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Introduction
  The interfacing of measurement instrumentation to computers for the purpose of online data 
acquisition has now become standard practice in the modern laboratory for the purposes of 
performing signal processing and data analysis and storage, using a large number of digital 
computer-based numerical methods that are used to transform signals into more useful forms, detect 
and measure peaks, reduce noise, improve the resolution of overlapping peaks, compensate for 
instrumental artifacts, test hypotheses, optimize measurement strategies, diagnose measurement 
difficulties, and decompose complex signals into their component parts. Many of these techniques 
are based on laborious mathematical procedures that were not even practical before the advent of 
computerized instrumentation. But in recent decades, computer storage and digital processing have 
become literally millions of times cheaper and more capable, reducing the cost of raw data and 
making complex computer-based signal processing techniques more practical and necessary. It is 
important to appreciate the abilities, as well as the limitations, of these techniques. As Erik 
Brynjolfsson and Andrew McAfee wrote in The Second Machine Age (W. W. Norton, 2014): 
"...many types of raw data are getting dramatically cheaper, and as data get cheaper, the bottleneck 
increasingly is the ability to interpret and use data". 
  In the science curriculum, signal processing may be covered as part of a course on measurement 
instrumentation1, 2, electronics3, laboratory interfacing4, or statistical and mathematical methods5. The 
purpose of this essay is to give a practical introduction to some of the most widely used signal 
processing techniques and to give illustrations of their applications in scientific applications. Some 
of the examples come from my own field of research (analytical chemistry), but these techniques 
have been used in a wide range of application areas and my software has been cited in over 160 
papers, theses, and patents, covering fields from industrial, environmental, medical, engineering, 
earth science, space, military, financial, agriculture, and even music and linguistics. Data sent by 
readers from their own work has helped shape my writing and software. Much effort has gone into 
making this document concise and understandable; it has been highly praised by many readers.
  This essay covers only basic topics and is limited to mathematics through elementary calculus and 
simple matrix math. (If math is not your strong point, know that this essay contains more than twice 
as many figures as equations). It's true that math is essential, just as it is for cell phones, GPS, digital 
photography, and computer games, but you can get started using these things without understanding 
all the underlying math and programming details. Seeing it work makes it more likely that you'll 
want to understand how it works. The standard textbooks already cover the mathematics very well.
   At the present time, this work does not yet cover 2D and image processing, wavelet transforms, 
pattern recognition, or factor analysis. For these topics or for a more rigorous treatment of the 
underlying mathematics, refer to the literature on signal processing, statistics, and chemometrics 
(such as the ones listed in the references, pages 134-135). There's an alphabetical index on page 136.
  This tutorial makes extensive use of Matlab, a high-performance commercial numerical software platform 
and programming language that is widely used by scientists, researchers, and engineers, and Octave, a free 
Matlab alternative that runs all of the Matlab scripts and command-line functions in this document without 
change (see page 73). There are Windows, Mac, and Unix versions of Octave; the Windows version can be 
downloaded from Octave Forge. Installation of Octave is somewhat more laborious than installing a 
commercial package like Matlab; be sure to install all the Octave Forge “packages” that add essential 
functions. Octave is also slower than Matlab - about half as fast for many computations and about 5 times 
slower for 2D graphics; see TimeTrial.txt for a speed comparison. Most of the techniques are also available 
for spreadsheets such as Excel and OpenOffice Calc . Some are illustrated by an old freeware Macintosh 
signal-processing program called SPECTRUM (see page 70). 
  Paragraphs in gray at the end of each section in this essay describe the related capabilities of each of these 
programs, including my own signal-processing modules written for Matlab, Octave, Excel, or Calc that you 
can download for your own use. For descriptions and download links to the latest versions of my 
downloadable spreadsheets and Matlab/Octave scripts and functions, see http://tinyurl.com/cey8rwh. Pages 
70 to 111 of this document contain instructions for the operation of these software modules and many 
examples of their applications. Descriptions of my downloadable interactive signal processing tools (for 
Matlab only) are described on http://bit.ly/1r7oN7b. My Matlab scripts and functions do not require Matlab's 
Signal Processing Toolbox. My software has received extraordinarily positive feedback from users,
  This document and its associated software are undated quite regularly. If you are reading this on paper or 
off-line, there is almost certainly a newer version available already. For the latest online version, in printable 
and online formats, go to http://terpconnect.umd.edu/~toh/spectrum/. 
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Signal arithmetic
The most basic signal processing functions are those that involve simple signal arithmetic: point-by-
point addition, subtraction, multiplication, or division of two signals or of one signal and a constant. 
Despite their mathematical simplicity, these functions can be very useful. For example, in the left 
part of the figure below, the top curve is the optical spectrum of an extract of a sample of oil shale, a 
kind of rock that is a source of petroleum. 

 

A simple point-by-point subtraction of two optical absorption spectra allows the background (bottom curve  
on the left) to be subtracted from a complex sample (top curve on the left), resulting in a clearer picture of  

what is really in the sample (right).

This optical spectrum exhibits two bands, at about 515 nm and 550 nm, that are due to a class of 
molecular fossils of chlorophyll called porphyrins. (Porphyrins are used as geomarkers in oil 
exploration). These bands are superimposed on a background signal caused by the extracting 
solvents and by other compounds extracted from the shale. The bottom curve is the spectrum of an 
extract of a shale that does not contain porphyrins, showing only the background signal. Here, the 
independent variable (sometimes referred to as “x”) is wavelength and the dependent variable (“y”) 
might be light intensity or absorbance, depending on the type of spectroscopy.
  To obtain the spectrum of the shale extract without the background, the background (bottom curve) 
is simply subtracted from the sample spectrum (top curve). The difference is shown in the right in 
Window 2 (note the change in Y-axis scale). In this case the removal of the background is not 
perfect, because the background spectrum is measured on a separate shale sample. Even so, the two 
bands are now seen more clearly and it is easier to measure precisely the intensity of the peaks. 
  In this example and in the one below, I am making the assumption that the two signals in Window 
1 have the same x-axis values, in other words, that both spectra are digitized at the same set of 
wavelengths. Otherwise this subtraction operation would not be valid; the x-axis values must match 
up point for point. In practice, this is very often the case with data sets acquired within one 
experiment on one instrument, but the experimenter must take care if the instruments settings are 
changed or if data from two experiments or two instrument are combined. (Note: you can use the 
mathematical technique of interpolation to change the number of points or the x-axis intervals of 
signals; the results are only approximate but often close enough in practice. My multipurpose Matlab 
program iSignal, page 85, includes an interpolation function, activated by the I key.
  Sometimes you might like to know whether two signals have the same shape, for example in 
comparing the optical spectrum of an unknown to a stored reference spectrum. Most likely the 
concentrations of the unknown and reference, and thus the amplitudes of the spectra, will be 
different, and so a direct overlay or subtraction of the two spectra will not be useful. One simple 
possibility is to compute the point-by-point ratio of the two signals; if they have the same shape, the 
ratio will be a constant. For example, examine the figure at the top of the next page. The left part 
(Window 1) shows two superimposed spectra, one of which is much weaker than the other. But do 
they have the same shape? The ratio of the two spectra, shown in the right part (Window 2), 
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Do the two spectra on the left have the same shape? They certainly do not look the same, but that may  
simply be due to the fact that one is much weaker than the other. The ratio of the two spectra, shown in the  

right part (Window 2), is relatively constant from 300 to 440 nm, with a value of 10 +/- 0.2. This means that  
the shape of these two signals is very similar over this wavelength range.

is relatively constant from 300 to 440 nm, with a value of 10 +/- 0.2. This means that the shape of 
these two signals is the same, within about +/-2 %, over this wavelength range, and that the top 
curve is about 10 times more intense than the bottom one. Above 440 nm the ratio is not even 
approximately constant, because of random noise, which is the topic of the next section (page 6). A 
similar calculation is done in absorption spectroscopy, where the “absorbance” A is defined as the 
base-10 logarithm of the ratio of the incident intensity, Io, to the transmitted intensity, I, which 
compensates for the wavelength variation of the light source intensity and of the detector sensitivity.
Computational methods. Simple signal arithmetic operations such as these are easily done in any 
spreadsheet (e.g. Excel or the freely downloadable OpenOffice Calc), any general-purpose programming 
language, in a dedicated signal-processing program such as SPECTRUM (Page 70), or (most easily) in a 
vector-matrix programming language such as Matlab or Octave (Page 73).
Popular spreadsheet programs. Excel and Open Office Calc have built-in functions for all common math 
operations, and they support named variables, x,y plotting, text formatting, basic matrix math, etc. Cells can 
contain numerical values, text, mathematical expressions (formulas), or references to other cells. A vector of 
values such as an optical spectrum can be represented as a row or column of cells; a rectangular array of 
values, such as a set of spectra, can be represented as a rectangular block of cells. User-created names can be 
assigned to individual cells or to ranges of cells, then referred to in formulas by name, which makes the 
formulas easier to understand. Formulas can be easily copied across a range of cells, with the cell references 
changing or not as desired. Plots of various types can be created by menu selection. See 
http://www.youtube.com/watch?v=nTlkkbQWpVk for a nice video demonstration. 
  The latest versions of both Excel (Excel 2013) and OpenOffice Calc (4.0) can open and save spreadsheet 
file formats of the other (.xls and .ods, respectively). Simple spreadsheets in either format are compatible 
with the other program. However, there are small differences in the way that certain functions are interpreted,  
and for that reason I supply my spreadsheets in both .xls (for Excel) and in .ods (for Calc) formats. Basically, 
Calc 4.0 can do most everything Excel can do, but Calc is free to download and is more Windows-standard 
in terms of look-and-feel. (Not every science worker who needs a spreadsheet can afford to buy, or has 
access to a site license for, expensive Microsoft products). 
  If you are working on a tablet or smartphone, you could use the Excel mobile app, Numbers for iPad, or 
several other mobile spreadsheets. These can do basic tasks but do not have the advanced capabilities of the 
desktop computer versions like Excel or Calc. By saving their data in the "cloud" (e.g. iCloud, Dropbox, or 
OneDrive), these apps automatically sync changes in both directions between mobile devices and desktop 
computers, making them useful for field data entry on a portable device. 
 In Matlab and in Octave, the variables can be either scalar (single values), vector (like a row or a column in 
a spreadsheet), representing one entire signal, optical spectrum or chromatogram, or matrix (like a 
rectangular block of cells in a spreadsheet), representing a set of signals. For example, define two vectors by 
typing a=[1 2 5 2 1] and b=[4 3 2 1 0]. Then to subtract b from a you would just type a-b, 
which gives the result [-3 -1 3 1 1]. To multiply a times b point by point, you would type a.*b, 
which gives the result [4 6 10 2 0]. If you have an optical spectrum in the variable a, you can plot it 
just by typing plot(a). And if you also had a vector w of x-axis values (such as wavelengths), you can plot 
a vs w by typing plot(w,a). You can place multiple smaller plots in one figure window by placing 
subplot(m,n,p) before the plot command to plot in the pth section of a m-by-n grid of plots.
  Individual elements in a vector are referred to by index number; for example, w(10) is the 10th element in 
vector w. A colon indicates a range, like “to”, so w(10:20)is the vector of values of w from the 10th to the 
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20th entries. You can also find the index number of the entry closest to a given value in a vector by using my 
downloadable val2ind.m function; for example, w(val2ind(a,max(a))) returns the x value of the 
maximum of a, and w(val2ind(w,550):val2ind(w,560.5)is the vector of values of w between 
550 and 560.5, if w contains values within that range. (You can Copy and Paste any of these code examples 
into the Matlab or Octave command line and press Enter to execute it).
  A Matlab variable can also be a matrix, a set of vectors of the same length combined into a rectangular 
array. For example, intensity readings of 10 different optical spectra, each taken at the same set of 100 
wavelengths, could be combined into the 10 × 100 matrix S. So S(3,:) would be the third of those spectra 
and S(5,40) would be the intensity at the 40th wavelength of the 5th optical spectrum. The Matlab/Octave 
scripts plotting.m and plotting2.m show how to plot multiple signals using matrices and subplots. 
  The subtraction of two spectra a and b, if they have the same wavelengths, as in the figure on page 3, can 
be performed simply by writing a-b. To plot the difference, you would write plot(w,a-b). To plot the 
ratio of two spectra, as in the figure on page 4, you would write plot(w,a./b). So, "./" means divide 
point-by-point and ".*" means multiply point-by-point. The * by itself means matrix multiplication, which 
performs repeated multiplications without using loops. For example, if x is a vector, A=[1:1000]'*x; 
creates a matrix A in which each column is multiplied by the numbers 1, 2,...1000 respectively. It's shorter to 
write and faster to compute than using a loop: for n=1:1000;A(:,n)=n.*x;end;. Try it and see.
  Matlab and Octave don't force you to deal with vectors and matrices as collections of numbers; it “knows” 
when you are dealing with those and adjusts your calculations accordingly.
  Probably the most common errors you'll make in learning Matlab/Octave are (a) getting the rows and the  
columns switched and (b) punctuation errors (for help, type “help punct”). Here's a text file that gives 
examples of common vector and matrix operations and the kinds of error messages that you are likely to get.
  Both Matlab and Octave can be used to automate complex sequences of operations by saving them as 
scripts and functions (text files saved with a “.m” file name extension). Matlab and Octave are also 
considerably faster in computations and in graphing than spreadsheets. 
Getting data into Matlab/Octave. You can easily import your own data into Matlab or Octave by using the 
load command. Data can be imported from plain text files, CSV (comma separated values), several image 
and sound formats, and spreadsheets. Matlab has a convenient Import Wizard (click File > Import Data). It 
is also possible to import data from graphical line plots or printed graphs by using the built-in "ginput" 
function that obtains numerical data from the coordinates of mouse clicks (as in DataTheif or Figure 
Digitizer). Matlab R2013a or newer can even read the sensors on your iPhone or Android phone via Wi-Fi. 
To read the outputs of older analog instruments, use an analog-to-digital converter or a USB voltmeter.
Spreadsheet or Matlab/Octave? For signal processing, Matlab/Octave is faster and more powerful than 
spreadsheets, but spreadsheets have their advantages: they are easier for novices to learn and they offer very 
flexible presentation and user interface design. Spreadsheets are better for data entry and are easily deployed 
on portable devices (e.g. using iCloud Numbers or the Excel app). Spreadsheets are concrete and more low-
level, showing every single value explicitly in a cell. In contrast, Matlab/Octave is more high level and 
abstract, because a single variable or function can do so much. Also, user-defined functions can call other 
built-in or user-defined functions, which in turn can call other functions, and so on, allowing you to build up 
very complex high-level functions in layers. Fortunately, Matlab can easily read Excel .xls and .xlsx files and 
import the rows and columns of numbers and their labels into Matlab variables.
  The bottom line is that spreadsheets are easier at first, but in my experience the Matlab/Octave approach is 
more productive for many applications. This point is demonstrated by comparing both approaches to 
multilinear regression in multicomponent spectroscopy (page 51-52), and especially by the dramatic 
difference between the spreadsheet and Matlab/Octave approaches to finding and measuring peaks in signals 
(page 83), i.e. a 250 Kbyte spreadsheet vs a 7 Kbyte Matlab/Octave script that is 50 times faster (in Matlab).
  Both spreadsheets and Matlab/Octave programs have an advantage over commercial end-user programs and 
self-contained programs such as SPECTRUM (page 70); they can be inspected and modified by the user to 
customize the routines for specific needs. Simple changes are easy to make with little or no knowledge of 
programming. For example, it's very easy to change the labels, titles, colors, or line style of the graphs - in 
Matlab or Octave programs, search for "title(", "label(" or "plot(". My code often tells you where 
specific useful changes can be made by the user: just use the editor to run a search for the word "change".
Online calculations and plotting. One of my absolute favorites is Wolfram Alpha, a Web site and a 
smartphone app that is a remarkable computational tool and information source, including capabilities for 
mathematics, plotting data and functions, vector and matrix manipulations, statistics and data analysis, and 
many other topics. Statpages.org can perform a huge range of statistical calculations and tests. SageMath is a 
free open-source mathematics software system. There are several Web sites that specialize in plotting data, 
including Plotly, Grapher, and Plotter. All of these require a reliable Internet connection and they are useful 
when working on a mobile device or on a computer that does not have suitable math software installed.
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Signals and noise
Experimental measurements are never perfect, even with sophisticated modern instruments. Two 
main types or measurement errors are recognized: 

(a) systematic error, in which every measurement is consistently less than or greater than the 
correct value by a certain amount or relative percentage, and 

(b) random error, in which there are unpredictable variations in the measured signal from 
moment to moment or from measurement to measurement. 

  Systematic error can in principle be recognized and corrected, but random error is harder to 
eliminate. Random error is often called noise, by analogy to acoustic noise. Sources of noise in 
measurements might include such things as building vibrations, air currents, electric power 
fluctuations, stray radiation from nearby power lines or electrical apparatus, static electricity, 
interference from radio and TV transmissions, electrical storms, turbulence in the flow of gases or 
liquids, random thermal motion of electrons or molecules, background radiation from naturally 
occurring radio-active elements in the environment, “cosmic rays” from outer space (seriously), the 
basic quantum nature of matter and energy itself, and “digitization noise” (the rounding of numbers 
to a fixed number of digits; see page 122). Then of course there is the ever-present “human error”, 
which can be a major factor anytime people are involved in operating, adjusting, recording, 
calibrating, or controlling instruments and in preparing samples for measurement. 
  The term "signal" actually has two meanings: in the more general sense, it can mean the entire data 
recording, including the noise and other artifacts, as in the "raw signal" before processing is applied. 
But it it can also mean only the desirable or important part of the data, the true underlying signal 
that you seek to measure. A fundamental problem in signal measurement is distinguishing the true 
underlying signal from the noise. You might want to measure the average of the signal over a certain 
time period or the height of a peak or the area under a peak that occurs in the data. For example, in 
the absorption spectrum in the right-hand half of the figure on page 3, the "important" parts of the 
data are probably the absorption peaks located at 520 and 550 nm. The height or the position or area 
of either of those peaks might be considered the signal, depending on the application. In this 
example, the height of the largest peak is about 0.08 absorbance units. The noise would be the 
standard deviation of that peak height (or peak area, or whatever you are measuring) from spectrum 
to spectrum, assuming you had access to repeat measurements of the same spectrum. 
   But what if you had only one recording of that spectrum and no other data?  In that case, you'd be 
forced to estimate the noise in that single recording, based on the assumption that the visible short-
term fluctuations in the signal (the little random wiggles superimposed on the smooth signal) are 
noise and not part of the true underlying signal. In that case, those fluctuations amount to a standard 
deviation of about 0.001. The best way to measure the noise is to locate a section of the signal on the 
baseline where the signal is flat and to compute the standard deviation in that section. This is easy to 
do with a computer if the signal is digitized. The important thing is that you must know enough 
about the measurement and the data it generates to recognize the kind of signals that is is likely to 
generate, so you have some hope of knowing what is signal and what is noise.
   A quick but rough way to visually estimate the amplitude of noise is the peak-to-peak range, which 
is the difference between the highest and the lowest values in a region where the signal is flat. The 
ratio of peak-to-peak range of n=100 normally-distributed random numbers to its standard deviation 
is approximately 5, as can be proved by running this line of Matlab/Octave code several times: 
n=100;rn=randn(1,n);(max(rn)-min(rn))/std(rn). For example, the data on the right 
half of the figure on page 7 has a peak in the center with a height of about 1.0. The peak-to-peak 
noise on the baseline is also about 1.0, so the standard deviation of the noise is about 1/5th of that, or 
0.2. However, that ratio varies with the logarithm of the number of points n and is closer to 3 when 
n = 10 and to 9 when n = 100000. In contrast, the standard deviation becomes closer and closer to 
the the true value as n increases. It's better to compute the standard deviation if possible. 
  The quality of a signal is often expressed as the signal-to-noise ratio (SNR), which is the ratio of 
the true signal amplitude (e.g. the average amplitude or the peak height) to the standard deviation of 
the noise. Thus the signal-to-noise ratio of the optical spectrum on page 3 is about 0.08/0.001 = 80, 
and the signal on page 7 has a signal-to-noise ratio of 1.0/0.2 = 5. So the signal-to-noise ratio of the 
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signal on page 3 is better than the one on page 7. Measuring the SNR is much easier if the noise can 
be measured separately, in the absence of signal. The relationship between signal-to-noise ratio and 
the relative standard deviation of the signal amplitude depends on how the signal amplitude is 
measured, specifically how may data points can be averaged or otherwise used; the relative standard 
deviation often varies with the square root of the number of noisy data points averaged.
  Depending on the type of experiment, it may be possible to acquire readings of the noise alone, for 
example on a segment of the baseline before or after the occurrence of the signal. However, if the 
magnitude of the noise depends on the level of the signal, then the experimenter must try to produce 
a constant signal level to allow measurement of the noise on the signal. In some cases, where you 
can model the shape of the signal exactly by means of a mathematical function, the noise may be 
estimated by subtracting the model signal from the experimental signal, for example by looking at 
the residuals in least-squares curve fitting (see sections starting on pages 37 and 54). If practical, it's 
always better to determine the standard deviation of repeated measurements of the quantity that you 
want to measure, rather than trying to estimate the noise from a single recording of the data.

