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ABSTRACT

We introduce a robust method for detecting evolutionary
trends of gene expression from a temporal sequence of mi-
croarray data. In this method we perform gene clustering
via multi-objective optimization to reveal genes with inter-
esting and statistically significant temporal patterns. We
illustrate this gene filtering methodology in the context of
exploring the time trjaectories of mouse retinal genes ac-
quired at different points over the lifetimes of a population
of mice. For 6 time points sampled over 24 mouse subjects,
our method can reliably reveal genes whose expression level
increases or decreases monotonically, hits a peak or valley
at birth, or exhibits other trends.

1. INTRODUCTION

Microarray analysis of gene expression profiles offers one
of the most promising avenues for exploring genetic factors
underlying disease, regulatory pathways controlling cell func-
tion, organogenesis and development [5, 3, 4]. Oligonucleotide-
based microarrays allow researchers to accurately quantify
the expression level of RNAs of thousands of genes in a tis-
sue sample, thereby providing valuable information about
complex gene expression patterns [6]. However, the mas-
sive scale and variability of such microarray expression data
creates new and challenging problems of clustering and data
mining: the so-calledgene filteringproblem.

This paper describes a robust and flexible approach to
gene filtering and analysis for the purpose of detecting and
validating temporal gene expression patterns from a series
of microarray experiments. We call our approachPareto
gene filteringwhich is based on a novel multicriterion opti-
mization and cross-validation clustering strategy. We apply
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this method to classifying gene trajectories in mouse retinal
aging experiments.

The outline of the paper is as follows. In Sec. 2 a brief
overview of microarrays is given. In Sec. 3 we describe the
new gene evolution clustering algorithm and in Sec. 4 we
apply it to analysis of a sequence of Affymetrix microarrays
of mouse retina and we experimentally validate our analysis
using real time RT-PCR techniques.

2. GENECHIP MICROARRAYS
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Fig. 1. Affymetrix GeneChip image.

While the methods described herein are applicable to gen-
eral genetic expression data, we focus here on analysis of
the Affymetrix GeneChip oligonucleotide array. The GeneChip
contains several thousand single stranded DNA oligonucleotide
probe pairs, which are each 25 bases long and correspond to
target genes of interest [5].

Each probe pair consists of an element containing oligonu-
cleotides that perfectly match the target (PM probe) and an
element containing oligonucleotides with a single base mis-
match (MM probe). During hybridization the labeled RNA
of interest binds the probe pair, and the level of binding to
each element is determined through electronic scanning of



the GeneChip post-hybridization and wash. The expression
level of a target RNA is quantified by determining the dif-
ference between the PM and MM probes, and averaging this
difference for all sixteen probe pairs that represent a given
gene (avgdiff, or average difference). Affymetrix software
is used to extract intensity information from the GeneChip
image (see Fig. 1), and this data is summarized in the form
of a spreadsheet with numbers, e.g. call, average difference
and log average, indicating absence or presence of a strong
hybridization and level of hybridization for each probe. As
with any technology taking many thousands of measure-
ments, even a low level of variability can result in many
false positives or negatives, therefore replications of the ex-
periment are required to minimize such variability.

The aging experiments described below consist ofM =
4 samples in each ofK = 6 different mouse populations.
Each population corresponds to a different time point rang-
ing from postnatal day 1-10 to 21 months of age. For each
time point M different GeneChip microarrays were pro-
cessed each containing overN = 12, 000 probes. The ob-
jective is gene filtering: to detect and cluster interesting pat-
terns of gene expression indicative of evolution of the gene
over theK time points.

3. CLUSTERING OF GENETIC SIGNALS

For then-th probe,n ∈ {1, ..., N} of m-th the mouse,m ∈
{1, ...,M}, sampled at thek-th time point,k ∈ {1, ..., K}
we define the GeneChip avgdiff responseym

n (k). When
looking for genes which have significant non-constant tra-
jectories it is natural to cluster genes based on two criteria:
small population variability at each time point (intra-class
dispersion) and large variability between populations at dif-
ferent time points (inter-class dispersion). Two natural mea-
sures of intra-class dispersion and inter-class dispersion are
the (un-normalized) sample deviation of then-th gene at
time samplek

ξ1
n(k) =

∑

i6=j

‖yi
n(k)− yj

n(k)‖, (1)

and the sample deviation between then-th gene at time sam-
plesk1 andk2

ξ2
n(k1, k2) =

∑

i,j

‖yi
n(k1)− yj

n(k2)‖, (2)

where‖ • ‖ denotes a norm, e.g.l1, l2 or l∞. A simple test,
analogous to the paired T-test [2], to separate the two time
samples could be based on thresholding the ratio of the two
dispersion measures:

Tn(k1, k2) =
M − 1
2M

ξ2
n(k1, k2)

ξ1
n(k1) + ξ1

n(k2)
> T −1(1− α),

(3)

whereT −1(1 − α) is a threshold chosen to ensure level
of significanceα ∈ [0, 1]. Figure 2 shows boundaries of
the critical region in theξ1 × ξ2 plane specified by (3) for
the mouse gene microarray experiment described in Sec. 4.
These boundaries are straight lines corresponding to thresh-
olding (3) at the respective levels of significance.
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Fig. 2. Scatter plot of inter-class and intra class dispersion crite-
ria (1) and (2) for 8826 mouse retina genes. Superimposed are T-
test boundaries for levels of significanceα = 50% andα = 10%.

