Sets 146
5.3.2. Accuracy of Image Registration ... 148
5.3.3. Post-synthesis Validation.. 150

5.4. Summary .. 154
Chapter 6: Clinical Applications... 156

6.1. Radiation Dose Reduction ... 157
6.1.1. Motivation... 157
6.1.2. Dose Reduction Strategy... 158
6.1.3. Evaluation of Registration Accuracy with Low-Dose CT...................... 159
6.1.4. Experiments .. 163
6.1.5. Results... 164
6.1.6. Summary ... 167

6.2. Incorporation of PET into CT-Guided Liver Radio-Frequency Ablation 168

 ix

6.2.1. Motivation... 168
6.2.2. Registration of PET and CT.. 170
6.2.3. Experiments .. 171
6.2.4. Results... 174
6.2.5. Summary ... 178

Chapter 7: Conclusions and Future Work... 180
7.1. Conclusion ... 180
7.2. Future Work ... 185

Bibliography ... 189

 x

List of Tables

Table 2.1: Broad classification of image registration in the context of IGI......... 13

Table 3.1: Software execution time of 3D anisotropic diffusion filtering and 3D

median filtering of 8-bit images for common kernel sizes (N). 48

Table 3.2: Average error in intensity per voxel for a Gaussian filtered image

resulting from fixed-point representation of Gaussian coefficients.... 69

Table 3.3: Average error per sample of diffusion function resulting from fixed-

point representation of diffusion coefficients employed in the

presented architecture. .. 70

Table 3.4: Average error in intensity per voxel for anisotropic diffusion filtered

resulting from fixed-point representation of Gaussian coefficients and

the diffusion function.. 72

Table 3.5: Hardware requirements of the architecture for real-time 3D image

preprocessing. ... 73

Table 3.6: Hardware requirements for the components of the linear systolic

implementation of the 3D median filtering... 74

Table 3.7: Execution time of 3D anisotropic diffusion filtering and 3D median

filtering.. 75

Table 3.8: Performance comparison of the 3D anisotropic diffusion filtering

kernel... 76

Table 3.9: Performance comparison of the 3D median filtering kernel............... 78

Table 4.1: Configurations of LUT-based entropy calculation module that were

considered in the presented architecture. .. 106

 xi

Table 4.2: Operational workflow for performing volume subdivision–based

deformable image registration using the presented architecture....... 109

Table 4.3: Comparison of mutual information calculation time for subvolumes at

various levels in volume subdivision–based deformable registration

algorithm. .. 115

Table 4.4: Execution time of deformable image registration............................. 116

Table 4.5: Performance comparison of the presented FPGA-based

implementation of intensity-based deformable image registration with

an equivalent software implementation and prior approaches for

acceleration of intensity-based registration. 121

Table 5.1: Design variables for FPGA-based architecture. Integer wordlengths are

determined based on application-specific range information, and

fractional wordlengths are used as parameters in the multiobjective

optimization framework.. 136

Table 5.2: Number of solutions explored by search methods. 142

Table 5.3: Parameters used for the EA-based search... 143

Table 5.4: Validation of the objective function models using post-synthesis

results. The wordlengths in a design configuration correspond to the

FWLs of the design variables identified earlier. 151

Table 6.1: Execution time for deformable image registration using low-dose CT.

... 167

Table 6.2: Execution time for deformable image registration using

intraprocedural CT and preprocedural PET images.......................... 176

 xii

Table 6.3: Interexpert variability in landmark identification across 20 image

pairs. PETALGO corresponds to the software implementation of the

algorithm. .. 177

Table 6.4: Interexpert variability in landmark identification across 20 image

pairs. PETALGO corresponds to the FPGA-based implementation of the

algorithm. .. 178

 xiii

List of Figures

Figure 1.1: A typical IGI workflow and the scope of this dissertation work 3

Figure 2.1: Two examples of pre- and intraprocedural image pairs. The arrows

indicate the targets that are visible in preprocedural images but not

visible in intraprocedural images. ... 11

Figure 2.2: An example of volumetric image guidance using intraprocedural

multislice CT and preprocedural MR. .. 12

Figure 2.3: Flowchart of image similarity–based image registration.................... 17

Figure 2.4: Example of preprocessing techniques employed prior to intensity-

based image registration. .. 29

Figure 2.5: Pareto front in the context of multiobjective optimization. 36

Figure 3.1: A median filtering example using majority voting technique. 52

Figure 3.2: Block diagram of the FPGA-based real-time 3D image preprocessing

system. .. 53

Figure 3.3: Typical voxel access pattern for neighborhood operations–based image

processing. .. 54

Figure 3.4: Block diagram showing the input image memory and the input buffer

configuration. .. 56

Figure 3.5: Pictorial representation of the notation used in the brick-caching

scheme... 57

Figure 3.6: Top-level block diagram of 3D anisotropic diffusion filtering. This

diagram indicates paths that are executed in parallel.......................... 60

 xiv

Figure 3.7: Block diagram of the embedded Gaussian filter bank (for N = 7,

corresponding Gaussian kernel size is 5).. 61

Figure 3.8: Pipelined implementation of an individual Gaussian filter element

(Gaussian kernel size = 5)... 62

Figure 3.9: A single stage (processing element) of the linear systolic median

filtering kernel... 65

Figure 3.10: Linear systolic array architecture for median filter kernel using

majority voting technique. .. 68

Figure 4.1: Pictorial representation of hierarchical volume subdivision–based

deformable image registration and associated notation. 83

Figure 4.2: Pictorial representation of the acceleration approach. 86

Figure 4.3: Top-level block diagram of the architecture for accelerated

implementation of deformable image registration.............................. 88

Figure 4.4: Functional block diagram of voxel counter. 89

Figure 4.5: Functional block diagram of coordinate transformation unit. 91

Figure 4.6: Fundamentals of interpolation schemes.. 92

Figure 4.7: Functional block diagram of partial volume interpolation unit. 94

Figure 4.8: Voxel access patterns of the reference and floating images encountered

during image registration. ... 95

Figure 4.9: Organization of the reference image memory. 97

Figure 4.10: Organization of the floating image memory....................................... 98

Figure 4.11: Pipelined implementation of MH accumulation using dual port

memory. .. 100

 xv

Figure 4.12: Preaccumulate buffers to eliminate RAW hazards in MH accumulation

pipeline.. 102

Figure 4.13: A flow diagram of steps involved in calculating MHRest. 103

Figure 4.14: Error in entropy calculation corresponding to the two configurations of

the multiple LUT–based implementation. .. 107

Figure 4.15: Qualitative validation of deformable registration between iCT and

preCT images performed using the presented FPGA-based solution.

... 122

Figure 4.16: Qualitative validation of deformable registration between iCT and PET

images performed using the presented FPGA-based solution. 123

Figure 5.1: Examples of parameterized architectural design style...................... 133

Figure 5.2: Framework for multiobjective optimization of FPGA-based image

registration. ... 134

Figure 5.3: Comparison of the area values predicted by the adopted area models

with those obtained after physical synthesis..................................... 141

Figure 5.4: Pareto-optimized solutions identified by various search methods.... 144

Figure 5.5: Qualitative comparison of solutions found by partial search and EA-

based search. ... 145

Figure 5.6: Quantitative comparison of search methods using the ratio of non-

dominated individuals (RNI). ... 147

Figure 5.7: Quantitative comparison of search methods using cover rate. 148

Figure 5.8: Relationship between MI calculation error and resulting image

registration error.. 149

 xvi

Figure 5.9: Results of image registration performed using the high-speed, FPGA-

based implementation for design configurations offering various

registration errors. ... 153

Figure 6.1: Integration of deformable registration into IGI workflow................ 156

Figure 6.2: Important steps for evaluating registration accuracy with low-dose CT.

... 159

Figure 6.3: Low-dose CT images generated by the dose-simulator. 160

Figure 6.4: Comparison of techniques for preprocessing low-dose CT images.. 162

Figure 6.5: Qualitative comparison of registration accuracy with low-dose CT. 165

Figure 6.6: Average registration error with respect to dose using software and

FPGA-based implementations. ... 166

Figure 6.7: Graphic illustration of the quantitative validation approach used in the

context of deformable registration between intraprocedural and

preprocedural PET. ... 173

Figure 6.8: Registration of intraprocedural CT and preprocedural PET images

using the FPGA-based implementation of deformable image

registration. ... 176

 1

Chapter 1: Introduction

1.1. Overview

Image-guided interventions (IGIs), including surgeries, biopsies, and

therapies, have the potential to improve patient care by enabling new and faster

procedures, minimizing unintended damage to healthy tissue, improving the

effectiveness of the procedures, producing fewer complications, and allowing for

clinical intervention at a distance. As a result, IGIs has been identified by clinical

experts to have a significant impact on the future of clinical care [1]. With further

invention and development of imaging and image processing techniques, innovative

minimally invasive image-guided inventions will replace conventional open and

invasive techniques. Continuous three dimensional (3D) imaging and visualization for

intraprocedural navigation, critically important to the success of IGI, has been

technologically difficult until recently. However, the advances in medical imaging

technology and visualization capabilities, leading to improved imaging speed and

coverage, have prompted developments in imaging protocols and enabled volumetric

image-guided procedures.

The efficiency and efficacy of IGIs is critically dependant on accurate and

precise target identification and localization. Lack of clear target delineation could

lead to lengthy procedures, larger than necessary safety margins and unintended

damage to healthy tissue––factors that undermine the very motivation behind IGIs.

Intraprocedural imaging techniques provide a rich source of accurate spatial

information that is crucial for navigation but often suffer from poor signal-to-noise

 2

ratio (SNR) and poor target definition from background healthy and/or benign tissue.

As in most clinical protocols, IGIs are preceded by one or more preprocedural

images, containing additional information, such as contrast-enhanced structures or

functional details such as metabolic activity, which are used for diagnosis,

treatment/navigation planning, etc. Combining this functional and/or contrast

information with intraprocedural morphological and spatial information, through co-

registration between pre- and intraprocedural images, has been shown to improve the

intraprocedural target delineation [2-6].

Achieving this registration between intraprocedural and preprocedural images

is a fundamental need during the IGI workflow. Moreover, given the on-demand

nature of IGIs, this alignment should be achieved sufficiently fast so as not to affect

the clinical workflow. Earlier approaches to meet this need primarily employed rigid

body approximation, which can be less accurate because of non-rigid tissue

misalignment between these images. Intensity-based deformable registration is a

promising option to correct for this misalignment. These algorithms are automatic,

which is an important aspect that enables their easy integration into many

applications; However, the long execution times of these algorithms have prevented

their use in clinical workflow. In addition, since this technique is based on intensity-

based alignment between images, it is sensitive to the SNR of the images to be

registered. Consequently, the images (in particular, intraprocedural images that are

characterized with poor SNR) need to be preprocessed and de-noised before they can

be registered. This workflow for providing improved visualization during IGIs is

illustrated in Figure 1.1.

 3

The overall goal of this dissertation work is to improve the identification and

localization of targets during image-guided interventions through automatic, fast, and

accurate deformable image registration between preprocedural and intraprocedural

images. With this accurate registration and fusion of complementary information an

interventionist will be able to visualize accurately aligned anatomical structures (such

as vasculature) and/or functional (metabolic) activity not natively present in the

routine intraprocedural scans and thereby improving the targeting capability.

1.2. Contributions of this Dissertation

The specific goal of this dissertation work is to develop and validate the core

components of this advanced image processing system, which will enable improved

visualization and target-delineation during image-guided procedures. These core

components are identified in Figure 1.1. First, we employ reconfigurable hardware

platform to develop an architecture for real-time implementation of image

Figure 1.1: A typical IGI workflow and the scope of this dissertation work

 4

preprocessing techniques commonly used in the context of IGI. Second, we develop

an field-programmable gate array (FPGA)–based architecture for accelerated

implementation of intensity-based deformable image registration. Third, we propose a

multiobjective optimization framework to analyze conflicting tradeoffs between

accuracy and hardware complexity of finite precision implementations of signal

processing application, such as presented in this work. Finally, we demonstrate the

feasibility of developing novel IGI applications leveraging the aforementioned

components.

In the following sections we elaborate further on the main contributions of this

dissertation.

1.2.1. Real-time 3D Image Preprocessing

Image preprocessing, which consists of filtering and de-noising, is a

prerequisite step in many image processing applications. Especially in the context of

IGI, where intraprocedural images are characterized by poor signal-to-noise ratio,

image preprocessing is required prior to advanced image analysis operations such as

registration, segmentation, and volume rendering. Moreover, the interactive nature of

IGIs necessitates equivalent image processing speed so that these operation can be

performed in a streamlined manner without any additional processing latency.

Most reported techniques for accelerated implementation of image processing

algorithms have primarily focused on one-dimensional (1D) or two-dimensional (2D)

cases [7-11]. These techniques do not adequately address the need for accelerating

these operations in 3D, which is required for providing volumetric image-guidance

during minimally invasive procedures. Furthermore, some of the earlier techniques

 5

used for acceleration cannot be extended to 3D, whereas for some others the 3D

extension is nontrivial.

This dissertation presents an FPGA-based novel architecture for accelerated

implementation of common image preprocessing operations. This architecture is

reconfigurable and supports multiple filtering kernels such as 3D median filtering,

and 3D anisotropic diffusion filtering within the same framework. The architecture

presented in this work is faster than earlier reported techniques, supports larger kernel

dimensions, and is capable of meeting the real-time data processing need of most

IGIs. Although developed in the context of IGIs, this architecture is general-purpose

and can be applied to meet preprocessing needs of many medical as well as non-

medical applications.

1.2.2. Hardware-Accelerated Deformable Image Registration

Image registration between preprocedural images (acquired for diagnosis and

treatment planning) and intraprocedural images (acquired for up-to-date spatial

information) is an inherent need in the IGI workflow. Accurate and fast registration

between these images will enable the fusion of complementary information from

these two image categories and can enable improved treatment site identification and

localization and navigation during the procedure.

Several fiducial or point-based, mechanical alignment-based and intensity-

based rigid alignment techniques [12-16] have been proposed for this purpose. Some

of these techniques are not automatic and almost all of them employ the rigid body

approximation, which is often not valid due to tissue deformation between these two

image pairs. Deformable image registration techniques can compensate for both local

 6

deformation and large-scale tissue motion and are the ideal solution for achieving the

aforementioned image registration. Some studies, in particular, have independently

underlined the importance of deformable image registration for IGIs [17-19].

However, despite their advantages, deformable image registration algorithms are

seldom used in current clinical practice due to their computational complexity and

associated long execution times (which can be up to several hours).

This dissertation presents a novel FPGA-based architecutre for accelerated

implementation of a proven automatic and deformable image registration algorithm,

specially geared toward improving target delineation during image-guided

interventions. This architecture accelerates calculation of image similarity, a

necessary and the most time consuming step in image registration, by greater than an

order of magnitude and thereby reducing the time required for deformable registration

time from hours to minutes. This design is tuned to offer registration accuracy

comparable to that achievable using software implementation. Furthermore, we

validate this high-speed design and demonstrate its feasibility in the context of

clinical applications such as computed tomography (CT)-guided interventional

applications. This accuracy, coupled with the speed and automatic nature of this

approach represents a first significant step toward assimilation of deformable

registration in the IGI workflow.

1.2.3. Framework for Optimization of Finite Precision Implementations

An emerging trend in image processing, and medical image processing, in

particular, is custom hardware implementation of computationally intensive

algorithms for achieving high-speed performance. The work presented in this

 7

dissertation has a similar spirit in the context of advanced image processing required

during IGIs. For reasons of area-efficiency and performance, these implementations

often employ finite-precision datapaths. Identifying effective wordlengths for these

datapaths while accounting for tradeoffs between design complexity and accuracy is a

critical and time consuming aspect of this design process. Having access to optimized

tradeoff curves can equip designers to adapt their designs to different performance

requirements and target specific devices while reducing design time.

This dissertation proposes a multiobjective optimization framework developed

in the context of FPGA–based implementation of medical image registration. Within

this framework, we compare several search methods and demonstrate the

applicability of an evolutionary algorithm–based search for efficiently identifying

superior multiobjective tradeoff curves. In comparison with some earlier reported

techniques, this framework allows non-linear objective functions, multiple fractional

precisions, supports a variety of search methods, and thereby captures more

comprehensively the complexity of the underlying multiobjective optimization

problem. We also demonstrate the applicability of this framework for the image

registration application through synthesis and validation results using Altera Stratix II

FPGAs. This strategy can easily be adapted to a wide range of signal processing

applications, including areas of image and video processing beyond the medical

domain.

1.3. Outline of this Dissertation

The rest of the dissertation is organized as follows: Chapter 2 provides

background on image-guided interventions, image preprocessing, and image

 8

registration; and presents related work in the context of the contributions of this

dissertation. In Chapter 3, FPGA-based architecture for real-time implementation of

3D image processing techniques such as median filtering and anisotropic diffusion

filtering are presented. Chapter 4 deals with deformable image registration. We

outline the intensity-based deformable image registration algorithm and present a

novel architecture for accelerated implementation of this algorithm. In Chapter 5, a

framework for multiobjective optimization of limited precision implementations of

signal processing algorithms is presented. Chapter 6 introduces some novel image-

guided procedures and demonstrates the feasibility of our approach in the context of

these applications. Finally, in Chapter 7 conclusions and future work are presented.

 9

Chapter 2: Background and Related Work

2.1. Image-Guided Interventions

IGIs began to emerge in the last quarter of the 20th century, picked up pace in

the 1990s, and may become routine in the 21st century. Minimal invasiveness is the

defining characteristics of these procedures. This feature can lead to less patient

morbidity, time and cost efficient procedures, faster recovery and improve the

procedure outcomes. During these procedures, the internal anatomy is accessed

through a single or few small holes on the patient’s skin rather than though large

incisions. The interventionist introduces the appropriate tool (electrode or biopsy

needle, or/and endoscope) through this port and tries to navigate his/her way to the

target (typically a malignant spot) in order to deliver a localized treatment or take out

a sample for further investigation. Now, because the access to the internal anatomy is

through a single port, the only way to visualize the location, orientation and the path

of approach of the tool is by using external imaging techniques (that is there is no

direct visual feedback).

Any intraprocedural imaging technique used must be near real-time and thus

allow tracking underlying anatomy and flexible instruments and catheters as and

when required (“on-demand” performance) during the procedure. 2D Ultrasound

(US) and CT fluoroscopy have been conventionally used to guide placement of

biopsy needles and therapy delivery devices during IGIs [18, 20, 21]. However,

technological improvements such as multi-slice CT scanners, interventional MR, 3D

ultrasound (US), isocentric C-arms and other advanced imaging systems have enabled

 10

the application of IGI to clinical domains such as interventional radiology,

neurosurgery, orthopedics, ENT surgery, cranio- and maxillofacial surgery and other

surgical specialties [22-24]. For example, Philips medical systems, one of the leading

medical imaging equipment manufacturers, has announced a 256-slice CT scanner

[25] which provides higher imaging speed (up to 8 volumes/s) and coverage (8 cm) is

ideally suited for performing CT-guided procedures. Availability of easy access MR

scanners, such as open-configuration MR scanner from GE Healthcare [26] along

with its improved imaging speed has enabled development of MR-guided procedures.

Image quality and acquisition speed of 3D ultrasound have also been enhanced

through use of latest transducer technology and digital reconstruction and it can now

be used for providing image-guidance during procedures. Moreover, real-time

volumetric visualization capabilities, that enable interactive display of images during

the procedure, are also now available [27, 28]. As a result, an emerging trend in IGI

workflow is to use volumetric imaging modalities for providing real-time

intraprocedural guidance. This dissertation, therefore, focuses on 3D image

processing and registration in the context of IGIs.

2.1.1. Role of Preprocedural Imaging

Intraprocedural imaging techniques provide (or, are a rich source of) accurate

spatial information which is crucial for navigation but offer poor target identification

from the background healthy and/or benign tissue (see Figure 2.1). Most image-

guided procedures are preceded by a preprocedural image which is used for

diagnosis, treatment/navigation planning, etc. These preprocedural images are

primarily acquired under different (often slow) imaging protocol and typically contain

 11

additional information, such as contrast-enhanced structures or functional information

such as metabolic activity which is used for diagnosis and tissue differentiation prior

to the treatment. Figure 2.1(a) shows contrast-enhanced structures in a preprocedural

image which are not clearly visible in intraprocedural images. Figure 2.1(b) illustrates

the metabolic activity shown in the PET scans which can be used to identify

cancerous tumors. Availability of this functional and contrast information from the

preprocedural images can be used to augment the purely morphological and spatial

information from the intraprocedural images which will greatly improve the

intraprocedural target delineation [2-6, 29]. Therefore, there is a clear need to

combine this complementary information from the pre and intraprocedural images to

facilitate this task.

Figure 2.1: Two examples of pre- and intraprocedural image pairs. The arrows
indicate the targets that are visible in preprocedural images but not visible in
intraprocedural images.

 12

2.1.2. Need for Image Registration

Aligning or registering the intraprocedural images with the preprocedural

image is a fundamental need in the IGI workflow. In fact, image registration has been

identified as an enabling technology for image-guided surgical and therapeutic

applications [30]. Figure 2.2 shows an example of volumetric image-guidance using

image registration between volumetric CT and magnetic resonance imaging (MRI)

scans for a neurosurgical application. There are, however, many technological and

logistic challenges in achieving this image registration. First, the intra- and

preprocedural images to be registered are acquired at different times and using

different scanners. As a result, there is invariably misalignment of anatomical

structures between these two images. This misalignment is caused because of the

Figure 2.2: An example of volumetric image guidance using intraprocedural
multislice CT and preprocedural MR.

 13

systemic offsets in scanner coordinate systems and due to non-rigid anatomical

changes arising from pose and diurnal variations at the time of image acquisition.

Second, the images to be combined can be of two completely different modalities

(such as PET and CT). Furthermore, given the on-demand nature of IGI applications

this registration should be achieved in a reasonably fast time. In summary, accurate,

multi-modal, and fast image registration is essential for IGIs [17, 31]. The following

section provides an overview of image registration.

2.2. Classification of Image Registration

Medical image registration is the process of aligning two images that

represent the same anatomy at different times, from different viewing angles, or using

different imaging modalities. Image registration is an active area of research and over

the last several decades there have been numerous publications outlining various

methodologies to perform image registration and its applications. Maintz and

Viergever [32] and Hill et al. [33] have presented a comprehensive summaries of the

entire gamut of the image registration domain. In general, image registration can be

classified based on image dimensionality, nature of registration basis, nature of

transformation models, type of modalities involved, etc. From the context of IGI,

Table 2.1: Broad classification of image registration in the context of IGI.
Registration

Basis
Method
based on Retrospective Automatic Deformable Compute

Intensive
Fiducial N Y N N Extrinsic

Information Stereotactic N Y N N
Landmark Y N Y N

Segmentation
Or Surface Y N Y N Intrinsic

Information
Intensity Y Y Y Y

 14

however, we broadly classify image registration into two main approaches. First,

techniques based on extrinsic information and second, techniques based on

information that is intrinsic to the image. We briefly describe these two techniques

and outline some popular image registration methods in each category. A summary of

this classification is also presented in Table 2.1.

2.2.1. Image Registration using Extrinsic Information

Methods based on extrinsic information rely on information that is not

natively a part of the medical image. This includes artificial external objects that may

be attached to the patient and are within the field of view of the image. These objects

are designed such that they are clearly visible and accurately detectable in all of the

pertinent modalities that are to be registered. As a result, the registration of the

acquired images is usually easy, fast, and can be automated with relative ease. In

addition, because the registration involves simply establishing correspondence

between external objects, it can be achieved explicitly without a need for complex

optimization techniques. One major limitation of these methods, however, is that they

are not retrospective. This means that advanced planning is required and provisions

must be made at the time of preprocedural imaging for that image to be used at a later

point. Furthermore, due to the nature of the registration these methods are mostly

limited to rigid transformation model only.

Stereotactic frame is another commonly used external object. There are many

reported image registration applications, especially in the context of neurosurgery,

that employ a stereotactic frame to establish spatial correspondence between images

[34, 35]. These methods employ a frame screwed rigidly to the patient’s skull that is

 15

usually fitted with imaging markers that are visible in imaging modalities such as CT,

MRI, and X-ray. Visibility of these markers in both pre- and intraprocedural images

will then allow registration of these images using a least-square based alignment

technique. These techniques have been shown to be relatively accurate for rigid

anatomy such as the brain [36], but are relatively more invasive. Less invasive

techniques using markers attached to the skin have also been reported [37], but they

tend to offer less accurate image registration because skin can move. More recently,

there have also been efforts toward developing systems based on optical tracking

methods that will allow frameless stereotaxy [38]. Despite these advances, these

methods are fundamentally limited to providing only rigid alignment between a pair

of images.

2.2.2. Image Registration using Intrinsic Information

These methods are based on intrinsic properties and contents of patient-

generated images. Registration may be based on a limited set of identified salient

points (landmarks), on the alignment of segmented anatomical structures

(segmentation or feature based) such as organ surfaces or directly based on the image

intensity values (voxel property based).

Landmark-based registration [35, 39, 40] involves identification of the

locations of corresponding points within different images and determination of the

spatial transformation with these paired points. These landmarks are usually

identified by a user in an interactive fashion. Landmark-based methods are often used

to find rigid or affine transformations. However, if the sets of points are large enough,

they may be used for more complex non-rigid transformations as well. Registration

 16

methods based on landmark identification can be retrospective, but they are not fully

automatic becasue they require user interaction.

Segmentation-based image registration methods are based on extracting

matching features and organ surfaces from the two images to be registered. These

features and organ surfaces are then used as the only input for the alignment

procedures. The alignment between the features/surfaces can be either based on rigid

transformation models or achieved using deformable mapping. The rigid model–

based approaches are more popular and a ‘head-hat’ registration method based on this

approach has been successfully applied to the registration of multimodal images such

as PET, CT, and MR [41-43]. Popular segmentation-based techniques that involve

deformable mapping of surfaces, such as the ones based on snakes or active contour

models, have been shown to be effective in intersubject and atlas registration, as well

as for registration of a template to a mathematically defined anatomical model [44,

45]. Segmentation-based techniques are retrospective, support multi-modal

registration, and are computationally efficient. However, the accuracy of registration

is dependant on the segmentation accuracy. Moreover, these methods are not fully

automatic as the segmentation step is often performed semi-automatically.

Voxel property-based methods, which are based on image intensity values, are

the most interesting methods in the current research. Theoretically, these are the most

flexible of the registration methods since they use all of the available information

throughout the registration process. In addition, these methods can be completely

retrospective, fully automatic, allow multi-modal registration and generally are more

accurate. The following section provides a detailed overview of intensity-based image

 17

registration. Although these methods have existed for a long time, their extensive use

in clinical applications with 3D images has been limited because of associated

computational costs. This dissertation work addresses this aspect through the use of

hardware acceleration.

2.3. Intensity-Based Image Registration

Image registration that is based on voxel intensities is the most versatile,

powerful, and inherently automatic way of achieving the alignment between two

images. This method attempts to find the transformation T̂ that optimally aligns a

reference image RI, with coordinates x, y, and z, and a floating image FI under a

image similarity measure F . This process is summarized in the following equation

and is represented pictorially in Figure 2.3.

 ˆ arg max ((, ,), ((, ,)))
T

T RI x y z FI T x y z= F (2.1)

Figure 2.3: Flowchart of image similarity–based image registration.

 18

In the case of intensity based registration, the similarity measure F , which

provides a numerical value to indicate the degree of misalignment between the

images, is completely based on voxel intensities in the reference and the floating

images. Image transformation T maps the reference image voxels into the floating

image space. Depending on the transformation model employed, this mapping is

either rigid, affine, or deformable. The optimization algorithm, on the other hand,

searches for the best transformation parameters that optimally align the given two

images. These three components form an integral part of intensity-based image

registration and are described in the following sections.

2.3.1. Transformation Models

A transformation model provides a way to describe the misalignment between

the reference and the floating images. The ability of image registration to accurately

represent and recover this misalignment is fundamentally limited by the nature of the

transformation model employed. For example, rigid transformation model typically

offers inferior image registration accuracy as compared with computationally

intensive, non-rigid transformation models, if the underlying misalignment is non-

rigid. A comprehensive survey on image transformation models can be found in [46,

47]. The following subsections describe the transformations most commonly used in

intensity-based image registration.

2.3.1.1. Rigid and Affine Models

Affine or linear registration is a combination of rotation, translation, scaling

and shear parameters that map the reference image voxels into floating image space.

 19

Voxel scaling and shearing factors are constant for rigid registration, which is a

special case of affine transformation, and as such are excluded from optimization

process. Both these transformation models can be represented using a 4 × 4

transformation matrix. For example, a rigid transformation matrix Tglobal can be

constructed as:

 ,

0 0 0 1

xx xy xz x

yx yy yz y
global

zx zy zz z

r r r d
r r r dT r r r d

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.2)

where rij entries represents the components of the rotation matrix, while the di entries

represent the translation parameters. The coordinate transformation of a reference

image voxel rv into floating image space (fv) can then simply be achieved through

matrix multiplication:

 .f global rv T v= ⋅ (2.3)

Techniques based on rigid and affine transformation models have been successfully

employed previously [47-49]. These techniques, however, offer limited degrees of

freedom in the transformation model.

2.3.1.2. Deformable Models

The strength of the deformable transformation models comes from the large

number of degrees of freedom they offer for representing the misalignment between

images. This allows modeling of not only gross misalignment between the images,

but also local deformations. As a result, image registration techniques based on

deformable transformation models are inherently capable of correcting for local

misalignments and therefore are more accurate.

 20

Methods based on physical models perform image transformation by

considering a set of internal and external forces and obtaining the corresponding

deformation by applying these forces to a given model based on differential

equations. Some examples of physical models used for image transformation found in

the literature are elastic body [50], viscous fluid [51] and incompressible flow (optical

flow) [44]. Some methods based on finite element models have also been employed

for image registration, which apply predefined physical models to represent

deformation in the images [52, 53]. The key idea is to divide the image into subsets,

each with some defined physical properties. For example, a subset can be labeled as

rigid, while some others can be labeled as fluid (elastic). During the transformation

process, the shape of rigid tissues will not change, while the shape of fluid tissues will

vary according to their corresponding properties such as viscosity. Image

transformation techniques using physical models have been successfully applied to

deformable image registration. However, most of these techniques involve solving

partial differential equations and are particularly computationally complex.

Another popular method to represent deformable transformation model is to

use mathematical basis functions. These transformation techniques use basis

functions to define the correspondence between the original and the transformed

image. The basis functions may be defined in either Fourier or Wavelet domain, and

the deformation field is modeled using trigonometric or wavelet basis functions,

respectively. Ashburner and Friston [54] have reported a method based on this

approach. The deformation between the two images may also be modeled in the

spatial domain using polynomials. Polynomial-based image transformation

 21

techniques use a global transformation function defined by a transformation matrix

that contains the transformation coefficients and a polynomial vector that contains the

components of the polynomial used to model the transformation. The simplest case of

polynomial-based image transformation is the affine transformation, which uses first-

degree polynomials. By increasing the degree of the polynomials, it is possible to

model complex non-rigid transformation as well. However, this method is seldom

employed due to difficulty in modeling small local transformations and that higher-

degree polynomials suffer from several artifacts [46]. These drawbacks are addressed

by spline-based representation. Splines are inherently continuous and consist of

piecewise-polynomial functions. Splines are a generalization of the polynomial-based

approach to image transformation in the sense that a polynomial representation is a

spline with just one segment. Using piecewise-polynomial functions allows modeling

of local deformations accurately without using high-order polynomials. Two different

spline families that have been used extensively in the literature to model 3D

transformations are thin-plate splines and B-splines. Kim et al. [55] and Rohr et al.

[56] have reported methods based on thin-plate splines to perform deformable image

registration. However, one major drawback of thin-plate splines is that they have

infinite support. This means that even small local changes are propagated throughout

the entire image, an effect that is undesirable in medical image registration. In

comparison, B-splines offer finite support. For this reason, B-splines are currently the

preferred basis functions for modeling deformable transformations [57, 58]. A

limitation with B-spline-based transformations is that they tend to fail at tracking

rotation of local features. Moreover, algorithms based on B-splines tend to be

 22

computationally intensive due to additional complexity associated with B-spline

interpolations.

 More recently, some algorithms based on hierarchical image subdivision

approaches have been reported [59, 60]. These algorithms achieve deformable

registration through registering image subvolumes using a locally linear

transformation and then applying quaternion-based interpolation to obtain the

transformation field. Algorithms based on such transformation models allow the

modeling of internal rotations better than the spline-based approaches. These

algorithms are computationally efficient and yet are capable of recovering local

deformations. The deformable registration algorithm considered in this dissertation is

also based on hierarchical volume (3D image)-subdivision. This algorithm and the

architecture for its accelerated implementation is describes in Chapter 4.

2.3.2. Image Similarity Measures

An important component of image registration is the metric that quantitatively

determines how similar two images are. This metric can then be used to judge how

well a pair of images is aligned and also to guide the optimization procedure during

image registration. In the case of intensity-based image registration this metric, or

image similarity measure, is computed using the voxel intensities of the images

involved in registration. There are many reported intensity-based similarity measures.

These can be broadly classified into measures using only image intensities (for

example, mean of square difference of intensities), measures using spatial (or

neighborhood) information (for example, pattern intensity or gradient-based

measures) and measures based on information theory (mutual information).

 23

The following sections briefly describe some widely used similarity measures.

We use the following notation for this description. The images to be aligned are

reference image (RI) and the floating image (FI). A transformation T is applied to the

voxels of the reference image. An image similarity measure is calculated over the

region of overlap (0X) between the RI and the FI and x represents the location of a

voxel in RI. N represents the number of RI voxel that belong to 0X . The

notations RIp , FIp , and ,RI FIp represent the individual probability distribution function

(PDF) of RI, individual PDF of FI, and the mutual PDF of RI and FI, respectively.

2.3.2.1. Sum of Squared Intensity Differences (SSD)

One of the simplest ways to achieve image alignments is to minimize the

intensity difference between the RI and FI. The sum of squared intensity differences

(SSD) measure tries to achieve that. The SSD between the two images is defined as:

0

21(,) (() (())) .
x X

SSD RI FI RI x FI T x
N ∈

= −∑ (2.4)

As expected this measure will be minimized when two images are aligned well.

However, this measure is limited to work with images with same intensity patterns, or

in other words, for mono-modality image registration. Furthermore, Holden et al. [48]

have shown this similarity measure to be error-prone in the presence of noise.

2.3.2.2. Normalized Cross-Correlation (NCC)

If the assumption that registered images differ only by Gaussian noise is

replaced with a less restrictive one, namely that there is a linear relationship between

the two images, then the optimum similarity measure is the normalized cross-

 24

correlation. Cross-correlation in both space and frequency domains has been used as a

voxel similarity metric. Cross-correlation in the space domain is defined by:

 0

2

(())((()))1(,) x X

RI FI

RI x RI FI T x FI
NCC RI FI

N σ σ
∈

− −∑
=

⋅
 (2.5)

where RI and FI are the mean intensities of the RI and FI respectively, whereas

RIσ and FIσ represent the standard deviations of RI and FI, respectively:

0

21 (()) ,RI
x X

RI x RI
N

σ
∈

= −∑ (2.6)

0

21 (()) .FI
x X

FI x FI
N

σ
∈

= −∑ (2.7)

Computation of this similarity measure can be time consuming as it requires

calculating the mean and the standard deviation as well as the cross-correlation

coefficient for the entire 3D images. Because of this high computational cost of

performing cross-correlation, spatial domain correlation is usually performed between

a whole image and a small portion of the other image. Cross-correlation is an

effective voxel similarity measure for images with low noise, but it high calculation

requirements make it a poor choice for real-time applications. Furthermore, it may not

yield optimal performance when applied to noisy images [46], such as ultrasound and

low-dose CT.

