
Technical Report Number 02-036
5-Sep-02

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution

Real-Time Avatar Construction
Using Shape Tape

Samir Naik

Effective Virtual Environments Research Group

Real-time Avatar Construction Using Shape Tape
Samir Naik

Tech Report 02-036 - University of North Carolina - Chapel Hill

naiks@cs.unc.edu

ABSTRACT

Motion capture is used in video games and computer animated
films to create realistic animations of moving virtual characters.
In games and films, an actor’s motion is captured offline, saved,
and finally replayed to animate a virtual character. The same
principles can be applied to Virtual Reality (VR), but the motion
capture must be done in real-time so when a user moves, her
corresponding virtual character – her avatar – mimics her
movement. Additionally, the user must identify with her avatar,
so the shape of the avatar’s limbs should closely match the shape
of the human’s in length, radius, and curvature. Finally, the
avatar should also be able to interact with other virtual objects in
the environment, thus we need a representation that is suitable for
use with collision detection algorithms. In this paper, we analyze
the problem of tracking a user’s limbs with Shape TapeTM and
constructing a virtual representation of the user in real-time. We
will compare and contrast this problem to problems in
sampling/reconstruction, geometric modeling and computational
geometry and finally introduce possible solutions.

Keywords

Avatar, tracking, collision detection, sampling, reconstruction,
medial axis.

1. INTRODUCTION
An important test of the effectiveness of a Virtual Reality (VR)
simulation is to ask the user “did you feel like you were really
there?” or “did you feel present in the virtual environment (VE)?”
The answer to these questions often depends on whether the user
felt she was an active participant in some “virtual activity.” A VE
in which a user can use her hands, arms, and legs to participate in
a virtual activity is much more engaging than a VE in which the
user is merely a spectator.

To create such an experience, we have to make the virtual
environment more interactive. Our current system limits
interaction with the VE to walking around and looking at virtual
objects. The user sees the computer generated virtual world by
viewing it through a head mounted display (HMD). As she
moves her head and walks around the lab, a wide-area tracker
captures the position and orientation of her head and the image of
the VE is redrawn in the HMD to match her new viewpoint.

If we want the user to see her avatar in the VE and to affect
the objects in the VE, we can estimate her torso position and
orientation from how her head is situated, but we must also need a
method of knowing where her arms and legs are. This can be
done by placing trackers on her hands and feet and using inverse
kinematics to determine the position of the other parts of her arms
and legs. However, inverse kinematics does not always accurately
depict how the user’s limbs are moving. It also cannot tell us any
information about the size of the user’s limbs, i.e. is the user a

man or a woman, adult or child? Any large differences between
user’s shape and motion and the avatar’s shape and motion will
cause the user to disassociate with her avatar. Additionally, if the
inverse kinematics solution does not estimate the position of the
limbs correctly, our collision detection algorithm may falsely
detect collisions between the avatar and the VE.

We can avoid the problems of inverse kinematics by using a
full body tracker that tracks several positions along the user’s
limbs. Specifically, we want to experiment with a new tracking
device called Shape Tape. Shape Tape consists of 4 long tapes
that are each spiraled around a different limb. Each tape returns
position and orientation at regularly spaced intervals along its
length. Having tracker data at many places on the tape helps us in
two ways. First, it gives us a sampling of the shape and radius of
the user’s limbs so we can make a better estimate of the size of the
user. And, second, it gives us a better sampling of how the main
bones on the user’s arms and legs are moving, not just the hands
and feet. The resulting avatar will more accurately depict the
shape and motion of the user, and collision detection between the
avatar and the VE will be more correct.

Thus, our problem is how to reconstruct an “accurate” avatar.
We separate the problem into two pieces: an accurate
reconstruction of the user’s motion and an accurate reconstruction
of the user’s shape. In this paper, we will briefly discuss the
former, but mainly focus on the latter. These reconstruction steps
also are grouped into categories of offline computation, and run-
time computation, which shape computation usually taking place
offline, and motion computation handled at run-time. These

Figure 1. A user wearing Shape Tape (image: Measurand,
Inc.) and an example of what the resulting avatar might
look like.

stages are discussed in more detail later.

