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ABSTRACT 

Motion capture is used in video games and computer animated 
films to create realistic animations of moving virtual characters.  
In games and films, an actor’s motion is captured offline, saved, 
and finally replayed to animate a virtual character.  The same 
principles can be applied to Virtual Reality (VR), but the motion 
capture must be done in real-time so when a user moves, her 
corresponding virtual character – her avatar – mimics her 
movement.  Additionally, the user must identify with her avatar, 
so the shape of the avatar’s limbs should closely match the shape 
of the human’s in length, radius, and curvature.  Finally, the 
avatar should also be able to interact with other virtual objects in 
the environment, thus we need a representation that is suitable for 
use with collision detection algorithms.  In this paper, we analyze 
the problem of tracking a user’s limbs with Shape TapeTM and 
constructing a virtual representation of the user in real-time.  We 
will compare and contrast this problem to problems in 
sampling/reconstruction, geometric modeling and computational 
geometry and finally introduce possible solutions. 
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1. INTRODUCTION 
An important test of the effectiveness of a Virtual Reality (VR) 
simulation is to ask the user “did you feel like you were really 
there?” or “did you feel present in the virtual environment (VE)?”  
The answer to these questions often depends on whether the user 
felt she was an active participant in some “virtual activity.”  A VE 
in which a user can use her hands, arms, and legs to participate in 
a virtual activity is much more engaging than a VE in which the 
user is merely a spectator.   

To create such an experience, we have to make the virtual 
environment more interactive.  Our current system limits 
interaction with the VE to walking around and looking at virtual 
objects.  The user sees the computer generated virtual world by 
viewing it through a head mounted display (HMD).  As she 
moves her head and walks around the lab, a wide-area tracker 
captures the position and orientation of her head and the image of 
the VE is redrawn in the HMD to match her new viewpoint.   

If we want the user to see her avatar in the VE and to affect 
the objects in the VE, we can estimate her torso position and 
orientation from how her head is situated, but we must also need a 
method of knowing where her arms and legs are.  This can be 
done by placing trackers on her hands and feet and using inverse 
kinematics to determine the position of the other parts of her arms 
and legs.  However, inverse kinematics does not always accurately 
depict how the user’s limbs are moving.  It also cannot tell us any 
information about the size of the user’s limbs, i.e. is the user a 

man or a woman, adult or child?  Any large differences between 
user’s shape and motion and the avatar’s shape and motion will 
cause the user to disassociate with her avatar.  Additionally, if the 
inverse kinematics solution does not estimate the position of the 
limbs correctly, our collision detection algorithm may falsely 
detect collisions between the avatar and the VE.   

We can avoid the problems of inverse kinematics by using a 
full body tracker that tracks several positions along the user’s 
limbs.  Specifically, we want to experiment with a new tracking 
device called Shape Tape.  Shape Tape consists of 4 long tapes 
that are each spiraled around a different limb.  Each tape returns 
position and orientation at regularly spaced intervals along its 
length.  Having tracker data at many places on the tape helps us in 
two ways.  First, it gives us a sampling of the shape and radius of 
the user’s limbs so we can make a better estimate of the size of the 
user.  And, second, it gives us a better sampling of how the main 
bones on the user’s arms and legs are moving, not just the hands 
and feet.   The resulting avatar will more accurately depict the 
shape and motion of the user, and collision detection between the 
avatar and the VE will be more correct.   

Thus, our problem is how to reconstruct an “accurate” avatar.  
We separate the problem into two pieces: an accurate 
reconstruction of the user’s motion and an accurate reconstruction 
of the user’s shape.  In this paper, we will briefly discuss the 
former, but mainly focus on the latter.   These reconstruction steps 
also are grouped into categories of offline computation, and run-
time computation, which shape computation usually taking place 
offline, and motion computation handled at run-time.  These 

Figure 1.  A user wearing Shape Tape (image: Measurand, 
Inc.) and an example of what the resulting avatar might 
look like. 



 

 

stages are discussed in more detail later. 

To help us analyze our problem, we introduce three reference 
fields: sampling and reconstruction theory, geometric modeling 
and computational geometry.  We will compare and contrast our 
problem with problems presented in papers from these fields.  In 
Section 2, we will discuss why we chose these fields, and how 
they will help us think about our problem. In Section 3, we 
discuss how these fields apply to our input data, and in Section 4 
we discuss how these fields apply to our desired output.  Finally, 
using the analysis of our inputs and outputs, we will formulate 
possible solutions to our problem in Section 5 and decide which 
is the most feasible to implement.   

