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Abstract

Social network analysis has attracted much attention in re-

cent years. Link prediction is a key research direction within

this area. In this paper, we study link prediction as a su-

pervised learning task. Along the way, we identify a set of

features that are key to the performance under the super-

vised learning setup. The identified features are very easy to

compute, and at the same time surprisingly effective in solv-

ing the link prediction problem. We also explain the effec-

tiveness of the features from their class density distribution.

Then we compare different classes of supervised learning al-

gorithms in terms of their prediction performance using var-

ious performance metrics, such as accuracy, precision-recall,

F-values, squared error etc. with a 5-fold cross validation.

Our results on two practical social network datasets shows

that most of the well-known classification algorithms (deci-

sion tree, k-NN, multilayer perceptron, SVM, RBF network)

can predict links with comparable performances, but SVM

outperforms all of them with narrow margin in all perfor-

mance measures. Again, ranking of features with popular

feature ranking algorithms shows that a small subset of fea-

tures always plays a significant role in link prediction.

1 Introduction and Background

Social networks are a popular way to model the interac-
tion among the people in a group or community. They
can be visualized as graphs, where a vertex corresponds
to a person in some group and an edge represents some
form of association between the corresponding persons.
The associations are usually driven by mutual interests
that are intrinsic to a group. However, social networks
are very dynamic objects, since new edges and vertices
are added to the graph over the time. Understanding
the dynamics that drives the evolution of social network
is a complex problem due to a large number of variable
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parameters. But, a comparatively easier problem is to
understand the association between two specific nodes.
Several variations of the above problems make interest-
ing research topics. For instance, some of the interesting
questions that can be posed are – how does the associa-
tion pattern change over time, what are the factors that
drive the associations, how is the association between
two nodes affected by other nodes. The specific prob-
lem instance that we address in this research is to pre-
dict the likelihood of a future association between two
nodes, knowing that there is no association between the
nodes in the current state of the graph. This problem
is commonly known as the Link Prediction problem.

We use the coauthorship graph from scientific pub-
lication data for our experiments. We prepare datasets
from the coauthorship graphs, where each data point
corresponds to a pair of authors, who never coauthored
in training years. Depending on the fact whether they
coauthored in the testing year or not, the data point
has either a positive label or a negative label. We ap-
ply different types of supervised learning algorithms to
build binary classifier models that distinguish the set of
authors who will coauthor in the testing year from the
rest who will not coauthor.

Predicting prospective links in coauthorship graph
is an important research direction, since it is identical,
both conceptually and structurally to many practical
social network problems. The primary reason is that
a coauthorship network is a true example of social net-
work, where the scientists in the community collaborate
to achieve a mutual goal. Researchers [20] have shown
that this graph also obeys the power-law distribution,
an important property of a typical social network. To
name some practical problems that very closely match
with the one we study in this research, we consider
the task of analyzing and monitoring terrorist networks.
The objective in analyzing terrorist networks is to con-
jecture that particular individuals are working together
even though their interactions cannot be identified from
the current information base. Intuitively, we are pre-
dicting hidden links in a social network formed by the
group of terrorists. In general, link prediction provides
a measure of social proximity between two vertices in a



social group, which, if known, can be used to optimize
an objective function over the entire group, especially
in the domain of collaborative filtering [22], Knowledge
Management Systems [8], etc. It can also help in mod-
eling the way a disease, a rumor, a fashion or a joke, or
an Internet virus propagates via a social network [13].

Our research has the following contributions:

1. We explain the procedural aspect of constructing
a machine learning dataset to perform link predic-
tion.

2. We identify a short list of features for link pre-
diction in a particular domain, specifically, in the
coauthorship domain. These features are powerful
enough to provide remarkable accuracy and general
enough to be applicable in other social network do-
mains. They are also very inexpensive to obtain.

3. We experiment with a set of learning algorithms to
evaluate their performance in link prediction prob-
lem and perform a comparative analysis among
them.

4. We evaluate each feature; first visually, by compar-
ing their class density distribution and then algo-
rithmically through some well known feature rank-
ing algorithms.