To help us analyze our problem, we introduce three reference
fields: sampling and reconstruction theory, geometric modeling
and computational geometry. We will compare and contrast our
problem with problems presented in papers from these fields. In
Section 2, we will discuss why we chose these fields, and how
they will help us think about our problem. In Section 3, we
discuss how these fields apply to our input data, and in Section 4
we discuss how these fields apply to our desired output. Finally,
using the analysis of our inputs and outputs, we will formulate
possible solutions to our problem in Section 5 and decide which
is the most feasible to implement.

2. BACKGROUND
Our reference fields of sampling/reconstruction, geometric
modeling and computational geometry contain ideas that are used
throughout the remainder of this paper.

1. Sampling/Reconstruction Theory. Shape tape returns
discrete samples of some continuous function describing the
motion and shape of the user’s limbs. From this data, we
wish to separate the motion information and the shape
information and reconstruct separate continuous functions
for both. These functions can then be applied separately to
the motion and shape of the avatar.

Machiraju, et al. discuss the problem of sampling a
continuous function, and reconstructing the function from
the sampled data. They focus on giving the user the ability
to set a point-wise error bound on the reconstruction. We
use this paper for the background it gives in reconstruction
and sampling theory, but not for it’s discussion of error
bounds.

2. Geometric Modeling. We must choose a geometric
representation for our avatar in the VE. Representing the
avatar with a polygonal mesh makes it easier to render and
allows us to use a common polygon-based collision detection
package to detect collisions between the avatar and the VE.

Hoppe, et al. discuss the problem of reconstructing a
mesh from partial data of an unknown surface. Their data is
in the form of unorganized 3D point samples, and their
solution is general, making only the assumption that the
sample data is uniformly distributed. We compare and
contrast the unorganized point data to our Shape Tape data,
and discuss the how the extra information Shape Tape
returns changes the surface reconstruction problem.

3. Computational Geometry. An alternative to creating a mesh
directly from the sampled data is to find the skeleton of the
3D data and use this skeleton to control a stock mesh. In
Computation Geometry the medial-axis transform is
commonly used to find a skeleton of a 3D data set.

Amenta, et al. also discuss the problem of reconstructing a
mesh from sample data, but make more assumptions about
their data than Hoppe, et al. Mainly, they assume they have
a “good” sample of the unknown object. They use the
medial axis of a surface in their definition of a good sample.

Since the medial axis is used throughout this paper, we
will define it here. The medial axis of a 3-dimensional
surface in R3

 is the closure of the set of points with more
than one closest point on the surface [2]. Another definition

is the medial axis of a 2D (3D) region is defined as the locus
of the center of all the maximal inscribed circle (sphere) of
the object. An example is shown in Figure 2. Notice that in
2D the medial axis is made of 2D curves. In 3D the medial
axis is a surface.

We also use this paper to discuss the problem of
reconstructing an avatar from our Shape Tape data. Since
the paper makes assumptions about their data that also apply
to our data, we discuss Amenta’s algorithms and how we
might make use of them to solve our problem.

3. INPUTS
The input to the system is given by Shape Tape. Shape Tape
consists of lightweight, wearable, flexible ribbons. Each ribbon
contains 81 fiber optic sensors, each of which returns its position
and orientation relative to the base of the tape at a synchronous
update rate of 110Hz. The data returned by Shape Tape is detailed
in Table 1. Our system is set up with 4 tapes, one to be spiraled
around each leg and each arm. Figure 3 shows a single tape and a
graph of the data returned by the tape. We analyze the data
returned by the Shape Tape from the background of
sampling/reconstruction theory and geometric modeling.

Figure 3. A single shape tape ribbon, with the resulting
data set rendered on the monitor. Notice that the position
and orientation of the tape’s spiral shape are correctly
captured (image from [7]) .

Figure 2. The medial axis of a simple curve in 2D with the
maximal circles overlayed (figure from [2]).

3.1 Sampling/Reconstruction
Take, for example, the case of a single tape wrapped around a
user’s arm. The tape is sampling two attributes of the user’s arm:
it’s shape and it’s movement. Shape is sampled in the spatial
domain, that is, at any instant in time, we take the sample data
from all 81 sensors and attempt to reconstruct a surface from it.
Shape reconstruction doesn’t depend on data from the past or
future. Conversely, motion is sampled in the temporal domain,
that is, we track the movement of a few sample points over a
period of time. Reconstruction of the motion of these few points
does not depend on the position of the rest of the data points.