Window 1 (left) is a single measurement of a very noisy signal. There is actually a broad peak at the center 
of this signal, but it is not possible to measure its position, width, and height accurately because the signal-
to-noise ratio is very poor (less than 1). Window 2 (right) is the average of 9 repeated measurements of this 
signal, clearly showing the reduction in the amplitude of the noise. The expected improvement in signal-to-
noise ratio is 3 (the square root of 9). In some cases you may be able to average hundreds of measurements, 
resulting in more substantial improvement. 
  One thing that really distinguishes signal from noise is that random noise is not the same from one 
measurement of the signal to the next, whereas the genuine signal is at least partially reproducible. 
You can make use of this fact by measuring the signal over and over again, as fast as is practical, and 
computing the average of all the measurements point-by-point. This is called ensemble averaging, 
and it is one of the most powerful methods for improving signals, when it can be applied. For this to 
work properly, the noise must be random and the signal must occur at the same time in each repeat. 
Examples are shown in the figure above and on pages 79 and 117. The signal-to-noise ratio usually 
improves with the square root of the number of independent signals added, if the noise is truly 
random and uncorrelated and if the repeats are synchronized. (Digitization noise can also be reduced 
this way, but only if some random noise is already present in the signal or is artificially added to it; 
see Appendix I, page 122, for a case where it is actually beneficial to add noise to a signal!)
  Sometimes signal and noise can be partly distinguished on the basis of frequency   components 
(page 28), that is, how rapidly it changes with time: for example, the signal may contain mostly low-
frequency components and most of the noise may be located at higher frequencies. This is the basis 
of filtering and smoothing (page 11). In the figures above, the peaks contain mostly low-frequency 
components, whereas the noise is distributed over a much wider frequency range. The frequency 
characteristic of noise is described by its frequency   spectrum (page 28, not to be confused with an 
optical   spectrum). It is often described in terms of color. White     noise has equal power at all frequen­
cies; it derives its name from white light, which has equal brightness at all wavelengths in the visible 
region. The noise in the example above, and in the upper left quadrant of the figure on page 8, is 
white. In the acoustical domain, white noise sounds like a “hiss”. This is a common type of noise in 
measurement science; for example, digitization noise, photon noise and Johnson noise are white.     
Another common type of noise has more power at low frequencies than at high frequencies. This is 
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often called “pink   noise”. In the acoustical domain, it sounds more like a “roar”. A sub-species of 
that type of noise is “1/f   noise”, where the noise power in inversely proportional to frequency, shown 
in the upper right quadrant of the figure on the left, next page. A more extreme type is “Brownian” 
or “random walk”, a kind of aimless wandering commonly seen in nature (See Appendix O). Low 
frequency noises are more troublesome than white noise, because a given standard deviation of pink 
noise has a greater effect on the accuracy of most measurements than the same standard deviation 
of white noise (as demonstrated by the Matlab/ Octave function noise  test.m mentioned on page 10). 
Moreover, the application of smoothing (page 11) and low-pass filter  i  ng to reduce noise is more 
effective for white noise than for pink noise. (You can download a Matlab/Octave function that 
demonstrates the appearance of white, pink, proportional, and square-root noise, and their effect on 
signal measurement, from noise  test.m). When low-frequency noise is present, it is sometimes 
beneficial to apply modulation techniques, such as o  ptical chopping or wavelength modulation, to 
convert a direct-current (DC) signal into an alternating current (AC) signal, thereby increasing the 
frequency of the signal to a frequency region where the noise is lower. In such cases it is common to 
use a lock-in amplifier, or the digital equivalent thereof, to measure the amplitude of the signal. 
  Conversely, noise that has more power at high frequencies would be called “blue” noise. This type 
of noise is less commonly encountered in experimental work, but it can occur in processed signals 

that have been subjected to differentiation (page 22) or that 
have been deconvoluted from some blurring process (page 
32). Blue noise is easier to reduce by smoothing, and it has 
less effect on least-squares fits than the same standard 
deviation of white noise (page 121).
  Noise can also be characterized by the way it varies with 
the signal amplitude. It may be a constant “background” 
noise that is independent of the signal amplitude. Or the 
noise may increase with signal amplitude; this is often 
observed in mass spectroscopy and in the frequency spectra 
of signals. One way to observe this is to select a segment of 
signal over which the signal amplitude varies widely, fit the 
signal to a polynomial or multiple peak model (pages 37, 
54), and observe how the residuals vary with the amplitude.

  Often, there is a mix of noises with different behaviors. For example, in optical spectroscopy, three 
fundamental types of noise are contribute to the total noise, based on their origin and on how they 
vary with light intensity: photon noise, detector noise, and flicker (fluctuation) noise. Photon   noise is 
white and is proportional to the square root of light intensity (illustrated in the lower right quadrant 
of the figure above), and therefore the SNR is proportional to the square root of light intensity. 
Detector noise is independent of the light intensity and therefore the detector SNR is directly 
proportional to the light intensity. Flicker   noise is caused by light source instability, vibration, 
sample cell positioning errors, sample turbulence, light scattering by suspended particles, dust, 
bubbles, etc; it is directly proportional to the light intensity (lower left quadrant of the figure above). 
Flicker noise is usually pink rather than white. In practice, the total noise observed is likely to exhibit 
a combination of amplitude dependence, as well as a mixture of white and pink noises. 
  Only in a few special cases is it possible to eliminate noise completely, so usually you must be 
satisfied by increasing the signal-to-noise ratio as much as possible. The key in any experimental 
system is to understand the possible sources of noise, break down the system into its parts and 
measure the noise generated by each part separately, then seek to reduce or compensate for as much 
of each noise source as possible. For example, in optical spectroscopy, source flicker noise can be 
reduced by feedback stabilization, choosing a better light source, using an internal standard, or using 
specialized instrument designs such as the double-beam, dual wavelength, derivative, and 
wavelength modulation designs that are employed in optical spectroscopy (See appendix P). The 
effect of photon noise and detector noise can be reduced by increasing the light intensity at the 
detector, and electronics noise can sometimes be reduced by cooling or upgrading the detector and/or 
electronics. Only in a few cases it is possible to predict the noise from first principles (e.g. A, B, C.)
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  Another property of noise is its amplitude probability distribution, the function that describes the 
probability of a random variable falling within a certain range of values. In physical measurements, 
the most common distribution is the “Gaussian   curve” (also called a “bell” or “haystack” curve) and 
is described by y = e^(-(x-m)^2/(2 s^2))/(sqrt(2 p) s), where m is the average value and s is the 
standard deviation. In this type of distribution, the most common noise errors are small and the 
errors become less common the greater their deviation. This is such a commonly-encountered type of 
distribution that it is called a “normal” distribution.
  Why is this “normal” distribution so common? The noise observed in physical measurements is 
often the sum total of many unobserved random events, each of which has some unknown 
probability distribution related to, for example, the kinetic properties of gases or liquids or to the 
quantum mechanical description of fundamental particles such as photons or electrons. But when 
many such events combine to form the overall variability of an observed quantity, the resulting 
probability distribution is very often normal. This common observation is called the Central Limit 

Theorem, and it is easily demonstrated by the 
following simulation. 
  In the figure on the left, we start with a set of 
100,000 uniformly distributed random numbers 
that have an equal chance of having any value 
between certain limits - between 0 and +1 in 
this case (like the "rand" function in 
spreadsheets and Matlab/Octave). The graph in 
the upper left of the figure shows the 
probability distribution, called a “histogram”, 
of that set of numbers, which in this case is 
flat. Next, we combine two sets of such 
independent, uniformly-distributed numbers 
(subtracting them so that the average is 

centered at zero). The result (shown in the graph in the upper right in the figure) has a triangular 
distribution between -1 and +1, with the highest point at zero, because there are many ways for the 
difference between two random numbers to be small, but only one way for the difference to be 1 or 
to -1 (that happens only if one number is exactly zero and the other is exactly 1). 
  Next, we combine four such sets of random numbers (lower left); the resulting distribution now has 
a total range of -2 to +2, but it is even less likely that the result be near 2 or -2 and many more ways 
for the result to be small, so the distribution is narrower and more rounded and is already starting to 
be visually close to a Gaussian distribution (shown for reference in the lower right). If we combine 
more and more independent uniform random variables, the probability distribution becomes closer to 
Gaussian. See CentralLimitDemo.m on http://tinyurl.com/cey8rwh.
  Remarkably, the distributions of the individual sets of numbers in this simulation hardly matter at 
all. You could modify the individual distributions in this simulation by changing the “rand” function 
in CentralLimitDemo.m to sqrt(rand), sin(rand), rand^2, or log(rand), etc, to obtain other radically 
non-normal individual distributions. It seems that no matter what the distribution of the original 
random variable might be, by the time you combine even as few as four of them, the resulting 
distribution is already visually close to normal. Real world laboratory observations may be the result  
of millions of individual microscopic events, so whatever the probability distributions of the 
individual events, the combined macroscopic observations almost always approach a normal 
distribution nearly perfectly. It is on this common observance of normal distributions that the usual 
statistical procedures are based; the mean, standard deviation, least-squares fits, confidence limits, 
etc, are all based on the assumption of a normal Gaussian distribution. 
  It's important to understand that the three characteristics of noise just discussed in the paragraphs 
above - frequency distribution, signal dependence, and amplitude distribution - are mutually 
independent; a noise may in principle have any combination of those properties.
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SPECTRUM (page 70) includes functions for measuring signals and noise, plus a signal generator for 
creating artificial signals with Gaussian and Lorentzian bands, sine waves, and normal random noise. 
  Spreadsheet programs, such as Excel or Open Office   Calc, have built-in functions that can be used for 
calculating, measuring and plotting signals and noise. For example, the cell formula for one point on a 
Gaussian peak is amplitude*EXP(-1*((x-position)/(0.60056120439323*width))^2), 
where 'amplitude' is the maximum peak height, 'position' is the location of the maximum on the x-axis, 'width' 
is the full width and half-maximum (FWHM) of the peak, and 'x' is the value of the independent variable 
x at that point. The cell formula for a Lorentzian peak is amplitude/(1+((x-position)/
(0.5*width))^2). Useful built-in functions include AVERAGE, MAX, MIN, ABS, STDEV, RAND, 
and QUARTILE. Some spreadsheets have only a uniformly-distributed random number function (rand) and 
not a normally-distributed random number function (randn), but you can create an approximately normal 
distribution by combining several uniformly-distributed RAND functions. For example, the expression 
1.73*(RAND()-RAND()+RAND()-RAND()) creates approximately normal random numbers with a mean of 
zero, a standard deviation very close to 1, but with a numerical range limited to ±4. (The alternating + and – 
signs simply insures that the result averages to zero, and the empirical factor of 1.73 makes the average 
standard deviation equal to 1.00, as is the case for the normally-distributed RANDN function). The 
spreadsheets RandomNumbers.xls/.ods and the Matlab/Octave script RANDtoRANDN.m demonstrate how 
this works. The same technique is used in the spreadsheet SimulatedSignal6Gaussian.xlsx, which computes 
and plots a simulated signal consisting of up to 6 overlapping Gaussian bands plus random white noise. 
  Matlab and Octave have built-in functions that are used for measuring and plotting signals and noise, such 
as plot, mean, max, min, std, log, log10, hist, rand, and randn. Just type “help” and the function name at the 
command prompt, e.g. “help mean”. Most of these Matlab and Octave functions apply to vectors and 
matrices as well as scalar variables. You can subtract a scalar number from a vector (for example, v = v-
min(v) sets the lowest value of vector v to zero). If you have a set of signals in the rows of a matrix S, 
where each column represents the value of each signal at the same value of the independent variable (for 
example, time), you can compute the ensemble average of all the columns of S just by typing “mean(S)”. 
  In the Matlab/Octave statements [N,X]=hist(randn(size(1:100)));peakfit([X;N]); the "randn" 
function generates 100 normally-distributed random numbers, then the "peakfit" function (page 90) graphs 
the histogram (probability distribution) as blue dots and compares that distribution to a Gaussian (the red 
line). Change the 100 to 1000 or a higher number to see how much closer to Gaussian the distribution 
becomes. The "randn" function is useful in signal processing for predicting the uncertainty of measurements 
in the presence of random noise, for example by using the Monte Carlo or the bootstrap methods (page 40). 
  You can also create user-defined   functions   in Matlab or Octave to automate commonly-used algorithms. For 
an explanation and a simple worked example, type “help function” at the command prompt. I have created 
many Matlab/Octave functions related to signal processing which are listed on http://tinyurl.com/cey8rwh: 
Once you have downloaded those functions into a folder in the Matlab  /  Octave   path, you can use them just 
like any other built-in function. For example, you can get help for any function by typing “help <name>”. 
You can plot a simulated noisy peak Gaussian such as that on page 7: 
x=[1:256];y=gaussian(x,128,64)+0.2*whitenoise(x);plotit(x,y)

The script SignalGenerator.m calls several of these downloadable functions to create and plot a realistic 
computer-generated signal with multiple peaks on a variable baseline plus variable random noise; you might 
try to modify the variables in the indicated places to make it look like your type of data. 
  noise  test.m is a self-contained Matlab/Octave function that demonstrates different noise types and their 
effects. It creates a set of Gaussian peaks with different types of added noise: constant white noise, constant 
pink (1/f) noise, proportional white noise, and square-root white noise. It then fits a Gaussian to each noisy 
data set and computes the average and the standard deviation of repeated measurements of best-fit peak 
height, position, width, and area for each noise type.
  iSignal (page 85) can plot signals with pan and zoom controls, measure signal, noise amplitudes, and noise 
frequency distributions in selected regions of the signal, compute the signal-to-noise ratio of peaks, perform 
variable smoothing, differentiation, interpolation, peak sharpening, and measurement of the positions, 
heights, widths, and areas or noisy peaks. It's operated by simple keypresses. (Press K for a list)
  iPeak (page 78) is an interactive peak detector that has an ensemble averaging function (Shift-E) capable of 
computing the average pattern of a repeating waveform. See page 79 and 117 for details.
For a complete list of my downloadable Matlab and Octave functions, demonstration scripts, and 
spreadsheets, see http://tinyurl.com/cey8rwh. None of these require Matlab's Signal Processing Toolbox.
  Note: you can download my complete site archive, including this essay and all related functions, scripts, 
example data, instructions, spreadsheet templates, etc., as one ZIP file (about 110 Mbytes).

10

https://terpconnect.umd.edu/~toh/spectrum/SPECTRUM.zip
http://terpconnect.umd.edu/~toh/spectrum/functions.html
http://iPeak.m/
https://terpconnect.umd.edu/~toh/spectrum/iSignal.html
http://terpconnect.umd.edu/~toh/spectrum/noisetest.m
http://terpconnect.umd.edu/~toh/noisetest.m
https://terpconnect.umd.edu/~toh/spectrum/SignalGenerator.m
http://mindhive.mit.edu/book/export/html/78
http://mindhive.mit.edu/book/export/html/78
http://mindhive.mit.edu/book/export/html/78
http://mindhive.mit.edu/book/export/html/78
http://terpconnect.umd.edu/~toh/spectrum/functions.html
http://www.ugrad.cs.ubc.ca/~cs302/MatlabGuide/node11.html
http://www.ugrad.cs.ubc.ca/~cs302/MatlabGuide/node11.html
https://terpconnect.umd.edu/~toh/spectrum/RANDNGaussianFit1000.png
https://terpconnect.umd.edu/~toh/spectrum/RANDNGaussianFit.png
https://terpconnect.umd.edu/~toh/spectrum/SimulatedSignal6Gaussian.xlsx
https://en.wikipedia.org/wiki/Full_width_at_half_maximum
http://en.wikipedia.org/wiki/OpenOffice.org_Calc
http://en.wikipedia.org/wiki/OpenOffice.org_Calc
http://www.microsoftstore.com/store/msstore/pd/Excel-Home-and-Student-2010/productID.216446900/vip.true
http://en.wikipedia.org/wiki/Cauchy_distribution
http://en.wikipedia.org/wiki/Gaussian_function
http://www.wam.umd.edu/~toh/spectrum/SPECTRUM.html


Smoothing
  In many experiments in physical science, the true signal amplitudes (the dependent variable or “y-
axis” values) change rather smoothly as a function of the independent (“x-axis”) values, whereas 
many kinds of noise are seen as rapid, random changes in amplitude from point to point within the 
signal. In the latter situation it is common practice to attempt to reduce the noise by a process called 
smoothing. In smoothing, the data points of a signal are modified so that individual points that are 
higher than the immediately adjacent points (presumably because of noise) are reduced, and points 
that are lower than the adjacent points are increased. This naturally leads to a smoother signal (and a 
slower step response to signal changes). As long as the true underlying signal is actually smooth, 
then the true signal will not be much distorted by smoothing, but the noise will be reduced. 
Smoothing algorithms. Most smoothing algorithms are based on the "shift and multiply" technique, 
in which a group of adjacent points in the original data are multiplied point-by-point by a set of 
numbers (coefficients) that defines the smooth shape, the products are added up to become one point 
of smoothed data, then the set of coefficients is shifted one point down the original data and the 
process is repeated. The simplest smoothing algorithm is the rectangular or unweighted sliding-
average smooth; it simply replaces each point in the signal with the average of m adjacent points, 
where m is a positive integer called the smooth width. For example, for a 3-point smooth (m=3):

  The triangular smooth is like the rectangular smooth, above, except that it implements a weighted 
smoothing function. For a 5-point smooth (m=5): 

 
 for j = 3 to n-2, and similarly for other smooth widths. In both of these cases, the denominator is the 
sum of the coefficients in the numerator, which results in a “unit-gain” smooth that has no effect on 
straight line regions the signal and which preserves the area under peaks (see page 35). 

  It is often useful to apply a smoothing operation more than once, that is, to smooth an already 
smoothed signal, in order to build longer and more complicated smooths. For example, the 5-point 
triangular smooth above is equivalent to two passes of a 3-point rectangular smooth. Three passes of 
a 3-point rectangular smooth result in a 7-point "pseudo-Gaussian" or haystack smooth, for which 
the coefficients are in the ratio 1:3:6:7:6:3:1. The general rule is that p passes of a m-width smooth 
results in a combined smooth width of p*m-p+1. For example, 3 passes of a 17-point smooth results 
in a 49-point smooth. These multi-pass smooths are more effective at reducing high-frequency noise 
in the signal than a single rectangular smooth of the same width but exhibit slower step response.

