
Frankenstein: A Tale of Horror

and Logic Programming∗

Vishwath Mohan and Kevin W. Hamlen
The University of Texas at Dallas

Abstract

Frankenstein is a new, more stealthy malware propagation system
that evades feature-based detection through camouflage rather than mere
diversity. Rather than mutating purely randomly as it propagates, it
stitches together instruction sequences harvested from programs that have
already been classified as benign by local defenses. The resulting mutants
are each unique, yet fully composed of benign-looking code. This makes it
hard for feature-based malware detectors to find a signature that reliably
identifies all variants.

Frankenstein relies on concepts from constraint logic programming
to correctly and quickly identify potential instruction sequence orderings
that produce behavior semantically equivalent to the original malware.
This article presents the context for Frankenstein’s development, and
explains how logic programming became the tool of choice for crafting a
next-generation cyber weapon.

1 Introduction

In the last few years, the world has witnessed an emerging trend towards the use
of state-sponsored malware for espionage and cyber-warfare. The wide media
coverage of Stuxnet, DuQu, and Flame proves that well-designed malware can
efficiently infiltrate well-defended, and even isolated networks in order to covertly
monitor communications and financial transactions. Such cyber intrigues have
already captured the public imagination, inspiring a recent Bond movie, for
example [4].

Malware like Stuxnet requires a sophistication beyond that exhibited by the
everyday malware that harasses typical end-users, because its targets are specific
and strongly defended, and its missions are often longer and more complex.
End-user systems present a comparatively wide target—malware authors are
interested in infecting as many systems as they can, without much regard to

∗This research was supported in part by AFOSR active defense award FA9550-10-1-0088
and NSF CAREER award #1054629. Any opinions, findings, conclusions, or recommendations
expressed are those of the authors and not necessarily of the AFOSR or NSF.

1



where or whom. Such malware need only be strong enough to defeat relatively
weak defenses in order to infect many machines. In contrast, targeted attacks
like Stuxnet are designed to infiltrate specific networks that are well-defended
and often closed.

In addition, stealth is a high priority for malware. Everyday malware must
only remain undetected for long enough to propagate and carry out a simple
mission, such as deleting files. Targeted malware must often remain undetected
behind enemy lines for months or years at a time in order to carry out longer-term
missions. It is estimated that Flame operated in the wild for over 2 years before
it was discovered [3]. The need for such stealth raises an interesting challenge
for cyber-warriors:

How can cyber weapons like Stuxnet, which target closed, hostile environ-
ments, be crafted in such a way that even if one or a few instances are
discovered, the rest continue to operate and evade discovery?

Most modern malware approaches the stealth problem through polymor-
phism—it randomly mutates as it propagates in order to avoid making exact
copies. The most common form of polymorphism is packing, in which the
malware encrypts itself with a randomly chosen key each time it propagates.
Oligomorphic malware adopts a similar approach, applying a reversible function,
such as xor, to its payload with a randomly chosen one-time pad. Botnet infec-
tions achieve even higher diversity by periodically downloading completely new
versions of themselves from a command-and-control (C&C) center. The most
sophisticated form of polymorphism, called metamorphism, directly mutates
its own binary code on propagation—for example, by reordering or inserting
instructions, reallocating registers, or non-deterministically recompiling itself
from an intermediate representation.

Unsurprisingly, anti-malware products have developed an array of detection
technologies to identify malware despite these mutations. The obvious approach
is semantic detection, which classifies programs as malicious or benign based
on their behavior rather than their syntax, typically by simulating them in a
secure VM. However, semantic detection is ineffective against previously unseen
behaviors, such as zero-days; it cannot reliably detect time bombs, which unleash
their malicious behaviors only after days or weeks of waiting; and is impractical
to apply indiscriminately to the millions of software programs on large networks.

As a result, state-of-the-art malware detection still relies heavily upon syntax-
based heuristics—particularly signature-matching—as a first step toward identi-
fying suspicious programs worthy of greater scrutiny. Packed malware exhibits
statistical anomalies, such as high entropy, that can serve as red flags to defenders.
Oligomorphic obfuscations are reversible. C&C updating is potentially detectable
at the firewall level and impossible in closed networks. Metamorphic obfuscators
pose some of the greatest challenges, but are typically armed with only a limited
set of code transforms. Once this set is known, it can be automatically reversed
or normalized to detect all variants.

The ongoing efforts of attackers to create more stealthy obfuscations, and
of defenders to respond with more general detection strategies, has resulted in

2



Table 1: Examples of logical predicates

Predicate Semantic Definition Suitable Gadgets

noop — NoOp
move(L1,L2) L1 ← L2 All Loads/Stores
add(L1,L2,L3) L1 ← L2 + L3 Arithmetic
sub(L1,L2,L3) L1 ← L2 − L3 Arithmetic
jump(n, Why) Jump n blueprint steps DirectBranch,

if Why holds ConditionalBranch

an ever escalating cyber arms race. Recently we introduced a new malware
stealth technology—Frankenstein—that may be the next weapon of choice in
this race [1,2,5]. Frankenstein is a next-generation metamorphic obfuscator that
can re-implement itself fully automatically entirely from code fragments pilfered
from other programs. By composing its mutants entirely out of code deemed
benign by the host system, it is resilient against many feature-based detection
mechanisms. It uses no encryption, so is immune to entropy-based detection; its
mutants have no common byte features, thereby evading signature-matching; it
performs no runtime self-modification, so is not identifiable by write-then-execute
detection; and it does not rely on C&C communication, making it applicable to
closed network targets. Moreover, its use of harvested code imbues it with an
ever-expanding, potentially infinite corpus of available code transformations.

