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Abstract

We propose a new and efficient signature scheme that is provably secure in the plain model. The
security of our scheme is based on a discrete-logarithm-based assumption put forth by Lysyanskaya,
Rivest, Sahai, and Wolf (LRSW) who also showed that it holds for generic groups and is independent
of the decisional Diffie-Hellman assumption. We prove security of our scheme under the LRSW
assumption for groups with bilinear maps. We then show how our scheme can be used to construct
efficient anonymous credential systems as well as group signature and identity escrow schemes. To
this end, we provide efficient protocols that allow one to prove in zero-knowledge the knowledge of a
signature on a committed (or encrypted) message and to obtain a signature on a committed message.

1 Introduction

Digital signatures schemes, invented by Diffie and Hellman [DH76], and formalized by Goldwasser,
Micali and Rivest [GMR88], not only provide the electronic equivalent of signing a paper document
with a pen but also are an important building block for many cryptographic protocols such as anonymous
voting schemes, e-cash, and anonymous credential schemes, to name just a few.

Signature schemes exists if and only if one-way functions exist [NY89, Rom90]. However, the effi-
ciency of these general constructions, and also the fact that these signature schemes require the signer’s
secret key to change between invocations of the signing algorithm, makes these solutions undesirable in
practice.

Using an ideal random function (this is the so-called random-oracle model), several, much more
efficient signature schemes were shown to be secure. Most notably, those are the RSA [RSA78], the
Fiat-Shamir [FS87], and the Schnorr [Sch91] signature schemes. However, ideal random functions
cannot be implemented in the plain model [CGH98, GK03], and therefore in the plain model, these
signature schemes are not provably secure.

Over the years, many researchers have come up with signature schemes that are efficient and at
the same time provably secure in the plain model. The most efficient ones provably secure in the
standard model are based on the strong RSA assumption [GHR99, CS99, Fis02, CL02]. However, no
scheme based on an assumption related to the discrete logarithm assumption in the plain (as opposed
to random-oracle) model comes close to the efficiency of these schemes.

In this paper, we propose a new signature scheme that is based on an assumption introduced by
Lysyanskaya, Rivest, Sahai, and Wolf [LRSW99] and uses bilinear maps. This assumption was shown
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to hold for generic groups [LRSW99], and be independent of the decisional Diffe-Hellman assumption.
Our signature scheme’s efficiency is comparable to the schemes mentioned above that are based on the
Strong RSA assumption.

We further extend our basic signature scheme such that it can be used as a building block for
cryptographic protocols. To this end, we provide protocols to prove knowledge of a signature on a
committed message and to obtain a signature on a committed message. These protocols yield a group
signature scheme [CvH91] or an anonymous credential system [Cha85] (cf. [CL02]). That is, we obtain
the first efficient and secure credential system and group signature/identity escrow schemes [KP98]
that are based solely on discrete-logarithm-related assumptions. We should mention that an anony-
mous credential system proposed by Verheul [Ver01] is also only based on discrete logarithm related
assumptions; however, the scheme is not proven secure. Also note that the recent scheme by Ateniese
and de Medeiros [AdM03] requires the strong RSA assumption although no party is required to know
an RSA secret key during the operation of the system.

Note that not only are our group signature and anonymous credential schemes interesting because
they are based on a different assumption, but also because they are much more efficient than any of
the existing schemes. All prior schemes [ACJT00, CL01, CL02, AdM03] required proofs of knowledge
of representations over groups modulo large moduli (for example, modulo an RSA modulus, whose
recommended length is about 2K).

Recently, independently from our work, Boneh and Boyen [BB04] put forth a signature scheme that
is also provably secure under a discrete-logarithm-type assumption about groups with bilinear maps.
In contrast to their work, our main goal is not just an efficient signature scheme, but a set of efficient
protocols to prove knowledge of signatures and to issue signatures on committed (secret) messages. Our
end goal is higher-level applications, i.e., group signature and anonymous credential schemes that can
be constructed based solely on an assumption related to the discrete logarithm assumption.

In another recent independent work, Boneh, Boyen and Shacham [BBS04] construct a group signa-
ture scheme based on different discrete-logarithm-type assumptions about groups with bilinear pairings.
Their scheme yields itself to the design of a signature scheme with efficient protocols as well. In Section 5
we describe their scheme and its connection to our work in more detail.

Outline of the paper. In Section 2 we give our notation and some number-theoretic preliminaries,
including bilinear maps and the LRSW assumption. In Section 3, we give our signature scheme and
prove it secure. In Section 4 we show how our signature yields itself to the design of an anonymous
credential system: we give protocols for obtaining a signature on a committed value, and for proving
knowledge of a signature on a committed value. In the end of that section, we show how to realize a
group signature scheme based on our new signature. Finally, in Section 5, we show that the scheme of
Boneh, Boeyn and Shacham can be extended so that a signature scheme with efficient protocols, similar
to the one we describe in Sections 3 and 4 can be obtained based on their assumptions as well.

2 Preliminaries

2.1 Notation

We use notation introduced by Micali [Mic], and also notation introduced by Camenisch and Stadler [CS97].
Let A be an algorithm. By A(·) we denote that A has one input (resp., by A(·, . . . , ·) we denote

that A has several inputs). By y ← A(x), we denote that y was obtained by running A on input x.
If A is deterministic, then this y is unique; if A is probabilistic, then y is a random variable. If S is a
finite set, then y ← S denotes that y was chosen from S uniformly at random. By y ∈ A(x) we mean
that the probability that y is output by A(x) is positive.
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By AO(·), we denote a Turing machine that makes queries to an oracle O. I.e., this machine will
have an additional (read/write-once) query tape, on which it will write its queries in binary; once it is
done writing a query, it inserts a special symbol “#”. By external means, once the symbol “#” appears
on the query tape, oracle O is invoked and its answer appears on the query tape adjacent to the “#”
symbol. By Q = Q(AO(x))← AO(x) we denote the contents of the query tape once A terminates, with
oracle O and input x. By (q, a) ∈ Q we denote the event that q was a query issued by A, and a was
the answer received from oracle O.

Let b be a boolean function. By (y ← A(x) : b(y)), we denote the event that b(y) is true after y was
generated by running A on input x. The statement Pr[{xi ← Ai(yi)}1≤i≤n : b(xn)] = α means that the
probability that b(xn) is TRUE after the value xn was obtained by running algorithms A1, . . . , An on
inputs y1, . . . , yn, is α, where the probability is over the random choices of the probabilistic algorithms
involved.

A function ν(k) is negligible if for every positive polynomial p(·) and for sufficiently large k, ν(k) <
1

p(k) .
In the sequel, we will sometimes use the notation introduced by Camenisch and Stadler[CS97] for

various proofs of knowledge of discrete logarithms and proofs of the validity of statements about discrete
logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (u ≤ α ≤ v)}
denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that y = gαhβ and ỹ = g̃αh̃γ

holds, where v < α < u,” where y, g, h, ỹ, g̃, and h̃ are elements of some groups G = 〈g〉 = 〈h〉 and
G̃ = 〈g̃〉 = 〈h̃〉. The convention is that Greek letters denote quantities the knowledge of which is being
proved, while all other parameters are known to the verifier. Using this notation, a proof-protocol
can be described by just pointing out its aim while hiding all details. We will sometimes apply the
Fiat-Shamir heuristic to turn such a proof into a signature on a message m, which we will denote as,
e.g., SPK{(α) : y = gα}(m).

