
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005 1169

Compressible Area Fill Synthesis
Yu Chen, Andrew B. Kahng, Gabriel Robins, Member, IEEE, Alexander Zelikovsky, and Yuhong Zheng

Abstract—Control of variability and performance in the back
end of the VLSI manufacturing line has become extremely difficult
with the introduction of new materials such as copper and low-k
dielectrics. To improve manufacturability, and in particular to en-
able more uniform chemical–mechanical planarization (CMP), it
is necessary to insert area fill features into low-density layout re-
gions. Because area fill feature sizes are very small compared to the
large empty layout areas that need to be filled, the filling process
can increase the size of the resulting layout data file by an order
of magnitude or more. To reduce file transfer times, and to accom-
modate future maskless lithography regimes, data compression be-
comes a significant requirement for fill synthesis. In this paper,
we make the following contributions. First, we define two com-
plementary strategies for fill data volume reduction corresponding
to two different points in the design-to-manufacturing flow: com-
pressible filling and post-fill compression. Second, we compare com-
pressible filling methods in the fixed-dissection regime when two
different sets of compression operators are used: the traditional
GDSII array reference (AREF) construct, and the new Open Art-
work System Interchange Standard (OASIS) repetitions. We apply
greedy techniques to find practical compressible filling solutions
and compare them with optimal integer linear programming solu-
tions. Third, for the post-fill data compression problem, we propose
two greedy heuristics, an exhaustive search-based method, and a
smart spatial regularity search technique. We utilize an optimal
bipartite matching algorithm to apply OASIS repetition operators
to irregular fill patterns. Our experimental results indicate that
both fill data compression methodologies can achieve significant
data compression ratios, and that they outperform industry tools
such as Calibre V8.8 from Mentor Graphics. Our experiments also
highlight the advantages of the new OASIS compression operators
over the GDSII AREF construct.

Index Terms—Dummy fill, fill data compression, GDSII AREF,
greedy method, OASIS repetitions, VLSI manufacturability.

I. INTRODUCTION AND BACKGROUND

CHEMICAL–MECHANICAL planarization (CMP) and
other manufacturing steps in nanometer-scale VLSI pro-

cesses have varying effects on device and interconnect features,

Manuscript received April 29, 2003; revised February 6, 2004. This work
was supported by a Packard Foundation Fellowship, by the MARCO Gigascale
Silicon Research Center, by a National Science Foundation (NSF) Young In-
vestigator Award MIP-9457412, by NSF Grant CCR-9988331, and by a grant
from Cadence Design Systems, Inc. This paper was recommended by Associate
Editor T. Yoshimura.

Y. Chen was with the Department of Computer Science, University of Cali-
fornia, Los Angeles, CA 90095-1596 USA. He is now with Blaze-DFM, Inc.,
Sunnyvale, CA 94089 USA (e-mail: yuchen@blaze-dfm.com).

A. B. Kahng is with the Department of Computer Science and Engineering,
and Department of Electrical and Computer Engineering, University of Cali-
fornia at San Diego, La Jolla, CA 92093-0114 USA (e-mail: abk@ucsd.edu).

G. Robins is with the Department of Computer Science, University of Vir-
ginia, Charlottesville, VA 22903-2442 USA (e-mail: robins@cs.virginia.edu).

A. Zelikovsky is with the Department of Computer Science, Georgia State
University, Atlanta, GA 30303 USA (e-mail: alexz@cs.gsu.edu).

Y. Zheng is with the Department of Computer Science, University
of California at San Diego, La Jolla, CA 92093-0114 USA (e-mail:
yzheng@cs.ucsd.edu).

Digital Object Identifier 10.1109/TCAD.2005.850859

depending on the local characteristics of the layout. To improve
manufacturability and performance predictability, foundry
rules require that a layout be made uniform with respect to
prescribed density criteria, through the insertion of area fill
features. Currently, area fill is added by physical verification
tools (such as Mentor Graphics’ Calibre) in the form of a
flat “target layer” [26], which is eventually merged with the
actual layout features at the mask data preparation step of the
manufacturing handoff. Interconnect layers above M1 have
little natural hierarchy that can be exploited, and contexts for
instantiations of IP blocks may be different; this typically leads
to a flat filling solution. According to the 2002 International
Technology Roadmap for Semiconductors [20], the fractured
(MEBES format) layout data volume for a single critical layer
will reach hundreds of gigabytes during the transition between
130 nm and 90 nm technologies [2]. To alleviate file transfer
times, and to accommodate future regimes of maskless lithog-
raphy (e.g., direct-write requires transfer of terabytes of layout
data per second1), layout data must be compressed as much as
possible (required compression factors have been estimated at
20 or more [15]).

The basic area fill feature is typically the same across the en-
tire layout (with the most common fill shape being square or
rectangular). Moreover, filling patterns exhibit a high degree of
spatial regularity across the layout [22]. Area fill feature dimen-
sions scale with the underlying technology, since microloading
and other mechanisms of process variability are exacerbated by
large variations in feature dimensions. Thus, the number of fill
features per layer is expected to scale at approximately 2 per
technology node (ignoring the impact of reticle enhancement
techniques such as OPC). The filling process tends to increase
the size of a GDSII file by an order of magnitude, due to the
small size of the area fill features relative to the large empty
layout areas that must be filled.2 Higher data volumes lead to
increased read/write times and prevent the leveraging of hier-
archical data processing, among other concerns. Thus, fill data
compression becomes a requirement for effective fill synthesis.

Off-the-shelf data compression techniques such as the Joint
Bi-Level Image Processing Group (JBIG), Ziv-Lempel (LZ77)
and ZIP cannot directly be used inside the standard GDSII
stream data format, and such techniques are, therefore, of lim-
ited use in today’s design-to-manufacturing flows. However, for
a direct-write maskless lithography system, a data processing
system architecture and three compression algorithms are
compared in [15] and an interesting alternative compression is

1New proposed standards will allow mask write without decompression of
data [9], [10].

2Advanced OPC tends to decrease area fill contribution to total layout data
volume. However, fill is most often used with metal layers, where OPC is used
sparingly or not at all, so the contribution of fill to data volume remains signifi-
cant for these layers.

0278-0070/$20.00 © 2005 IEEE

1170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

suggested in [17]. Ueki et al. in [29] propose a data compaction
algorithm for mask data processing in vector scan electron
beam writing systems, where ‘array’ and ‘cell’ constructs are
used to represent the data.

This paper discusses the application of fill compression at
the following two phases of design-to-manufacturing flow: (1)
right before the design is transferred to manufacturing (where
fill generation is modified to produce compressible fill), and (2)
after a filled design is produced (where compression is applied
to the already generated fill). We give the two corresponding
optimization formulations for Compressible Filling and for
Post-Fill Compression, propose several algorithms for solving
these problems, and compare the compression ratios achieved
by the GDSII AREF constructs as well as the new Open
Artwork System Interchange Standard (OASIS) repetition
operators.

In the background below, we briefly summarize area fill
methods in fixed-dissection regimes and analyze compres-
sion ratios achievable by the GDSII AREF constructs and
OASIS repetition operators. Section II formally introduces the
Compressible Filling and Post-Fill Compression problems.
For the Compressible Filling problem, Section III proposes
linear programming-based methods and greedy methods based
on the GDSII AREF and OASIS operators. For the Post-Fill
Compression problem, Section IV develops an efficient spa-
tial regularity detection algorithm combined with an optimal
bipartite matching algorithm. Section V describes our experi-
mental results, and Section VI concludes with future research
directions.

A. Fill Generation and Fixed-Dissection Regimes

Existing methods for the synthesis of area fill are all based
on discretization: the layout is partitioned into tiles, and filling
constraints or objectives (e.g., minimizing the maximum den-
sity variation) are enforced for square windows of size ,
each consisting of tiles. The possible locations for each
filling geometry are then determined within each tile, based on
the corresponding design rules. The size of dummy fill features
is normally prescribed by the foundries. For example, common
design rules for 0.13- m technology suggest rectangular fill
features 3 m in length. Since manufacturers suggest regular
square or rectangular fill patterns, and since such fill shapes are
typically generated by commercial fill synthesis tools, we as-
sume throughout this paper that all fill features are rectangles of
the same fixed size. Note that this assumption also accommo-
dates mixed-size fill features, as long as they are arranged into
“fill cells” (e.g., as with tilted fill), since these fill cells also have
a rectangular shape.

Thus, to practically control layout density in arbitrary
windows, density bounds are enforced only within a finite
set of windows. More precisely, foundry design rules and
EDA physical verification and layout tools attempt to enforce
density bounds within fixed dissections of the layout. Each
fixed dissection is a partition of the layout into nonoverlapping

-windows. The density constraints are enforced within
overlapping dissections, where determines the “phase shift”

by which the dissections are offset from each other.

Fig. 1. Fixed r-dissection regime with parameters r = 3, w = 3 and the
layout size 6� 6. The layout is partitioned by r = 9 distinct 6� 6 overlapping
wrap-around dissections with the phase shift w=r = 1. There are a total of 36
windows (each tile is a left-bottom tile of a window).