2. BACKGROUND 
Our reference fields of sampling/reconstruction, geometric 
modeling and computational geometry contain ideas that are used 
throughout the remainder of this paper. 

1. Sampling/Reconstruction Theory. Shape tape returns 
discrete samples of some continuous function describing the 
motion and shape of the user’s limbs.  From this data, we 
wish to separate the motion information and the shape 
information and reconstruct separate continuous functions 
for both.  These functions can then be applied separately to 
the motion and shape of the avatar.   

Machiraju, et al. discuss the problem of sampling a 
continuous function, and reconstructing the function from 
the sampled data.  They focus on giving the user the ability 
to set a point-wise error bound on the reconstruction.  We 
use this paper for the background it gives in reconstruction 
and sampling theory, but not for it’s discussion of error 
bounds. 

2. Geometric Modeling. We must choose a geometric 
representation for our avatar in the VE.  Representing the 
avatar with a polygonal mesh makes it easier to render and 
allows us to use a common polygon-based collision detection 
package to detect collisions between the avatar and the VE.    

Hoppe, et al. discuss the problem of reconstructing a 
mesh from partial data of an unknown surface.  Their data is 
in the form of unorganized 3D point samples, and their 
solution is general, making only the assumption that the 
sample data is uniformly distributed.  We compare and 
contrast the unorganized point data to our Shape Tape data, 
and discuss the how the extra information Shape Tape 
returns changes the surface reconstruction problem. 

3. Computational Geometry. An alternative to creating a mesh 
directly from the sampled data is to find the skeleton of the 
3D data and use this skeleton to control a stock mesh.  In 
Computation Geometry the medial-axis transform is 
commonly used to find a skeleton of a 3D data set.   

Amenta, et al. also discuss the problem of reconstructing a 
mesh from sample data, but make more assumptions about 
their data than Hoppe, et al.  Mainly, they assume they have 
a “good” sample of the unknown object.  They use the 
medial axis of a surface in their definition of a good sample. 

Since the medial axis is used throughout this paper, we 
will define it here. The medial axis of a 3-dimensional 
surface in R3

 is the closure of the set of points with more 
than one closest point on the surface [2]. Another definition 

is the medial axis of a 2D (3D) region is defined as the locus 
of the center of all the maximal inscribed circle (sphere) of 
the object. An example is shown in Figure 2.  Notice that in 
2D the medial axis is made of 2D curves.  In 3D the medial 
axis is a surface. 

We also use this paper to discuss the problem of 
reconstructing an avatar from our Shape Tape data.  Since 
the paper makes assumptions about their data that also apply 
to our data, we discuss Amenta’s algorithms and how we 
might make use of them to solve our problem. 

 

3. INPUTS 
The input to the system is given by Shape Tape. Shape Tape 
consists of lightweight, wearable, flexible ribbons. Each ribbon 
contains 81 fiber optic sensors, each of which returns its position 
and orientation relative to the base of the tape at a synchronous 
update rate of 110Hz. The data returned by Shape Tape is detailed 
in Table 1.  Our system is set up with 4 tapes, one to be spiraled 
around each leg and each arm.  Figure 3 shows a single tape and a 
graph of the data returned by the tape.  We analyze the data 
returned by the Shape Tape from the background of 
sampling/reconstruction theory and geometric modeling. 

Figure 3.  A single shape tape ribbon, with the resulting 
data set rendered on the monitor.  Notice that the position 
and orientation of the tape’s spiral shape are correctly 
captured (image from [7]) .  

Figure 2.  The medial axis of a simple curve in 2D with the 
maximal circles overlayed (figure from  [2]). 



 

 

3.1 Sampling/Reconstruction 
Take, for example, the case of a single tape wrapped around a 
user’s arm.  The tape is sampling two attributes of the user’s arm: 
it’s shape and it’s movement.  Shape is sampled in the spatial 
domain, that is, at any instant in time, we take the sample data 
from all 81 sensors and attempt to reconstruct a surface from it.  
Shape reconstruction doesn’t depend on data from the past or 
future.  Conversely, motion is sampled in the temporal domain, 
that is, we track the movement of a few sample points over a 
period of time.  Reconstruction of the motion of these few points 
does not depend on the position of the rest of the data points.  

