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Abstract

In this paper, we address a strong class of lifted valid inequalities for the shortest path problem in digraphs with possibly
negative cost cycles. We call these lifted inequalities the incident lifted valid inequalities (ILI) as they are based on the
incident arcs of a given vertex. The /LI inequalities are close in spirit of the so-called simple lifted valid inequalities
(SLI) and cocycle lifted valid inequalities (CLI) introduced in Ibrahim et al. (2015). However, as we will see the
ILI inequalities are stronger than the first ones in term of linear relaxation strengthening. Indeed, contrary to S LI and
CLI inequalities, consider the same instances, in a cutting plane algorithm, the computational results prove that the /LI
inequalities provide the optimal integer solution for all the considered instances within no more than three iterations except
one case for which after the first strengthening iteration, there exists no generated inequality.
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1. Introduction

Let G = (V, A) be a general directed graph, where V represents the vertex set and A the set of arcs with an arc cost function

w: A — R. Consider two given vertices s € V and t € V. We define a s-f path as a sequence (vg, ay, ..., ax, vr), where
k> 1,vo,v1,... v are vertices, vy = s, v; = t, and g; is an arc connecting v;_; and v; (i = 1,...k). An elementary s-f path
is a sequence (vo,di, . .., ax, Vi) in which each vertex v;, (i = 0...k) appears once, ie, v; # v;, Vi # j. In the sequel, we

denote by P the polytope induced by all the s — ¢ elementary directed paths of the digraph G and p;, i € {1,..., g} is the
i" s — t elementary path of G. That is, we assume that the digraph G contains g s — t elementary paths.

We consider the problem that consists in searching an elementary shortest path from the source vertex s to the sink vertex
t (single origin - single destination shortest path problem) in digraphs containing negative cost cycles. In addition to the
single origin - single destination shortest path problem, notice that there exists others versions of shortest path problem,
as the single-source all-destinations shortest path problem and the all-pairs shortest paths problem. In general digraphs
containing negative cost cycles, the shortest path problem is well-known to be NP-hard as it includes the asymmetric
traveling salesman problem as a special case (see also Garey and Johnson (1979)). We recall that without negative cost
cycles, the single-source all-destinations shortest path problem and the all-pairs shortest paths problem can be solved
easily by standard known algorithms such as Djikstra’s algorithm or Bellman-Ford algorithm for the single-source all-
destinations shortest path problem (see Bellman (1958), Djiskstra (1959), Ford and Fulkerson (1962)) and Floyd-Warshall
algorithm for the all-pairs shortest paths problem (see Floyd (1962)).

In this paper, we continue our investigation begun in Ibrahim et al. (2015) about a cutting plane algorithm devised for the
single origin - single destination shortest path problem with possibly negative cost cycles. We recall that the algorithm is
based on a MIP formulation of the single origin - single destination shortest path problem in digraphs possibly containing
negative cost cycles. Previously, we have used the so-called simple lifted valid inequalities (S LI) and cocycle lifted valid
inequalities (CLI) (see, Ibrahim et al. (2015) to build strong linear relaxations. Here, we address a new class of lifted
valid inequalities called the incident lifted valid inequalities (ILI) as they are based on the incident arcs of a given vertex.
As we will see, the latter lifted inequalities, namely the /LI inequalities, are stronger than the first ones introduced in
Ibrahim et al. (2015) in term of linear relaxation strengthening. Indeed, contrary to S LI and CLI inequalities, consider
the same instances tested in Ibrahim et al. (2015), in a cutting plane process, the computational results prove that the
ILI inequalities provide the optimal integer solution for all the considered instances within no more than three iterations
except one case for which after the first strengthening iteration, there exists no inequality to be generated.

The paper is organized as follow, in section 2, we recall the MIP formulation of the s- shortest path problem based on
a non-simultaneous flow model used in the resolution process and the S LI and CLI inequalities. We also present a new
class of lifted inequalities for . Section 3 is devoted to the computational results proving the superiority of the lifted
valid inequalities presented in this paper comparatively to the ones introduced in Ibrahim et al. (2015).
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2. A Strong Class of Lifted Valid Inequalities for ¥

Consider the sub-digraph Gy = (X, E) supporting the (fractional) optimal solution of the linear relaxation of the following
s — t elementary shortest path MIP model:

(P) : min Z WiiVijs

(i, ))€A
subject to:
D= Y A =m kevigs) (1)
Jjer*(s) Jjer=(s)
D= > =0 keV—{s) ieV\{sk )
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jer=(@)
%20, keV\{sh (.j)eA ©)
x; €{0,1}, y;; €{0,1}, i€V, jeA. (10)

Where x; is a binary variable associated to the vertex i € V, y;; is a binary variable associated to the arc (i, j) € A and the
variable zfﬁ > 0 represents the flow that passes through the arc (i, j) € A, from the source vertex s to the terminal vertex
k € V\ {s}. T*(i) and I'"({) denote the sets of arcs going out from the vertex i and coming into the vertex i, respectively.
For further details about the above shortest path formulation, one can refer to Maculan et al. (2003), Ibrahim et al. (2009).