The principle of multi-criterion optimization is different
from scalar criteria for filtering and clustering genes such as
the paired t-test (3). Rather than filtering by thresholding a
scalar criterion, e.g. the t-test ratio on the left side of (3),
multi-criterion filtering captures the intrinsic compromises
among the conflicting objectives, e.g. dispersion criteria (1)
and (2). Consider Fig. 3.a and suppose thatξ1 is to be
minimized andξ2 is to be maximized. Under this criterion it
is obvious that gene A is “better” than gene C because both
criteria are higher for A than for C. However it is not easy to
specify a preference between A, B and D. Multi-objective
clustering uses the ”non-dominated” property as a way to
establish such a preference relation. A and B are said to
be non-dominated because a gain on one criterion in going
from A to B corresponds to a loss on the other criterion.
All the genes which are non-dominated constitute a curve
which is called the Pareto front (Fig. 3.b). A second Pareto
front is obtained by stripping off points on the first front and
computing the Pareto front of the remaining points. Pareto
analysis has been adopted for many applications including
evolutionary computing and optimization [7, 9]. Figure 4
shows the first three Pareto fronts related to the classical
criteria (1 & 2).

Pareto analysis provides a new non-parametric gene fil-
tering method which we will use for detecting genes with
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Fig. 3. a). Dominance property, and b). Pareto optimal fronts, in
dual criteria plane.
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Fig. 4. First (circle) second (square) and third (hexagon) Pareto
optimal fronts for same data as shown in Fig. 2.

specific patterns of temporal evolution. First a set ofKM

time trajectories are defined for each gene corresponding to
all possible time paths through one ofM replicates at each
K time point. For each trajectory we extract the sign of the
slope between each time point to capture instantaneous in-
crease or decrease of each gene trajectory. The set ofKM

sign trajectories (K-dimensional vectors of signs) summa-
rizes themonotonicityof a gene’s evolution pattern. For
each gene two criteria are then computed: the first is the
proportion of theKM trajectories satisfying a specific evo-
lution pattern, e.g. response monotonicity over time; the
second criterion is a measure of thestrengthof the evolu-
tion pattern, e.g. the gene response difference between first
and last time points. The Pareto fronts are then computed
and from these are extracted a list of “significant” genes dis-
playing the pattern of interest.

4. EXPERIMENTAL RESULTS

We applied the Pareto analysis described above to classi-
fying patterns in mouse retina. The experiment consists of
6 time samples of retina material taken from a population
of 24 mice. 4 mice were selected from the population at
6 different times including 2 early development (Pn2-Pn10)

and 4 late development and aging (M2-M21) points. The 24
gene GeneChips were processed by Affymetrix software re-
turning a Unigene-ordered list of 12,422 genes each labeled
with Affymetrix attributes such as “call,” “avgdiff,” and “lo-
gavg” [1]. We eliminated from analysis all genes called out
as “absent” from all chips, leaving 8826 genes whose ex-
pressions were analyzed using the “avgdiff” attribute. The
total number of time trajectories for each gene is64 = 4096
and 4 representative trajectories are shown in Fig. 6) for a
specific gene. Figure 5 shows the first criterion (the num-
ber of trajectories among the 4096 which monotonically in-
crease) as a function of gene number.

Fig. 5. Occurrence histogram with threshold.

The most monotonic gene (2880 trajectories out of 4096) is
the gene shown in Fig. 6. This gene has been identified as
a gene related to the immune-mediated process which may
be associated with the aging process in retina [8].

Pn2 Pn10 M2  M6  M16 M21 
0

100

200

300

400

500

600

700

TIME   POINTS

A
V

E
R

A
G

E
   

D
IF

FE
R

E
N

C
E

Fig. 6. Most monotonic gene trajectory



Choosing a significance threshold of 1000 trajectories upon
4096 is quite conservative, roughly corresponding to 100
sigma from the “random pattern” baseline. Note that the
trajectories are statistically dependent, as they are based on
reusing identical mice in several different trajectories. The
Pareto fronts of the dual monotonicity and slope criteria
were then computed and are shown in Fig. 7. The first three
Pareto fronts contain 39 genes.

Fig. 7. First three Pareto fronts for the double criterion (horizon-
tal: number of valid trajectories satisfying the increasing criterion
- vertical: slope between first and last time point).

As the genetic data are strongly corrupted by measurement
and other sources of variation, we applied a simple leave-
one-out cross-validation procedure to the Pareto analysis.
For each time point a mouse was omitted leaving 4096 sets
of 729 trajectories to be tested. For each set of trajectories
the first three Pareto fronts were computed. Eleven “resis-
tant” genes remained in the first three fronts for all the 4096
tested trajectories. Among these resistant genes only 6 of
the initial 39 genes survived the cross validation. Quantita-
tive real time PCR has been employed to independently val-
idate these 11 monotonic Pareto-resistant genes. RT-PCR
analysis is highly accurate procedure for single gene anal-
ysis. Oligonucleotide primers for exons of selected genes
were designed to amplify PCR products of about 300 bp.
The SYBR Green I dye which is a highly specific double-
stranded DNA binding dye was used on real time quantita-
tion. As of this writing, the RT-PCR anlaysis has confirmed
the behavior of all the Pareto-resistant genes studied. De-
tailed analysis and interpretation of these genes will be re-
ported elsewhere.

5. CONCLUSION

DNA microarray technology allows one to evaluate the ex-
pression profile of thousands of genes simultaneously. How-
ever, to take full advantage of these powerful tools, we need
to find new methods to handle large amounts of data and
information without becoming overwhelmed by the poten-
tially large number of candidate genes. This paper shows
that our new method of Pareto gene filtering can identify
genes exhibiting interesting profiles. Additional genes dis-
covered using this algorithm are now being cross-validated
by other methods and the data obtained will be utilized to
further refine the algorithms and analysis. Many signal pro-
cessing challenges remain due to the increasingly high di-
mensionality of genetic data sets. It will be important to
develop fast and high-throughput implementations of multi-
objective gene clustering and filtering.
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