For the following discussion, we treat the problems of spatial 
sampling (shape) and temporal sampling (motion) separately. 

3.1.1 Spatial Sampling 
We can think of the surface of the user’s arm as a continuous 
function, f(x), where x is a position in 3D, and that the Shape 
Tape is sampling this function at regularly spaced intervals along 
the tape.  Machiraju, et al, assume that f(x), is band limited.  A 
function is band limited if there exists a cut-off frequency ωc, such 
that the strength of any frequency component of f(x) greater than 
ωc is zero. Additionally, he assumes that f(x) is sampled at or 
above the Nyquist frequency [3].  The Nyquist frequency of a 
signal is defined as twice the maximum frequency of the 
continuous signal.  If a signal has been sampled above the 
Nyquist frequency, a perfect reconstruction of that signal is 
always possible.   

Low-frequency components of f(x) contain the general shape 
of the arm, while high-frequency components contain details such 
as folds and creases in the skin.  Machiraju assumes that all high 
frequency data of the arm can be reconstructed, because f(x) was 
sampled above the Nyquist frequency.  By observation, however, 
we know that our sampling rate is probably below the Nyquist 
rate, and that it is not high enough to reconstruct all of the details 
of the human arm.  But, it is high enough to capture the general 
shape of the arm.  Therefore, we make the additional assumption 
that the user’s arms (and legs) are not very complex, and that we 
only need to reconstruct low frequencies to capture the general 
shape of the arm.    

This brings up a possible experiment to test how hi-fi an 
avatar needs to be for a user to identify with it.  We are assuming 
that a lower frequency approximation of the shape of the arm is 
satisfactory for the avatar.   It may be possible to test this 
quantitatively by varying the detail of geometry of the avatar, and 
testing how this changes the level to which a user identifies with 
it.   

3.1.2 Temporal Sampling 
We also assume that we have a continuous function over time, 
f(t), describing the motion of the arms and legs.  We can apply 
sampling theory as we did above, and assume that f(t) is band 
limited.  That is, if the Shape Tape generates its tracker data at 
2ωc Hz, then we assume that in the motion of the arm there are no 
frequencies greater than ωc. 

It may be worthwhile to examine this assumption further. 
High-frequency components of f(t) contain the detail of motion, 
while low-frequency components contain general, gross motion 
patterns [4].  We can add to our earlier experiment by varying the 
amount of detail in the avatar’s motion, and testing how the user’s 
identification with the avatar changes.  If we find that our 
assumptions about the complexity of the user’s limbs and motion 
are not valid, we may have to choose a motion tracker that would 
give a higher sampling rate than Shape Tape.  For now, however, 
we will proceed using these assumptions. 

3.2 Geometric Modeling 
The data set returned by Shape Tape is a subset of the 
unorganized point set assumed by Hoppe, et al [1].  Hoppe 
presents a general algorithm for creating a computer model from 
3D data and thus, they assume the input set consists of sample 
points in R3 without any additional structure or organization.  We 
do not need a general solution, but rather a solution to the specific 
problem of constructing a surface from Shape Tape data.  We can 
use the additional information that Shape Tape gives us to create a 
more efficient algorithm.  Specifically the differences between the 
Shape Tape data set and the unorganized point set are listed in 
Table 2 and discussed below. 

 Shape Tape returns data points in order along the length of 
each ribbon, therefore our data set is not unorganized.  For each 
sample xi, we know its nearest neighbors along the length of the 
tape.  Because of the spiral arrangement of the tape, these may not 
necessarily be the nearest neighbors in world-space.  But, if we 
take a few adjacent loops in the tape, containing m sensors, and 
group samples according to distance and orientation, we can find 
the k points in our data set which are nearest to xi. These points 
make up the k-neighborhood of xi.   