  In all of these smooths, the width of the smooth m is usually chosen to be a odd integer, so that the 
smooth coefficients are symmetrically balanced around the central point. This is important because it 
preserves the x-axis position the features on the signal, which is especially critical in spectroscopic 
and chromatographic applications because the peak positions are important measurement objectives. 

I am assuming here that the x-axis intervals of the signal is uniform, that is, that the difference 
between the x-axis values of adjacent points is the same throughout the signal. This is also assumed 
in some (but not all) of the other signal processing techniques described in this essay, and it is a very 
common (but not necessary) characteristic of signals that are acquired by computerized equipment. 
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  The Savitzky-Golay smooth is based on the least-squares fitting of polynomials to segments of the 
data. Compared to the sliding-average smooths, the Savitzky-Golay smooth is less effective at 
reducing noise, but more effective at retaining the shape of the original signal. The algorithm is 
more complex and the computational times are greater than the smooth types discussed above, but 
with modern computers the difference is usually not significant (see page 110). It is capable of 
differentiation as well as smoothing. Code in various languages is widely available online. 

The shape of a smoothing algorithm can be determined by applying that smooth to a delta function, a 
signal consisting of all zeros except for one point, as demonstrated by the script DeltaTest.m.

Noise reduction. Smoothing can reduce the apparent noise in a signal. If the noise is “white” (that 
is, evenly distributed over all frequencies) and its standard deviation is s, then the standard deviation 
of the noise remaining in the signal after one pass of a triangular smooth will be approximately 
s*0.8/sqrt(m), where m is the smooth width. Smoothing operations can be applied more than once: 
that is, a previously smoothed signal can be smoothed again. In some cases this can be useful if there 
is a great deal of high-frequency noise in the signal. However, the noise reduction for white noise is 
less less in each successive smooth; three passes of a rectangular smooth reduces white noise by a 
factor of s*0.7/sqrt(m), a slight improvement over two passes. 

Edge effects and the lost points problem. Note in the equations above that the 3-point rectangular 
smooth is defined only for j = 2 to n-1. There is not enough data in the signal to define a complete 3-
point smooth for the first point in the signal (j = 1) or for the last point (j = n) , because there are no 
data points before the first point or after the last point. Similarly, a 5-point smooth is defined only for 
j = 3 to n-2, and therefore a smooth can not be calculated for the first two points or for the last two 
points. In general, for an m-width smooth, there will be (m-1)/2 points at the beginning of the signal 
and (m-1)/2 points at the end of the signal for which a complete m-width smooth can not be 
calculated like the other points. What to do? There are two ways to go. One is to accept the loss of 
points and trim off those points or replace them with zeros in the smooth signal. The other way is to 
use progressively smaller smooths at the ends of the signal, for example to use 2, 3, 5, 7... point 
smooths for signal points 1, 2, 3,and 4.., and for points n, n-1, n-2, n-3.., respectively. The later may 
be preferable if the edges of the signal contain critical information, but it increases execution time. 
Examples of smoothing. A simple example of smoothing is shown in the figure below. The left half 
of this signal is a noisy peak, with constant white noise. The right half is the same peak after 
undergoing a triangular smoothing algorithm. The noise is greatly reduced while the peak itself is 
hardly changed. Smoothing increases the visual signal-to-noise ratio. The larger the smooth width, 
the greater the noise reduction, but also the greater the signal distortion by the smoothing operation.
The left half of this signal is a noisy peak. The right half is the same  
peak after undergoing a smoothing algorithm. The noise is reduced 
while the peak itself is hardly changed, resulting in a nicer looking  
signal and making it easier to estimate the peak position, height, and  
width directly by graphical or visual inspection (but it doesn't improve  
measurements of peak parameters made by least-squares curve-fitting.

  The optimum choice of smooth width depends upon the width 
and shape of the signal and the digitization interval. For peak-type 
signals, the critical factor is the smoothing ratio, the ratio between 
the smooth width m and the number of points in the half-width of 
the peak. In general, smoothing improves the signal-to-noise ratio but causes a reduction in 
amplitude and in increase in the bandwidth of the peak. Click here for an animation showing the 
effect of increased smoothing on peak height, width, and signal-to noise ratio.  
  The figures at the top of the next page show examples of the effect of three different smooth widths 
on noisy Gaussian shaped peaks. In the figure on the left, below, the peak has a (true) height of 2.0 
and there are 80 points in the half-width of the peak. The red line is the original unsmoothed peak. 
The three superimposed green lines are the results of smoothing this peak with a triangular smooth 
of width (from top to bottom) 7, 25, and 51 points. The peak width is 80 points, so the smooth ratios 
are 7/80 = 0.09, 25/80 = 0.31, and 51/80 = 0.64, respectively. 
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  As the smooth width increases, the noise is progressively reduced but the peak height is reduced 
and the peak width is increased. In the figure on the right, the original peak (in red) has a true height 
of 1.0 and a half-width of 33 points. (It is also less noisy than the example on the left.) The three 
superimposed green lines are the results of the same three triangular smooths of width (from top to 
bottom) 7, 25, and 51 points. But because the peak width in this case is only 33 points, the smooth 
ratios of these three smooths are larger: 0.21, 0.76, and 1.55, respectively. You can see that the peak 
distortion effect (reduction of peak height and increase in peak width) is greater for the narrower 
peak because the smooth ratios are higher. The total area under the peak remains unchanged.
  It should be clear that smoothing can never completely eliminate noise, because most noise is 
spread out over a wide range of frequencies, and smoothing simply reduces the noise in part of its 
frequency range. Only for very specific types of noise (e.g. discrete frequency noise or single-point 
spikes) is there hope of anything close to complete noise elimination (see page 15). 

Limits of smoothing. The problem with smoothing is that it is often less beneficial than you might 
think. It's important to point out that smoothing results such as illustrated in the figure above may be 
deceptively impressive because they employ a single sample of a noisy signal that is smoothed to 
different degrees. This causes the viewer to underestimate the contribution of low-frequency noise 
remaining in the signal, which is hard to estimate visually because there are so few low-frequency 
cycles in the signal record. This problem can visualized by recording a number of independent 
samples of a noisy signal, as illustrated in the two figures below. These figures show ten super-
imposed plots with the same underlying peak but with independent white noise samples, each in a 
different color, the unsmoothed one on the left and smoothed one on the right. Inspection of the 
smoothed signals on the right reveals the variation in peak position, height, and width between the 
ten samples caused by the low frequency noise remaining in the smoothed signals. Just because a 
signal looks smooth does not mean there is no noise. Low-frequency noise remaining in the signals 
after smoothing will still interfere with precise measurement of peak position, height, and width. 

x=1:1000;        x=1:1000;
for n=1:10,                                        for n=1:10,;
  y(n,:)=2.*gaussian(x,500,150)+whitenoise(x);       y(n,:)=2.*gaussian(x,500,150)+whitenoise(x);
end                                                  y(n,:)=fastsmooth(y(n,:),50,3);
plot(x,y)                                          end 
                                                   plot(x,y)

The generating scripts below each figure require functions downloaded from http://tinyurl.com/cey8rwh. 
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The figure on the right illustrates another aspect of 
smoothing. It consists of two Gaussian peaks, one 
located at x=50 and the second at x=150. Both peaks 
have a peak height of 1.0, a peak half-width of 10, and 
with normally-distributed random white noise with a 
standard deviation of 0.1 added to the entire signal. The 
x-axis sampling interval, however, is different for the  
two peaks; it's 0.1 for the first peaks and 1.0 for the 
second peak. This means that the first peak is character­
ized by ten times more points that the second peak. It 
may look like the first peak is noisier than the second, 
but that's just an illusion; the signal-to-noise ratio for 
both peaks is 10. The second peak looks less noisy only because there are fewer noise samples there 
and people tend to underestimate the deviation of small samples. When this signal is smoothed, the 
second peak is much more likely to be distorted by the smooth (it becomes shorter and wider) than 
the first peak. The first peak can tolerate a much wider smooth width, resulting in a greater degree of 
noise reduction. More data are almost always better. Similarly, if both peaks are measured by least 
squares methods (pages 37-69), the results on the first peak will be about 3 times more accurate than 
the second peak, because there are 10 times more data points in that peak, and the measurement 
precision improves roughly with the square root of the number of data points if the noise is white. 
(Download data file “udx” in txt format or in Matlab mat format from http://tinyurl.com/cey8rwh).

Optimization of smoothing. Which is the best smooth ratio? It depends on the purpose of the peak 
measurement. If the objective is to measure the true peak height and width, then smooth ratios below 
0.2 should be used. (In the example on the left above, the original peak (red line) has a peak height 
greater than the true value 2.0 because of the noise, whereas the smoothed peak with a smooth ratio 
of 0.09 has a peak height that is much closer to the correct value). Measuring the height of noisy 
peaks of known shape is much better done by curve fitting the unsmoothed data rather than by taking 
the maximum of the smoothed data (page 69). But if the objective of the measurement is to count the 
peaks or to measure their peak position (x-axis value at the peak), much larger smooth ratios can be 
employed if desired, because smoothing has little effect on the peak position of a symmetrical peak 
(unless the increase in peak width is so large that it causes adjacent peaks to overlap). 
  In quantitative analysis applications where the system is calibrated with standards, the peak height 
reduction caused by smoothing is not so important, because if the same signal processing operations 
are applied to the samples and to the standards, the peak height reduction of the standard signals will 
be exactly the same as that of the sample signals and the effect will cancel out exactly. In such cases 
smooth widths from 0.5 to 1.0 can be used if necessary to further improve the signal-to-noise ratio, 
which is reduced by approximately the square root of the smooth width. In practical analytical 
chemistry, absolute peak height measurements are seldom required; calibration against standard 
solutions is far more common. See page 110 for supporting data.
When should you smooth a signal? There are two main reasons to smooth a signal: 

a. for “cosmetic” reasons, to prepare a nicer or more impressive looking graphic for visual 
presentation or publication, specifically to emphasize long-term behavior over short-term, or
b. when the signal will be subsequently processed by a method that would be degraded by the 
presence of too much high-frequency noise, for example if the heights of peaks are determined 
graphically or by using the MAX function, or if peaks, valleys, or inflection points in the signal 
are to be automatically determined by detecting zero-crossings in derivatives of the signal. But 
generally smoothing will not significantly improve quantitative measurements of peak height, 
position, and width of peak-type signals when performed by least-squares methods; see page 69.

Smoothing in peak detection. Care must be used in the design of algorithms that employ 
smoothing. For example, in one popular technique for finding and measurement peaks in signals 
(page 74), the peaks are located by detecting downward zero-crossings in the smoothed first 
derivative (page 17), but the position, height, and width of each peak is determined by least-squares 
curve-fitting (page 37) of a model peak (e.g. Gaussian) to a segment of original unsmoothed data in 
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the vicinity of the zero-crossing. Thus, even if heavy smoothing is necessary to provide reliable 
discrimination against noise peaks, the peak parameters extracted by curve fitting are not distorted. 
When should you NOT smooth a signal? One common situation where you should usually not 
smooth signals (reference 43) is prior to least-squares curve fitting (page 37), for four reasons: 

a. Smoothing will not usually improve the accuracy of parameter measurement by least-squares; 
b. All smoothing algorithms are at least slightly “lossy”, distorting the signal to some extent;
c. It's harder to evaluate the fit by inspecting the residuals (page 38) if the data are smoothed, 
because smoothed noise may be mistaken for an actual signal (page 110); and 
d. Smoothing will cause serious underestimation of the errors predicted by propagation-of-errors 
calculations and the “bootstrap method” (see page 41-42).

An alternative to smoothing to reduce noise in the set of unsmoothed signals shown on page 13 is 
ensemble averaging (page 7) which can be performed in this case very simply by the Matlab/Octave 
statement mean(y). The result shows a reduction in white noise by about sqrt(10) ≈ 3, good enough 
to judge that there is a single peak with Gaussian shape, easily measured by curve fitting (page 54) 
using peakfit([x;mean(y)],0,0,1), with the result showing excellent agreement within 1% of 
the position, height, and width of the Gaussian peak created in the third line of the generating script.
Dealing with spikes. Sometimes signals are contaminated with very tall, narrow “spikes” occurring 
at random intervals and with random amplitudes, but with widths of only one or a few points. It not 
only looks ugly, but it also upset the assumptions of least-squares computations because it is not 
normally-distributed random noise. This type of interference is difficult to eliminate using the above 
smoothing methods without distorting the signal. However, a “median” filter, which replaces each 
point in the signal with the median (rather than the average) of m adjacent points, can eliminate 
narrow spikes with very little change in the signal, if the width of the spikes is only one or a few 
points and less than m. The killspikes.m function is another spike-removing function that uses a 
different approach, based on linear interpolation. Unlike conventional smooths, these functions can 
be profitably applied prior to least-squares fitting functions. (Of course, if the spikes are the signal 
and you want to count or measure them, a different method is used, such as described on page 119).
Condensing oversampled signals. Sometimes signals are recorded more densely (that is, with a 
higher sampling rate or smaller x-axis interval) than really necessary to capture all the features of the 
signal. This results in larger-than-necessary data sizes, which slows down signal processing 
procedures and may tax storage capacity. To correct this, oversampled signals can be reduced in size 
either by eliminating data points (say, dropping every other point or every third point) or by 
replacing groups of adjacent points by their averages. The later approach has the advantage of using 
rather than discarding data points, and it provides some measure of noise reduction. (If the noise in 
the original signal is white, it is reduced in the condensed signal by the square root of n, with no 
change in frequency distribution of the noise).
SPECTRUM (page 70) includes simple rectangular and triangular smoothing functions. 
Spreadsheets. Smoothing can be done in spreadsheets using the "shift and multiply" technique described 
above. In the spreadsheets smoothing.xls/.ods the set of multiplying coefficients is contained in the formulas 
that calculate the values of each cell of the smoothed data in columns C and E. Column C performs a 7-point 
rectangular smooth (1 1 1 1 1 1 1) and column E does a 7-point triangular smooth (1 2 3 4 3 2 1), applied to 
the data in column A. You can type in (or Copy and Paste) any data into column A, and you can extend the 
spreadsheet to longer columns of data by dragging the last row of columns A, C, and E down as needed or 
change the smooth width by changing the equations in columns C or E. 
The spreadsheets UnitGainSmooths.xls/.ods contain a collection of unit-gain convolution coefficients for 
rectangular, triangular, and Gaussian smooths of width 3 to 29 points, in both column and row format, that 
you can Copy and Paste into your own spreadsheets. The spreadsheets MultipleSmoothing.xls/.ods 
demonstrate a more flexible method in which the coefficients are contained in a group of 17 adjacent cells (in 
row 5, columns I through Y), making it easier to change the smooth shape and width (up to a maximum of 
17). In this spreadsheet, the smooth is applied three times in succession, resulting in an effective smooth 
width of up to 49 points applied to column G. Download these spreadsheets from http://tinyurl.com/cey8rwh.
  Compared to Matlab/Octave, spreadsheets are slower, less flexible, and less easily automated. For example, 
in these spreadsheets, to change the signal or the number of points in the signal, or to change the smooth 
width or type, you have to modify the spreadsheet in several places, whereas to do the same using the 
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Matlab/Octave "fastsmooth" function (below), you need only change in input arguments of a single line of 
code. Combining several different techniques into one spreadsheet is more complicated than Matlab/Octave.

Smoothing in Matlab and Octave. The user-defined function “fastsmooth” implements most of the types of 
smooths discussed above. (If you are viewing this document online, you can ctrl-click on this link to inspect 
the code). Fastsmooth is a function of the form s=fastsmooth(a, w, type, edge) The argument 
“a” is the input signal vector; “w” is the smooth width; “type” determines the smooth type: type=1 gives a 
rectangular (sliding-average or boxcar); type=2 gives a triangular (equivalent to 2 passes of a sliding 
average); type=3 gives a pseudo-Gaussian (equivalent to 3 passes of a sliding average). See page 110 for a 
comparison of these smooth types. Fastsmooth uses a kind of recursive algorithm that computes each point 
based on the one before it. The argument “edge” controls how the “edges” of the signal (the first w/2 points 
and the last w/2 points) are handled. If edge=0, the edges are zero. (In this mode the elapsed time is 
independent of the smooth width. This gives the fastest execution time). If edge=1, the edges are smoothed 
with progressively smaller smooths the closer to the end. In this mode the execution time increases with 
smooth width. The smoothed signal is returned as the vector “s”. (You can leave off the last two input 
arguments: fastsmooth(Y,w,type) smooths with edge=0 and fastsmooth(Y,w) smooths with 
type=1 and edge=0). Compared to convolution-based smooths, fastsmooth gives faster execution times, 
especially for large smooth widths; it can smooth a 106 point signal with a 103 point sliding average in 0.1 
sec. Here's a simple example of fastsmooth demonstrating the effect on white noise (Click for graphic).
x=1:100;y=randn(size(x));
plot(x,y,x,fastsmooth(y,5,3,1),'r')
xlabel('Blue: white noise.     Red: smoothed white noise.') 
SmoothWidthTest.m shows the effect of smoothing on peak height, noise, and signal-to-noise ratio of a peak. 
You can change the peak shape in line 7, the smooth type in line 8, and the noise in line 9. Click for graphic.

Here's another experiment in Matlab or Octave that creates a Gaussian peak, smooths it with “fastsmooth”, 
compares the smoothed and unsmoothed version, then uses a peak-fitting function (peakfit  .m , which will be 
covered on page 90) to show that smoothing reduces the peak height (from 1 to 0.786), increases the peak 
width (from 1.66 to 2.12), but has no effect on the total peak area (as long as you measure the total area 
under the broadened peak). Actually, there is no need to smooth the data if the peak parameters will be 
measured by least-squares fitting methods, because the results obtained on the unsmoothed data will be more  
accurate, as demonstrated on page 69. 
>> x=[0:.1:10]';y=exp(-(x-5).^2);
>> ysmoothed=fastsmooth(y,11,3,1);
>> plot(x,y,x,ysmoothed,'r')
>> [FitResults,FitError]=peakfit([x y])
            Peak       Position      Height    Width        Area
FitResults = 1            5            1       1.6651       1.7725
FitError = 3.817e-005
>> [FitResults,FitError]=peakfit([x ysmoothed])
            Peak       Position      Height    Width        Area
FitResults = 1            5      0.78608       2.1224       1.7759
FitError = 0.13409 
Diederick has published a Savitzky-Golay smooth function in Matlab, which you can download from the 
Matlab File Exchange. It's included in the interactive iSignal function. Greg Pittam has published a useful 
modification of the fastsmooth function that tolerates NaNs (Not a Number) in the data file 
(nanfastsmooth(Y,w,type,tol)) and a version for smoothing angle data (nanfastsmoothAngle(Y,w,type,tol)).
The Matlab/Octave user-defined function condense.m, condense(y,n), returns a condensed version of 
the vector y in which each group of n points is replaced by its average, reducing the length of y by the factor 
n. (Use this function on both x and y variables so that the features of y will appear at the same x values). The 
function medianfilter.m performs a median filter operation that replaces each value of y with the median of w 
adjacent values. It is useful for removing spike artifacts; it's also included in iSignal.m.
iSignal (page 85) performs interactive smoothing for time-series signals using all the smoothing algorithms 
discussed above. It has keystrokes that allow you to adjust the smoothing parameters continuously while 
observing the effect on your signal dynamically, making it easy to observe how different types and amounts 
of smoothing effect noise and signal (such as the height, width, and areas of peaks). It has a frequency 
spectrum mode that displays the frequency components of any portion of the signal (page 28). It can also 
condense oversampled signals, interpolate signals to change their sampling intervals, and it has a median 
filter for removing spikes. The simple script “iSignalDeltaTest” demonstrates the frequency response of 
iSignal's smoothing functions by applying them to a delta function, allowing you to change the smooth type 
(S key) and the smooth width (A and Z keys) to see how the the frequency response changes. 
You may download any of the functions above from http://tinyurl.com/cey8rwh.
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Differentiation
The symbolic differentiation of functions is a topic that is introduced in all elementary Calculus 
courses. The numerical differentiation of digitized signals is an application of this concept that has 
many uses in analytical signal processing. The first derivative of a signal is the rate of change of y 
with x, that is, dy/dx, which is interpreted as the slope of the tangent to the signal at each point. 
Assuming that the x-interval between adjacent points is constant, the simplest algorithm for 
computing a first derivative is:

 

 (for 2 < j <n-1). 
This is called a central-difference formula; it has the advantage that the X values are not changed.
  The second derivative is the derivative of the derivative: it is a measure of the curvature of the 
signal, that is, the rate of change of the slope of the signal. It can be calculated by applying the first 
derivative calculation twice in succession. The simplest algorithm for direct computation of the 
second derivative in one step is 

 (for 2 < j <n-1). 