2.2 Standard Definition of a Digital Signature Scheme

The following definition is due to Goldwasser, Micali, and Rivest [GMR88], and has become the standard
definition of security for signature schemes. Schemes that satisfy it are also known as signature schemes
secure against adaptive chosen-message attack.

Definition 2.1 (Signature scheme). Probabilistic polynomial-time algorithms
(G(·),Sign(·)(·),Verify(·)(·, ·)), where G is the key generation algorithm, Sign is the signature algorithm,
and Verify the verification algorithm, constitute a digital signature scheme for a family (indexed by the
public key pk) of message spaces M(·) if:

Correctness. If a message m is in the message space for a given public key pk, and sk is the cor-
responding secret key, then the output of Signsk (m) will always be accepted by the verification
algorithm Verifypk . More formally, for all values m and k:

Pr[(pk , sk)← G(1k);σ ← Signsk (m) : m ∈Mpk ∧ ¬Verifypk (m,σ)] = 0

Security. Even if an adversary has oracle access to the signing algorithm which provides signatures on
messages of the adversary’s choice, the adversary cannot create a valid signature on a message not
explicitly queried. More formally: For all families of probabilistic polynomial-time oracle Turing
machines {A(·)

k }, there exists a negligible function ν(k) such that

Pr[(pk , sk)← G(1k); (Q, x, σ)← A
Signsk (·)
k (1k) : Verifypk (m,σ) = 1∧¬(∃σ′ | (m,σ′) ∈ Q)] = ν(k)
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2.3 Number-Theoretic Preliminaries

We now describe some number-theoretic preliminaries. Suppose that we have a setup algorithm Setup
that, on input the security parameter 1k, outputs the setup for G = 〈g〉 and G = 〈g〉, two groups of
prime order q = Θ(2k) that have a non-degenerate efficiently computable bilinear map e. More precisely:
We assume that associated with each group element, there is a unique binary string that represents it.
(For example, if G = Z∗

p, then an element of G can be represented as an integer between 1 and p− 1.)
Following prior work (for example, Boneh and Franklin [BF01]), e is a function, e : G ×G → G, such
that

• (Bilinear) For all P,Q ∈ G , for all a, b ∈ Z, e(P a, Qb) = e(P,Q)ab.

• (Non-degenerate) There exists some P,Q ∈ G such that e(P,Q) 6= 1, where 1 is the identity of G.

• (Efficient) There exists an efficient algorithm for computing e.

We write: (q,G ,G, g , g, e) ← Setup(1k). It is easy to see, from the first two properties, and from the
fact that G and G are both of the same prime order q, that whenever g is a generator of G , g = e(g , g)
is a generator of G.

Such groups, based on the Weil and Tate pairings over elliptic curves (see Silverman [Sil86]), have
been extensively relied upon in cryptographic literature over the past few years (cf. [Jou00, BF01, BS03,
GS02] to name a few results).

Further, we make the following assumption about the groups G and G.

Assumption 2.1 (LRSW Assumption). Suppose that G = 〈g〉 is a group chosen by the setup
algorithm Setup. Let X, Y ∈ G, X = gx, Y = gy. Let OX,Y (·) be an oracle that, on input a value
m ∈ Zq, outputs a triple A = (a, ay, ax+mxy) for a randomly chosen a. Then for all probabilistic
polynomial time adversaries A?, ν(k) defined as follows is a negligible function:

Pr[(q,G ,G, g , g, e)← Setup(1k);x← Zq; y ← Zq;X = gx;Y = gy;

(Q,m, a, b, c)← AOX,Y (q,G ,G, g , g) : m /∈ Q ∧ a ∈ G ∧ b = ay ∧ c = ax+mxy] = ν(k)

This assumption was introduced by Lysyanskaya et al. [LRSW99], and considered for groups that
are not known to admit an efficient bilinear map. It was also shown, in the same paper, that this
assumption holds for generic groups, and is independent of the decisional Diffie-Hellman assumption.

3 Three Signature Schemes

First, we present a simple signature scheme (Scheme A) and prove it secure under the LRSW assump-
tion. Then, we modify this scheme to get signature schemes that lend themselves more easily to the
design of efficient protocols for issuing a signature on a committed value and proving knowledge of
a signature on a committed value. The first generalization will allow to sign such that the signature
produced is independent of the message (Scheme B), which we generalize further into a scheme that
allows to sign blocks of messages (Scheme C).

Schemes A and B are, in fact, special cases of Scheme C. So we really propose just one new signature
scheme, namely Scheme C. Schemes A and B are just steps that simplify our presentation by making
it more modular.
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3.1 A Simple Signature Scheme: Scheme A

The signature scheme consists of the following algorithms:

Key generation. The key generation algorithm runs the Setup algorithm in order to generate (q,G ,G, g , g, e).
It then chooses x← Zq and y ← Zq, and sets sk = (x, y), pk = (q,G ,G, g , g, e,X, Y ).

Signature. On input message m, secret key sk = (x, y), and public key pk = (q,G ,G, g , g, e, X, Y ),
choose a random a ∈ G , and output the signature σ = (a, ay, ax+mxy).

Verification. On input pk = (q,G ,G, g , g, e, X, Y ), message m, and purported signature σ = (a, b, c),
check that

e(a, Y ) = e(g , b) and e(X, a) · e(X, b)m = e(g , c) (1)

holds.

Theorem 3.1. Signature Scheme A described above is correct and secure under the LRSW assumption.

Proof. We first show correctness. The first verification equation holds as e(a, Y ) = e(a, g)y = e(g , a)y =
e(g , b) and the second one holds because e(X, a)·e(X, b)m = e(g , a)x·e(g , a)mxy = e(g , a)x+mxy = e(g , c).

We now show security. Without loss of generality, let g = e(g , g).
Consider the adversary interacting with the signer and outputting a valid signature σ on some

message m that he did not query for. It is clear that the signer acts the same way as the oracle OX,Y

defined in the LRSW assumption. Therefore, in order to prove security, we must show that the forgery
σ = (a, b, c) that passes the verification equations, must be of the form (*) b = ay and (**) c = ax+mxy.

Let a = gα, b = gβ , c = gγ . So, we wish to show that β/α = y, and that γ/α = x + mxy.
From the first verification equation and the bilinearity of e, we get that

gαy = e(g , g)αy = e(a, Y ) = e(g , b) = e(g , g)β = gβ .

Since g is a generator of G, we can take the logarithm base g on both sides, and obtain αy = β mod q,
which gives us (*) as desired.

From the second verification equation, using the above, and, again, the fact that g is a generator:

e(X, a) · e(X, b)m = e(g , c)
e(g , g)xαe(g , g)mxβ = e(g , g)γ

xα + mxβ = γ

α(x + mxy) = γ .