 Point 2 Point 3 Point 4 Point 5 

Rx,mm:   17.9 34.8 50.7 66.1 

Ry,mm: 8.9 19.5 31.8 44.5 

Rz,mm: 0 -0.1 -0.2 -0.3 

Ux:      0.99516 0.98068 0.9567 0.94721 

Uy:      0.09829 0.19562 0.29104 0.32056 

Uz:      -0.00089 -0.00265 -0.00528 -0.0051 

Nx:      -0.0983 -0.19564 -0.29107 -0.32053 

Ny:      0.99512 0.98051 0.95633 0.94722 

Nz:      -0.00897 -0.01782 -0.02644 0.00582 

Bx:      0 -0.00089 -0.00265 0.0067 

By:      0.00902 0.01799 0.02683 -0.00388 

Bz:      0.99996 0.99984 0.99964 0.99997 

roll,deg -0.7 -1.5 -2.2 0.3 

pitch:    5.6 11.3 16.9 18.7 

yaw,deg: -0.1 -0.2 -0.3 -0.3 

 

 

Table 1.  Example of Shape Tape data set.  Data of first 4 of 
81 sensors, at some time T, is shown (Point 1 is the base of 
the tape and does not change). R is vector from point 1 to 
data point. U, N and B are orthogonal unit orientation 
vectors. ‘Yaw’, ‘pitch’ and ‘roll’ are rotation about y, z and 
x respectively (data from [7]). 



 

 

If the points are unorganized, finding the k-neighborhood for 
a given point takes O(n + k log n) time.  Hoppe, et al assume a 
uniform sampling density, and therefore use a simple spatial cubic 
partitioning scheme.  Points are entered into bins according to 
which cube they lie in, and are accessed through a hash table.  
This reduces the time to find the k-neighborhood to O(k).  With 
the ordered points that Shape Tape returns, we have to find the k-
neighborhood from the set of m points in neighboring rings of the 
spiral.  This takes O(m + k log m) time.  We cannot use a hash 
table to speed up this computation, because we cannot assume 
that Shape Tape provides a uniform sampling density.   

In addition to returning the position of each sensor along the 
ribbon, Shape Tape returns the orientation of each sensor.  This is 
different from the unorganized point problem because samples are 
assumed to be infinitesimal points, and thus have no orientation.  
But since Shape Tape is a flat ribbon-like device, each sensor can 
be thought of as a small disc that samples the position and normal 
of the surface.  In fact, this information would be useful to Hoppe, 
et al.  In order to calculate a signed distance function to the 
surface, they calculate the tangent plane to each sample point by 
computing the covariance matrix of the k-neighborhood.  We can 
skip this computation, since we already have the orientation of the 
sample disc. 

When constructing a surface from unorganized points, it is 
difficult to distinguish holes in the data due to insufficient 
sampling from an actual hole in the surface.  Thus, Hoppe, et al. 
assume a minimum density, p-dense, sample.  A p-dense sample 
means that sphere of radius p can be centered on any sample 
point, and at least one other sample point is guaranteed to lie 
within this sphere.  Assuming a uniform sampling density allows 
Hoppe, et al., to be certain that holes in the sample correspond to 
holes in the surface. With Shape Tape, we don’t have to assume a 
uniform sampling density, since we can explicitly control it.  
Additionally, we know that the user’s arms and legs have no holes 
in them, so we know that holes in the sample data do not 
correspond to holes in the surface.  This is important since the 
spiraling nature of Shape Tape leaves many holes in the data. 

Another difficult problem is with surface reconstruction 
techniques is reconstructing sharp edges and creases.  Amenta, et 
al., state that a good sample is one in which the sampling data is 
at least inversely proportional to the distance to the medial axis 
[2].  Since the medial axis is very near the surface where sharp 
edges and creases appear, we need a higher sampling rate there.  
While arms and legs have creases near the joints, we likely don’t 
need to precisely reconstruct them – it may be sufficient to 
generate them procedurally (again, this is subject to 

experimentation).  However, we can still apply Amenta’s 
sampling criterion to tracking arms and legs since we can arrange 
the tape to sample regions of high curvature, such as wrists and 
hands, better than regions of lower curvature, such as thighs. 
Amenta also mentions that if surface normal data is available, 
reconstruction is possible from much sparser samples.  In general, 
we have a sparser sample set than Amenta considers “good”, so 
we should use normals to our advantage.  

Other than the four differences listed in Table 2, our input 
data is the same as in the unorganized points problem.  Our 
problem is distinctly different, however, because we know our 
desired output surface is an arm or a leg, and not an arbitrarily 
complex surface.  We will discuss how we can fit our input data 
to the surface of an arm or leg in the following section. 