A more accurate layout density control requires a greater
value of . The resulting fixed -dissection (see Fig. 1) partitions
the layout into tiles , where .
Thus, the layout is covered by -windows ,

. Note that windows are “wrapped around”
the layout, e.g., a window that overlaps with the upper edge of
the layout also contains tiles on the bottom of the layout (and
similarly for opposite sides of the layout). This is not only con-
venient for simplifying the counting, but also models the fact
that the layout density at the edge of one die may affect the
manufacturing of the die’s immediate neighbors on the wafer.
Each window consists of tiles , ,

.3

The fill generation problem in the fixed-dissection regime
seeks a number of area fill features to be inserted into each tile.
Two main filling objectives have been addressed in the recent
literature:

• the Min-Var Objective, where the variation in window
density (i.e., maximum window density minus minimum
window density) is minimized, subject to the constraint
that no window density exceeds a given upper bound ;

• the Min-Fill Objective, where the number of inserted area
fill features is minimized, subject to the constraint that
each window density remains within a given range .

Methods for area fill synthesis in the fixed-dissection context
include:

• Linear Programming (LP) methods based on rounding the
solution to a relaxation of a corresponding integer linear
program [22], [27], [28];

• Greedy and Monte Carlo (MC) methods which iteratively
find a best or random tile in which the next fill feature
should be added into the layout [5], [6], [28];

• Iterated Greedy (IGreedy) and Iterated Monte Carlo
(IMC) methods that improve the solution quality by
alternating area fill insertion and deletion phases, while
optimizing the density variation [6].

3In typical 0.13-�m design rules, the window size is 200 �m, the tile size (or
step size) is 100 �m, and the dummy fill feature size is 3 �m. For example, in a
2 cm� 2 cm layout, there are 200� 200 overlapping windows that need to be
checked and 6666 � 6666 possible dummy fill feature positions.

CHEN et al.: COMPRESSIBLE AREA FILL SYNTHESIS 1171

TABLE I
SYNTAX OF THE EIGHT OASIS REPETITION TYPES. THE PARAMETERS x-DIMENSION, y-DIMENSION, x-SPACE, y-SPACE, DIMENSION, n-DIMENSION, AND

m-DIMENSION ARE ALL INTEGERS, WHILE DISPLACEMENT, n-DISPLACEMENT, AND m-DISPLACEMENT ARE ALL g-DELTAS. M AND N ARE THE NUMBERS OF

ROWS AND COLUMNS IN THE REPETITION

B. Compression Operators in GDSII and OASIS Formats

A new, recently proposed standard layout data representation
format called the Open Artwork System Interchange Standard
(OASIS) has as a primary objective the enabling of significant
data compression. This new standard is expected to be simple
enough to be widely supported by all EDA suppliers and CAD
groups with prior knowledge of GDSII. OASIS is capable of
representing the commonly used GDSII data types, which will
enable a smooth migration from GDSII to the new and more
efficient OASIS format. The key OASIS concepts most relevant
to our work are as follows.

• An OASIS unsigned integer is an -byte integer value,
where , and is implementation-dependent. The in-
teger byte length is variable, and integers are represented
as byte continuations, where the upper bit of each byte ex-
cept the last in the chain is set; the remaining seven bits
in each byte are concatenated to form the actual integer
value.

• An OASIS -delta construct represents a general dis-
placement, with the following two forms:
— An unsigned integer, representing an orthogonal or 45

displacement.
— A pair of unsigned integers, which represents a general

(,) displacement.
• OASIS supports primitive geometric shapes such as rect-

angles, polygons, paths, trapezoids, circles, and -ge-
ometries.

• A placement record identifies an instantiation of a cell.
A cell may in turn contain a number of basic structures,
including other cells.

• A repetition is an array of either placements, geometries
or texts. There are eight repetition types (see Table I), as

Fig. 2. Examples of the eight types of OASIS repetitions. These are more
formally defined in Table I.

illustrated (for a standard fill feature) in Fig. 2. We also
define the starting point of the repetition to be the left
bottom point of the left bottom element of the repetition.

The full OASIS format allows the use of repetition Types 1–7
(Type 8 repetition is subsumed by the other repetition opera-
tors, and thus has no significant effect on single-level data com-
pression). The GDSII AREF construct can represent only the
first three OASIS repetition types. We, therefore, define the re-
stricted OASIS format as one that may use only repetition Types
1–3. To compare the compression capabilities of different oper-
ators, we define the following measure of compression efficacy.

1172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Definition 1: The compression ratio is the ratio of the size
of a flat OASIS file to the size of its compressed version

(1)

We now estimate the data size requirements of the different
repetition types, which are all based on unsigned integers and
the -delta constructs. Table I summarizes the different types of
repetitions and provides estimates of the number of unsigned in-
tegers required to represent each type. Here, Type 6 repetitions
may have different sizes, depending on the displacement direc-
tion: if one or both of the directions are multiples of orthogonal
or 45 displacements, then their size may be either 4, 5, or 6 in-
tegers. Similarly, the size of a Type 7 repetition may also vary
between 2 and 3 integers, depending on the displacement direc-
tion being either 90 or 45 .

Consider an array of rectangles, and let be the
number of integers required to represent a single record without
any repetitions. Let be the number of integers required to
store the additional information when using repetitions. Then,
the total number of integers required to store indepen-
dent rectangles would be , while the total number of
integers required to store these rectangles as an array with rep-
etition would be . The estimated compression ratio is,
therefore, given by

(2)

Since is always smaller than , there will be a
reduction in data volume when using repetitions.

An area fill feature may be a rectangle, a polygon, a trape-
zoid, a circle, or other shape, and OASIS can define different
records to represent these shapes. The following is an example
of estimating the size of a rectangle when used as a fill feature:

The size “ ” of a single rectangle record is seven integers,
with these integers representing the record header, layer number,
datatype number, , , width, and height. Different fill feature
types may have different record sizes, e.g., a polygon requires
seven integers, a circle needs six, and a trapezoid requires nine
integers. Assuming that representing a single fill feature requires
seven integers, Table II gives the estimated compression ratio for
each repetition type.

We conclude from Table II that repetition Types 1 and 6 are
the most powerful compression operators, followed by Types
2, 3, and 7, while repetition Types 4 and 5 are the least pow-
erful compression operators. Again, Type 8 is subsumed by the
other repetition operators and thus has no significant effect on
single-level data compression; however, it may still be useful in
hierarchical cases, similar to the SREF operator in GDSII.

II. PROBLEM FORMULATIONS

Fill compression can be applied either during fill generation,
or after the fill for a design has been produced. In the first case,

TABLE II
COMPRESSION RATIOS FOR THE DIFFERENT TYPES OF RECTANGLE REPETITIONS

area fill is generated using the GDSII AREF construct or OASIS
repetition operators directly to satisfy the layout density require-
ments.

Fig. 3 illustrates the potentially significant reduction in data
volume when compressible fill is generated. Assume that given
the layout shown, the fill synthesis phase prescribed the inser-
tion of 84 fill features into the layout (i.e., we now need to suc-
cinctly represent 84 fill rectangles). If we use the GDSII AREF
construct or the OASIS repetition operators, only nine AREFs or
OASIS repetition operators are needed (denoted by dark rectan-
gles in Fig. 3), resulting in a significant data volume reduction.
Significant data volume reduction can also result from using the
GDSII AREF construct or the OASIS repetition operators to en-
code already generated fill. This is illustrated in Fig. 4, where,
e.g., only seven GDSII AREF constructs or OASIS repetition
operators are necessary to represent 61 existing fill features.

Below, we give the two corresponding optimization formula-
tions for Compressible Filling and Post-Fill Compression Prob-
lems.

A. Compressible Filling Problem

One approach to reducing the fill data volume is to use the
GDSII AREF or OASIS repetition constructs for fill pattern
compression. This can be formulated as follows.

Compressible Filling Problem (CFP): Given a design rule-
correct layout, generate a minimum number of GDSII AREF or
OASIS operators to represent area fill features that keep window
density variation within the given bounds (,).

We first address the CFP formulation in the fixed-dissection
regime. In Section I we have described several methods for com-
puting the number of area fill features that should be inserted
into each tile. Let be the required number of area fill features
to be inserted into tile . We represent each tile as an array of
sites corresponding to the possible positions for inserting area
fill features. Some sites are forbidden with respect to fill inser-
tion, since they are already occupied by existing layout features.

Compressible Filling Problem in Fixed-Dissection
Regimes: Given a design rule-correct layout consisting of

tiles , and fill requirements for each tile, generate
a minimum number of GDSII AREF or OASIS operators to
represent area fill, such that each tile contains exactly
area fill features.

If we wish to address the Min-Var and Min-Fill filling prob-
lems together, we can obtain a feasible range, instead of an exact

CHEN et al.: COMPRESSIBLE AREA FILL SYNTHESIS 1173

Fig. 3. Example of compressible filling. (a) Original layout. (b) Filled layout with 84 area features in nine AREFs.