3.2 A Scheme Where Signature σ Is Independent of the Message: Scheme B

For constructing anonymous credentials, we need a signature scheme where the signature itself is dis-
tributed in a way that is information-theoretically independent of the message m being signed. In
essence, what is being signed should be an information-theoretically secure commitment (Pedersen
commitment) of the message. Thus, we modify Scheme A and obtain Scheme B as follows:

Key generation. Run the Setup algorithm to generate (q,G ,G, g , g, e). Choose x ← Zq, y ← Zq,
z ← Zq. Let X = gx, Y = gy and Z = gz. Set sk = (x, y, z), pk = (q,G ,G, g , g, e, X, Y, Z).
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Signature. On input message (m, r), secret key sk = (x, y), and public key pk = (q,G ,G, g , g, e, X, Y, Z)
do:

• Choose a random a← G .
• Let A = az.
• Let b = ay, B = Ay.
• Let c = ax+xymAxyr.

Output σ = (a,A, b,B, c).

Verification. On input pk = (q,G ,G, g , g, e, X, Y, Z), message (m, r), and purported signature σ =
(a,A, b,B, c), check the following:

1. A was formed correctly: e(a, Z) = e(g , A).
2. b and B were formed correctly: e(a, Y ) = e(g , b) and e(A, Y ) = e(g , B).
3. c was formed correctly: e(X, a) · e(X, b)m · e(X, B)r = e(g , c).

Note that the values (gmZr, a, A, b, B, c) are information-theoretically independent of m if r is chosen
randomly. This will become crucial when using this signature scheme in the context of an anonymous
credential system.

Theorem 3.2. Signature Scheme B described above is correct and secure under the LRSW assumption.

Proof. We will first show correctness. The first verification equation holds as e(a, Z) = e(a, g)z =
e(g , a)z = e(g , A), the two second ones hold as e(a, Y ) = e(a, g)y = e(g , B) and e(A, Y ) = e(a, g)zy =
e(g , Ay) = e(g , B), and finally the third one holds because

e(X, a) · e(X, b)m · e(X, B)r = e(g , a)x · e(g , a)myx · e(g , a)zrxy =
= e(g , a)x+myx+zrxy = e(g , ax+myx+zrxy) = e(g , ax+myxAxyr) = e(g , c) .

We will now prove security of this signature using (1) the fact that Signature Scheme A is secure
under the LRSW assumption; and (2) the fact that the LRSW assumption implies that the discrete
logarithm problem is hard.

Suppose that we have an adversary A who creates a valid forgery with probability ε(k). Then:

Claim. One of the following is true:

1. With probability at least ε(k)/2, the adversary A creates a valid forgery on some message (m, r)
such that for all of his previously queried (mi, ri) we have gmZr 6= gmiZri. (Let us call this type
of forgery “Type 1,” and an adversary satisfying this property, “Type-1 forger.”)

2. With probability at least ε(k)/2, A creates a valid forgery on some message (m, r) such that for
one of his previously queried (mi, ri), gmZr = gmiZri. (Let us call this type of forgery Type 2,
and an adversary satisfying this property, “Type-2 forger.”)

The claim follows because by the union bound, the probability of successful forgery is upper bounded
by the sum of probabilities of the two types of forgeries, so if both of them are smaller than ε(k)/2,
then the total forgery probability will be smaller than ε(k).

Let us show that both of these types of forgery contradict the LRSW assumption.
Suppose we are given a Type-1 Forger A. Then let us show that Signature Scheme A is insecure.

Suppose that we are given the public key pk for Signature Scheme A. We are also allowed to query the
algorithm Signsk for Scheme A. Our goal is to create a forgery by running A. To that end, we set up a
public key pk ′ for Signature Scheme B, and respond to A(pk ′)’s signature queries, as follows:
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Key Generation. We are given pk = (q,G ,G, g , g, e, X, Y ), a public key for Signature Scheme A. Let
us choose z ← Zq and set Z = gz. Let pk ′ = (q,G ,G, g , g, e, X, Y, Z).

Signature Queries. Suppose that A issues the signature query (mi, ri). We compute m′
i = mi +

riz mod q, and query Signsk on input m′
i to obtain σ′i = (ai, bi, ci). Let Ai = az

i , Bi = bz
i . Output

signature σi = (ai, Ai, bi, Bi, ci). Note that this signature will be accepted by the verification
algorithm:

1. Ai is formed correctly, because e(ai, Z) = e(ai, g)z = e(g , az
i ) = e(g , Ai).

2. The element bi is formed correctly because it was issued by Signsk , and so e(ai, Y ) = e(g , bi).
Bi is formed correctly, because bi is formed correctly, and so:

e(Ai, Y ) = e(az
i , Y ) = e(ai, Y )z = e(g , bi)z = e(g , bz

i ) = e(g , Bi)

3. The element ci is formed correctly, because:

e(X, ai) · e(X, bi)mi · e(X, Bi)ri = e(X, ai) · e(X, bi)mi · e(X, bz
i )

ri (2)
= e(X, ai) · e(X, bi)mi · e(X, bi)zri (3)
= e(X, ai)e(X, bi)mi+zri (4)
= e(X, ai)e(X, bi)m′

i (5)
= e(g , ci) (6)

where the first several steps follow from the bilinear property of the map e, while Step 6
follows from the verification equation for Signature A.

Note that the signature is distributed correctly: the Signer in Signature Scheme B only chooses
ai at random, and the rest of the values are computed deterministically from a and his secret key.
Since ai in Signature Scheme B is chosen the same way as in Signature Scheme A, it follows that
the resulting signature is distributed correctly.

Processing the Forgery. Suppose that A outputs σ = (a,A, b,B, c) that is a valid Signature-B on
(m, r). If (m, r) were never queried before, then, because this is Type-1 forger, m′ = m + zr is
different from any previously queried m′

i. And so if we can compute a Signature-A forgery on
message m′, we are done. Let us show that σ = (a, b, c) is a valid Signature-A on m′, i.e., it will
satisfy the verification equations:

• e(a, Y ) = e(g , b) by the verification equations of Signature Scheme B.

• The verification equations of Signature Scheme B, also give us e(a, Z) = e(g , A) and e(A, Y ) =
e(g , B). Therefore,

e(g , B) = e(A, Y ) from verification equation
= e(g , A)y because Y = gy

= e(a, Z)y from verification equation
= e(a, g)zy because Z = gz

= e(a, gy)z

= e(a, Y )z

= e(g , b)z from verification equation
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The last verification equation of Signature Scheme B, gives us e(X, a) · e(X, b)m · e(X, B)r =
e(g , c). Putting everything together:

e(X, a) · e(X, b)m′
= e(X, a) · e(X, b)m+zr

= e(X, a) · e(X, b)m · e(X, b)zr

= e(X, a) · e(X, b)m · e(g , b)xzr since X = gx

= e(X, a) · e(X, b)m · e(g , B)xr by above
= e(X, a) · e(X, b)m · e(X, B)r

= e(g , c) by the last verification equation

Now let us address the case when we are given a Type-2 adversary. Let us use this adversary to
solve the discrete logarithm problem for the groups G and G. So we are given (q,G ,G, g , g, e, Z), and
our goal is to find z ∈ Zq such that Z = gz. To that end, do the following:

Key generation. Choose random x, y ∈ Zq; let X = gx and Y = gy. Let pk = (q,G ,G, g , g, e, X, Y, Z).
Note that pk is distributed correctly for Signature-B. Invoke A on input pk .

Signature Queries. Suppose A requests a signature on (mi, ri). Then compute the signature σi as
follows:

• Choose a random α← Zq.

• Let a = gα, and A = Zα.