  Similarly, higher derivative orders can be computed using the appropriate sequence of coefficients: 
for example +1, -2, +2, -1 for the third derivative and +1, -4, +6, -4, +1 for the 4th  derivative. Any 
derivative of order m can also be computed simply by taking m successive first-order derivatives. 
The Savitzky-Golay smooth can also be used for differentiation with the appropriate choice of input 
arguments; it combines differentiation and smoothing (page 11) into one algorithm, which is sensible 
because smoothing is always required with differentiation. 

Basic Properties of Derivative Signals
The figure on the left shows the results of the 
successive differentiation of a computer-
generated signal. The signal in each of the four 
windows is the first derivative of the one before 
it; that is, Window 2 is the first derivative of 
Window 1, Window 3 is the first derivative of 
Window 2, Window 3 is the second derivative of 
Window 1, and so on. You can predict the shape 
of each signal by recalling that the derivative is 
simply the slope of the original signal: where a 
signal slopes up, its derivative is positive; where 
a signal slopes down, its derivative is negative; 
and where a signal has zero slope, its derivative 
is zero. The sigmoidal signal shown in Window 1 
has an inflection point (point where the slope is 

maximum) at the center of the x axis range. This corresponds to the maximum in its first derivative 
(Window 2) and to the zero-crossing (point where the signal crosses the x-axis going either from 
positive to negative or vice versa) in the second derivative in Window 3. This behavior can be useful 
for locating the inflection point in a sigmoid signal, by computing the location of the zero-crossing in 
its second derivative. Similarly, the location of the maximum in a peak-type signal can be computed 
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precisely by computing the location of the zero-crossing in its first derivative. You can also see here 
(graphic) that the numerical magnitude of the derivatives (y-axis values) is less than the original 
signal, because derivatives are the differences between adjacent y values, divided by the independent 
variable increment. Other signal shapes have different derivatives shapes: the Matlab/Octave 
function DerivativeShapeDemo.m demonstrates the first derivative forms of 16 different model 
signal shapes (Click for graphic). 
Another important property of the differentiation of peak-type signals is the effect of the peak width 
on the amplitude of derivatives. The four windows in the figure on the left shows the results of three 

successive differentiations of two computer-
generated Gaussian peaks. The two peaks 
have the same amplitude (peak height) but 
second peak has exactly twice the width of 
the first. As you can see, the wider the peak, 
the smaller the derivative amplitude, and this 
effect becomes more noticeable at higher 
derivative orders. In general, the amplitude 
of the nth derivative of a peak is inversely 
proportional to the nth power of its width, for  
signals having the same shape and 
amplitude. Thus differentiation discriminates 
against wider peaks; and the higher the order 
of differentiation, the greater the 
discrimination. This behavior very is useful 
in quantitative analytical applications for 
detecting peaks that are superimposed on and 
obscured by stronger but broader background 

peaks. The amplitude of a derivative of a peak also depends on the shape of the peak and is directly 
proportional to its peak height. 
Although differentiation changes the shape of peak-type signals drastically, a smooth periodic 
signal, like a sine wave, behaves very differently. The derivative of a sine wave of frequency f is a 
phase-shifted sine wave of the same frequency and with an amplitude that is proportional to f, as can 
be shown by Wolfram Alpha. For this reason, when a music or speech signal is differentiated, the 
music or speech is still completely recognizable, but the low frequencies are attenuated and the high 
frequencies amplified (that is, it sounds "thin" or "tinny"). See page 89 for a demonstration. 

Applications of Differentiation
A simple example of the application of differentiation of experimental signals is shown below. 

The signal on the left seems to be a more-or-less straight line, but its numerically calculated derivative 
(dx/dy), plotted on the right, shows that the line actually has several approximately straight-line segments  

with distinctly different slopes and with well-defined breaks between each segment. 
This signal is typical of the type of signal recorded in amperometric titrations and some kinds of 
thermal analysis and kinetic experiments: a series of straight line segments of different slope. The 
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objective is to determine how many segments there are, where the breaks between then fall, and the 
slopes of each segment. This is difficult to do from the raw data, because the slope differences are 
small and the pixel resolution of the computer screen display is limiting. The task is much simpler if 
the first derivative (slope) of the signal is calculated (Window 2). Each segment is now clearly seen 
as a separate step whose height (y-axis value) is the slope. The y-axis now takes on the units of 
dy/dx. Note that in this example the steps in the derivative signal are not completely flat, indicating 
that the line segments in the original signal were not perfectly straight. This is most likely due to 
random noise in the original signal. Although this noise was not particularly evident in the original 
signal, it is much typically more noticeable in the derivatives.
  It is commonly observed that differentiation degrades signal-to-noise ratio, unless the 
differentiation algorithm includes smoothing (page 11) that is carefully optimized for each 
application. Numerical algorithms for differentiation are as numerous as for smoothing and must be 
carefully chosen to control signal-to-noise degradation.
  A classic use of second differentiation in chemical analysis is in the location of endpoints in 
potentiometric titration. In most titrations, the titration curve has a sigmoidal shape and the endpoint 
is indicated by the inflection point, the point where the slope is maximum and the curvature is zero. 
The first derivative of the titration curve will therefore exhibit a maximum at the inflection point, and 
the second derivative will exhibit a zero-crossing at that point. Maxima and zero crossings are easier 
to locate precisely than inflection points. 

The signal on the left is the pH titration curve of a very weak acid with a strong base, with volume in mL on  
the X-axis and pH on the Y-axis. The endpoint is the point of greatest slope; this is also an inflection point,  

where the curvature of the signal is zero. With a weak acid such as this, it is difficult to locate this point  
precisely from the original titration curve. The endpoint is much more easily located in the second 

derivative, shown on the right, as the zero crossing, located in this case by graphical interpolation. 

This figure shows a pH titration curve of a very weak acid with a strong base, with volume in mL on 
the X-axis and pH on the Y-axis. The volumetric equivalence point (the “theoretical” endpoint) is 20 
mL. The endpoint is the point of greatest slope; this is also an inflection point, where the curvature 
of the signal is zero. With a weak acid such as this, it is difficult to locate this point precisely from 
the original titration curve. The second derivative of the curve is shown on the right. The zero 
crossing of the second derivative corresponds to the endpoint and is much more precisely 
measurable. Note that in the second derivative plot, both the x-axis and the y-axis scales have been 
expanded to show the zero crossing point more clearly. The dotted lines show that the zero crossing 
is about 19.4 mL, fairly close to the theoretical value of 20 mL.

Peak Detection
Another common use of differentiation is in the detection of peaks in a signal. It's clear from the 
basic properties described in the previous section that the first derivative of a peak has a downward-
going zero-crossing at the peak maximum, which you can use to locate the x-value of the peak. If 
there is no noise in the signal, than any data point that has lower values on both sides of it will be a 
peak maximum. But there is always at least a little noise in real experimental signals, and that will 
cause many false zero-crossings simply due to the noise. To avoid this problem, one popular 
technique (page 74) smooths the first derivative of the signal first, before looking for downward-
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going zero-crossings, and then takes only those zero crossings whose slope exceeds a certain 
predetermined minimum (called the “slope threshold”) at a point where the original signal amplitude 
exceeds a certain minimum (called the “amplitude threshold”). By carefully adjusting the smooth 
width, slope threshold, and amplitude threshold, you try to count only the desired peaks and ignore 
peaks that are too small, too wide, or too narrow. Moreover, because smoothing can distort peak 
signals, reducing peak heights, and increasing peak widths (see page 11), this technique determines 
the position, height, and width of each peak by least-squares curve-fitting (page 37) of a segment of 
original unsmoothed signal in the vicinity of the zero-crossing. Even if heavy smoothing is 
necessary to provide reliable discrimination against noise peaks, the peak parameters extracted by 
curve fitting are not distorted. 

Derivative Spectroscopy
In spectroscopy, the differentiation of spectra is a widely used technique, particularly in infra-red, 
u.v.-visible absorption, fluorescen  ce, and reflectance   spectrophotometry, referred to as derivative 
spectroscopy (references 29-32). Derivative methods have been used in analytical spectroscopy for 
three main purposes:

(a) spectral discrimination, as a qualitative fingerprinting technique to accentuate small 
structural differences between nearly identical spectra; 
(b) spectral resolution enhancement, as a technique for increasing the apparent resolution of 
overlapping spectral bands in order to more easily determine the number of bands and their 
wavelengths; 
(c) quantitative analysis, as a technique for the correction for irrelevant background absorption 
and as a way to facilitate multicomponent analysis. (Because differentiation is a linear 
technique, the amplitude of a derivative is proportional to the amplitude of the original signal, 
which allows quantitative analysis applications employing any of the standard   calibration   
techniques). Most commercial spectrophotometers now have built-in derivative capability. 
Some instruments are designed to measure the spectral derivatives optically, by means of dual 
wavelength or wavelength modulation designs. 

  Because of the fact that the amplitude of the nth derivative of a peak-shaped signal is inversely 
proportional to the nth power of the width of the peak, differentiation may be employed as a general 
way to discriminate against broad spectral features in favor of narrow components. This is the basis 
for the application of differentiation as a method of correction for background signals in quantitative 
spectrophotometric analysis. Very often in the practical applications of spectrophotometry to the 
analysis of complex samples, the spectral bands of the analyte (i.e. the compound to be measured) 
are superimposed on a broad, gradually curved background caused by the sides of off-scale peaks 
originating from other components or by light scattering.

This is illustrated by the figure above, which shows a simulated optical spectrum (absorbance vs 
wavelength in nm), with the green curve representing the spectrum of the pure analyte and the red 
line representing the spectrum of a mixture containing the analyte plus other compounds that give 
rise to the large sloping background absorption. The first derivatives of these two signals are shown 
in the center; you can see that the difference between the pure analyte spectrum (green) and the 
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mixture spectrum (red) is reduced. This effect is considerably enhanced in the second derivative, 
shown on the right. In this case the spectra of the pure analyte and of the mixture are almost 
identical. In order for this technique to work, it is necessary that the background absorption be 
broader (that is, have lower curvature) than the analyte spectral peak, but this turns out to be a rather 
common situation. Because of their greater discrimination against broad background, second and 
higher-order derivatives are often used for such purposes. 
  It is sometimes (mistakenly) said that differentiation “increases the sensitivity” of analysis. You can 
see how it would be tempting to say something like that by inspecting the three figures above; it does 
seems that the signal amplitude of the derivatives is greater (at least graphically) than that of the 
original analyte signal. However, it is not valid to compare the amplitudes of signals and their 
derivatives because they have different units. The units of the original optical spectrum are 
absorbance; the units of the first derivative are absorbance per nm, and the units of the second 
derivative are absorbance per nm2. You can't compare absorbance to absorbance per nm any more 
than you can compare miles to miles per hour. (It's meaningless, for instance, to say that 30 miles per 
hour is greater than 20 miles.) You can, however, compare the signal-to-background ratio and the 
signal-to-noise ratio. For instance, in the above example, it would be valid to say that the signal-to-
background ratio is increased in the derivatives. 

Loosely speaking, the opposite of differentiation is integration, so if you are given a first derivative 
of a signal, you might expect to regenerate the original (zeroth derivative) by integration. However, 
there is a catch; the constant term in original signal (like a flat baseline) is completely lost in 
differentiation; integration can not restore it. So strictly speaking, differentiation represents a net loss 
of information, and therefore differentiation is used only in situations where the constant term in the 
original signal is not of interest.

  There are several ways to measure the amplitude of a derivative spectrum for quantitative analysis: 
the absolute value of the derivative at a specific wavelength, the value of a specific feature (such as a 
maximum), or the difference between a maximum and a minimum. Another widely-used technique 
is the zero-crossing measurement - taking readings of derivative amplitude at the wavelength where 
an interfering peak crosses the zero on the y (amplitude) axis. In all cases, it's important to measure 
the standards and the unknown samples in exactly the same way. Also, because the amplitude of a 
derivative of a peak depends strongly on its width, it's important to control factors that might change 
the spectral peak width, such as temperature, solvent properties, and spectrometer resolution. 

Trace Analysis
One of the widest uses of the derivative signal processing technique in practical analytical work is in 
the measurement of small amounts of substances in the presence of large amounts of potentially 
interfering materials. In such applications it is common that the analytical signals are weak, noisy, 
and superimposed on large background signals. 
  Measurement precision is often degraded by sample-to-sample baseline shifts due to non-specific 
broadband interfering absorption, non-reproducible sample cell positioning in the light beam, dirt or 
fingerprints on the cell walls, imperfect cell transmission matching, and solution turbidity. Baseline 
shifts from these sources are usually either wavelength-independent (light blockage caused by 
bubbles or large suspended particles) or exhibit a gradual wavelength dependence (small-particle 
turbidity). Therefore differentiation is useful to help to discriminate relevant absorption from these 
sources of baseline shift. 
  An obvious benefit of the suppression of broad background by differentiation is that variations in 
the background amplitude from sample to sample are also reduced. This can result in improved 
precision or measurement in many instances, especially when the analyte signal is small compared to 
the background and if there is a lot of uncontrolled variability in the background, which is useful 
when trying to detect a trace component in the presence of a strong background. For example, the
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The optical spectrum on the left shows a weak shoulder near the center due to a small concentration of the  
substance that is to be measured (e.g. the active ingredient in a pharmaceutical preparation). It is difficult to  

measure the intensity of this peak because it is obscured by the strong background caused by other  
substances in the sample. The smoothed fourth derivative of this spectrum is shown on the right. The  

background has been almost completely suppressed and the analyte peak now stands out clearly. 
spectrum on the left shows a weak shoulder near the center due to the analyte. The signal-to-noise 
ratio is very good in this spectrum, but in spite of that the broad, sloping background obscures the 
peak and makes quantitative measurement very difficult. The smoothed fourth derivative of this 
spectrum is shown on the right. The background has been almost completely suppressed and the 
analyte peak now stands out clearly, facilitating measurement. 

 
Similar to the figure above, but in the case the peak is 10 times smaller than previously, so that it can not  
even be seen in the spectrum on the left. The fourth derivative (right) shows that a peak is still there, but  

reduced in amplitude (note the smaller y-axis scale) and with poorer signal-to-noise ratio.

An more dramatic case is shown above. This is essentially the same optical spectrum as before, 
except that the concentration of the analyte is even lower. Is there even a detectable amount of 
analyte in this spectrum? This is quite impossible to say from the normal optical spectrum, but 
inspection of the fourth derivative (right) shows that the answer is yes. Some noise is clearly evident 
here, but even so the signal-to-noise ratio is good enough for a reasonable quantitative measurement. 
  This use of signal differentiation has become widely used in quantitative spectroscopy, particularly 
for quality control in the pharmaceutical industry. In that case the analyte would typically be the 
active ingredient in a pharmaceutical preparation and the background interference might arise from 
the presence of fillers, emulsifiers, flavoring or coloring agents, buffers, stabilizers, or other 
excipients (“inactive ingredients”). Of course, in trace analysis applications, care must be taken to 
optimize   signal-to-  noise   ratio of the instrument as much as possible, possibly including 
differentiation and smoothing.

The Importance of Smoothing Derivatives
It is often said that “differentiation increases the noise”. Strictly speaking, that is true, but it is not 
the main problem. In fact, computing the unsmoothed first derivative of any set of random numbers 
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increases its standard deviation merely by the square root of 2, simply due to the usual 
propagation of errors in the difference of two 
numbers. But even the slightest degree of 
smoothing applied to that derivative will reduce 
this standard deviation greatly. More important is 
that the signal-to-noise ratio of an unsmoothed 
derivative is almost always much lower (poorer) 
than that of the original signal, but smoothing is 
always used in any practical application to control 
this problem. Differentiation by itself does not 
actually add noise to the signal; if there were no 
noise at all in the original signal, then the 
derivatives would also have no noise (except for 
the numerical floating point precision of the 

computer, usually negligible). With most data, smoothing is more a matter of cosmetics (see page 
14). However, for the successful application of differentiation in quantitative analytical applications, 
it is essential to use differentiation in combination with sufficient smoothing, in order to optimize 
the signal-to-noise ratio. This is illustrated in the figure on the left. Window 1 shows a Gaussian 
band with a small amount of added noise. Windows 2, 3, and 4, show the first derivative of that 
signal with increasing smooth widths. As you can see, without sufficient smoothing, the signal-to-
noise ratio of the derivative can be substantially poorer than the original signal. However, with 
adequate amounts of smoothing, the signal-to-noise 
ratio of the smoothed derivative can be better than 
that of the unsmoothed original. This effect is even 
more evident in the second derivative, as shown on 
the right. In this case, the signal-to-noise ratio of 
the unsmoothed second derivative (Window 2) is 
so poor you can not even see the signal visually. 
What is interesting about the noise in these 
derivative signals, however, is their "color". This 
noise is not white; rather, it is blue - that is, it has 
much more power at high frequencies than white 
noise, and because of that, it is especially subject to 
reduction by smoothing. 
  It makes no difference mathematically whether 
the smooth operation is applied before or after the 
differentiation. What is important, however, is the nature of the smooth, its smooth ratio (ratio of the 
smooth width to the width of the original peak), and the number of times the signal is smoothed. 
When a noisy signal is differentiated, the noise in that signal is also differentiated. If the noise was 
white in the original signal (upper left quadrant), it becomes 'blue' (page 8) in the derivative (upper 
right quadrant). The optimum values of smooth ratio for derivative signals is approximately 0.5 to 
1.0. For a first derivative, two applications of a simple rectangular smooth or one application of a 
triangular smooth is adequate. For a second derivative, three applications of a simple rectangular 
smooth or two applications of a triangular smooth is adequate. The additional passes of smooth 
operators are required to provide the rapid high-frequency cut-off needed to reduce the excess blue 
noise. The general rule is: for the nth derivative, use at least n+1 applications of rectangular smooth 
(or half that number of triangular smooths). Such heavy amounts of smoothing result in substantial 
attenuation of the derivative amplitude; in the figure above, the amplitude of the most heavily 
smoothed derivative (in Window 4, above) is much less than its less-smoothed version (Window 3). 
However, this won't be a problem, as long as the standard (analytical) curve is prepared using the 
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exact same derivative, smoothing, and measurement procedure as is applied to the unknown 
samples. (Because differentiation and smoothing are both linear techniques, the amplitude of a 
smoothed derivative is proportional to the amplitude of the original signal and can be used as the 
basis for quantitative analysis employing any of the standard   calibration   techniques). 
  Because of the different kinds and degrees of smoothing that might be incorporated into the 
computation of digital differentiation of experimental signals, it's difficult to compare the results of 
different instruments and experiments unless the details of these computations are known. In 
commercial instruments and software packages, these details may well be hidden. However, if you 
can obtain both the original (zeroth derivative) signal, as well as the derivative and/or smoothed 
version of that signal from the same instrument or software package, then the technique of Fourier 
deconvolution, which will be discussed later on page 32, can be used to discover and duplicate the 
underlying hidden computations.
  Interestingly, the failure to smooth a derivative was ultimately responsible for the crash of the first 
spacecraft of N  ASA's Mariner program on July 22, 1962, which was reported in InfoWorld's “11 
infamous software bugs”. In his 1968 book “The Promise of Space”, Arthur C. Clarke described the 
mission as “...wrecked by the most expensive hyphen in history.” The “hyphen” was actually 
superscript bar over a radius symbol, handwritten in a notebook, which was reportedly overlooked 
or misinterpreted. The overbar signifies a smoothing or averaging function, so the formula should 
have calculated the smoothed value of the time derivative of a radius. Without the smoothing 
function, even minor short-term variations in velocity could trigger the corrective boosters to kick in, 
causing the rocket's flight to become unstable. 