For the following discussion, we treat the problems of spatial
sampling (shape) and temporal sampling (motion) separately.

3.1.1 Spatial Sampling
We can think of the surface of the user’s arm as a continuous
function, f(x), where x is a position in 3D, and that the Shape
Tape is sampling this function at regularly spaced intervals along
the tape. Machiraju, et al, assume that f(x), is band limited. A
function is band limited if there exists a cut-off frequency ωc, such
that the strength of any frequency component of f(x) greater than
ωc is zero. Additionally, he assumes that f(x) is sampled at or
above the Nyquist frequency [3]. The Nyquist frequency of a
signal is defined as twice the maximum frequency of the
continuous signal. If a signal has been sampled above the
Nyquist frequency, a perfect reconstruction of that signal is
always possible.

Low-frequency components of f(x) contain the general shape
of the arm, while high-frequency components contain details such
as folds and creases in the skin. Machiraju assumes that all high
frequency data of the arm can be reconstructed, because f(x) was
sampled above the Nyquist frequency. By observation, however,
we know that our sampling rate is probably below the Nyquist
rate, and that it is not high enough to reconstruct all of the details
of the human arm. But, it is high enough to capture the general
shape of the arm. Therefore, we make the additional assumption
that the user’s arms (and legs) are not very complex, and that we
only need to reconstruct low frequencies to capture the general
shape of the arm.

This brings up a possible experiment to test how hi-fi an
avatar needs to be for a user to identify with it. We are assuming
that a lower frequency approximation of the shape of the arm is
satisfactory for the avatar. It may be possible to test this
quantitatively by varying the detail of geometry of the avatar, and
testing how this changes the level to which a user identifies with
it.

3.1.2 Temporal Sampling
We also assume that we have a continuous function over time,
f(t), describing the motion of the arms and legs. We can apply
sampling theory as we did above, and assume that f(t) is band
limited. That is, if the Shape Tape generates its tracker data at
2ωc Hz, then we assume that in the motion of the arm there are no
frequencies greater than ωc.

It may be worthwhile to examine this assumption further.
High-frequency components of f(t) contain the detail of motion,
while low-frequency components contain general, gross motion
patterns [4]. We can add to our earlier experiment by varying the
amount of detail in the avatar’s motion, and testing how the user’s
identification with the avatar changes. If we find that our
assumptions about the complexity of the user’s limbs and motion
are not valid, we may have to choose a motion tracker that would
give a higher sampling rate than Shape Tape. For now, however,
we will proceed using these assumptions.

3.2 Geometric Modeling
The data set returned by Shape Tape is a subset of the
unorganized point set assumed by Hoppe, et al [1]. Hoppe
presents a general algorithm for creating a computer model from
3D data and thus, they assume the input set consists of sample
points in R3 without any additional structure or organization. We
do not need a general solution, but rather a solution to the specific
problem of constructing a surface from Shape Tape data. We can
use the additional information that Shape Tape gives us to create a
more efficient algorithm. Specifically the differences between the
Shape Tape data set and the unorganized point set are listed in
Table 2 and discussed below.

 Shape Tape returns data points in order along the length of
each ribbon, therefore our data set is not unorganized. For each
sample xi, we know its nearest neighbors along the length of the
tape. Because of the spiral arrangement of the tape, these may not
necessarily be the nearest neighbors in world-space. But, if we
take a few adjacent loops in the tape, containing m sensors, and
group samples according to distance and orientation, we can find
the k points in our data set which are nearest to xi. These points
make up the k-neighborhood of xi.

 Point 2 Point 3 Point 4 Point 5

Rx,mm: 17.9 34.8 50.7 66.1

Ry,mm: 8.9 19.5 31.8 44.5

Rz,mm: 0 -0.1 -0.2 -0.3

Ux: 0.99516 0.98068 0.9567 0.94721

Uy: 0.09829 0.19562 0.29104 0.32056

Uz: -0.00089 -0.00265 -0.00528 -0.0051

Nx: -0.0983 -0.19564 -0.29107 -0.32053

Ny: 0.99512 0.98051 0.95633 0.94722

Nz: -0.00897 -0.01782 -0.02644 0.00582

Bx: 0 -0.00089 -0.00265 0.0067

By: 0.00902 0.01799 0.02683 -0.00388

Bz: 0.99996 0.99984 0.99964 0.99997

roll,deg -0.7 -1.5 -2.2 0.3

pitch: 5.6 11.3 16.9 18.7

yaw,deg: -0.1 -0.2 -0.3 -0.3

Table 1. Example of Shape Tape data set. Data of first 4 of
81 sensors, at some time T, is shown (Point 1 is the base of
the tape and does not change). R is vector from point 1 to
data point. U, N and B are orthogonal unit orientation
vectors. ‘Yaw’, ‘pitch’ and ‘roll’ are rotation about y, z and
x respectively (data from [7]).