2 Related Work

Although most of the early research in social network
has been done by social scientists and psychologists [19],
numerous efforts have been made by computer scien-
tists recently. Most of the work has concentrated on
analyzing the social network graphs [2, 9]. Few efforts
have been made to solve the link prediction problem,
specially for social network domain. The closest match
with our work is that of D. Liben, et al. [17], where
the authors extracted several features from the network
topology of a coauthorship network. Their experiments
evaluated the effectiveness of these features for the link
prediction problem. The effectiveness was judged by
the factor by which the prediction accuracy was im-
proved over a random predictor. This work provides an
excellent starting point for link prediction as the fea-
tures they extracted can be used in a supervised learning
framework to perform link prediction in a more system-
atic manner. But, they used features based on network
topology only. We, on the other hand, added several
non-topological features and found that they improve
the accuracy of link prediction substantially. In prac-
tice, such non-topological data are available (for exam-
ple, overlap of interest between two persons) and they
should be exploited to achieve a substantial improve-

ment in the results. Moreover, we compare different
machine learning algorithms for the link prediction task.

Another recent work by Faloutsos et al. [10], al-
though does not directly perform link prediction, is
worth mentioning in this context. They introduced an
object, called connection subgraph, which is defined as
a small subgraph that best captures the relationship
between two nodes in a social network. They also pro-
posed efficient algorithm based on electrical circuit laws
to find the connection subgraph from large social net-
work efficiently. Connection subgraph can be used to ef-
fectively compute several topological feature values for
supervised link prediction problem, especially when the
network is very large.

There are many other interesting recent efforts [11,
3, 5] related to social network, but none of these were
targeted explicitly to solve the link prediction problem.
Nevertheless, experiences and ideas from these papers
were helpful in many aspects of this work. Goldenberg
et al. [11] used Bayesian Networks to analyze the
social network graphs. Baumes et al. [3] used graph
clustering approach to identify sub-communities in a
social network. Cai et al. [5] used the concept of relation
network, to project a social network graph into several
relation graphs and mine those graphs to effectively
answer user’s queries. In their model, they extensively
used optimization algorithms to find the most optimal
combination of existing relations that best match the
user’s query.

3 Data and Experimental Setup

Consider a social network G = 〈V,E〉 in which each edge
e = 〈u, v〉 ∈ E represents an interaction between u and
v at a particular time t. In our experimental domain
the interaction is defined as coauthoring a research
article. Each article bears, at least, author information
and publication year. To predict a link, we partition
the range of publication years into two non-overlapping
sub-ranges. The first sub-range is selected as training
years and the later one as the testing years. Then,
we prepare the classification dataset, by choosing those
author pairs, that appeared in the training years, but
did not publish any papers together in those years.
Each such pair either represents a positive example or a
negative example, depending on whether those author
pairs published at least one paper in the testing years
or not. Coauthoring a paper in testing years by a pair
of authors, establishes a link between them, which was
not there in the training years. Classification model of
link prediction problem needs to predict this link by
successfully distinguishing the positive classes from the
dataset. Thus, link prediction problem can be posed
as a binary classification problem, that can be solved



by employing effective features in a supervised learning
framework.

In this research, we use two bibliographic datasets:
Elsevier BIOBASE (http://www.elsevier.com) and
DBLP (http://dblp.uni-trier.de/xml/), that have
information about different research publications in the
field of biology and computer science, respectively. For
BIOBASE, we used 5 years of data from 1998 to
2002, where the first 4 years are used as training and
the last as testing. For DBLP, we used 15 years of
data, from 1990 to 2004. First 11 years were used
as training and the last 4 years as testing. Pairs of
authors that represent positive class or negative class
were chosen randomly from the list of pairs that qualify.
Then we constructed the feature vector for each pair of
authors. A detailed description of the features is given
in the following sub-section. The datasets have been
summarized in table 1.