SPECTRUM (page 70), for Macintosh OS 8, includes first and second derivative functions, which can be 
applied successively to compute derivatives of any order. 
Differentiation in Spreadsheets. Differentiation operations such as described above can be performed in 
spreadsheets such as Excel or OpenOffice Calc. Both the derivative and the required smoothing operations 
can be performed by the shift-and-multiply method described in the section on smoothing. There are two 
approaches; the first approach is more flexible and easier to adjust:

(a) You can compute each stage of differentiation and smoothing separately in successive columns, as 
illustrated by DerivativeSmoothing.ods/.xls), which computes the first derivative, smooths it, and then 
applies those two steps successively to compute the smoothed second and third derivatives. The variant 
DerivativeSmoothingWithNoise.xlsx shows how noise in the signal effects the result.
(b) You can combine any degree of differentiation and smoothing into one large set of shift-and-multiply 
coefficients, as illustrated in CombinedDerivativesAndSmooths.txt. 

  Another example of a derivative application is the spreadsheet SecondDerivativeXY2.xlsx, which locates 
and measures changes in the second derivative (a measure of curvature or acceleration) of a time-changing 
signal. This spreadsheet shows the apparent increase in noise caused by differentiation and the extent to 
which the noise can be reduced by smoothing (in this case by two passes of a 5-point triangular smooth). In 
this example, the smoothed second derivative shows a large peak the point at which the acceleration changes 
(at x=30) and plateaus on either side showing the magnitude of the acceleration before and after the change 
(y=2 and 4, respectively). Download any of these spreadsheets from http://tinyurl.com/cey8rwh.

  In Matlab or in Octave, differentiation functions such as described above can easily be created. Some 
simple examples that you can download include: deriv, a first derivative using the 2-point central-difference 
method, deriv2, a simple second derivative using the 3-point central-difference method, a third derivative 
deriv3 using a 4-point formula, and deriv4, a 4th derivative using a 5-point formula. Each of these is a simple 
function of the form d=deriv(a); the input argument is a signal vector “a”, and the differentiated signal is 
returned as the vector “d”. There are versions of the first and second derivative functions, derivxy and 
secderivxy, that take two input arguments (x,y), where x and y are vectors containing the independent and 
dependent variables; use these for data that are not equally-spaced on the independent variable (x) axis. 
Peak detection. The simplest code to find peaks in x,y data sets simply looks for every y value that has lower 
y values on both sides (allpeaks.m). A alternative approach is to use the first derivative to find maxima by 
locating the points of zero-crossing, that is, the points at which the first derivative d (computed by 
derivxy.m) passes from positive to negative. In this example, the “sign” function is a built-in Matlab/Octave 
function that returns 1 if the element is greater than zero, 0 if it equals zero and -1 if it is less than zero. The 
“disp” function in the 4th line prints out the value of x and y at each zero-crossing:
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Peak Sharpening (Resolution enhancement)
The figure below shows a signal that consists of several poorly-resolved bands. The extensive 
overlap of the bands makes the accurate measurement of their intensities and positions impossible, 
even though the signal-to-noise ratio is very good. Things would be easier if the bands were more 
completely resolved, that is, if the bands were narrower. Here use can be made of peak sharpening 
algorithms to artificially improve the apparent resolution of the peaks. One of the simplest such 
algorithms is based on the weighted sum of the original signal and the negative of its 2nd derivative:

 
where Rj is the peak sharpened signal, Y is the original signal, Y'' is the second derivative of Y, and k 
is a user-selected weighting factor. The key is selecting the weighting factor k that gives the best 
trade-off between peak sharpening, signal-to-noise degradation, and baseline undershoot. The 
optimum choice depends upon the width, shape, and digitization interval of the signal. A reasonable 
srarting value for k is w2/25 for peaks of Gaussian shape, or w2/6 for peaks of Lorentzian shape, 
where w is the number of data points in the half-width of the component peaks.

A peak sharpening algorithm has been applied to the signal on the left to artificially improve the apparent  
resolution of the peaks. In the resulting signal, right, the component bands are narrowed so that the  

intensities and positions can be measured. 

  The result of the application of this algorithm is shown on the right in the figure above. The 
component bands have been artificially narrowed so that the intensities and positions can be 
measured. However, the signal-to-noise ratio is visibly degraded. 

Here's how it works. The figure above shows, in Window 1, a computer-generated peak (with a 
Lorentzian shape) in red, superimposed on the negative of its second derivative in green). The 
second derivative is amplified (by multiplying it by an adjustable constant) so that the negative sides 
of the inverted second derivative (from approximately X = 0 to 100 and from X = 150 to 250) are a 
mirror image of the sides of the original peak over those regions. In this way, when the original peak 
is added to the inverted second derivative, the two signals will approximately cancel out in the two 
side regions but will reinforce each other in the central region (from X = 100 to 150). The result, 
shown in Window 2, is a substantial (about 50%) reduction in the width, and an increase in height, 
of the peak. This works best with Lorentzian shaped peaks; with Gaussian-shaped peaks, the effect is 
less dramatic (only about 20%). An interesting property of this procedure is that it does not change 
the total peak area (that is, the area under the peak) because the total area under the curve of the 
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derivative of a peak-shaped signal is zero - the area under the negatives lobes cancels the area under 
the positive lobes. As a result, this technique can be useful in measuring the areas under overlapped 
peaks (page 35). However, this technique is not perfect because the baseline on either side of the 
sharpened peak is not completely flat, leaving some interference from nearby peaks. For a Lorentzian 
peak, about 80% of the area of the peak is contained in the central maximum. For a Gaussian peak, 
over 99% of the area of the peak is contained in the central maximum.

  Because differentiation and smoothing are both linear techniques, the amplitude of a sharpened 
signal is therefore proportional to (but usually greater than) the amplitude of the original signal, 
which allows quantitative analysis applications employing any of the standard   calibration   
techniques). As long as you apply the same signal-processing techniques to the standards as well as 
to the samples, everything works. 

Note: Another technique that can increase the resolution of overlapping peaks is Fourier 
deconvolution (page 32), which is applicable when the broadening function responsible for the 
overlap of the peaks is known. Deconvolution of the broadening function from the broadened peaks 
is in principle capable of extracting the underlying peaks shapes, whereas this resolution 
enhancement technique can not be expected to do that. 

SPECTRUM (page 70) includes this simple peak sharpening algorithm, with adjustable weighting factor and 
derivative smoothing width. 
Peak sharpening in Matlab and Octave. The user-defined Matlab/Octave function enhance.m uses a 
slightly more advanced algorithm that extends the above approach by adding in a small amount of the 4th 
derivative of the signal: 

R = Y - k2Y'' + k4Y''''

This function has the form:
Enhancedsignal=enhance(signal,k2,k4,SmoothWidth) 

where signal is the original signal vector, the arguments k2 and k4 are 
2nd and 4th derivative weighting factors, and SmoothWidth is the width of 
the built-in smooth. The peak sharpened signal is returned in the vector 
Enhancedsignal. 
  Here's a simple example for Matlab or Octave that creates a signal 
consisting of four Gaussian peaks, applies the enhance function, and 
compares a plot (shown on the right) of the original signal (in blue) to the 
sharpened version (in red): 
  x=[0:.01:18];
  y=exp(-(x-4).^2)+exp(-(x-9).^2)+exp(-(x-12).^2)+exp(-(x-13.7).^2);
  SharpenedSignal=enhance(y,1000,1000000,3)
  plot(x,y,x,SharpenedSignal,'r')
Peak sharpening can be a useful pre-process before measuring the areas under overlapping peaks (page 35), 
because it's easier and more accurate to measure the areas of peaks that are more completely separated, and 
because in principle this method of sharpening does not change the total area under each peak. 

iSignal (left; details on page 85) can perform peak sharpening for 
time-series signals, using the above enhance function, with 
keystrokes that allow you to adjust the 2nd and 4th derivative 
weighting factors and the smoothing continuously while observing 
the effect on your signal dynamically. The E key turns the peak 
sharpening function on and off. View the code here or download 
the ZIP file with sample data for testing. iSignal calculates the 
sharpening and smoothing settings for Gaussian and for Lorentzian 
peak shapes using the Y and U keys, respectively. Just isolate a 
single typical peak in the upper window using the pan and zoom 
keys, then press Y for Gaussian or U for Lorentzian peaks. (The 

optimum settings depends on the width of the peak, so if your signal has peaks of widely different widths, 
one setting will not be optimum for all the peaks). You can fine tune the sharpening with the F/V and G/B 
keys and the smoothing with the A/Z keys. iPeak (page 78) also has a peak sharpening mode.
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Harmonic analysis and the Fourier Transform
Some signals exhibit periodic components that repeat at fixed intervals throughout the signal, like a 
sine wave. It is often useful to describe the amplitude and frequency of such periodic components 
exactly. Actually, it's possible to analyze any arbitrary x,y data into the sum of periodic components. 
Harmonic analysis is conventionally based on the Fourier transform, which is a way of expressing a 
signal as a sum of sine and cosine waves. It can be shown that any arbitrary discretely sampled signal 
can be described completely by the sum of a finite number of sine and cosine components whose 
frequencies are 0,1,2,3 ... n/2 times the fundamental frequency f=1/nDx, where Dx is the interval 
between adjacent x-axis values and n is the total number of points. The Fourier transform is the set 
of coefficients of those sine and cosine components. You could calculate those coefficients yourself 
just by multiplying the signal point-by-point with each of those sine and cosine components and 
adding up the products. The famous “Fast Fourier Transform” (FFT) is just a faster and more 
efficient algorithm that makes use of the symmetry of the sine and cosine functions and other math 
shortcuts to get the same result much more quickly. The inverse Fourier transform (IFT) is a similar 
algorithm that converts a Fourier transform back into the original signal. The “power spectrum” (not 
to be confused with an optical   spectrum) combines the absolute value of the sine and cosine 
components at each frequency. This is a convenient way to display the total power at each frequency, 
but it discards the phase information (the relative contribution of sine and cosine components), so for 
that reason it's impossible to reconstruct the waveform completely from the power spectrum alone.
  Two important instrumental methods of chemical analysis are based on the concept of the Fourier 
transform (FT). In Fourier transform   infrared spectroscopy (FTIR), the Fourier transform of the 
infrared spectrum is measured directly by the instrument, as the interferogram formed by recording 
the detector signal vs mirror displacement in a scanning Michelson interferometer. In Fourier 
transform nuclear magnetic resonance spectroscopy (FTNMR), excitation of the sample by a short 
pulse of radio frequency energy produces a free induction decay signal that is the Fourier transform 
of the resonance spectrum. In both cases the spectrum is the inverse FT of the measured signal.
  A time-series signal with n points gives a power spectrum with only (n/2)+1 points. The first point 
is the zero-frequency (constant) component. The second point corresponds to a frequency of 1/nDx 
(which has a single cycle over the signal's duration), the next point to 2/nDx, etc., where Dx is the 
interval between the x-axis values and n is the total number of points. The last (highest frequency) 
point in the power spectrum (n/2)/nDx=1/2Dx, which is one-half the sampling rate. The highest 
frequency that can be represented in a discretely-sampled waveform is one-half the sampling 
frequency, which is called the Nyquist frequency; attempts to sample frequencies above the Nyquist 
frequency are "folded back" to lower frequencies, severely distorting the signal. 
A pure sine or cosine wave with an exactly integral number of cycles within the recorded signal will 
have a single non-zero Fourier component corresponding to its frequency. Conversely, a signal 
consisting of zeros everywhere except at a single point, called a delta function, has equal Fourier 

components at all frequencies. Random noise also has a 
power spectrum that is spread out over a wide frequency 
range according to its noise color (page 8), with pink 
noise having more power at low frequencies, blue noise 
having more power at high frequencies, and white noise 
having roughly the   same   power at all frequencies.
  For periodic waveforms that repeat over time, a single 
period is the smallest repeating unit of the signal, and the 
reciprocal of that period is called the fundamental 
frequency. Complex periodic waveforms usually exhibit 
a series of frequency components that are multiples of the 
fundamental frequency; these are called "harmonics". A 
familiar example is the electrical recording of a 
heartbeat, called an electrocardiograph (ECG), which 
consists of a highly repeatable series of waveforms. In 
the real data example on the left, the ECG waveform is 

shown in blue in the upper panel and the power spectrum is shown in red in the lower panel. The 
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fundamental frequency is 0.6685 Hz and the other peaks are the harmonics. Recorded vocal sounds, 
especially vowels, also have a periodic waveform with harmonics. An example of an extremely 
regular variation is the seasonal change in average daily   temperature, which has a sharp peak at 
exactly one year, plus random white noise throughout, which is distributed evenly over the frequency 
spectrum. The sharpness of the peaks in these spectra shows that the amplitude and frequency are 
nearly constant over the recording interval in this example. Changes in amplitude or frequency over 
the recording interval will produce clusters or bands of Fourier components rather than sharp peaks, 
such as in the sunspot data below and in the sound of a passing car horn shown on page 118.
The figures below show a historic example of harmonic analysis: the annual variation in the number 

of observed sunspots, which have been recorded since the year 1700! In this case the time axis is in 
years. A plot of the power spectrum (bottom window) shows a strong peak at 0.09 cycles/year. If the 
data are plotted (on the bottom right) with time on the x-axis, the plot more clearly shows the well-
known 11-year sunspot cycle (plus some evidence of a weaker cycle at around a 100-year period). 
These power spectra were plotted by pressing Shift-S in iSignal (see page 85). The zeroth harmonic 
(the DC component) is not shown. In this case the peaks in the frequency spectrum are not sharp 
single peak at 11, but rather form a cluster of Fourier components, because the amplitude and 
frequency are not perfectly constant over the 300-year interval of the data. 
 A common application of the power spectrum is as a diagnostic tool to distinguish signal and noise. 
Peak-type signals have power spectra that are concentrated in a range of low frequencies, whereas 
noise may occur at specific frequencies or may be spread out over a much wider frequency range. 
The signal on the right (x = time; y =  
voltage), which was expected to contain  
a single peak near x=100, is clearly very  
noisy. The power spectrum of this signal  
(x = frequency in Hz) shows the signal  
peak at low frequencies (0-20 Hz) and a  
strong narrow component at 60 Hz,  
suggesting that much of the noise is  
caused by stray pick-up from the 60 Hz  
power line frequency used in the USA 
(50 Hz in some countries). The peak at  
120 Hz (the second harmonic of 60 Hz)  
comes from the same source. A smaller  
amount of white noise is distributed evenly over the spectrum.(Again, the sharpness of the peaks in the 
spectrum shows that the amplitude and the frequency are very constant; power companies keep the 
frequency of the AC power constant to avoid problems between sections of the power grid). 

In the example illustrated on the left, the signal (in the top 
window) contains no visually evident periodic components; it 
seems to be only random noise. But the frequency spectrum (in 
the bottom window) shows that there is much more to this signal 
than meets the eye. There are in fact two major frequency 
components: one at low frequencies around 0.02 and a stronger 
one at high frequencies between 0.5 and 5. (If the x-axis units of 
the signal plot is in seconds, the units of the frequency spectrum 
plot would be cycles per second; note that the x-axis in this 
example is logarithmic). In this particular case, the lower 
frequency component is in fact the signal, and the higher 
frequency component is residual “blue” noise left over from 
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previous signal processing. The two components are well separated on the frequency axis, suggesting 
that low-pass filtering (i.e. smoothing) will able to reduce the   noise   without   distorting the signal.
  You can compute the Fourier transform and power spectrum only of time series, but of any signal, 
such as an optical spectrum, where the independent variable might be wavelength or wavenumber, or 
an electrochemical signal, where the independent variable might be volts. The units of the x-axis of 
the power spectrum are simply the reciprocal of the units of the x-axis of the original signal. 
  Harmonic analysis provides another way to understand signal-to-noise ratio, filtering, smoothing, 
and differentiation. Smoothing (page 11) is a form of low-pass filtering, which reduces the high-
frequency components of a signal. If a signal consists of smooth features, such as Gaussian peaks, 
then its power spectrum will be concentrated at   low   frequencies. If that signal is contaminated with 
white noise (which is spread out evenly over all frequencies), then smoothing will make the signal 
look better, because it reduces the high-frequency components of the noise. However, the low-
frequency noise will remain in the signal after smoothing (page 13), where it will continue to 
interfere with the measurement of signal parameters such as peak heights, positions, widths, and 
areas, as can be demonstrated by least-squares measurement (page 69). 
  Conversely, differentiation (page 17) is a form of high-pass filtering, which reduces the low 
frequency components of a signal and emphasizes any high-frequency components in the signal. As 
successive orders of differentiation are applied, the frequency spectrum shifts progressively to   higher 
frequencies. So the optimum range for signal information of a differentiated signal is restricted to an 
intermediate frequency range, with little useful information above and below that range. Real 
experimental signals are often contaminated with drift and baseline shift, which are essentially low-
frequency effects, and with random noise, which is usually spread out over all frequencies. For these 
reasons, differentiation is always used in conjunction with smoothing. Working together, they act as 
a kind of frequency-selective bandpass filter that optimally passes the band of frequencies containing 
the signal information but reduces both the lower-frequency drift and background, as well as the 
high-frequency noise. DerivativeDemo on page 25 is an example. See page 119 for another example. 
Excel has a Fourier transform function in the Data Analysis package (install under Tools or Add-ins).
SPECTRUM  (page 70) includes a power spectrum function and forward and reverse Fourier transforms. 
The freeware program Audacity has frequency spectrum plotting and visualization for audio signals.
Matlab and Octave have built-in functions for computing the Fast Fourier Transform and its inverse (FFT 
and IFFT). A “Slow   Fourier Transform” function has also been published (simple, but 8000 times slower). 
Or you can use my downloadable function PlotFrequencySpectrum.m that can plot frequency spectra and 
periodograms on linear or log coordinates. Type "help PlotFrequencySpectrum" and try the example there.
iSignal (page 86, 89-90) has a Frequency Spectrum 
mode, toggled on and off by Shift-S, that computes the 
frequency spectrum of the segment of the signal isolated in 
the upper window and displays it in the lower window. 
(iSignal created the three figures above). The pan and 
zoom keys adjust the region of the signal to be viewed. 
Shift-A cycles through four plot modes (linear, semilog X, 
semilog Y, or log-log) and Shift-X toggles between 
frequency on the x axis and time on the x-axis. Shift-Z 
locates the peaks in the spectrum and labels them with 
their frequency or time. All signal processing functions  
remain active in the frequency spectrum mode (smooth, 
derivative, etc) so you can observe the effect of these 
functions on the frequency spectrum of the signal. Press 
Shift-S again to return to the normal mode. See pages 118-
120 for some examples. The script “iSignalDeltaTest” 
demonstrates the power spectrum of the smoothing and differentation functions of iSignal applied to a delta 
function, whose power spectrum is flat. Change the smooth type, smooth width, and derivative order and see 
how the power spectrum changes. The power spectrum of a processed delta function is the frequency 
response of the process itself. An experiment on page 89 uses iSignal to demonstrate the effect of smoothing 
and differentiation on digitized speech. i  Power is a keyboard-controlled Matlab interactive power spectrum 
demonstrator for teaching and learning about the power spectra of different types of signals and the effect of 
signal duration and sampling rate. Single keystrokes allow you to select the type of signal, the total duration 
of the signal, the sampling rate, and the characteristics of the 12 different signals. Press K to see a list of all 
the keyboard commands. See http://tinyurl.com/cey8rwh.
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Convolution
Convolution, in mathematics and signal processing, is a “shift-and-multiply” operation performed on 
two signals, which involves multiplying one signal point-by-point by a delayed version of another 
signal, integrating or averaging the product, and repeating the process for different delays. (See a 
YouTube animation). It is a useful process because it accurately describes some effects that occur 
widely in scientific measurements, such as the influence of a low-pass filter on an electrical signal or 
of the resolution of an optical spectrometer on the shape of the recorded optical spectrum. 
  The calculation is often performed by multiplying the two signals point-by-point in the Fourier 
domain. First, the Fourier transform of each signal is obtained. Then the two Fourier transforms are 

multiplied by the rules for complex multiplication, and the result is then inverse Fourier transformed. 
This is faster then the shift-and-multiply algorithm when the number of points in the signal is large. 
  The figure above shows how Fourier convolution can be used to determine how the optical 
spectrum on the left will appear when scanned with a spectrometer whose slit function (spectral 
resolution) is described by the Gaussian function in the center figure (which has been shifted so that 
its maximum falls at x=0). The resulting convoluted signal (right) shows that the two lines near 
x=110 and 120 will not be resolved but the line at x=40 will be partly resolved. (Fourier convolution 
is used in this way to correct the analytical curve non-linearity caused by spectrometer resolution, in 
the “Tfit” method for absorption spectroscopy, described on page 103).
Fourier convolution can also be used as a very general algorithm for the smoothing and 
differentiation of digital signals, by convoluting the signal with a (usually) small set of numbers 
representing the convolution vector. Smoothing is performed by convolution with sets of positive 
numbers, e.g. [1 1 1] for a 3-point boxcar. Convolution with [–1 1] computes a first derivative; [1 -2 
1] computes a second derivative. Successive convolutions by two convolution vectors Conv1 and 
then Conv2 is equivalent to one convolution with the convolution of Conv1 and Conv2. First 
differentiation with smoothing is done by using a convolution vector in which the first half of the 
coefficients are negative and the second half are positive (e.g.[-1 -2 0 2 1]). Further examples are 
given in the text file “Convolution.txt” (download from http://tinyurl.com/cey8rwh).
SPECTRUM (page 70) includes convolution and auto-correlation (self-convolution) functions. 