Fig. 4. Example of post-fill compression. (a) Layout divided into four tiles with 61 inserted area fill features. (b) Compressed layout with 61 area fill features
using seven OASIS repetitions.

value , for the number of area fill features to be inserted into
each tile while satisfying the density requirements. The corre-
sponding optimization formulation is as follows.

Ranged Compressible Filling Problem in Fixed-Dissec-
tion Regimes: Given a design rule-correct layout consisting of

tiles, generate a minimum number of GDSII AREF or
OASIS operators to represent area fill, such that each tile
contains a number of area fill features within the given range
(,).4

B. Post-Fill Compression Problem

An alternative stage in the design-to-manufacturing flow
where the fill data volume can be reduced is after the fill for
the entire layout has been generated. Then, the GDSII AREF
construct or OASIS repetition operators are applied without
changing the filled design.

Post-Fill Compression Problem (PFCP): Given a layout
containing area fill features, represent these area fill features
using the GDSII AREF construct or OASIS repetition opera-
tors in a way that minimizes the overall data volume.

In order to detect compressible fill patterns, we represent the
fixed-dissection layout region as a binary matrix

, where 1’s correspond to area

4The given range (LB , UB) is the feasible range for the number of area
fill features for each tile. It is determined by the fill generation process and does
not depend on the neighboring bounds.

fill features, and 0’s denote empty areas or original features.
The intersection of a row and a column in the matrix

is denoted by . Each nonzero element of the input matrix
corresponds to a basic fill feature. A 0-1 matrix representation
of fill layout is possible for the outputs of all major commer-
cial fill insertion tools (e.g., Mentor’s Calibre, Synopsys’ Her-
cules and Cadence’s Assura), even when operating in modes
that output “tilted fill” or tiled “fill cells”. In Section IV we de-
scribe a greedy method for solving PFCP based on exhaustive
search of all repetitions, and then we give a computationally ef-
ficient greedy algorithm based on searching for regularities in
the planar pointset.

III. APPROACHES TO COMPRESSIBLE FILLING

A. Approaches Based on GDSII Compression Operators

The Integer Linear Programming (ILP) method for inserting
area fill is the most accurate (see the Appendix), but cannot
be applied to large layouts. Therefore, we propose greedy
heuristics to determine the minimum number of AREFs for the
required number of area fill features in each tile. We describe
a strict greedy (albeit inefficient) algorithm for multiple-tile
ranged fill generation using either overlapping AREFs or
nonoverlapping AREFs; we then describe two faster practical
variants. Single-tile and fixed fill are special cases of mul-
tiple-tile and ranged fill, respectively.

1174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Fig. 5. Strict Greedy Algorithm for multiple-tile ranged filling.

Fig. 6. Greedy Speedup Approach 1.

Strict Greedy Approach: The strict greedy approach repeat-
edly adds an AREF that fills the maximum number of unfilled
free sites in multiple tiles, yet does not overfill any tile. It iter-
ates until the filling requirements in all the tiles are satisfied. In
the ranged filling context, the fill requirements in each tile are
changed from a fixed to a certain range (,), where

is used to control overfill, and is used to satisfy the min-
imum fill requirements.

Since each AREF contains different combinations of coordi-
nates, sizes, and steps, checking all the AREFs has a time com-
plexity of , where is the total number of sites in the
layout. In the strict greedy approach, the status of all the valid
AREFs is checked and updated during each iteration, resulting
in an overall time complexity5 of . Our implementation
of this algorithm provides good solutions, but may be imprac-
tical due to its high running time. Letting in
Fig. 5 solves the fixed fill problem, and using a single-tile as a
multiple-tile solves the single-tile filling problem.

Greedy Speedup Approach 1: We propose speedups of the
basic greedy approach that offer tradeoffs between compression
performance and run time (see Fig. 6). Our first greedy speedup
heuristic finds the largest AREFs originating from each free site,
and picks an AREF that fills the maximum number of unfilled
free sites without overfilling any tiles (if such an AREF exists).
Otherwise, it selects the maximum AREF from all the largest
AREFs, and finds one of its sub-AREFs which does not over-
fill the tiles. This process is iterated until all of the tile filling

5A faster implementation of the Strict Greedy Approach maintains a priority
queue with invalid candidates being permanently removed.

requirements are satisfied. Note that the solution is generated
from all largest AREFs (or their feasible sub-AREFs) starting
from all originally free sites (i.e., sites which were free in the
original layout) rather than from all valid AREFs, as in the Strict
Greedy algorithm.

For this Greedy Speedup Approach 1, the sets of largest
AREFs originating from the original free sites are different
for the single-tile option and for the multiple-tile option; due
to runtime considerations, our heuristics (Step 3) will not
necessarily choose the best sub-AREF. Rather, a sub-AREF is
selected by doubling the step sizes (and) of the original
AREFs, i.e., using and as the steps for the required
sub-AREF. Thus, we cannot guarantee better behavior with
the multiple-tile option than with the single-tile option. For
example, for test case and or 250 in Table IV, the
results of Greedy Speedup Approach 1 with the multiple-tile
option are worse than those obtained with the single-tile option,
in terms of both the number of AREFs and the run times.
Finding the largest AREF originating from each original free
site has a time complexity of . Selecting the maximum
AREF (or its sub-AREF within the set of the largest AREFs)
requires time. The time complexity of the algorithm is,
therefore, improved to .

Greedy Speedup Approach 2: An even more efficient ap-
proach can be realized by picking acceptable AREFs originating
from each free site, instead of maximum AREFs (see Fig. 7). An
acceptable AREF is an AREF that fills the maximum number
of unfilled free sites but does not overfill the tiles among all
the AREFs originating from the same free site whose sizes are

CHEN et al.: COMPRESSIBLE AREA FILL SYNTHESIS 1175

Fig. 7. Greedy Speedup Approach 2.

Fig. 8. Comparison of compressible filling using different approaches (Fill requirement = 8). (a) Original tile, the dark solid square shows the occupied
original site. (b) Strict Greedy Approach. (c) Greedy Speedup Approach 1. (d) Greedy Speedup Approach 2 (K = 2, L = 2).

smaller than (here and define a prescribed upper
bound on the size of AREFs used in compression). Our second
greedy speedup heuristic repeatedly adds an acceptable AREF
originating from each free site and iterates until the tile filling
requirements are satisfied. Finding an acceptable AREF orig-
inating from a free site (i.e., an AREF using a free site as its
starting (reference) point), requires time. The time
complexity of the algorithm, therefore, improves to

. Moreover, this algorithm is very efficient on actual bench-
marks, where and AREFs of size yield adequate
compression. Intuitively, larger AREFs have starting sites at the
bottom left corner of the tile; therefore, our Greedy Speedup
Approach 2 scans free sites from the bottom left corner and con-
siders the largest AREFs starting from such sites.

Fig. 8 illustrates the difference between the strict greedy algo-
rithm, the Greedy Speedup 1 algorithm and the Greedy Speedup
2 algorithm, using an example of inserting eight fills into a tile.
In Fig. 8(a), the dark solid square shows the occupied original
site. The strict greedy approach searches all the valid AREFs
and one AREF is picked to fill eight free sites as shown in
Fig. 8(b). In the Greedy Speedup 1 approach, only the largest
AREFs originating from each original free site are checked.
Since the largest AREF originating from the bottom-left free site
contains nine free sites and the fill requirement is eight, it will
not be picked in the first round and two AREFs are selected as
shown in Fig. 8(c). In the Greedy Speedup 2 approach, AREFs
whose sizes are no larger than 2 2 are searched. Fig. 8(d)
shows the two selected AREFs.

B. Approaches Based on OASIS Operators

The greedy algorithm described above for compressible
filling based on the GDSII AREF construct repeatedly fills the
maximum number of unfilled free sites in multiple tiles, yet
does not overfill any tile. It iterates until the filling require-
ments in all of the tiles are satisfied. The implementation in

this section replaces the greedy objective, which maximizes
coverage of unfilled free sites with one which instead maxi-
mizes the compression ratio. Compared to the GDSII AREF
construct, the OASIS repetition operators have an additional
degree of freedom. Therefore, checking the status of all the
valid repetitions and updating them at each iteration results in
a time complexity of .

To speed up this greedy algorithm, our implementation sac-
rifices strict greediness, i.e., instead of finding a repetition with
the largest compression ratio, we find a maximal repetition with
sufficiently large (i.e., larger than the given lower bound

. The constant is an experimentally derived lower
bound on the compression ratio for acceptance of repetitions
of Type {1, 2, 3, 6, 7}. All our algorithms use).
The time complexity thus improves to , where

upper bounds the number of elements in any repetition.
In Fig. 9, is the number of unfilled free sites covered by

; letting will solve the fixed fill problem,
and using a single-tile instead of a multiple-tile will solve the
single-tile filling problem.