2.3.2.3. Mutual Information (MI)

Mutual information is a popular image similarity metric based on information theory.

The rationale behind this similarity measure is to consider image registration as the

process of maximizing the amount of information common to RI and FI, or

 25

minimizing the amount of information present in the combined images. When the

images are perfectly aligned, the corresponding structures from both images will

overlap, minimizing the combined-information. The use of mutual information for

image registration was introduced by Collignon et al. [61] and Viola and Wells [62].

The MI is defined by:

 (,) () () (,) ,MI RI FI h RI h FI h RI FI= + − (2.8)

where the individual and mutual entropies are calculated as:

 () () ln(()) ,RI RIh RI p x p x= − ⋅∑ (2.9)

 () () ln(()) ,FI FIh FI p x p x= − ⋅∑ (2.10)

 , ,(,) () ln(())RI FI RI FIh RI FI p x p x= − ⋅ ⋅∑∑ (2.11)

A comprehensive survey of MI-based registration was presented by Pluim et al. [47].

Mutual information is a very effective similarity measure for multimodal image

registration because it can handle nonlinear information relations between data sets

[63]. Holden et al. [48] have demonstrated that mutual information-based techniques

are, in general, superior to other techniques for deformable image registration.

A broadly used variant of mutual information is called normalized mutual

information. The advantage of this similarity measure over mutual information is its

overlap-independence. It was introduced by Studholme et al. [64] as:

 () ()(,) .
(,)

h RI h FINMI RI FI
h RI FI

+
= (2.12)

There are several other intensity-based similarity measures beyond the ones

listed and described here. These include ratio of image uniformity, pattern intensity,

entropy of the difference image, etc. Mutual information, in comparison, is versatile,

 26

inherently multimodal, and accurate; and hence has emerged as a popular choice for

both rigid and deformable image registration. In particular, the deformable

registration algorithm, being accelerated through custom hardware implementation in

this dissertation work, is also based on MI. See Chapter 4, for additional details.

2.3.3. Optimization Algorithms

Optimization algorithms are used to navigate the search space of

transformation parameters and to identify the optimal combination of transformation

parameters that best aligns a pair of images. It must be noted, that most often the

number of parameters to be searched for is more than one and this requires multi-

dimensional optimization algorithms. Another desired feature of an optimization

algorithm is that it requires fewer number of objective function evaluations. In the

case of intensity-based image registration, the objective function to be optimized is

the voxel similarity function. This calculation, usually, is compute intensive and

hence faster convergence is ideal. We briefly summarize common multidimensional

optimization scheme employed in the context of image registration.

The downhill simplex method, first introduced by Nelder and Mead [65] is an

unconstrained nonlinear optimization technique. A simplex is a geometrical figure

defined by N+1 points in an N-dimensional space. The simplex method starts by

placing a regular simplex in the solution space and then moves its vertices gradually

towards the optimum point through an iterative process. The downhill simplex

algorithm searches for the optimum value through a series of geometrical operations

on the simplex. Examples of these operations include reflection, reflection and

expansion, contraction, multiple contractions etc. Shekhar et al. [49, 66] and Walimbe

 27

et al. [60, 67] have reported successful use of this optimization technique for voxel

similarity–based image registration.

Univariate optimization method tries to solve the multidimensional

optimization problem by breaking it into multiple one-dimensional optimization

problems. This is achieved by optimizing the variables, one variable at a time and

then repeating this step until convergence. This method is simple, but can suffer from

poor convergence in the presence of steep valleys in the search space. Powell’s

method builds upon the univariate method with an important distinction, that the

search direction does not have to be parallel with any of the variable axes. Thus, it is

possible to change multiple variables at the same time. This can achieve faster

convergence and effectively eliminate the convergence problem of the univariate

method. This algorithm has widely been used for optimizing intensity-based image

registration [47, 68, 69].

Optimization based on genetic algorithms is a technique that mimics the

genetic processes of biological organisms. Over many generations, natural

populations evolve according to the Darwinian principles of natural selection and the

“survival of the fittest”. Common operations involved in this method are crossover,

mutation and fitness evaluation. By following this process, genetic algorithms are

able to adapt starting solutions and ultimately find the optimal solution. These

techniques are capable of efficiently searching a complex optimization space.

However, representation of solutions in a genetic algorithm framework can be

challenging and limit their effectiveness especially in the context of deformable

 28

registration (due to large number of parameters). Examples of genetic algorithm–

based optimization for image registration can be found in [70, 71].

Optimization using simulated annealing techniques involves minimization

methods based on the way crystals are generated when a liquid is frozen by slowly

reducing its temperature [65]. These algorithms work distinctly from the techniques

described earlier, in that they do not strictly follow the gradients of the similarity

measure. Instead, they move randomly, depending on the “temperature” parameter.

While the “temperature” is high, the algorithm allows greater variations in the

variables to be optimized. As the “temperature” decreases, the algorithm further

constrains the variation of the variables until a global optimum is reached. In general,

simulated annealing techniques are more robust than earlier described methods.

However, these techniques may require a large number of iterations to converge,

especially in the presence of local minima. Some applications of simulated annealing

techniques for image registration are described in [72, 73].

2.4. Image Preprocessing

As described in the previous section, intensity-based image registration (both

rigid and deformable) utilizes similarity measures that are based on the voxel

intensities of the images to be registered. As a consequence, these similarity measures

are sensitive to quality of the images involved. Images with poor SNR can affect the

calculation of a similarity measure and result into less-accurate image registration.

While some similarity measures such as MI and NMI are less sensitive to noise,

Holden et al. [48] have demonstrated that most intensity-based similarity measures

 29

(and resulting accuracy of image registration) are adversely affected in the presence

of noise.

To address this aspect, several techniques for preprocessing images prior to

image registration have been described. While some techniques focus on identifying a

region or structures of interest in the images and exclude structures that may

negatively influence the registration results [48, 49, 74], most preprocessing

techniques rely on spatial-domain filtering operations on the images. Some reported

techniques have employed low-pass filtering to remove speckle noise in ultrasound

images, thresholding or filtering to remove noise, and blurring to correct for

differences in the intrinsic resolution of the images [49, 64, 75]. All these spatial

filtering techniques have shown to be effective in improving the image quality and

the accuracy of image registration.

In the context of IGI, which is the primary application of the work presented

in this dissertation, low-dose computed tomography (CT) and 3D ultrasound have

emerged as the preferred intraprocedural volumetric imaging modalities. These

modalities, although sufficiently fast for intraprocedural use, suffer from quantum

noise and speckle noise respectively. Furthermore, due to presence of metallic tools

Ultrasound Image Filtered US Image Low-dose CT Image Filtered CT Image

Anisotropic Diffusion Filtering Median Filtering
Figure 2.4: Example of preprocessing techniques employed prior to intensity-
based image registration.

 30

such as needles and catheters and associated photon scattering effects, intraprocedural

CT images also suffer from metal artifacts. As a result, these images must be

preprocessed and enhanced prior to registration with preprocedural images and

subsequent visualization. Toward this end, anisotropic diffusion filtering and median

filtering have been shown to be effective. Figure 2.4 shows an example application of

these filtering operations. In particular, anisotropic diffusion filtering has been

successfully applied for preprocessing of ultrasound, CT, and low-dose CT images

[76-78]. Similarly, median filtering has been employed, both in spatial and sinogram

domains, to reduce or eliminate metal artifacts and for filtering low-dose CT images

[79, 80]. In this dissertation we, therefore, focus on these two filtering techniques.

2.4.1. Anisotropic Diffusion Filtering

Anisotropic diffusion filtering is an iterative process which progressively

smoothes an image while maintaining the significant edges. The nonlinear anisotropic

diffusion algorithm for edge-preserving image smoothing was first proposed by

Perona and Malik [81]. For a 3D image I with intensities (,)I v t , where v is a vector

in the 3D space and t is a given point in time (for the purposes of modeling the

diffusion process), the diffusion process is described by the following equation:

 () ()(), , ,I div c v t I v t
t

∂
∂

= ∇i (2.13)

where c is the diffusion coefficient and takes a value between zero and 1. In general,

the diffusion coefficient is defined as a function of the image gradient (i.e.,

()c f I= ∇). For noisy images, Whitaker and Pizer [82] showed that gradient

estimates taken from the image itself tend to be unreliable and proposed, instead, the

 31

use of a Gaussian-filtered version of the image to calculate the gradient values. Their

proposed Gaussian filter has a standard deviation ()tσ that decreases as the time (t)

increases, thus resulting in a multiscale approach. Dorati et al. [83] demonstrated the

usefulness of Whitaker and Pizer’s approach to 3D ultrasound image preprocessing.

The diffusion coefficient that uses the Gaussian-filtered image (indicated as (())G tσ)

is then defined as:

 ()() ()(), .c f G t I v tσ= ∇ i (2.14)

 Several diffusion functions have been proposed in the literature. The two most

widely used are:

()() ()

2

1

,
exp ,

G t I v t
c

K

σ⎛ ⎞⎛ ⎞∇⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

i
 (2.15)

and

()() ()

11

2

,
1 .

G t I v t
c

K

α
σ

−+⎛ ⎞⎛ ⎞∇⎜ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

i
 (2.16)

These diffusion functions depend on the gradient of the Gaussian-filtered image,

while the parameter K adjusts the levels at which edges are diffused or preserved, to

achieve the desired filtering effect.

2.4.2. Median Filtering

Median filtering is a nonlinear technique commonly used to eliminate speckle

noise from ultrasound and impulse noise from other noisy images. This technique is

called non-linear because it can not be represented as a direct convolution operation.

 32

This technique is based on rank-ordering of the intensity values present in an image.

In addition, this filter is an edge-preserving filter. The advantage of this technique

when compared to most linear (convolution-based) smoothing operators is that it

smooths areas within a particular object, while preserving its edges. This feature is

important, especially in the context of medical image registration, since it generally

improves the accuracy of the image registration, segmentation, and visualization

operations by preserving anatomical boundaries, while reducing random noise in the

interiors of the structures. However, such filters, due to their nonlinear nature, tend to

be computationally more intensive as compared with linear filtering operations.

The 3D realizations of these preprocessing operations, despite their

effectiveness, can take several seconds when implemented in software. Consequently,

for seamless integration into the IGI workflow these techniques must be accelerated

so that their performance is comparable to the acquisition speed of intraprocedural

images. This dissertation addresses this need through real-time implementation of 3D

realizations of these operations as described in Chapter 3.

2.5. Optimization of Finite Precision Implementations

An emerging trend in image processing, and medical image processing, in

particular, is custom hardware implementation of computationally intensive

algorithms in the quest to achieve real-time performance. The work presented in this

dissertation has a similar spirit in the context of advanced 3D image processing

required during IGIs. For reasons of area (and power)-efficiency and performance,

these implementations often employ limited-precision datapaths. In comparison, the

original algorithms are often developed in software using the double-precision

 33

representation. Identifying effective wordlengths for these datapaths while accounting

for tradeoffs between design complexity and accuracy is a critical and time

consuming aspect of this hardware design process. This problem of converting

floating-point implementations into fixed-point (or other limited precision

representations) through identification of optimum wordlengths is an important

problem in signal processing applications and has received considerable attention in

the literature. Cantin et al. [84] and Todman et al. [85] provide a comprehensive

review of techniques to identify optimal wordlengths. We briefly summarize some

important approaches here.

2.5.1. Optimal Wordlength Formulation

Consider a system with m internal variables and a wordlength iw associated

with each variable. Further, each variable can take values between the lower (mini
w)

and upper (maxi
w) bound on the wordlength such that min max(,)

i iiw w w∈ . Each

wordlength is an integer variable, and the wordlength configuration for the entire

system can then be represented using a wordlength vector ()mW W I∈ such as

1 2{ , , , }mw w w" . Furthermore, min max(,)W W W∈ ; where
1 2min min min min{ , , , }

m
W w w w= "

and
1 2max max max max{ , , , }

m
W w w w= " . Consider a function H associated with the system

that defines the hardware implementation cost associated with a wordlength

configuration W . Also, consider that the performance of this limited-precision,

quantized system is characterized by function ()p W and that the system must

achieve a certain performance minP . The wordlength optimization problem can then be

presented as:

 34

min max

min
(,)

arg min (), such that () .
W W W

H W p W P
∈

≥ (2.17)

It must be noted that this formulation, for simplicity, considers only one objective

function H with respect to a predefined performance criterion minP . The more general

multi-objective formulation is briefly described below and revisited in detail later in

the context of FPGA-based implementation of deformable image registration (see

Chapter 5).

2.5.2. Simulation-Based Optimal Wordlength Search

Optimal wordlength configuration that meets a certain performance criterion

can be identified by solving analytical expressions, when the performance function

p can be represented analytically. Some earlier reported approaches have adopted

this technique [86-90]. However, if the performance function can not be represented

analytically, which is often the case for practical complex systems, simulation-based

methods can be used to search for the optimal configuration. This involves searching

the design space (defined by the wordlength vector ranges) and finding a solution that

satisfies the design criteria. Some popular methods in this category are briefly

described below. A detailed description of these methods can be found in [84, 91].

An exhaustive search attempts every possible combination of wordlengths

between the predefined lower and upper bounds and evaluates the performance of

each combination through simulation. The optimum wordlengths can then be selected

from the simulation results. An exhaustive search is guaranteed to find the global

optimal configuration, however, the number of solutions explored and the associated

execution time increase exponentially as the number of variables increases.

 35

Another method, proposed by Sung and Kum [92] searches for the first

solution that satisfies a given performance requirement or an error criterion. These

method starts with an initial guess for the system configuration based on uni-variable

simulations. The wordlength of each variable, as provided by this initial guess, is then

sequentially incremented by one until a configuration that meets the error criterion is

found. Although, this method is more efficient than the exhaustive search, finding the

globally optimal configuration is not guaranteed.

A sequential search method [84, 93] that takes into account the performance

sensitivity to determine the direction of the search is another way to approach this

problem. This method starts with an initial guess based on uni-variable simulations;

however, the further search direction is determined by the sensitivity of the

performance to each variable. This sensitivity is estimated by calculating the gradient

of the system performance with respect to all the variables and the search progresses

in the direction of the variable (that is wordlength of that variable is incremented) that

offers most improvement. It is also possible to consider hardware cost sensitivity

instead of the performance sensitivity in this search method.

2.5.3. Multiobjective Optimization

One of the limitations of the optimization formulation described above is that

search methods based on this formulation are limited to finding a single solution that

satisfies a design objective. Most real-world problems (including the wordlength

optimization problem), however, can have several objectives (that generally conflict

with each other) that need to be achieved at the same time. For example, in the case

of finite-precision implementations, hardware resource requirements and the

 36

implementation accuracy are two such conflicting objectives. Because of the

conflicting nature of the involved objectives, multiobjective optimization problems do

not normally have a single optimal solution and even necessitate a new definition of

optimality.

The most commonly adopted notion in multiobjective optimization problems

is that of Pareto optimality. A vector of decision variables *x ∈F is Pareto optimal if

there does not exist another solution x ∈F such that fi(x) ≤ fi(x∗), for all i, and

fj(x) < fj(x∗), for at least one j, where fi represents an objective function defined for

every x∈F . This definition of optimality almost always provides a set of solutions

called the Pareto-optimal set. The set of vectors x∗ corresponding to the solutions in

the Pareto-optimal set are called non-dominated solutions. This concept is pictorially

illustrated in Figure 2.5.

Formulating the wordlength optimization as a multiobjective problem has

merit because it allows finding a set of Pareto-optimal configurations representing

strategically-chosen tradeoffs among the various objectives. This allows a designer to

choose an efficient configuration that satisfies given design constraints and provides

ease and flexibility in modifying the design configuration as the constraints change.

Figure 2.5: Pareto front in the context of multiobjective optimization.

 37

For example, Leban and Tasic [94] used error, delay, and area as objectives. Han and

Evans [91] performed optimization of area and error through linear aggregation,

while Givargis et al. [95] considered power and execution performance trade-off for

system-on-chip architecture through series of monobjective optimizations. There are

also some heuristic techniques that take into account tradeoffs between hardware cost

and implementation error and enable automatic conversion from floating-point to

fixed-point representations [96]. In this dissertation work, we develop a framework

for multiobjective optimization of finite precision implementations. This framework

has been developed for optimization of the FPGA-based image registration and has

been validated through post-synthesis evaluation.

2.6. Related Work

2.6.1. Real-Time Image Preprocessing

Image preprocessing plays a crucial role in image understanding based

systems, video processing, and in the medical imaging domain. Over last two decades

much work was done on implementing image processing components in hardware. A

detailed description of various single instruction multiple data (SIMD) and multiple

instruction multiple data (MIMD) architectures can be found in [97, 98]. With

availability of variety of computing platforms such as digital signal processors

(DSPs), graphics processing units (GPUs), and FPGAs some of the image processing

algorithms have also been mapped to these platforms for achieving superior

performance. Most reported techniques, however, focus on 1D or 2D realizations and

do not adequately address the need for accelerating these operations in 3D. Moreover,

 38

because of the larger 3D neighborhoods (N3 as opposed to N or N2), data input

requirements are increased and the performance achieved for 1D or 2D realizations

may not translate to their corresponding 3D implementations. This additional

complexity, coupled with the sheer size of 3D images (typically 2–5 million voxels),

makes achieving real-time performance extremely challenging. Consequently, only a

few designs for high-speed implementation of 3D image preprocessing techniques

have been reported in the literature. We focus on implementations of anisotropic

diffusion and median filtering and summarize those efforts here.

Rumph et al. [10] implemented the 2D nonlinear diffusion process on a

graphics hardware. The primary focus of this work was to achieve acceleration

through parallelism and better memory bandwidth. Gijbels et al. [8], on the other

hand, have reported a VLSI architecture based on linear array technique for

implementation of iterative diffusion process. A similar VLSI-based approach was

also reported recently for 1D nonlinear signal processing [11]. Accelerated

implementations of 3D anisotropic diffusion filtering using computing clusters have

also been reported. Bruhn et al. [99, 100] have reported an approach using a 256-node

Myrinet cluster, whereas Tabik et al. [101] have explored multiple parallel

programming paradigms built on message passing and shared-memory architectures.

Both these techniques have yielded near-linear speedups.

Accelerated implementations of median filters based on searching, sorting,

and bit-level methods have previously been reported in the literature. We particularly

focus on bit-level methods because they are well suited to finding the median of large

3D neighborhoods in hardware. Bit-level methods for median filtering can be

 39

classified into the bit-serial sorting, bit-serial searching, threshold decomposition, and

majority voting–based methods. Bit-serial sorting is performed using sorting

networks such as the odd–even exchange network and reduced bubble sort network

[102, 103]. Bit-serial searching [104], also called the radix method, involves a bit-by-

bit search to find the median. The threshold decomposition method [105] provides a

modular and parallel design, but the hardware requirements grow exponentially with

the number of bits used to represent images. Majority voting methods are based on

determining bit-wise majority starting from the most significant bits (MSBs). Lee and

Jen [9, 106] have described a novel binary majority gate that can determine the

majority of binary input signals using an inverter circuit. A compact majority voting

circuit using an adder array to count the number of 1s and a threshold comparator to

determine an individual bit of the median is described by Benkrid et al.[7]. Variations

on this approach have been described in the literature [107-109]. Systolic array

architectures for bit-level sorting networks have been shown to improve concurrency

of the bit-serial sorting designs [102, 103, 110-113]. The median filter design

presented in this work is a combination and 3D extension of bit-serial searching and

majority voting approaches.

In this dissertation work, we introduce a novel FPGA-based architecture of 3D

anisotropic diffusion filtering. In addition, this work develops an architecture for 3D

median filtering kernel, which is faster than existing solutions and is capable of

supporting higher 3D kernel sizes. Our solution is compact, easily deployable and is

capable of processing the intraprocedural images faster than their acquisition speeds.

 40

2.6.2. Acceleration of Image Registration

Intensity-based automatic image registration is a key component of modern

medical imaging. Fast and accurate image registration can enhance many diagnostic

and interventional applications. However, this task is also computationally intensive

due to dimensionality of the images involved and memory-bound nature of the

operation. It is this aspect that has limited the integration of intensity-based image

registration (and that of deformable nature, in particular) in clinical applications. To

address this aspect many researches have independently attempted to accelerate

intensity-based image registration. Classification of these acceleration attempts has

been reported by Plishker et al. [114]. We briefly summarize these attempts here.

2.6.2.1. Multi-Processor and Supercomputer–Based Approaches

Image registration problem lends itself well for acceleration through parallel

implementation. Inherent data-parallel nature (same operations to be performed on

every voxel of an image) of these algorithms makes them readily amenable to

parallelization. The majority of earlier reported attempts to accelerate intensity-based

deformable registration have primarily employed a multiprocessor approach. Ourselin

et al. [115] reported a parallel implementation of affine registration using a 10-

processor cluster that provided a 6-fold speedup. Stefanescu et al. [116] implemented

Demons algorithm [44] on a similar cluster of 15 2-GHz Pentium CPUs and achieved

an 11-fold speedup for non-rigid image registration between a pair of magnetic

resonance images. Similarly, Ino et al. [117] have reported a fast implementation of

MI-based deformable registration using a 128-processor cluster. Another acceleration

approach has been to use supercomputers, which offer a high degree of parallelism.

 41

Warfield et al. [118] performed deformable registration on a Sun supercomputer in 15

sec. However, interactive segmentation of the brain surface in the intraprocedural MR

images took several minutes. Moreover, this implementation was specific to brain

MR images because of high surface correspondence. Rohlfing et al. [57] have

reported a speedup of 40 for a splines-based deformable registration algorithm using a

64-processor shared-memory supercomputer (SGI Origin 3800). Although these

solutions delivered high performance by virtue of parallelization, the speedup

achieved per processor was less than unity. Moreover, these solutions may not be cost

effective, and because of their size, are unlikely to be suitable for clinical deployment.

2.6.2.2. Graphics Processor (GPU)–based Approaches

The recent emergence of powerful graphics processors (GPUs) has enabled a

new direction for accelerating computationally intensive applications. Modern GPUs

offer an array of processing elements that can offer customized data parallel

processing. Many high level languages, such as Cg, Brook, CUDA, are emerging to

aid the task of programming GPUs. This has enabled the use of GPUs for many other

applications such as image registration beyond graphics domain. Strzodka et al. [119]

reported the first implementation of image registration using the graphics hardware.

This implementation accelerated a gradient flow–based image registration using

graphics hardware. However, it was limited to registration of 2D images only and

offered only limited speedup. Kohn et al. [120] have reported another implementation

of gradient-flow based image registration that supports 3D images. Although, this

implementation offered moderate speedup for rigid registration, the performance

achieved for 3D deformable image registration was poor. Plishker et al. [121] have

 42

employed GPUs for applying transformations to images during rigid registration. This

implementation achieved 3-fold improvement in execution time over a CPU-based

implementation. More recently, Vetter et al. [122] have reported acceleration of MI-

based multimodal registration using graphics hardware. Although, this

implementation achieved accuracy comparable to that achieved using a software

implementation, the speedup achieved was only about 5-fold. In summary, these

reported solutions demonstrate how this promising platform can be utilized for certain

image registration techniques. However, the architecture of GPUs along with their

lack of efficient scatter operation is not optimally suitable for operations such as

accumulation which is a prerequisite (accumulation of the mutual histogram [MH])

for calculation of MI. As a result, GPU-based solutions, despite being compact and

low-cost, may not provide substantial acceleration for calculation of MI, which is the

most versatile and robust image similarity measure.

2.6.2.3. Other Approaches

Emerging multi-core processors are able to accelerate medical imaging

applications by exploiting the parallelism available in their algorithms. Ohara et al.

[123] have implemented an MI-based 3D rigid registration algorithm on the Cell

Broadband Engine (CBE) processor, which has nine processor cores on a chip and

has a 4-way SIMD unit for each core. By exploiting the highly parallel architecture

and its high memory bandwidth, this implementation with two CBE processors can

compute MI around 11-times faster than a sequential implementation. However, this

implementation does not support deformable image registration.

 43

General purpose hardware languages and compilers for transforming high-

level descriptions into hardware are becoming increasingly popular. Streams-C,

Handel-C, Mitrion-C are examples of such tools. These tools allow direct translation

of code developed using high-level languages such as C, Java, or Matlab into efficient

hardware implementations. Although, these techniques have provided considerable

speedup for applications involving matrix operations, linear algebra, and search, their

performance in complex applications requiring architectural insights has been limited.

For example, Jiang et al. [124] have reported a method for acceleration of splines-

based deformable image registration using Handel-C. The converted design, when

implemented using a Xilinx device, could achieve speedup a of only 3.2 when

compared with an equivalent software implementation.

In comparison with the techniques mentioned above, this dissertation work

presents a novel FPGA-based architecture for high-speed implementation of MI-

based deformable 3D image registration. This architecture is capable of accelerating

MI calculation by a factor of 40 using a single computing element. Consequently, the

execution time for deformable image registration is reduced from hours to a few

minutes. Furthermore, this implementation is accurate, automatic, compact, and

completely retrospective.

2.6.3. Optimization of Finite Precision Implementations

With the need for real-time performance in signal processing applications an

increasing trend is to accelerate computationally intensive algorithms using custom

hardware implementation. The architectures presented in this dissertation, for

accelerated implementation of image preprocessing and image registration, fall into

 44

the same category. A critical step in going to a custom hardware implementation is

converting floating-point implementations to fixed-point realizations for performance

reasons. This conversion process is an inherently multidimensional problem, as

several conflicting objectives, such as area and error, have to be simultaneously

minimized. By systematically deriving efficient tradeoff configurations, one can not

only reduce the design time [125] but can also enable automated design synthesis [96,

126]. Furthermore, these tradeoff configurations will allow designers to identify

optimized, high quality designs for reconfigurable computing applications. The work

presented in this dissertation develops a framework for optimizing tradeoff relations

between hardware cost and implementation error in the context of FPGA-based image

registration.

Earlier approaches to optimizing wordlengths used analytical approaches for

range and error estimation [86-90]. Some of these have used the error propagation

method (e.g., see [89]), whereas others have employed models of worst-case error

[87, 90]. Although, these approaches are faster and do not require simulation,

formulating analytical models for complex objective functions, such as MI, is

difficult. Statistical approaches have also been employed for optimizing wordlengths

[127, 128]. These methods employ range and error monitoring for identifying

appropriate wordlengths. These techniques do not require range or error models.

However, they often need long execution times and are less accurate in determining

effective wordlengths.

Some published methods search for optimum wordlengths using error or cost

sensitivity information. These approaches are based on search algorithms such as

 45

“Local,” “Preplanned,” and “Max-1” search [84, 93]. However, for a given design

scenario, these methods are limited to finding a single feasible solution, as opposed to

a multiobjective tradeoff curve. In contrast, the techniques we present in this

dissertation are capable of deriving efficient tradeoff curves across multiple objective

functions.

Other heuristic techniques that take into account tradeoffs between hardware

cost and implementation error and enable automatic conversion from floating-point to

fixed-point representations are limited to software implementations only [96]. Also,

some of the methods based on heuristics do not support different degrees of fractional

precision for different internal variables [87]. In contrast, the framework presented in

this dissertation allows multiple fractional precisions, supports a variety of search

methods, and thereby captures more comprehensively the complexity of the

underlying multiobjective optimization problem.

Other approaches to solve this multiobjective optimization problem have

employed weighted combinations of multiple objectives and have reduced the

problem to mono-objective optimization [91]. This approach, however, is prone to

finding suboptimal solutions when the search space is nonconvex [129]. Some

methods have also attempted to model this problem as a sequence of multiple mono-

objective optimizations [95]. The underlying assumption in this approximation,

however, is that the design parameters are completely independent, which is rarely

the case in complex systems. Modeling this problem as an integer linear

programming formulation has also been shown to be effective [86]. But this approach

 46

is limited to cases in which the objective functions can be represented or

approximated as linear functions of design variables.

Evolutionary algorithms (EAs) have been shown to be effective in solving

various kinds of multiobjective optimization problems [130, 131] but have not been

extensively applied to finding optimal wordlength configurations. An exception is the

work of [94], which employs mono-objective EAs. In contrast, our work

demonstrates the applicability of EA-based search for finding superior Pareto-

optimized solutions in an efficient manner, even in the presence of a non-linear

objective function, such as MI. Moreover, our optimization framework supports

multiple search algorithms and objective function models; and can easily be extended

to a wide range of other signal processing applications. This optimization framework,

which is developed and validated in the context of FPGA-based 3D image

registration, is described in detail in Chapter 5.

 47

Chapter 3: Real-time 3D Image Processing

This chapter presents an FPGA-based architecture for real-time

implementation of 3D image pre-processing techniques commonly employed in IGI.

First, we outline the filtering algorithms that are being accelerated in this work. Next,

we present the architecture for their real-time implementation. Finally, we describe

the realization of this architecture, analyze the effects of finite precision

implementation, and compare the performance of this implementation with earlier

reported efforts.

3.1. Motivation

Real-time and high-quality three-dimensional (3D) intraprocedural

visualization is a critical need for IGIs. Recent advances in computer and transducer

technology have made high-speed 3D imaging possible with high resolution and

acquisition speed. Notably, low-dose computed tomography (CT) and 3D ultrasound

have emerged as the preferred volumetric imaging modalities during many image-

guided procedures [18, 132-135]. The advent of multislice CT allows high-resolution

and high-frame-rate volumetric imaging of the operative field. In the continuous

volumetric mode, multislice CT is capable of acquiring images with 256 × 256 × 64

dimensions and resolutions of 0.625 mm, 8 times per second. Similarly, advances in

transducer technology have led to improvements in the field of 3D ultrasound

imaging, which can now acquire images with 128 × 128 × 128 dimensions and

resolution of 1 mm, 20 times per second. These intraprocedural images, acquired

during the procedure for navigation, represent the most current anatomical

 48

information but often suffer from poor signal-to-noise ratio. To achieve desired

accuracy for IGIs, these intraprocedural 3D images, therefore, must be preprocessed

and enhanced before they can be used for advanced image processing operations such

as segmentation, registration, and visualization. Toward this end, anisotropic

diffusion filtering and median filtering have been shown to be effective in enhancing

and improving the visual quality of these images. It is important to note that the

interactive nature of IGIs necessitates equivalent image processing speed so that these

procedures can be performed in a streamlined manner without any additional

processing latency.

The aforementioned filtering techniques are based on neighborhood (window)

operations. For volumetric (3D) images, these neighborhoods are considerably larger

(N3), thus increasing the complexity of filtering operations. This complexity, coupled

with the sheer size of intraprocedural volumetric images, results in execution times of

several seconds for software implementations running on general-purpose

workstations (Table 3.1). This processing speed is only a fraction of the acquisition

speed of the intraprocedural images and is clearly unacceptable to meet the real-time

Table 3.1: Software execution time of 3D anisotropic diffusion filtering and 3D
median filtering of 8-bit images for common kernel sizes (N).

Filter kernel Kernel
size (N)

Image size
(voxels)

Execution
time

(seconds)

Voxel
processing

rate
(MHz)

128 × 128 × 128 2.28 0.92 3D anisotropic
diffusion filter 7

256 × 256 × 64 4.58 0.92
128 × 128 × 128 0.85 2.46 3
256 × 256 × 64 1.59 2.63
128 × 128 × 128 3.01 0.7

3D median
filter

5
256 × 256 × 64 5.67 0.74

 49

requirements of IGIs. Previously reported techniques for accelerated implementation

of these filtering operations primarily focused on one-dimensional (1D) or two-

dimensional (2D) filters [7-11], with only a few implementations attempting to

accelerate these operations in 3D.

This dissertation presents an FPGA–based architecture for real-time

processing of intraprocedural 3D images. Earlier attempts to accelerate 3D

anisotropic diffusion filtering were targeted toward multiprocessor clusters [100,

101]. Despite the near-linear speedup offered by these techniques, the need to employ

up to 256 processors to achieve real-time performance makes them less suitable for

clinical deployment. In this dissertation, we introduce a novel FPGA-based

implementation of 3D anisotropic diffusion filtering. The developed solution is

compact, easily deployable, and capable of processing the intraprocedural images

faster than acquisition speeds. Some researchers have recently reported high-speed

implementations of 3D median filtering using graphics processing units [136] and

FPGAs [137]. This work presents an FPGA-based 3D median filtering module that is

faster than currently existing solutions and supports higher 3D kernel sizes (3,5,7).

The designed architecture can achieve a processing rate close to 200 Megavoxels per

second for both the 3D anisotropic diffusion and 3D median filtering, which is

equivalent to about 50 processing iterations or operations per second for images of

size 256 × 256 × 64. Consequently, this design is capable of meeting the real-time

data processing need of most IGIs.

 50

3.2. Filtering Algorithms

This section briefly describes the 3D image preprocessing algorithms that are

being accelerated in the current work. The architecture for their real-time

implementation is presented in the subsequent section.

3.2.1. Anisotropic Diffusion Filtering

As described earlier, anisotropic diffusion filtering is an iterative process

which progressively smoothes an image ((,)I v t) while maintaining the significant

edges. This process can be summarized by the following equation:

 () ()(), , ,I div c v t I v t
t

∂
∂

= ∇i (3.1)

where c is the diffusion coefficient. Since the intraprocedural images typically have

poor SNR, the current implementation employs Gaussian-filtered version of the

image to estimate the gradient values, as proposed by Whitaker and Pizer [82]. The

corresponding discrete expression, which is implemented in our design, for this

filtering operation (shown for a 2D case for simplicity) is:

()
()
()
()

(1, ,) (, ,) [(1, ,) (, ,)]
(1, ,) (, ,) [(1, ,) (, ,)]

(, ,) (, ,)
(, 1,) (, ,) [(, 1,) (, ,)]
(, 1,) (, ,) [(, 1,) (, ,

G G

G G

G G

G G

c I x y t I x y t I x y t I x y t
c I x y t I x y t I x y t I x y t

I x y t t I x y t t
c I x y t I x y t I x y t I x y t
c I x y t I x y t I x y t I x y

+ − + −
+ − − − −

+ Δ = +Δ
+ + − + −
+ − − − −

i
ii i
i

,

)]t

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.2)

where GI is the Gaussian-filtered version of the image, c is the discrete realization of

the chosen diffusion function, and the time step tΔ controls the rate and stability of

the diffusion process. Gerig et al. [138] calculated maximum values for tΔ for

different neighborhood structures. For a 3D realization, diffusion is calculated in a 3D

 51

space with 6-connected neighborhood, and that configuration corresponds to a

maximum tΔ value of 1/7, which is implemented by the presented design.

3.2.2. Median Filtering

The 3D median filter design presented in this dissertation is based on a

combination of bit-serial searching and majority voting approaches. This section

describes this median finding scheme by means of an example. The algorithm is

executed in b (for b-bit images) steps, where each step finds 1 bit of the resulting

median value starting from the most significant to the least significant bit.

Specifically, at the j th step, the majority bit (‘0’ or ‘1’) amongst the j th significant

bits of all the input elements in the neighborhood is calculated and represents the j th

bit of the median of the neighborhood (0 1j b≤ ≤ −).

At a given step, when a bit of a input element differs from the majority bit

calculated at that step, the bit value for that element is fixed in subsequent steps and is

considered to be masked with its current bit value. Bits already masked in a previous

step are not altered in subsequent steps (i.e., if the j th bit of input value n ,

represented using b bits as: 1 2 0b bn n n− − " , is masked, then the algorithm considers

, i jn n i j= ∀ <). The process of finding the median using this approach is illustrated

in Figure 3.1. In this example, for simplicity, we consider a small input neighborhood

consisting of only five elements with four bits per voxel (4b =); therefore, only four

processing steps are required. Processing starts at the MSB position of the data

elements. The bits of the data elements being considered for calculating the majority

bit at any step are indicated in gray in the figure. The masking operation that takes

 52

place at the end of every step is indicated by arrows. The masked bits are shown to be

crossed out. One bit of the median is determined at every processing stage starting

from the MSB position, and the results from all the stages are combined to produce

the final median value.