Spreadsheets can perform convolution by the Fourier transform or shift-and-multiply technique. For some 
examples of the application of shift-and-multiply convolution to smoothing and differentiation, see 
“MultipleConvolution.xls/.ods (download from http://tinyurl.com/cey8rwh). For large data sets, Fourier 
convolution is faster than the shift-and-multiply technique.
Matlab and Octave have built-in Fourier convolution function: conv, which can be used to create very 
general type of filters and smoothing operations applied to a signal vector y. (The keyword 'same' returns the 
central part of the convolution that is the same size as y): 
ysmoothed=conv(y,[1 1 1 1 1],'same')/5 for a 5-point sliding-average smooth or 
ysmoothed=conv(y,[1 2 3 2 1],'same')/9 for a 5-point triangular smooth. 
A simple RC low-pass filter applied to the signal in vector y can be simulated by: 
c=exp(-(1:length(y))./30); yc=conv(y,c,'full')./sum(c); 
In these examples, division by the sum of the convolution transfer function c insures that the convolution 
does not change the area under the curve of the signal. (Alternatively, you could perform the convolution 
yourself without using the built-in Matlab/Octave "conv" function by multiplying the Fourier transforms of y 
and c using the "fft.m" function, and then inverse transform the result with the "ifft.m" function: 
yc=ifft(fft(y).*fft(c))./sum(c);the results are essentially the same, except for the numerical 
floating point precision of the calculation which is usually negligible, and the elapsed time is actually less 
than with the “conv” function). For another example, see GaussConvDemo.m on http://tinyurl.com/cey8rwh).
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Deconvolution
Deconvolution is the converse of convolution in the sense that division is the converse of 
multiplication. If you know that m*x equals n, where m and n are known but x is unknown, then x 
equals n/m. Similarly, if you know that m convoluted with x equals n, where m and n are known but 
x is unknown, then x equals m deconvoluted from n. In practice, the deconvolution of one signal 
from another is usually performed by point-by-point division of the two signals in the Fourier 
domain - dividing the Fourier transforms of the two signals and then inverse-transforming the result. 

  The practical significance of deconvolution is that it can be used as an artificial (i.e. computational) 
way to reverse the result of a convolution occurring in the physical domain, for example, to reverse 
the signal distortion effect of an electrical filter or of the finite resolution of an optical spectrometer. 
Two different examples of the application of deconvolution are shown in the figures below.

  
Deconvolution is used here to remove the distorting influence of an exponential tailing transfer function 

from a recorded signal (Window 1, left) that is the result of an unavoidable RC low-pass filter action in the 
electronics. The transfer function (Window 2, center) must be known and is usually either calculated on the  
basis of some theoretical model or is measured experimentally as the output signal produced by applying an  

impulse (delta) function to the input of the system. The response function, with its maximum at x=0, is  
deconvoluted from the original signal . The result (right) shows a closer approximation to the real shape of  

the peaks; however, the signal-to-noise ratio is unavoidably degraded. (cf. page 121).

  
A different application of the deconvolution function reveals the nature of a hidden data transformation  

function that has been applied to a data set by the measurement instrument itself. In this example, the first  
signal (from left to right) is a uv-visible absorption spectrum recorded on a commercial photodiode array  

spectrometer (X-axis: nanometers; Y-axis: milliabsorbance). The second signal is the first derivative of this  
spectrum produced by an (unknown) algorithm in the software supplied with the spectrometer. The objective  

here is to understand the nature of the differentiation/ smoothing algorithm that the instrument's software  
uses. The third signal is the result of deconvoluting the derivative spectrum (second from left) from the  

original spectrum (left). This therefore must be the convolution function used by that differentiation  
algorithm. Shifting and expanding it on the x-axis makes the function easier to see (last signal). Expressed in  

terms of the smallest whole numbers, the convolution series is seen to be +2, +1, 0, -1, -2. This simple  
example of “reverse engineering” makes it possible to compare results from other instruments or to  

duplicate these result on other equipment. 
  When applying deconvolution to experimental data, to remove the effect of a known broadening or 
low-pass filter operator caused by the experimental system, a serious signal-to-noise degradation 
commonly occurs. Any noise added to the signal by the system after the convolution by the 
broadening or low-pass filter operator will be greatly amplified when the Fourier transform of the 
signal is divided by the Fourier transform of the broadening operator, because the high frequency 
components of the broadening operator (the denominator in the division of the Fourier transforms) 
are typically very small, resulting in a great amplification of high frequency ('blue') noise in the 
resulting deconvoluted signal (page 8). See the code example at the bottom of page 33 and on page 
121. This can be controlled but not completely eliminated by smoothing and by constraining the 
deconvolution to a frequency region where the signal has a sufficiently high signal-to-noise ratio. 
You can see this noise amplification happening in the example in the first example above. However, 
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this is not observed in the example in the second example, because in that case the noise is in the 
original signal, before the convolution by the spectrometer's differentiation algorithm – the high 
frequency components of the denominator in the division of the Fourier transforms are typically 
much larger than in the previous example - and the only post-convolution noise comes from 
numerical round-off errors in the computations, usually small compared to the noise in the 
experimental signal. 
Note: The word "deconvolution" appears in the Oxford English dictionary, where its meaning is "A 
process of resolving something into its constituent elements or removing complication in order to 
clarify it". The same word is also sometimes used for another process: resolving or decomposing a 
set of overlapping peaks into separate additive components, usually by the technique of multiple 
regression (page 49) or iterative least-squares   curve fitting of a peak model to the data set (page 54). 
That process is actually conceptually and mathematically distinct from Fourier deconvolution 
discussed here, because in Fourier deconvolution the underlying peak shape is unknown but the 
broadening function is assumed to be known, whereas in iterative least-squares curve fitting the 
underlying peak shape is assumed to be known. It's confusing to use the same word for both! When I 
write “deconvolution”, I mean Fourier deconvolution, not multiple regression or curve fitting.
* Fourier transforms are usually expressed in terms of complex numbers, with real and imaginary 

parts. If the Fourier transform of the first signal is a + ib, and the Fourier transform of the second 
signal is c + id, then the ratio of the two Fourier transforms is

by the rules for the division of complex numbers.
SPECTRUM (page 70) has a Fourier deconvolution function. 

Matlab and Octave have a built-in function for Fourier decon­
volution: deconv. A example of its application is shown here. The 
vector yc (line 6) represents a noisy signal (y) previously convoluted 
with a known “transfer function” c before being measured as yc. In 
line 7, c is deconvoluted from yc, to try to recover the original signal 
y before the convolution (as ydc). This works only if the transfer 
function c is known. Noise added to the original signal (line 4) is 
recovered unchanged by the deconvolution; in contrast, noise added 
after the convolution by the transfer function (line 7) will be 
significantly amplified in the recovered signal ydc.
X=0:.01:20;
y=zeros(size(x));             % Start with 2000 0s
y(900:1100)=1;                % Add a rectangular pulse 200 points wide
y=y+.01.*randn(size(y));      % Add some random noise before the convolution
c=exp(-(1:length(y))./30);    % exponential trailing convolution function
yc=conv(y,c,'full')./sum(c);  % Create exponential rectangular function yc
% yc=yc+.01.*randn(size(yc)); % Add some random noise after convolution
ydc=deconv(yc,c).*sum(c);     % Deconvolute exponential function c from yc
subplot(2,2,1);plot(x,y);title('original y');subplot(2,2,2);plot(x,c);title('c')
subplot(2,2,3);plot(x,yc(1:2001));title('yc');
Alternatively, you could perform the deconvolution yourself without using the built-in Matlab/Octave 
"deconv.m" function by using the "fft.m" function to compute the Fourier transforms of yc and of c, dividing 
them point-by-point, then inverse transforming the result with the "ifft.m" function. Note that c must be zero-
filled to match the size of yc: ydc=ifft(fft(yc)./fft([c zeros(1,2000)])).*sum(c); 
The results are essentially the same (except for the numerical floating point precision of the calculation, 
which is usually negligible), and the elapsed time is actually less that using the deconv function. The related 
script DeconvDemo3.m (click for graphic) is similar to the above, except that it demonstrates Gaussian 
convolution and deconvolution of the same rectangular pulse, utilizing either the fft/ifft formulation or the 
custom function deconvgauss.m. Again, note that noise added after the convolution is much more serious.

 Appendix H, page 121, shows another example with multiple Gaussian peaks (similar to the signal at the top 
of page 32) in which the peak parameters of the underlying signal are measured by curve fitting (page 54) 
after the broadening convolution is removed by Fourier deconvolution.
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Fourier filter
The Fourier filter is a type of filtering or smoothing function that is based on the frequency 
components of a signal. It works by taking the Fourier transform of the signal, manipulating the 
amplitudes of the frequency components, then inverse transforming the result. Care must be taken to 
use both the sine and cosine (or frequency and phase, or real and imaginary) parts of the transform. 

The signal at the far left seems to be only random noise, but its power spectrum (Window 2, second from 
left) shows that high-frequency components dominate the signal. The power spectrum is expanded in the X 
and Y directions to show more clearly the low-frequency region (Window 1, right). Working on the 
hypothesis that the components above the 20th harmonic are noise, a simple Fourier cut-off function can be 
used to delete the higher harmonics and to reconstruct the signal from the first 20 harmonics. The result (far  
right) reveals two bands at about x=200 and x=300 that were totally obscured by noise.
An example of the application of the Fourier filter is shown above. The assumption is made here that 
the frequency components of the signal fall mostly at low frequencies and those of the noise fall 
mostly at high frequencies, so all the frequency components above a certain limit are simply cut off 
(multiplied by zero). The cut-off frequency is adjusted so that it will allow most of the noise to be 
eliminated while not distorting the signal significantly. Other types of filters, such as low-pass, high-
pass, band-pass, or band-reject (notch), can be constructed simply by manipulating the amplitudes of 
the Fourier transform.
SPECTRUM includes a crude Fourier low-pass filter function with adjustable harmonic cut-off. 
Matlab and Octave: FouFilter.m is a more flexible Fourier filter that can serve as a low-pass, high-pass, 
band-pass, or band-reject (notch) filter with variable cut-off rate. It has the form: 
ry=FouFilter(y,samplingtime,centerfrequency,frequencywidth,shape,mode)
where y is the time-series signal vector, 'samplingtime' is the total duration of sampled signal in seconds, 
milliseconds, or microseconds; 'centerfrequency' and 'frequencywidth' are the center frequency and width of 
the filter in Hz, KHz, or MHz, respectively; 'Shape' determines the sharpness of the cut-off. If shape = 1, the 
filter is Gaussian; as shape increases the filter shape becomes more and more rectangular. Set mode = 0 for 
bandpass filter, mode = 1 for band-reject (notch) filter. FouFilter returns the filtered signal in ry. It can 
handle signals of virtually any length, limited only by the memory in your computer. Example:
clf;subplot(211);y=randn(size(1:1000));plot(y);
title('White noise')
subplot(212);plot(FouFilter(y,1,19,2,2,0))
title('narrow band of frequencies')
 iFilter 4.1, an Interactive Fourier Filter for Matlab shown on the 
right, allows you to adjust the Fourier filter parameters (center 
frequency, filter width, and cut-off rate) while observing the effect on 
the signal output dynamically, with keyboard controls that allow you 
to adjust the filter parameters continuously while observing the effect 
on your signal dynamically: center frequency, filter width, shape, 
plotmode (1=linear; 2=semilog frequency; 3=semilog amplitude; 
4=log-log) and filter mode ('band-pass', 'low-pass', 'high-pass', 'band-
reject (notch), 'comb pass', and 'comb notch'). In the comb modes, the 
filter has multiple bands located at frequencies 1, 2, 3, 4... times the 
center frequency, each with the same (controlable) width and shape. 
This self-contained Matlab function does not require any toolboxes 
or add-on functions. Download any of these functions from http://tinyurl.com/cey8rwh. For instructions, 
see http://terpconnect.umd.edu/~toh/spectrum/InteractiveFourierFilter.htm

MorseCode.m shows the abilities and limitations of Fourier filtering. It creates a pulsed fixed frequency sine 
wave that spells out “SOS” in Morse code, adds random noise so the SNR is very poor, then uses a Fourier 
bandpass filter tuned to the signal frequency. As the bandwidth is reduced, the signal-to-noise ratio improves, 
but if the bandwidth is too narrow, the response time is too slow to give distinct “dits” and “dahs”.  (The step 
response time is inversely proportional to the bandwidth). Click to watch an mp4 video of this, with sound.
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Integration and peak area measurement 
The numerical integration of digitized signals finds application in analytical signal processing mainly 
as a method for measuring the areas under the curves of peak-type signals, especially in chroma  ­
tog  raphy, a class of chemical measurement techniques in which a mixture of components is made to 
flow through a chemically-prepared tube or layer in which some of the components in the mixture 
travel faster than others, followed by a detector that records a signal for each component after 
separation. Ideally, the components are sufficiently separated so that each forms a distinct peak in the 
detector signal. The magnitude of the peaks are calibrated to the concentration of that component by 
measuring the peaks obtained from "standard solutions" of known concentration (page 39, 41). In 
chromatography it is common to measure the area under the detector peaks rather than the height of 
the peaks. That's because peak area is less sensitive to the influence of peak broadening (dispersion) 
mechanisms that cause the molecules of a specific substance to be be diluted and spread out rather 
than being concentrated on one "plug" of material as it travels. These dispersion effects, which arise 
from many sources, cause chromatographic peaks to become shorter, broader, and more unsym- 
metrical, but they have little effect on the total area under the peak, as long as the total number of 
molecules remains the same. If the detector response is linear with respect to the concentration of the 
material, the peak area remains proportional to the total quantity of substance passing into the 
detector, even though the peak height is smaller. In such situations peak area measurements are often 
found to be more reliable than peak height measurements (see page 125). The peak heights or areas 
are then converted into concentrations by constructing calibration curves with standard samples. 
  Before computers, it was common to measure peak areas by using a ball-and disk analog integrator, 
or by counting the grid squares under a curve recorded on gridded graph paper, or by cutting and 
weighing peaks on a paper recording, or by figuring the area under a triangle drawn with its sides 
tangent to the sides of the peak, or by integrating the signal and measuring the heights of the 
resulting steps. But now that computing power is built into or connected to most measuring 
instruments, more accurate and convenient digital methods can be employed. However it is 
measured, the units of peak area are the product of the x and y units. Thus, in a chromatogram where 
the x is time in minutes and y is volts, the area is in volts-minute. Because of this, the numerical 
magnitude of peak area will always be different from that of the peak height. If one is performing a 
quantitative analysis of unknown samples by means of a calibration curve, the same method of 
measurement must be used for both the standards and the samples. 
  In chromatographic analysis there is often the problem of measuring the area under the curve of the 
peaks when they are not well resolved or are superimposed on a background. For example, the figure 
below shows a series of four computer-synthesized Gaussian peaks that all have the same height, 
width, and area, but the overlap between the last three peaks makes it harder to measure their areas.

Left: Peak area measurement for overlapping peaks, using the  
perpendicular drop method (vertical lines at the bottom) and  

tangent skim method (shaded area).
The classical way to handle this problem is to draw two 
vertical lines from the left and right bounds of the peak 
down to the x-axis and then to measure the total area 
bounded by the signal curve, the x-axis (y=0 line), and the 
two vertical lines. This is often called the perpendicular 
drop method; it's an easy task for a computer but tedious to 
do by hand. The idea is illustrated for the second peak from 
the left in the figure . The left and right bounds of the peak 

are usually taken as the valleys (minima) between the peaks. Using this method, you can estimate the 
area of the second peak to an accuracy of about 0.3% and the third and fourth peaks to an accuracy 
of better than 4%. However, this simple method is not accurate if the peaks are superimposed on a 
non-zero baseline or if the peaks are asymmetrical, very different in height, or too highly overlapped, 
as is the case for the last two peaks in this example. Highly overlapped peaks can be measured by 
curve fitting (page 54). In the case where a peak is superimposed on a much broader curved baseline, 
you can use the tangent skim method, which measures the area between the curve and a linear 
baseline drawn across the bottom of the peak (e.g. the shaded area in the figure above). On the other 
hand, peak height measurements are less interfered with by neighboring, slightly overlapping peaks. 