• Let b = ay, B = Ay.

• Let c = ax+xymAxyr.

Note that the signature is distributed correctly: a is a random element of G , and A = Zα =
gzα = az, as prescribed by the signing algorithm of Signature-B; everything else is also computed
correctly as prescribed by the signing algorithm.

Processing the Forgery. Suppose that we are given the forged signature σ on message (m, r). Recall
that this is Type-2 forger, and so for some i, m′ = m + rz = mi + riz.

Note that (m, r) 6= (mi, ri): otherwise (m, r) would not count as a forgery. From that, we get
that r 6= ri: Suppose for contradiction r = ri, then:

r = ri ⇒ rz = riz ⇒ m = m′ − rz = m′ − riz = mi ⇒ (m, r) = (mi, ri)

Thus we can solve for z: z = (m−mi)/(ri − r). So we solve the discrete logarithm problem.

3.3 A Signature Scheme for Blocks of Messages: Scheme C

Scheme B allows us to generate a signature on m in such a way that the signature itself reveals no
information about m. Namely, one can choose a random r and sign (m, r) using Scheme B. In general,
however, there is no reason that we should limit ourselves to pairs (m, r) when signing. In fact, the
construction of Scheme B can be generalized to obtain Scheme C which can sign tuples (m(0), . . . ,m(`)),
i.e., blocks of messages.

Scheme C consists of the following algorithms:

Key generation. Run the Setup algorithm to generate (q,G ,G, g , g, e). Choose x← Zq, y ← Zq, and
for 1 ≤ i ≤ `, zi ← Zq. Let X = gx, Y = gy and, for 1 ≤ i ≤ `, Zi = gzi . Set sk = (x, y, z1, . . . , z`),
pk = (q,G ,G, g , g, e, X, Y, {Zi}).
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Signature. On input message (m(0),m(1), . . . ,m(`)), secret key sk = (x, y, z1, . . . , z`), and public key
pk = (q,G ,G, g , g, e, X, Y, {Zi}) do:

• Choose a random a← G .
• Let Ai = azi for 1 ≤ i ≤ `.
• Let b = ay, Bi = (Ai)y.

• Let c = ax+xym(0) ∏`
i=1 Axym(i)

i .

Output σ = (a, {Ai}, b, {Bi}, c).

Verification. On input pk = (q,G ,G, g , g, e, X, Y, {Zi}), message (m(0), . . . ,m(`)), and purported sig-
nature σ = (a, {Ai}, b, {Bi}, c), check the following:

1. {Ai} were formed correctly: e(a, Zi) = e(g , Ai).
2. b and {Bi} were formed correctly: e(a, Y ) = e(g , b) and e(Ai, Y ) = e(g , Bi).

3. c was formed correctly: e(X, a) · e(X, b)m(0) ·
∏`

i=1 e(X, Bi)m(i)
= e(g , c).

The proof that this scheme is secure and correcy is deferred to Corollary 4.4.

4 Anonymous Credential System and Group Signature Scheme

Following Camenisch and Lysyanskaya [CL02, Lys02], in order to construct an anonymous credential
system, it is sufficient to exhibit a commitment scheme, a signature scheme, and efficient protocols for
(1) proving equality of two committed values; (2) getting a signature on a committed value (without
revealing this value to the signer); and (3) proving knowledge of a signature on a committed value. We
provide all these tools in this section.

Constructing a group signatures scheme or identity escrow scheme additionally requires an encryp-
tion scheme that is secure against adaptively chosen ciphertext attacks and a protocol that a committed
value is contained in a ciphertext (cf. [CS97, BMW03, CS03]). Camenisch and Shoup provide an en-
cryption scheme and such a protocol [CS03]. However, in our case we could also use the Cramer-Shoup
encryption scheme [CS98], provided that the order of the group over which encryption is carried out is
the same as the order of the group over which our signature scheme is constructed. This will allow for a
more efficient proof that a ciphertext contains information to identify a group member and thus a more
efficient group signatures/identity escrow scheme. We will describe the details of this in Section 4.4.

The reason that our new signature schemes are particularly suitable for the credential scheme
application, is the fact that, given one signature on a given message, it is easy to generate another one.
Consider Signature Scheme A. From a signature σ = (a, b, c) on message m, it is very easy to compute
a different signature σ = (ã, b̃, c̃) on the same message m: just choose a random r ∈ Zq and let ã = ar,
b̃ = br, c̃ = cr. This alone is, of course, not sufficient, but this already shows the way in which the
pieces of our credential scheme will fall into place.

4.1 The Relevant Commitment Scheme

Recall the Pedersen commitment scheme [Ped92]: given a group G of prime order q with generators g
and h, a commitment to x ∈ Zq is formed by choosing a random r ← Zq and setting the commitment
C = gxhr. This commitment scheme is information-theoretically hiding, and is binding under the
discrete logarithm assumption, which is implied by the LRSW assumption. Moreover, there exist
in the literature efficient protocols for proving knowledge and equality of committed values (see, for
example, [CP93, Sch91, Bra97, CEvdG88]).
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4.2 Obtaining a Signature on a Committed Value

When Information-Theoretic Hiding Is not Needed. Consider the signing algorithm for Scheme
A. Note that, if the input to the signer is gm instead of m, the algorithm will still work: on input
M = gm, output a = gr, b = ay, and c = axM rxy = ax+mxy. To maintain security of the signature
scheme, however, the user must prove knowledge of m to the signer.

As we will discuss in more detail in Section 4.4, this leads to a natural application to constructing
group signatures: in order to join a group, a new member will choose a secret m, give gm to the group
manager, prove knowledge of m, and obtain the membership certificate (a, b, c) formed as above.

However, note here that the input to the signer, the value gm, does not unconditionally hide the
value m. Thus, if the user wishes to become a member in more than one group using the same secret
m (as is the case if we want to build an anonymous credential system), the two group managers can
discover that they are talking to the same user. This is easy to see if both group managers use the same
generator g for G , since in that case, the user will give gm to both of them. But this is true even if one
group manager uses g , while the other uses g̃ : recall that in groups with bilinear pairings, the decisional
Diffie-Hellman problem is easy, and so gm and g̃m can be correlated: e(gm, g̃) = e(g , g̃)m = e(g , g̃m).

This is why we need Schemes B and C instead of Scheme A. However, we note that for group
signatures, Scheme A is sufficient. In the sequel, we will give the description of the protocol for Scheme
C, together with a proof of security. Since Scheme A is a special case of Scheme C (in Scheme A, ` = 0),
the security of the protocols for A is implied by that for C.

Signing an Information-Theoretically Hidden Message. Signature Schemes B and C are ideally
suited for obtaining a signature on a committed value.

Consider Signature Scheme B. Note that to generate a valid signature, the signer need not know
(m, r). Instead, it is sufficient that the signer know M = gmZr. The values (a,A, b,B) are not a
function of (m, r) — so the signer need not know (m, r) to generate them. Suppose that the signer
generates them as follows: choose α ← Zq, and let a = gα. Choose A, b, and B as prescribed by
the signing algorithm. Finally, the signer can compute c = ax+xymAxyr as c = axMαxy. This will be
correct, because:

c = axMαxy

= ax(gmZr)αxy

= ax(amAr)xy since by construction, A = gαz = Zα

= ax+xymAxyr

More generally, in Signature Scheme C, all the signer needs is the value M = gm(0) ∏`
i=1 Zm(i)

i . He
can then compute (a = gα, {Ai}, b, {Bi}) as prescribed, and let c = axMαxy as above.