Dataset Number of papers Number of authors
BIOBASE 831478 156561

DBLP 540459 1564617

Table 1: Statistics of Datasets

3.1 Feature Set Choosing an appropriate feature set
is the most critical part of any machine learning algo-
rithm. For link prediction, we should choose features
that represent some form of proximity between the pair
of vertices that represent a data point. However, the
definition of such features may vary from domain to
domain for link prediction. In this research, we name
these as proximity features. For example, for the case
of coauthorship network, two authors are close (in the
sense of a social network) to each other, if their research
work evolves around a larger set of identical keywords.
A similar analogy can be given for a terrorist network,
wherein, two suspects can be close, if they are experts
in an identical set of dangerous skills. In this research,
although we restrict our discussion to the feature set
for coauthorship link analysis, the above generic defini-
tion of proximity measure provides a clear direction to
choose conceptually identical features in other network
domains. One favorable property of these features is
that they are very cheap to compute.

Beside the proximity measure, there exist individual
attributes that can also provide helpful clues for link
prediction. Since, these attributes only pertain to one
node in the social network, some aggregation functions
need to be used to combine the attribute values of
the corresponding nodes in a node-pair. We name
these as aggregated features. To illustrate further,
let’s consider the following example. We choose two

arbitrary scientists x and y from the social network.
The probability that x and y coauthor is, say p1. Then,
we choose one scientist z, from the same network, who
works mostly on multi-disciplinary research, thus has
established a rich set of connections in the community.
Now, if p2 is the probability that x will coauthor with
z, the value of p2 is always higher than p1, with the
available information that z is a prolific researcher. We
summarize the idea with this statement: if either (or
both) of the scientists are prolific, it is more likely that
they will collaborate. Before aggregation, the individual
measure is how prolific a particular scientist is and
the corresponding individual feature is the number of
different areas (s)he has worked on. Summing the value
to combine these, yields an aggregated feature that is
meaningful for the pair of authors for link prediction. In
this example, the higher the attribute value, the more
likely that they will collaborate. A similar individual
feature, in a terrorist network, can be the number of
languages a suspect can speak. Again, aggregating the
value produces an aggregated feature for link prediction
in a terrorist network.

Finally, we like to discuss about the most impor-
tant set of features that arise from the network topology.
Most importantly, they are applicable equally to all do-
mains since their values depends only on the structure
of the network. Here, we name these as topological fea-

tures. Several recent initiatives [17, 14, 15] have studied
network topological features for different application ar-
eas, like link analysis, collaborative filtering, etc. How-
ever, for link prediction the most obvious among these
feature is the shortest distance among the pair of nodes
being considered. The shorter the distance, the bet-
ter the chance that they will collaborate. There are
other similar measures, like number of common neigh-
bors, Jaccard’s coefficient, edge disjoint k shortest dis-
tances, etc. For a more detailed list, see [17].

There are some features, that could be a part
of more than one category. For example, we can
aggregate a topological feature that corresponds to a
single network node. However, in our discussion, we
place them under the category that we consider to be
most appropriate.

Next we provide a short description of all the fea-
tures that we used for link prediction in a coauthorship
network. We also describe our intuitive argument on
choosing them as a feature for link prediction problem.
Note that, not all the features were applied to both the
datasets, due to the unavailability of information.

3.1.1 Proximity Features In the BIOBASE
database, we only had one such feature. Since keyword
data was not available in DBLP dataset, we could not



use this feature there.
• Keyword Match Count This feature directly

measures the proximity of a pair of nodes (authors).
Here we list all the keywords that the individual authors
had introduced in his papers and take a intersection of
both the sets. The larger the size of the intersection,
the more likely they are to work in related areas and
hence a better candidate to be a future coauthor pair.

3.1.2 Aggregated Features As we described ear-
lier, these features are usually related to a single node.
We used the simplest aggregation function, namely, sum

to convert the feature to a meaningful candidate for link
prediction. A more complex aggregation function can be
introduced if it seems appropriate.