35

https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
https://terpconnect.umd.edu/~toh/spectrum/SignalIntegration.png
https://terpconnect.umd.edu/~toh/spectrum/SignalIntegration.png
http://terpconnect.umd.edu/~toh/spectrum/triangulation.png
http://terpconnect.umd.edu/~toh/spectrum/triangulation.png
https://en.wikipedia.org/wiki/Ball-and-disk_integrator
https://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
http://terpconnect.umd.edu/~toh/models/CalibrationCurve.html
https://en.wikipedia.org/wiki/Chromatography
https://en.wikipedia.org/wiki/Chromatography
https://en.wikipedia.org/wiki/Chromatography


Moreover, peak area measurements are difficult if the peaks overlap. Iterative least-squares curve 
fitting (pages 54-69) can measure the separate areas of overlapping peaks, but it requires that the 
underlying peak shape be known; the exponential-broadened Gaussian peak shape is the most 
commonly used for that application, especially in chromatography. In some cases, even the 
background can be accounted for by curve fitting.  
Software details. (Download from http://tinyurl.com/cey8rwh  )

Spreadsheets. CumulativeSum.xls is a spreadsheet template that illustrates the integration of a peak-type 
signal by normalized cumulative sum; you can paste your own data into columns A and B. 
CumulativeSumExample.xls is the same with example data. 
Matlab and Octave have built-in commands for the sum of elements (“sum”, “cumsum”), trapezoidal 
numerical integration (“trapz”), and adaptive Simpson quadrature (“quad”). For example:
>> x=-5:.1:5; y=exp(-(x).^2);trapz(x,y)

accurately computes the area under the curve of an 
isolated   Gaussian, which is theoretically the square 
root of p, about 1.7725. (See page 125 for a Matlab/ 
Octave comparison of area methods).
iSignal (page 85) performs several of the signal 
processing functions described in this tutorial, 
including measurement of peak area using Simpson's 
Rule, the perpendicular drop and tangent skim 
methods, and baseline subtraction from a series of 
peaks using a manual piecewise-linear approximation. 
To demonstrate the effect of peak overlap, here's a 
Matlab/Octave experiment that creates four computer-
synthesized Gaussian peaks that all have the same 
height (1.000), width (1.665), and area (1.772) but 
with different degrees of overlap:

x=[0:.01:18];
y=exp(-(x-4).^2) + exp(-(x-9).^2) + exp(-(x-12).^2) + exp(-(x-13.7).^2);
isignal(x,y);
To use iSignal to measure the areas of each of these peaks by the perpendicular drop method, use the pan and 
zoom keys to position the two outer cursor lines (dotted magenta lines) in the valley on either side of the 
peak. The total of each peak area will be displayed below the upper window: 
Peak #   Position       Height     Width      Area
   1       4.00         1.00       1.661      1.7725
   2       9.001        1.0003     1.6673     1.77
   3      12.16         1.068      2.3        1.78
   4      13.55         1.0685     2.21       1.799
Peak fitting. If the peaks are much more overlapped that this, however, curve fitting (introduced on page 54) 
works better than perpendicular drop or integration/step height, for example using iSignal (page 85), 
peakfit.m (page 90) or ipf.m (page 95). Sometimes a curved baseline can be corrected by fitting it using one 
of the basic peak shapes (e.g. Gaussian, Lorentzian) or a polynomial (see Example 12b on page 92 and 
Example 20 on page 94). Matlab/Octave experiments demonstrate methods of baseline correction and the 
application to overlapping exponentially broadened peaks. A chromatography example is given on page 96. 
iPeak (see page 74) can also be used to estimate peak areas. It uses the same Gaussian curve fitting method 
as iSignal, and it has the advantage that it can detect and measure all the peaks in a signal in one operation, 
but the areas are accurate only for well-separated Gaussian or Lorentzian peaks. In general, the most accurate 
peak area measurements can be made with iterative least-squares peak fitting (page 54), for example using 
peakfit.m or ipf.m (page 90, 95, 96), provided that the shape of the peaks is known. In all of these methods, 
the presence of a background signal on which the peaks are superimposed will greatly influence the 
measured peak area if not corrected or compensated. iSignal, iPeak, and peakfit all have four automatic 
baseline correction modes (page 62), and iSignal and iPeak have a multipoint piecewise linear background 
subtraction (page 86). 
For gas chromatography and CG/MS specifically, I recommend Philip Wenig's OpenChrom software 
(screen image), an open source data system that can import binary and textual chromatographic and GC/MS 
data files directly in several common data formats. It includes methods to detect baselines and peaks and to 
integrate and identify peaks. Extensive documentation is available. It runs on Windows, Linux, Solaris and 
Mac OS X. The program and its documentation (currently version 1.1.0) is regularly updated by its author.
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Curve fitting A: Linear Least Squares
The objective of curve fitting is to find the parameters of a mathematical model that describes a set 
of (usually noisy) data in a way that minimizes the difference between the model and the data. The 
most common approach is the “linear least squares” method, also called “polynomial least squares”, 
a well-known mathematical procedure for finding the coefficients of polynomial equations that are a 
“best fit” to a set of X,Y data. A polynomial equation expresses the dependent variable Y as a 
polynomial in the independent variable X, for example as a straight line (Y = a + bX, where a is the 
intercept and b is the slope), or a quadratic (Y = a + bX + cX2), or a cubic (Y = a + bX + cX2 + dX3), 
or higher-order polynomial. Those coefficients (a, b, c, etc) can be used to predict values of Y for 
each X. “Least squares” simply means that the squares of the differences between the actual 
measured Y values and the Y values predicted by that equation are minimized. It does not mean a 
"perfect" fit; in most cases, a least-squares best fit does not go through all the points in the data set. 
Above all, a least-squares fit must conform to the selected model - for example, a straight line or a 
quadratic parabola - and there will almost always be some data points that do not fall exactly on the 
best-fit line, either because of random error in the data or because the model is not capable of 
describing the data exactly.

  In all these cases, Y is a linear function of the parameters a,b,c, etc. This is why we call it a 
“linear” least-squares fit, not because the plot of X vs Y is linear. Only for the first-order 
polynomial is the plot of X vs Y linear.

  Least-squares fits can be calculated by some hand-held calculators and smartphones, by spread­
sheets, and by dedicated computer programs (see page 46 for details). Although you could draw the 
best-fit straight line by visual estimation and a straightedge, the least-squares method is more 
objective and easier to automate. (If you were to give the same set of data to five different people 
and ask them to estimate the best-fit line visually, you'd get five slightly different answers, but if you 
gave that data set to five different computer programs, you'd get the same answer every time).
  Here's a very simple example: the historical prices of different sizes of SD memory cards 
advertised in the February 19, 2012, issue of the New York Times. 

Memory Capacity 
in GBytes 

Price in US dollars 

2 $9.99 

4 $10.99 

8 $19.99 

16 $29.99 

  What's the relationship between memory capacity and cost? 
Of course, we expect that the larger-capacity cards should cost 
more than the smaller-capacity ones, and if we plot cost vs 
capacity (graph on the right), we can see a rough straight-line 
relationship. Using a linear least-squares calculation, where X 
= capacity and Y = cost, the straight-line equation that most 
simply describes these data (rounding to the nearest penny) is: 
        Cost = $6.56 + Capacity * $1.49 
So, 1.49 is the slope (b) and 6.56 is the intercept (a). (The 
equation is plotted as the solid line that passes among the data 
points in the figure). Basically, this is saying that the cost of a 
memory card consists of a fixed cost of $6.56 plus $1.49 for 
each Gbyte of capacity. How can we interpret this? The $6.56 
represents the costs that are the same regardless of the memory capacity: a reasonable guess is that it 
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includes things like packaging (the different cards are the same physical size and are packaged the 
same way), shipping, marketing, advertising, and retail shop shelf space. The $1.49 (1.49 dollars/ 
Gbyte) represents the increasing retail price of the larger integrated circuit chips inside the larger 
capacity cards, primarily because they have more value for the consumer but also may cost more to 
make because they use more silicon, are more complex, and have a higher chip-testing rejection rate 
in production. So in this case the slope and intercept have real physical and economic meanings. 

  What can we do with this information? First, we can see how closely the actual prices conform to 
this equation: pretty well but not perfectly. The line of the equation passes among the data points but 
does not go exactly through each one. That's because actual retail prices are also influenced by 
several factors that are unpredictable and random: local competition, supply, demand, and even 
rounding to the nearest “neat” number; all those factors constitute the “noise” in these data. The least 
squares procedure also calculates R2, called the coefficient of determination or the correlation 
coefficient, which is an indicator of the “goodness of fit”. R2 is exactly 1.0000 when the fit is perfect, 
less than that when the fit is imperfect. The closer to 1.0000 the better. An R2 value of 0.99 means a 
“fairly good” fit; 0.999 is a “very good” fit. 

  The second way we can use these data is to predict the likely prices of other card capacities, if they 
were available, by putting in the capacity into the equation and evaluating the cost. For example, a 
12 Gbyte card would be expected to cost $24.44 according to this model. And a 32 Gbyte card would 
be predicted to cost $54.29, but beware, that would be predicting beyond the range of the available 
data. That's called “extrapolation”- and it's very risky because you don't really know what other 
factors may influence the data beyond the last data point. You could also solve the equation for 
capacity as a function of cost and use it to predict how much capacity could be expected to be bought 
for a given amount of money (if such a product were available). 

Here's another related example: the historical prices of flat-
screen LCD TVs as a function of screen size, as they were 
advertised on the Web in 2012 (yes, those sets really did cost 
that much back then). The prices of five selected models, 
similar except for screen size, are plotted against the screen 
size in inches, in the figure on the left, and are fit to a first-
order (straight-line) model. As for the previous example, the 
fit is not perfect. The equation of the best-fit model is shown 
at the top of the graph, along with the R2 value (0.9649) 
indicating that the fit is not particularly good. Worse, you 
can see from the best-fit line that a 40 inch set would be 
predicted to have a negative cost! They would pay you to 
take these sets? I don't think so. 

The goodness of fit is shown even more clearly in the little graph at the bottom of this figure, with 
the red dots, which shows the “residuals” - the differences between each data point and the least-
squares fit at that point. You can see that the deviations from zero are fairly large (±10%), but more 
important, they are not completely random; they form a clearly visible U-shaped curve. This is a tip-
off that the straight-line model we have used here may not be ideal and that we might get a better fit 
with another model. (Or it might be just chance: the first and last points might be higher than 
expected because those were unusually expensive TVs for those sizes. How would you really know 
for sure, unless your data collection was very careful?) 
  Linear least-squares calculations can fit not only straight-line data, but any set of data that can be 
described by a polynomial, for example a second-order (quadratic) equation (Y = a + bX + cX2). 
Applying a second-order (“quadratic”) fit to these data, we get the graph on the right. Now the R2 

value is higher, 0.9985, indicating that the fit is much better (but again not perfect), and also the 
residuals (the red dots at the bottom) are smaller and more random. 
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  The observation that a quadratic fits the data better is not 
really surprising, because the size of a TV screen is quoted as 
the length of the diagonal (from one corner of the screen to its 
opposite corner), but the quantity of material, the difficulty of 
manufacture, the weight, and the power supply requirements of 
the screen all scale with the screen area. Area is proportional to 
the square of the linear measure, so the inclusion of an X2 term 
in the model is quite reasonable in this case. With this quadratic 
fit, the 40 inch set would be predicted to cost under $500, which 
is more sensible than the linear fit. In this case a quadratic 
(rather than linear) model is justified not simply because it fits 
the data better, but because it is expected in principal based on 
the relationship between length and area. 

A third example is taken from analytical chemistry. The 
output signals of analytical instruments must usually be 
calibrated to measure concentrations by preparing 
calibration curves that plot signals as a function of the 
concentration of carefully-prepared standard solutions. 
The graph on the left shows a straight-line calibration data 
set where X = concentration of the standard and Y = 
instrument reading (Y = a + bX). (If you are viewing this 
online, click to   download   that data). The blue dots are the 
data points. They don't all fall in a perfect straight line 
because of random noise and measurement error in the 
instrument readings and possibly also volumetric errors in 
the concentrations of the standards (which are usually 

prepared in the laboratory by diluting a stock solution). For these data, the measured slope is 9.7926, 
the intercept is 0.199 and R2=0.9864.
  The slope of the calibration curve is often called the “sensitivity”. The intercept indicates the 
instrument reading that would be expected if the concentration were zero. Ordinarily instruments are 
adjusted (“zeroed”) by the operator to give a reading of zero for a concentration of zero, but random 
noise and instrument drift can cause the intercept to be non-zero for any particular calibration set. In 
fact, this data set is computer-generated; the “true” value of the slope was exactly 10 and of the 
intercept was exactly zero before noise was added, and the noise was added by a random-number 
generator with zero mean. So in this case the presence of the noise caused this particular 
measurement of slope to be off by about 2%. Had there been a larger number of standard solutions 
over the same concentration range, the calculated values of slope and intercept would almost 
certainly have been better. (On average, the accuracy of measurements of slope and intercept 
improve with the square root of the number of points in the data set). 

  Once the calibration curve is established, it can be used to determine the concentrations of 
unknown samples that are measured on the same instrument, for example by solving the equation for 
concentration as a function of instrument reading. The concentration and the instrument readings can 
be recorded in any convenient units, as long as the same units are used for calibration and for the 

measurement of unknowns.

  A plot of the “residuals” for the calibration data (left) 
raises a question. Except for the 6th data point (at a concen­

tration of 0.6), the other points seem to form a rough U-shaped curve, indicating that a quadratic 
equation might be a better model for those points than a straight line. Can we reject the 6th point as 
being an “outlier”, perhaps caused by a mistake in preparing that solution standard or in reading the 
instrument for that point? Discarding that point would improve the quality of fit (R2=0.992 instead of 
0.986), especially if a quadratic fit were used (R2=0.998). The only way to know for sure is to repeat 
that standard solution preparation and calibration and see if that U shape persists in the residuals. 
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Many instruments do give a very linear calibration response, while others show a slightly non-linear 
response under some circumstances. But in fact, the calibration data used for this particular example 
were computer-generated to be perfectly linear, with normally-distributed random numbers added to 
simulate noise. So actually that 6th point is really not an outlier and the underlying data are not 
curved, but you would not know that in a real application. It would have been a mistake to discard 
that 6th point and use a quadratic fit in this case. Moral: don't throw out data points just because they 
seem a little off, unless you have good reason, and don't use higher-order polynomial fits just to get 
better fits if the instrument is known to give linear response under those circumstances. Even 
perfectly normally-distributed random errors can occasionally give individual deviations that are 
quite far from the average and might tempt you into thinking that they are outliers. Don't be fooled. 
(Full disclosure: I obtained the above example by “cherry-picking” from among dozens of randomly 
generated data sets, in order to find one that, although actually random, seemed to have an outlier).

Reliability of curve fitting results
  How reliable are the slope, intercept and other polynomial coefficients obtained from least-squares 
calculations on experimental data? The single most important factor is the appropriateness of the 
model chosen; it's critical that the model (e.g. linear, quadratic, whatever) be a good match to the 
actual underlying shape of the data. You can choose a model based on the known and expected 
behavior of that system (like using a linear calibration model for an instrument that is known to give 
linear response under those conditions) or you can choose a model that always gives randomly-
scattered residuals that do not exhibit a regular shape. But even with a perfect model, the least-
squares procedure applied to repetitive sets of measurements will not give the same results every 
time because of random error (“noise”) in the data. If you were to repeat the entire set of measure­
ments many times and do least-squares calculations on each data set, the standard deviations of the 
coefficients would vary directly with the standard deviation of the noise and inversely with the 
square root of the number of data points in each fit, all else being equal. The problem, obviously, is 
that it is not always possible to repeat the entire set of measurements many times. You may have 
only one set of measurements and each experiment may be very expensive to repeat. So, it would be 
good to have some sort of short-cut method that would predict the standard deviations of the 
coefficients without actually repeating the measurements. Here I will describe three general ways to 
predict the standard deviations of the polynomial coefficients. 

a. Algebraic Propagation of errors. The classical way is based on the rules   for mathematical   error 
propagation. The propagation of errors of the entire curve-fitting method can be described in closed-
form algebra by breaking down the method into a series of simple differences, sums, products, and 
ratios, and applying those rules to each step. The result of this procedure for a first-order (straight 
line) least-squares fit are shown in the last two lines of the set of equations on page 46. Essentially, 
these equations make use of the deviations from the least-squares line (the “residuals”) to estimate 
the standard deviations of the slope and intercept, based on the assumption that the deviations in that 
single data set are random and representative of the deviations that would be obtained upon repeated 
measurements. Because these predictions are based only on a single data set, they are good only 
insofar as that data set is typical of others that might be obtained in repeated measurements. If your 
random deviations happen to be small when you acquire your data set, you'll get a deceptively good-
looking fit, but then your estimates of the standard deviation of the slope and intercept will be too 
low, on average. If your random deviations happen to be large in that data set, you'll get a decep­
tively bad-looking fit, but then your estimates of the standard deviation will be too high, on average. 
The problem becomes worse with a small number of data points. It's still worth the trouble to 
calculate the predicted standard deviations of slope and intercept, but keep in mind that these 
predictions are accurate only if the number of data points is large and if the errors are random and 
normally distributed. A larger number of data points is always better, but the problem is that, in 
laboratory work, getting more data may not be possible or cost effective. In analytical chemistry 
calibration, for example, the labor and cost of preparing and running large numbers of standard 
solutions, and safely disposing of them afterwards, often limits the number of standards to a rather 
small set, by statistical standards, so these estimates of standard deviation are often fairly rough. 
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  In the application to analytical calibration, the concentration of the sample Cx is given by Cx = (Sx 
- intercept)/slope, where Sx is the signal given by the sample solution. The uncertainty of all three 
terms contribute to the uncertainty of Cx. The standard deviation of Cx can be estimated from the 
standard deviations of slope, intercept, and Sx using the rules for mathematical error propagation. 

b. Monte Carlo simulation. Another way of estimating the standard deviations of the least-squares 
coefficients is to perform a random-number simulation (a type of Monte Carlo simulation). This 
requires that you know (by previous measurements) the average standard deviation of the random 
noise in the data. Using a computer, you construct a model of your data over the normal range of X 
and Y values (for example Y = intercept + slope*X + noise, where noise is the noise in the data), 
compute the slope and intercept of each simulated noisy data set, then repeat that process many times 
(usually a few thousand) with different sets of random noise, and finally compute the standard 
deviation of all the resulting slopes and intercepts. This is commonly done with normally-distributed 
random white noise, using the RANDN function that many programming languages have. If the 
model is good and the noise is well-characterized, the results will be a very good estimate of the 
expected standard deviations of the least-squares coefficients. If the noise is not white or is not 
constant, but rather varies with the X or Y values, or if the data have been smoothed, then those 
conditions must be included in the simulation. 
  Obviously this method requires a computer and prior knowledge of the noise, and it is not so con­
venient as evaluating a simple algebraic expression. But there are two important advantages to this 
method: (1) is has great generality; it can be applied to curve fitting methods that are too complicated 
for the classical closed-form algebraic propagation of error calculations, even iterative non-linear 
methods; and (2) its predictions are based on the average noise in the data, not the noise in just a 
single data set. For that reason, it gives more reliable estimations, particularly when the number of 
data points in each data set is small. Nevertheless, you can not always apply this method because you 
don't always know the average standard deviation or the frequency distribution of the noise.

  LinearFiMC.m, from http://tinyurl.com/cey8rwh, is a Matlab/Octave script that compares the 
Monte Carlo simulation to the algebraic method above. By running this script with different sizes of 
data sets (NumPoints in line 10), you can see that the standard deviation predicted by the algebraic 
method fluctuates from run to run when NumPoints is small (e.g. 10), but the Monte Carlo pre­
dictions are much more steady. When NumPoints is large (e.g. 1000), both methods agree very well. 
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c. The Bootstrap. The third method is the “bootstrap”, a procedure that involves choosing random 
samples with replacement from a single data set and analyzing each sub-sample the same way (e.g. 
by a least-squares fit). Every data point is returned to the data set after sampling, so that (a) a 
particular data point from the original data set could appear multiple times in a given sub-sample, 
and (b) the number of elements in each bootstrap sub-sample equals the number of elements in the 
original data set. As a simple example, consider a data set with 10 x,y pairs assigned the letters “a” 
through “j”. The original data set is represented as [a b c d e f g h i j], and some typical bootstrap 
sub-samples might be [a b b d e f f h i i] or [a a c c e f g g i j], each bootstrap sample containing the 
same number of data points, but with about half of the data pairs skipped and the others duplicated. 