We do not know how to prove such a method for signing secure under the LRSW assumption: the
difference from the usual method is that here, the adversary may win by asking a signature query for
M for which he does not know the representation in terms of g and Z.

Thus, in order to obtain a signature on a committed value, the protocol needs to be amended by
having a recipient of the signature prove that he knows the representation of M in bases g and Z.

Let us give the protocol in detail now. We give the protocol for Signature Scheme C, the ones for
Signature Schemes A and B follow from this as they are special cases of Signature Scheme C.

Obtaining a Signature C on a Committed Value. Suppose that M = gm(0) ∏`
i=1 Zm(i)

i is a
commitment to a set of messages (m(0), . . . ,m(`)) whose signature the user wishes to obtain. Then the
user and the signer run the following protocol:
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Common Input. The public key pk = (q,G ,G, g , g, e,X, Y, {Zi}), and a commitment M .

User’s Input. Values m(0), . . . ,m(`) such that M = gm(0) ∏`
i=1 Zm(i)

i .

Signer’s Input. Signing key sk = (x, y, {zi}).

Protocol. First, the user gives a zero-knowledge proof of knowledge of the opening of the commitment:

PK{(µ(0), . . . , µ(`)) : M = gµ(0)
∏̀
i=1

Zµ(i)

i }

Next, the signer computes σ = (a, {Ai}, b, {Bi}, c) as described above, namely:

• α← Zq, a = gα.
• For 1 ≤ i ≤ `, let Ai = azi . Then set b = ay, and for 1 ≤ i ≤ `, let Bi = Ay

i .
• c = axMαxy.

The user outputs the signature σ.

Theorem 4.1. The protocol above is a secure two-party computation of a signature on a discrete-
logarithm representation of M under the signer’s public key.

Proof. (Sketch) From the signer’s point of view, this protocol is as secure as when the user submits his
signature queries in the clear. This is because of the proof of knowledge: there exists an extractor that
can discover the value of the message being signed, and ask it of the signer in the clear.

From the user’s point of view, since the only where the user’s secret input (m(0), . . . ,m(`)) is used is
the zero-knowledge proof of knowledge of these values, the only thing that the signer finds out about the
message (m(0), . . . ,m(`)), is the input value M . Note that if m(`) is distributed uniformly at random,
then M information-theoretically hides the values (m(0), . . . ,m(`−1)).

4.3 Proving Knowledge of a Signature

We first present a protocol to prove knowledge of a signature that works for Scheme A. We then explain
why the protocol does not generalize to Scheme B (and thus also Scheme C), show how Scheme C needs
to be extended to fix this problem, and obtain Scheme D. We then give a proof of security of Scheme
D and a zero-knowledge protocol for proving knowledge of a signature under Scheme D. We note that
the protocol to sign a committed (secret) message also works for Scheme D.

The following protocol is a zero-knowledge proof of knowledge of a signed message for Scheme A.

Common input. The public key pk = (q,G ,G, g , g, e, X, Y ).

Prover’s input. The message m ∈ Zq and signature σ = (a, b, c).

Protocol. The prover does the following:

1. Compute a blinded version of his signature σ: Choose random r, r′ ∈ Zq, and blind the
signature to form σ̃ := (ar′

, br′
, cr′r) = (ã, b̃, c̃r) = (ã, b̃, ĉ). Send (ã, b̃, ĉ) to the verifier.

2. Let the vx, vxy, and vs be as follows:

vx = e(X, ã) , vxy = e(X, b̃) , vs = e(g , ĉ) .

The Prover and Verifier compute these values (locally) and then carry out the following
zero-knowledge proof protocol: PK{(µ, ρ) : vρ

s = vxvµ
xy} .

The Verifier accepts if it accepts the proof above and e(ã, Y ) = e(g, b̃).
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Theorem 4.2. The protocol above is a zero knowledge proof of knowledge of a signature σ on a message
m under Signature Scheme A.

Proof. First, we prove the zero-knowledge property. The values that the verifier receives from the
prover in Step 1 are independent of the actual signature: ã and b̃ are just random values satisfying
e(ã, Y ) = e(g, b̃), and ĉ is random in G because ĉ = c̃r′

for a randomly chosen r′. Therefore, consider
the following simulator S: Choose random r and r′, and set ã = gr, b̃ = Y r, ĉ = gr′

. Then (ã, b̃, ĉ) is
distributed correctly, and so Step 1 is simulated correctly. Then, since in Step 2, the Prover and Verifier
execute a zero-knowledge proof, it follows that there exists a simulator S′ for this step; just run S′. It
is easy to see that S constructed this way is the zero-knowledge simulator for this protocol.

Next, let us prove that this protocol is a proof of knowledge. That is to say, we must exhibit a
knowledge extractor algorithm E that, given access to a Prover such that the Verifier’s acceptance
probability is non-negligible, outputs a value (m,σ), such that σ is a valid signature. Suppose that we
are given such a prover. The extractor proceeds as follows: first, it runs the extractor for the proof of
knowledge protocol of Step 2. As a result, it obtains the values r, m ∈ Zq such that vr

s = vxvm
xy. Then:

vr
s = vxvm

xy

e(g , ĉ)r = e(X, ã)e(X, b̃)m

e(g , ĉr) = e(X, ã)e(X, b̃)m

And therefore the triple σ = (ã, b̃, ĉr) satisfies the verification equation (1) and hence is a signature on
the message m, so our extractor outputs (m,σ).

Let us now try to adapt this protocol for Signature Scheme C. There is one subtlety that arises here:
The zero-knowledge simulator needs to be able to come up with something that looks like a blinded
signature (let us call it simulated signature), even though the simulator is not given any signature. In
Signature Scheme A this turned out not to be a problem: the simulator simply picked a random r and
set ã = gr, and b̃ = Y r. Here, this is not going to work, because, in addition to ã and b̃, the simulated
signature needs to include the values {Ãi} and {B̃i}. Now, forming Ãi is not a problem: Ãi = Zr

i . But
how do we compute B̃i = Ãy

i = grziy without knowing zi or y?
To that end, we may augment the public key for signature scheme C to include a signature on some

dummy message, so that the simulator will be given some valid signature that includes the correctly
formed tuple (a, {Ai}, b, {Bi}), and then, in order to obtain the simulated signature, the simulator will
pick a random r, and let ã = ar, b̃ = br, Ãi = Ar

i , and B̃i = Br
i .

An even better solution, in terms of reducing the size of the public key, is actually to include the
values Wi = Y zi in the public key, instead of the signature on the dummy message. It is easy to see
that this has no effect on the security of the signature scheme.

Let us now give this new, augmented signature scheme, and prove it secure.

Signature Scheme D. This signature scheme is the same as Signature Scheme C, except that the
public key also includes the values {Wi = Y zi}.

Key generation. Run the Setup algorithm to generate (q,G ,G, g , g, e). Choose x← Zq, y ← Zq, and
for 1 ≤ i ≤ `, zi ← Zq. Let X = gx, Y = gy and, for 1 ≤ i ≤ `, Zi = gzi and Wi = Y zi . Set
sk = (x, y, z1, . . . , z`), pk = (q,G ,G, g , g, e, X, Y, {Zi}, {Wi}).