IV. APPROACHES TO POST-FILL COMPRESSION

This section will discuss approaches for the post-fill compres-
sion problem in the fixed-dissection regime. We can apply the
greedy method from the previous section to the post-fill com-
pression where free sites correspond to the fill features. The key
problem is to rapidly find a repetition with the largest, or suffi-
ciently large, compression ratio. The resulting algorithms utilize
the following priority scheme to search for repetitions.

1) Find a repetition of Type 1, 2, 3, 6, or 7 with maximum
compression ratio (this priority in identifying com-
pression operators is based on the compression ratio anal-
ysis from Table I).

1176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Fig. 9. Greedy Algorithm using OASIS operators.

Fig. 10. Exhaustive Search-Based Single-level Greedy (ESBG) approach for fill data compression.

2) If , output the repetition and update the fill
data. The constant is an experimentally derived lower
bound on the compression ratio for acceptance of rep-
etitions of Type 1, 2, 3, 6, or 7. Our algorithms all use

.
3) Repeat 1 and 2 until no repetition exists with .
4) Find a minimum number of Type 4 or 5 repetitions

to cover the remaining fill geometries using bipartite
matching.

Step 4 of the algorithm above can be implemented optimally,
since each repetition of Type 4 (respectively, Type 5) covers an
entire row (respectively, column). The problem of covering all
the remaining points with the minimum number of repetitions
of Types 4 and 5 is, therefore, equivalent to the well-known
problem of finding a minimum vertex cover in a bipartite graph

(where vertices correspond to the set
of rows and the set of columns, and edges connect columns
and rows if and only if there is a 1 at their intersection in the 0-1
matrix). Applying Konig’s Theorem, a minimum vertex cover in
a bipartite graph can be derived from a maximum matching,
which can be found within time where is
the number of 1’s in the matrix [13].

A. Exhaustive Search-Based Single-Level Greedy Method
(ESBG)

A straightforward but inefficient way to represent fill features
with the GDSII AREF construct or OASIS repetition operators
is to perform exhaustive search for each repetition type. In our
ExhaustiveSearch-Based Single-LevelGreedy Method (ESBG),

each 1-element of the input0-1matrix is treated as the bottom-left
corner of a potential maximal parallelogram or rectangle (the
latter being a special case of the former) with all the corners
of the parallelogram containing 1’s (Types 1, 2, 3, 6, and 7). If
a repetition type originating from a 1-element with maximum
compression ratio satisfies the given minimum compression ratio
requirements, it is then saved and all of the sites covered by this
repetition are marked as visited. This process is repeated, each
time using the remaining unvisited 1-elements in the matrix as
potential starting points, until all of the 1-elements have been
either included in repetitions or tried as starting points. Finally,
any remaining 1-elements that have not been marked as visited
are covered by repetition Types 4 and 5 using a bipartite perfect
matching-based minimum vertex cover method, described at the
endofSection IV-B.Since type1,2,3,6, and7repetitions involve
different combinations of coordinates, sizes, steps and directions,
the time complexity of the algorithm is . Fig. 10 gives a
formal description of our algorithm.

B. Regularity Search-Based Single-Level Greedy Algorithm
(RSBG)

The exhaustive search-based greedy method described above
may be computationally inefficient for large layouts. We can
improve on this approach by using a regularity detection tech-
nique for planar pointsets [21]. Fig. 11 illustrates the difference
between the ESBG and the RSBG methods, using an example
with fill features at sites 1, 3, 4, 5, 6, and 7. Using the ESBG ap-
proach, the originating site for repetition types is selected along
the scan order. The ESBG algorithm first chooses a repetition

CHEN et al.: COMPRESSIBLE AREA FILL SYNTHESIS 1177

Fig. 11. Comparison of ESBG and RSBG algorithms. (a) Original fill data with fill features at sites 1, 3, 4, 5, 6, and 7. (b) OASIS repetitions extracted using the
ESBG algorithm. (c) OASIS repetitions extracted using the RSBG algorithm.

Fig. 12. Finding regularities in a pointset.

with fill features at sites 1, 3, 5, and 7, and then covers the fill
features at sites 4 and 6 with another repetition. However, the
RSBG method chooses a repetition with fill features at sites 3,
4, 5, 6, and 7, and then covers the fill feature at site 1.

1) Finding Regularities in a Pointset: The work of [21] ad-
dresses two problems for a given set of points (Fig. 12):

• finding subsets of equally spaced collinear points (i.e.,
points that lie on the same line are regularly spaced along
that line);

• finding subsets of regularly spaced parallelogram cells.

The following method for solving the first problem (see Fig. 13)
is based on finding all maximal arithmetic progressions in a set
of numbers. First, we obtain the set of all equally spaced number
triples. Next,we use these triples to construct a Regularity Graph,
where each equally spaced triple induces two ver-
tices and and one edge (,). Finally, the
connected components of this graph correspond to all maximal
equally spaced collinear subsets in the original pointset. The total
time required for this computation is .

This technique generalizes to solve the second problem as
follows (see Fig. 14). Each vertex of the regularity graph now
represents a parallelogram, with edges in the graph representing
adjacencies among neighboring parallelograms. The maximum
degree of each vertex in this graph is four, and the size of this
graph is bounded by , where is the number of points.
Similarly to the first problem, the connected components of this
regularity graph correspond to maximal regularly spaced sub-
sets of points in the original configuration. Fig. 14 summarizes
these techniques [21].

2) Greedy Method: Our proposed greedy single-level fill
compression algorithm uses 1-elements of the input matrix to
represent points in the plane, and 0-elements of the input ma-
trix to denote intermediate spaces. Three levels of granularity
among the elements are considered during the search in order
to find maximal repetition types:

• Points;
• Line Segments formed by pairs of points;
• Parallelograms formed by sets of four distinct points.

Our heuristic finds a group of congruent adjacent cells6

and selects repetition types which contain maximal numbers
of unvisited points located among cells of this group. The
proposed greedy method (Fig. 15) starts with the set of points
determined by the input 0-1 matrix , and forms all possible
segments over point pairs. Next, these segments are sorted in
nondecreasing order of their length, as projected onto the axes.
Parallelograms are then formed from pairs of segments having
the same length and slope; this is accomplished by scanning the
sorted segment list in a left-right and bottom-up order. Next, a
graph is constructed where each graph vertex corresponds to a
cell, and edges correspond to geometric adjacencies between
neighboring cells (i.e., congruent cells that share a common
edge). For each connected component of this graph, we search
for maximal repetitions of Types 1, 2, 3, 6, and 7, as detailed
in Steps (14)–(20) of the algorithm in Fig. 15. This method for
identifying maximal repetitions extends the method of [21].

The largest of all maximal repetitions is thus identified,
and the corresponding points are marked as visited. The same
process is repeated for the remaining set of points, until no
feasible new repetitions nor unvisited points remain. Note that
the resulting repetitions may overlap with each other, and thus
some points may be covered by more than one repetition (i.e.,
some fill elements may be represented redundantly). Finally,
Step (21) of Fig. 15 optimally covers the remaining points with
repetitions of Types 4 and 5.

The overall time complexity of this algorithm is ,
which may still be prohibitive for millions of fill elements. We
may, therefore, partition the layout into blocks to speed up the
runtime, with the time complexity of this modified variant being

. Note that since the minimum vertex cover can be
found much faster, it is possible to employ a coarser partition
into blocks (or forgo altogether the partition into blocks) in Step
(19). Alternatively, we can initially run an optimal algorithm
for finding a minimum covering with repetitions of Types 4 and
5. Then, each candidate repetition may be selected only if it
reduces the size of the minimum covering.

V. COMPUTATIONAL EXPERIENCE

All of our experiments were performed on metal layers ex-
tracted from industry standard-cell layouts (Table III). Our ex-
perimental testbed integrates GDSII Stream input and internally
developed geometric processing engines, coded in C++ under
Solaris 2.8. We use CPLEX version 7.0 [14] as the linear pro-
gramming solver. All runtimes are reported in CPU seconds on
a 300 MHz Sun Ultra-10 with 1 GB of RAM.

6A cell is defined by a pair of distinct segments having the same length and
slope. The offset between two segmentsS andS is defined by horizontal width
w(S ; S) and vertical height h(S ; S).

1178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Fig. 13. Finding subsets of equally spaced collinear points.

Fig. 14. Finding all maximal sets of regularly spaced parallelogram-shaped cells in a pointset.

A. Compressible Filling Results

We first give compressible filling results using the GDSII
AREF operator. Table IV compares the data volumes of uncom-
pressed fill results against compressed fill results (due to the
infeasibility of running the LP solver on large test cases, only
compression results from the Greedy Speedup 1 and Greedy
Speedup 2 approaches are reported here). The data volume in-
crease due to area fill insertion becomes significant when the fill
feature sizes are small (e.g., more than 100 MB for the single
layer when). The Greedy approach can achieve
very large compression ratios for the resulting GDSII files, es-
pecially when the fill features are small. For example, in test
case , the fill data volumes are reduced by about 30 (from
73.8 MB to 2.5 MB) when the fill feature size is ; the
compression ratio is only 1.5 for . Furthermore, the
runtimes of the Greedy approaches make them feasible in prac-
tice. The tradeoff between runtime and solution quality is also
apparent from Table IV by comparing the single-tile results with
the multiple-tile results.