4. OUTPUTS 
Our goal is to create avatars of human arms and legs that look 
good enough for the user to identify them as her arms and legs.  
We look at our output requirements from the point of view of the 
fields, computational geometry and geometric modeling 

4.1 Comp. Geometry & Geometric Modeling 
What does it means to for our avatar to look good geometrically?  
Amenta, et al. state that given a good sample from a smooth 
surface, the output of the reconstruction algorithm should be 
topologically equivalent to the surface.  Additionally, as sampling 
density increases, the output converges to the surface, both 
pointwise and in surface normal.  Again, this assumes a high 
enough sampling rate, which we likely don’t have.  Thus, we only 
aim to reconstruct a surface as well as our sampling rate will 
allow us to. 

We must decide how we want to represent our avatar in the 
system.  The two main parameters for our representation are 1) 
how easy it is to render and 2) how suitable it is for collision 
detection.  For instance, a natural way to render point samples is 
by splatting.  But splatting doesn’t lend well to collision 
detection.  Instead, we might choose to represent our avatar as a 
set of implicit surfaces.  Collision detection is easy with implicit 
surfaces, since the math is very simple.  However, implicit 
surfaces must be sampled, e.g. using marching cubes, and thus are 
not ideal for rendering.  Conversely, if we used a parametric 
representation, collision detection would be difficult, but 
rendering easy.   We can choose different representations for 
rendering and collision detection, but since our system aims to 
run in real-time, we would like to minimize computation by 
choosing the best representation.   

In our system, we will represent our avatar’s skin as a 
polygonal mesh. There are two possible ways to generate a mesh 
representation: reconstruction from sample data and use of a 
deformable stock mesh with an underlying skeleton.  The details 
of how to compute these will be discussed further in Section 5; 
here we discuss the output requirements.   

Reconstructing a mesh from sample points.  We must 
compute connectivity information from our sample points, 
which splatting or implicit representations do not require. 
Also, collision detection is not as easy with a polygonal mesh 
as it is with implicit surfaces.  However, it is not as easy to 
find an implicit form that fits our data points as it is to find 
the polygonal mesh.  Also, rendering a polygonal mesh is 

Shape Tape Unorganized points 

Ordered points Unordered points 

Position and orientation Position 

Explicit control of 
sampling density 

Uniform sampling density 

Known domain Unknown domain 

Table 2.  Comparison of shape tape data with unorganized
point data.   



 

 

straightforward, much more so than rendering an implicit or 
parametric representation, and it is well optimized in most 
graphics hardware. 

Using a stock mesh with underlying skeleton.  We can 
obtain the mesh from a character-modeling program.  For the 
mesh to deform correctly with the movement of the bones, we 
need to capture the actual bone data from the user.  To do 
this, we model the human skeleton as rigid segments between 
articulating joints.  The assumption of rigidity is realistic, 
since bones undergo negligible deformation during normal 
human activity [5].  

5. POSSIBLE SOLUTIONS 
Having analyzed our input data and output requirements, we 
suggest possible solutions.  The following suggestions are made 
without having done any actual experimentation or mathematics 
to ensure that the algorithms will produce the correct result.  It is 
merely a discussion of algorithm ideas that have come to mind 
after thinking about our three themes in regards to our problem. 

5.1 Skin and Bones 
One approach to our creating a realistic avatar is to use a 
technique called Skin and Bones.  This technique is commonly 
used in computer games and describes a character built out of a 
single deformable mesh rather than one made up of separate 
objects.  The mesh is procedurally deformed by an underlying 
bone structure that is driven by the tracker data.  The steps of the 
skin and bones algorithm are: 

1. Getting the bones.  To find the bone structure, we use the 
medial axis algorithm discussed by Amenta, et al.  The 
medial axis transform of 3D data points generally results in 
medial surfaces in 3D.  We would like our bones to be 
straight line segments, so we have to apply the medial axis 
transform again to each medial surface previously computed 
to obtain 3D curves.  Only some of these curves will actually 
be useful for representing bone structure, the rest are an 
artifact of the medial axis transform, and do not apply.  
Since, this algorithm will produce a similar set of 3D curves 
for each user, we can likely determine useful curves by 
experimentation.   