The signature and verification algorithm are identical to the ones of Scheme C.

Theorem 4.3. Signature Scheme D is correct and secure under the LRSW assumption.
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Proof. Given the proofs of the previous signature schemes, the correctness of this scheme is easy to see.
We now prove security of this signature scheme using (1) the fact that Signature Scheme A is secure

under the LRSW assumption; and (2) the fact that the LRSW assumption implies that the discrete
logarithm problem is hard.

Suppose that we have an adversary A who creates a valid forgery with probability ε(k). Then, in
the same way as in the proof for Scheme B:

Claim. One of the following is true:

1. With probability at least ε(k)/2, the adversary A creates a valid forgery on some block of messages
(m(0), . . . ,m(`)) such that for all of his previously queried (m(0)

i , . . . m
(`)
i ) we have gm(0) ∏`

j=1 Zm(j)

j 6=

gm
(0)
i

∏`
j=1 Z

m
(j)
i

j . (Let us call this type of forgery “Type 1,” and an adversary satisfying this prop-
erty, “Type-1 forger.”)

2. With probability at least ε(k)/2, A creates a valid forgery on some message (m(0), . . . ,m(`)) such

that for one of his previously queried (m(0)
i , . . . m

(`)
i ), gm(0) ∏`

j=1 Zm(j)

j = gm
(0)
i

∏`
j=1 Z

m
(j)
i

j . (Let
us call this type of forgery Type 2, and an adversary satisfying this property, “Type-2 forger.”)

The claim follows because by the union bound, the probability of successful forgery is upper bounded
by the sum of probabilities of the two types of forgeries, so if both of them are smaller than ε(k)/2,
then the total forgery probability will be smaller than ε(k).

Let us show that both of these types of forgery contradict the LRSW assumption.
Suppose we are given a Type-1 Forger A. Then let us show that Signature Scheme A is insecure.

Suppose that we are given the public key pk for Signature Scheme A. We are also allowed to query the
algorithm Signsk . Our goal is to create a forgery. To that end, we set up a public key pk ′ for Signature
Scheme D, and run A, as follows:

Key Generation. We are given pk = (q,G ,G, g , g, e, X, Y ), a public key for Signature Scheme A. Let
us choose zi ← Zq, and set Zi = gzi and Wi = Y zi . Let pk ′ = (q,G ,G, g , g, e,X, Y, {Zi}, {Wi}).

Signature Queries. Suppose that A issues the signature query (m(0)
i , . . . ,m`

i). We compute m′
i =

m
(0)
i +

∑`
j=1 m

(j)
i zj mod q, and query Signsk on input m′

i to obtain σ′i = (ai, bi, ci). For 1 ≤ j ≤ `,
let Aj = a

zj

i , Bj = b
zj

i . Output signature σi = (ai, {Aj}, bi, {Bj}, ci). Note that this signature
will be accepted by the verification algorithm:

1. All Aj are formed correctly, because e(ai, Zj) = e(ai, g)zj = e(g , a
zj

i ) = e(g , Aj).

2. bi is formed correctly because it was issued by Signsk , and so e(ai, Y ) = e(g , bi). Bj are
formed correctly, because bi is formed correctly, and so:

e(Aj , Y ) = e(azj

i , Y ) = e(ai, Y )zj = e(g , bi)zj = e(g , b
zj

i ) = e(g , Bj)
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3. ci is formed correctly, because:

e(X, ai) · e(X, bi)m
(0)
i ·

∏̀
j=1

e(X, Bj)m
(j)
i = e(X, ai) · e(X, bi)m

(0)
i ·

∏̀
j=1

e(X, b
zj

i )m
(`)
i (7)

= e(X, ai) · e(X, bi)m
(0)
i ·

∏̀
j=1

e(X, bi)zjm
(j)
i (8)

= e(X, ai)e(X, bi)m
(0)
i +

P`
j=1 zjm

(j)
i (9)

= e(X, ai)e(X, bi)m′
i (10)

= e(g , ci) (11)

where the first several steps follow from the bilinear property of the map e, while Step 11
follows from the verification equation for Signature A.

Note that the signature is distributed correctly: the Signer in Signature Scheme B only chooses
ai at random, and the rest of the values are computed deterministically from a and his secret key.
Since ai in Signature Scheme D is chosen the same way as in Signature Scheme A, it follows that
the resulting signature is distributed correctly.

Processing the Forgery. Suppose that σ = (a, {Aj}, b, {Bj}, c) is a valid Signature-D on (m(0), . . . ,m(`)).
If (m(0), . . . ,m(`)) were never queried before, then, because this is Type-1 forger, m′ = m(0) +∑`

j=1 m(j)zj is different from any previously queried m′
i. And so if we can compute a Signature-A

forgery on message m′, we are done. Let us show that σ = (a, b, c) is a valid Signature-A on m′.
It will satisfy the verification equations because:

• e(a, Y ) = e(g , b) by the verification equations of Signature Scheme D.

• The verification equations of Signature Scheme D, also give us e(a, Zj) = e(g , Aj) and
e(Aj , Y ) = e(g , Bj). Therefore,

e(g , Bj) = e(Aj , Y ) from verification equation
= e(g , Aj)y because Y = gy

= e(a, Zj)y from verification equation
= e(a, g)zjy because Z = gz

= e(a, gy)zj

= e(a, Y )zj

= e(g , b)zj from verification equation
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The last verification equation of Signature Scheme D, gives us e(X, a)·e(X, b)m(0) ·
∏`

j=1 e(X, Bj)m(j)
=

e(g , c). Putting everything together:

e(X, a) · e(X, b)m′
= e(X, a) · e(X, b)m(0)+

P
zjm(j)

= e(X, a) · e(X, b)m(0) ·
∏

e(X, b)zjm(j)

= e(X, a) · e(X, b)m(0) ·
∏

e(g , b)xzjm(j)

= e(X, a) · e(X, b)m(0) ·
∏

e(g , Bj)xm(j)
by above

= e(X, a) · e(X, b)m(0) ·
∏

e(X, Bj)m(j)

= e(g , c) by the last verification equation

Now let us address the case when we are given a Type-2 adversary. Let us use this adversary to
solve the discrete logarithm problem for the groups G and G. So we are given (q,G ,G, g , g, e, Z), and
our goal is to find z ∈ Zq such that Z = gz. To that end, do the following:

Key generation. Choose random x, y ∈ Zq; let X = gx and Y = gy. Choose a random j0 ∈ [1..`].
For 1 ≤ j ≤ `, let z̃j ← Zq. Let Zj0 = Z z̃j . For j 6= j0, let Zj = g z̃j . Finally, let Wj = Zy

j .
Let pk = (q,G ,G, g , g, e, X, Y, {Zj}, {Wj}). Note that pk is distributed correctly for Signature-D.
Invoke A on input pk .

Signature Queries. Suppose A requests a signature on (m(0)
i , . . . ,m

(`)
i ). Then compute the signature

σi as follows (as prescribed by the signing algorithm):

• Choose a random α← Zq.

• Let a = gα, Aj = Zα
j .

• Let b = ay, Bj = Ay
j .

• Let c = ax+xym(0) ∏
Axym(j)

j .