The average compression ratio of the Greedy Speedup 1
algorithm is 10.6 for the ranged single-tile fill and 8.7 for the
ranged multiple-tile fill. The average compression ratio of the
Greedy Speedup 2 algorithm is 7.1 for the ranged single-tile fill
versus 8.2 for the ranged multiple-tile fill. The average runtime
of the Greedy Speedup 1 algorithm is 1929 CPU seconds for
the ranged single-tile fill and 4749 CPU seconds for the ranged
multiple-tile fill. The average runtime of the Greedy Speedup 2
algorithm is 12 s for the ranged single-tile fill versus 20 s for
the ranged multiple-tile fill. We can achieve a smaller number
of AREFs by using the Multiple-Tile approach, although
that would require longer runtimes. As expected, the Greedy

Speedup 2 approach is much faster than the Greedy Speedup 1
approach, with only a small degradation in solution quality.

Table V compares the ILP method, the Greedy Speedup 1
method, and the Greedy Speedup 2 method. Since the runtimes
of ILP-based methods make them infeasible for multiple-tile fill
compression, we only report results for single-tile fill compres-
sion. We observe improvements in terms of both the number
of AREFs as well as the runtimes for the ranged fill-compres-
sion approaches. Our experiments also indicate that the Greedy
method yields results comparable to the optimal ILP method,
yet offers a significant runtime advantage (i.e., a decrease from
several hours to less than one second).

We assess the OASIS-based compressible filling approaches
by inserting low density fill as well as high density fill into the
layout.7 Table VI reports the compressible filling results. The
average compression ratio of low density compressible filling is
6.8 using the restricted OASIS repetitions, 10.4 using the full
OASIS repetitions, 10.6 using Type 1, 2, 3, 4, and 5 repetitions,
and 6.6 using Type 4 and 5 repetitions. The average compres-
sion ratio of the high density compressible filling is 4.6 using
the restricted OASIS repetitions, 8.5 using the full OASIS repe-
titions, 8.7 using Type 1, 2, 3, 4, and 5 repetitions, and 6.7 using
Type 4 and 5 repetitions.

The results indicate that the compression ratios using the full
OASIS format are on average twice those using the restricted
OASIS Format. This confirms an advantage of the OASIS com-
pression operators over those of GDSII.8 Table VI also shows
the performance of different types of repetition combinations.

7The high density fill was produced by fill synthesis with the Min-Var objec-
tive, while the low density fill was produced by fill synthesis with the Min-Fill
objective.

8Full OASIS compression will work well on specific styles of fill, such as
“tilted fill” using repetition Types 6 and 7.

CHEN et al.: COMPRESSIBLE AREA FILL SYNTHESIS 1179

Fig. 15. Regularity Search-Based Single-level Greedy method for fill data compression.

TABLE III
PARAMETERS OF SEVEN INDUSTRY TEST CASES

Since the sizes of repetition Types 1, 2, 3, 6, and 7 are indepen-
dent of the number of 1’s covered, and the sizes of repetition
Types 4 and 5 are dependent on the number of 1’s, using rep-
etition Types 4 and 5 achieves better compression results if the
fill requirements are small. Otherwise, if the fill requirements
are large, using Types 1, 2, 3, 6, and 7 repetitions will achieve
better compression results. We also find that full OASIS com-

pression is slightly worse than using only Types 1, 2, 3, 4 and
5. The reason is that using Types 6 and 7 repetitions may break
large instances of Types 1, 2, and 3, yet may fail to decrease the
number of Type 1, 2, and 3 repetitions since these are all inde-
pendent of the number of 1’s.

Finally, Table VII compares the Greedy Speedup 2 algorithm
with the off-the-shelf data compression tool GZIP. GZIP has

1180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

TABLE IV
DATA COMPRESSION. NOTATION: RANGED SINGLE-TILE: RANGED SINGLE-TILE FILL COMPRESSION APPROACHES; RANGED MULTIPLE-TILE: RANGED

MULTIPLE-TILE FILL COMPRESSION APPROACHES; UNCOMP: FILL SOLUTION WITHOUT COMPRESSION; GS-1 GREEDY SPEEDUP APPROACH 1; GS-2 GREEDY

SPEEDUP APPROACH 2; T=W=r: LAYOUT/WINDOW SIZE/R-DISSECTION; s: SITE SIZE; DATA: FILE SIZE INCREASE IN KILOBYTES DUE TO FILL

FEATURES (REDUCTION FACTOR RELATIVE TO UNCOMP); CPU: RUNTIME (IN SECONDS)

TABLE V
PERFORMANCE OF THE FILL COMPRESSION METHODS. NOTATION: FIXED FILL-COMPRESSION: FIXED FILL COMPRESSION APPROACHES (WHERE THE NUMBER OF

FILL FEATURES IN EACH TILE IS FIXED); RANGED FILL-COMPRESSION: RANGED FILL COMPRESSION APPROACHES (WHERE THE NUMBER OF FILL FEATURES

IN EACH TILE IS RANGED); ILP: ILP-BASED APPROACH; GS-1: GREEDY SPEEDUP APPROACH 1; GS-2: GREEDY SPEEDUP APPROACH 2.
#AREF: NUMBER OF AREFS IN THE FILL SOLUTION; CPU: RUNTIME (IN SECONDS)

been applied to the GDSII file containing only the generated fill.
The average compression ratio is 5.51 using GZIP, 8.39 using
the Greedy Speedup 2 method, and 50.57 using the Greedy
Speedup 2 plus GZIP method. The average runtime is 13.32 s
using GZIP, 2.46 s using the Greedy Speedup 2 method, and
3.79 s using the Greedy Speedup 2 approach combined with
the GZIP method. The data indicates that the compression ratio
of our Greedy Speedup 2 algorithm is on average significantly
larger than that of GZIP. Moreover, the Greedy Speedup 2
approach is also considerably faster than GZIP. The last two
columns of Table VII show that the compression ratios of
Greedy Speedup 2 and GZIP are independent of each other,
i.e., the compression ratio of the Greedy Speedup 2 followed
by GZIP is about equal to the product of the compression ratios

of the two standalone methods. This implies that neither GZIP
nor our own methods can replace each other, but rather they
complement each other to produce larger compression ratios
than either is able to produce by itself.

B. Post-Fill Compression Results

For the fill data compression problem, we implemented
the greedy algorithms based on regularity detection (RSBG,
Fig. 15), and the exhaustive search (ESBG, Fig. 10). To com-
pare fill compression results for fill data from different filling
methods, we used four fill generation methods to insert fill
features into the same industry test cases: Iterated Monte Carlo
(IMC) as described in [6], the Mentor Graphics Calibre tool,

CHEN et al.: COMPRESSIBLE AREA FILL SYNTHESIS 1181

TABLE VI
COMPRESSION RATIOS OF LOW/HIGH DENSITY COMPRESSIBLE FILL. NOTATION: I: RESTRICTED OASIS; II: FULL OASIS; III:

USING TYPE 1, 2, 3, 4, AND 5 REPETITIONS; IV: USING TYPE 4 AND 5 REPETITIONS

TABLE VII
COMPARISON OF COMPRESSION RATIOS AND RUNTIMES OF FILL SYNTHESIS, GZIP, THE GREEDY SPEEDUP 2 AND THE GREEDY SPEEDUP 2 FOLLOWED BY GZIP

the Cadence Assura tool, and our compressible filling method
using either the restricted OASIS or full OASIS formats.

Table VIII and Table IX present fill compression results
for low and high density fill data using the ESBG and RSBG
methods. The full OASIS format results are on average 1.4
smaller than the restricted OASIS format results using the ESBG
method; the compression ratio gain is about 2 on average
when using the RSBG method. The average compression ratio
of the exhaustive search-based single-level greedy algorithm
is 5.0 using the restricted OASIS repetitions and 6.8 using
the full OASIS repetitions. The average compression ratio of
the regularity search-based single-level greedy algorithm is
3.9 using the restricted OASIS repetitions and 7.7 using the
full OASIS repetitions. The average runtime of the exhaustive
search-based single-level greedy algorithm is 75 s using the
restricted OASIS repetitions and 18 790 s using the full OASIS
repetitions. The average runtime of the regularity search-based
single-level greedy algorithm is 536 s using the restricted
OASIS repetitions and 3988 s using the full OASIS repetitions.

The separate averages of compression ratio and runtime for
low and high density fill data are listed in Table VIII and
Table IX.