3.3. Architecture

We present an FPGA-based architecture that is capable of performing 3D

anisotropic diffusion and 3D median filtering of intraprocedural images faster than

their acquisition speed. A top-level block diagram of this architecture is shown in

Figure 3.2. Input and output images are stored in two independent external memory

banks, and the memory controller, input and output image buffers, and the filtering

modules are implemented using an FPGA. The presented architecture supports two

filtering modules, one for 3D anisotropic diffusion filtering and the other for 3D

median filtering. The filtering module can be selected and reconfigured statically,

whereas the memory controller and the image buffers are designed to be common to

Figure 3.1: A median filtering example using majority voting technique.

 53

all supported filtering modules. The role of input and output memory banks can be

switched at runtime, thus enabling execution of consecutive filtering operations (or

iterations) without additional data transfers between the memory banks.

In order to achieve real-time performance, it is imperative to aim at a

throughput of one processed (output) image voxel per clock cycle. Because both

anisotropic diffusion and median filtering involve neighborhood operations, meeting

this throughput requirement is challenging, given that an entire neighborhood (3N

voxels, where N is the filter kernel size) must be accessed in order to compute one

output voxel. Moreover, adjoining neighborhoods must be continuously fetched from

the input memory bank as next output voxels are computed sequentially. These

neighborhoods are read by the memory controller from the input image memory bank

and are stored into the input buffer in an N N N× × arrangement.

The filtering module receives the neighborhood to be processed in a pipelined

fashion: N N× new voxels every clock cycle. Once the filtering module pipeline is

full (after N clock cycles), the filtering module computes one output voxel per clock

cycle. The sequential input neighborhoods are continuously processed, and the

resulting output voxels are stored into the output buffer. The memory controller then

Figure 3.2: Block diagram of the FPGA-based real-time 3D image preprocessing
system.

 54

transfers these resultant voxels to the output image memory in a burst of one image

row at a time. The memory controller uses a brick-caching scheme, specifically

devised to meet the high input data rate required by this task. This brick-caching

scheme takes advantage of the fact that adjacent neighborhoods share

(1)N N N× × − voxels and only N N× new voxels need to be supplied every clock

cycle for continuous neighborhood processing. The implementation of this scheme is

described in the following sections. For the remainder of this chapter, we use the

following notations: image dimensions are represented as x y zN N N× × . The

parameter b indicates the number of bits used to represent the voxel intensity in the

image, and N is the filter kernel size with corresponding neighborhood size of 3N .

.Input and output images are arranged in the memory banks along the z y x− − order,

with rows of the memory aligned with the z direction of the image. The output voxels

are also calculated in z y x− − order.

3.3.1. Memory Controller and Brick-caching Scheme

Memory organization and neighborhood access techniques are often the

limiting factors in 3D image processing systems [139-142]. However, most practical

filtering techniques employ standard neighborhood operations that require block-

Figure 3.3: Typical voxel access pattern for neighborhood operations–based image
processing.

 55

sequential voxel access, as shown in Figure 3.3. The presented FPGA-based

architecture uses a raster scan order distribution of voxels in the image memory,

along with a brick-caching scheme to take advantage of this block-sequential access

pattern. For every output voxel calculation, an entire neighborhood of N N N× ×

voxels must be accessed. This neighborhood cannot be retrieved in a single burst

access of a sequentially organized image memory. Moreover, in a pipelined

implementation, data must be continuously fetched for successive neighborhood

operations. To sustain the high data rate required to achieve real-time processing

speeds, this architecture employs a brick-caching scheme that loads the image into the

input buffer that stores an (1)N N× + array of image rows (i.e., it stores up to

(1) zN N N× + × voxels). This input buffer is implemented using high-speed and dual-

ported memory blocks internal to the FPGA. The input buffer can be accessed in a

single clock cycle, which enables fast updates and reads. Figure 3.4 shows the block

diagram of the input image memory and the input buffer, which consists of an

(1)N N× + array of internal memory blocks, each holding zN voxel intensity values.

We use the following terminology: a brick is an zN N N× × block of image intensity

values stored in the internal buffer. A brick plane is an 1 zN N× × section of a brick. A

brick slice is an 1N N× × section of a brick. A brick row (or simply row) is a

1 1 zN× × section of a brick. Each row corresponds to and contains one input image

row containing zN voxels. The pictorial representation of this terminology is shown

in Figure 3.5. Bricks are loaded into the buffer one brick row at a time for an

available brick plane and are then fed to the filtering pipeline one brick slice at a time.

 56

The input buffer, therefore, can store a whole brick plus an extra brick plane. The

brick-caching operation is described below.

The memory controller fills up the input buffer row by row. Each row

contains Nz voxels, and thus transfer of each row takes WNtt zlatRow /+= clock cycles,

where latt is the number of clock cycles necessary to start a burst memory transfer and

W is the effective data bus width in terms of number of voxels (e.g., double-data-rate

[DDR] dynamic random access memory [DRAM] will offer twice the effective bus

width of single-data-rate DRAM with a similar configuration). After the first row is

cached in, the controller starts caching the row next to it in the x direction. A

complete brick plane (N image rows, 1 zN N× × voxels) can be loaded in

Plane Rowt N t= ⋅ clock cycles. Associated with every brick plane is a ready flag. This

flag serves a dual purpose; when ‘1’, it indicates the availability of data for that

particular brick plane, and, when ‘0’, it indicates that the brick plane is empty and

available for caching image voxels. After one brick plane is loaded into the input

buffer, the memory controller sets the corresponding ready flag and starts loading the

Figure 3.4: Block diagram showing the input image memory and the input buffer
configuration.

 57

next brick plane (along the y direction). Once a complete zN N N× × brick is available

in the input buffer, it is fed into the filtering module pipeline one brick slice (N N×

voxels) at a time.

The filtering module pipeline operates on one N N N× × neighborhood at a

time and is fed with a new brick slice every clock cycle. Loading an entire

zN N N× × brick into the filtering module pipeline thus takes Nz clock cycles. While

this operation is in progress, the memory controller loads the next brick plane (along

the y direction) into the buffer plane that is not being used for processing (indicated

by the ready flag), which requires tPlane clock cycles. After processing of all the

neighborhoods in the zN N N× × brick is complete, the processing window shifts

along the y dimension of the image, and the processing of the new neighborhoods

begins. Simultaneously, the ready flag corresponding to the brick plane that is no

longer used is set to ‘0’. This available brick plane in the input buffer is then used for

caching the next image rows (along y direction). In this fashion all brick planes in the

input buffer are cyclically used for brick caching during processing. These steps

Figure 3.5: Pictorial representation of the notation used in the brick-caching
scheme.

 58

continue until the processing window reaches the end of the column (i.e., until y =

Ny). At this point, the processing window moves along the x direction. To accomplish

this, data in the internal buffers are invalidated, and the complete zN N N× × brick in

the next column is cached, which requires a pipeline stall. After the initial brick in the

new x coordinates is loaded, the processing continues as described earlier. The

processing of the entire 3D image is completed accordingly. For continuous pipelined

operation with minimum stalls, the memory controller must provide the next brick

plane before the processing of the previous brick is completed. Therefore, the

relationship expressed in the following equation must be met:

 ()/ ,lat z mem z procN t N W T N T⋅ + ⋅ ≤ ⋅ (3.3)

where Tmem is the clock period of the external memory clock and Tproc is the clock

period of the internal filtering pipeline. The left-hand side of Eq. (3.3) refers to the

total time required to load a new brick plane. The right-hand side refers to the total

time required to process a whole brick. Assuming that efficient burst accesses

(supported by most modern dynamic memories) are being used (which implies:

/lat zt N W�), the following relationship must be maintained to minimize pipeline

stalls:

 .mem procN T W T⋅ ≤ ⋅ (3.4)

3.3.2. 3D Anisotropic Diffusion Filtering

This architecture supports 3D anisotropic diffusion filtering by pipelined

implementation of the 3D extension of the formulation shown in Eq. (3.2). As

indicated by that formulation, we use a Gaussian-filtered version of the image for

 59

improved diffusion coefficient estimation. Our design implements this Gaussian

filtering at runtime using an embedded 3D Gaussian filtering module. Figure 3.6

shows a top level block diagram of the 3D anisotropic diffusion filtering module. This

filtering pipeline operates on N N N× × voxel neighborhoods. On each clock cycle,

the input data buffer feeds an N N× voxel neighborhood (brick) slice into the

pipeline. The center voxel intensity value is passed to the delay element for

accumulation at the end of the pipeline per Eq. (3.2). The 3 × 3 voxel neighborhood

located at the center of the incoming N N× neighborhood is passed to the image

gradient calculator, which calculates the image gradients with respect to each of the

6-connected neighbors of the center voxel. The embedded Gaussian filtering module

calculates, in parallel, the Gaussian-filtered values for each of the six-connected

neighbors and passes them to the diffusion coefficient calculator, which calculates the

diffusion coefficients 0..5c corresponding to each of the input gradients. Taking

advantage of the parallelism native to FPGAs, these operations are executed in

parallel, and, as a result, this filtering module can calculate the output at the rate of

one voxel per clock cycle. The resulting voxel intensity values are fed into the output

buffer, and the memory controller then stores them in the output memory bank.

3.3.2.1. Embedded Gaussian Filtering Module

Equation (3.5) shows the formula to calculate the coefficients of a 3D

Gaussian filter kernel, where σ is the standard deviation of the Gaussian function

and d is the Euclidean distance between the desired coefficient location and the kernel

center. For a chosenσ , the coefficient values depend exclusively on the Euclidean

 60

distances from the kernel center; thus, the Gaussian filter kernel exhibits symmetries

with respect to its center (i.e. it is radially symmetric).

 ()
2

2exp
2d
dG σ
σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (3.5)

Our architecture takes advantage of these symmetries to reduce the number of

multipliers needed for implementing the 3D Gaussian kernel to (1) (2) 6k k k× + × +

from 3(2)N − ; where N is the size of anisotropic diffusion filtering kernel, the

corresponding size of the embedded Gaussian filtering kernel is (2)N − , and

(1) 2k N= − . For example, a 5 5 5× × embedded Gaussian kernel that arises in

anisotropic diffusion filtering with 7N = can be implemented using only 10

multipliers (as opposed to 125) as we reported previously [143]. For this kernel, each

individual slice (5 5× plane of the kernel) has six isodistance regions and the whole

3D kernel has 10. During filtering operation, all voxels that are equidistant from the

kernel center are multiplied against the same Gaussian coefficient. The intensities

corresponding to these voxels in the same isodistance region can, therefore, be pre-

added before being multiplied against the Gaussian coefficients. Because a 5×5×5

Figure 3.6: Top-level block diagram of 3D anisotropic diffusion filtering. This
diagram indicates paths that are executed in parallel.

 61

Gaussian kernel contains 10 isodistance regions, the minimum number of multipliers

necessary to implement this filter kernel is, therefore, 10.

A block diagram of the Gaussian filter bank is shown in Figure 3.7. On each

clock cycle, the input buffer feeds an N N× voxel neighborhood into the bank. This

neighborhood is decomposed into five (2) (2)N N− × − neighborhoods by the input

demux, and these neighborhoods are then passed to five embedded 3D Gaussian

filters. Figure 3.8 shows a block diagram of an embedded 3D Gaussian filter. The

pre-adder accumulates values corresponding to the isodistance groups in the incoming

(2) (2)N N− × − neighborhood, thus compressing the neighborhood based on the

intraneighborhood plane isodistance criterion (e.g., each single 5 5× slice of

a 35 Gaussian neighborhood has 6 isodistance regions). These pre-added values are

then passed to (2)N − pipeline buffers, which make values corresponding to the

entire 3(2)N − neighborhood available in parallel. The sorter–accumulator

aggregates these values corresponding to the isodistance groups between the slices,

Figure 3.7: Block diagram of the embedded Gaussian filter bank (for N = 7,
corresponding Gaussian kernel size is 5).

 62

compressing them further using the isodistance criterion for the entire neighborhood

(e.g., 10 values that correspond to the 10 unique coefficients in a 5×5×5 Gaussian

neighborhood). These values are passed to the multiplier array, where they are

multiplied against their corresponding Gaussian coefficients. The adder tree then adds

the resulting values and outputs the result for the current 3D neighborhood. The

results for the subsequent neighborhoods are produced continuously as a result of

pipelined implementation of the operation. The Gaussian coefficients are

precomputed for a given value ofσ and are stored in internal registers using fixed-

point representation. The effect of this finite precision representation is analyzed in

the flowing section.

The results from the five individual Gaussian filters correspond to a cross-

shaped region of a neighborhood slice. In order to operate on the 3D six-connected

neighborhood, these results are passed to pipelined registers composed of two cross

buffers and the center buffer. The cross buffers store all five values in a neighborhood

slice, whereas the center buffer stores only the center value. As a result, the entire six-

connected neighborhood is available between these buffers. The buffers then send the

Gaussian-filtered, six-connected 3D voxel neighborhood to the subtractor array,

Figure 3.8: Pipelined implementation of an individual Gaussian filter element
(Gaussian kernel size = 5).

 63

which calculates the six corresponding gradient values and passes them to the

diffusion coefficient calculator.

3.3.2.2. Diffusion Coefficient Calculation

As noted previously, gradients calculated after Gaussian filtering are used to

estimate the diffusion coefficients. For a b -bit image, the absolute value of the

gradient is limited to the range 0 and 2 1b − . Taking advantage of this fact the desired

diffusion function is discretized in 2b steps and implemented using a lookup table

(LUT). The use of a LUT allows an efficient implementation of any diffusion

function. It must be noted that, because the dynamic range of all diffusion functions is

limited to [0,1] , there is no significant loss in precision by a using a fixed-point

representation. The effect of this finite precision representation is further analyzed in

the following section.

3.3.2.3. Image Gradient and Result Calculation

Image gradient calculation is performed by an array of six parallel subtractors.

These subtractors calculate the difference between the intensity of the voxel located

in the center of the kernel against its six-connected neighbors. These values are then

multiplied against their corresponding diffusion coefficients (supplied by the

diffusion coefficient calculator) using an array of six parallel multipliers. The

resulting filtered intensity is then obtained by adding the six results from the

multipliers to the original center voxel intensity. After rounding and truncation, this

result is then sent to the output buffer and is then further saved into output memory

bank.

 64

3.3.3. Median Filtering

The 3D median filtering design presented in this work is an extension of

majority finding–based implementation proposed by Benkrid et al.[7]. That design

was reported for a 2D realization and computed only one bit of the median value per

clock cycle. All bits of the median value were obtained using a feedback loop and

hence for b -bit images, this approach required b clock cycles to compute the

resulting median value. The implementation presented in this dissertation extends that

design to 3D and unrolls the feedback loop by using multiple processing stages.

Moreover, our implementation exploits the regularity of this median finding

algorithm with a systolic array architecture that allows a pipelined implementation

and, therefore, can achieve a throughput of one median value per clock cycle. Thus,

our implementation can achieve a voxel processing speed b times higher than the

previously reported architecture [7]. Our linear systolic array employs b identical

processing stages for filtering a b-bit image. Figure 3.1 illustrates execution of this

algorithm for a small example and can be used to gain further insights into its

hardware implementation. Each processing stage of our systolic array implementation

corresponds to one step of the algorithm execution. Starting from the MSB, each

stage generates one bit of the resulting median value of the neighborhood being

processed. We first describe the operation of an individual processing element and

then explain the functioning of the entire linear systolic pipeline, which contains b-

processing elements.

 65

3.3.3.1. Processing Element

The processing element is the atomic unit of the proposed linear systolic array

design. A functional block diagram of the processing element at the jth stage is shown

in Figure 3.9. The data inputs to this processing element are Data_Bitsj and

Next_Data_Bitsj, the N3 bits used considered for majority calculation and the (j+1)th

significant bits (from MSB) of the 3N neighborhood elements, respectively. It must

be noted that, although Next_Data_Bitsj are corresponding image intensity bits,

Data_Bitsj are provided by the (j–1)th processing stage and may have been masked in

the earlier stages. The accompanying input Mask_Bitsj is a binary flag that indicates

the bits in Data_Bitsj that have been masked in the prior stages. A processing element

performs two important tasks. First, it computes the majority bit within the N3 input

data bits (Data_Bitsj); second, it performs the masking operation based on the

majority bit calculated and outputs masked data bits (Data_Bitsj+1) and the

corresponding binary flag (Mask_Bitsj+1) to be used in the next processing stage. The

units that perform these two operations are described below.

Figure 3.9: A single stage (processing element) of the linear systolic median
filtering kernel.

 66

Majority Finding Unit (MFU)

The MFU consists of a bit-counting circuit that counts the number of 1s in the

input bits that are considered for majority calculation (Data_Bitsj). This counting is

performed using a bit adder tree customized for a chosen neighborhood size. This

count is then compared against a threshold, which is programmed to be half of the

number of elements contained in the neighborhood. The binary result of this

comparison is the jth significant (from MSB) bit of the output median value. The

highly compact, pipelined, and customized implementation of the MFU minimizes

the combinational delay within the processing element.

Mask Selection Unit (MSU)

After the median bit has been calculated, the MSU performs the masking

operation. It computes the mask bit for each bit of Data_Bitsj, based on whether it

matches with the majority bit or not. In addition, it considers and preserves the bits

that were masked in the prior stages (Mask_Bitsj). Thus, the mask calculated at the jth

stage (Mask_Bitsj+1) is a combination of the mask bits from the prior stages and the

mask calculated at the current stage. This masking operation is implemented using an

exclusive OR (XOR) operation and two multiplexing operations for each data bit. The

calculated mask (Mask_Bitsj+1) is then used to selectively generate Data_Bitsj+1 from

the input Next_Data_Bitsj, while ensuring that values corresponding to the masked

bits are preserved. Data_Bitsj+1 is then used in the next processing stage to calculate

the (j+1)th significant bit of the median value.

 67

3.3.3.2. Linear Systolic Design for Median Finding

The proposed linear systolic design is realized by cascading b processing

elements for filtering b-bit images. On every clock cycle, a complete neighborhood

containing N3 voxels, b-bits each, is fed to this linear systolic array. However, the

processing stage (j+1) can not perform its operation until stage j finishes its

processing and provides Data_Bitsj+1 and Mask_Bitsj+1. Similarly, stage j produces its

output (jth significant bit of the median) one clock cycle earlier than the corresponding

output by the stage (j+1). In order to compensate for these delay and processing

latencies and to provide synchronized operation, additional line delay units and data

shift registers must be inserted at the input and output of the systolic array. Figure

3.10 shows a diagram of this configuration with b processing elements and required

delay buffers. These delays are introduced for synchronization only, and it must be

noted that as long as the input sequential neighborhoods are continuously supplied

(new N3 voxels every clock cycle), the systolic array design is capable of computing

one median result per clock cycle. This result is then sent to the output buffer and

subsequently saved into the output memory bank by the memory controller.

For correct operation, the Mask_Bits1 input of the first processing stage (stage

1, MSB) is grounded (set to “0”), indicating that no bits from the input data

(Data_Bits1) are masked. Also, in the final processing stage (stage b, LSB),

Mask_bitsb+1 and Data_Bitsb+1 do not need to be calculated, because the next stage

does not exist. Consequently, the MSU is not needed in the final stage, which

contains only an MFU to compute the last median bit. In general, for large 3D

neighborhoods, the speed of the MFU is the limiting factor of the systolic array

 68

performance. In applications requiring high voxel throughput and large filtering

kernels, the operation of the MFU can be pipelined. However, in those cases the

depth of the delay elements used to synchronize the inputs and outputs of the different

processing elements must be adjusted.

3.4. Implementation and Results

The architecture described above was implemented using an Altera Stratix II

EP2S180F1508C4 FPGA (Altera Corp., San Jose, CA) with two external memory

banks to serve as input and output image memory. The memory banks used were 1-

GB DDR2 small-outline dual-inline memory DRAM modules with 64-bit data bus

(i.e., 16W = , for 8b =) running at a 200-MHz clock speed. The architecture was

designed using VHSIC hardware description language (VHDL) and synthesized using

Altera Quartus II 6.1. The memory controller was also implemented using VHDL and

was built around the DDR2 DRAM controller megacore supplied with Altera Quartus

Figure 3.10: Linear systolic array architecture for median filter kernel using
majority voting technique.

 69

II. Both filtering modules were custom designed using VHDL, as per the design

description in provided earlier. Functional verification and postsynthesis timing

simulation for the entire system were performed using Modelsim SE 6.2 (Mentor

Graphics, San Jose, CA). For this purpose, DDR2 DRAM simulation models

provided by Micron (www.micron.com) were used. The presented design was then

realized to support 8-bit images (b = 8) and, consequently, all results in this section

are presented for 8-bit images. The execution speed of the presented architecture was

obtained from postsynthesis timing simulation of the design.

3.4.1. Effects of Finite Precision Representation

Real-time filtering performance offered by the presented design is critical for

the time-sensitive nature of IGIs, but of equal importance is the accuracy of the

filtering process. Most software implementations represent the arithmetic operations

involved in the filtering algorithms using a double precision floating-point format.

This format offers high dynamic range and precision, which may or may not be

required depending on the filtering technique to be implemented. Median filtering, for

example, is performed exclusively using integer data (because digital images are

represented using b-bit integer data), and, hence, there is no loss in precision by using

Table 3.2: Average error in intensity per voxel for a Gaussian filtered image
resulting from fixed-point representation of Gaussian coefficients.

Average error in intensity per voxel resulting from
fixed-point representation of Gaussian kernel coefficients σ of the

Gaussian kernel 8-bits 12-bits 16-bits
0.3 0.20 ± 0.47 0.07 ± 0.26 0.004 ± 0.06
0.5 0.63 ± 0.68 0.02 ± 0.11 0.004 ± 0.07
0.7 0.42 ± 0.81 0.03 ± 0.16 0.003 ± 0.06
1.0 0.21 ± 0.47 0.001 ± 0.04 0.001 ± 0.03

 70

a fixed-point implementation with sufficient dynamic range (i.e., using b bits for b-bit

images). Our implementation of the 3D median filtering uses b-bit integer

representation for b-bit images, and therefore provides identical results to those

provided by a software implementation.

Anisotropic diffusion filtering, however, involves operations with the data in

real format. Our implementation, for the sake of efficiency in area and execution

speed, used fixed-point representation to implement these arithmetic operations. A

general framework for analyzing optimized tradeoff relationships between hardware

resources and implementation accuracy for finite-precision designs is presented later

(see Chapter 5). For this implementation, however, given the simplicity of the

arithmetic operations and relatively minor impact of the fixed-point datapath on the

total hardware resource requirement, we employed simulation-based wordlength

search techniques. We analyzed the effect of the number of bits used for this fixed-

point representation on the filtering accuracy, by treating a software (C++)

implementation employing double-precision floating-point representation as a

reference. This analysis was performed with an 8-bit image with dimensions

256 256 64× × . There are two sources at which error resulting from fixed-point

precision can affect the accuracy of the filtering operation: embedded Gaussian

Table 3.3: Average error per sample of diffusion function resulting from fixed-
point representation of diffusion coefficients employed in the presented architecture.

Average error per sample of diffusion function resulting from
fixed-point representation of diffusion coefficients K

8-bits 12-bits 16-bits
10 42 × 10-5 ± 97 × 10-5 3 × 10-5 ± 7 × 10-5 <10-5
20 78 × 10-5 ± 114 × 10-5 6 × 10-5 ± 8 × 10-5 <10-5
30 121 × 10-5 ± 125 × 10-5 9 × 10-5 ± 8 × 10-5 <10-5
50 196 × 10-5 ± 116 × 10-5 13 × 10-5 ± 7 × 10-5 <10-5

 71

filtering and diffusion function calculation. To gain additional insight, we evaluated

accuracy for these individual sources and the accuracy of the anisotropic diffusion

filtering as their combined effect.

Table 3.2 presents the average error in intensity per voxel after embedded

Gaussian filtering (kernel size, N = 5) where the Gaussian kernel coefficients are

represented using the fixed-point format with the designated number of bits. Because

the Gaussian kernel was normalized, all coefficients were within the range [0,1] , and,

hence, we used one bit to represent the integer part and the rest for the fractional part.

We performed this analysis for typical choices of σ for a Gaussian kernel size of 5,

which corresponds to the anisotropic diffusion filtering kernel size of 7. The average

error for various choices of σ with 8-bit representation is less than one intensity

value, and, as expected, the average error reduces with the increasing number of bits.

It must be noted, however, that embedded Gaussian filtering is used only to estimate

the diffusion coefficients, and, hence, small errors introduced in this operation may

not have a significant impact on the final anisotropic diffusion filtered intensity value.

Because this design supported 8-bit images, a 256-entry LUT was used to implement

the diffusion function described in the background section. We implemented this

function for reasonable choices of the parameter K, which controls the level of the

gradient at which edges are diffused or preserved. The value of K depends on the

image modality and the amount of edge preservation desired. For ultrasound and low-

dose CT images, however, its value is typically less than 20% of the intensity range.

As the selected diffusion function takes values in the range [0,1] , we used one bit to

represent the integer part and the rest for the fractional part. Table 3.3 presents the

 72

average error per sample of diffusion function resulting from fixed-point

representation with the designated number of bits for various choices of K. Although

the average error increases with the choice of K, its mean and standard deviations are

consistently less than 0.1% of the data range, even with representation using 8-bits.

Finally, Table 3.4 reports average error in intensity per voxel resulting from the

combined effect of finite precision implementation of both the Gaussian coefficients

and the diffusion function. For this analysis, we used the same number of bits for

fixed-point representation of both entities, with one bit for the integer part and the rest

for the fractional component. The kernel size (N) of the anisotropic diffusion filter

was chosen to be 7, with embedded Gaussian filtering with σ = 0.5, and the diffusion

function shown described earlier was implemented with K = 20. To evaluate error

accumulation over multiple iterations of anisotropic diffusion filtering, we performed

this analysis up to 5 iterations, which is typical for filtering of intraprocedural images.

The average error in intensity increases with the number of iterations, but its mean

and standard deviations are consistently less than 0.04% of the intensity range, even

with 8-bit representation.

Overall, our precision analysis indicates that even when using 8-bit fixed-

Table 3.4: Average error in intensity per voxel for anisotropic diffusion filtered
resulting from fixed-point representation of Gaussian coefficients and the diffusion
function

Average error in intensity per voxel resulting from fixed-point
representation of the Gaussian kernel and diffusion coefficients

Number of
filtering

iterations 8-bits 12-bits 16-bits
1 0.008 ± 0.092 0.001 ± 0.018 <0.001
3 0.021 ± 0.144 0.001 ± 0.031 <0.001
5 0.030 ± 0.171 0.002 ± 0.039 <0.001

 73

point representation to perform Gaussian filtering and diffusion function calculation,

the average error in intensity is only a very small percentage of the intensity range.

Such small errors in intensity may not be significant for advanced operations such as

registration, segmentation, and visualization and are unlikely to affect the accuracy

and precision of IGIs. Our implementation, therefore, uses 8-bit fixed-point

representation for these operations.

3.4.2. Hardware Requirements

Table 3.5 lists the significant hardware requirements for the important

modules in the proposed architecture, parameterized on filter kernel size (N) and the

number of bits used to represent the voxel intensity (b). The parameter k , introduced

in the context of 3D anisotropic diffusion filtering, represents the number of unique

isodistances in the Gaussian kernel and is related to the filter kernel size N (usually

odd) as:

 (1) .
2

Nk −
= (3.6)

Table 3.5: Hardware requirements of the architecture for real-time 3D image
preprocessing.

Significant hardware resources Logic resources and performance
(as implemented) Hardware

module Multipliers
(b b× bit)

Internal memory
(bits) N Number of ALUTs

(% utilization)
maxf

(MHz)
Input buffer

and controller − ((1))zN N N b× + × × 7 1957 (1.5%) 233

Output buffer
and controller − (2)zN b× × 7 1743 (1.5%) 233

Anisotropic
diffusion filter

(1) (2)5
6

k k k× + × +
×

(3 2)b b× × 7 3824 (3%) 236

Median filter − − 5 11308 (8%) 224

 74

The linear systolic array implementation of the 3D median filter requires logic

resources only, and the resource requirements for important components of this filter

kernel are listed separately in Table 3.6. These two tables indicate how the hardware

requirements of our architecture scale with the parameters N and b . As dictated by

the resource limitations imposed by the target device (Altera Stratix II

EP2S180F1508C4) and real-time speed requirements, our current implementation can

support filter kernel sizes ()N from the list { }5,7 and { }3,5 for anisotropic diffusion

filtering and median filtering, respectively. The corresponding kernel sizes for the

embedded Gaussian filtering in the case of anisotropic diffusion filter supported by

our architecture are{ }3,5 . Table 3.5 also lists the absolute and percentage logic

resources consumed by the important modules in the architecture and the maximum

operating frequency (maxf) at which these modules can run for a specific instantiation

(choice of N). The percentage logic resources are reported in reference to the target

device Altera Stratix II EP2S180F1508C4. The images used for this performance and

logic consumption analysis were 8-bit images (8b =). The choices for the value of

N for this analysis represent common kernel size choices and are listed in the fourth

column of the table.

Table 3.6: Hardware requirements for the components of the linear systolic
implementation of the 3D median filtering.

Hardware component Number required
Processing elements b

Data registers 3b N×
Mask select registers 3b N×

Data pipeline registers 3(1)b N− ×

Line delay elements () () 32 1 (1) 2b b N− × − × +

 75

3.4.3. Filtering Performance

The 3D median filtering module and 3D anisotropic diffusion filtering module

were synthesized for kernel sizes of {3,5} and 7 , respectively, for filtering 8-bit

images. The rest of the system, including the memory controller and input and output

buffers, was parametrically synthesized to support the desired filtering operation and

kernel size. The entire system was clocked at 200 MHz, which also corresponds to the

filtering pipeline frequency (i.e., procT = 5 ns). The image memories were also clocked

at 200 MHz (memT = 5 ns). For this configuration, Table 3.7 reports the execution time

for 3D anisotropic diffusion filtering and 3D median filtering as obtained during

postsynthesis timing simulation of the entire system. The image sizes used for this

measurement correspond to typical dimensions of intraprocedural images.

As indicated in Table 3.7, our implementation of 3D anisotropic diffusion

filtering and 3D median filtering can easily achieve a processing rate of 46 frames per

second (fps) for images of size 256 256 64× × voxels, which is a typical size of an

intraprocedural volumetric CT scan. The corresponding processing rate for

intraprocedural 3D ultrasound scan with typical dimensions of 128 128 128× × voxels

Table 3.7: Execution time of 3D anisotropic diffusion filtering and 3D median
filtering.

Filter kernel
Kernel

size
(N)

Image size
(voxels)

Execution
time
(ms)

Voxel
processing rate

(MHz)
128 × 128 × 128 10.90 192 3D anisotropic

diffusion filter 7
256 × 256 × 64 21.63 194
128 × 128 × 128 10.75 195 3
256 × 256 × 64 21.44 196
128 × 128 × 128 10.82 194

3D median
filter

5
256 × 256 × 64 21.58 194

 76

is around 92 fps. For iterative operations such as anisotropic diffusion filtering or

sequential filtering operations, this processing rate translates to 18 fps with five

iterations (or sequential operations) per frame, which is sufficient to meet the real-

time needs of most IGIs.

Table 3.8 and Table 3.9 compare the execution speed of the presented

architecture for 3D anisotropic diffusion filtering and 3D median filtering,

respectively, against a corresponding software implementation and previously

reported high-speed implementations using different computing platforms. The

execution time has been normalized by the image dimensions for all implementations,

and the performance is presented in terms of voxel processing rate to facilitate a fair

comparison independent of image dimensions. The software implementation was

developed using C++, and its performance was measured on an Intel Xeon 3.6 GHz

workstation with 2 gigabytes of DDR2 400 MHz main memory. Although this

architecture can support various kernel sizes for the filtering operations, for

consistency the performance has been compared for a kernel size (N) common to all

implementations: N=3 for the median filtering and N=7 for anisotropic diffusion

filtering.

Table 3.8: Performance comparison of the 3D anisotropic diffusion filtering
kernel.

Implementation Platform Filter
kernel

Voxel
processing rate

(MHz)
Speedup

Software (C++) Xeon workstation 3D 0.92 208
Bruhn et al.

[100] 256-processor cluster 3D 105 1.83
Tabik et al. [101] 16-processor cluster 3D 5.66 33.9

Dandekar
et al. [144] FPGA 3D 192 -

 77

As indicated by Table 3.8, our implementation of 3D anisotropic diffusion

filtering provides more than two orders of magnitude speedup over the software

implementation using a single workstation. Moreover, the performance of the current

architecture represents an improvement over a corresponding implementation using a

256-processor computing cluster reported previously [100]. Our work presented a

novel FPGA-based implementation of 3D anisotropic diffusion filtering. Salient

features of this filtering module are an embedded Gaussian filtering implementation

that minimizes the number of multipliers and a pipelined design that allows

throughput of one output voxel per clock cycle. This filtering module offers the

flexibility to support several anisotropic diffusion techniques previously reported in

the literature. For example, the multiscale approach proposed by Whitaker and Pizer

[82] can be implemented by changing the embedded Gaussian filter coefficients at the

end of each iteration, and a time-dependent diffusion function [145] can be

implemented by reprogramming the values in the diffusion function LUT. One

limitation of this filtering module is the limit on the size of the embedded Gaussian

filter kernel; implementing Gaussian kernels larger than 7 would result in

prohibitively high hardware requirements. Such large kernels, however, are

uncommon in most applications. Although this architecture performs some of the

arithmetic functions using fixed-point representation, the variation in the output

intensity values is only a small fraction of the intensity range, and these variations are

unlikely to affect the accuracy and precision of IGIs.

Table 3.9 compares the performance of the FPGA-based 3D median filtering

operation described in this work with previously reported high-speed

 78

implementations. The present implementation provides more than an order of

magnitude speedup over software- and GPU-based 3D implementations and DSP-

based 2D implementation. Jiang and Crookes [137] recently reported an FPGA-based

3D implementation that is capable of achieving a voxel processing rate of 50 MHz.

That design, however, was based on a partial sorting technique and cannot be easily

extended to kernel sizes beyond 3. Our implementation, in contrast, achieved a

superior voxel processing rate and is sufficiently compact to allow implementation of

kernel sizes up to 7, which is sufficient for most common image processing tasks. The

logic resources required by the described systolic array–based median filter indeed

scale up as kernel sizes get larger; but as modern FPGAs become denser and offer

improved logic capacity, this requirement is still a small percentage of the total

available resources (see Table 3.5).

3.5. Summary

This chapter presented an FPGA-based architecture for real-time

preprocessing of volumetric images acquired during IGIs. The developed architecture

enables 3D anisotropic diffusion filtering and 3D median filtering of intraprocedural

Table 3.9: Performance comparison of the 3D median filtering kernel.

Implementation Platform Filter
kernel

Voxel processing
rate (MHz) Speedup

Software (C++) Xeon workstation 3D 2.63 74
Viola et al. [136] GPU 3D 0.76 257

Gallegos-Funes and
Ponomaryov [146] DSP 2D 4.5 43

Jiang and Crookes
[137] FPGA 3D 50 3.9

Dandekar et al. [144] FPGA 3D 195 -

 79

images at the rate of 50 fps, which is faster than current acquisition speeds of most

imaging modalities. The solution presented offers real-time performance, is compact

and accurate, and, hence, suitable for integration into IGI workflow. As IGI

applications become increasingly popular, intraprocedural imaging modalities

continue to offer wider coverage and higher imaging speed. Thus, there is a

corresponding need for real-time processing of these images. The real-time

performance of our design along with the throughput of one voxel per cycle can cater

to these 4D (3D + time) image processing needs.