If the points are unorganized, finding the k-neighborhood for
a given point takes O(n + k log n) time. Hoppe, et al assume a
uniform sampling density, and therefore use a simple spatial cubic
partitioning scheme. Points are entered into bins according to
which cube they lie in, and are accessed through a hash table.
This reduces the time to find the k-neighborhood to O(k). With
the ordered points that Shape Tape returns, we have to find the k-
neighborhood from the set of m points in neighboring rings of the
spiral. This takes O(m + k log m) time. We cannot use a hash
table to speed up this computation, because we cannot assume
that Shape Tape provides a uniform sampling density.

In addition to returning the position of each sensor along the
ribbon, Shape Tape returns the orientation of each sensor. This is
different from the unorganized point problem because samples are
assumed to be infinitesimal points, and thus have no orientation.
But since Shape Tape is a flat ribbon-like device, each sensor can
be thought of as a small disc that samples the position and normal
of the surface. In fact, this information would be useful to Hoppe,
et al. In order to calculate a signed distance function to the
surface, they calculate the tangent plane to each sample point by
computing the covariance matrix of the k-neighborhood. We can
skip this computation, since we already have the orientation of the
sample disc.

When constructing a surface from unorganized points, it is
difficult to distinguish holes in the data due to insufficient
sampling from an actual hole in the surface. Thus, Hoppe, et al.
assume a minimum density, p-dense, sample. A p-dense sample
means that sphere of radius p can be centered on any sample
point, and at least one other sample point is guaranteed to lie
within this sphere. Assuming a uniform sampling density allows
Hoppe, et al., to be certain that holes in the sample correspond to
holes in the surface. With Shape Tape, we don’t have to assume a
uniform sampling density, since we can explicitly control it.
Additionally, we know that the user’s arms and legs have no holes
in them, so we know that holes in the sample data do not
correspond to holes in the surface. This is important since the
spiraling nature of Shape Tape leaves many holes in the data.

Another difficult problem is with surface reconstruction
techniques is reconstructing sharp edges and creases. Amenta, et
al., state that a good sample is one in which the sampling data is
at least inversely proportional to the distance to the medial axis
[2]. Since the medial axis is very near the surface where sharp
edges and creases appear, we need a higher sampling rate there.
While arms and legs have creases near the joints, we likely don’t
need to precisely reconstruct them – it may be sufficient to
generate them procedurally (again, this is subject to

experimentation). However, we can still apply Amenta’s
sampling criterion to tracking arms and legs since we can arrange
the tape to sample regions of high curvature, such as wrists and
hands, better than regions of lower curvature, such as thighs.
Amenta also mentions that if surface normal data is available,
reconstruction is possible from much sparser samples. In general,
we have a sparser sample set than Amenta considers “good”, so
we should use normals to our advantage.

Other than the four differences listed in Table 2, our input
data is the same as in the unorganized points problem. Our
problem is distinctly different, however, because we know our
desired output surface is an arm or a leg, and not an arbitrarily
complex surface. We will discuss how we can fit our input data
to the surface of an arm or leg in the following section.

4. OUTPUTS
Our goal is to create avatars of human arms and legs that look
good enough for the user to identify them as her arms and legs.
We look at our output requirements from the point of view of the
fields, computational geometry and geometric modeling

4.1 Comp. Geometry & Geometric Modeling
What does it means to for our avatar to look good geometrically?
Amenta, et al. state that given a good sample from a smooth
surface, the output of the reconstruction algorithm should be
topologically equivalent to the surface. Additionally, as sampling
density increases, the output converges to the surface, both
pointwise and in surface normal. Again, this assumes a high
enough sampling rate, which we likely don’t have. Thus, we only
aim to reconstruct a surface as well as our sampling rate will
allow us to.