According to the results presented in Ibrahim et al. (2015), with respect to the sub-digraph Gx = (X, E) supporting the
(fractional) optimal solution of the linear relaxation, we have that

Dkt Y v <k (1)

weS (u,v)eFy

is valid to the polytope Py of all the s — # elementary directed paths of the sub-digraph Gy.

Where (S, Fy) is k-subset pair. Thatis Sy c X, Fy ¢ Eand V¥ p;, i € {1,...,q}, where p; is a s — t directed path of Gy,
we have |(Sy N V(p)l +|(Fx N E(p)| < kand |Sg| + |Fr| = k+ 1.

In Ibrahim et al. (2015), we have seen that the valid inequality (11) generated on Gx can be transformed into the following
S LI inequality of order k for the whole digraph G.

Dixwt D V= Y. vww <k (12)

weS (u,v)eFy (w',V')eA\E
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In the same way, the valid inequality (11) can also be transformed into the following CLI inequalities of order k for the
whole digraph G.

Dkt Y V= Y, Yew Sk (13)

weS (u,v)eFy (W v)ew*(S)

DXt D Vv DL Yew <k (14)

weS (u,v)eFy W' v)ew=(S)

Where § = X is the set of vertices of the sub-digraph Gs = (S, Es) such that Es = {(#/,v) € A: u',v € X}, w (S)isa
cutset having all its arcs outgoing from S and w*(S) is a cutset having all its arcs incoming to S'.

Proposition 1. For the sake of simplicity, we assume that S| = kK + 1 and F}, = 0. The following lifted valid inequality

Dixem D Vuw— Y. ew <k (15)

weS i (w' ,w)EA\E (wy)eA\E

is valid for . We call the valid inequality (15) the incident lifted valid inequality of order k as it is based on the incident
arcs of the vertices w € Sy.

Proof. Consider any elementary s — ¢ path in G. If this path passes only through the nodes and arcs of Gy, then
2w wemE Yuy = 0and 3, eavg Yuy = 0. So, the inequality (15) holds because (11) is valid for all elementary s — ¢ paths
in Gx. Otherwise, under the hypothesis that it is passed at least a s—¢ path through every vertex w € S, such a path uses ex-
actly one incoming arc to w, say («’, w), or exactly one outgoing arc (w, V") from w. S0, 3/ wea\E Yirw + 2iwaryea\E Ywr <
k + 1, and hence (15) holds. O

Remark. The above lifted inequality can be written by taking into account both the vertices of S and the arcs of Fy.
Proposition 2. The inequality (15) is stronger than the inequality (12).

Proof. Consider the inequality (15). Let A~ = {(,w) e A\ E :we S;}and A" = {(w,v') € A\ E : w € S;}. It’s obvious
that the inequality (15) is stronger than the inequality (12), as (A" UAT) CA\ E. O

In the following section, the computational experiments confirm the theoretical results of the above proposition.
3. Computational Results

We report on computational experiments on the same instances of digraphs randomly generated and tested in Ibrahim
and al. (2015). We recall that these instances feature large integrality gaps and contain negative cost cycles. Consider
the linear relaxation of the single origin - single destination shortest path problem flow based linear formulation (1-10)
presented in section 2, in a cutting plane framework, we use the incident lifted valid inequalities of order k = 0, to build
strengthened linear relaxations of the above formulation (1-10). For more details on the generation of the instances that
we deal with, one can refer to Ibrahim et al. (2015). To generate the subset pair (S, F), with k& = 0, we resort to the
enumerative procedure used in Ibrahim et al. (2015). Such an enumerative procedure is efficient as it is run with respect
to the sub-digraph Gx which contains generally a few number of s — ¢ elementary paths.