 80

Chapter 4: Hardware-Accelerated Deformable Image

Registration

Intensity-based deformable image registration plays a critical role in many

diagnostic and interventional applications requiring image combination. Despite the

advantages (such as accuracy, automation, and retrospective nature) of this approach,

these algorithms find limited use in clinical applications due to their computational

complexity. This chapter presents a novel FPGA-based architecture for accelerated

implementation of MI-based deformable registration. This architecture is capable of

reducing the execution time of MI-based deformable registration from hours to a few

minutes. First, we describe the registration algorithm that is being accelerated. Next,

we present the architecture for its high-speed implementation. Finally, we

characterize the execution performance of this architecture and provide qualitative

validation results. The optimization of this architecture for accuracy and hardware

resources is presented in Chapter 5. The quantitative validation and the clinical

applicability of this architecture are presented later, in Chapter 6.

4.1. Motivation

Combining complementary information from intraprocedural and

preprocedural images is a fundamental need in IGI applications. These images,

however, are acquired at different times and using different imaging scanners and

protocols and as a result are usually misaligned. Therefore, they need to be registered

(or aligned) for a meaningful combination and fusion of the information they contain.

Deformable image registration techniques can compensate for both local deformation

 81

and large-scale tissue motion and are the ideal solution for achieving the

aforementioned image registration. Some studies, in particular, have independently

underlined the importance of deformable registration and/or soft tissue modeling for

IGIs [18, 19]. However, despite their advantages, deformable registration algorithms

are seldom used in current clinical practice. The large number of degrees of freedom

that these algorithms employ makes them extremely computationally intensive. On a

modern workstation most deformable registration algorithms can take several hours,

which is clearly unacceptable for IGIs requiring on-demand performance. As a result,

most earlier reported techniques for aligning preprocedural and intraprocedural

images employ rigid body approximation, which is often not valid because of

underlying nonrigid tissue deformation. In addition, some of these techniques are not

retrospective (i.e. they require some advanced planning at the time of preprocedural

imaging), which further limits their applicability.

Mutual information (MI)–based deformable registration has been shown to be

effective in multimodality image registration because of the robustness of the

similarity measure [69]. Moreover, MI-based image registration is automatic and

completely retrospective because it uses image intensities to achieve the alignment.

Walimbe and Shekhar [60, 67] have earlier reported an MI-based deformable

registration algorithm that utilizes volume subdivision. Hierarchical volume

subdivision–based image registration techniques are inherently faster than most other

deformable registration techniques and are more amenable to hardware acceleration.

This algorithm has been used and rigorously validated in the context of PET-CT

registration [66]. This clinical validation has demonstrated the registration accuracy

 82

of the aforementioned algorithm to be comparable to a group of clinical experts and

the mean registration accuracy for the abdominal region to be superior to an earlier

reported free-form deformation (FFD)–based technique [147]. This algorithm is

theoretically general and has been shown to be effective for various applications

employing multimodal deformable registration [66, 77, 148-151]. Although

computationally efficient, software implementation of this algorithm can take several

hours, which is still slow for direct integration into the IGI workflow. It is, therefore,

necessary to accelerate this algorithm and reduce the processing time to the order of

minutes and ultimately to seconds for its assimilation into clinical workflow.

Although, accelerated implementations of MI-based deformable registration

algorithms using very large multiprocessor clusters have been proposed earlier [57,

115, 117, 118], their per-node performance does not compare favorably with our

implementation. Furthermore, these solutions may not be cost effective and are

unlikely to be suitable for clinical deployment.

The chapter presents a novel field-programmable gate array (FPGA)–based

accelerated implementation of the aforementioned deformable registration algorithm,

specially geared toward improving target delineation during image-guided

interventions. The reported solution provides a speedup of about 40 for MI

calculation, thus reducing the deformable registration time from hours to minutes. In

Chapter 6, we demonstrate fast and successful registration of intraprocedural

abdominal CT scans with preprocedural CT and PET scans using the developed

architecture. We further demonstrate that the registration accuracy of the hardware

implementation is comparable with that using a software implementation and is on

 83

the order of a few millimeters. This registration accuracy coupled with the execution

speed and compact implementation of the reported solution makes it suitable for

integration in the IGI workflow.

4.2. Algorithm for Deformable Image Registration

Hierarchical volume subdivision–based deformable image registration

techniques are inherently faster than most intensity-based deformable registration

techniques (e.g., FFD–based techniques) and are more amenable to acceleration

through hardware implementation. 3D image registration using volume subdivision

has been proposed earlier, but the earlier implementations were limited to a locally

translation-based model. Walimbe and Shekhar [60, 67] enhanced this model by

incorporating local rotations and reported a quaternion-based scheme for interpolating

multiple 3D rigid-body transformations for deformable registration using the volume

subdivision approach. For a pair of images, one treated as reference and the other as

floating, this algorithm performs deformable registration using a series of

hierarchical, locally rigid-body registrations. The six-parameter rigid registration at

Figure 4.1: Pictorial representation of hierarchical volume subdivision–based
deformable image registration and associated notation.

 84

each level is optimized by maximizing the MI between the reference and floating

images (RI and FI, respectively). This hierarchical registration scheme is shown in

Figure 4.1.

The initial optimal rigid alignment (at the root level) between RI and FI can be

represented using a transformation matrix 0
0T (where i

jT represents the cumulative

optimal transformation at level i for subvolume j). Next, the algorithm uses a

hierarchical octree-based subdivision scheme. At each subdivision level i , the RI is

divided into 8i subvolumes, numbered from 0 to 8 1i − . Each of these subvolumes is

then individually registered with the FI, under transformation range constraints

derived from the transformation of its parent subvolume at the earlier level 1
()

i
parent jT − .

The notation ()parent j refers to the subvolume at the previous subdivision level

1i− , which contains the current subvolume j . For example, at the root level (0i =),

there is a single subvolume (entire image) numbered 0j = . After one level of

subdivision (1i =), there will be eight subvolumes numbered from 0j = to 7j = . At

level 1i = , (3)parent refers to subvolume numbered 0 at level 0i = , because it

contains subvolume 3j = at the current level (1i =) of subdivision (see Figure 4.1).

The optimal alignment of the subvolume j within the FI is also determined by

maximizing MI under a six-parameter rigid-body transformation model.

Volume subdivision and subvolume registration continue until the voxel count

for an individual subvolume remains above a predefined limit (usually 316) to yield a

statistically significant similarity measure. Thus, this algorithm achieves hierarchical

refinement of the localized matching between RI and FI. The final cumulative non-

 85

rigid alignment between the image pairs is computed by quaternion-based direct

interpolation of the individual subvolume transformations at the final subdivision

level.

4.2.1. Calculating MI for a Subvolume

Registration of a subvolume during the hierarchical refinement process is

based on maximization of the MI, which is a statistical measure. With progressive

subdivision, subvolumes at every level become increasingly smaller. The mutual

histogram (MH) corresponding to an individual subvolume becomes sparse, thus

rendering MI unreliable. The aforementioned algorithm addresses this issue by using

the MH of the entire image (all the subvolumes) to calculate MI during the

registration of a subvolume. The contribution of the current subvolume k at level i

to the MH is computed under the current candidate transformation *i
kT (*T denotes a

candidate transformation during the optimization process). The contribution to the

MH from the rest of the subvolumes remains constant during this registration process

and is derived from their parent subvolumes. Thus, MI is computed over the entire

image with local variations corresponding to the subvolume under optimization.

Equations (4.1)-(4.3) summarize this process. The function ()
j k

TAccumulate
=

,

contributes to the MH using the voxels in a given subvolume k , using the mapping

provided by the given transformation T . The detailed description of this deformable

registration algorithm can be found in [60].

k k k

i i i
Total Subvolume RestMH MH MH= + (4.1)

 *()
k

i i
Subvolume j

j k
MH TAccumulate

=
= (4.2)

 86

 1

,
()

k

i i
Rest parent(j)j j k

MH Accumulate T −

∀ ≠
= (4.3)

4.3. Acceleration Approach

The aforementioned algorithm uses MI as a measure of image similarity. MI

is an intensity-based similarity measure and calculation of MI requires processing of

all the voxels in the RI. Registration through maximization of MI attempts to find the

transformation that best aligns an FI with an RI. This MI-based registration typically

requires thousands of iterations (MI evaluations), depending on the image complexity

and the degree of initial misalignment between the images. Repeated MI

computation, which requires accessing both the images (RI and FI), is memory access

intensive, and in particular, the memory access in the FI is completely governed by

the transformation applied. This operation, therefore, does not benefit from the cache-

based memory architectures present in most modern PCs (the caches are too small to

fit 3D images). Because memory speed has not evolved at the same rate as

microprocessor speed, introduction of faster microprocessors is not expected to

significantly speed up image registration. Thus, a factor limiting the performance of

software implementations is calculating MI for different candidate transformations.

Castro-Pareja et al. [139] have shown that, for typical medical images, accumulating

Figure 4.2: Pictorial representation of the acceleration approach.

 87

the MH and calculation of MI can take up to 99% of the total image registration time

in software. Our efforts for acceleration of this algorithm, consequently, are targeted

toward optimized and pipelined implementation of MH accumulation and MI

calculation. This approach is pictorially represented in Figure 4.2.

In general, the execution time T required by a pipelined implementation (with

n-stages) of an operation is given as:

 () ,NT t n
m

= ⋅ + (4.4)

where t is the latency of each stage, N is the amount of data to be processed, and

m is the number of data units processed in parallel at each stage. In the case of MI

calculation, N represents the number of RI voxels to be processed. For typical

volumetric images (which are usually larger than 1283) it can be assumed that

N n
m
� , thus the main parameters that control the MI calculation time are then t and

m . Supporting 1m > requires a superscalar architecture and multiple processing

pipelines with individual image memory access, which is not practical. Therefore, to

provide maximum pipeline performance, our architecture focuses on reducing t , the

latency of each pipeline stage. The lower bound on t is the period of the system clock

and achieving this bound means that all the pipeline stages (including image memory

access) complete their operations in one clock cycle. The following section describes

an architecture geared toward meeting this goal for accelerated calculation of MI.

 88

4.4. Architecture

MI-based image registration can be thought of as an optimization problem of

finding the best alignment between two images. During the execution of the

algorithm, the optimization process is executed from the host workstation. This host

provides a candidate transformation, while the presented FPGA-based solution

applies it to the images and performs corresponding MI computation. The computed

MI value is then further used by the host to update the candidate transformation and

eventually find the optimal deformable alignment between the RI and the FI. This

workflow is indicated in Figure 4.2. The top-level block diagram of the FPGA-based

architecture for accelerated implementation of volume subdivision-based image

registration is shown in Figure 4.3. The important modules in this architecture are

described below.

Figure 4.3: Top-level block diagram of the architecture for accelerated
implementation of deformable image registration.

 89

4.4.1. Voxel Counter

Calculation of MI requires processing every voxel in the RI. This can be

achieved by sequentially cycling though all the voxels in the RI. In addition, because

the implemented algorithm is based on volume-subdivision, RI voxels within a 3D

neighborhood corresponding to an individual subvolume must also be processed

sequentially. This is implemented as follows: the host programs the FPGA-based MI

calculator with subvolume start and end addresses. In case of the entire image (as

required for rigid registration), the start address is (0, 0, 0) whereas the end address is

equal to the dimensions of the RI. When a subvolume needs to be processed (for

example, during subvolume optimization after image subdivision), the start and end

addresses programmed by the host correspond to that of the subvolume. The voxel

counter sequentially computes the addresses corresponding to all voxels within a

given neighborhood range (a subvolume, for example) in z−y−x order. This is

implemented using three synchronized counters, one for each dimension. A functional

diagram of this module is presented in Figure 4.4. Through pipelined implementation,

this module is capable of generating address for one RI voxel per clock cycle. This

Figure 4.4: Functional block diagram of voxel counter.

 90

module operates in two modes: in the reference image processing mode the address

generated is used to fetch the RI image voxels from the external image memory,

whereas in the floating image processing mode the RI address generated is

transformed to the floating image space for further processing.

4.4.2. Coordinate Transformation

The initial step in MI calculation involves applying a candidate transformation

(*i
jT), to each voxel coordinate (rvG) in a subvolume j of the RI to find the

corresponding voxel coordinates in the FI (represented using fvG). This is

mathematically represented as shown in (4.5). Because the algorithm is linear at every

subvolume, this is implemented using the six-parameter rigid transformation model.

 *i
f j rv T v= ⋅
G G (4.5)

An interesting aspect of this coordinate transformation and subsequent

operations is that they involve operations in both real (millimeter) space as well as

voxel address (image index) space. For example, the transformation (translations and

rotations) is defined in the real space, whereas the voxels to be fetched from RI and

FI are identified in voxel address space. Thus, there is a need to convert between

these address spaces during the calculation of MI. This conversion can be performed

by utilizing the voxel size information associated with each image. To circumvent the

need for performing this conversion in our FPGA-based architecture, we

appropriately scale the transformation matrix (in millimeter space) and represent it

using a mathematically equivalent matrix in voxel address space. This conversion is

performed in software by the host just prior to MI calculation. This matrix is then fed

 91

to the FPGA-based MI calculator and the MI calculator performs all its operations in

voxel address space. This converted transformation can be represented as:

x x x x
xx xy xz

x y z x
cx cxy y y y

yx yy yz cy cy
x y z ycz cz
z z z z

zx zy zz
x y z z

vr vr vr Tr r r
vf vf vf vf

i RI FIp vr vr vr T
q r r r j RI FI

vf vf vf vfr k RI FI
vr vr vr Tr r r
vf vf vf vf

⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢= ⋅ ⋅ ⋅ − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢⎢ ⎥ −⎣ ⎦ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

i .⎥
⎥

 (4.6)

In this equation, the tuple (i, j, k) represents the address of a voxel in RI space. This

address is calculated by the voxel counter. The ijr s represent the components of the

rotation matrix, whereas iT s represent the components of the translation vector. ivr s

and ivf s represent the voxel sizes (in millimeters) of the reference image and the

floating image, respectively. (, ,)cx cy czRI RI RI and (, ,)cx cy czFI FI FI represent the

centers of the reference image and floating image in voxel address space,

respectively.

This transformation model is represented using a 3 × 3 rotation matrix and a

Figure 4.5: Functional block diagram of coordinate transformation unit.

 92

3 × 1 translation vector. The host calculates these transformation components by

appropriate scaling (as described above) of the current candidate transformation

provided by the optimization routine and sends it to the MI calculator. Fixed-point

representation is used to store the individual elements of these transformation

components. The coordinate transformation is accomplished by simple arithmetic

computations such as additions and multiplications as illustrated in Figure 4.5. The

pipelined implementation of this module allows transformation of one RI voxel

address per clock cycle.

4.4.3. Partial Volume Interpolation

The coordinates mapped in the FI space (fvG) do not normally coincide with a

grid point (integer location), thus requiring interpolation. This scenario is illustrated

in Figure 4.6 (a). In this figure, for simplicity, we have presented a 2-dimensional

case; but similar scenario presents itself in three dimensions as well. The calculation

of interpolation weights associated with the neighborhood (again, for a 2-dimensional

case), in which the mapped coordinate lands, is illustrated in Figure 4.6 (b). In

comparison, a 3-dimensional case will have 8-interpolation weights. Nearest-

neighbor, linear, and partial volume (PV) interpolation schemes have been

Figure 4.6: Fundamentals of interpolation schemes.

 93

traditionally used for this purpose. Mathematical formulation for calculation of the

interpolation weights using these techniques is presented in Figure 4.6 (c). The

primary difference between PV and linear interpolation is that, PV interpolation does

not consolidate the weights and associated intensity values through weighted-

summing. Instead, it preserves the intensity-interpolation weight pairs and updates the

mutual histogram (MH) at corresponding 8-locations (for a 3D case). PV

interpolation scheme increases the memory access requirement of the MH

accumulation operation, but is capable of providing smooth changes in the MH values

(and associated smoother optimization curve) with small changes in transformation

[69].

Consequently, our architecture implements PV interpolation as the choice of

interpolation scheme. fvG , in general, will have both fractional and integer

components and will land within an FI neighborhood of size 2 2 2× × . The

interpolation weights required for the PV interpolation are calculated using the

fractional components of fvG . These weights can be calculated as follows:

0

1

2

3

4

5

6

7

(1) (1) (1)
(1) (1)
(1) (1)
(1)

(1) (1)
(1)

(1)

W xf yf zf
W xf yf zf
W xf yf zf
W xf yf zf
W xf yf zf
W xf yf zf
W xf yf zf
W xf yf zf

= − ⋅ − ⋅ −
= − ⋅ − ⋅
= − ⋅ ⋅ −
= − ⋅ ⋅
= ⋅ − ⋅ −
= ⋅ − ⋅
= ⋅ ⋅ −
= ⋅ ⋅

 (4.7)

In this equation, the tuple (, ,)xf yf zf correspond to fractional components of fvG in

x, y, and z dimensions respectively. This interpolation scheme is implemented in this

architecture by implementing the above formulation using simple arithmetic

 94

computations such as additions and multiplications as illustrated in Figure 4.7. The

pipelined implementation of these operations allows processing of one transformed

RI voxel per clock cycle. Fixed-point arithmetic is used to perform these operations.

The corresponding floating voxel intensities are fetched by the image controller in

parallel using the integer component of fvG . The image controller also fetches the

voxel intensity corresponding to rvG . The MH, then must to be updated for each pair of

reference and floating voxel intensities (8 in all), using the corresponding weights

computed by the PV interpolator.

4.4.4. Image Memory Access

The dimensions of typical 3D medical images are in the range of 128 × 128 ×

128 to 512 × 512 × 512 voxels. Because intensity-based image registration typically

Figure 4.7: Functional block diagram of partial volume interpolation unit.

 95

operates on images with 8-bit intensity values per voxel, this corresponds to image

sizes ranging from 2 to 128 Megabytes. In comparison, the internal, high-speed

memory provided by modern FPGAs is limited to 16 Megabits (or equivalent to 2

Megabytes). Consequently, the images to be registered can not be stored using the

memory that is internal to the FPGA and external storage must be employed for this

purpose.

Because of the size of the medical images, use of static random access

memory (SRAM) modules (which are fast, but offer poor density and capacity) is not

very efficient. Dynamic random access memory (DRAM) modules, in comparison,

offer the necessary density to store the large images that are typically encountered in

medical imaging. Although, these memories do not allow random accesses

throughout the entire memory module with a uniform latency, they support burst-

mode accesses that allow efficient random accesses within a single row of the

memory module. Our architecture takes advantage of this feature and uses external

DRAM memories to store the images to be registered (in other words, the RI and FI).

Figure 4.8: Voxel access patterns of the reference and floating images encountered
during image registration.

 96

During calculation of MI for a given voxel location in the RI, the reference image

memory must be accessed only once, whereas a complete 2 × 2 × 2 neighborhood (as

required for PV interpolation) must be fetched from the floating image memory.

Thus, there is a disparity between the memory access needs for these two images. The

following subsections briefly describe the access requirements for both these images

and present the strategies we adopted to meet those requirements.

4.4.4.1. Reference Image

An example of memory access pattern for the RI during image registration is

illustrated in Figure 4.8. Between the two images, the RI has more relaxed access

requirements, because it is accessed in a sequential manner (in z−y−x order) and only

one voxel must be fetched from the RI for a given RI voxel address. This kind of

access benefits from burst accesses and memory caching techniques. Furthermore, the

implemented algorithm is based on volume-subdivision and requires traversing

through the RI on a subvolume basis. This means that the voxels that belong to a

subvolume need to be consecutively accessed.

An interesting feature of modern DRAMs is that they are logically partitioned

into rows and columns. As a result, these memories incur additional latency of several

clock cycles when switching between different rows of the memory. Accessing

different columns within a given row, however, is efficiently supported through burst

accesses and can be performed within one clock cycle. Our architecture takes

advantage of this feature and stores the RI in such a way that each subvolume is

aligned with a row of the DRAM memory. This memory organization is illustrated in

Figure 4.9. This allows efficient access to the voxels that belong to a subvolume.

 97

For the architecture presented, both the RI and FI are stored in separate logical

partitions of the same DRAM module. However, during MI calculation both these

memories must be accessed simultaneously over a single bus. This can lead to

memory access conflicts and result into poor performance. To address this issue, our

architecture uses internal memory of the FPGA to cache a sub-block of RI voxels.

Thus, during the processing of that block of RI voxels, the image controller has

parallel access to both RI and FI voxels. The RI voxels are fetched from the internal

FPGA memory (with access time of 1 clock cycle), whereas the FI voxels are fetched

directly from the external memory.

4.4.4.2. Floating Image

An example of memory access pattern for the FI during image registration is

illustrated in Figure 4.8. The FI has much higher memory access requirements when

compared to the RI. There are two primary reasons for this:

Figure 4.9: Organization of the reference image memory.

 98

1. For every RI voxel address to be processed, 8 FI voxels (corresponding to a

2 2 2× × neighborhood) must be fetched. This neighborhood is then further used

for performing PV interpolation and MH accumulation.

2. Although, the RI is accessed in a sequential manner, the corresponding access

pattern in the FI is completely governed by the transformation (*i
jT) that is

currently being applied. For example, in Figure 4.8 the access pattern in FI is not

aligned with the natural dimensions (x, y, or z) of the image.

The first aspect of this memory access requirement is similar to that

encountered in the context of volume rendering. In the graphics domain, this problem

has been solved by developing techniques that allow parallel access to the entire

2 2 2× × voxel neighborhood. One way to provide this parallel neighborhood access

is through the use of cubic addressing [140]. Cubic addressing employs eight memory

modules that are accessed in parallel at different addresses, through arithmetic

manipulation of the corresponding single “neighborhood address”. These parallel

memory modules are thus capable of providing the entire 3D neighborhood in one

Figure 4.10: Organization of the floating image memory.

 99

clock cycle. This approach, however, requires custom addressing of the memory

modules. Castro-Pareja et al. [139] have reported a method to implement cubic

addressing using standard DRAMs, by storing multiple copies of the image. This

approach does not require special addressing and take advantage of burst-mode

accesses provided by DRAMs. The presented architecture implements a similar

scheme by storing eight copies of the FI. This scheme is illustrated in Figure 4.10.

The FI voxels are arranged sequentially such that, performing a size 2 burst fetches

two adjacent 2 2× neighborhood planes, thus making the entire neighborhood

available simultaneously. Although this approach increases the image storage, it

enables accessing the entire 3D neighborhood in one clock cycle. Further, the density

of DRAM chips allows storing multiple copies of the FI.

The second aspect of the FI memory access requirement is addressed through

the following strategy: we group the neighborhoods that belong to an image block

(within the FI), and assign those neighborhoods to a single row in the DRAM module.

Thus, as long as the transformed address location (fvG) stays within a FI subvolume,

the corresponding neighborhoods can be fetched within one clock cycle. Because, the

RI is traversed one subvolume at a time, it is highly likely that the transformed

location of that subvolume is confined to one or few FI subvolumes. Our architecture

takes advantage of this spatial locality of reference.

4.4.5. Updating Mutual Histogram

For a given RI voxel RV , there are eight intensity pairs (0 7, :RV FV FV) and

corresponding interpolation weights. Because the MH must be updated (read–

 100

modify–write) at these eight locations, this amounts to 16 accesses to MH memory

for each RI voxel. This means that MH memory has more stringent access

requirements when compared with the floating image memory. Moreover, the

locations that need to be accessed within the MH for a given RI voxel, may not have

any relationship with each other (such as a neighborhood-relation in the context of FI

memory) and can be completely random. Fortunately, the size of the MH memory is

typically much smaller (less than 128 128×) than that of the images (256 256 256× ×).

As a result, the internal (on-chip), high-speed memory can be used for storing the

MH.

Our first strategy to meet this high memory access requirement is to use high-

speed, dual-ported memory internal to the FPGA to store the MH. Because this

memory is dual-ported, it can be read and written simultaneously (using different

ports), an operation that is integral to MH accumulation. The overview of pipelined

MH accumulation design, which takes advantage of this feature, is presented in

Figure 4.11. Furthermore, because this memory can work at high speeds, the MH

accumulation pipeline can work at twice the clock rate of the voxel processing

Figure 4.11: Pipelined implementation of MH accumulation using dual port
memory.

 101

pipeline. Thus, a pipelined implementation of MH accumulation can process (read–

modify–write) two voxels per every clock of the main pipeline. Our second strategy is

multiple parallel MH accumulation pipelines to support the high-memory access

requirement. We employ four copies of the MH and associated parallel pipelines that

independently and concurrently update the partial MHs. The partial MHs, stored in

each MH copy, are eventually combined when the MH is read during the entropy

calculation. Similar strategy is used for storing the individual histogram for the FI.

These two strategies, when combined together, provide sufficient memory access

speed to meet the requirement of MH accumulation.

While the MH is being computed, the individual histogram accumulator unit

computes the histograms for the RI and the FI. These individual histograms are also

stored using internal, dual-ported memories. The valid voxel counter module keeps

track of the number of valid voxels accumulated in the MH and calculates its

reciprocal value. The resulting value is then used by the entropy calculation unit for

calculating the individual and joint probabilities.

4.4.5.1. Data Hazards and Preaccumulation Buffers

The presented architecture implements the operation of updating the MH in a

pipelined fashion. This means that for each MH accumulation pipeline (there are four

such pipelines) one interpolation weight must be accumulated per clock cycle. The

MH address, which must be updated with this interpolation weight, is determined by

the RI-FI intensity pair. Furthermore, the realization of this operation using dual-

ported memories (as described above) has a latency of three clock cycles (one clock

cycle each for read, modify, and write operations). As a result, read-after-write

 102

(RAW) hazards could arise if sequential MH update transactions that attempt to

access identical locations (or in other words, transactions with same RI-FI intensity

combination) are separated by fewer than three clock cycles.

To detect and eliminate these RAW hazards, the presented architecture

employs a preaccumulate buffer in each pipeline. The functional block diagram of

this buffer is shown in Figure 4.12. This buffer compares the address of the current

transaction with that of three (equal to the latency of the operation) prior transactions.

If conflicting transactions are detected, the buffer invalidates the current transaction

and adds the interpolation weight of the current transaction to that of the first

conflicting transaction. In summary, this is equivalent to aggregation of the weights

from all the conflicting transactions and all the transactions that constitute a RAW

hazard are converted into a single update to the MH. This scheme entirely eliminates

any possible RAW hazards.

Figure 4.12: Preaccumulate buffers to eliminate RAW hazards in MH accumulation
pipeline.

 103

4.4.5.2. Calculating RestMH

During the optimization process of finding the best alignment for a given

subvolume k at level i ,
kTotalMH is computed as shown in equation (4.1). For this

calculation, it is necessary to compute the contribution of the remaining subvolumes

to
kTotalMH using the registration information at the previous level of subdivision

(1
() ,

i
parent jT j k− ∀ ≠). This process must be repeated for every subvolume at the current

level i , and the contents of
kRestMH will be different every time depending on the

subvolume under consideration. Computing
kRestMH , from scratch, for every iteration

of each subvolume will not be efficient. To avoid this repeated calculation, we

introduce MH buffers (PriorMH , RestMH , and LocalMH), which store the previous-level

MH and partial MH during various stages of the algorithm. A flow diagram depicting

the interplay between these MH buffers during various steps of calculating RestMH is

shown in Figure 4.13, and the detailed description is provided here.

Figure 4.13: A flow diagram of steps involved in calculating MHRest.

 104

At a given level i , PriorMH contains the MH for the entire image, which is

computed using all the subvolumes at the earlier level 1i − and corresponding

transformations 1i
jT − . At the beginning of the registration of each subvolume k at the

current level i , LocalMH is cleared (thus, all its entries are set to 0). Next, the

transformation of its parent from the previous level, 1
()

i
parent kT − , is applied to the current

subvolume k and the resultant MH is accumulated in LocalMH . LocalMH now contains

the contribution of the subvolume k to PriorMH . LocalMH is then subtracted from

PriorMH , and the resultant MH is stored in the buffer RestMH . This step is

mathematically equivalent to computing
kRestMH (as in equation (4.3)) for the

subvolume k . For every subsequent optimization iteration involving this subvolume,

LocalMH is initially cleared. The candidate transformation *i
kT is then applied to the

current subvolume (k) only, and the resultant histogram (contribution of this

subvolume) is accumulated in LocalMH . It is then added to
kRestMH , to form the MH

for the entire image (
kTotalMH in equation (4.1)) for the current optimization step. This

final histogram is then further used for computing the image similarity measure (MI)

corresponding to the current transformation *i
kT . This process is repeated for all the

subvolumes at the current level. At the end of each level (after optimizing all the

subvolumes at that level), the MH for the entire image is computed using the updated

transformations ,i
kT k∀ and is stored in PriorMH , which will then subsequently be used

at the next level of subdivision, 1i + .

 105

4.4.6. Entropy Calculation

Acceleration of MH accumulation contributes to the most of the performance

improvement during calculation of MI. However, the final step in MI calculation,

which is entropy calculation, must also be implemented in the hardware to eliminate

the overhead of copy the MH back to the host. The mutual and individual entropies

are computed by using the probability distributions represented by the mutual and

individual histograms, respectively.

To calculate entropy, it is necessary to evaluate the function () ln()f p p p= ⋅

for all the probabilities. As probability p takes values between [0,1] , the

corresponding range for the function ln()p is [,0]−∞ . In addition, ln()p is undefined

for 0p = . In comparison, the corresponding range for ()f p is 1[,0]e−− . Thus, ()f p

has a finite dynamic range and is defined for all values of p . Several methods for

calculating logarithmic functions in hardware have been reported earlier [152-154],

but of particular interest is the multiple lookup table (LUT)–based approach

introduced by Castro-Pareja et al. [155]. This approach minimizes the error in

representing ()f p for a given number and size of LUTs and, hence, is accurate and

efficient. Moreover, this approach preserves the shape of the MI curve and the

location of the extrema and thus does not significantly affect the outcome of the

optimization process. Following this approach, the presented design implements

()f p using multiple LUT–based piecewise polynomial approximation. We provide a

brief overview of this method here and identify the multiple LUT configuration

adopted by our architecture.

 106

4.4.6.1. Multiple LUT–Based Approach for Entropy Calculation

A LUT-based approach represents the target function (such as ()f p) using a

piecewise-polynomial approximation with n segments. In particular, approximation

using Chebyshev polynomials is employed because: 1) the Chebyshev approximation

is simple to calculate for continuous functions such as ()f p and 2) it is very close to

the true minimax approximation, the most accurate polynomial approximation. The

polynomials used can be of arbitrarily high order. Higher degree of polynomials

typically offer better approximation, but require higher degree of arithmetic

computation (and associated hardware resources) for function evaluation. For this

reason, only 1st order polynomials are considered.

In case of a single-LUT based approach, all the segments are stored in a single

large LUT. Although this approach is simple and allows easy decoding and

addressing during function evaluation, it suffers from several drawbacks. First, the

precision of the LUT (pΔ) is constant throughout the entire table. As a result,

segments of the approximated function that require finer precision can not be

accurately represented. Second, the size of the LUT to achieve a desired

approximation error is usually quite large and sometimes not practical. For example,

Table 4.1: Configurations of LUT-based entropy calculation module that were
considered in the presented architecture.

LUT Range Configuration #1 Configuration #2
LUT No.

minp maxp pΔ Entries pΔ Entries
1 0 2-13 2-23 1024 2-24 2048
2 2-13 2-6 2-16 1024 2-17 2048
3 2-6 2-2 2-12 1024 2-13 2048
4 2-2 1 2-10 1024 2-11 2048

 107

to keep the error in entropy calculation less than 10-6, a single LUT with 16K entries

will be required.

The multiple LUT–based approach introduced by Castro-Pareja et al. [155]

attempts to address these limitations. In this approach, each segment is stored in a

different LUT. In addition, each LUT has a different precision (pΔ) and uses a

different polynomial coefficients to represent the individual segments of the function

()f p . Thus, this approach allows superior approximation of the target function and

thereby keeping the approximation error below the allowable maximum.

Furthermore, this method provides a realization that is optimized for approximation

accuracy and hardware resources [155].

Using this approach the 1st-order polynomial, 4-LUT configuration was

designed. We realized two such configurations each with a different LUT precision

(pΔ). These configurations are listed in Table 4.1. The choice of these configurations

Figure 4.14: Error in entropy calculation corresponding to the two configurations of
the multiple LUT–based implementation.

 108

was based on meeting the error constraints on the entropy calculation and the

availability of resources in the target FPGA device. We then evaluated the

approximation error offered by these two realizations. This was done by comparing

the entropy values calculated by using these designs against that calculated using a

double-precision software implementation. Figure 4.14 shows a plot of the error

magnitude vs. p for both these realizations. The maximum error was of the order of

10-8 for a both these configurations, which is sufficient for MI calculation in the

context of image registration [155]. For our architecture we selected realization with

8K entries, as it offers superior error performance at a relatively moderate increase in

the LUT size. As described earlier, using the lower-order polynomials has the

advantage of reducing the LUT data width and the number of required arithmetic

operations for function evaluation.

4.4.7. Operational Workflow

The sections above described the design and functional behavior of the

important modules in the architecture we developed for accelerated calculation of MI.

Our ultimate goal, however, is to accelerate deformable image registration algorithm

described earlier. This algorithm utilizes this high-speed implementation to efficiently

calculate the image similarity measure (MI), the most computationally complex step

within the algorithm. This deformable registration algorithm is based on volume

subdivision, and depending on the operational stage of the algorithm, image similarity

is calculated in a slightly different manner. For example, steps to calculate MI during

rigid registration are slightly different than those taken during optimization of a

subvolume after volume subdivision. This section identifies different operational

 109

stages of the algorithm and describes how the architecture described above is utilized

to calculate MI during those stages. The summary of this description is provided in

Table 4.2.

4.4.7.1. Rigid Registration

Rigid registration is the first step in the aforementioned deformable

registration algorithm. This step attempts to recover any gross misalignment between

the RI and FI. During this step, the algorithm repeatedly calculates MI for various

candidate transformations between RI and FI. To implement this operation using the

described architecture, we first clear all the mutual histograms internal to the

architecture (PriorMH , RestMH , and LocalMH). Next, the host provides the current

candidate transformation along with the subvolume address range (equal to the RI

dimensions, since MI is calculated for the entire image) to the architecture. After this

operation, the MH corresponding to the given transformation is calculated and stored

Table 4.2: Operational workflow for performing volume subdivision–based
deformable image registration using the presented architecture.

Operation Workflow

Rigid Registration Clear All MHs → Accumulate (entire RI) → Calculate
Entropy using MHLocal

Calculating MHPrior
(First subvolume) Clear All MHs → Accumulate (current subvolume)

Calculating MHPrior
(Other subvolumes) Accumulate (current subvolume)

Calculating MHPrior
(Copying MH) Copy MHLocal to MHPrior

Calculating MHRest
Clear MHLocal → Accumulate (current subvolume) →
Subtract MHLocal from MHPrior and store into MHRest

Subvolume
Registration

Clear MHLocal → Accumulate (current subvolume) →
Calculate Entropy using MHLocal + MHRest

 110

in LocalMH . Later on, the individual and joint entropies are calculated using LocalMH .

4.4.7.2. Calculating PriorMH

Calculating PriorMH requires applying transformations to all the subvolumes at

a given level of subdivision and calculating the cumulative MH corresponding to all

subvolumes with their associated transformations. To implement this operation using

the described architecture, we first clear LocalMH , which is used for subvolume MH

accumulation. Next, the host provides the address range for the first subvolume and

the transformation associated with that subvolume from the previous level. The MH

corresponding to the given transformation is calculated and stored in LocalMH . This

step is repeated for all the subvolumes at a given level of subdivision, with a

difference that LocalMH is cleared only during the first subvolume. This allows the

calculation of the cumulative MH for all the subvolumes. After all the subvolumes are

processed, LocalMH is copied to PriorMH (an internal MH buffer). No entropy

calculation is required during this step. This step is repeated after each level of image

subdivision.