We must decide how we want to represent our avatar in the
system. The two main parameters for our representation are 1)
how easy it is to render and 2) how suitable it is for collision
detection. For instance, a natural way to render point samples is
by splatting. But splatting doesn’t lend well to collision
detection. Instead, we might choose to represent our avatar as a
set of implicit surfaces. Collision detection is easy with implicit
surfaces, since the math is very simple. However, implicit
surfaces must be sampled, e.g. using marching cubes, and thus are
not ideal for rendering. Conversely, if we used a parametric
representation, collision detection would be difficult, but
rendering easy. We can choose different representations for
rendering and collision detection, but since our system aims to
run in real-time, we would like to minimize computation by
choosing the best representation.

In our system, we will represent our avatar’s skin as a
polygonal mesh. There are two possible ways to generate a mesh
representation: reconstruction from sample data and use of a
deformable stock mesh with an underlying skeleton. The details
of how to compute these will be discussed further in Section 5;
here we discuss the output requirements.

Reconstructing a mesh from sample points. We must
compute connectivity information from our sample points,
which splatting or implicit representations do not require.
Also, collision detection is not as easy with a polygonal mesh
as it is with implicit surfaces. However, it is not as easy to
find an implicit form that fits our data points as it is to find
the polygonal mesh. Also, rendering a polygonal mesh is

Shape Tape Unorganized points

Ordered points Unordered points

Position and orientation Position

Explicit control of
sampling density

Uniform sampling density

Known domain Unknown domain

Table 2. Comparison of shape tape data with unorganized
point data.

straightforward, much more so than rendering an implicit or
parametric representation, and it is well optimized in most
graphics hardware.

Using a stock mesh with underlying skeleton. We can
obtain the mesh from a character-modeling program. For the
mesh to deform correctly with the movement of the bones, we
need to capture the actual bone data from the user. To do
this, we model the human skeleton as rigid segments between
articulating joints. The assumption of rigidity is realistic,
since bones undergo negligible deformation during normal
human activity [5].

5. POSSIBLE SOLUTIONS
Having analyzed our input data and output requirements, we
suggest possible solutions. The following suggestions are made
without having done any actual experimentation or mathematics
to ensure that the algorithms will produce the correct result. It is
merely a discussion of algorithm ideas that have come to mind
after thinking about our three themes in regards to our problem.

5.1 Skin and Bones
One approach to our creating a realistic avatar is to use a
technique called Skin and Bones. This technique is commonly
used in computer games and describes a character built out of a
single deformable mesh rather than one made up of separate
objects. The mesh is procedurally deformed by an underlying
bone structure that is driven by the tracker data. The steps of the
skin and bones algorithm are:

1. Getting the bones. To find the bone structure, we use the
medial axis algorithm discussed by Amenta, et al. The
medial axis transform of 3D data points generally results in
medial surfaces in 3D. We would like our bones to be
straight line segments, so we have to apply the medial axis
transform again to each medial surface previously computed
to obtain 3D curves. Only some of these curves will actually
be useful for representing bone structure, the rest are an
artifact of the medial axis transform, and do not apply.
Since, this algorithm will produce a similar set of 3D curves
for each user, we can likely determine useful curves by
experimentation.

We can’t use these curves directly as our bones however,
since they may contain influence from muscle and fat. Our
themes suggest two ways of handling this problem. From
computational geometry and/or geometric modeling, we may
apply a curve decimation approach to simplify the curve into

straight line segments (Figure 4). From
sampling/reconstruction, we may run a low-pass filter on the
curve to eliminate high-frequency data caused by the muscles
and fat, and leave only the lowest frequency data, which
should give a better estimate of the bone structure. We need
to quantitatively analyze these two options to determine
which yields the best result. Specifically, we want to
determine which of our 3D medial curves map to bones, and
which of the above methods (or combination of them) is best
for finding bones and joints.

The process of finding the skeleton is costly but can be
done offline, since the user’s skeleton doesn’t change.
Therefore the worst case O(n2 log n) running time for finding
the skeleton of a polygon with n vertices doesn’t affect our
system’s runtime performance.

2. Creating the mesh. To create a mesh for our avatar, we can
use a standard character modeling package. This mesh needs
to have an underlying bone structure, so the package should
be able to take as input the bone structure we calculated from
the tracker data.