• Sum of Papers The value of this feature is
calculated by adding the number of papers that the
pair of authors published in the training years. Since,
all authors did not appear in all the training years, we
normalized the paper count of each author by the years
they appeared in. The choice of this feature comes
from the fact that authors having higher paper count
are more prolific. If either (or both) of the authors is
(are) prolific, the probability is higher that this pair will
coauthor compared to the probability for the case of any
random pair of authors.

• Sum of Neighbors This feature represents the
social connectivity of the pair of authors, by adding the
number of neighbors they have. Here, neighborhood is
obtained from the coauthorship information. Several
variants of this feature exist. A more accurate measure
would consider the weighted sum of neighbors, where
the weights represent the number of publication that a
node has with that specific neighbor. We considered all
the weights to be 1. This feature is intended to embed
the fact that a more connected person is more likely
to establish new coauthor links. Note that, this feature
can also be placed under topological features, where the
number of neighbors can be found by the degree of a
node.

• Sum of Keyword Counts In scientific pub-
lication, keywords play a vital role in representing the
specific domain of work of researchers. Researchers that
have a wide range of interests or those who work on in-
terdisciplinary research usually use more keywords. In
this sense they have better chance to collaborate with
new researchers. Here, also we used the sum function
to aggregate this attribute for both the author pair.

• Sum of Classification Code Usually, research
publication are categorized in code strings to organize
related areas. Similar to keyword count, a publication
that has multiple codes is more likely to be an inter-
disciplinary work, and researchers in these area usually

have more collaborators.
• Sum of log(Secondary Neighbors Count)

While number of primary neighbors is significant, the
number of secondary neighbors sometimes play an im-
portant role, especially in a scientific research collab-
oration. If an author is directly connected to another
author who is highly connected (consider a new grad-
uate student with a very well-known adviser), the for-
mer person has a better chance to coauthor with a dis-
tant node through the later person. Since, the number
of secondary neighbors in social network usually grow
exponentially, we take the logarithm of the secondary
neighbor count of the pair of authors before we sum
the individual node values. This attribute can also be
placed under topological feature as it can be computed
only from the network topology. Calculation of this fea-
ture is somewhat costly.

3.1.3 Topological Features We used the following
three features in our research, but there are other
features that can be useful as well.

• Shortest Distance This feature is one of the
most significant in link prediction as we found in our
research. Kleinberg [16, 20] discovered that in social
network most of the nodes are connected with a very
short distance. This remarkable characteristic makes it
a very good feature for link prediction. We used smallest
hop count as the shortest distance between two nodes.
There are several variants of this feature. Instead of
computing one shortest distance, we can compute k

edge-disjoint shortest distance. Each of these can be one
feature. Importance of the feature gradually decreases
as k increases. Moreover, a shortest distance can be
weighted, where each edge has an actual weight instead
of a value 1 as it is for unweighted shortest distance.
For any pair of nodes, the weight on the edge can be
chosen to be the reciprocal of the number of papers the
corresponding author pair has coauthored. However,
each of these variants are more costly to compute.

• Clustering Index Many initiatives within so-
cial network research [17, 20] have indicated cluster-
ing index as an important features of a node in a
social network. It is reported that a node that in
dense locally is more likely to grow more edges com-
pared to one that is located in a more sparse neigh-
borhood. The clustering index measures the localized
density. Newman [20] defines clustering index as the
fraction of pairs of a person’s collaborators who have
also collaborated with one another. Mathematically, If
u is a node of a graph, The clustering index of u is:

3×number of triangles with u as one node
number of connected triples with u as one node



• Shortest Distance in Author-KW graph We
considered this as a topological attribute, although it
requires an extended social network to compute it. To
compute this attribute we extended the social network
by adding Keyword(KW) nodes. Each KW node is
connected to an author node by an edge if that keyword
is used by the author in any of his papers. Moreover,
two keywords that appear together in any paper are also
connected by an edge. A shortest distance between two
nodes in this extended graph is computed to get this
attribute value.

In addition to these features, we also tried
several other features, like Jaccard’s coefficient,
Adamic/Adar [1], etc., mostly related to network topol-
ogy. Unfortunately, they did not provide any significant
improvement on the classifier performance.