2 Bringing Frankenstein To Life

The idea of reusing a program’s instructions for unintended purposes is not
in itself new. Return-oriented Programming (ROP) attacks [8] find and abuse
gadgets—short code sequences that are part of a victim process’s code and that
end with a return instruction. The attacker exploits a stack vulnerability to
inject addresses of these gadgets onto the stack, causing the victim to execute
its own code in an attacker-specified order to cause damage. Recent work has
shown that large binaries typically contain Turing-complete gadget collections [6],
affording attackers arbitrary, malicious functionality.

Frankenstein generalizes this idea to generate obfuscated mutants. It mines
benign binaries for gadgets that are potentially useful for implementing its
own functionality. Semantic correctness of mutants is ensured by matching
gadget candidates to a semantic blueprint. The semantic blueprint describes
the malicious payload’s desired behavior as a sequence of abstract machine
states. Each abstract step is represented as a logical predicate consisting of an
atomic term and zero or more locations (i.e., registers or memory addresses).
For example, the move predicate encodes the semantic task of moving a value
from one location to another.

Table 1 shows some of the lowest-level (i.e., least abstract) predicates available

3



Table 2: Gadget types

Gadget Type (t) Input (`) Params (p) Semantic Definition

NoOp — — no state change
Branch off — EIP ← EIP + off
CondBranch off ./cmp, r1, r2 EIP ← EIP + off if r1 ./cmp r2
LoadReg r1, r2 — r1 ← r2
LoadConst r1, val — r1 ← val
LoadMemAddr r1, addr — r1 ← [addr ]
LoadMemReg r1, r2 s, d r1 ← [r2 ∗ s + d]
StoreMemAddr r1, addr — [addr ]← r1
StoreMemReg r1, r2 s, d [r2 ∗ s + d]← r1
Arithmetic r1, r2, r3 �aop r1 ← r2 �aop r3

to malware authors when expressing payloads as semantic blueprints. Franken-
stein can implement blueprints containing more abstract predicates by searching
for combinations of the primitive building blocks in the table. This turns the
mutation problem into a search problem: blueprint steps can be thought of as
breadcrumbs through a semantic maze. To generate a mutant, Frankenstein
searches for a path through the maze that visits all the breadcrumbs (i.e., ab-
stract states) and reaches the exit (i.e., implements the attack). Breadcrumbs
that are wider spaced increase mutant diversity, but also make the search more
difficult.

Logic programming is the natural paradigm in which to implement such a
semantic search. To create mutants, Frankenstein first constructs a database
of gadgets from randomly selected benign files on the host system. It does this
by extracting and running candidate instruction sequences from the binaries
through an abstract evaluator and measuring their effects on a symbolic machine
state. This state is unified against a set of gadget types [7] that Frankenstein
knows about. Table 2 lists some of the types and their meanings. Unification
allows Frankenstein to recognize instruction sequences as potential instantiations
of gadget types needed to implement the blueprint, as well as to find suitable
arrangements of the gadgets for the final payload.

The search for an adequate path through the maze frequently requires some
backtracking. For example, many gadgets have undesired side-effects that
clobber locations that are auxiliary to the gadget’s desired effect. To compensate,
Frankenstein must extend the predicates in the blueprint to include variables
representing clobber lists, as well as generated constraints that prevent the
parameters of predicates from interfering with each other.

At the end of the process, the selected gadget sequence is stamped out into
an executable binary file format, resulting in a completely unique instantiation
of the malware composed entirely from stolen code fragments.

4



3 Conclusion

Frankenstein is a new approach to malware obfuscation designed for extended,
autonomous stealth. Since its mutation relies on using existing code from benign
binaries, it effectively converts mutation into a search problem consisting of two
phases: gadget discovery and gadget arrangement. By formalizing these phases
as unification with backtracking search, Frankenstein’s core can be viewed as a
constraint logic program—one that can be used to hide malware in plain sight.

References

[1] J. Aron. Frankenstein virus creates malware by pilfering code. New Scientist,
August 2012.

[2] T. Cross. A thing of threads and patches. The Economist, August 2012.

[3] M. Hypponen. Why antivirus companies like mine failed to catch Flame and
Stuxnet. Wired, June 2012.

[4] J. A. Kaplan. James Bond film ‘Skyfall’ inspired by Stuxnet virus. Fox News,
November 2012.

[5] V. Mohan and K. W. Hamlen. Frankenstein: Stitching malware from be-
nign binaries. In Proceedings of the 6th USENIX Workshop on Offensive
Technologies (WOOT), August 2012.

[6] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented
programming: Systems, languages, and applications. ACM Transactions on
Information and System Security (TISSEC), 15(1), 2012.

[7] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening made
easy. In Proceedings of the USENIX Security Symposium, 2011.

[8] H. Shacham. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS), pages 552–
561, 2007.

5