Alternatively, we may try to reconstruct a mesh from the
tracker data and treat it as a stock mesh. This would give us
a mesh that looks like our user’s arms and legs, but is
procedurally deformed by the computed bone structure as the
user moves his arms. However, this approach requires that
for each user of the system, we reconstruct a mesh, and
associate bone weights for each vertex (discussed next).
This is very costly in terms of man-hours, thus we can
probably rule this method out now, unless an automatic
method of associating these weights is available. The
algorithm for surface reconstruction is given in Section 5.2.

These methods are both done offline and do not
contribute to our system’s run-time performance.

3. Assigning weights to mesh vertices. Each vertex of the
mesh must be associated with one or more bones to define
how the vertex moves as the arm moves. This is an offline
computation and is typically done within the character
modeling package. For example, skin near the elbow is
affected by the movement of the upper arm and the lower
arm. A particular vertex on the lower arm side of the elbow
might have been affected 20% by the orientation of the upper
arm and 80% by the lower arm. How these weights are
assigned will affect the final position of the vertex and we
need to define these weights for every vertex. The next
section discusses the use of these weights to transform mesh
vertices.

4. Finding world space transform of the mesh vertices. To
render the deformable mesh, we need to transform each
vertex separately into world space. The transformation of the
vertex is given by:

Where each position[N] is the initial position of that vertex
multiplied by the transformation matrix of bone N [6].

FinalPosition = position[1] * weight[1] +

 position[2] * weight[2] + ….

Figure 4. Progressive curve decimation is shown. First we
connect all sample points, then every other sample point,
finally every third sample point.

These multiplications are done at run-time for each frame,
but are very cheap in graphics hardware, and hardly affect
our performance.

The skin and bones approach has the nice property that it is
widely used in the game industry, meaning it has proven real-time
performance. The disadvantage is that while the bones are
modeled after our user, the skin has no relation to the surface of
the users arms and legs. This raises another possible experiment
on whether it is better for the avatar to have bones which are in
proportion with the user’s, or for the avatar to have a surface
which resembles the user’s in size and shape.

5.2 Real-time Meshing
We may find from experimentation that it is important for the
avatar’s surface to closely match the surface of the user’s arms
and legs. In this case, it might be better to dynamically
reconstruct the surface from our tracker points in real-time in
order to capture the details of the deformation of the user’s arms
and legs.

Both Hoppe and Amenta give algorithms for reconstruction.
Hoppe, et al. define a signed distance function in R3, and then
polygonalize its zero-set to create the output mesh [2]. Zero-set
algorithms produce approximating, rather than interpolating,
meshes. Essentially, approximating algorithms are applying a
low-pass filter to the sample data before reconstructing. Since the
purpose of our surface reconstruction is to gain a more precise
avatar than a stock mesh would give us, and since Shape Tape
inherently does low-pass filtering also, we should not use this
method, since it will probably overly smooth our data.

Amenta, et al. use a Voronoi based approach to surface
reconstruction, using a crust algorithm to compute the surface.
The crust algorithm basically uses the Voronoi diagram to
compute a medial axis, and then uses the medial axis to compute a
crust. A crust is a closed set of edges connecting only sample
points in adjacent Voronoi cells. Specifically the algorithm is [2]:

1. Compute the Voronoi diagram of a set of samples S. Let
V be the set of Voronoi vertices.

2. Compute Delaunay triangulation of S ∪ V.

3. The crust consists of the Delaunay edges between points
of S.

Notice that the resulting crust is a subset of the Delaunay
triangulation of the input points (Figure 5).

 The crust algorithm does not extend smoothly to 3D, but by
estimating the normal of the sample points, it can be made to
work. This gives Shape Tape data an advantage, since we are
already given normal information.

 While this algorithm may give us a good representation of the
user’s arms and legs, it may be too slow to use. The crust
algorithm runs in O(n2) in the worst case, and all other steps are
O(n). Since Shape Tape doesn’t produce many sample points, the
O(n2) running time may not hurt our performance too badly.
However, Amenta reports using an SGI Onyx and taking 2
minutes to compute the reconstruction of a 939 point sample.
While this is obviously not currently suited for real time, we
might analyze how much computing power we would need to gain
real-time performance or if graphics hardware acceleration is
possible.