We normalize the feature values to have zero mean
and one standard deviation before using them in the
classification model.

3.2 Classification Algorithms There exist a
plethora of classification algorithms for supervised
learning. Although their performances are comparable,
some usually work better than others for a specific
dataset or domain. In this research, we experimented
with seven different classification algorithms. For
some of these, we tried more than one variation and
reported the result that showed the best performance.
The algorithms that we used are SVM (two differ-
ent kernels), Decision Tree, Multilayer Perceptron,
K-Nearest Neighbors (different variations of distance
measure), Naive Bayes, RBF Network and Bagging.
For SVM, we used the SVM-Light implementation
(http://svmlight.joachims.org). For K-Nearest
neighbors, we programmed the algorithm using Matlab.
For the rest of the algorithms, a well known machine
learning library, WEKA [24] was used.

Then we compared the performance of the above
classifiers using different performance metrics like ac-
curacy, precision-recall, F-value, squared-error etc. For
all the algorithms, we used 5-fold cross validation for
the results reported. For algorithms that have tunable
parameters, like SVM, K-Nearest Neighbors, etc., we
used a separate validation set to find the optimum pa-
rameter values. In SVM the trade-off between training
error and margin of 8 was found to be optimum. For
k-nearest neighbor, a value of 12 for k yielded the best
performance for BIOBASE dataset and a value of 32 for
the DBLP dataset. For others, default parameter values
of WEKA worked quite well. However, for most of the
models the classifier performance was found not to be
very sensitive with respect to model parameter values
unless they were quite off from the optimal setting.

4 Results and Discussions

Table 2 and 3 show the performance comparison for dif-
ferent classifiers on the BIOBASE and DBLP datasets
respectively. In both the datasets, counts of positive
class and the negative class were almost the same. So,
a baseline classifier would have an accuracy around 50%
by classifying all the testing data points to be equal to
1 or 0, whereas all the models that we tried reached an
accuracy above 80%. This indicates that the features
that we had selected have good discriminating ability.
For BIOBASE dataset we used 9 features and for the
DBLP dataset we used only 4 features. There was not
enough information available with the DBLP dataset.
Name of the feature used, for each of the dataset are
available from table 4 and 5.

On accuracy metrics, SVM with RBF kernel per-
formed the best for both the datasets with an accu-
racy of 90.56% and 83.18%, respectively. Naturally,
the performance on DBLP dataset is worse compared
to BIOBASE as fewer features were used in the for-
mer dataset. Moreover, DBLP dataset was obtained
using 15 years of published articles and the accuracy of
link prediction deteriorates over the longer range of time
span since the institution affiliations, coauthors and re-
search areas of researchers may vary over time. So, pre-
dicting links in this dataset is comparably more diffi-
cult than the BIOBASE dataset, where we used only 5
years of data. In both the datasets, other popular clas-
sifiers, like decision tree, k-nearest neighbors and multi-
layer perceptron also have similar performances, usually
0.5% to 1% less accurate than SVM. Such a small dif-
ference is not statistically significant, so no conclusion
can be drawn from the accuracy metric about the most
suited algorithm for the link prediction.

To further analyze the performance, we also applied
the most popular ensemble classification techniques,
bagging for link prediction. Bagging groups the deci-
sions from a number of classifiers, hence the resulting
model is no more susceptible to variance errors. Perfor-
mance improvement of bagging, over the independent
classifiers are high when the overlap of the misclassifica-
tion sets of the independent classifiers is small [7]. The
bagging accuracy for the datasets is 90.87 and 82.13,
which indicates almost no improvements. This implies
that majority of misclassifications are from the bias er-
ror introduced by inconsistent feature values in those
samples. Hence, most of the classifiers failed on these
samples.