Algorithms are implemented in C and all computations have been carried out on a computer equipped with a 1.50 GHz
Intel (R) core (TM) 2 CPU. All instances are solved by open software glpk (see GNU Linear Programming Kit, 2007). In
the following tables, the first ten selected problems (problem1 to problem10) have 100 = 10 x 10 vertices and the others
(problem11 to problem18) have 200 = 20 x 10 vertices.

The meaning of the figures shown in the following table is as follows:

- The first column of table 1 presents the identifiers of the different instances;

- On the second, third and fourth columns of table 1, we display the relative gap improvements gs! (%), gcl (%) and gil (%)
obtained by strengthening with simple lifted valid inequalities (SLI), cocycle-lifted valid inequalities (CLI) and incident
lifted valid inequalities of order k = 0, respectively. The relative improvement is expressed in percents and is computed
as ZZI,I,_:Z * 100, where Z; is the optimal value obtained after lifted inequalities strenghening, Z is the optimal value of the
linear relaxation of the considered problem and z,,, is the optimal value of the shortest path;
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- On the fifth column, we have the number of iterations #nbrit that suffices to produce the optimal integer solution.
- On the sixth column, we show the number #/LI of generated incident lifted inequalities of order O.

Table 1. Gap improvements obtained using S LI, CLI and ILI

name gsl (%) gcl (%) gil (%) #nbrit #ILI

probleml1 17.64 35.29 50 2 4
problem?2 0.87 1.75 100 1 7
problem3 2.61 7.70 100 1 4
problem4 2.94 5.88 6.66 2 1
problem5 13.30 75 100 1 9
problem6 2.27 18.18 100 1 1
problem?7 7.73 53.33 53.33 1 6
problem8 0.90 3.45 62.06 1 7
problem9  23.07 57.38 61.53 3 3
problem10  10.72 32 100 1 6
problem11  13.79 65.51 100 1 5
problem12 30 80 100 1 1
problem13 0.5 1 100 1 11
problem14  4.41 11.76 100 1 11
problem15 0 0 31.86 2 3
problem16  3.03 18.8 100 1 4
problem17 5.36 16.90 50 3 9
probleml8  4.25 12.5 100 1 2

On all the lines of the above table, we observe that gil > gcl > gsl except the line represented by the instance named
problem 7 for which we have gil = gcl. That proves that the /LI inequalitied of order O are significantly stronger than
the S LI and CLI studied in Ibrahim et al. (2015). Moreover for 11 instances among 18 considered, a strengthening with
the /LI inequalities of order O directly displays the optimal integer solution (ie, the optimal s — ¢ directed path. This is
characterized by the fact that for all these 11 instances, its corresponding values on the fourth and on the fifth columns
are equals to 100% and 1, respectively. That shows that, in the cutting plane process, only one iteration suffices to display
the optimal integer solution. So, 100% of gap have been closed. Nevertheless, for some of the considered instances, we
observe on the fifth column that to obtain the optimal s — ¢ elementary path, we have to perform two or three iterations
of strengthening by using some /LI inequalities of order 0. As example, consider the instance named problem1, the gap
improvement obtained by the first strengthening iteration is equal to 50% (see the fourth column of the first line). The
fifth column of the first line shows that (2) strengthening iterations have been performed in view to obtain the optimal s —¢
elementary path. And (4) /LI inequalities have been generated, (see the cell of the last column corresponding to the first
line).

4. Conclusion

We continue our investigation on the shortest path problem between two given vertices in digraphs possibly containing
negative cycles. In previous papers, we present a flow based single origin single destination linear formulation of the
shortest path problem with possibly negative cost cycles in the considered digraphs and we introduce some lifted valid
inequalities used to perform a cutting plane algorithm in view to solve efficiently the problem. We have presented two
types of lifted valid inequalities called the simple lifted valid inequalities and the cocycle lifted valid inequalities. In
this paper, we address a new class of lifted valid inequalities named the incident lifted valid inequalities as they are based
on the incident arcs of a given vertex. Computational results, carried out on the same digraphs with size up to 200 vertices
show that by using the incident lifted inequalities, an iterative strengthening procedure provides the exact integer optimal
solution in less than three iterations for all of the test examples except one instance for which after the first strengthening
iteration, there exists no generated lifted valid inequalities. This results feature that the incident lifted valid inequalities
are significantly stronger than the first lifted inqualities previously introduced, (we recall that, consider the same instances
of digraphs and the simple lifted valid inequalities, the integrality gap is 100% closed in about half of our considered
instances within ten iterations of cutting plane generation).
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