4.4.7.3. Calculating RestMH

Calculation of RestMH is a prerequisite for optimizing subvolumes after

volume subdivision. As described earlier, we utilize PriorMH to efficiently calculate

RestMH for a given subvolume. To implement this operation using our architecture,

we first clear LocalMH , which is used for subvolume MH accumulation. Next, the host

 111

provides the address range for the current subvolume and the transformation

associated with that subvolume from the previous level. The MH corresponding to

the given transformation is calculated and stored in LocalMH . Following this operation,

we subtract LocalMH from PriorMH and store the resulting MH into RestMH (another

internal MH buffer). This step is repeated prior to registration of every subvolume at

a given level of subdivision.

4.4.7.4. Subvolume Registration

After image subdivision, the resulting subvolumes are individually registered

with the FI. However, the image registration algorithm also considers the contribution

of the rest of the image for improved statistical reliability. Our architecture supports

this operation by taking advantage of the RestMH computed in the previous step. First,

we clear LocalMH , which is used for subvolume MH accumulation. Next, the host

provides the address range for the current subvolume and the current candidate

transformation for that subvolume. The MH corresponding to the given candidate

transformation is calculated and stored in LocalMH . Later on, the individual and joint

entropies are calculated using ()Local RestMH MH+ , thus taking into account the

contribution of the rest of the image. This step is repeated for each iteration during

the registration of a subvolume.

4.5. Implementation and Results

The architecture presented above was implemented using an Altera Stratix II

EP2S180F1508C4 FPGA (Altera Corp., San Jose, CA) in a PCI prototyping board

 112

(DN7000K10PCI) manufactured by the Dini Group (La Jolla, CA). The board

featured 1 GB double-data-rate (DDR2) DRAM in a small-outline dual-inline

memory module (SoDIMM) external to the FPGA. This memory was used to store

the RI and the FI. The board provided a 64-bit bus interface between the memory and

the FPGA running at 200 MHz clock speed. The architecture was designed using

VHSIC hardware description language (VHDL) and synthesized using Altera

Quartus II 6.1. The memory controller was also implemented using VHDL and was

built around the DDR2 DRAM controller megacore supplied with Altera Quartus II.

All the modules in the architecture were custom designed using VHDL, per the

design description provided earlier. Functional verification and postsynthesis timing

simulation for the entire system were performed using Modelsim SE 6.2 (Mentor

Graphics, San Jose, CA). For this purpose, DDR2 DRAM simulation models

provided by Micron (www.micron.com) were used. The resource availability of the

target FPGA, primarily internal memory, which is used for MH accumulation, limited

the synthesis of the reported design to support 7-bit mutual histogram and,

consequently, all results in this section are presented for this configuration. In

comparison, the software implementation uses 8-bit mutual histogram. In spite of this

difference, we demonstrate that the registration accuracy for both these

implementations is comparable (see Chapter 6), which further confirms the findings

of Studholme et al. [64].

To verify the functional correctness and evaluate the performance of this

implementation we considered image registration between intraprocedural

noncontrast CT (iCT) with preprocedural contrast-enhanced CT (preCT) and positron

 113

emission tomography (PET) images. The registration between these image-pair

combinations is clinically relevant and routinely encountered in the context of CT-

guided interventions. We considered five abdominal iCT-preCT and five abdominal

iCT-PET image pairs for this evaluation. The image size for iCT and preCT was 256

× 256 × 200−350 with a voxel size of 1.4−1.7 mm × 1.4−1.7 mm × 1.5 mm, whereas

the typical image size for PET was 128 × 128 × 154−202 voxels with a voxel size of

5.15 mm × 5.15 mm × 5.15 mm. The iCT, preCT, and PET images were converted to

8 bits and 7 bits, respectively, for software and FPGA-based implementations. This

conversion was performed using adaptive reduction in intensity levels [156]. The

converted iCT and preCT images were then preprocessed using 3D anisotropic

diffusion filtering. No preprocessing steps were used for the PET images. The real-

time implementation of anisotropic diffusion filtering that we presented earlier can

facilitate this preprocessing without adding any significant latency to IGI workflow

[144]. For the hardware implementation, the RI was stored in a sequential format

organized by subvolumes, while eight interleaving copies of the FI were arranged in

memory to facilitate cubic addressing. This arrangement allows simultaneous access

to an entire 3D neighborhood within the FI, as described earlier. The execution speed

of the reported architecture was obtained from postsynthesis timing measurements

using the entire system.

The design achieved a maximum internal frequency of 200 MHz, with a

theoretical maximum RI voxel processing rate of 100 MHz. The coordinate

transformation, PV interpolation, and MH accumulation operations were

implemented using fixed-point representation. Entropy calculation was implemented

 114

using the 4-LUT, first-order polynomial configuration as described earlier. The

precision employed for this fixed-point datapath can affect both the implementation

accuracy and the hardware resource requirement of this architecture. An optimization

framework to systematically explore this effect is presented in the following chapter.

This framework is capable of identifying the optimized tradeoff relationship between

the hardware resources and the accuracy. The optimization of our architecture by

using this framework is presented in Chapter 5. We further evaluated the accuracy of

deformable image registration offered by that optimized architectural configuration

and those results are presented in Chapter 6. In this section, however, we focus on the

execution performance of our architecture and demonstrate its functional correctness

through qualitative validation of image registration. For this purpose we used a

designer identified architectural configuration which was not optimized for area-

implementation error tradeoff. Consequently, all the results presented in this section

are corresponding to that design configuration.

4.5.1. Execution Speed

The presented architecture is targeted toward accelerating the calculation of

MI for a hierarchical volume subdivision–based deformable registration algorithm.

During the execution of this algorithm, MI must be repeatedly calculated under a

candidate transformation for every subvolume at every level of subdivision.

Moreover, as described earlier, RestMH must be calculated once for every subvolume.

To analyze the speedup offered by the presented FPGA-based solution for calculation

of MI, we compare its calculation time with that of a software (C++) implementation

running on an Intel Xeon 3.6 GHz workstation with 2 GB of RAM. Table 4.3 details

 115

this performance comparison for a iCT-preCT image pair with dimensions of 256 ×

256 × 256. The last column of the table shows the speedup offered by the reported

solution over the software implementation for a given level of subdivision. The time

to calculate MI primarily depends on the size of the subvolume and is independent of

the imaging modality and voxel size. This calculation time, however, may vary

slightly based on the actual value of the transformation used to calculate MI. These

variations are caused by differences in access patterns to the FI memory under

different transformation values. To compensate for this effect and report average MI

calculation time at a given level of subdivision, we measured the MI calculation times

for a subvolume using 100 randomly generated transformations (within the range of

±30 voxels for translations and ±20° for rotations).

The same set of transformations was used for both software and hardware

implementations. The MI calculation time reported in Table 4.3 is averaged over all

the transformations. Hardware timings reported in Table 4.3 also include the

communication time, required for writing the transformation matrix and reading back

Table 4.3: Comparison of mutual information calculation time for subvolumes at
various levels in volume subdivision–based deformable registration algorithm.

Mutual information
calculation time (ms) Subdivision

level
Subvolume

size Software
implementation

FPGA-based
implementation

Speedup

0a 256 × 256 × 256 9410 225.42 41.74

1 128 × 128 × 128 1209 30.19 40.05

2 64 × 64 × 64 166 4.16 39.90
3 32 × 32 × 32 18 0.78 23.08
4 16 × 16 × 16 10 0.46 21.74

aThis corresponds to rigid registration between the reference and floating images.

 116

the calculated entropy values, between the host and the MI calculator. Furthermore,

consistent with the scenario during the execution of the registration algorithm, the

time to compute RestMH (once per subvolume) is also included in the hardware and

software MI calculation time. Our acrchitecture offers a speedup of about 40 for

calculating MI up to subvolumes of size 643; whereas for smaller subvolumes the

speedup achieved is around 20. This drop in achieved speedup is explained by taking

into account overheads incurred during computation of MI. Calculating MI requires

accumulation of MH, which in turn, requires initial clearing of the MH memory.

Because the current implementation employs an MH with size 128 128× (to support

7-bit images), the process of clearing MH, which involves writing ‘0’s to all MH

entries, can consume more than 16,000 clock cycles. For smaller subvolumes, the

time required to clear MH memory becomes comparable to or larger than that

required to process a subvolume (images are processed at the rate of approximately

one voxel per clock cycle). In addition, the communication time between the host and

the MI calculator, required for exchanging the transformation matrix and the

calculated MI value, becomes comparable to the computation time. These two factors

limit the net speedup achieved for smaller subvolumes.

Table 4.4 compares the total execution time for deformable registration using

a software (C++) implementation running on an Intel Xeon 3.6 GHz workstation with

Table 4.4: Execution time of deformable image registration.
Execution time (s) Image pair

used for
registration

Software
implementation

FPGA-based
implementation

Speedup

iCT-preCT 11520 371 31.05
iCT-PET 11146 339 32.88

 117

2 GB of RAM against the presented FPGA-based architecutre. This execution time

was measured for deformable registration between five iCT-preCT and five iCT-PET

image pairs, described earlier. The maximum number of global and local iterations

was set to 200 and 100 respectively. The same optimization algorithm was used for

both the software and hardware implementations, and volume subdivision continued

until the subvolume size was larger than 163. For each image modality pair, the

execution time reported is the average of execution times of the five cases. The

execution time of intensity-based image registration is directly proportional to the

size of the RI. iCT image was used as the RI for both the image modality pairs and,

hence, the execution time for deformable registration is similar for these two image

modalities, despite the fact that PET images are smaller than preCT images (128 ×

128 × 154−202 and 256 × 256 × 200−350, respectively). For both image modality

pairs, our architecture provided a speedup of about 30 over an equivalent software

implementation and achieved an execution time of around 6 minutes. This speedup is

a direct outcome of acceleration of MI calculation using the presented architecture.

4.5.2. Performance Comparison

Intensity-based image registration has been identified to be a computationally

intensive problem. Given the impact the acceleration of image registration can have

on a variety of diagnostic and interventional applications, there have been significant

efforts towards realizing high-speed implementations of image registration

algorithms. Further, given that this problem is extremely compute-extensive and

multi-faceted; researchers have applied a range of computing platforms and

acceleration strategies at different levels of this problem to improve its execution

 118

performance. In Chapter 2, we provided a survey of some acceleration approaches

that are somewhat related to the work presented in this dissertation. In this section we

compare the performance improvement provided by the FPGA-based implementation

we developed in this dissertation work against that provided by the earlier reported

solutions.

For this comparison we focused on acceleration approaches involving

intensity-based image registration, since these approaches can be retrospective,

automatic and have the potential to be integrated into the clinical workflow. The

algorithms considered included FFD-based, and gradient flow-based approaches as

well as those based on the demon’s algorithm. Moreover, these implementations used

different similarity measures (MI, NMI, SSD etc.), transformation models (spline-

based, rigid, volume-subdivision based) and acceleration strategies as dictated by the

computational platform (GPUs, clusters, FPGAs etc.) used for their implementation.

Thus, there is a substantial variation in the implementation details (both, for original

and accelerated implementation) of each of these realizations, even though they try to

address the same fundamental problem of accelerating intensity-based registration. To

account for these variations and provide a fair comparison, we consider the net

speedup offered by these accelerated implementations against their corresponding un-

accelerated versions. This comparison can be used to judge the efficiency of various

strategies to accelerate intensity-based image registration. To compare the raw

computational performance these realizations, we normalize their corresponding

execution times by the dimensions of reference image used for registration and

calculate the effective voxel processing rate (throughput) offered. In some cases,

 119

where sufficient implementation details (such as number of iterations, number of

voxels processed etc.) were not provided the voxel processing rate could not be

calculated.

Table 4.5 presents the results of this analysis and compares the performance

of the presented architecture for high-speed implementation of deformable image

registration, against a corresponding software implementation and previously

reported acceleration approaches. The software implementation refers to the

implementation of the volume subdivision–based algorithm. This implementation was

developed using C++, and its performance was measured on an Intel Xeon 3.6 GHz

workstation with 2 gigabytes of DDR2 400 MHz main memory. The presented

implementation of FPGA-based MI calculation provides more than an order of

magnitude speedup and superior voxel processing rate when compared to this

software implementation.

The majority of earlier reported attempts to accelerate intensity-based image

registration have primarily employed a multiprocessor or supercomputer approach

(see [57, 116, 117] , for example). Although these solutions delivered high

performance and speedup by virtue of parallelization and high-speed network

interconnects, the speedup achieved per processor was less than unity. Also, in some

cases [116] the voxel processing rate achieved was substantially less than that offered

by the presented implementation. In addition, these solutions may not be cost

effective and, because of their size, are unlikely to be suitable for clinical deployment.

Some solutions based on graphics processors [120, 122] attempt to provide

performance improvement by exploiting data parallelism native to this platform.

 120

Although this platform yielded reasonable speedups for rigid registration, the

performance gain and voxel throughput for deformable registration and in particular,

for that based on MI, were poor. Ohara et al. [123] attempted to accelerate MI-based

rigid registration using a pair of cell processors, by exploiting the inherent parallelism

offered by multiple cores (8 per processor) and high memory bandwidth. Using these

16 computing cores, this implementation achieved speedup of only 11 for rigid

registration. The voxel throughput of this implementation (6 MHz), however, was

slightly better when compared with other multiprocessor implementations. This can

be attributed to the high memory bandwidth and additional designer optimizations to

take advantage of spatial locality. Jiang et al. [124] employed a high-level description

language (Handel-C) and mapped B-spline computation (a common component in

FFD-based image registration) to Xilinx FPGA devices. This implementation

leveraged elimination of nested loops and pipelined implementation to achieve

performance improvement. Despite the semi-automated nature of this approach and

high clock rate of the synthesized design, the speedup and the voxel throughput

achieved were limited to 3.2 and 4 MHz respectively.

In comparison with these acceleration approaches, the FPGA-based

implementation developed in this dissertation addresses the fundamental memory

access bottleneck in intensity-based image registration. Furthermore, voxel-level

parallelism is achieved through pipelined implementation and this implementation

can offer voxel processing rate close to one voxel per clock cycle. Thus, this solution

is not only compact, but offers high speedup (around 30) and superior voxel

throughput (> 70 MHz) using a single processing element.

 121

Table 4.5: Performance comparison of the presented FPGA-based
implementation of intensity-based deformable image registration with an equivalent
software implementation and prior approaches for acceleration of intensity-based
registration.

Implementation Algorithm Platform Speedup

Voxel
processing
rate (MHz)

(if available)
Stefanescu
et al. [116]

Demon’s
algorithm

15-processor
cluster 11 1.8

Rohlfing
et al. [57]

FFD-based
deformable,

using MI

64-processor
shared-memory
supercomputer

40 –

Ino
et al. [117]

FFD-based
deformable, using

MI

128-processor
cluster, Myrinet

connectivity
90 –

Kohn
et al. [120]

Gradient flow,
rigid/deformable

GPU (6800)
(using GLSL) 12 2.15

Vetter
et al. [122]

MI-based
deformable

GPU (7800)
(using GLSL) 6 3.21

Ohara
et al. [123]

MI-based
rigid

2 cell broadband
engine processors 11 5.75

Jiang
et al. [124]

B-spline
interpolation

FPGA
 (using Handel-C) 3 4.19

Software
(C++)

MI-based
deformable Xeon workstation – 1.75

Dandekar
et al. [157]

MI-based
deformable FPGA 33 74.43

 122

4.5.3. Qualitative Evaluation of Deformable Image Registration

Acceleration of deformable registration, as offered by the presented

architecture, is critical for the time-sensitive nature of IGIs; however the accuracy of

the registration process is of equal importance. As described earlier, we present the

results of qualitative validation in this section, which demonstrate the functional

correctness of our architecture. The results of the quantitative validation are presented

later, in Chapter 6. The qualitative validation of deformable registration was

performed using five iCT-preCT and five iCT-PET image pairs. For all the cases

visually correct alignment was achieved after deformable image registration.

Furthermore, the results of the registration performed using our architecture was

qualitatively similar to that obtained using the software implementation.

Figure 4.15: Qualitative validation of deformable registration between iCT and
preCT images performed using the presented FPGA-based solution.

 123

Figure 4.15 shows an example of deformable registration between a

representative pair of iCT and preCT images. This registration was performed using

the presented FPGA-based solution. The initial seed alignment between these images

was obtained using a single-click operation to compensate for different scanner

coordinate systems and ensure reasonable overlap of common regions between two

images. Subfigures (a) and (b) show coronal slices from iCT and preCT images,

respectively. Subfigure (c) shows the overlay of these two images using the

checkerboard pattern. In this checkerboard overlay, blocks from both the images are

displayed alternately. The structural misalignment between iCT and preCT images is

evident from mismatches at the boundaries of these blocks. Subfigure (e) shows a

coronal slice from the preCT image registered to the iCT image, and subfigure (f)

shows the overlay of this image with the original iCT image. Better structural

alignment after deformable registration is evident from improved matching at the

boundaries of the blocks of the checkerboard overlay.

Similarly, Figure 4.16 shows an example of deformable registration between a

representative pair of iCT and PET images. This registration was also performed

using the reported FPGA-based solution. The initial alignment between these two

Figure 4.16: Qualitative validation of deformable registration between iCT and PET
images performed using the presented FPGA-based solution.

 124

images was obtained as for the previous case. Subfigures (a) and (b) show coronal

slices from iCT and PET images, respectively. Subfigure (c) shows the fusion of

these two images. Subfigure (d) shows the fusion of the registered PET image with

the original iCT image. Improved alignment after deformable registration is evident

from better matching of structures in the fusion image.

4.6. Summary

In this chapter we presented a novel FPGA-based architecture for high-speed

implementation of MI-based deformable image registration. This architecture

achieved voxel-level parallelism through pipelined implementation and employed

several strategies to address the fundamental bottleneck in the intensity-based image

registration, namely memory access management. As a result of these enhancements,

the presented architecture is capable of achieving high voxel processing rate and a

speedup of about 30 and consequently reduces the execution time of deformable

registration from hours to only a few minutes. The results of the qualitative validation

indicate that this performance improvement does not significantly compromise the

accuracy of deformable registration. As qualitatively presented in this chapter and

demonstrated quantitatively later (see Chapter 6), this implementation enables

improved target delineation during image-guided interventions through deformable

registration with preprocedural images. The robustness, speed, and accuracy offered

by this architecture, in conjunction with its compact implementation, make it ideally

suitable for integration into IGI workflow.

Accurate, robust, and real-time deformable image registration between intra-

and preprocedural images is an unmet need, critical to the success of image-guided

 125

procedures. The work presented in this chapter of the dissertation represents an

important first step toward meeting this goal. With further algorithmic and hardware

improvements, geared toward enhancing its accuracy and performance, this approach

has the potential to elevate the precision of current procedures and expand the scope

of IGI to moving and deformable organs.

 126

Chapter 5: Framework for Optimization of Finite Precision

Implementations

Computationally intensive algorithmic components are routinely accelerated

by mapping them to custom or reconfigurable hardware platforms. The work

presented in the earlier chapters of this dissertation has a similar flavor. An important

consideration for these implementations, which often employ finite precision

datapaths, is the tradeoff between hardware resources and implementation accuracy.

This chapter presents a methodology for systematically exploring this tradeoff and

identifying design configurations that efficiently balance these two conflicting

objectives. First, we formulate this problem as a multiobjective optimization problem.

Next, we present a multiobjective optimization framework developed in the context

of FPGA-based architecture for image registration presented in the previous chapter.

Finally, we demonstrate the applicability of the proposed approach through

simulation and post-synthesis validation results.

5.1. Motivation

An emerging trend in real-time signal processing systems is to accelerate

computationally intensive algorithmic components (for example, MI calculation as

described in the previous chapter) by mapping them to custom or reconfigurable

hardware platforms, such as ASICs and FPGAs. Most of these algorithms are initially

developed in software using floating-point representation and later migrated to

hardware using finite precision (e.g., fixed-point representation) for achieving

improved computational performance and reduced hardware cost. These

 127

implementations are often parameterized, so that a wide range of finite precision

representations can be supported [158] by choosing an appropriate wordlength for

each internal variable. As a consequence, the accuracy and hardware resource

requirements of such a system are functions of the wordlengths used to represent the

internal variables. Determining an optimal wordlength configuration has been shown

to be NP-hard [159] and can take up to 50% of the design time for complex systems

[125]. Moreover, a single optimal solution may not exist, especially in the presence of

multiple conflicting objectives, as is the case in the current work. In addition, a new

configuration generally needs to be derived when the design constraints or application

requirements are altered.

An exhaustive search of the entire design space is guaranteed to find Pareto-

optimal configurations. Execution time for such exhaustive search, however,

increases exponentially with the number of design parameters, making it unfeasible

for most practical systems. Some earlier reported techniques have attempted to solve

this problem through the use of analytical modeling [86-90], gradient-based search

[93], linear programming strategies [86], or through the use of linear aggregation of

objective functions. These approaches, although successfully demonstrated, may have

limited applicability for complex designs, with non-linear objective functions and a

non-convex search space [129]. For example, in the case of FPGA-based

implementation of image registration, analytically representing the error induced in

MI-calculation will be non-trivial. In addition, MI is a non-linear objective function.

Techniques based on evolutionary methods have been shown to be effective in

searching large search spaces with complex objective functions in an efficient manner

 128

[130, 131]. Furthermore, these techniques are inherently capable of performing

multipoint searches. As a result, techniques based on evolutionary algorithms (EAs)

have been employed in the context of multiobjective optimization (see SPEA2 [160],

NSGA-II [161]).

We formulate this problem of finding optimal wordlength configurations as a

multiobjective optimization, where different objectives — for example, accuracy and

area — generally conflict with one another. Although this approach increases the

complexity of the search, it can find a set of Pareto-optimized configurations

representing strategically-chosen tradeoffs among the various objectives. This novel

multiobjective optimization strategy is developed and validated in the context of

FPGA-based implementation of image registration. The tradeoff between FPGA

resources (area and memory) and implementation accuracy is systematically

explored, and Pareto-optimized solutions are identified such that a designer could use

these solutions to satisfy given design constrains or meet image registration accuracy

required by an application. This analysis is performed by treating the wordlengths of

the internal variables of the architecture presented in the previous chapter as design

variables. We also compare several search methods for finding Pareto-optimized

solutions and demonstrate in our context the applicability of search based on

evolutionary techniques for efficiently identifying superior multiobjective tradeoff

curves. This optimization strategy can easily be adapted to a wide range of signal

processing applications, including applications for image and video processing.

 129

5.2. Multiobjective Optimization

The architecture presented in the previous chapter is designed to accelerate the

calculation of MI for performing intensity-based image registration. We have

demonstrated this architecture to be capable of offering execution performance

superior to that of a software implementation [157]. The accuracy of MI calculation

(and by extension, that of image registration) offered by this implementation,

however, is a function of the wordlengths chosen for the internal variables of the

design. Similarly, these wordlengths also control the hardware implementation cost of

the design. For medical imaging applications, the ability of an implementation to

achieve the desired level of accuracy is of paramount importance. It is, therefore,

necessary to understand the tradeoff between accuracy and hardware implementation

cost for a design and to identify wordlength configurations that provide effective

tradeoffs between these conflicting criteria. This multiobjective optimization allows a

designer to systematically maximize accuracy for a given hardware cost limitation

(imposed by a target device, for example) or minimize hardware resources to meet the

accuracy requirements of a medical application.

The following section provides a formal definition of this problem and the

subsequent section describes a framework developed for multiobjective optimization

of FPGA-based medical image registration.

5.2.1. Problem Statement

Consider a system Q that is parameterized by N parameters

(1, 2, ,)in i N= … , where each parameter can take on a single value from a

 130

corresponding set of valid values (iv). Let the design configuration space

corresponding to this system be S , which is defined by a set consisting of all N-

tuples generated by the Cartesian product of the sets ,iv i∀ :

 1 2 3 .NS v v v v= × × × ×" (5.1)

The size of this design configuration space is then equal to the cardinality of the set

S , or in other words, the product of the cardinalities of the sets iv :

 1 2 3 .NS v v v v= × × × ×" (5.2)

For most systems, not all configurations that belong to S may be valid or practical.

We therefore define a subset ()Sℑ ℑ⊆ , such that it contains all the feasible system

configurations. Now consider m objective functions 1 2(, , ,)mf f f… defined for

system Q , such that each function associates a real value for every feasible

configuration c∈ℑ .

The problem of multiobjective optimization is then to find a set of solutions

that simultaneously optimizes the m objective functions according to an appropriate

criterion. The most commonly adopted notion of optimality in multiobjective

optimization is that of Pareto optimality. According to this notion, a solution c∗ is

Pareto optimal if there does not exist another solution c∈ℑ such that

*() ()i if c f c≤ , for all i , and *() ()j jf c f c< , for at least one j . The solution c∗
 is also

called a non-dominated solution, because no other solution dominates (or is superior

than) solution c∗ as per the Pareto-optimality criteria. The set of Pareto optimal

solutions, therefore, comprises of all non-dominated solutions.

 131

Given a multiobjective optimization problem and a heuristic technique for this

problem that attempts to derive Pareto-optimal or near-Pareto-optimal solutions, we

refer to solutions derived by the heuristic as “Pareto-optimized” solutions.

5.2.2. Parameterized Architectural Design

Implementations of signal processing algorithms using microprocessor- or

DSP-based approaches are characterized by a fixed datapath width. This width is

determined by the hard-wired datapath of the underlying processor architecture.

Reconfigurable implementation based on FPGAs, in contrast, allows the size of

datapath to be customized to achieve better tradeoffs among accuracy, area, and

power. The use of such custom data representation for optimizing designs is one of

the main strengths of reconfigurable computing [85]. To take advantage of the

described multiobjective optimization strategy, the architecture being optimized must

be able to support various design configurations as identified by the optimization

scheme. It has even been contended that the most efficient hardware implementation

of an algorithm is one that supports a variety of finite precision representations of

different sizes for its internal variables [158]. In this spirit, many commercial and

research efforts have employed parameterized design style for intellectual property

(IP) cores [162-166]. This parameterization capability not only facilitates reuse of

design cores, but also allows them to be reconfigured to meet design requirements.

During the design of the aforementioned architecture for accelerated

computation of MI, we adopted a similar design style that allows configuration of the

wordlengths of the internal variables. Hardware design languages such as VHDL and

Verilog natively support hierarchical parameterization of a design through use of

 132

generics and parameters, respectively. This design style takes advantage of these

language features and is employed for the design of all the modules described earlier.

We highlight the main features of this design style using illustrative examples and

design senarios. Consider a design module with two input variables that computes an

output variable through arithmetic manipulation of the input variables. The

wordlength of the input variables (denoted by IP1_WIDTH, IP2_WIDTH) and that of

the output variable (denoted by OP_WIDTH) are the design parameters for this

module. The module can then be parameterized for these design variables as

illustrated in Figure 5.1a.

In a pipelined implementation of an operation, a module may have multiple

internal pipeline stages and corresponding intermediate variables. Wordlengths

chosen for these intermediate variables can also impact the accuracy and hardware

requirements of a design. In our implementation scheme, we do not employ any

rounding or truncation for the intermediate variables, but deduce their wordlengths

based on the wordlengths of the input operands and the arithmetic operation to be

implemented. For example, multiplication of two 8-bit variables will, at the most,

require a 16-bit wide intermediate output variable. A parameterized implementation

of this scenario is illustrated in Figure 5.1c. Sometimes, it is also necessary to

instantiate a vendor-provided or a third-party IP core, such as a FIFO module or an

arithmetic unit, within a design module. In such cases, we simply pass the wordlength

parameters down the design hierarchy to configure the IP core appropriately and

thereby maintain the parameterized design style (see Figure 5.1b for example).

 133

When signals cross module boundaries, the output wordlength and format

(position of the binary point) of the source module should match the input wordlength

and format of the destination module. This is usually achieved through use of a

rounding strategy and right- or left-shifting of the signals. Adopting “rounding toward

the nearest” strategy to achieve wordlength-matching is expected to introduce the

smallest error, but requires additional logic resources. In our design, we therefore

Figure 5.1: Examples of parameterized architectural design style.

 134

implement truncation (or “rounding toward zero” strategy), while the signal shifting

is achieved through zero-padding. Both these operations are parameterized and take

into account the wordlengths and the format at the module boundaries (see Figure

5.1c for example). Thus, this parameterized design style enables the architecture to

support multiple wordlength configurations for its internal variables. The parameters

of this architecture, and in particular the fractional wordlengths of the internal

variables, are being treated as design variables in this multiobjective optimization

framework. These design variables are identified in the following section.

5.2.3. Multiobjective Optimization Framework

Figure 5.2 illustrates the framework that we have developed for multiobjective

optimization of the architecture for high-speed implementation of image registration

Figure 5.2: Framework for multiobjective optimization of FPGA-based image
registration.

 135

described in the previous chapter. There are two basic components of this framework.

The first component is the search algorithm that explores the design space and

generates feasible candidate solutions; and the second component is the objective

function evaluation module that evaluates candidate solutions. The solutions and

associated objective values are fed back to the search algorithm so that they can be

used to refine the search. These two components are loosely coupled so that different

search algorithms can be easily incorporated into the framework. Moreover, the

objective function evaluation module is parallelized using a message passing interface

(MPI) on a 32-processor cluster. With this parallel implementation, multiple solutions

can be evaluated in parallel, thereby increasing search performance. These

components are described in detail in the following sections.

5.2.3.1. Design Parameters

As described in the earlier section, the architecture performs MI calculation

using a fixed-point datapath. As a result, the accuracy of MI calculation depends on

the precision (wordlength) offered by this datapath. The design parameters in this

datapath define the design space and are identified and listed along with the

corresponding design module (see Figure 4.3) in Table 5.1.

A fixed-point representation consists of an integer part and a fractional part.

The numbers of bits assigned to these two parts are called the integer wordlength

(IWL) and fractional wordlength (FWL), respectively. The individual numbers of bits

allocated to these parts control the range and precision of the fixed-point

representation.

 136

-

Range () [2 ,2) ... for signed numbers
[0,2) ... for unsigned numbers

Precison () 2

IWL IWL

IWL

FWL

R = −
=

Δ =

 (5.3)

For this architecture, the IWL required for each design parameter can be deduced

from the range information specific to the image registration application. For

example, in order to support translations in the range of [–64, 63] voxels, 7 bits of

IWL (with 1 bit assigned as a sign bit) are required for the translation parameter.

Similarly, since the current architecture supports images with dimensions up to 512, 9

bits (log2 512) of IWL is required for the floating image address. We used similar

range information to choose the IWL for all the parameters, and these values are

reported in Table 5.1. The precision required for each parameter, which is

determined by its FWL, is not known a priori. We, therefore, determine this by

performing multiobjective optimization using the FWL of each parameter as a design

variable. In our experiments, we used the design range of [1, 32] bits for FWLs of all

the parameters. The optimization framework can support different wordlength ranges

for different parameters, which can be used to account for additional design

Table 5.1: Design variables for FPGA-based architecture. Integer wordlengths are
determined based on application-specific range information, and fractional
wordlengths are used as parameters in the multiobjective optimization framework.

Architectural
Module

Design
Variable

Integer
wordlength

(IWL) (bits)

Fractional
wordlength (FWL)

range (bits)
Translation vector 7 [1,32] Voxel coordinate

transformation Rotation matrix 4 [1,32]
Partial volume
interpolation Floating image address 9 [1,32]

Mutual histogram
accumulation

Mutual histogram
bin 25 [1,32]

 137

constraints, such as, for example, certain kinds of constraints imposed by third-party

intellectual property.

The entropy calculation module is implemented using a multiple-LUT–based

approach and also employs fixed-point arithmetic. However, this module has already

been optimized for accuracy and hardware resources, as described in [155]. The

optimization strategy employed in [155] uses an analytical approach that is specific to

entropy calculation and is distinct from the strategy presented in this work. This

module, therefore, does not participate in the multiobjective optimization framework

presented in this work, and we simply use the optimized configuration identified

earlier. This further demonstrates the flexibility of our optimization framework to

accommodate arbitrary designer- or externally-optimized modules.

5.2.3.2. Search Algorithms

An exhaustive search that explores the entire design space is guaranteed to

find all Pareto-optimal solutions. However, this search can lead to unreasonable

execution time, especially when the objective function evaluation is computationally

intensive. For example, with four design variables, each taking one of 32 possible

values, the design space consists of 324 solutions. If the objective function evaluation

takes 1 minute per trial (which is quite realistic for multiple MI calculations using

large images), the exhaustive search will take 2 years. Consequently, we have

considered alternative search methods, as described below.

The first method is partial search, which explores only a portion of the entire

design space. For every design variable, the number of possible values it can take is

reduced by half by choosing every alternate value. A complete search is then

 138

performed in this reduced search space. This method, although not exhaustive, can

effectively sample the breadth of the design space. The second method is random

search, which involves randomly generating a fixed number of feasible solutions. For

both of these methods, Pareto-optimized solutions are subsequently identified from

the set of solutions explored.

The third method is performing a search using evolutionary techniques. EAs

have been shown to be effective in efficiently exploring large search spaces [130,

131]. In particular, we have employed SPEA2 [160], which is very effective in

sampling from along an entire Pareto-optimal front and distributing the solutions

generated relatively evenly over the optimal tradeoff surface. Moreover, SPEA2

incorporates a fine-grained fitness assignment strategy and an enhanced archive

truncation method, which further assist in finding Pareto-optimal solutions. The flow

of operations in this search algorithm is shown in Figure 5.2.

For the EA-based search algorithm, the representation of the system

configuration is mapped onto a “chromosome” whose “genes” define the wordlength

parameters of the system. Each gene, corresponding to the wordlength of a design

variable i, is represented using an integer allele that can take values from the set vi,

described earlier. Thus, every gene is confined to wordlength values that are

predefined and feasible for a given design variable. The genetic operators for

crossover and mutation are also designed to adhere to this constraint and always

produce values from set vi, for a gene i within a chromosome. This representation

scheme is both symmetric and repair-free and, hence, is favored by the schema theory

[167], and is computationally efficient, as described in [168].

 139

5.2.3.3. Objective Function Models and their Fidelity

Search for Pareto-optimized configurations requires evaluating candidate

solutions and determining Pareto-dominance relationships between them. This can be

achieved by calculating objective functions for all the candidate solutions and by

relative ordering of the solutions with respect to the values of their corresponding

objective functions. We consider the error in MI calculation and the hardware

implementation cost to be the conflicting objectives that must be minimized for our

FPGA implementation problem. We model the FPGA implementation cost using two

components: the first is the amount of logic resources (number of LUTs) required by

the design, and the second is the internal memory consumed by the design. We treat

these as independent objectives in order to explore the synergistic effects between

these complementary resources. Because of the size of the design space and

limitations due to execution time, it is not practical to synthesize and evaluate each

solution. We, therefore, employ models for calculating objective functions to evaluate

the solutions. The quality of the Pareto-optimized solutions will then depend on the

fidelity of these objective function models.

The error in MI calculation can be computed by comparing the MI value

reported by the limited-precision FPGA implementation against that calculated by a

double-precision software implementation. For this purpose, we have utilized a bit-

true emulator of the hardware. This emulator was developed in C++ and uses fixed-

point arithmetic to accurately represent the behavior of the limited-precision

hardware. It supports multiple wordlengths for internal variables and is capable of

accurately calculating the MI value corresponding to any feasible configuration. We

 140

have verified its equivalence with the hardware implementation for a range of

configurations and image transformations. This emulator was used to compute the MI

calculation error. The MI calculation error was averaged for three distinct image pairs

(with different image modality combinations) and for 50 randomly generated image

transformations. The same sets of image pairs and image transformations were used

for evaluating all feasible configurations.