To understand the inconsistency in feature values,
we investigate the distribution of positively and neg-
atively labeled samples for four important features in
each dataset as shown in figure 1 and 2. The distri-
bution of feature values are plotted along the y-axis for
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Figure 1: Evaluation of features using class density distribution in BIOBASE dataset
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Figure 2: Evaluation of features using class density distribution in DBLP dataset



Classification model Accuracy Precision Recall F-value Squared Error
Decision Tree 90.01 91.60 89.10 90.40 0.1306

SVM(Linear Kernel) 87.78 92.80 83.18 86.82 0.1221
SVM(RBF Kernel) 90.56 92.43 88.66 90.51 0.0945

K Nearest Neighbors 88.17 92.26 83.63 87.73 0.1826
Multilayer Perceptron 89.78 93.00 87.10 90.00 0.1387

RBF Network 83.31 94.90 72.10 81.90 0.2542
Naive Bayes 83.32 95.10 71.90 81.90 0.1665

Bagging 90.87 92.5 90.00 91.23 0.1288

Table 2: Performance of different classification algorithms for BIOBASE database

Classification model Accuracy Precision Recall F-value Squared Error
Decision Tree 82.56 87.70 79.5 83.40 0.3569

SVM(Linear Kernel) 83.04 85.88 82.92 84.37 0.1818
SVM(RBF Kernel) 83.18 87.66 80.93 84.16 0.1760

K Nearest Neighbors 82.42 85.10 82.52 83.79 0.2354
Multilayer Perceptron 82.73 87.70 80.20 83.70 0.3481

RBF Network 78.49 78.90 83.40 81.10 0.4041
Naive Bayes 81.24 87.60 76.90 81.90 0.4073

Bagging 82.13 86.70 80.00 83.22 0.3509

Table 3: Performance of different classification algorithms for DBLP dataset

various feature values. For comparison sake, we nor-
malize the distribution so that the area under both the
curves is the same. For most of the features, the distri-
bution of positive and negative class exhibit significant
difference, thus facilitating the classification algorithm
to pick patterns from the feature value to correctly clas-
sify the samples. However, there is a small overlap re-
gion between the distributions for some features. The
fraction of population that lies in the critical overlap re-
gion for most of the features are most likely the candi-
dates for misclassification. We shall discuss more about
the distribution later.

Among all the classifiers, RBF network model per-
forms the worst in both the datasets and may not be
the one that is suitable for the link prediction problem.
RBF networks are usually affected severely by irrelevant
or inconsistent features and link prediction datasets are
heavily noisy, hence, the performance value for RBF is
poor. On the other hand, we have naive Bayes algo-
rithm, which also performed bad. Naive Bayes is prob-
ably not powerful enough to catch the patterns in the
data set which are helpful for classification.

In the same tables, we also list Precision, Recall
and F-value for the positive class. F-value is the har-
monic mean of precision-recall that is sometimes consid-
ered a better performance measure for a classification
model in comparison to accuracy, especially if the pop-

ulation of the classes are biased in the training dataset.
Considering the F-value metric, the rank of the classi-
fiers do not really change, indicating that all the models
have similar precision-recall behavior. Now, comparing
the precision and recall columns, we find that most of
the classifiers have precision value significantly higher
than the recall value for the positive class. This indi-
cates that our models have more false negatives than
false positives. Intuitively, the models are missing ac-
tual links more than they are predicting false links. For
coauthorship network, it makes sense because there ex-
ist some coauthor pairs that seem to coauthor merely
by coincidence. Moreover, it can happen that the link
is actually not there in real life also, but the dataset
had it because of name aggregation. Note that in the
dataset that we used, all the names that had the same
spelling were considered to be the same person, which
is not always correct. This problem has been addressed
in many concurrent researches and several entity disam-
biguation methodologies have been proposed [18, 4] to
cope with it. So, a better performance will be observed,
if such methodologies are applied to the dataset as a
preprocessing step before feeding it into the learning al-
gorithms.