5.3 Deformation by Virtual Exoskeleton
Hopefully, we can find a combination of the two ideas presented
above, taking the best from both: accurate skin and real-time
performance. A possible way to do this would be to use a system
in a way similar to the skin and bones system, but instead of using
an underlying bone structure to deform a stock mesh, we would
use an invisible exoskeleton to deform a reconstructed mesh. This
involves some offline computation:

1. Reconstruct a mesh of the user’s arms and legs from the
Shape Tape data.

2. Find Bezier control points for the mesh.

3. Associate certain Shape Tape sensors with the Bezier control
points. The movement of these sensors will be responsible
for deforming the mesh.

After this offline computation is done, we can use the system
similar to the skin and bones system. As the user moves his arms
and legs, the Shape Tape sensors associated with Bezier control
points also move. In turn, we recalculate the mesh of our Bezier
patch at each frame, render it and test collisions against it.

 The advantage of this method is that we are using a
reconstructed mesh computed offline, so our avatar looks like our
user, but we are not reconstructing at every frame. We are not
calculating a bone structure, so we eliminate the process of
assigning bone weights to each vertex. We are using our tracker
data to move the skin of the avatar directly, instead of using it to
move the bones and deforming the skin procedurally. This means
the skin of our avatar is deforming similar to how our user’s skin
is deforming, because the data actually comes from tracker
readings on the surface of the user’s skin. Additionally, since
most computation is done offline, as in the skin and bones
method, this technique is likely to run in real-time.

 The difficult part of this algorithm, however, seems to be the
computation of Step 2, automatically computing Bezier control
points from a mesh. Usually in geometric modeling, we are given
the control points and want to calculate a mesh. It is not clear if it
always possible to perform the computation in reverse. Still, this
method is promising since it may neatly combine our previous
two solutions and show good performance.

6. CONCLUSION
We have discussed the problem of reconstructing, in real-time, a
realistic avatar, in both motion and shape. We analyzed our input

Figure 5. The two-dimensional crust algorithm. On the
left, the Voronoi diagram of a point set S sampled from a
curve. On the right, the Delaunay triangulation of S ∪ V,
with the crust edges in drawn in bold (figure from [2]).

data and desired output from the point of view of the fields of
sampling/reconstruction theory, geometric modeling and
computational geometry. We compared and contrasted our
problem to problems from these fields, and analyzed how we can
use our input data with algorithms from these fields to solve our
problem. We presented three possible solutions based on our
analysis. Two of these solutions, the skin and bones technique
and the real-time meshing techniques are combined into a method,
deformation by virtual exoskeleton, which shows promise.

7. REFERENCES
[1] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J, Stuetzle,

W. “Surface Reconstruction from Unorganized Points”,
Proceedings of SIGGRAPH ‘92, pp. 71-78.

[2] Amenta, N., Bern, M. “Surface Reconstruction by Voronoi
Filtering”, 14th Annual ACM Symposium on Computational
Geometry, 1998, pp. 39-48.

[3] Machiraju, R, Yagel, R. “Reconstruction Error
Characterization and Control: A Sampling Theory
Approach”, IEEE Transactions on Visualization and
Computer Graphics, Vol. 2, Num. 4, December 1996, pp.
364-378.

[4] Bruderlin, A., Williams, L. “Motion Signal Processing”,
Proceedings of Siggraph ‘95, pp. 97-104.

[5] Bharatkumar, A., Daigle, K., Cai, Q., Aggarwal, J. “Lower
Limb Kinematics of Human Walking with the Medial Axis
Transformation” In Workshop on Motion of Non-Rigid and
Articulated Objects, Austin, Texas, USA, 1994

[6] Lander, J. “Skin Them Bones: Game Programming for the
Web Generation”. Appeared in Game Developer Magazine,
May 1998.

[7] http://146.9.11.240/~casl/Projects/NASA/Yearly/2001/OldV
ersions/Shape%20Tape.doc

	AvatarConstruction_captionsfixe.pdf
	INTRODUCTION
	BACKGROUND
	INPUTS
	Sampling/Reconstruction
	Spatial Sampling
	Temporal Sampling

	Geometric Modeling

	OUTPUTS
	Comp. Geometry & Geometric Modeling

	POSSIBLE SOLUTIONS
	Skin and Bones
	Real-time Meshing
	Deformation by Virtual Exoskeleton

	CONCLUSION
	REFERENCES