Comparing the ESBG and RSBG methods, our experiments
show that using the ESBG algorithm achieves 29.5% average
improvement in compression ratio with the restricted OASIS
format, and runs about 7.2 faster than the RSBG algorithm.
However, the RSBG algorithm achieves 13.4% average im-
provement in compression ratio for the full OASIS format,
and runs about 4.7 faster than the ESBG algorithm. This is
due to the fact that ESBG searches a larger space than RSBG:
repetitions of Types 1, 2, and 3 found by the ESBG algorithm
tend to be larger than those found by the RSBG algorithm, and
thus ESBG uses fewer repetitions with respect to the restricted
OASIS format. Under full OASIS, more repetitions of Types
6 and 7 are found using ESBG than using RSBG; this will not
reduce the number of Type 1, 2, and 3 instances, and so the
ESBG algorithm will tend to generate more repetition types
under the full OASIS format.

1182 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

TABLE VIII
FILL COMPRESSION RATIOS FOR LOW DENSITY FILL DATA. NOTATION: CPU: RUNTIME (IN SECONDS)

On occasion, the ESBG method using full OASIS types is a
little worse than the ESBG method with restricted OASIS types.
In the exhaustive search-based greedy approach, we determine
the originating site for repetition types according to the scan
order. This nonoptimal order makes it possible for a repetition
Type 6 or 7 chosen for one site, to cover some sites from where
larger repetitions can originate. In other words, Type 6 and 7
repetitions may break large instances of Types 1, 2, and 3, yet
may fail to decrease the number of Type 1, 2, and 3 repetitions.
As a result, in some cases the compression ratio from a search
with full OASIS types can be worse than that from a search with
restricted OASIS types (i.e., 1, 2, 3).

Regarding the relative compressibility of fill from different
filling methods, we expect that compressible fill should enable
better compressibility than IMC-generated fill. We can directly
compare compression of low and high density fill data gener-
ated using the two different approaches. Since high density fill
covers almost all free sites in the layout, compressible filling in a

high-densityscenariodoesnotoffermuchadvantage,asexpected.
However, low density fill produced by the compressible filling
method always yields better compression results than fill gener-
ated by randomized methods such as IMC (Table VIII and IX).

Table X reports fill compression results for fill data generated
by the Mentor Graphics Calibre tool (V8.8) and the Cadence
Assura tool (V2.0). Our method yields better compression than
Calibre does on its own output data. When analyzing the number
of different repetition types used in fill compression, we have
observed that repetitions of Types 6 and 7 are not ideal choices,
unless there are many Type 6 and 7 patterns in the layout. We
further observe that repetitions of Type 4 and 5 clearly provide
full OASIS with additional compression capability as compared
to restricted OASIS.

C. Perfect Matching versus Greedy Approach

After extracting repetition Types 1, 2, 3, 6, and 7, we applied
both the perfect matching-based minimum vertex cover method,

CHEN et al.: COMPRESSIBLE AREA FILL SYNTHESIS 1183

TABLE IX
FILL COMPRESSION RATIOS FOR HIGH DENSITY FILL DATA. NOTATION: CPU: RUNTIME (IN SECONDS)

as well as the greedy algorithm for finding repetition instances
of Types 4 and 5. Table XI lists the number of instances of Types
4 and 5 used by these two methods. The minimum vertex cover
method wins 3.8% over greedy in ESBG, and 0.7% over greedy
in RSBG.

VI. CONCLUSION

In this paper, we introduced two compression strategies to
reduce the data volume due to area fill synthesis for layout den-
sity control. First, we explored compressible filling strategies
for fixed-dissection regimes which exploit the GDSII array ref-
erence record (AREF) construct and the new OASIS repetition
operators. We applied greedy and linear programming-based
optimization techniques, and obtained practical compressed fill
solutions.

The experiments show that for the compressible fill problem,
our Greedy Speedup 2 method yields results comparable to
the optimal ILP method, while offering a significant runtime

improvement. Second, we proposed a post-fill data compres-
sion method based on spatial regularity detection and optimal
bipartite matching. Our experimental results help quantify the
prospective advantages of the OASIS compression operators,
and our compression algorithms outperform leading industry
tools. For the fill data compression problem, our smart spatial
regularity search technique yields substantial compression
ratio improvements and runs much faster than the exhaustive
search technique when using the full OASIS format. Finally,
our experimental results illustrate the superiority of the OASIS
compression operators over the corresponding GDSII opera-
tors; additional improvements can be expected when OASIS is
used hierarchically.

Based on our experimental results, two interesting potential
modifications to the OASIS repetition operator may enhance
future compression effectiveness.

• A new irregular array construct equivalent to the combi-
nation of Type 4 and 5 repetitions may be added to pro-

1184 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

TABLE X
FILL DATA COMPRESSION RESULTS FOR FILL DATA GENERATED BY CALIBRE AND ASSURA. NOTATION: TL/T/F: TOOL/TESTCASE/FILE,

TOOL IS MENTOR GRAPHIC CALIBRE (MGC) OR CADENCE ASSURA (ASSURA)

TABLE XI
NUMBERS OF TYPE 4 AND 5 REPETITIONS, i.e., THE IRREGULAR ROWS AND COLUMNS, RESULTING FROM USING PERFECT MATCHING VS. A

GREEDY APPROACH FOR COMPRESSING HIGH DENSITY FILL. NOTATION: T=W=r: TESTCASE/WINDOW SIZE/r-DISSECTION; MVC: PERFECT

MATCHING METHOD FOR MINIMUM VERTEX COVER; GREEDY: THE GREEDY APPROACH

CHEN et al.: COMPRESSIBLE AREA FILL SYNTHESIS 1185

vide effective compression. More formally, this new rep-
etition type is an array with possibly nonuni-
form spacing between elements along the x- and y-di-
rections. The two motivations for adding this new “Type
9” repetition to OASIS are: 1) enabling a potentially un-
bounded compression ratio ,
possibly higher than that of existing types 4, 5, and 8 repe-
titions, and 2) enabling less uniform, yet highly compress-
ible fill. By varying the and spacings, it is possible to
achieve fill distributions closer to that generated by effi-
cient Monte Carlo methods [4].

• Including a standard pseudorandom number generator in
theOASISformatwillsubstantiallysimplifytheapplication
of Monte Carlo methods for CMP layout density control.
When generating compressible fill (see [7]), large amounts
of feasible sites can be described using a small number of
repetitions, and a built-in pseudorandom number generator
can thusbeused to reproduciblyandcompletelyspecify the
filling of a prescribed number of sites.

APPENDIX

LINEAR PROGRAMMING-BASED METHODS

FOR COMPRESSIBLE FILLING

ILP approaches for the Fill Compression problem seek to
minimize the number of AREFs for the given number of area
fill features, while obeying constraints which prescribe the exact
number of area fill features to be inserted into each tile. We use
the following definitions:

• site in position in a tile, where the tile itself
is in position in the overall layout. Every empty site
is a possible position where an area fill feature may be
inserted.

• feasible AREF in the layout, where consists of
the following eight parameters: starting site coordinate

, width , height , horizontal step , and vertical
step (see Fig. 16).

Single-Tile Integer Linear Program

To insert exactly the prescribed number of area fill features
into each tile, a straightforward method for fill compression is
to consider the problem independently in each tile. We call this
approach single-tile compression. For each tile consisting of

sites, we define the variables

(3)

(4)

We then seek the minimum number of AREFs in the slack
sites of the tile . The total number of slack sites covered by
these AREFs must be equal to the prescribed number of area fill
features. The corresponding ILP is as follows.

(5)

Fig. 16. Illustration of AREF a . in tile (i; j).

(6)

(7)

(8)

(9)

• Constraints (6) imply that the total number of covered
slack sites is equal to the number of area fill features.

• Constraints (7) imply that once an AREF is chosen, all the
sites it covers will be filled.

• Constraints (8) imply that if no AREF covering site
is chosen, then the site cannot be filled.

• Constraints (9) imply that we cannot fill any site
which is already covered by an original layout feature.

Constraints (7) construct an inequality for each site covered by
each AREF. However, we can replace these with the following
set of inequalities, which significantly decreases the overall
number of constraints:

(10)

where is the number of AREFs which cover site in
tile , and is the sum of all AREF variables which cover
the site . To decrease the ILP problem size, we determine
all valid AREFs and then construct the ILP formulations based
only on these valid AREFs. We call an AREF valid if all the
sites in it are empty and its indexes have reasonable physical
meaning (e.g., in tile is invalid since there is
no AREF with and horizontal step 0). Constraints
(9) are necessary only when using the feasible AREFs. When
using only valid AREFs, constraints (9) are not required.

1186 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Multiple-Tile Integer Linear Program

Ideally, we should seek AREFs for fill features with respect to
the entire layout, rather than for each tile independently. How-
ever, the large number of tiles and possible AREFs across the
entire layout make such a global strategy intractable. Instead,
we propose a multiple-tile compression approach, which offers
a tradeoff between solution quality and runtime, as follows:

• partition the layout into groups consisting of tiles;
and

• solve each group separately.
Thus, instead of finding nonoverlapping AREFs in one tile,

we seek AREFs for the empty spaces within an array
of contiguous tiles. The difference between the Multiple-Tile
ILP formulation and the Single-Tile ILP formulation is that the
prescribed numbers of fill features for each tile must be simul-
taneously achieved. That is, we replace the constraints (6) with

(11)

Here, constraints (11) imply that the total number of covered
slack sites in each tile is equal to its prescribed number of fill
features.