The memory required for a configuration is primarily needed for intermediate

FIFOs, which are used to buffer internal variables, and the MH memory. For

example, a 64-word deep FIFO used to buffer a signal with a wordlength of b will

require 64×b bits of memory. In our architecture, the depth of the FIFOs and the

dimensions of the MH are constant, whereas their corresponding widths are

determined by the wordlength of the design parameters. Using these insights, we have

developed an architecture-specific analytical expression that accurately represents the

cumulative amount of memory required for all internal FIFOs and MH. We used this

expression to calculate the memory requirement of a configuration.

For estimating the area requirements of a configuration, we adopt the area

models reported in [86, 169]. These are high-level models of common functional

units such as adders, multipliers, delays. These models are derived from the

knowledge of the internal architecture of these components. Area cost for

interconnects and routing is not taken into account in this analysis. These models

have been verified for the Xilinx Virtex series of FPGAs and are equally applicable to

alternative FPGA families and for ASIC implementations. These models have also

been previously used in the context of wordlength optimization [86, 91, 169].

 141

We further evaluated the fidelity of these area models using a representative

module, PV Interpolator, from the aforementioned architecture. This module receives

the fractional components of the floating image address and computes corresponding

interpolation weights. We varied the FWL of the floating image address from 1 to 32

bits and synthesized the module using the Altera Stratix II and Xilinx Virtex 5 as

target devices. For a meaningful comparison, the settings for the analysis, synthesis,

and optimization algorithms (for example, settings to favor area or speed) for the

design tools (Altera Quartus II and Xilinx ISE) were chosen to be comparable. After

complete synthesis, routing, and placement, we recorded the area (number of LUTs)

consumed by the synthesized design. This process was automated by using the Tcl

scripting feature provided by the design tools and through the parameterized design

style described earlier. We then compared the consumed area against that predicted

by the adopted area models for all FWL configurations. The results of this experiment

are presented in Figure 5.3. These results indicate that the area estimates (number of

Figure 5.3: Comparison of the area values predicted by the adopted area models
with those obtained after physical synthesis.

 142

LUTs) predicted by the model are comparable to that obtained through physical

synthesis for both the target devices. For quantitative evaluation, the fidelity of the

area models was calculated as below:

1

1 1

2 ,
(1)

N N

i j i
ijFidelity F

N N

−

= = +

⎛ ⎞= ⎜ ⎟− ⎝ ⎠
∑∑ (5.4)

where

 {1 if () ().0 otherwise
i j i j

ij
sign S S sign M MF − = −= (5.5)

In this equation, the iM s represent the values predicted by the area models; and the

iS s represent the values obtained after physical synthesis. The fidelity of the area

models when evaluated with respect to the synthesis results obtained for both Altera

and Xilinx devices was 1, which corresponds to maximum (“perfect”) fidelity. This

indicates that the relative ordering of FWLs with respect to their area requirements is

consistent for the model and synthesized designs. These results further validate the

applicability of using the aforementioned area models for multiobjective

optimization.

5.3. Experiments and Results

We performed multiobjective optimization of the aforementioned architecture

using the search algorithms outlined in the previous section. To account for the

Table 5.2: Number of solutions explored by search methods.

Search Method Number of
solutions explored

Partial search 65,536
Random search 6,000

EA-based search 6,000

 143

effects of random number generation, the EA-based search and random search were

repeated five times each, and the average behavior from these repeated trials is

reported. The number of solutions explored by each search algorithm in a single run

is reported in Table 5.2. The execution time of each search algorithm was roughly

proportional to the number of solutions explored, and the objective function

evaluation for each solution took approximately 1 minute using a single computing

node. As expected, the partial search algorithm explored the largest number of

solutions. The parameters used for the EA-based search are listed in Table 5.3. The

crossover and mutation operators were chosen to be one-point crossover and flip

mutator, respectively. For a fair comparison, the number of solutions explored by the

random search algorithm was set to be equal to that explored by the EA-based

algorithm.

The solution sets obtained by each search method were then further reduced to

corresponding nondominated solution sets using the concept of Pareto optimality. As

described earlier, the objectives considered for this evaluation were the MI

calculation error and the memory and area requirements of the solutions. Figure 5.4

shows the Pareto-optimized solution set obtained for each search method.

Qualitatively, the Pareto front identified by the EA-based search is denser and more

widely distributed and demonstrates better diversity than other search methods.

Table 5.3: Parameters used for the EA-based search.
Parameter Value

Population size 200
Number of generations 30
Crossover probability 1.0
Mutation probability 0.06

 144

(a)
Partial Search

(b)
EA-based Search

(c)
Random Search

Figure 5.4: Pareto-optimized solutions identified by various search methods.

 145

Figure 5.5 compares the Pareto fronts obtained by partial search and EA-based search

by overlaying them and illustrates that the EA-based search can identify better Pareto-

optimized solutions, which indicates the superior quality of solutions obtained by this

search method. Moreover, it must be noted that the execution time required for the

EA-based search was over 10-times faster than that required for the partial search.

(a) Area vs. MI
calculation error

(b) Memory vs. MI
calculation error

Figure 5.5: Qualitative comparison of solutions found by partial search and EA-
based search.

 146

5.3.1. Metrics for Comparison of Pareto-optimized Solution Sets

Quantitative comparison of the Pareto-optimized solution sets is essential in

order to compare more precisely the effectiveness of various search methods. As with

most real-world complex problems, the Pareto-optimal solution set is unknown for

this application. We, therefore, employ the following two metrics to perform

quantitative comparison between different solution sets. We use the ratio of non-

dominated individuals (RNI) to judge the quality of a given solution set, and the

diversity of a solution set is measured using the cover rate. These performance

measures are similar to those reported in [170] and are described below.

The RNI is a metric that measures how close a solution set is to the Pareto-

optimal solution set. Consider two solution sets (1P and 2P) that each contain only

non-dominated solutions. Let the union of these two sets be UP . Furthermore, let NDP

be a set of all non-dominated solutions in ()U ND UP P P⊆ . The RNI for the solution set

iP is then calculated as:

 ,i ND
i

ND

P P
RNI

P
=

∩
 (5.6)

where ⋅ is the cardinality of a set. The closer this ratio is to 100%, the more superior

the solution set is and the closer it is to the Pareto-optimal front. We computed this

metric for all the search algorithms previously described, and the results are presented

in Figure 5.6. Our EA-based search offers better RNI and, hence, superior quality

solutions to those achieve7d with either the partial or random search.

 147

The cover rate estimates the spread and distribution (or diversity) of a solution

set in the objective space. Consider the region between the minimum and maximum

of an objective function as being divided into an arbitrary number of partitions. The

cover rate is then calculated as the ratio of the number of partitions that is covered

(that is, there exists at least one solution with an objective value that falls within a

given partition) by a solution set to the total number of partitions. The cover rate (kC)

of a solution set for an objective function (kf) can then be calculated as:

 ,k
k

NC
N

= (5.7)

where kN is the number of covered partitions and N is the total number of

partitions. If there are multiple objective functions (m , for example), then the net

cover rate can be obtained by averaging the cover rates for each objective function as:

1

1 .
m

k
k

C C
m =

= ∑ (5.8)

The maximum cover rate is 1, and the minimum value is 0. The closer the cover rate

of a solution set is to 1, the better coverage and more even (more diverse) distribution

it has. Because the Pareto-optimal front is unknown for our targeted application, the

Figure 5.6: Quantitative comparison of search methods using the ratio of non-
dominated individuals (RNI).

 148

minimum and maximum values for each objective function were selected from the

solutions identified by all the search methods. We used 20 partitions/decade for MI

calculation error (represented using a logarithmic scale), 1 partition for every 50

LUTs for the area requirement, and 1 partition for every 50 Kbits of memory

requirement. The cover rate for all the search algorithms described earlier was

calculated using the method outlined above, and the results are illustrated in Figure

5.7. The EA-based search offers a better cover rate, which translates to better range

and diversity of solutions when compared with either partial or random searches. In

summary, our EA-based search outperforms the random search and is capable of

offering more diverse and superior quality solutions when compared with the partial

search, using only 10% of the execution time.

5.3.2. Accuracy of Image Registration

An important performance measure for any image registration algorithm,

especially in the context of medical imaging, is its accuracy. We did not choose

Figure 5.7: Quantitative comparison of search methods using cover rate.

 149

registration accuracy as an objective function because of its dependence on data

(image pairs), the degree of misalignment between images, and the behavior of the

optimization algorithm that is used for image registration. These factors, along with

its execution time, in our experience, may render registration accuracy as an

unsuitable objective function, especially if there is non-monotonic behavior with

respect to the wordlength of design variables.

Instead, we evaluated the affect of error in MI calculation on the image

registration accuracy for a set of image pairs. This analysis was performed using three

computed tomography image pairs for the Pareto-optimized solutions identified by all

of the search algorithms that we experimented with. Image registration was

performed using limited-precision configurations corresponding to each solution

using the aforementioned bit-true simulator. The result of registration was then

compared with that obtained using double-precision software implementation.

Registration accuracy was calculated by comparing deformations at the vertices of a

Figure 5.8: Relationship between MI calculation error and resulting image
registration error.

 150

cuboid (with size equal to half the image dimensions) located at the center of the

image. The results of this analysis are illustrated in Figure 5.8. As expected, there is a

good correlation between the MI calculation error and the accuracy of image

registration. This demonstrates that optimized tradeoff curves between MI calculation

error and hardware cost, as identified by our reported analysis, can be used to

represent the relationships between registration accuracy and hardware cost with high

fidelity. This analysis also provides better insight about the sensitivity of image

registration accuracy to various design parameters.

5.3.3. Post-synthesis Validation

We performed further validation of the presented multiobjective optimization

strategy through physical design synthesis. We identified three solutions from the

Pareto-optimized set obtained using the EA-based search and synthesized the

aforementioned architecture with configurations corresponding to these solutions.

These three configurations, which offer gradual tradeoff between hardware resource

requirement and error in MI calculation, are listed in the first column of Table 5.4.

The wordlengths associated with each configuration correspond to the FWLs of the

design variables identified in Table 5.1. The design was synthesized for these

configurations and the resulting realizations were implemented using an Altera Stratix

II EP2S180F1508C4 FPGA (Altera Corporation, San Jose, CA) on a PCI prototyping

board (DN7000K10PCI) manufactured by the Dini Group (La Jolla, CA). We then

evaluated the performance of the synthesized designs and compared it with that

predicted by the objective function models. The results of this analysis are

summarized in Table 5.4 and are described below.

 151

The error in MI calculation was computed by comparing the MI value

reported by the limited-precision FPGA implementation against that calculated by a

double-precision software implementation. The MI calculation error was averaged for

three distinct image pairs and for 50 randomly generated image transformations for

each pair. These image pairs and the associated transformations were identical to

those employed in the objective function calculation. In this case, the average MI

calculation error obtained by all the design configurations was identical to that

predicted by the objective function model. This is expected due to the bit-true nature

of the simulator used to predict the MI calculation error. We repeated this calculation

with a different set of three image pairs and 50 randomly generated new

transformations associated with each image pair. The MI calculation error

corresponding to this setup is reported in the second column of Table 5.4. The small

difference when compared to the error predicted by the models is explained by the

different sets of images and transformations used. The area and memory requirement

corresponding to each configuration after synthesis are reported in columns three and

Table 5.4: Validation of the objective function models using post-synthesis
results. The wordlengths in a design configuration correspond to the FWLs of the
design variables identified earlier.

Objective Functions
Post-Synthesis Value

(Predicted Value) Design
Configuration

MI Calculation
Error

Area
(No. of LUTs)

Memory
(Mbits)

Image
Registration

Error
(mm)

{5, 6, 4, 9} 2.4×10-3
(2.1×10-3)

6527
(5899)

2.23
(2.23) 3.82

{8, 9, 7, 12} 5.3×10-4

 (5.2×10-4)
7612

(6754)
2.45

(2.45) 1.57

{9, 12, 10, 17} 7.7×10-5
(7.8×10-5)

10356
 (8073)

2.81
(2.81) 0.45

 152

four of Table 5.4, respectively. For comparison, we have also included the values

predicted by the corresponding objective function models in parenthesis. It must be

noted that for all the three configurations, the relative ordering based on Pareto-

dominance relationships with respect to each objective function is identical for both

post-synthesis and model-predicted values.

We also evaluated the accuracy of image registration performed using the

implementation corresponding to each design configuration. For this analysis, we

considered five computed tomography image pairs. The image registration results for

a representative image-pair are illustrated in Figure 5.9. Subfigures (a) and (b) show

two distinct poses for the same subject; and (c) shows fusion of (a) and (b) using a

checkerboard pattern. The misalignment between images is evident at the edges of the

squares within the checkerboard pattern. Subfigures (d)-(f) show fusion images after

registration using the identified design configurations. These configurations offer

progressively reducing image registration error (3.82 mm, 1.57 mm, and 0.45 mm,

respectively), and result into correspondingly improved image alignment. The arrows

indicate representative regions with misalignment that are better-aligned after

registration. The registration error was calculated by comparing the obtained

registration results with that obtained using double-precision software

implementation. The average registration error for each configuration is reported in

the last column of Table 5.4. There is a good correlation between the MI calculation

error and the registration error, reinforcing the results presented in the previous

section.

 153

This post-synthesis validation further demonstrates the efficacy of the

presented optimization approach for reconfigurable implementation of image

registration. It also further demonstrates how the approach enables a designer to

systematically choose an efficient system configuration to meet the registration

accuracy requirements for a reconfigurable implementation.

As described previously, we used error in calculation of MI as one of the

objective functions. The Pareto-optimized solutions identified by the search schemes

employed in this multiobjective optimization framework can then be used to select a

design configurations that offer best (lowest) error in calculation of MI for various

hardware resource requirements. Through additional experiments, both simulation-

based and post-synthesis validation–based, we have further demonstrated that there is

Figure 5.9: Results of image registration performed using the high-speed, FPGA-
based implementation for design configurations offering various registration errors.

 154

a good correlation between error in MI calculation and the image registration error. In

general, reducing the error in the calculation of MI will translate into improved image

registration accuracy. This is expected, since MI is used as a similarity measure for

performing image registration. Although, the image registration algorithm being

accelerated in the current work is of deformable nature, it achieves deformable

alignment through a series of hierarchical, locally rigid registrations that use MI as a

similarity measure. We, therefore, contend that the accuracy of the deformable

registration is directly dependant on and highly correlated with the accuracy of MI

calculation. Consequently, the design configuration offering better accuracy (lower

error) in MI calculation will lead to superior image registration accuracy. This is also

supported by the data presented in Table 5.4. As accuracy of image registration can

play a crucial rule in IGI applications (and other medical applications, in general), we

selected the system configuration that offered lowest error in MI calculation (and by

extension lowest image registration error) from Table 5.4. This system configuration

({9, 12, 10, 17}) was then used for validation of deformable registration in the

context of novel IGI applications described in the following chapter.

5.4. Summary

One of the main strengths of reconfigurable architectures over general-

purpose processor–based implementations is their ability to utilize more streamlined

representations for internal variables. This ability can often lead to superior

performance, as demonstrated by our architectures (for performing 3D image

preprocessing and deformable image registration) presented in the previous chapters

and by other researchers in the context of myriad of other applications. Furthermore,

 155

this approach can result into optimized utilization of FPGA resources, by employing

just enough precision for each of its internal variables to satisfy design requirements

of a given application. Given this advantage, it is highly desirable to automate the

derivation of optimized design configurations that offer varying degree of tradeoff

between implementation accuracy and hardware resources. Toward that end, this

work has presented a framework for multiobjective optimization of finite precision,

reconfigurable implementations. This framework considers multiple conflicting

objectives, such as hardware resource consumption and implementation accuracy, and

systematically explores tradeoff relationships among the targeted objectives. This

work has also further demonstrated the applicability of EA-based techniques for

efficiently identifying Pareto-optimized tradeoff relations in the presence of complex

and non-linear objective functions. The evaluation that we have performed in the

context of the architecture for FPGA-based deformable image registration

demonstrates that such an analysis can be used to enhance automated hardware design

processes, and efficiently identify a system configuration that meets given design

constraints. This approach may also be applied in the context of reconfigurable

computing for identifying suitable design configurations that can be switched among

at runtime. Furthermore, the multiobjective optimization approach that we have

presented is quite general, and can be extended to a multitude of other signal

processing applications.

 156

Chapter 6: Clinical Applications

Earlier chapters of this dissertation have identified, described, and optimized

the core components of an advanced image-guidance system for IGI applications.

These components, namely real-time image processing and high-speed deformable

image registration, enable the use of 3D image processing in the IGI workflow. This

workflow is illustrated pictorially in Figure 6.1. For this example, we considered CT

to be the intraprocedural imaging modality (labeled as iCT) and PET to be the

preprocedural image modality (labeled as PET). However, it must be noted, that this

workflow is only representative and can be extended to incorporate multiple image

modality combinations (such as CT and contrast-enhanced CT, or MRI, etc.) for

various IGI applications. This chapter validates the high-speed implementation of

deformable image registration and demonstrates the feasibility of using these

components to improve existing procedures and enable development of novel image-

guided applications. We consider two such clinical applications. First, we propose a

strategy for intraprocedural radiation dose reduction in the context of CT-guided

Figure 6.1: Integration of deformable registration into IGI workflow.

 157

procedures. Second, we demonstrate the feasibility of incorporating PET into liver

radiofrequency ablations, a common procedure for treating liver tumors.

6.1. Radiation Dose Reduction

6.1.1. Motivation

3D visualization is a critical need of image guided interventions. To perform true 3D

visualization, a volumetric image of the operative field is essential, the type of data

which is native to modern CT/MRI, but not to 2D-ultrasound or fluoroscopic imaging

which are conventionally used for image-guided interventions [18, 20, 21] .

Continuous real-time 3D imaging in an interventional suite is the first step to equip

interventionists with enhanced visualization capabilities. However, continuous 3D

imaging has been technologically difficult until recently. MRI remains slow and

while real-time 3D ultrasonography was recently released, its image quality remains

suboptimal compared with that of CT and MRI. Recently introduced multi-slice CT

does not suffer from these limitations and can, in fact, image the operative field at a

high resolution and a very high frame rate (sub-seconds). As a result of this, many

interventional procedures such as liver biopsies, cryo-and radio-frequency ablations

are now being routinely carried out under volumetric CT-guidance [171-173]. With

time, its speed, image resolution and coverage will only improve, making it even

more desirable for live intraprocedural imaging. Several imaging equipment

manufacturers, Toshiba and Philips, for example, have announced availability of 256-

slice scanners [25, 174] providing sufficient coverage (8-12 cm) for most image

guided interventions. Radiation exposure to the patient and the interventionist,

 158

however, continues to be a concern with use of continuous or on-demand CT. It is,

therefore, necessary to acquire the intraprocedural images at a lower dose, such that

the net radiation dose is within the safe limits. There are some previous studies which

have reported use of low-dose CT [175-177], however, these techniques were

primarily employed for diagnostic and computer-aided detection applications and did

not involve image registration.

6.1.2. Dose Reduction Strategy

Our primary radiation dose reduction strategy is to acquire a standard-dose

preprocedural CT image and scan the dynamic operative field subsequently using

low-dose CT. Using the high-speed deformable registration technique described

earlier, the preprocedural CT image can then be registered to low-dose

intraprocedural CT images. Registered preprocedural CT will then show the dynamic

intraprocedural anatomy and will substitute the low-dose CT images. These

diagnostic quality images can then be 3D rendered and used for intraprocedural

guidance and navigation. Capability of viewing hidden vasculature using

preprocedural contrast-enhanced CT together with the additional capability of

virtually inserting intraprocedural tools in the 3D renderings will add a new

dimension to CT-guided interventions.

This proposed dose reduction strategy necessitates the determination of the

threshold radiation dose for intraprocedural CT, which permits its accurate image

registration with preprocedural CT. The following sections describe a preliminary

study to evaluate the registration accuracy with low-dose CT.

 159

6.1.3. Evaluation of Registration Accuracy with Low-Dose CT

Quantifying the accuracy of deformable registration, in general, is a very

difficult task due to the lack of a well known gold standard. It is, however, necessary

to judge the registration accuracy in the proposed application to determine the optimal

radiation dose that does not sacrifice the precision of an image-guided procedure.

Since our images are to be registered in the present case, our validation strategy has

been to test how well the deformable registration algorithm recovers a user-

introduced, known non-rigid misalignment. Our overall strategy can then be

described in following main steps: 1) Generate images representing the same

anatomy at varying radiation doses, 2) introduce the same known deformation in low-

dose CT images, 3) preprocess the deformed low-dose CT images to improve SNR

prior to the registration, 4) register the preprocedural standard-dose image with the

deformed intraprocedural (simulated) low-dose images using deformable image

Figure 6.2: Important steps for evaluating registration accuracy with low-dose CT.

 160

registration and finally, 5) compare the transformation field obtained after image

registration with the original, user-introduced deformation field to calculate the

registration accuracy at various doses. The important steps in this workflow are

illustrated in Figure 6.2 and are described below.

6.1.3.1. Generating Low-Dose CT Images

Low dose images corresponding to a standard dose abdominal scan were

generated using syngo-based Somaris/5 simulator from Siemens. This simulator

models the noise and attenuation effects at lower radiation doses and can generate

low-dose equivalent images from tomographic projection data corresponding to an

input standard-dose image. The performance and accuracy of this simulator has been

previously reported [178]. This approach ensures that scans at all radiation doses

represent exactly the same anatomy. Example low-dose images generated using this

simulator are shown in Figure 6.3. Subfigure (a) shows a coronal slice for an input

image at a standard dose (200 mAs), and subfigures (b-d) show the corresponding

coronal slice for the low-dose images generated using the dose simulator at various

doses.

a) 200 mAs b) 50 mAs c) 20 mAs d) 10 mAs

Figure 6.3: Low-dose CT images generated by the dose-simulator.

 161

6.1.3.2. Creating Anatomically Realistic Deformations

Human body, and abdominal organs and tissues in particular, undergo non-

rigid deformation during day-to-day activities, respiratory and cardiac cycles, etc.

These deformations manifest as misalignment between preprocedural and

intraprocedural scans. Further misalignments are introduced due to differences in

patient position during imaging as well as different scan parameter settings. In order

to create a realistic deformation that incorporates all these effects, it is necessary to

estimate this deformation from scans of the same anatomy taken on different days,

thus ensuring sufficient temporal separation.

We, therefore, consider CT images for the same subject acquired at different

times as a suitable image-pair. We then identify several significant anatomical

landmarks from both these images. Deformation vectors between homologous

anatomical landmarks in such two images represent the local misalignment at those

landmarks. Using these vectors, deformation field for the entire anatomy can then

approximated using thin-plate spline (TPS)-based interpolation [179]. TPS is an

interpolation scheme based on radial basis functions and is capable of providing

smooth 2D or 3D interpolation for non-uniformly spaced sample points. This

technique has been applied extensively for various medical imaging applications

[180, 181].

6.1.3.3. Image Preprocessing

Ultra low-dose CT scans acquired during the procedure show the exact same

anatomy as a standard dose scan would but are characterized by high level of

quantum noise. These scans may not be acceptable for diagnostic purposes, but

 162

contain sufficient information regarding the current anatomical state. From the

perspective of MI-based deformable image registration, using these low-dose images

as is will cause the dispersion of the mutual histogram (due to noise, in an otherwise

uniform structure) leading to poor image registration. Anisotropic diffusion filtering

has been shown to be an effective processing step prior to advanced image processing

[76, 83, 182, 183]. Figure 6.4 compares the performance of anisotropic diffusion

filtering against other standard preprocessing techniques. Higher value of mutual

information between the original and the filtered image after preprocessing, which

represents increased structural similarity, indicates superior filtering performance for

a given pair of images. We, therefore, enhance the low-dose CT images through use

of anisotropic diffusion filtering prior to image registration. Anisotropic diffusion

filtering, however, is an iterative process which can take up to minutes on a modern

CPU. The FPGA-based real-time implementation of this operation, which has been

described earlier, can be employed to accelerate the execution of this step.

6.1.3.4. Applying Deformation and Image Registration

The deformation field generated using TPS-based interpolation is applied to

the low-dose images for all the simulated doses. This involves resampling of the low-

Standard Dose
(200 mAs)

Ultra Low Dose
(10 mAs)

Median
Filtered

Gaussian
Filtered

Anisotropic
Diffusion Filtered

MI = 3.49 MI = 1.11 MI = 1.43 MI = 1.23 MI = 1.62
Figure 6.4: Comparison of techniques for preprocessing low-dose CT images.

 163

dose image on to a regular grid using the anatomical mapping provided by the TPS-

generated deformation field. The image registration between these deformed low-

dose images and the original standard-dose image yields a registration field, which

attempts to estimate and recover the induced anatomically realistic deformation. The

mean-squared difference between the deformation vectors at every voxel

corresponding to the registration field and the induced deformation field provides a

measure of registration accuracy at a particular radiation dose.

6.1.4. Experiments

An abdominal scan acquired under clinical settings at the standard dose (200

mAs) was selected for this study. Dose correction feature of the scanner, which

automatically modulates the radiation dose based on the anatomy to be scanned, was

turned off for this scan to keep the dose consistent across all the slices. The CT image

acquired measured 256×256×300 voxels, with voxel dimensions of 1.56 mm×1.56

mm×1.5 mm and field of view restricted mostly to lower thorax and abdomen.

Four different CT scans of the same subject acquired at different times within

a span of one to sixty days were used for creating anatomically realistic deformations.

These prior scans had dimensions and resolution of 256×256×280-315 and 1.48

mm×1.48 mm×1.5 mm respectively. Based on a predetermined, well-described list of

32 anatomical landmarks, a clinical expert identified and marked a set of homologous

points in all the CT scans (one standard-dose scan and four older scans). Based on the

expert-defined landmarks, TPS-based starting deformation fields (DF1, DF2, DF3, and

DF4) corresponding to each prior scans were generated.

 164

Treating the standard-dose scan as a reference, we generated eleven low-dose

scans (at 10, 15, 20, 25, 30, 40, 50, 70, 85, 100, 150 mAs) using the Somaris/5

simulator. 10mAs was the lowest setting possible for the current version of the

simulator. Each of these scans (including the standard dose scan) was deformed using

the realistic deformation fields DF1, DF2, DF3, and DF4 described above.

We registered these deformed and preprocessed low-dose images (reference

image) with the original standard-dose image (floating image) using the deformable

registration algorithm and its accelerated implementation described earlier.

Alignment between the floating and reference after deformable image registration

yields a registration field (RFi) which maps each reference image voxel into floating

image coordinate space. Comparison of this registration field (RFi) with the originally

introduced deformation field (DFj) was used to judge the registration accuracy for

each dose.

6.1.5. Results

Result of the deformable registration using the hardware implementation of

the registration algorithm for a representative image-pair generated using one of the

deformations (DF1) is shown in Figure 6.5. Columns a) and b) show the two starting

poses, and column c) the starting pose difference that the image registration must

recover. The difference images after image registration at various CT doses are

shown in columns d) to f). The top row shows coronal slices of the image and the

corresponding axial slices are shown in the bottom row. The software implementation

produced qualitatively similar registration results. Visually correct registration of the

standard-dose image with the deformed images at various low doses (evident from the

 165

reduced features in the difference image) demonstrates the feasibility of deformable

registration at low CT doses.

The process of deformable registration attempts to recover any misalignment

between the reference and floating images. A perfect registration will completely

recover this misalignment and yield a non-rigid transformation field that is identical

to the deformation field representing the original misalignment. A comparison

between these two fields can be used as a performance index for the registration

accuracy.

For this experiment, the deformation field introduced (DFi) is known at every

voxel. The volume subdivision-based deformable registration algorithm generates the

transformation field (RFj), which provides the transformation at every voxel in scan

with dose j. The average of the magnitude of the vector differences between these two

fields at all doses for the software implementation is reported in Figure 6.6. This

average was calculated over the region of the image which contains sufficient part of

the subject and hence information to yield meaningful registration. The regions of the

image which contain no information (very low entropy) (e.g. black areas surrounding

d) 200 mAs e) 20 mAs f) 10 mAs a) Standard

CT
Pose-1

b) Standard
CT

Pose-2

c) Starting
Difference Difference after registration at various doses

Figure 6.5: Qualitative comparison of registration accuracy with low-dose CT.

 166

the subject) are masked out using a simple threshold operation. The results show a

maximum error of about 10% at the doses of 10 mAs and 20 mAs, respectively.

Moreover the maximum registration error at the lowest dose (10 mAs) is less than 2.5

mm, which is within acceptable limits of IGI applications. As expected, the average

error improves steadily with dose.

We repeated the experiment with the high-speed implementation of the

deformable registration algorithm described earlier, and compared the registration

field produced by the hardware implementation with the user induced deformation.

The same optimization algorithm (downhill Simplex) was used for these two

implementations and equal number of optimization iterations were used. Figure 6.6

also shows the comparison of the average registration accuracy achieved using the

software and hardware implementations. The blue curve corresponds to the average

registration accuracy using the software implementation and the red curve

corresponds to the average registration accuracy of the hardware implementation.

Figure 6.6: Average registration error with respect to dose using software and
FPGA-based implementations.

 167

This comparison of the registration accuracies indicates that the hardware

implementation is capable of achieving comparable registration accuracy. The

average execution time for these two implementations is reported in Table 6.1. The

hardware implementation achieved a speedup of about 30 and offers comparable

registration accuracy. Moreover, both the implementations offer acceptable

registration accuracy for most IGI applications and demonstrate the applicability of

deformable image registration to lower the radiation dose during intraprocedural

imaging.

6.1.6. Summary

In this study, we have demonstrated successful registration of standard-dose

abdominal CT images with lower-dose images of the same anatomy. Even at 10 mAs,

the smallest dose achievable using the simulator, the registration accuracy achieved

was comparable to that achieved at the standard dose. Our results demonstrate ten- to

twenty fold reduction in radiation dose with the use of low-dose CT. Reduction of

radiation dose to safe levels is highly significant in that it enables navigating

interventions using more powerful, multislice CT. Moreover, through the use of

hardware accelerated implementation, deformable image registration (which allows

this reduction in radiation dose) can be performed in a matter of minutes. This

enables assimilation of this novel dose reduction strategy in the IGI workflow. The

Table 6.1: Execution time for deformable image registration using low-dose CT.
Execution Time (s)

Software
Implementation

FPGA-based
Implementation

Speedup

11,976 392 30.55

 168

introduction of true 3D visualization possible through safe, volumetric CT imaging of

the intraprocedural anatomy may enable development of novel image-guided

interventional applications such as CT-guided minimally invasive surgery [149, 184].

6.2. Incorporation of PET into CT-Guided Liver Radio-Frequency

Ablation

I would like to thank Mr. Peng Lei from Prof. Shekhar’s research group for

his help in the quantitative validation aspect of the deformable registration presented

in this section.

6.2.1. Motivation

The liver is a common site of both primary and metastatic cancers. Performing

resection of malignant liver tumors has been shown to increase the 5-year survival

rate of patients with liver cancer [185]. However, the majority (85%–90%) of hepatic

tumors are considered unresectable at diagnosis [186], either because of their

anatomic location, size, or number or because of inadequate viable liver tissue and

morbidity. Radiofrequency ablation (RFA) as a minimally invasive procedure is often

the treatment of choice for patients who are not suitable candidates for resection

[187]. RFA is a treatment technique that uses high-frequency alternating electrical

current to destroy tissue cells by heating [188]. For small lesions (<5 cm in diameter),

RFA has been reported to achieve 4-year survival rates, comparable with those

achieved with resection [189, 190].

RFA has conventionally been performed under fluoroscopic or ultrasound

guidance. With the advent of multislie CT, many of these procedures are being

 169

carried out under intraprocedural volumetric CT guidance. The volumetric CT scan

provides better 3D orientation and a detailed anatomic structural map. However,

some lesions (particularly small untreated masses or recurrent or residual tumors in a

large treated mass) are not clearly visible (see Figure 2.1) because intraprocedural CT

scanning is usually not contrast enhanced. Even in contrast-enhanced diagnostic CT

images, hepatic lesions with abnormal metabolic activity are sometimes overlooked

[191]. Consequently, local recurrence after liver RFA as a result of these missed

tumors remains one of the major factors in relapse [192], which is in the range of

3%–39% [193]. Thus, precise targeting of lesions remains a challenging task when

guided solely by volumetric CT with or without contrast enhancement.

Because malignancies are better characterized by increased metabolic activity

than CT number variations, PET (as a functional imaging modality) has higher

sensitivity and specificity than CT for tumor localization. Active lesions show up

clearly as regions of high uptake in a conventional PET scan. However, compared

with CT, PET is devoid of structural tissue details, which are also important for

intraprocedural targeting and needle placement. Moreover, PET is also challenged by

slow scanning speed, radiation exposure risks, logistic challenges, etc. Currently PET

remains primarily a preprocedural imaging modality, used to identify a treatment site

rather than provide intraprocedural guidance during an ablative procedure. To

combine the strengths and overcome disadvantages of both PET and CT as

intraprocedural imaging modalities, registration between PET and CT is essential. In

a clinical study by Veit et al. [186], PET and CT fusion images were reported to

greatly improve recognition and localization of liver masses. Our work, therefore, is

 170

focused on demonstrating fast, automatic, and accurate deformable image registration

between preprocedural PET and intraprocedural CT to improve localization of liver

malignancies during RFA.

6.2.2. Registration of PET and CT

As described earlier, combining of PET and CT images is crucial during liver

RFA. PET, however, cannot be repeated intraprocedurally because of time and

logistic challenges, as well as radiation risks [194]. Consequently, the interventionist

must mentally correlate preprocedural PET data onto intraprocedural CT images to

localize the lesion into which the RFA needle will be advanced, a subjective task

dependent on operator expertise. Combined PET/CT scanners, which are based on

mechanically achieved rigid registration, have emerged in recent years. They have

provided significant improvement over separate CT and PET scanning. But in

abdominal procedures such as liver RFA (unlike thoracic or brain surgery), non-rigid

misalignment resulting from tissue deformation and respiration motion can be

significant, so rigid registration approaches such as combined PET/CT scanning and

fiducial marker–based registration may misrepresent the actual transformation of the

liver. Combined PET/CT scanners have been shown to be unable to fully compensate

for involuntary non-rigid motions, such as those from respiration [185], and the

resulting images have been found to have significant misregistration in areas close to

the diaphragm. Moreover, as mentioned previously, PET has challenges including

slow scanning speed and radiation exposure risks. A combined PET/CT scanner is not

an appropriate choice as an intraprocedural imaging modality in this application or

any other image-guided procedure.

 171

Intensity-based, retrospective deformable image registration and fusion

together form the only alternative, which is also proposed here. To be clinically

practical, the registration algorithm must be automatic, which means that manual

segmentation–based registration is excluded. Moreover, as mentioned before, the

registration must be achieved sufficiently fast so as not to obstruct the clinical

workflow. The deformable registration algorithm described in the dissertation has

been previously validated for intensity based registration of whole-body PET and CT

images [66] and PET/CT images for liver RFA [78, 148]. In this work, we validate

this algorithm and its FPGA-based high-speed implementation of this algorithm in the

context of the aforementioned clinical application.

6.2.3. Experiments

This study was geared toward demonstrating the feasibility of image

registration between preprocedural PET and intraprocedural CT in the context of liver

RFA using the earlier described high-speed image registration solution. This

retrospective study involved 20 CT-PET image pairs of patients who had undergone

percutaneous abdominal RFA under CT guidance. The preprocedural PET scans had

size and resolution of 150 × 150 × 187–240 and 4.0 × 4.0 × 4.0 mm, respectively.