Finally, we use the average squared error as our last
performance comparison metric. Recent research [6]
shows that this metric is remarkably robust and has



Attribute name Information gain Gain Ratio Chi-Square SVM feature Avg. Rank
Attribute Eval. evaluator

Sum of Papers 3 4 3 4 3

Sum of Neighbors 1 3 1 2 2

Sum of KW count 6 6 6 3 5

Sum of Classification 5 5 5 6 5
count

KW match count 2 1 2 1 1

Sum of log of Sec. 7 7 7 8 7
Neighbor. count

Shortest distance 4 2 4 5 4

Clustering Index 9 9 9 7 8

Shortest dist. in 8 8 8 9 8
KW-Author graph

Table 4: Rank of different Attributes using different algorithms for BIOBASE dataset

Attribute name Information gain Gain Ratio Chi-Square SVM feature Avg. Rank
Attribute Eval. evaluator

Sum of Papers 4 4 4 2 4

Sum of Neighbors 3 3 3 4 3

Shortest distance 1 1 1 1 1

Second shortest distance 2 2 2 3 2

Table 5: Rank of different Attributes using different algorithms for DBLP dataset

higher average correlation to the other metrics, hence
an excellent metric to compare the performance of
different classifiers. However, finding average squared
error in binary classification setup requires predicting
the posterior probability instead of predicting just the
class label. In fact, a model that could predict the
true underlying probability for each test case would be
optimal [6]. From the probability, squared error can
be computed very easily. In a unbiased environment,
the cost associated with the misclassification of positive
and the negative class is the same and no calibration of
probability is required. So, if the value of the predicting
probability is above 0.5, the sample is predicted as
positive class and the difference of 1 and the value is
considered the error. In contrast, if the value is below
0.5, the sample is predicted as negative class and the
difference of 0 and the value is considered to be the
error. In the worst case, we have an error value of 0.5
and the label can be predicted only by tossing a fair coin.
Finally, a root mean squared error is computed over all
the samples. We used the above discussed approach
while computing the squared error. Here, we observe a
dramatic difference in performances among the different
classifiers. SVM (RBF) outperforms all the others in
this metric with a healthy margin in both the datasets.
In both the datasets, squared error of SVM is more

than 30% less than the second best algorithm. This
confirms its effectiveness over all the other classification
algorithms for the link prediction task.

One of our objectives was to compare the features
to judge their relative strength in a link prediction task.
We ran several algorithms for this. Table 4 and 5 pro-
vide a comparison of several features by showing their
rank of importance as obtained by different algorithms.
Last column shows an average rank that is rounded to
the nearest integer.

From the result shown in table 4, in BIOBASE
dataset the keyword match count was the top ranked
attribute. Sum of neighbors and sum of papers
come next in the order of significance. Shortest
distance is the top ranked among the topological
features. From the figure 1 that shows the distribution
of some powerful features, we can easily understand
the reasoning behind the ranking. For instance, in
the keyword match feature, no negative class sample
had more than 5 keyword matches and about 95%
samples had the match value equal to zero. Whereas,
positive class samples have keyword match values from
0 to 20, and the distribution mean is almost equal to
6. Similar noticeable differences in distribution are
also observed for other features. From the ranking
algorithm, clustering index and author-keyword



distance are found to be the lowest ranked attributes.
Some researchers indicated that clustering index is a
significant attribute for link prediction, but at least
in BIOBASE dataset it does not seem to have that
promising effect.

From the results shown in table 5, shortest distance
is the best feature in DBLP dataset. The strength of
this feature is also well presented by the distribution
shown in figure 2. From this figure, for positive class
the mean distance between the author pairs is around
3, whereas the same for the negative class is almost 8.
In this dataset, we also used second shortest distance,
which is the distance calculated from another shortest
path that has no common edge with the first shortest
path. The mean value for positive class here is around
4 and that for negative class is around 9. Similar
differences in distribution are also observed for the other
two features, like sum of papers and sum of authors.
Note that, for both the features, the negative class is
concentrated heavily towards the smaller feature values
compared to the positive class. Ranking algorithms
ranks the attributes in the following order: shortest
distance, second shortest distance, sum of papers and
sum of neighbors. This order properly reflects the
distribution patterns shown in figure 2.