Ranged Compressible Filling

As noted in [6], excess fill features can be deleted without
affecting the density variation to meet the Min-Fill objective. In
other words, we can exploit the allowed range of fill features
for each tile to relax the LP constraints in order to decrease the
LP solver’s runtime. The constraints (6) and (11) can thus be
respectively rewritten as

(12)

(13)

Here, is the upper bound for the number of fill features for
tile which can, e.g., be taken from the normal Monte Carlo
fill result in [8], and is the lower bound for the number of
fill features for tile which can, e.g., be obtained from the
deletion phase in [6].

Rounded LP Relaxation of Integer Linear Programming

If we round the fractional LP relaxation of the above ILPs,
then a solution may not be feasible since the number of fill fea-
tures may be unequal to the ’s. Therefore, after rounding we
use a greedy algorithm (see the next section) to add or remove
AREFs in order to add exactly fill features into each tile .

Nonoverlapping AREFs

In the above formulations, the resulting AREFs may overlap
with each other. This means that some area fill features may
be represented multiple times in a GDSII file. The need for a

nonoverlapping version of this formulation arises from practical
concerns and our experimental data.

From our experimental data, the number of area fill features
represented multiple times by AREFs can be large. In the actual
design however, each of these multiply represented features ac-
tually occurs only once. To determine a minimum number of
nonoverlapping AREFs for the slack sites of the tile , con-
straints (8) may be modified as follows:

(14)

By rounding the result, we can, therefore, remove some
AREFs from a tile, if necessary, so that the number of fill fea-
tures becomes less than or equal to . Then, we use a greedy
algorithm (see Section III) to add exactly fill features into
each tile .

REFERENCES

[1] D. Boning, B. Lee, T. Tugbawa, and T. Park, “Models for pattern depen-
dencies: capturing effects in oxide, STI, and copper CMP,” presented at
the Semicon/West Tech. Symp.: CMP Tech. for ULSI Manuf., San Fran-
cisco, CA, Jul. 2001.

[2] P. Buck, private communication, Jul. 2001.
[3] Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, “Area fill synthesis

for uniform layout density,” IEEE Trans. Computer-Aided Design Integr.
Circuits Syst., vol. 21, no. 10, pp. 1132–1147, Oct. 2002.

[4] , “Smoothness and uniformity of filled layout for VDSM manufac-
turability,” in Proc. Int. Symp. Physical Design, Apr. 2002, pp. 137–142.

[5] , “Hierarchical dummy fill for process uniformity,” in Proc. ASP-
DAC, Jan. 2001, pp. 139–144.

[6] , “Practical iterated fill synthesis for CMP uniformity,” in Proc. De-
sign Automation Conf., Los Angeles, CA, Jun. 2000, pp. 671–674.

[7] Y. Chen, A. B. Kahng, G. Robins, A. Zelikovsky, and Y. H. Zheng, “Data
volume reduction in dummy fill generation,” in Proc. Design Automation
and Test in Europe (DATE) Conf., Munich, Germany, Mar. 2003, pp.
868–873.

[8] Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, “New Monte Carlo
algorithms for layout density control,” in Proc. ASP-DAC, 2000, pp.
523–528.

[9] N. Cobb and E. Sahouria, “Hierarchical GDSII based fracturing and job-
deck system,” Proc. SPIE, vol. 4562, pp. 734–762, 2001.

[10] N. Cobb and W. Zhang, “High performance hierarchical fracturing,”
Proc. SPIE, vol. 4754, pp. 91–96, 2002.

[11] J. Cong, L. Hagen, and A. B. Kahng, “Net partitions yield better module
partitions,” in Proc. 29th Design Automation Conf., Jun. 1992, pp.
47–52.

[12] W. J. Cook and A. Rohe. Blossom IV—A minimum weighted
perfect matching solver. [Online]. Available: http://www.or.uni-
bonn.de/home/rohe/matching.html

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA: MIT Press, 2001.

[14] Cplex7.0 User’s Manual, ILOG, Mountain View, CA, 2000.
[15] V. Dai and A. Zakhor, “Lossless layout compression for maskless lithog-

raphy systems,” in Proc. Emerging Lithographic Technologies IV, vol.
SPIE 3997, Santa Clara, CA, Feb. 2000, pp. 467–477.

[16] R. R. Divecha, B. E. Stine, D. O. Ouma, J. U. Yoon, and D. S. Boning et
al., “Effect of fine-line density and pitch on interconnect ILD thickness
variation in oxide CMP process,” presented at the 3rd Int. Chemical Me-
chanical Polish for ULSI Multilevel Interconnection Conf. (CMP-MIC),
Santa Clara, CA, Feb. 1998.

[17] R. Ellis, A. B. Kahng, and Y. H. Zheng, “JBIG Compression algorithms
for dummy fill VLSI layout data,” Comput. Sci. Eng. Dept., Univ. Cali-
fornia, San Diego, Tech. Rep. CS2002-0709, Jun. 2002.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman,
1978.

[19] F. Harary, Graph Theory. Reading, MA: Addison-Wesley, 1994.
[20] International Technology Roadmap for Semiconductors (2002). [On-

line]. Available: http://public.itrs.net

CHEN et al.: COMPRESSIBLE AREA FILL SYNTHESIS 1187

[21] A. B. Kahng and G. Robins, “Optimal algorithms for extracting spa-
tial regularity in images,” Pattern Recognit. Lett., vol. 12, pp. 757–764,
1991.

[22] A. B. Kahng, G. Robins, A. Singh, H. Wang, and A. Zelikovsky, “Filling
algorithms and analyzes for layout density control,” IEEE Trans. Com-
puter-Aided Design Integr. Circuits Syst., vol. 18, no. 4, pp. 445–462,
Apr. 1999.

[23] G. Nanz and L. E. Camilletti, “Modeling of chemical-mechanical
polishing: a review,” IEEE Trans. Semicond. Manuf., vol. 8, no. 4, pp.
382–389, Nov. 1995.

[24] New Standards Specification for Open Artwork System In-
terchange Standard (2002, Dec. 11). [Online]. Available:
http://www.semi.org/web/wcontent.nsf/url/stds_blueballot

[25] D. Ouma, D. Boning, J. Chung, G. Shinn, L. Olsen, and J. Clark, “An
integrated characterization and modeling methodology for CMP dielec-
tric planarization,” in Proc. IEEE Int. Interconnect Technology Conf.,
San Francisco, CA, Jun. 1998, pp. 67–69.

[26] F. M. Schellenberg, L. Capodieci, and B. Socha, “Adoption of OPC and
the impact on design and layout,” in Proc. Design Automation Conf., Las
Vegas, Jun. 2001, pp. 89–92.

[27] R. Tian, D. Wong, and R. Boone, “Model-based dummy feature place-
ment for oxide chemical mechanical polishing manufacturability,” in
Proc. Design Automation Conf., Jun. 2000, pp. 667–670.

[28] R. Tian, X. Tang, and D. F. Wong, “Dummy feature placement for
chemical-mechanical polishing uniformity in a shallow trench isolation
process,” in Proc. Int. Symp. Physical Design, Apr. 2001, pp. 118–123.

[29] S. Ueki, I. Ashida, and H. Kawahira, “Effective data compaction algo-
rithm for vector scan EB writing system,” presented at the 20th Annu.
BACUS Symp. Photomask Technology, Monterey, CA, Sep. 2000.

Yu Chen received the M.S. degree in computer
science and engineering from Zhejiang University,
China, and the Ph.D. degree in computer science
from the University of California at Los Angeles, in
1998 and 2003, respectively.

He is currently a Senior Technical Staff Member
with Blaze-DFM, Inc., Sunnyvale, CA. His research
interests include VLSI physical design, performance
analysis, combinatorial optimization, and computa-
tional commerce.

Andrew B. Kahng received the A.B. degree in ap-
plied mathematics (physics) from Harvard College,
Cambridge, MA, and from June 1983 to June 1986
was with Burroughs Corporation Micro Components
Group, San Diego, CA, where he worked in device
physics, circuit simulation, and CAD for VLSI
layout. He received the M.S. and Ph.D. degrees in
computer science from the University of California
at San Diego. He joined the computer science faculty
at University of California at Los Angeles (UCLA)
in July 1989, and is currently Professor as well as

Vice-Chair for graduate studies. From April 1996 through September 1997, he
was on sabbatical leave and leave of absence from UCLA, as a Visiting Scientist
at Cadence Design Systems, Inc. He resumed his duties at UCLA in Fall 1997.
His interests include VLSI physical layout design and performance analysis,
combinatorial and graph algorithms, and stochastic global optimization.