Noncontrast-enhanced intraprocedural abdominal CT scans were acquired for guiding

needle placement during RFA procedures. The intraprocedural CT scans had size and

resolution of 512 × 512 × 35–62 and 0.78–1.17 × 0.78–1.17 × 5 mm, respectively.

 172

6.2.3.1. Image Preprocessing

The intraprocedural CT images were acquired during the RFA with the RFA

needle in the field of view. As a result, some metal artifacts were present in the CT

images. We preprocessed the CT images using 3D median filtering and 3D

anisotropic diffusion filtering in order to minimize these artifacts. To achieve a trade-

off between maintaining CT resolution and obtaining nearly isotropic voxels, we

resampled the intraprocedural CT images for all cases to have the dimensions of 256

× 256 × 128. Resampling reduced the spatial resolution of CT images in x and y

dimensions; however, the resulting images still had better spatial resolution than the

preprocedural PET images (the lower resolution image controls the accuracy of

intensity-based image registration in general). No preprocessing steps were used for

the preprocedural PET images.

6.2.3.2. Validation of Image Registration

We evaluated the accuracy of the deformable registration between PET and

CT by comparing the alignment of several anatomic landmarks (3D locations within

the images) as predicted by the algorithm (both software and FPGA-based

implementations) against a reference. Because of the lack of a gold standard for

validation of deformable registration algorithms, we assumed the ability of clinical

experts to locate landmarks in both intraprocedural CT and preprocedural PET

images as a suitable benchmark performance. We then contend that comparing the

variability in landmark matching between algorithm- and expert-defined registrations

with the variability among the three expert-defined correspondence between the

 173

landmarks is a reasonable way to evaluate the registration accuracy of the algorithm

and assess whether its performance is comparable to that of the experts.

Our validation scheme is graphically represented in Figure 6.7. Three clinical

experts, experienced in interpreting CT and PET images, were involved in the

validation procedure. Each expert was asked to identify and mark anatomic

landmarks identifiable in both PET and CT images. Because the location of a specific

landmark as marked by an expert can vary slightly from expert to expert, a set of “test

landmarks” were created for each case separately. This was achieved by defining the

location of each landmark as the centroid of the expert-defined locations for that

landmark in intraprocedural CT (represented by CTTEST in Figure 6.7). The expert-

defined transformation fields were then used to determine distinct sets of homologous

preprocedural PET landmarks (PETE1, PETE2, and PETE3, respectively), each

representing the transformed locations of the test landmark (CTTEST) according to the

manual registration performed by each expert. The average expert-defined

transformed location (PETEXPERT) was calculated as the centroid of PETE1, PETE2,

and PETE3. The algorithm-determined transformation field was used to determine a

Figure 6.7: Graphic illustration of the quantitative validation approach used in the
context of deformable registration between intraprocedural and preprocedural PET.

 174

set of landmarks in the PET image (PETALGO) representing the transformed locations

of the test landmarks after automatic deformable registration. These locations were

calculated for both the software and FPGA-based high-speed implementation of the

algorithm.

For each case, the mean error between PETEXPERT and PETALGO was then

evaluated to quantify the registration accuracy for that case. To further evaluate the

algorithm performance in the context of inter-expert variability, we allocated the 4

sets of PET landmark points to separate groups of 3 sets each: reference group

(PETE1, PETE2, and PETE3); test group 1 (PETALGO, PETE2, and PETE3); test group 2

(PETE1, PETALGO, and PETE3); and test group 3 (PETE1, PETE2, and PETALGO). For

each group, the mean difference (Euclidean distance) in the transformed location of

corresponding landmarks was obtained for all pair wise combinations of sets of PET

points within that group. The mean difference for each group was determined by

averaging over all the cases. The variability of locations was then calculated for each

group. If the group variability of test groups 1, 2, and 3 is statistically similar to that

of the reference group, we can conclude that the algorithm and experts agree on the

PET location of a specific landmark in CT. If the group variability is statistically

different, the algorithm differs significantly from that of the experts. As mentioned

earlier, we performed this analysis for both software and the FPGA-accelerated

implementation of the deformable registration algorithm.

6.2.4. Results

All the cases were successfully registered when evaluated both qualitatively

and quantitatively. Both the software and hardware implementations yielded

 175

qualitatively similar results. The average execution time for these two

implementations is reported in Table 6.2. The hardware implementation provides a

speedup of around 30 and offers comparable registration accuracy, as presented later.

Qualitative evaluation included visual assessment of improvement in image

alignment by the clinical experts. No visually apparent gross misregistration was

found in any case. Example of registration using FPGA-based high-speed

implementation of the intensity-based deformable registration is presented in Figure

6.8. For this example, axial, coronal, and sagittal views through the intraprocedural

CT and preprocedural PET, as well as fused PET-CT images before and after

deformable image registration, are shown. The first row shows the original

preprocedural CT image. The second row shows the unregistered preprocedural PET

image. The third row presents the fusion of intraprocedural CT and preprocedural

PET prior to image registration. Misalignment of anatomical structures in this fusion

image is indicated by overlaid arrows. The final row illustrates the fusion of

intraprocedural CT with registered (through FPGA-based deformable image

registration) PET image. In all three views, deformable image registration between

PET and CT images provided superior image alignment when compared with

unregistered fusion images. Deformable registration recovered the misalignment

between anatomical structures and lesions. For example, in Figure 6.8, edges of

anatomical structures in PET and CT agree quite well.

 176

We performed the quantitative validation of deformable registration using the

validation strategy described earlier. Table 6.3 presents the results of this validation

for software implementation. The interexpert variability (i.e., group variability) in the

identification of each of the four landmarks was averaged for all the 20 image pairs

after software-based registration between intraprocedural CT and preprocedural PET.

Table 6.2: Execution time for deformable image registration using
intraprocedural CT and preprocedural PET images.

Execution Time (s)
Software

Implementation
FPGA-based

Implementation
Speedup

5217 164 31.81

Figure 6.8: Registration of intraprocedural CT and preprocedural PET images
using the FPGA-based implementation of deformable image registration.

 177

The t-tests showed no statistically significant difference between the reference group

and any test group for any of the four landmarks (the reference group value lies

within the 95% confidence intervals of all test groups), indicating that the algorithm’s

solutions were statistically similar to those of experts. For quantitative validation of

the FPGA-based implementation, we repeated the above validation procedure,

replacing the software implementation by the FPGA-based implementation. Table 6.4

presents the results of this quantitative validation. The TRE derived from the mean of

⎢PETEXPERT - PETALGO⎥ over all cases and landmarks was 6.7 mm and 7.0 mm for

software and hardware-accelerated implementations, respectively. This result is

comparable with the accuracy reported earlier for deformable registration using

whole-body 3D PET-CT images [66]. This indicates that the accuracy of the

deformable image registration algorithm is approximately independent of the

anatomy.

The TRE obtained for the FPGA-based, high speed implementation of

Table 6.3: Interexpert variability in landmark identification across 20 image
pairs. PETALGO corresponds to the software implementation of the algorithm.

Mean Difference in Landmark Location (mm) (95% Confidence

Interval (mm))
P Value

Group
Reference group

(PET1, PET2,
PET3)

Group 1
(PETALGO, PET2,

PET3)

Group 2
(PET1, PETALGO,

PET3)

Group 3
(PET1, PET2,

PETALGO)
Dome

of Liver 6.7 6.8 (6.2, 7.4)
P = 0.76

7.2 (6.6, 7.7)
P = 0.11

7.0 (6.4, 7.6)
P = 0.34

Inferior Tip
of Liver 6.5 6.4 (5.9, 6.9)

P = 0.76
6.2 (5.7, 6.7)

P = 0.22
6.5 (6.0, 7.0)

P = 0.95
Right Kidney
Upper Pole 6.1 6.0 (5.4, 6.6)

P = 0.74
6.2 (5.5 , 6.8)

P = 0.76
6.3 (5.7, 7.0)

P = 0.52
Right Kidney
Lower Pole 5.8 5.6 (5.1, 6.1)

P = 0.43
5.7 (5.2, 6.2)

P = 0.64
6.0 (5.5, 6.5)

P = 0.39

 178

deformable image registration is slightly inferior to that obtained using the software

implementation. However, the t-tests indicate no statistically significant difference

between the reference group and any test group for any of the four landmarks (the

reference group value lies within the 95% confidence intervals of all test groups).

This further indicates that the registration solutions provided by the FPGA-based

implementation were statistically similar to those of experts. Thus, the hardware

solution developed in this dissertation not only reduces the execution time of

deformable registration to a few minutes, but also offers accuracy that is statistically

similar to that of a group of clinical experts. This fast and accurate implementation

can, therefore, be used to incorporate preprocedural PET images during CT-guided

liver RFA.

6.2.5. Summary

In this study, we have demonstrated successful registration of intraprocedural

abdominal CT images acquired during liver RFA with preprocedural PET images.

Table 6.4: Interexpert variability in landmark identification across 20 image
pairs. PETALGO corresponds to the FPGA-based implementation of the algorithm.

Mean Difference in Landmark Location (mm) (95% Confidence

Interval (mm))
P Value

Group
Reference group

(PET1, PET2,
PET3)

Group 1
(PETALGO, PET2,

PET3)

Group 2
(PET1, PETALGO,

PET3)

Group 3
(PET1, PET2,

PETALGO)
Dome

of Liver 6.7 7.1 (6.5, 7.8)
P = 0.16

7.3 (6.6, 8.0)
P = 0.08

7.2 (6.5, 7.9)
P = 0.13

Inferior Tip
of Liver 6.5 6.8 (6.3, 7.4)

P = 0.32
6.5 (5.9, 7.0)

P = 0.88
6.8 (6.2, 7.4)

P = 0.38
Right Kidney
Upper Pole 6.1 6.3 (5.6, 7.0)

P = 0.50
6.5 (5.7 , 7.2)

P = 0.32
6.4 (5.7, 7.1)

P = 0.36
Right Kidney
Lower Pole 5.8 5.7 (5.2, 6.2)

P = 0.70
5.9 (5.4, 6.4)

P = 0.67
6.2 (5.8, 6.7)

P = 0.06

 179

This can enable incorporation of PET into RFA procedures through algorithmic

image registration. The hardware-accelerated implementation of image registration,

developed as part of this dissertation work, can perform this image registration task in

a matter of minutes and yet offers comparable accuracy. This represents a first

significant step toward integration deformable registration in RFA procedures. With

further technological advances, such as integration with the imaging equipment, this

approach can be made routine under clinical settings. This would lead to precise

ablation of the area of malignant activity, as indicated on PET, and avoid unnecessary

ablation of healthy tissues. For large and multiple lesions, this technique may shorten

procedure time and minimize post-procedural morbidity. Precise targeting of lesions

could allow definitive and complete treatment, potentially reducing relapse rates and

the number of repeat procedures.

 180

Chapter 7: Conclusions and Future Work

7.1. Conclusion

Minimally invasive IGIs are time and cost efficient, minimize unintended

damage to healthy tissue, and lead to faster patient recovery. Consequently, these

procedures are becoming increasingly popular. With the availability of high-speed

volumetric imaging devices there is an increasing thrust on using 3D images for

navigation and target delineation during IGIs. However, processing and analysis of

these volumetric images, while meeting the on-demand performance requirements of

IGI applications remains a challenging task. To address this problem, this dissertation

has presented core components of an advanced image-guidance system that will allow

high-speed processing and analysis of these images. The execution performance

along with the accuracy and compact and reconfigurable nature of these components

enables their integration into clinical applications.

Image preprocessing and enhancement is an important prerequisite step in the

IGI workflow prior to advanced image analysis and visualization. Chapter 3 presented

a novel FPGA-based architecture for real-time preprocessing of volumetric images

acquired during IGIs. We presented a brick-caching scheme that allows efficient,

low-latency access to sequential 3D neighborhoods, a scenario common to most

filtering operations. We introduced an FPGA-based implementation of 3D anisotropic

diffusion filtering. This design takes advantage of the symmetries present in the

Gaussian kernel and implements this filtering kernel with a reduced number of

multipliers. We further presented a linear systolic array–based architecture for

 181

accelerated implementation of 3D median filtering. The developed architecture

enables 3D anisotropic diffusion filtering and 3D median filtering of intraprocedural

images at the rate of 50 fps, which is faster than current acquisition speeds of most

intraprocedural imaging modalities. The solution presented offers real-time

performance, is compact and accurate, and, hence, suitable for integration into IGI

workflow. Furthermore, the additional filtering kernels that are based on

neighborhood operations (for example, general purpose convolution) can be easily

incorporated into the same framework.

As IGI applications become increasingly popular, intraprocedural imaging

modalities continue to offer wider coverage and higher imaging speed. Thus, there is

a corresponding need for real-time processing of these images. The real-time

performance of our design along with the throughput of one voxel per cycle can cater

to these 4D (3D + time) image processing needs.

Image registration between intra- and preprocedural images is a fundamental

need in the IGI workflow. To facilitate that, Chapter 4 presented a novel FPGA-based

architecture for high-speed implementation of MI-based deformable image

registration. This architecture achieved voxel-level parallelism through pipelined

implementation and employed several strategies to address the fundamental

bottleneck in the intensity-based image registration, namely memory access

management. As a result of these enhancements, the presented architecture is capable

of achieving high voxel processing rate and a speedup of about 30 and consequently

reduces the execution time of deformable registration from hours to only a few

minutes. The results of the qualitative and quantitative validation demonstrate that

 182

this performance improvement does not significantly compromise the accuracy of

deformable registration. Further clinical validation performed in the context of novel

IGI applications illustrated the potential of this implementation to enable improved

target delineation during image-guided interventions through deformable registration

with preprocedural images. The robustness, speed, and accuracy offered by this

architecture, in conjunction with its compact implementation, make it ideally suitable

for integration into IGI workflow.

Accurate, robust, and real-time deformable image registration between intra-

and preprocedural images has been an unmet need, critical to the success of image-

guided procedures. The work presented in this dissertation constitutes an important

first step toward meeting this goal. With further algorithmic and hardware

improvements, geared toward enhancing its accuracy and performance, this approach

has the potential to elevate the precision of current procedures and expand the scope

of IGI to moving and deformable organs.

The work presented in this dissertation achieved superior performance

through custom design on a reconfigurable computing platform, by addressing the

fundamental bottlenecks in the considered computationally intensive applications.

One of the primary strengths of reconfigurable architectures over general purpose

processor–based implementations is their ability to utilize more streamlined

representations for internal variables. Furthermore, this approach can result into

optimized utilization of FPGA resources, by employing just enough precision for

each of its internal variables to satisfy design requirements of a given application.

Given this advantage, it is highly desirable to automate the derivation of optimized

 183

design configurations that offer varying degree of tradeoff between implementation

accuracy and hardware resources. Toward that end, this dissertation has presented a

framework for multiobjective optimization of finite precision, reconfigurable

implementations. This framework considered multiple conflicting objectives, such as

hardware resource consumption and implementation accuracy, and systematically

explored tradeoff relationships among the targeted objectives. This dissertation has

also further demonstrated the applicability of EA-based techniques for efficiently

identifying Pareto-optimized tradeoff relations in the presence of complex and non-

linear objective functions. The evaluation that this work has conducted in the context

of the FPGA-based architecture for deformable image registration demonstrated that

such an analysis can be used to enhance automated hardware design processes, and to

efficiently identify a system configuration that meets given design constraints. This

approach may also be applied in the context of reconfigurable computing for

identifying suitable design configurations that can be switched among at runtime.

Furthermore, the multiobjective optimization approach presented in this dissertation

is quite general, and can be extended to a multitude of other signal processing

applications.

We have extensively validated the applicability of our approach in the context

of CT-guided interventions. In the first clinical application, we demonstrated

successful registration of standard-dose abdominal CT images with lower-dose

images of the same anatomy. Our results demonstrated ten- to twenty fold reduction

in intraprocedural radiation dose through the use of low-dose CT. Reduction of

radiation dose to safe levels is highly significant in that it enables navigating

 184

interventions using more powerful, multislice CT. Moreover, through the use of

hardware accelerated implementation, deformable image registration (which allows

this reduction in radiation dose) can be performed in a matter of minutes. This

enables assimilation of this novel dose reduction strategy in the IGI workflow. In the

second IGI application, we have further demonstrated successful registration of

intraprocedural abdominal CT images acquired during liver RFA with preprocedural

PET images. This can enable incorporation of PET into RFA procedures through

algorithmic image registration. We demonstrated that the hardware-accelerated

implementation of image registration, developed in this dissertation work, can

perform this image registration task in a matter of minutes and yet offers comparable

accuracy.

Our approach represents a first significant step toward integration of 3D

image processing and deformable image registration in image-guided procedures.

This approach can not only improve target delineation and reduce radiation dose but

can also trigger the development of novel image-guided procedures. With further

technological advances, such as integration with the imaging and visualization

equipment, and additional enhancements in speed and accuracy, this approach can be

made routine under clinical settings. This approach has the potential to elevate the

precision of current IGI procedures, expand the scope of IGI to moving and

deformable organs, and thereby to provide a new level of sophistication and accuracy

during IGIs.

 185

7.2. Future Work

The FPGA-based architecture for real-time implementation of image

preprocessing operations is capable of providing a high voxel throughput and a

volumetric processing rate higher than the acquisition speed of most current

generation imaging modalities. This architecture presented implementation of 3D

anisotropic diffusion filtering and 3D median filtering, the preprocessing steps most

commonly used in the context of IGI. However, the core components of this

architecture, in particular the memory controller and the brick-caching scheme, are

general enough to allow real-time realization of a range of image processing kernels

based on neighborhood operations. For example, a kernel for general-purpose 3D

convolution reported by Venugopal et al. [195] can easily be incorporated in the same

image processing framework. Similarly, certain morphological and contrast-

enhancement operations that are based on neighborhood operations can also be

supported by the same framework while providing equivalent voxel throughput. The

current implementation of this framework supports sequential image processing

operations through static reconfiguration of the filtering kernels. With the advent of

modern FPGAs that are capable of runtime reconfiguration, it is possible to support

adaptive image preprocessing by changing the preprocessing steps or tuning the

filtering kernel parameters at run-time. This will enable the preprocessing system to

adapt to the requirements of the subsequent advanced image processing applications

(for example, registration, volume rendering, or segmentation).

The architecture presented for accelerated calculation of MI, is capable of

achieving deformable registration between a pair of images with size 256 × 256 × 256

 186

in about 6 minutes, while providing accuracy comparable to a software

implementation. This represents a significant first step toward enabling integration of

deformable registration in the IGI workflow. Further acceleration of the

aforementioned registration algorithm to satisfy the interactive requirement of IGIs

can be achieved through additional strategies. First, the current architecture uses the

same external memory module to store both the RI and FI. Storing these images in

two separate memory modules will allow their independent parallel access. This will

eliminate the need to prefetch the RI voxels and thus provide speedup. In addition,

using high-speed static random access memory (SRAM) modules for storing the

randomly accessed FI is likely to provide further speedup by providing faster access

to the FI with minimal latencies. Second, as showed by Studholme et al. [64], varying

MH size between 32 × 32 and 256 × 256 does not significantly affect the accuracy of

MI-based registration. Based on this observation, the size of the MH within the

FPGA-based implementation can be adaptively reduced with every level of

subdivision. This will reduce the overhead of clearing the MH for smaller

subvolumes, thereby lending additional speedup. Third, the overhead of

communication time required for exchanging the transformation matrix and the

calculated MI value between the host and the MI calculator can be minimized by

reducing the communication latency. This will provide additional speedup, especially

at finer levels of image subdivision where the computation time becomes comparable

to the communication time. Most modern FPGAs support an embedded hard- or soft-

processor core that can be utilized to implement the optimization algorithm. Thus,

both the components of the registration routine will be located on the same platform,

 187

thereby reducing the communication latency. Finally, as described earlier, the

registration algorithm optimizes the individual subvolumes at a given level of

subdivision sequentially, but independently of each other. Thus, using multiple FPGA

modules in parallel it is possible to simultaneously optimize these subvolumes. This

multi-FPGA implementation will likely provide near-linear speedup. This

architecture can also be incorporated in a broader, heterogeneous computing

framework such as the one described by Plishker et al. [121]. All these strategies, in

combination, can further reduce the execution time of deformable image registration

and ultimately achieve near-real time performance for its seamless integration into

IGI applications.

The framework we presented for optimization of finite-precision

implementations considers multiple conflicting objectives, such as hardware resource

consumption and implementation accuracy, and systematically explores tradeoff

relationships among the targeted objectives. Although this framework was developed

and validated in the context of FPGA-based image registration, the presented

optimization approach is quite general and can be extended to many signal processing

applications beyond medical image processing domain. However, for demonstration

of this capability, further validation of this optimization strategy must be performed

in the context of multiple signal processing applications with known benchmarks. The

hardware area models we adopted while developing this framework, model the FPGA

area consumption using the number of look-up tables required. Modern FPGA

families, however, provide a large number of special functional units that may be

utilized for performing arithmetic operations such as multiplication, addition, etc.

 188

Although we demonstrated the high fidelity of the adopted area models, enhancing

these models to take into account the utilization of specialized functional units will

better represent the area requirements of a design configuration and, in general,

provide more accurate area estimation. In addition to the approaches mentioned

above, the framework for optimization of finite precision implementations can be

enhanced in the following ways: first, the search methods could be refined further to

efficiently explore the search space. For example, the multi-objective optimization

could be preceded by univariable simulations that can help to reduce the size of the

search space. Also, the parameters used for EA-based search, such as representation

scheme, population size, crossover and mutation operators, etc. can be optimized as

well. Second, the framework could be tuned for automated selection of search

methods that are ideally suited for a given problem. For example, for small design

search spaces a technique based on exhaustive search could be utilized. Further, EA-

based search schemes could be enhanced further by exploring selection schemes

based on techniques such as NSGA-II, epsilon dominance and quality indicators.

Finally, this framework and/or the Pareto-optimized solutions identified by this

framework can be incorporated into automated design optimization flows. This will

enable selection of optimized design configurations that balance the tradeoff between

implementation accuracy and hardware cost at run-time. Further, additional objective

functions such as power requirement and operating frequency could also be

incorporated in this framework to comprehensively capture the effects of various

design configurations.

 189

Bibliography

[1] W. Charboneau, "Image-guided Therapy is New Pillar in Patient Care," Radiology
Society of North America, New Horizons Lecture, 2006.
[2] C. Fujioka, J. Horiguchi, M. Ishifuro, H. Kakizawa, M. Kiguchi, N. Matsuura, M.
Hieda, T. Tachikake, F. Alam, T. Furukawa, and K. Ito, "A feasibility study:
Evaluation of radiofrequency ablation therapy to hepatocellular carcinoma using
image registration of preoperative and postoperative CT," Academic Radiology, vol.
13(8), pp. 986-994, Aug 2006.
[3] D. E. Heron, R. S. Andrade, and R. P. Smith, "Advances in image-guided
radiation therapy--the role of PET-CT," Medical Dosimetry, vol. 31(1), p. 3, 2006.
[4] P. Veit, C. Kuehle, T. Beyer, H. Kuehl, A. Bockisch, and G. Antoch, "Accuracy
of combined PET/CT in image-guided interventions of liver lesions: an ex-vivo
study," World journal of gastroenterology, vol. 12(15), pp. 2388-2393, 2006.
[5] V. Vilgrain, "Tumour detection in the liver: role of multidetector-row CT,"
European radiology, p. D85, 2005.
[6] J. T. Yap, J. P. J. Carney, N. C. Hall, and D. W. Townsend, "Image-guided cancer
therapy using PET/CT," Cancer journal, vol. 10(4), pp. 221-233, 2004.
[7] K. Benkrid, D. Crookes, and A. Benkrid, "Design and implementation of a novel
algorithm for general purpose median filtering on FPGAs," Proc. of the IEEE
International Symposium on Circuits and Systems, ISCAS, vol. 4(pp. 425-428, 2002.
[8] T. Gijbels, P. Six, L. Van Gool, F. Catthoor, H. De Man, A. Oosterlinck, J.
Rabaey, P. M. Chau, and J. Eldon, "A VLSI-architecture for parallel non-linear
diffusion with applications in vision," Proc. IEEE Workshop on VLSI Signal
Processing, pp. 398-407, 1994.
[9] C. L. Lee and C. W. Jen, "A bit-level scalable median filter using simple majority
circuit," Proc. of IEEE International Symposium on VLSI Technology, Systems and
Applications, pp. 174-177, 1989.
[10] M. Rumpf and R. Strzodka, "Nonlinear Diffusion in Graphics Hardware,"
Proceedings of IEEE TCVG Symposium on Visualization, pp. 75-84, 2001.
[11] K. Wiehler, J. Heers, C. Schnorr, H. S. Stiehl, and R. R. Grigat, "A one-
dimensional analog VLSI implementation for nonlinear real-time signal
preprocessing," Real-Time Imaging, vol. 7(1), pp. 127-142, 2001.
[12] C. Kremser, C. Plangger, R. Bosecke, A. Pallua, F. Aichner, and S. R. Felber,
"Image registration of MR and CT images using a frameless fiducial marker system,"
Magnetic Resonance Imaging, vol. 15(5), pp. 579-585, 1997.
[13] J. Weese, G. P. Penney, P. Desmedt, T. M. Buzug, D. L. G. Hill, and D. J.
Hawkes, "Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans for
image-guided surgery," IEEE Transactions on Information Technology in
Biomedicine, vol. 1(4), pp. 284-293, 1997.
[14] R. C. Susil, J. H. Anderson, and R. H. Taylor, "A single image registration
method for CT guided interventions," in Medical Image Computing and Computer-
Assisted Intervention - MICCAI, Berlin, Germany, 1999, pp. 798 - 808.

 190

[15] G. P. Penney, J. M. Blackall, M. S. Hamady, T. Sabharwal, A. Adam, and D. J.
Hawkes, "Registration of freehand 3D ultrasound and magnetic resonance liver
images," Medical Image Analysis, vol. 8(1), pp. 81-91, 2004.
[16] B. J. Wood, H. Zhang, A. Durrani, N. Glossop, S. Ranjan, D. Lindisch, E. Levy,
F. Banovac, J. Borgert, S. Krueger, J. Kruecker, A. Viswanathan, and K. Cleary,
"Navigation with electromagnetic tracking for interventional radiology procedures: A
feasibility study," Journal of vascular and interventional radiology, vol. 16(4), pp.
493-505, 2005.
[17] G. Dorfman, J. Emond, B. Hamilton, J. Haller, T. Smith, and L. Clarke, "Report
of the NIH/NSF Group on Image-Guided Interventions.," 2004.
[18] D. J. Hawkes, J. McClelland, C. Chan, D. L. G. Hill, K. Rhode, G. P. Penney, D.
Barratt, P. J. Edwards, and J. M. Blackall, "Tissue deformation and shape models in
image-guided interventions: A discussion paper," Medical Image Analysis, vol. 9(2),
p. 163, 2005.
[19] J. C. Timothy, S. Maxime, M. C. David, C. B. Dean, Christine Tanner, and J. H.
David, "Application of soft tissue modelling to image-guided surgery," Medical
Engineering & Physics, vol. 27(10), pp. 893-909, 2005.
[20] J. de Mey, W. Vincken, B. Op de Beeck, M. Osteaux, M. De Maeseneer, M.
Noppen, M. Meysman, and M. Vanhoey, "Real time CT-fluoroscopy: Diagnostic and
therapeutic applications," European Journal of Radiology, vol. 34(1), p. 32, 2000.
[21] B. D. Fornage, H. M. Kuerer, G. V. Babiera, A. N. Mirza, F. C. Ames, N.
Sneige, M. I. Ross, B. S. Edeiken, and L. A. Newman, "Small (< or = 2-cm) breast
cancer treated with US-guided radiofrequency ablation: feasibility study," Radiology,
vol. 231(Apr), p. 215, 2004.
[22] R. L. Galloway, "The process and development of image-guided procedures,"
Annual Review of Biomedical Engineering, vol. 3(pp. 83-108, 2001.
[23] Peters, "Image-guided surgery: From X-rays to virtual reality," Computer
Methods in Biomechanics and Biomedical Engineering, vol. 4(1), p. 27, 2000.
[24] T. M. Peters, "Image-guidance for surgical procedures," Physics in Medicine &
Biology, vol. 51(14), p. R505, 2006.
[25] Philips Medical Systems, "256-slice Brilliance iCT Scanner,"
http://www.medical.philips.com/main/news/content/file_1650.html.
[26] GE Healthcare, "Signa OpenSpeed 0.7T "
http://www.gehealthcare.com/usen/mr/open_speed/index.html.
[27] Terarecon Inc., "Aquarius iNtuition," www.terarecon.com.
[28] Vital Images Inc., "Vitrea® Software," www.vitalimages.com.
[29] M. Das, F. Sauer, U. J. Schoepf, A. Khamene, S. K. Vogt, S. Schaller, R.
Kikinis, E. vanSonnenberg, and S. G. Silverman, "Augmented reality visualization
for CT-guided interventions: system description, feasibility, and initial evaluation in
an abdominal phantom," Radiology, vol. 240(1), p. 230, 2006.
[30] F. Sauer, "Image registration: Enabling technology for image guided surgery and
therapy," in IEEE International Conference on Engineering in Medicine and Biology,
2005, pp. 7242-7245.
[31] W. Hendee, "Special Report: Biomedical Imaging Research Opportunities
Workshop III. A Summary of Findings and Recommendations," Medical Physics,
vol. 33(2), pp. 274-277, 2006.

http://www.medical.philips.com/main/news/content/file_1650.html
http://www.gehealthcare.com/usen/mr/open_speed/index.html
http://www.terarecon.com/
http://www.vitalimages.com/

 191

[32] J. B. A. Maintz and M. A. Viergever, "A survey of medical image registration,"
Medical Image Analysis, vol. 2(1), pp. 1-36, 1998.
[33] D. L. G. Hill, "Medical image registration," Physics in Medicine & Biology, vol.
46(1), p. 1, 2001.
[34] L. Lemieux, N. D. Kitchen, S. W. Hughes, and D. G. Thomas, "Voxel-based
localization in frame-based and frameless stereotaxy and its accuracy," Medical
Physics, vol. 21(8), p. 1301, 1994.
[35] T. Peters, B. Davey, P. Munger, R. Comeau, A. A. Evans, and A. A. Olivier,
"Three-dimensional multimodal image-guidance for neurosurgery," IEEE
Transactions on Medical Imaging, vol. 15(2), pp. 121-128, 1996.
[36] C. R. Maurer, Jr., J. M. Fitzpatrick, M. Y. Wang, R. L. Galloway, Jr , R. J.
Maciunas, and G. S. Allen, "Registration of head volume images using implantable
fiducial markers," IEEE Transactions on Medical Imaging, vol. 16(4), pp. 447-462,
1997.
[37] R. D. Bucholz, K. R. Smith, J. M. Henderson, L. L. McDurmont, and D. W.
Schulze, "Intraoperative localization using a three-dimensional optical digitizer," in
Clinical Applications of Modern Imaging Technology, Los Angeles, CA, USA, 1993,
pp. 312-322.
[38] S. A. Tebo, D. A. Leopold, D. M. Long, S. J. Zinreich, and D. W. Kennedy, "An
optical 3D digitizer for frameless stereotactic surgery," IEEE Computer Graphics and
Applications, vol. 16(1), pp. 55-64, 1996.
[39] S. Fang, R. Raghavan, and J. T. Richtsmeier, "Volume morphing methods for
landmark-based 3D image deformation," in SPIE Medical Imaging 1996: Image
Processing, 1996, pp. 404-415.
[40] Y. Ge, J. M. Fitzpatrick, J. R. Votaw, S. Gadamsetty, R. J. Maciunas, R. M.
Kessler, and R. A. Margolin, "Retrospective registration of PET and MR brain
images: an algorithm and its stereotactic validation," Journal of Computer Assisted
Tomography, vol. 18(5), p. 800, 1994.
[41] D. N. Levin, C. A. Pelizzari, G. T. Chen, C. T. Chen, and M. D. Cooper,
"Retrospective geometric correlation of MR, CT, and PET images," Radiology, vol.
169(3), p. 817, 1988.
[42] H. Rusinek, W. Tsui, A. V. Levy, M. E. Noz, and M. J. de Leon, "Principal Axes
and Surface Fitting Methods for Three-Dimensional Image Registration," Journal of
Nuclear Medicine, vol. 34(11), pp. 2019-2024, 1993.
[43] T. G. Turkington, J. M. Hoffman, R. J. Jaszczak, J. R. MacFall, C. C. Harris, C.
D. Kilts, C. A. Pelizzari, and R. E. Coleman, "Accuracy of surface fit registration for
PET and MR brain images using full and incomplete brain surfaces," Journal of
Computer Assisted Tomography, vol. 19(1), p. 117, 1995.
[44] J. P. Thirion, "Image matching as a diffusion process: an analogy with Maxwell's
demons," Medical Image Analysis, vol. 2(3), p. 243, 1998.
[45] P. M. Thompson, "A surface-based technique for warping 3-dimensional images
of the brain," IEEE Transactions on Medical Imaging, vol. 15(4), p. 1, 1996.
[46] J. V. Hajnal, D. J. Hawkes, and D. L. G. Hill, Medical image registration. Boca
Raton: CRC Press, 2001.

 192

[47] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, "Mutual-information-
based registration of medical images: a survey," IEEE Transactions on Medical
Imaging, vol. 22(8), pp. 986-1004, 2003.
[48] M. Holden, D. L. G. Hill, E. R. E. Denton, J. M. Jarosz, T. C. Cox, T. Rohlfing,
J. Goodey, and D. J. Hawkes, "Voxel similarity measures for 3-D serial MR brain
image registration," IEEE Transactions on Medical Imaging, vol. 19(2), pp. 94-102,
2000.
[49] R. Shekhar and V. Zagrodsky, "Mutual information-based rigid and nonrigid
registration of ultrasound volumes," IEEE Transactions on Medical Imaging, vol.
21(1), pp. 9-22, 2002.
[50] C. Davatzikos, "Nonlinear registration of brain images using deformable
models," in Mathematical Methods in Biomedical Image Analysis, 1996.,
Proceedings of the Workshop on, 1996, pp. 94-103.
[51] B. Morten and G. Claus, "Fast Fluid Registration of Medical Images," in
Proceedings of the 4th International Conference on Visualization in Biomedical
Computing: Springer-Verlag, 1996.
[52] A. Hagemann, K. Rohr, H. S. Stiehl, U. Spetzger, and J. M. Gilsbach,
"Biomechanical modeling of the human head for physically based, nonrigid image
registration," IEEE Transactions on Medical Imaging, vol. 18(10), pp. 875-884, 1999.
[53] S. K. Kyriacou, C. Davatzikos, S. J. Zinreich, and R. N. Bryan, "Nonlinear
elastic registration of brain images with tumor pathology using a biomechanical
model," IEEE Transactions on Medical Imaging, vol. 18(7), p. 580, 1999.
[54] J. Ashburner and K. Friston, "Nonlinear spatial normalization using basis
functions," Human Brain Mapping, vol. 7(4), p. 254, 1999.
[55] B. Kim, J. Boes, K. A. Frey, and C. R. Meyer, "Mutual Information for
Automated Multimodal Image Warping," in Proceedings of the 4th International
Conference on Visualization in Biomedical Computing: Springer-Verlag, 1996.
[56] K. Rohr, H. S. Stiehl, R. Sprengel, B. Wolfgang, T. Buzug, J. Weese, and M. H.
Kuhn, "Point-Based Elastic Registration of Medical Image Data Using
Approximating Thin-Plate Splines," in Proceedings of the 4th International
Conference on Visualization in Biomedical Computing: Springer-Verlag, 1996.
[57] T. Rohlfing and C. R. Maurer, Jr., "Nonrigid image registration in shared-
memory multiprocessor environments with application to brains, breasts, and bees,"
IEEE Transactions on Information Technology in Biomedicine, vol. 7(1), pp. 16-25,
2003.
[58] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J.
Hawkes, "Nonrigid registration using free-form deformations: application to breast
MR images," IEEE Transactions on Medical Imaging, vol. 18(8), pp. 712-721, 1999.
[59] J. F. Krucker, G. L. LeCarpentier, J. B. Fowlkes, and P. L. Carson, "Rapid elastic
image registration for 3-D ultrasound," IEEE Transactions on Medical Imaging, vol.
21(11), pp. 1384-1394, 2002.
[60] V. Walimbe and R. Shekhar, "Automatic elastic image registration by
interpolation of 3D rotations and translations from discrete rigid-body
transformations," Medical Image Analysis, vol. 10(6), p. 899, 2006.