5 Issues regarding Real-life Dataset

From the results and discussions in the previous section,
readers must be convinced that link prediction can
be solved with high accuracy using very few features
in supervised learning setup. However, in real life
there exists several issues to be dealt with to obtain
such a satisfactory performance. Since, most serious
applications of link prediction in recent days is in
the domain of security and anti-terrorism, majority of
discussions implicitly assume such an application.

In our experiments, we used standard cross-
validation approach to report the performance, so train-
ing and testing datasets are drawn from the same dis-
tribution. In real life, data comes from heterogeneous
sources and an analyst needs to make sure that the clas-
sification model that is used on a testing dataset is built
from a dataset with the same distribution; without it,
the result from the algorithms can be completely use-
less. Distribution of the feature values can be analyzed
to understand whether there are any noticeable differ-
ences between training and testing dataset. If it is sus-
pected that the distribution is different, a probability
value instead of class label should be predicted. Then
the probability should be calibrated accordingly for the
testing dataset to predict the class label.

Sometimes, datasets can be highly imbalanced. If
we are looking for links, that represent rare events, the

number of samples with positive classes could be excep-
tionally low. Highly imbalanced dataset deteriorate the
performance of the classification algorithms and special
care should be taken for that. Fortunately, there are al-
gorithms [12, 25] that have been adapted for imbalanced
datasets, so an approach outlined in these algorithms
should be followed in this situation.

For link prediction, specially in security applica-
tions, missing actual links poses severe threat compared
to predicting false links. So, a very high value of recall is
desired. This requires that we bias the model towards
predicting more of the positive class than to predict-
ing the negative class. It can be easily achieved in the
classification model, specially in those that are norm-
based, like SVM, k-nearest neighbors, etc. by assigning
a suitable higher cost to the misclassification of positive
class.

In terrorist social networks, finding samples to
train a supervised classification model poses another big
challenge. Although huge efforts are being employed
to obtain terrorism related information, the strong
counter effort from the terrorist groups to hide their
connections undermines the effectiveness of the data
extraction. In this situation, data could be highly noisy,
and even worse, some of the attribute values could
be unknown. The performance of the link prediction
can deteriorate significantly in that case. Fortunately,
there are classification algorithms [23], that have been
developed to work around the missing values. Moreover,
information in the datasets are changing in real-time, so
the classifier models need to be updated frequently.

6 Future Work

Our research currently considers link prediction only in
the coauthorship domain. In future, we would like to
consider a number of datasets from different domains
to better understand the link prediction problem. We
would also like to define a degree of confidence for link
prediction instead of providing a hard binary classifica-
tion.

Moreover, our current attribute set does not have
any attributes that capture causal relationships. It
is possible that some of the attribute values that we
consider are time dependent, i.e. their values should be
evaluated by using different weights for different years.
In future, we like to consider these kind of attributes.
There are online social networks, such as LinkedIn
(http://www.linkedin.com) and Friendster (http://
www.friendster.com), where they will be very useful.
These online networks would like to predict which users
would share common interests. These interests are likely
to change over time which would affect the likelihood of
a link between two users. This is similar to keeping



track of dynamic user groups.

7 Conclusion

Link prediction in a social network is an important prob-
lem and it is very helpful in analyzing and understand-
ing social groups. Such understanding can lead to effi-
cient implementation of tools to identify hidden groups
or to find missing members of groups, etc. which are the
most common problems in security and criminal inves-
tigation research. In this research we suggest categories
of features that should be considered for link prediction
in any social network application. Of course, the exact
value of a feature would depend on the application at
hand. For example, in a terrorist network, two terror-
ists could have strong proximity either if they have the
same skills or if they have complementary skills.

Through this work, we have shown that the link
prediction problem can be handled effectively by mod-
eling it as a classification problem. We have shown that
most of the popular classification models can solve the
problem with an acceptable accuracy, but the state of
the art classification algorithm, SVM, beats all of them
in many performance metrics. Moreover, we provided a
comparison of the features and ranked them according
to their prediction ability using different feature analysis
algorithms. We believe that these ranks are meaningful
and can help other researchers to choose attributes for
link prediction problem in a similar domain.
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