Prof. Kahng has received National Science Foundation (NSF) Research Initi-
ation and Young Investigator Awards, and a DAC Best Paper Award. He was the
founding General Chair of the 1997 ACM/IEEE International Symposium on
Physical Design, and defined the physical design roadmap as a member of the
Design Tools and Test working group for the 1997 renewal of the SIA National
Technology Roadmap for Semiconductors. He is currently a member of the EDA
Council’s EDA 200X task force, and the Design Tools and Test working group
for the 1999 SIA NTRS renewal.

Gabriel Robins (M’91) received the Ph.D. degree in
computer science from the University of California
at Los Angeles (UCLA) in 1992.

He is Professor of computer science in the De-
partment of Computer Science at the University
of Virginia, Charlottesville. His research interests
include VLSI CAD, physical design, computational
biology, and bioinformatics. He co-authored a book
on high-performance routing as well as over 80
refereed papers, including a Distinguished Paper at
ICCAD. Professor Robins served on the U.S. Army

Science Board, and is an alumni of the Defense Science Study Group, an
advisory panel to the U.S. Department of Defense. He also served on panels
of the National Academy of Sciences and the National Science Foundation, as
well as an expert witness in major IP litigations.

Prof. Robins received an IBM Fellowship and a Distinguished Teaching
Award at UCLA. He received a Packard Foundation Fellowship, a National
Science Foundation Young Investigator Award, a University Teaching Fellow-
ship, an All-University Outstanding Teaching Award, a Faculty Mentor Award,
and the Walter N. Munster Endowed Chair at the University of Virginia. He
was General Chair of the 1996 ACM/SIGDA Physical Design Workshop,
and a co-founder of the 1997 International Symposium on Physical Design.
Professor Robins also served on the technical program committees of several
other leading conferences, on the Editorial Board of the IEEE Book Series,
and as Associate Editor of IEEE TRANSACTIONS ON VLSI. He is a member of
ACM, SIGDA, and SIGACT.

Alexander Zelikovsky received the Ph.D. degree in
computer science from the Institute of Mathematics
of the Belorussian Academy of Sciences, Minsk, Be-
larus, in 1989.

He worked at the Institute of Mathematics,
Kishinev, Moldova, from 1989 to 1995.. Between
1992 and 1995, he visited Bonn University and the
Institut fur Informatik in Saarbrueken, Germany.
He was a Research Scientist at the University of
Virginia, Charlottesville, from 1995 to 1997 and a
Postdoctoral Scholar at the University of California

at Los Angeles from 1997 to 1998. Since 1999, he has been an Associate
Professor in the Computer Science Department, Georgia State University,
Atlanta. He is the author of more than 90 refereed publications. His research
interests include VLSI physical layout design, discrete algorithms, ad hoc
wireless networks, and computational biology.

Yuhong Zheng received the B.S. degree in precision
instruments from Tsinghua University, China, and
the M.S. degree in computer science and engineering
from the University of California at San Diego in
1995 and 2004, respectively.

Her research interests include VLSI CAD, al-
gorithm design and methodology development for
physical design and design-manufacturing interface.

	toc
	Compressible Area Fill Synthesis
	Yu Chen, Andrew B. Kahng, Gabriel Robins, Member, IEEE, Alexande
	I. I NTRODUCTION AND B ACKGROUND
	A. Fill Generation and Fixed-Dissection Regimes

	Fig.€1. Fixed r -dissection regime with parameters $r=3$, $w=3
	TABLE€I S YNTAX OF THE E IGHT OASIS R EPETITION T YPES . T HE P
	B. Compression Operators in GDSII and OASIS Formats

	Fig.€2. Examples of the eight types of OASIS repetitions. These
	Definition 1: The compression ratio R_{c} is the ratio of the
	II. P ROBLEM F ORMULATIONS

	TABLE€II C OMPRESSION R ATIOS FOR THE D IFFERENT T YPES OF R EC
	A. Compressible Filling Problem

	Fig.€3. Example of compressible filling. (a) Original layout. (b
	Fig.€4. Example of post-fill compression. (a) Layout divided int
	B. Post-Fill Compression Problem
	III. A PPROACHES TO C OMPRESSIBLE F ILLING
	A. Approaches Based on GDSII Compression Operators

	Fig.€5. Strict Greedy Algorithm for multiple-tile ranged filling
	Fig.€6. Greedy Speedup Approach 1.
	Strict Greedy Approach: The strict greedy approach repeatedly ad
	Greedy Speedup Approach 1: We propose speedups of the basic gree
	Greedy Speedup Approach 2: An even more efficient approach can b

	Fig.€7. Greedy Speedup Approach 2.
	Fig.€8. Comparison of compressible filling using different appro
	B. Approaches Based on OASIS Operators
	IV. A PPROACHES TO P OST -F ILL C OMPRESSION

	Fig.€9. Greedy Algorithm using OASIS operators.
	Fig.€10. Exhaustive Search-Based Single-level Greedy (ESBG) appr
	A. Exhaustive Search-Based Single-Level Greedy Method (ESBG)
	B. Regularity Search-Based Single-Level Greedy Algorithm (RSBG)

	Fig.€11. Comparison of ESBG and RSBG algorithms. (a) Original fi
	Fig.€12. Finding regularities in a pointset.
	1) Finding Regularities in a Pointset: The work of [21] addres
	2) Greedy Method: Our proposed greedy single-level fill compress
	V. C OMPUTATIONAL E XPERIENCE

	Fig.€13. Finding subsets of equally spaced collinear points.
	Fig.€14. Finding all maximal sets of regularly spaced parallelog
	A. Compressible Filling Results

	Fig.€15. Regularity Search-Based Single-level Greedy method for
	TABLE€III P ARAMETERS OF S EVEN I NDUSTRY T EST C ASES
	TABLE€IV D ATA C OMPRESSION . N OTATION: R ANGED S INGLE -T ILE
	TABLE€V P ERFORMANCE OF THE F ILL C OMPRESSION M ETHODS . N OTA
	B. Post-Fill Compression Results

	TABLE€VI C OMPRESSION R ATIOS OF L OW /H IGH D ENSITY C OMPRESS
	TABLE€VII C OMPARISON OF C OMPRESSION R ATIOS AND R UNTIMES OF
	TABLE€VIII F ILL C OMPRESSION R ATIOS FOR L OW D ENSITY F ILL D
	C. Perfect Matching versus Greedy Approach

	TABLE€IX F ILL C OMPRESSION R ATIOS FOR H IGH D ENSITY F ILL D
	VI. C ONCLUSION

	TABLE€X F ILL D ATA C OMPRESSION R ESULTS FOR F ILL D ATA G ENE
	TABLE€XI N UMBERS OF T YPE 4 AND 5 R EPETITIONS, i.e., THE I RR
	L INEAR P ROGRAMMING -B ASED M ETHODS FOR C OMPRESSIBLE F ILLING
	Single-Tile Integer Linear Program

	Fig. 16. Illustration of AREF $a_{i,j;0,0;5,5;2,4}$. in tile $(
	Multiple-Tile Integer Linear Program
	Ranged Compressible Filling
	Rounded LP Relaxation of Integer Linear Programming
	Nonoverlapping AREFs
	D. Boning, B. Lee, T. Tugbawa, and T. Park, Models for pattern d
	P. Buck, private communication, Jul. 2001.
	Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, Area fill sy
	Y. Chen, A. B. Kahng, G. Robins, A. Zelikovsky, and Y. H. Zheng,
	Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, New Monte Ca
	N. Cobb and E. Sahouria, Hierarchical GDSII based fracturing and
	N. Cobb and W. Zhang, High performance hierarchical fracturing,
	J. Cong, L. Hagen, and A. B. Kahng, Net partitions yield better
	W. J. Cook and A. Rohe . Blossom IV A minimum weighted perfect m
	T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Intro

	Cplex7.0 User's Manual, ILOG, Mountain View, CA, 2000.
	V. Dai and A. Zakhor, Lossless layout compression for maskless l
	R. R. Divecha, B. E. Stine, D. O. Ouma, J. U. Yoon, and D. S. Bo
	R. Ellis, A. B. Kahng, and Y. H. Zheng, JBIG Compression algorit
	M. R. Garey and D. S. Johnson, Computers and Intractability: A G
	F. Harary, Graph Theory . Reading, MA: Addison-Wesley, 1994.

	International Technology Roadmap for Semiconductors (2002). [Onl
	A. B. Kahng and G. Robins, Optimal algorithms for extracting spa
	A. B. Kahng, G. Robins, A. Singh, H. Wang, and A. Zelikovsky, Fi
	G. Nanz and L. E. Camilletti, Modeling of chemical-mechanical po

	New Standards Specification for Open Artwork System Interchange
	D. Ouma, D. Boning, J. Chung, G. Shinn, L. Olsen, and J. Clark,
	F. M. Schellenberg, L. Capodieci, and B. Socha, Adoption of OPC
	R. Tian, D. Wong, and R. Boone, Model-based dummy feature placem
	R. Tian, X. Tang, and D. F. Wong, Dummy feature placement for ch
	S. Ueki, I. Ashida, and H. Kawahira, Effective data compaction a