We can’t use these curves directly as our bones however, 
since they may contain influence from muscle and fat.  Our 
themes suggest two ways of handling this problem. From 
computational geometry and/or geometric modeling, we may 
apply a curve decimation approach to simplify the curve into 

straight line segments (Figure 4).  From 
sampling/reconstruction, we may run a low-pass filter on the 
curve to eliminate high-frequency data caused by the muscles 
and fat, and leave only the lowest frequency data, which 
should give a better estimate of the bone structure. We need 
to quantitatively analyze these two options to determine 
which yields the best result.   Specifically, we want to 
determine which of our 3D medial curves map to bones, and 
which of the above methods (or combination of them) is best 
for finding bones and joints. 

The process of finding the skeleton is costly but can be 
done offline, since the user’s skeleton doesn’t change.  
Therefore the worst case O(n2 log n) running time for finding 
the skeleton of  a polygon with n vertices doesn’t affect our 
system’s runtime performance. 

2. Creating the mesh.   To create a mesh for our avatar, we can 
use a standard character modeling package.  This mesh needs 
to have an underlying bone structure, so the package should 
be able to take as input the bone structure we calculated from 
the tracker data. 

Alternatively, we may try to reconstruct a mesh from the 
tracker data and treat it as a stock mesh.  This would give us 
a mesh that looks like our user’s arms and legs, but is 
procedurally deformed by the computed bone structure as the 
user moves his arms.  However, this approach requires that 
for each user of the system, we reconstruct a mesh, and 
associate bone weights for each vertex (discussed next).  
This is very costly in terms of man-hours, thus we can 
probably rule this method out now, unless an automatic 
method of associating these weights is available.  The 
algorithm for surface reconstruction is given in Section 5.2.  

These methods are both done offline and do not 
contribute to our system’s run-time performance. 

3. Assigning weights to mesh vertices.  Each vertex of the 
mesh must be associated with one or more bones to define 
how the vertex moves as the arm moves.  This is an offline 
computation and is typically done within the character 
modeling package.  For example, skin near the elbow is 
affected by the movement of the upper arm and the lower 
arm.  A particular vertex on the lower arm side of the elbow 
might have been affected 20% by the orientation of the upper 
arm and 80% by the lower arm.  How these weights are 
assigned will affect the final position of the vertex and we 
need to define these weights for every vertex.  The next 
section discusses the use of these weights to transform mesh 
vertices. 

4. Finding world space transform of the mesh vertices.  To 
render the deformable mesh, we need to transform each 
vertex separately into world space.  The transformation of the 
vertex is given by:  

 

Where each position[N] is the initial position of that vertex 
multiplied by the transformation matrix of bone N [6].  

FinalPosition = position[1] * weight[1] + 

       position[2] * weight[2] + …. 

Figure 4.  Progressive curve decimation is shown.  First we 
connect all sample points, then every other sample point, 
finally every third sample point.   



 

 

These multiplications are done at run-time for each frame, 
but are very cheap in graphics hardware, and hardly affect 
our performance. 

The skin and bones approach has the nice property that it is 
widely used in the game industry, meaning it has proven real-time 
performance.  The disadvantage is that while the bones are 
modeled after our user, the skin has no relation to the surface of 
the users arms and legs. This raises another possible experiment 
on whether it is better for the avatar to have bones which are in 
proportion with the user’s, or for the avatar to have a surface 
which resembles the user’s in size and shape. 

5.2 Real-time Meshing 
We may find from experimentation that it is important for the 
avatar’s surface to closely match the surface of the user’s arms 
and legs.  In this case, it might be better to dynamically 
reconstruct the surface from our tracker points in real-time in 
order to capture the details of the deformation of the user’s arms 
and legs.   

Both Hoppe and Amenta give algorithms for reconstruction.  
Hoppe, et al. define a signed distance function in R3, and then 
polygonalize its zero-set to create the output mesh [2].  Zero-set 
algorithms produce approximating, rather than interpolating, 
meshes.  Essentially, approximating algorithms are applying a 
low-pass filter to the sample data before reconstructing.  Since the 
purpose of our surface reconstruction is to gain a more precise 
avatar than a stock mesh would give us, and since Shape Tape 
inherently does low-pass filtering also, we should not use this 
method, since it will probably overly smooth our data. 