Note that the signature is distributed correctly: a is a random element of G , and Aj = Zα
j =

gzjα = azj , as prescribed by the signing algorithm of Signature-D; everything else is also computed
correctly as prescribed by the signing algorithm.

Processing the Forgery. Suppose that we are given the forged signature σ on message (m(0), . . . ,m(`)).
Recall that zj denotes the logg Zj , or, in other words, zj is the value such that gzj = Zj . Recall
that zj0 = zz̃j0 , while zj = z̃j for all j 6= j0. Recall that this is Type-2 forger, and so for some i,

gm(0) ∏`
j=1 Zm(j)

j = gm
(0)
i

∏`
j=1 Z

m
(j)
i

j . Taking the logarithm base g on both sides (we are allowed
to do that because g is a generator), we get:

m(0) +
∑̀
j=1

m(j)zj = m
(0)
i +

∑̀
j=1

m
(j)
i zj

m(0) +
∑
j 6=j0

m(j)z̃j + m(j0)z̃j0z = m
(0)
i +

∑
j 6=j0

m
(j)
i z̃j + m

(j0)
i z̃j0z

z =
(m(0) −m

(0)
i ) +

∑
tj=0(m

(j) −m
(j)
i )z̃j

(m(j0)
i −m(j0))z̃j

if m
(j0)
i −m(j0) 6= 0.
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Thus if m
(j0)
i −m(j0) 6= 0, we compute z. What is the probability of this event? Since (m(0), . . . ,m(`)) 6=

(m(0)
i , . . . ,m`

i), we know that for some j1, m(j1) 6= m
(j1)
i . Moreover, since m(0) +

∑`
j=1 m(j)zj =

m
(0)
i +

∑`
j=1 m

(j)
i zj , it has to be the case that m(0) +

∑
j 6=j1

m(j)zj 6= m
(0)
i +

∑
j 6=j1

m
(j)
i zj , and so

it follows that for some j2 6= j1, it is also the case that m(j2) 6= m
(j2)
i . Let j′ = max(j1, j2). Then

j′ 6= 0. Since j0 ∈ [1..`] was picked independently of the adversary’s view, with probability 1/`,
j0 = j′, and so we are done.

Since a forger for Scheme C is also a forger for Scheme D, we have:

Corollary 4.4. Signature Scheme C is correct and secure under the LRSW assumption.

The full description of the protocol and proof of security follow.

Common input. The public key pk = (q,G ,G, g , g, e, X, Y, {Zi}, {Wi}).

Prover’s input. The block of messages (m(0), . . . ,m(`)) and signature σ = (a, {Ai}, b, {Bi}, c).

Protocol. The prover does the following:

1. Compute a blinded version of his signature σ: Choose random r, r′ ∈ Zq. Form σ̃ =
(ã, {Ãi}, b̃, {B̃i}, c̃) as follows:

ã = ar, b̃ = br and c̃ = cr

Ãi = Ar
i and B̃i = Br

i for 1 ≤ i ≤ `

Further, blind c̃ to obtain a value ĉ that it is distributed independently of everything else:
ĉ = c̃r′

.
Send (ã, {Ãi}, b̃, {B̃i}, ĉ) to the verifier.

2. Let vx, vxy, V(xy,i), i = 1, . . . , `, and vs be as follows:

vx = e(X, ã) , vxy = e(X, b̃) , V(xy,i) = e(X, B̃i) , vs = e(g , ĉ)

The Prover and Verifier compute these values (locally) and then carry out the following
zero-knowledge proof protocol:

PK{(µ0, . . . , µ`, ρ) : (vs)ρ = vx(vxy)µ0
∏̀
i=1

(V(xy,i))
µi}

The Verifier accepts if it accepts the proof above and (a) {Ãi} were formed correctly:
e(ã, Zi) = e(g , Ãi); and (b) b̃ and {B̃i} were formed correctly: e(ã, Y ) = e(g , b̃) and
e(Ãi, Y ) = e(g , B̃i).

Theorem 4.5. The protocol above is a zero knowledge proof of knowledge of a signature σ on a block
of messages (m(0), . . . ,m(`)) under Signature Scheme D.

Proof. This proof follows the proof of Theorem 4.2. First, we prove the zero-knowledge property.
The values that the verifier receives from the prover in Step 1 are independent of the actual signature:

ã, {Ãi} and b̃, {B̃i} are just random values satisfying
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1. {Ãi} were formed correctly: e(ã, Zi) = e(g , Ãi).

2. b̃ and {B̃i} were formed correctly: e(ã, Y ) = e(g , b̃) and e(Ãi, Y ) = e(g , B̃i).

Finally, ĉ is random in G because ĉ = c̃r′
for a randomly chosen r′.

Therefore, consider the following simulator S: Choose random r and r′, and set ã = gr, Ãi = Zr
i ,

b̃ = Y r, B̃i = W r
i , ĉ = gr′

. Then (ã, {Ãi}, b̃, {B̃i}, ĉ) is distributed correctly, and so Step 1 is simulated
correctly. Then, since in Step 2, the Prover and Verifier execute a zero-knowledge proof, it follows that
there exists a simulator S′ for this step; just run S′. It is easy to see that S constructed this way is the
zero-knowledge simulator for this protocol.

Next, let us prove that this protocol is a proof of knowledge. That is to say, we must exhibit a
knowledge extractor algorithm E that, given access to a Prover such that the Verifier’s acceptance prob-
ability is non-negligible, outputs (m(0), . . . ,m(`), σ), such that σ is a valid signature on (m(0), . . . ,m(`)).
Suppose that we are given such a prover. The extractor proceeds as follows: first, it runs the extractor
for the proof of knowledge protocol of Step 2. As a result, it obtains the values m(0), . . . ,m(`) ∈ Zq and
r such that (vs)r = vx(vxy)m(0) ∏`

i=1(V(xy,i))m(i)}
We wish to show that (m(0), . . . ,m(`)) and σ = (ã, {Ãi}, b̃, {B̃i}, ĉr) satisfy the verification equation

for Scheme D: e(X, ã) · e(X, b̃)m(0) ·
∏`

i=1 e(X, B̃i)m(i)
= e(g , ĉr). We have:

(vs)r = vx(vxy)m(0)
∏̀
i=1

(V(xy,i))
m(i)

from the extractor

e(g , ĉ)r = e(X, ã)e(X, b̃)m(0)
∏̀
i=1

e(X, B̃i)m(i)

e(g , ĉr) = e(X, ã)e(X, b̃)m(0)
∏̀
i=1

e(X, B̃i)m(i)

4.4 An Efficient Group Signature Scheme Secure under the LSWR-Assumption

We now present the first efficient group signature (and identity escrow) scheme whose security relies
solely on assumptions related to the discrete logarithm problem (in the random oracle model). In
contrast, all previous efficient schemes rely on the strong RSA assumption plus the decisional Diffie-
Hellman assumption.

Recall that a group signatures scheme allows members of a group to sign anonymously on the
group’s behalf. In case of disputes, there exists a trusted third party called revocation manager who
will be able to open a signature and reveal the identity of the signer. A group signature scheme
consits of five procedures: (1) a key generation procedure that produces the public key of the group
(and also some keys for the group and revocation manager), (2) a join protocol for a member to get
admitted by the group manager, (3) a sign algorithm for an admitted member to sign a message, (4)
a verification algorithm to check group sigatures for validity with respect to the group’s public key,
and (5) an opening algorithm that allows the revocation manager to reveal the identity of a signer. A
group signature scheme is secure if only the revocation manager can reveal the identity of the signer
(anonymity) and if the revocation manager can do this for all valid signatures (traceability) [BMW03].