 193

[61] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G.
Marchal, "Automated multi-modality image registration based on information
theory," in Information Processing in Medical Imaging, 1995, pp. 263-274.
[62] W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, "Multi-modal
volume registration by maximization of mutual information," Medical Image
Analysis, vol. 1(1), pp. 35-51, 1996.
[63] M. Capek, L. mroz, and R. Wegenkittl, "Robust and fast medical registration of
3D-multi-modality data sets," Mediterranean Conference on Medical and Biological
Engineering and Computing, p. 515, 2001.
[64] C. Studholme, D. L. G. Hill, and D. J. Hawkes, "An overlap invariant entropy
measure of 3D medical image alignment," Pattern Recognition, vol. 32(1), pp. 71-86,
1999.
[65] W. H. Press, Numerical recipes in C++ : the art of scientific computing, 2nd ed.
Cambridge, UK ; New York: Cambridge University Press, 2002.
[66] R. Shekhar, V. Walimbe, S. Raja, V. Zagrodsky, M. Kanvinde, G. Y. Wu, and B.
Bybel, "Automated 3-dimensional elastic registration of whole-body PET and CT
from separate or combined scanners," Journal of Nuclear Medicine, vol. 46(9), pp.
1488-1496, Sep 2005.
[67] V. Walimbe, V. Zagrodsky, S. Raja, B. Bybel, M. Kanvinde, and R. Shekhar,
"Elastic registration of three-dimensional whole body CT and PET images by
quaternion-based interpolation of multiple piecewise linear rigid-body registrations,"
in Proceedings of SPIE Medical Imaging, 2004, pp. 119-128.
[68] S. Clippe, D. Sarrut, C. Malet, S. Miguet, C. Ginestet, and C. Carrie, "Patient
setup error measurement using 3D intensity-based image registration techniques,"
International Journal of Radiation Oncology, Biology, and Physics, vol. 56(1), pp.
259-265, 2003.
[69] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
"Multimodality image registration by maximization of mutual information," IEEE
Transactions on Medical Imaging,, vol. 16(2), pp. 187-198, 1997.
[70] Z. Hongying, Z. Xiaozhou, S. Jizhou, and J. Zhang, "A novel medical image
registration method based on mutual information and genetic algorithm," in
International Conference on Computer Graphics, Imaging and Vision: New Trends,
2005, pp. 221-226.
[71] J. M. Rouet, J. J. Jacq, and C. Roux, "Genetic algorithms for a robust 3-D MR-
CT registration," IEEE transactions on information technology in biomedicine, vol.
4(2), p. 126, 2000.
[72] C. Nikou, F. Heitz, J. Armspach, I. Namer, and D. Grucker, "Registration of
MR/MR and MR/SPECT Brain Images by Fast Stochastic Optimization of Robust
Voxel Similarity Measures," NeuroImage, vol. 8(1), pp. 30-43, 1998.
[73] N. Ritter, R. Owens, J. Cooper, R. H. Eikelboom, and P. P. Van Saarloos,
"Registration of stereo and temporal images of the retina," IEEE Transactions on
Medical Imaging, vol. 18(5), pp. 404-418, 1999.
[74] A. Carrillo, J. L. Duerk, J. S. Lewin, and D. L. Wilson, "Semiautomatic 3-D
image registration as applied to interventional MRI liver cancer treatment," IEEE
Transactions on Medical Imaging, vol. 19(3), pp. 175-185, 2000.

 194

[75] H. Mark, A. S. Julia, and L. G. H. Derek, "Quantifying Small Changes in Brain
Ventricular Volume Using Non-rigid Registration," in Proceedings of the 4th
International Conference on Medical Image Computing and Computer-Assisted
Intervention: Springer-Verlag, 2001.
[76] K. Z. Abd-Elmoniem, A. M. Youssef, and Y. M. Kadah, "Real-time speckle
reduction and coherence enhancement in ultrasound imaging via nonlinear
anisotropic diffusion," IEEE Transactions on Biomedical Engineering, vol. 49(9), pp.
997-1014, 2002.
[77] O. Dandekar, K. Siddiqui, V. Walimbe, and R. Shekhar, "Image registration
accuracy with low-dose CT: How low can we go?," in IEEE International Symposium
on Biomedical Imaging, 2006, pp. 502-505.
[78] P. Lei, O. Dandekar, D. Widlus, P. Malloy, and R. Shekhar, "Incorporation of
PET into CT-Guided Liver Radiofrequency Ablation," Radiology (under revision),
2008.
[79] M. Kachelriess, O. Watzke, and W. A. Kalender, "Generalized multi-
dimensional adaptive filtering for conventional and spiral single-slice, multi-slice,
and cone-beam CT," Medical Physics, vol. 28(4), pp. 475-490, 2001.
[80] L. Keselbrener, Y. Shimoni, and S. Akselrod, "Nonlinear filters applied on
computerized axial tomography: Theory and phantom images," Medical Physics, vol.
19(4), pp. 1057-1064, 1992.
[81] P. Perona and M. Jitendra, "Scale-space and edge detection using anisotropic
diffusion," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
12(7), pp. 629-639, July 1990 1990.
[82] R. T. Whitaker and S. M. Pizer, "A multi-scale approach to nonuniform
diffusion," CVGIP: Image Understanding, vol. 57(1), pp. 99-110, 1993.
[83] A. Dorati, C. Lamberti, A. Sarti, P. Baraldi, and R. Pini, "Pre-processing for 3D
echocardiography," Computers in Cardiology, pp. 565-568, 1995.
[84] M. A. Cantin, Y. Savaria, and P. Lavoie, "A comparison of automatic word
length optimization procedures," in IEEE International Symposium on Circuits and
Systems, 2002, pp. 612-615.
[85] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk, and P.
Y. K. Cheung, "Reconfigurable computing: architectures and design methods," IEE
Proceedings - Computers and Digital Techniques, vol. 152(2), pp. 193-207, 2005.
[86] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, "Wordlength optimization
for linear digital signal processing," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 22(10), pp. 1432-1442, 2003.
[87] A. Nayak, M. Haldar, A. Choudhary, and P. A. B. P. Banerjee, "Precision and
error analysis of MATLAB applications during automated hardware synthesis for
FPGAs," in Proceedings of Design, Automation and Test in Europe, 2001, pp. 722-
728.
[88] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal
processing, 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 1999.
[89] M. Stephenson, J. Babb, and S. Amarasinghe, "Bidwidth analysis with
application to silicon compilation," ACM SIGPLAN Conference on Programming
Language Design and Implementation, vol. 35(5), pp. 108-120, 2000.

 195

[90] S. A. Wadekar and A. C. Parker, "Accuracy sensitive word-length selection for
algorithm optimization," in Proceedings of International Conference on Computer
Design: VLSI in Computers and Processors, ICCD '98. , 1998, pp. 54-61.
[91] K. Han and B. Evans, "Optimum wordlength search using sensitivity
information," EURASIP Journal on Applied Signal Processing vol. 2006, Article ID
92849, pp. 1-14, 2006.
[92] W. Sung and K. Kum, "Simulation-based word-length optimization method for
fixed-point digital signal processing systems," IEEE Transactions on Signal
Processing, vol. 43(12), pp. 3087-3090, 1995.
[93] H. Choi and W. P. Burleson, "Search-based wordlength optimization for
VLSI/DSP synthesis," in Proceedings of IEEE Workshop on VLSI Signal Processing,
VII, 1994, pp. 198-207.
[94] M. Leban and J. F. Tasic, "Word-length optimization of LMS adaptive FIR
filters," in 10th Mediterranean Electrotechnical Conference 2000, pp. 774-777.
[95] T. Givargis, F. Vahid, and J. Henkel, "System-level exploration for Pareto-
optimal configurations in parameterized system-on-a-chip," IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 10(4), pp. 416-422, 2002.
[96] K. Kum, J. Kang, and W. Sung, "AUTOSCALER for C: an optimizing floating-
point to integer C program converter for fixed-point digital signal processors," IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.
47(9), pp. 840-848, 2000.
[97] P. M. Dew, R. A. Earnshaw, and T. R. Heywood, Parallel processing for
computer vision and display. Workingham, England ; Reading, Mass.: Addison-
Wesley, 1989.
[98] V. K. Prasanna Kumar, Parallel architectures and algorithms for image
understanding. Boston: Academic Press, 1991.
[99] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger, J. Weickert, U. Bruning, and C.
Schnorr, "Designing 3-D nonlinear diffusion filters for high performance cluster
computing," Proc. of the 24th DAGM Symposium on Pattern Recognition, vol.
2449(pp. 290-297, 2002.
[100] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger, J. Weickert, U. Bruning, and C.
Schnorr, "High performance cluster computing with 3-D nonlinear diffusion filters,"
Real-Time Imaging, vol. 10(1), pp. 41-51, 2004.
[101] S. Tabik, E. M. Garzon, I. Garcia, and J. J. Fernandez, "Evaluation of parallel
paradigms on Anisotropic Nonlinear Diffusion," in 12th International Euro-Par
Conference, 2006, pp. 1159-1168.
[102] M. Karaman and L. Onural, "New radix-2-based algorithm for fast median
filtering," Electronics Letters, vol. 25(11), pp. 723-724, 1989.
[103] K. Oflazer, "Design and implementation of a single-chip 1- D median filter,"
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 31(5), pp. 1164-
1168, 1983.
[104] E. Ataman and E. Alparslan, "Applications of median filtering algorithm to
images," Electronics Division, Marmara Research Institute, Gebze, Turkey 1978.
[105] J. P. Fitch, E. J. Coyle, and N. C. J. Gallagher, "Median filtering by threshold
decomposition," IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 32(6), pp. 1183-1188, 1984.

 196

[106] C. L. Lee and C. W. Jen, "Bit-sliced median filter design based on majority
gate," IEE Proceedings, Part G: Circuits, Devices and Systems, vol. 139(1), pp. 63-
71, 1992.
[107] I. Hatirnaz, F. K. Gurkaynak, and Y. Leblebici, "A compact modular
architecture for the realization of high-speed binary sorting engines based on rank
ordering," Proc. of the IEEE International Symposium on Circuits and Systems,
ISCAS, vol. 4(pp. 685-688, 2000.
[108] A. A. Hiasat, M. M. Al-Ibrahim, and K. M. Gharaibeh, "Design and
implementation of a new efficient median filtering algorithm," IEE Proceedings on
Vision, Image and Signal Processing, vol. 146(5), pp. 273-278, 1999.
[109] B. K. Kar, K. M. Yusuf, and D. K. Pradhan, "Bit-serial generalized median
filters," Proc. of the IEEE International Symposium on Circuits and Systems, ISCAS,
vol. 3(pp. 85-88, 1994.
[110] C. Chakrabarti, "High sample rate array architectures for median filters," IEEE
Transactions on Signal Processing, vol. 42(3), pp. 707-712, 1994.
[111] L. W. Chang and J. H. Lin, "A bit-level systolic array for median filter," IEEE
Transactions on Signal Processing, vol. 40(8), pp. 2079-2083, 1992.
[112] K. Chen, "An integrated bit-serial 9-point median chip," Proc. of the European
Conference on Circuit Theory and Design, pp. 339-343, 1989.
[113] R. Roncella, R. Saletti, and P. Terreni, "70-MHz 2-um CMOS bit-level systolic
array median filter," IEEE Journal of Solid-State Circuits, vol. 28(5), pp. 530-536,
1993.
[114] W. Plishker, O. Dandekar, S. Bhattacharyya, and R. Shekhar, "A taxonomy for
medical image registration acceleration techniques," in IEEE Life Science Systems
and Applications Workshop, 2007, pp. 160-163.
[115] S. Ourselin, R. Stefanescu, and X. Pennec, "Robust registration of multi-modal
images: Towards real-time clinical applications " in Medical Image Computing and
Computer-Assisted Intervention — MICCAI, 2002, pp. 140-147.
[116] R. Stefanescu, X. Pennec, and N. Ayache, "Parallel non-rigid registration on a
cluster of workstations," Proceedings of HealthGrid, 2003.
[117] F. Ino, K. Ooyama, and K. Hagihara, "A data distributed parallel algorithm for
nonrigid image registration," Parallel Computing, vol. 31(1), p. 19, 2005.
[118] S. K. Warfield, F. Talos, A. Tei, A. Bharatha, A. Nabavi, M. Ferrant, P. M.
Black, F. Jolesz, and R. Kikinis, "Real-time registration of volumetric brain MRI by
biomechanical simulation of deformation during image guided neurosurgery,"
Computing and Visualization in Science, vol. 5(1), pp. 3-11, 2002.
[119] R. Strzodka, M. Droske, and M. Rumpf, "Fast Image Registration in DX9
graphics Hardware," Journal of Medical Informatics and Technologies, vol. 6(1), pp.
43-49, 2003.
[120] A. Köhn, J. Drexl, F. Ritter, M. König, and H. Peitgen, "GPU Accelerated
Image Registration in Two and Three Dimensions," in Bildverarbeitung für die
Medizin, 2006, pp. 261-265.
[121] W. Plishker, O. Dandekar, S. Bhattacharyya, and R. Shekhar, "Towards a
heterogeneous medical image registration acceleration platform," Proceedings of the
IEEE Biomedical Circuits and Systems Conference, pp. 231-234, 2007.

 197

[122] C. Vetter, C. Guetter, C. Xu, and R. Westermann, "Non-rigid multi-modal
registration on the GPU," in SPIE Medical Imaging 2007: Image Processing, 2007, p.
651228.
[123] M. Ohara, H. Yeo, F. Savino, G. Iyengar, L. Gong, H. Inoue, H. Komatsu, V.
Sheinin, and S. Daijavad, "Accelerating mutual-information-based linear registration
on the cell broadband engine processor," in IEEE International Conference on
Multimedia and Expo, 2007, pp. 272-275.
[124] J. Jiang, W. Luk, and D. Rueckert, "FPGA-based computation of free-form
deformations in medical image registration," in proceedings of IEEE International
Conference on Field-Programmable Technology (FPT), 2003, pp. 234-241.
[125] H. Keding, M. Willems, M. Coors, and H. A. M. H. Meyr, "FRIDGE: a fixed-
point design and simulation environment," in Proceedings of Design, Automation and
Test in Europe, 1998, pp. 429-435.
[126] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, "Optimum and heuristic
synthesis of multiple word-length architectures," IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 13(1), pp. 39-57, 2005.
[127] S. Kim, K. Kum, and W. Sung, "Fixed-point optimization utility for C and C++
based digital signal processing programs," IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, vol. 45(11), pp. 1455-1464, 1998.
[128] K. Kum and W. Sung, "Combined word-length optimization and high-level
synthesis of digital signal processing systems," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20(8), pp. 921-930, 2001.
[129] I. Das and J. E. Dennis, "A closer look at drawbacks of minimizing weighted
sums of objectives for Pareto set generation in multicriteria optimization problems,"
Structural and Multidisciplinary Optimization, vol. 14(1), pp. 63-69, 1997.
[130] M. S. Bright and T. Arslan, "Synthesis of low-power DSP systems using a
genetic algorithm," IEEE Transactions on Evolutionary Computation, vol. 5(1), pp.
27-40, 2001.
[131] C. L. Valenzuela and P. Y. Wang, "VLSI placement and area optimization
using a genetic algorithm to breed normalized postfix expressions," IEEE
Transactions on Evolutionary Computation, vol. 6(4), pp. 390-401, 2002.
[132] G. Antoch, J. F. Debatin, J. Stattaus, H. Kuehl, and F. M. Vogt, "Value of CT
volume imaging for optimal placement of radiofrequency ablation probes in liver
lesions," Journal of Vascular and Interventional Radiology, vol. 13(11), p. 1155,
2002.
[133] D. E. Dupuy and S. N. Goldberg, "Image-guided radiofrequency tumor
ablation: challenges and opportunities--part II," Journal of vascular and
interventional radiology, vol. 12(10), pp. 1135-1148, 2001.
[134] N. S. Goldberg and D. E. Dupuy, "Image-guided radiofrequency tumor
ablation: challenges and opportunities--part I," Journal of vascular and interventional
radiology, vol. 12(9), pp. 1021-1032, 2001.
[135] J. R. Haaga, "Interventional CT: 30 years' experience," European radiology,
vol. 15(p. D116, 2005.
[136] I. Viola, A. Kanitsar, and M. E. Groller, "Hardware-based nonlinear filtering
and segmentation using high-level shading languages," IEEE Visualization, p. 309,
2003.

 198

[137] M. Jiang and D. Crookes, "High-performance 3D median filter architecture for
medical image despeckling," Electronics Letters, vol. 42(24), p. 1379, 2006.
[138] G. Gerig, O. Kubler, R. Kikinis, and F. A. Jolesz, "Nonlinear Anisotropic
Filtering of MRI Data," IEEE Transactions on Medical Imaging, vol. 11(2), pp. 221-
232, 1992.
[139] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, "FAIR: A Hardware
Architecture for Real-Time 3-D Image Registration," IEEE Transactions on
Information Technology in Biomedicine, vol. 7(4), pp. 426-434, 2003.
[140] M. Doggett and M. Meissner, "A memory addressing and access design for real
time volume rendering," IEEE International Symposium on Circuits and Systems,
ISCAS, vol. 4(pp. 344-347, 1999.
[141] H. Pfister, "Archtectures for real-time volume rendering," Future Generation
Computer Systems, vol. 15(1), pp. 1-9, Feb. 1999 1999.
[142] H. Pfister and A. Kaufman, "Cube-4: A scalable architecture for real-time
volume rendering," Proc. of the 1996 symposium on volume visualization, pp. 47-54,
1996.
[143] C. R. Castro-Pareja, O. S. Dandekar, and R. Shekhar, "FPGA-based real-time
anisotropic diffusion filtering of 3D ultrasound images," in Real-Time Imaging, 2005,
pp. 123-131.
[144] O. Dandekar, C. Castro-Pareja, and R. Shekhar, "FPGA-based real-time 3D
image preprocessing for image-guided medical interventions," Journal of Real-Time
Image Processing, vol. 1(4), pp. 285-301, 2007.
[145] X. Li and T. Chen, "Nonlinear diffusion with multiple edginess thresholds,"
Pattern Recognition, vol. 27(8), pp. 1029-1037, 1994.
[146] F. J. Gallegos-Funes and V. I. Ponomaryov, "Real-time image filtering scheme
based on robust estimators in presence of impulsive noise," Real-Time Imaging, vol.
10(2), p. 69, 2004.
[147] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank, "PET-
CT image registration in the chest using free-form deformations," IEEE Transactions
on Medical Imaging, vol. 22(1), pp. 120-128, 2003.
[148] P. Lei, O. Dandekar, F. Mahmoud, D. Widlus, P. Malloy, and R. Shekhar, "PET
guidance for liver radiofrequency ablation: an evaluation," SPIE Medical Imaging
2007: Visualization and Image-Guided Procedures, p. 650918, 2007.
[149] R. Shekhar, O. Dandekar, S. Kavic, I. George, R. Mezrich, and A. Park,
"Development of continuous CT-guided minimally invasive surgery," in SPIE
Medical Imaging 2007: Visualization and Image-Guided Procedures, 2007, pp.
65090D-8.
[150] V. Walimbe, O. Dandekar, F. Mahmoud, and R. Shekhar, "Automated 3D
elastic registration for improving tumor localization in whole-body PET-CT from
combined scanner," in IEEE Annual International Conference on Engineering in
Medicine and Biology, 2006, pp. 2799-2802.
[151] J. Wu, O. Dandekar, V. Walimbe, W. D'Souza, and R. Shekhar, "Automatic
prostate localization using elastic registration of planning CT and daily 3D ultrasound
images," in SPIE Medical Imaging 2007: Visualization and Image-Guided
Procedures, 2007, p. 650913.

 199

[152] H. Hassler and N. Takagi, "Function evaluation by table look-up and addition,"
in IEEE Symposium on Computer Arithmetic, IEEE, 1995, p. 10.
[153] D. M. Mandelbaum and S. G. Mandelbaum, "A fast, efficient parallel-acting
method of generating functions defined by power series, including logarithm,
exponential, and sine, cosine," IEEE Transactions on Parallel and Distributed
Systems, vol. 7(1), p. 33, 1996.
[154] S. L. SanGregory, C. Brothers, D. Gallagher, and R. Siferd, "A fast, low-power
logarithm approximation with CMOS VLSI implementation," in IEEE 42nd Midwest
Symposium on Circuits and Systems, 2000, p. 91.
[155] C. R. Castro-Pareja and R. Shekhar, "Hardware acceleration of mutual
information-based 3D image registration," Journal of Imaging Science and
Technology, vol. 49(2), pp. 105-113, 2005.
[156] C. R. Castro-Pareja and R. Shekhar, "Adaptive reduction of intensity levels in
3D images for mutual information-based registration," in SPIE Medical Imaging
2005: Image Processing, San Diego, CA, USA, 2005, p. 1201.
[157] O. Dandekar and R. Shekhar, "FPGA-Accelerated Deformable Image
Registration for Improved Target-Delineation During CT-Guided Interventions,"
IEEE Transactions on Biomedical Circuits and Systems, vol. 1(2), pp. 116-127, 2007.
[158] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, "The Multiple Wordlength
Paradigm," in The 9th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM '01. , 2001, pp. 51-60.
[159] G. A. Constantinides and G. J. Woeginger, "The complexity of multiple
wordlength assignment," Applied Mathematics Letters, vol. 15(2), pp. 137-140, 2002.
[160] E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization," in EUROGEN 2001
- Evolutionary Methods for Design, Optimisation and Control with Applications to
Industrial Problems, 2001, pp. 95-100.
[161] K. Deb, A. Pratap, S. Agarwal, and T. A. M. T. Meyarivan, "A fast and elitist
multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary
Computation, vol. 6(2), pp. 182-197, 2002.
[162] Altera Corp., "Altera IP Megacore Library,"
http://www.altera.com/literature/lit-ip.jsp.
[163] W. Luk, S. Guo, N. Shirazi, and N. Zhuang, "A framework for developing
parametrised FPGA libraries," in Field-Programmable Logic Smart Applications,
New Paradigms and Compilers, 1996, pp. 24-33.
[164] W. Luk and S. McKeever, "Pebble: A Language For Parametrised and
Reconfigurable Hardware Design," in Field-Programmable Logic and Applications
From FPGAs to Computing Paradigm, 1998, p. 9.
[165] Xilinx Inc., "Xilinx Core Generator,"
http://www.xilinx.com/ise/products/coregen_overview.pdf.
[166] J. Zhao, W. Chen, and S. Wei, "Parameterized IP core design," in Proceedings
of 4th International Conference on ASIC, 2001, pp. 744-747.
[167] T. Back, U. Hammel, and H. P. Schwefel, "Evolutionary computation:
comments on the history and current state," IEEE Transactions on Evolutionary
Computation, vol. 1(1), pp. 3-17, 1997.

http://www.altera.com/literature/lit-ip.jsp
http://www.xilinx.com/ise/products/coregen_overview.pdf

 200

[168] V. Kianzad and S. S. Bhattacharyya, "Efficient techniques for clustering and
scheduling onto embedded multiprocessors," IEEE Transactions on Parallel and
Distributed Systems, vol. 17(7), pp. 667-680, 2006.
[169] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, "Optimum wordlength
allocation," in Proceedings of 10th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, 2002, pp. 219-228.
[170] E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach," IEEE Transactions on
Evolutionary Computation, vol. 3(4), pp. 257-271, 1999.
[171] A. J. Bilchik, D. M. Rose, D. P. Allegra, P. J. Bostick, E. Hsueh, and D. L.
Morton, "Radiofrequency ablation: A minimally invasive technique with multiple
applications," Cancer Journal from Scientific American, vol. 5(6), p. 356, 1999.
[172] J. H. Morgan, G. M. Royer, P. Hackett, T. C. Gamblin, B. L. McCampbell, A.
Conforti, and P. S. Dale, "Radio-frequency ablation of large, nonresectable hepatic
tumors," The American surgeon, vol. 70(12), p. 1035, 2004.
[173] D. M. Rose, D. P. Allegra, P. J. Bostick, L. J. Foshag, and A. J. Bilchik,
"Radiofrequency ablation: A novel primary and adjunctive ablative technique for
hepatic malignancies," American Surgeon, vol. 65(11), p. 1009, 1999.
[174] Toshiba, "The Next Revolution: 256-Slice CT,"
http://madeforlife.toshiba.com/ct256/TMS082_CT_WP_256.pdf.
[175] R. Bellotti, F. De Carlo, G. Gargano, S. Tangaro, D. Cascio, E. Catanzariti, P.
Cerello, S. C. Cheran, P. Delogu, I. De Mitri, C. Fulcheri, D. Grosso, A. Retico, S.
Squarcia, E. Tommasi, and B. Golosio, "A CAD system for nodule detection in low-
dose lung CTs based on region growing and a new active contour model," Medical
Physics, vol. 34(12), pp. 4901-4910, 2007.
[176] D. S. Gierada, T. K. Pilgram, M. Ford, R. M. Fagerstrom, T. R. Church, H.
Nath, K. Garg, and D. C. Strollo, "Lung Cancer: Interobserver Agreement on
Interpretation of Pulmonary Findings at Low-Dose CT Screening," Radiology, vol.
246(1), pp. 265-272, 2007.
[177] D. Tack, P. Bohy, I. Perlot, V. De Maertelaer, O. Alkeilani, S. Sourtzis, and P.
A. Gevenois, "Suspected Acute Colon Diverticulitis: Imaging with Low-Dose
Unenhanced Multi-Detector Row CT," Radiology, vol. 237(1), pp. 189-196, 2005.
[178] D. Sennst, M. Kachelriess, C. Leidecker, B. Schmidt, O. Watzke, and W. A.
Kalender, "An Extensible Software-based Platform for Reconstruction and Evaluation
of CT Images," Radiographics, vol. 24(2), pp. 601-613, 2004.
[179] F. Richard, "Smooth interpolation of scattered data by local thin plate splines,"
Computers & Mathematics with Applications, vol. 8(4), p. 273, 1982.
[180] D. G. Gobbi and T. M. Peters, "Generalized 3D nonlinear transformations for
medical imaging: an object-oriented implementation in VTK," Computerized Medical
Imaging and Graphics, vol. 27(4), pp. 255-265, 2003.
[181] C. R. Meyer, J. L. Boes, B. Kim, P. H. Bland, K. R. Zasadny, P. V. Kison, K.
Koral, K. A. Frey, and R. L. Wahl, "Demonstration of accuracy and clinical
versatility of mutual information for automatic multimodality image fusion using
affine and thin-plate spline warped geometric deformations," Medical Image
Analysis, vol. 1(3), pp. 195-206, 1997.

http://madeforlife.toshiba.com/ct256/TMS082_CT_WP_256.pdf

 201

[182] S. Balocco, O. Basset, C. Cachard, and P. Delachartre, "Spatial anisotropic
diffusion and local time correlation applied to segmentation of vessels in ultrasound
image sequences," Proc. of the IEEE Symposium on Ultrasonics, vol. 2(pp. 1549-
1552, 2003.
[183] F. Xu, Y. Yu, S. T. Acton, and J. A. Hossack, "Detection of myocardinal
boundaries from ultrasound imagery using activecontours," Proc. of the IEEE
Symposium on Ultrasonics, vol. 2(pp. 1537-1540, 2003.
[184] R. Shekhar, O. Dandekar, S. Kavic, I. George, R. Mezrich, and A. Park,
"Development of continuous CT-guided minimally invasive surgery," Multimedia
Meets Virtual Reality (MMVR), 2007.
[185] C. D. Knox, C. D. Anderson, L. W. Lamps, R. B. Adkins, and C. W. Pinson,
"Long-term survival after resection for primary hepatic carcinoid tumor," Annals of
Surgical Oncology, vol. 10(10), pp. 1171-1175, Dec 2003.
[186] P. Veit, G. Antoch, H. Stergar, A. Bockisch, M. Forsting, and H. Kuehl,
"Detection of residual tumor after radiofrequency ablation of liver metastasis with
dual-modality PET/CT: initial results," European Radiology, vol. 16(1), pp. 80-87,
Jan 2006.
[187] A. R. Gillams, "Liver ablation therapy," British Journal of Radiology, vol.
77(921), pp. 713-723, Sep 2004.
[188] J. P. McGhana and G. D. Dodd, 3rd, "Radiofrequency ablation of the liver:
current status," American Journal of Roentgenology, vol. 176(1), pp. 3-16, 2001.
[189] M. S. Chen, J. Q. Li, Y. Zheng, R. P. Guo, H. H. Liang, Y. Q. Zhang, X. J. Lin,
and W. Y. Lau, "A prospective randomized trial comparing percutaneous local
ablative therapy and partial hepatectomy for small hepatocellular carcinoma," Annals
of Surgery, vol. 243(3), pp. 321-328, 2006.
[190] L. Solbiati, T. Livraghi, S. N. Goldberg, T. Ierace, F. Meloni, M. Dellanoce, L.
Cova, E. F. Halpern, and G. S. Gazelle, "Percutaneous radio-frequency ablation of
hepatic metastases from colorectal cancer: long-term results in 117 patients,"
Radiology, vol. 221(1), pp. 159-166, 2001.
[191] C. D. Roman, W. H. Martin, and D. Delbeke, "Incremental value of fusion
imaging with integrated PET-CT in oncology," Clinical Nuclear Medicine, vol. 30(7),
pp. 470-477, 2005.
[192] K. K. Ng, C. M. Lam, R. T. Poon, V. Ai, W. K. Tso, and S. T. Fan, "Thermal
ablative therapy for malignant liver tumors: a critical appraisal," Journal of
Gastroenterology and Hepatology, vol. 18(6), pp. 616-629, 2003.
[193] H. Higgins and D. L. Berger, "RFA for liver tumors: Does it really work?,"
Oncologist, vol. 11(7), pp. 801-808, 2006.
[194] S. B. Solomon, "Incorporating CT, MR imaging, and positron emission
tomography into minimally invasive therapies," Journal of Vascular and
Interventional Radiology, vol. 16(4), pp. 445-447, 2005.
[195] S. Venugopal, C. R. Castro-Pareja, and O. S. Dandekar, "An FPGA-based 3D
image processor with median and convolution filters for real-time applications," in
Real-Time Imaging, 2005, pp. 174-182.

	Omkar Dandekar, Ph.D., 2008
	Dedication
	 Publications
	 Acknowledgements
	 Table of Contents
	 List of Tables
	 List of Figures
	Chapter 1: Introduction
	1.1. Overview
	1.2. Contributions of this Dissertation
	1.2.1. Real-time 3D Image Preprocessing
	1.2.2. Hardware-Accelerated Deformable Image Registration
	1.2.3. Framework for Optimization of Finite Precision Implementations

	1.3. Outline of this Dissertation

	Chapter 2: Background and Related Work
	2.1. Image-Guided Interventions
	2.1.1. Role of Preprocedural Imaging
	2.1.2. Need for Image Registration

	2.2. Classification of Image Registration
	2.2.1. Image Registration using Extrinsic Information
	2.2.2. Image Registration using Intrinsic Information

	2.3. Intensity-Based Image Registration
	2.3.1. Transformation Models
	2.3.1.1. Rigid and Affine Models
	2.3.1.2. Deformable Models

	2.3.2. Image Similarity Measures
	2.3.2.1. Sum of Squared Intensity Differences (SSD)
	2.3.2.2. Normalized Cross-Correlation (NCC)
	2.3.2.3. Mutual Information (MI)

	2.3.3. Optimization Algorithms

	2.4. Image Preprocessing
	2.4.1. Anisotropic Diffusion Filtering
	2.4.2. Median Filtering

	2.5. Optimization of Finite Precision Implementations
	2.5.1. Optimal Wordlength Formulation
	2.5.2. Simulation-Based Optimal Wordlength Search
	2.5.3. Multiobjective Optimization

	2.6. Related Work
	2.6.1. Real-Time Image Preprocessing
	2.6.2. Acceleration of Image Registration
	2.6.2.1. Multi-Processor and Supercomputer–Based Approaches
	2.6.2.2. Graphics Processor (GPU)–based Approaches
	2.6.2.3. Other Approaches

	2.6.3. Optimization of Finite Precision Implementations

	Chapter 3: Real-time 3D Image Processing
	3.1. Motivation
	3.2. Filtering Algorithms
	3.2.1. Anisotropic Diffusion Filtering
	3.2.2. Median Filtering

	3.3. Architecture
	3.3.1. Memory Controller and Brick-caching Scheme
	3.3.2. 3D Anisotropic Diffusion Filtering
	3.3.2.1. Embedded Gaussian Filtering Module
	3.3.2.2. Diffusion Coefficient Calculation
	3.3.2.3. Image Gradient and Result Calculation

	3.3.3. Median Filtering
	3.3.3.1. Processing Element
	3.3.3.2. Linear Systolic Design for Median Finding

	3.4. Implementation and Results
	3.4.1. Effects of Finite Precision Representation
	3.4.2. Hardware Requirements
	3.4.3. Filtering Performance

	3.5. Summary

	Chapter 4: Hardware-Accelerated Deformable Image Registration
	4.1. Motivation
	4.2. Algorithm for Deformable Image Registration
	4.2.1. Calculating MI for a Subvolume

	4.3. Acceleration Approach
	4.4. Architecture
	4.4.1. Voxel Counter
	4.4.2. Coordinate Transformation
	4.4.3. Partial Volume Interpolation
	4.4.4. Image Memory Access
	4.4.4.1. Reference Image
	4.4.4.2. Floating Image

	4.4.5. Updating Mutual Histogram
	4.4.5.1. Data Hazards and Preaccumulation Buffers
	4.4.5.2. Calculating

	4.4.6. Entropy Calculation
	4.4.6.1. Multiple LUT–Based Approach for Entropy Calculation

	4.4.7. Operational Workflow
	4.4.7.1. Rigid Registration
	4.4.7.2. Calculating
	4.4.7.3. Calculating
	4.4.7.4. Subvolume Registration

	4.5. Implementation and Results
	4.5.1. Execution Speed
	4.5.2. Performance Comparison
	4.5.3. Qualitative Evaluation of Deformable Image Registration

	4.6. Summary

	Chapter 5: Framework for Optimization of Finite Precision Implementations
	5.1. Motivation
	5.2. Multiobjective Optimization
	5.2.1. Problem Statement
	5.2.2. Parameterized Architectural Design
	5.2.3. Multiobjective Optimization Framework

	5.3. Experiments and Results
	5.3.1. Metrics for Comparison of Pareto-optimized Solution Sets
	5.3.2. Accuracy of Image Registration
	5.3.3. Post-synthesis Validation

	5.4. Summary

	Chapter 6: Clinical Applications
	6.1. Radiation Dose Reduction
	6.1.1. Motivation

	6.2. Incorporation of PET into CT-Guided Liver Radio-Frequency Ablation

	Chapter 7: Conclusions and Future Work
	7.1. Conclusion
	7.2. Future Work

	 Bibliography