Amenta, et al. use a Voronoi based approach to surface 
reconstruction, using a crust algorithm to compute the surface.  
The crust algorithm basically uses the Voronoi diagram to 
compute a medial axis, and then uses the medial axis to compute a 
crust.  A crust is a closed set of edges connecting only sample 
points in adjacent Voronoi cells.  Specifically the algorithm is [2]: 

1. Compute the Voronoi diagram of a set of samples S.  Let 
V be the set of Voronoi vertices. 

2. Compute Delaunay triangulation of S ∪  V.   

3. The crust consists of the Delaunay edges between points 
of S. 

Notice that the resulting crust is a subset of the Delaunay 
triangulation of the input points (Figure 5). 

 The crust algorithm does not extend smoothly to 3D, but by 
estimating the normal of the sample points, it can be made to 
work.  This gives Shape Tape data an advantage, since we are 
already given normal information. 

 While this algorithm may give us a good representation of the 
user’s arms and legs, it may be too slow to use.  The crust 
algorithm runs in O(n2) in the worst case, and all other steps are 
O(n).  Since Shape Tape doesn’t produce many sample points, the 
O(n2) running time may not hurt our performance too badly.  
However, Amenta reports using an SGI Onyx and taking 2 
minutes to compute the reconstruction of a 939 point sample. 
While this is obviously not currently suited for real time, we 
might analyze how much computing power we would need to gain 
real-time performance or if graphics hardware acceleration is 
possible. 

5.3 Deformation by Virtual Exoskeleton 
Hopefully, we can find a combination of the two ideas presented 
above, taking the best from both: accurate skin and real-time 
performance.   A possible way to do this would be to use a system 
in a way similar to the skin and bones system, but instead of using 
an underlying bone structure to deform a stock mesh, we would 
use an invisible exoskeleton to deform a reconstructed mesh.  This 
involves some offline computation: 

1. Reconstruct a mesh of the user’s arms and legs from the 
Shape Tape data.  

2. Find Bezier control points for the mesh. 

3. Associate certain Shape Tape sensors with the Bezier control 
points.  The movement of these sensors will be responsible 
for deforming the mesh. 

After this offline computation is done, we can use the system 
similar to the skin and bones system.  As the user moves his arms 
and legs, the Shape Tape sensors associated with Bezier control 
points also move.  In turn, we recalculate the mesh of our Bezier 
patch at each frame, render it and test collisions against it. 

 The advantage of this method is that we are using a 
reconstructed mesh computed offline, so our avatar looks like our 
user, but we are not reconstructing at every frame.  We are not 
calculating a bone structure, so we eliminate the process of 
assigning bone weights to each vertex.  We are using our tracker 
data to move the skin of the avatar directly, instead of using it to 
move the bones and deforming the skin procedurally.  This means 
the skin of our avatar is deforming similar to how our user’s skin 
is deforming, because the data actually comes from tracker 
readings on the surface of the user’s skin.  Additionally, since 
most computation is done offline, as in the skin and bones 
method, this technique is likely to run in real-time. 

 The difficult part of this algorithm, however, seems to be the 
computation of Step 2, automatically computing Bezier control 
points from a mesh.  Usually in geometric modeling, we are given 
the control points and want to calculate a mesh.  It is not clear if it 
always possible to perform the computation in reverse.  Still, this 
method is promising since it may neatly combine our previous 
two solutions and show good performance. 

6. CONCLUSION 
We have discussed the problem of reconstructing, in real-time, a 
realistic avatar, in both motion and shape.  We analyzed our input 

Figure 5.  The two-dimensional crust algorithm.  On the
left, the Voronoi diagram of a point set S sampled from a
curve.  On the right, the Delaunay triangulation of S ∪ V, 
with the crust edges in drawn in bold (figure from [2]). 



 

 

data and desired output from the point of view of the fields of 
sampling/reconstruction theory, geometric modeling and 
computational geometry.  We compared and contrasted our 
problem to problems from these fields, and analyzed how we can 
use our input data with algorithms from these fields to solve our 
problem. We presented three possible solutions based on our 
analysis.  Two of these solutions, the skin and bones technique 
and the real-time meshing techniques are combined into a method, 
deformation by virtual exoskeleton, which shows promise. 
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