Our construction follows the approach introduced by Camenisch and Stadler [CS97]: A member
gets a certificate on a membership public key from the group manager when she joins the group. When
she wants to sign on behalf of the group, she encrypts her membership public key under the encryption
key of the party who will later be able to open group signatures (revocation manager) and then proves
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that she possesses a certificate on the encrypted membership public key and that she knows its secret
key. To make this proof a signature, one usually applies the Fiat-Shamir heuristic to this proof [FS87].

The public key of the group manager is the public key of our Scheme A, i.e., pkM = (q,G ,G, g , g, e, X, Y )
and his secret key is x = logg X and y = logg Y . The public key of the revocation manager is the public
key of the Cramer-Shoup encryption scheme [CS98] in the group G = 〈g〉, i.e., pkR = (h, y1, y2, y3), with
h ∈R G, y1 = gx1hx2 , y2 = gx3hx4 , and y3 = gx5 , where x1, . . . , x5 ∈R Zq are the revocation manager’s
secret key.1 Finally, let H() : {0, 1}∗ → Zq be a collision resistant hash function (modeled as a random
oracle in the proof of security).

The join protocol is as follows. The future group member chooses her membership secret key
k ∈R Zq, sets P = gk, sends P authentically to the group manager, and proves to the group manager
the knowledge of logg P . The group manager replies with a Scheme A signature (a, b, c) on the message
committed by P , i.e., computes a = gr, b = ay, and c = axP rxy, where r ∈R Zq (cf. Section 4.2). The
group manager stores P = e(P, g) together with P and the identity of the new group member.

To sign a message m on behalf of the group, the user computes P = gk = e(P, g) and a blinded version
of the certificate by choosing random r, r′ ∈ Zq and computing σ̃ := (ar′

, br′
, cr′r) = (ã, b̃, c̃r) = (ã, b̃, ĉ).

Next, she encrypts P under the revocation manager’s public key pkR, i.e., she chooses u ∈R Zq, computes
c1 = gu, c2 = hu, c3 = yu

1P, and c4 = yu
2y

uH(c1‖c2‖c3)
3 . Then she computes the following proof-signature

(cf. Section 2.1):

Σ = SPK{(µ, ρ, υ) : vρ
s = vxvµ

xy ∧ c1 = gυ ∧ c2 = hυ ∧ c3 = yυ
1gµ ∧ c4 = (y2y

H(c1‖c2‖c3)
3 )υ}(m) ,

where vx = e(X, ã), vxy = e(X, b̃), and vs = e(g , ĉ). A group signature consists of ((ã, b̃, ĉ), (c1, c2, c3, c4),Σ)
and is valid if Σ is a valid SPK as defined above and if e(ã, Y ) = e(g, b̃) holds.

To open such a group signature, the revocation managers needs to decrypt (c1, c2, c3, c4) to obtain
P which identifies the group member.

It is not hard to see that, in the random oracle model, this is a secure group signatures scheme
under the LRSW and the decisional Diffie-Hellman assumption in G. Let us give a proof sketch for
security under the Bellare et al. [BMW03] defininition. If an adversary can break anonymity, then one
can break the encryption scheme as (ã, b̃, ĉ) are random values and Σ is derived from an honest-verifier
zero-knowledge proof. If an adversary can produce a signature that cannot be opened, i.e., linked to a
registered member by the revocation manager, then one can use rewinding to extract a forged signature
and break the signature scheme (cf. analysis of the protocol to prove knowledge of a signatures in
Section 4.3). If used as an identity escrow scheme (i.e., if Σ is not a proof-signature but a real protocol
between a group member and a verifier), the security proof need not to assume random oracles.

The scheme just described can be extended in several ways. For instance, we could use Scheme
D instead of Scheme A and include the user’s identity id directly into her membership key P , e.g.,
P = gkZid

1 . That is, in the join protocol, the user would send P ′ = gk (and prove knowledge of logg P )
and the group manager would then compute P as to ensure that indeed id is contained in P . Then,
instead of encrypting P , one coulde use the Camenisch-Shoup encryption scheme [CS03] to directly
encrypt the identity as one of the discrete logarithms the knowledge of which is proven when proving
knowledge of a signature.

1The Cramer-Shoup cryptosystem is secure under the decisional Diffie-Hellman (DDH) assumption. Therefore, we
cannot use it over group G, since the existence of a bilinear map implies that the DDH problem is tractable. Thus, we
use the CS cryptosystem in group G instead.
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5 Constructions Based on the BBS Group Signature

Recently and independently of this work, Boneh, Boyen and Shacham [BBS04] presented a group
signature scheme secure under the strong Diffie-Hellman and the Linear assumptions. They showed
that, under these assumptions in groups with bilinear pairings, it is hard, on input (g1, g2 = gγ

1 )
to sample tuples of the form (A, x) where A = g

1/(γ+x)
1 (in other words, Aγ+x = g1), even given a

polynomial number of such samples. In their group signature scheme, such a tuple (A, x) is a user’s group
membership certificate, while (g1, g2) is the public key of the group. At the heart of their construction
are (1) a zero-knowledge proof of knowledge of such a tuple; and (2) a scheme for encrypting x. They
prove the resuling construction secure under the Bellare, Micciancio, Warinschi [BMW03] definition of
security.

Boneh, Boyen, and Shacham also modify their main group signature scheme to achieve exculpability,
as follows. The public key of the group is augmented by an additional value h; it is now (g1, g2, h).
The membership certificate of a group member is (A, x, y) such that Aγ+xhy = g1. This membership
certificate is created via a protocol in which the group manager only learns the value hy, but not the
value y. The unforgeability of membership certificates in this modified scheme can be derived from
that of their main scheme. They achieve exculpability because a proof of knowledge of a membership
certificate requires the knowledge of the value y.

Note that this latter signature scheme gives rise to the equivalent of our Signature Scheme A, but
under a different assumption. Namely, the membership certificate (A, x, y) is a signature on the value
y. Just as in our Scheme A, a group member obtains his group membership certificate in such a way
that the group manager learns the value hy but not the value y itself.

Not surprisingly, this signature scheme can be extended to the equivalent of our Schemes B and C
using techniques similar to the ones described above. As a result, we can obtain signature schemes with
efficient protocols based on the BBS signature. Let us give a sketch for the equivalent for Scheme C.
A public key would be (g1, g2, h0, h1, . . . , h`). A signature on a block of messages (m0, . . . ,m`) consists
of values (A, x) such that Aγ+x

∏`
i=0 hmi

i . In order to obtain a signature on a committed block of
messages, a user will have to supply the signer with the value Y =

∏`
i=0 hmi

i , and prove knowledge of
its representation in the bases (h0, . . . , h`). If m0 is chosen at random, then Y information-theoretically
hides (m1, . . . ,m`). The signer will then generate the signature. A proof of knowledge of a signature on
a committed value can be obtained by appropriate modifications to the BBS group signature protocol.
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