  You would use a computer to generate hundreds or thousands of bootstrap samples like that and 
apply the calculation procedure under investigation (in this case a linear least-squares, but it could be 
any calculation) to each set. If there were no noise in the data set, and if the model were perfectly 
chosen, then all the points in the original data set and in all the bootstrap sub-samples would fall 
exactly on the model line, and the least-squares results would be the same for every sub-sample. But 
if there is noise in the data set, most bootstrap samples would give a slightly different result for the 
least-squares polynomial coefficients, because each sample has a different subset of the random 
noise. The greater the amount of random noise in the data set, the greater would be the range of 
results from the bootstrap sub-samples. This enables you to estimate the uncertainty of the quantity 
you are estimating, just as in the Monte-Carlo method above. The difference is that the Monte-Carlo 
method is based on the assumption that the noise is can be accurately simulated by a random-number 
generator on a computer (i.e. is random, normally distributed, and has a known standard deviation), 
whereas the bootstrap method uses the actual noise in the data set at hand, just like the algebraic 
method, except that it does not need an algebraic solution of error propagation. The bootstrap 
method thus shares its generality with the Monte Carlo approach, but like the algebraic method is 
limited by the assumption that the noise in that (possibly small) single data set is unsmoothed and is 
representative of the noise that would be obtained upon repeated measurements. Bootstrap 
computations can be done in Matlab/Octave (page 48) or in spreadsheets. The bootstrap method 
cannot, however, correctly estimate the parameter errors resulting from poor model selection. 

  The Matlab/Octave script TestLinearFit.m (download from http://tinyurl.com/cey8rwh) compares 
all three of these methods (the algebraic method, Monte Carlo simulation, and the bootstrap method) 
for a 100-point first-order linear least-squares fit. Each method is repeated on different simulated 
data sets with the same average slope, intercept, and selected noise model, then the standard 
deviations (SD) of the slopes (SDslope) and intercepts (SDint) were compiled:
NumPoints = 100     SD Noise = 9.236    x-range = 30
            Simulation    Algebraic equation  Bootstrap method
           SDslope SDint    SDslope SDint      SDslope SDint
Mean SD:   0.1140  4.1158   0.1133  4.4821     0.1096  4.0203
SD of SDs: 0.0026  0.0927   0.0081  0.3185     0.0122  0.4552

  If the noise is white, the mean standard deviations (“Mean SD”) of the three methods agree very 
well, but the algebraic and bootstrap methods fluctuate more than the Monte Carlo simulation each 
time this script is run (the “SD of the SDs” is higher), because those methods are based on the noise 
in one single 100-point data set, whereas the Monte Carlo simulation reports the average of many 
data sets. If the noise is pink rather than white (page 8), the bootstrap error estimates will also be 
low. Conversely, if the noise is blue (as occurs in processed signals that have been subjected to 
differentiation or that have been deconvoluted from some blurring process), then the errors predicted 
by the algebraic propagation-of-errors and the bootstrap methods will be high. All three methods 
show that the standard deviations are inversely proportional to the square root of the number of data 
points (see EffectOfSampleSize.ods). 
  In simple cases the algebraic method is faster to compute than the other methods, and its validity is 
more readily determined by inspection. On the other hand, an algebraic solution is not always 
possible to obtain (it's quite complicated even for a cubic polynomial fit), whereas the Monte Carlo 
and bootstrap methods, which do not depend on algebraic solutions, can be applied readily to any 
curve-fitting situation, even non-linear iterative least squares (page 54). However, the validity of 
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computer programs is less easy to verify than algebraic solutions and so the Monte Carlo and 
bootstrap error estimates may not be as well trusted as an algebraic derivation, especially by those 
with less computer experience. 
Effect of the number of data points on least-squares fit precision. The spreadsheets 
EffectOfSampleSize.ods or EffectOfSampleSize.xlxs, which collect the results of many runs of 
TestLinearFit.m with different numbers of data points ("NumPoints"), demonstrates that the standard 
deviation of the slope and the intercept decrease if the number of data points is increased; 
specifically, the standard deviations are inversely proportional to the square root of the number of 
data points. These plots really dramatize the problem of small sample sizes, but this must be 
balanced against the cost of obtaining more data points. For example, in analytical chemistry 
calibration, a larger number of calibration points could be obtained either by preparing and 
measuring more standard solutions or by reading each of a smaller number of standards repeatedly. 
The former approach accounts for both the volumetric errors in preparing solutions and the random 
noise in the instrument readings, but the labor and cost of preparing and running large numbers of 
standard solutions, and safely disposing of them afterwards, is limiting. The latter approach is less 
expensive but is less reliable because it accounts only for the random noise in the instrument 
readings. Overall, it better to refine the laboratory techniques and instrument settings to minimize 
error that to attempts to compensate by taking lots of readings. 

Transforming non-linear relationships
In some cases, a fundamentally non-linear relationship can be transformed into a form that is 
amenable to polynomial curve fitting by means of a coordinate transformation (e.g. taking the log or 
the reciprocal of the data) and then applying the least-squares method to the transformed data. For 
example, the signal in the figure below is from a computer simulation of an exponential decay 
(X=time, Y=signal intensity) that has the mathematical form Y = a exp(bX), where a is the Y-value 
at X=0 and b is the decay constant. This is a fundamentally non-linear problem because Y is a non-
linear function of the parameter b. However, by taking the natural log of both sides of the equation, 
we obtain ln(Y)=ln(a) +bX. In this equation, Y is a linear function of both parameters ln(a) and b, so 
it can be fit by the least squares method in order to estimate ln(a) and b, from which you get a by 
computing exp(ln(a)). In this particular example, the “true” values of the coefficients are a =1 and b 
= -0.9, but random noise has been added to each data point, with a standard deviation equal to 10% 
of the value of that data point, in order to simulate a typical experimental measurement in the 
laboratory. An estimate of the values of ln(a) and b, given only the noisy data points, can be 
determined by least-squares curve fitting of ln(Y) vs X. 

Left: An exponential least-squares fit (solid line) applied to a noisy data 
set (points) in order to estimate the decay constant. 

  The best fit equation, shown by the green solid line in the figure, is 
Y =0.959 exp(- 0.905 X), that is, a = 0.959 and b = -0.905, which are 
reasonably close to the expected values of 1 and -0.9, respectively. 
Thus, even in the presence of substantial random noise (10% relative 
standard deviation), you can get reasonable estimates of the 
parameters of the underlying equation (to within about 5%). The 

most important requirement is that the model be good, that is, that the equation selected for the 
model accurately describes the underlying behavior of the system (except for noise). Often that is the 
most difficult aspect, because the underlying models are not always known with certainty. In Matlab 
and in Octave, the fit can be performed in one line: polyfit(x,log(y),1), which returns [b log(a)]. 
(Note that in Matlab and Octave, “log” is the natural log; “log10” is the base-10 log). 

  Other examples of non-linear relationships that can be linearized by coordinate trans-formation 
include the logarithmic (Y = a ln(bX)) and power (Y=aXb) relationships. Methods of this type were 
once very common, back in the days before computers, when fitting anything other than a straight 
line was difficult. It is still used today to extend the range of functional relationships that can be 
handled by common linear least-squares routines and to display relationships in an easily-verified 
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way. Only a few non-linear relationships can be handled this way, however; to fit any arbitrary 
function, use the Non-linear Iterative   Curve Fitting method discussed on page 54).

Fitting Gaussian and Lorentzian peaks. A useful example of transformation to convert a non-
linear relationship into a form that is amenable to polynomial curve fitting is the use of the natural 
log (ln) transformation to convert a Gaussian peak (y = h*exp(-((x-p)/(0.6005612*w)) ^2), where h 
is peak height, p is peak maximum position, and w is the full width at half maximum) into a 
quadratic (y = a + bx + cx2) that can be fit to the data by quadratic least squares. All three parameters 
of the Gaussian (h, p, and w) can be calculated from the three quadratic coefficients a, b, and c by 
solving 3 equations in 3 unknowns (for example, using Wolfram Alpha), resulting in h = exp(a-c*(b/
(2*c))^2), p = -b/(2*c), and w = 2.35703/(sqrt(2)*sqrt(-c)). This is called “Caruana's algorithm”; see 
reference 46 on page 133.

  One advantage of this type of Gaussian curve fitting, as opposed to simple visual estimation, is 
shown in the figure on the next page. The signal is a Gaussian peak with a true peak height of 100 
units, a true peak position of 100 units, and a true half-width of 100 units, but it is sparsely sampled 
only every 31 units on the x-axis. The resulting data set, shown by the red points in the upper left 
quadrant, has only 6 data points on the peak itself. If we were to take the maximum of those 6 points 
(the 3rd point from the left, with x=87, y=95) as the peak maximum, that would not be very close to 
the true values of peak position (100) and peak height (100). If we were to take the distance between 
the 2nd the 5th data points as the peak width, we'd get 3*31=93, compared to the true value of 100. 

On page 25, we learned that you can locate the x-axis position of a peak by finding the zero-crossing 
of the first derivative. However, because the data are sparsely sampled in this example, the actual 
peak falls between two points, making it hard to measure the peak height and position accurately. 

One solution to this is to use curve fitting, taking the natural 
log of the data (upper right) to produce a parabola that can be 
fit with a quadratic least-squares fit (shown by the blue line in 
the lower left). From the three coefficients of the quadratic fit 
you can calculate much more accurate values of the Gaussian 
peak parameters, shown at the bottom of the figure 
(height=100.57; position=98.96; width=99.2). The plot in the 
lower right shows the resulting Gaussian fit (in blue) displayed 
with the original data (red points). The accuracy of those 
calculated peak parameters (about 1% in this example) is far 

better than the previous estimates and is limited only by the noise in the data. (This figure was 
generated in Matlab/Octave, using the script “QuadFitTo  Gaussian  .m”). Note: in order for this 
method to work properly, the data set must not contain any zeros or negative points; if the signal-to-
noise ratio is very poor, it may be useful to smooth the data slightly to prevent this problem. 
Moreover, the original Gaussian peak signal must have a zero baseline, that is, must tend to zero far 
from the peak center. In practice this means that any non-zero baseline must be subtracted from the 
data set before using this method. 

  A similar method can be derived for a Lorentzian peak, which has the form y=h/(1+((x-p)/
(0.5*w))^2), by fitting a quadratic to the reciprocal of the y values. Just as for the Gaussian peak, the 
peak height h, maximum position p, and width w can be calculated from the three quadratic 
coefficients a, b, and c of the quadratic fit: h = 4*a/((4*a*c)-b^2), p = -b/(2*a), and w = 
sqrt(((4*a*c)-b^2)/a)/sqrt(a). Again, the data set must not contain any zero or negative y values.

  In order to apply the above methods to signals containing two or more Gaussian or Lorentzian 
peaks, it's necessary to locate all the peak maxima first, so that the proper groups of points centered 
on each peak can be processed with the algorithms just discussed. That is discussed in the section on 
Peak Finding and Measurement on page 74. (A more general approach to fitting peaks, which works 
for data sets with zeros and negative numbers and also for data with strongly overlapping peaks, is 
the non-linear iterative   curve fitting method, discussed on Page 54). 

  But there is a downside to using coordinate transformation methods to convert non-linear 
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relationships into simple polynomial form: the noise is also effected by the transformation, with the 
result that the propagation of error from the original data to the final results is often difficult to 
predict. In the method just described for measuring the peak height, position, and width of Gaussian 
peaks, the results depends not only on the amplitude of noise in the signal, but also on how many 
points across the peak are taken for fitting. In particular, as you take more points far from the peak 
center, where the y-values approach zero, the natural log of those points approaches negative infinity 
as y approaches zero. The result is that the noise of those low-magnitude points is unduly magnified 
and has a disproportional effect on the curve fitting. This runs counter the usual expectation that the 
quality of the curve fitting results improves with the square root of the number of data points. 

  If you take only the points in the top half of the peak, with Y-values down to one-half of the peak 
maximum, the error propagation (predicted by a Monte Carlo simulation with constant normally-
distributed random noise) shows that the relative standard deviations of the measured peak 
parameters are predicted by these empirical expressions:

Relative standard deviation of the peak position =noise/sqrt(N),
Relative standard deviation of the peak height = 1.73*noise/sqrt(N),
Relative standard deviation of the peak width = 3.62*noise/sqrt(N).

where noise is the standard deviation of the noise in the data and N in the number of data points 
taken for the least-squares fit. You can see from these results that the measurement of peak position 
is most precise, followed by the peak height, with the peak width being the least precise. 

If one were to include points far from the peak maximum, 
where the signal-to-noise ratio is very low, the results 
would be poorer than predicted. These predictions depend 
on knowledge of the noise in the signal; if only a single 
sample of that noise is available for measurement, there is 
no guarantee that sample is a representative sample, 
especially if the total number of points in the measured 
signal is small; the standard deviation of small samples is 
notoriously variable. Moreover, these predictions are 
based on a simulation with constant normally-distributed 
white noise; had the actual noise varied with signal level 

or with x-axis value, or if the probability distribution had been non-normal, those predictions would 
not necessarily have been accurate. The bootstrap method has the advantage that it samples the 
actual noise in the signal. You can download the Matlab/Octave code for this Monte Carlo 
simulation from http://tinyurl.com/cey8rwh. A similar simulation (GaussFitMC2.m) compares this 
method to fitting the entire Gaussian peak with the iterative method on pages 54 - 69, finding that 
the precision of the results is slightly better with the slower iterative method.
Note 1: If you are viewing this document online, you can right-click on any of the m-file links above and 
select Save Link As... to download them for use within Matlab/Octave.

Note 2: In the curve fitting techniques described here and in the next two sections, there is no requirement 
that the x-axis interval between data points be uniform, as is the assumption in many of the other signal 
processing techniques previously covered. Curve fitting algorithms typically accept a set of arbitrarily-spaced 
x-axis values and a corresponding set of y-axis values.
Note 3: It's important that the noisy signal not be smoothed before the least-squares calculations, because 
doing so will not improve the reliability of the least-squares results, but it will cause both the algebraic 
propagation-of-errors and the bootstrap calculations to seriously underestimate the standard deviation of the 
least-squares results. You can demonstrate using the script TestLinearFit.m by setting SmoothWidth in line 
10 to something higher than 1, which will smooth the data before the least-squares calculations. This has no 
significant effect on the actual standard deviation as calculated by the Monte Carlo method, but causes the 
predicted standard deviation calculated by both the algebraic and the bootstrap method (page 41) to be much 
too low. (If the data are contaminated with large narrow spikes, it may be best to apply a median filter, page 
15, before least-squares computations).
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Math details
The least-squares best fit for an x,y data set can be computed using only basic arithmetic and square roots. 
Here are the relevant equations for computing the slope and intercept of the first-order best-fit equation, y = 
intercept + slope*x, as well as the predicted standard deviation (SD) of the slope and intercept, and the 
coefficient of determination, “R2”, which is an indicator of the “goodness of fit”. ( R2 is 1.0000 if the fit is 
perfect and less than that if the fit is imperfect):

  n = number of x,y data points 
  sumx = Σx
  sumy = Σy
  sumxy = (Σ x*y)
  sumx2 = (Σ x*x)
  meanx = sumx / n
  meany = sumy / n
  slope = (n*sumxy - sumx*sumy) / (n*sumx2 - sumx*sumx 
  intercept = meany-(slope*meanx)
  ssy = Σ(y-meany)^2
  ssr = Σ(y-intercept-slope*x)^2
  R2 = 1-(ssr/ssy)
  SD of slope = SQRT(ssr/(n-2))*SQRT(n/(n*sumx2 - sumx*sumx))
  SD of intercept = SQRT(ssr/(n-2))*SQRT(sumx2/(n*sumx2 - sumx*sumx)) 

(In these equations, Σ represents summation; for example, Σx means the sum of all the x values, and (Σ x*y) 
means the sum of all the x*y products, etc). A slightly more complex set of equations can be written to fit a 
second-order (quadratic or parabolic) equations to a set of data. 
  The last two lines predict the standard deviation of the slope and intercept, based only on that data sample, 
assuming that the noise is white and normally distributed. These are estimates of the variability of slopes and 
intercepts you are likely to get if you repeated the data measurements over and over multiple times under the 
same conditions, assuming that the deviations from the straight line are due to random variability and not 
systematic error caused by non-linearity. If the deviations are random, they will be slightly different from 
time to time, causing the slope and intercept to vary from measurement to measurement, with a standard 
deviation predicted by these last two equations. However, if the deviations are caused by systematic non-
linearity, the deviations will be the same from from measurement to measurement, in which case the 
prediction of these last two equations will not be relevant, and you might be better off using a polynomial fit 
such as a quadratic or cubic. The reliability of these standard deviation estimates depends also on the number 
of data points n in the curve fit; they improve with the square root of n, assuming the deviations are random.
  These calculations could be performed step-by-step by hand, but most people use a calculator, a 
spreadsheet, a program written in any programming language, a math Web page such as Wolfram Alpha 
(using the “linear fit” command), or a Matlab  /  Octave   script.
  The minimum number of data points required for a polynomial least-squares fit depends on the polynomial 
order: you need a minimum of two points for a first-order (straight-line) fit, a minimum of three points for a 
second-order (quadratic or parabolic) fit, a minimum of four points for a third-order (cubic) fit, etc, always 
one more than the polynomial order. With that minimum number of points, the fit will always be artificially 
perfect, no matter how large the errors in the data might be; so you get no hint of possible errors in the data 
because the best-fit line will always go right though all the points. The greater the number of points the 
better, because (a) you can see where the model does not fit the data, and (b) the errors have a greater chance 
of partially “canceling out”, resulting in fit coefficients that are closer to the true long-term average.
Web sites: Zunzun can curve fit and surface fit 2D and 3D data online with a rich set of error histograms, 
error plots, curve plots, surface plots, contour plots, VRML, auto-generated source code, and PDF file 
output. Wolfram Alpha includes capabilities for least-squares regression analysis, including linear, 
polynomial, exponential, and logarithmic fits. Statpages.org can perform a huge range of statistical 
calculations and tests, and there are several Web sites that specialize in plotting and analyzing data that have 
curve-fitting capabilities, including Plotly and Plotter.
Spreadsheets can perform the math described above easily. The two spreadsheets shown below, 
LeastSquares.xls and LeastSquares.odt for linear fits, and QuadraticLeastSquares.xls and 
QuadraticLeastSquares.ods for quadratic fits, utilize the expressions given above to compute and plot linear 
and quadratic (parabolic) least-squares fit, respectively. Download from http://tinyurl.com/cey8rwh. 
  Modern spreadsheets also have built-in facilities for computing polynomial least-squares curve fits of any 
order. For example, the LINEST function in both Excel and OpenOffice Calc can be used to compute 
polynomial and other curvilinear least-squares fits. (In addition to the best-fit polynomial coefficients, the 
LINEST function also calculates at the same time the standard error values, the determination coefficient
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LeastSquares QuadraticLeastSquares
 (R2), the standard error value for the y estimate, the F statistic, the number of degrees of freedom, the 
regression sum of squares, and the residual sum of squares). The disadvantage of LINEST, compared to 
working out the math using the math described above, is that it is more difficult to adjust to a variable 
number of data points and to remove suspect data points. 

  You can also download the spreadsheets pictured above, in Excel or OpenOffice Calc format, that automate 
the computation of those equations, plot the data and the best-fit line, and compute the expected standard 
deviation of the slope and intercept, requiring only that you type in (or paste in) the x-y data. There is one for 
linear fits (LeastSquares.xls/ods) and one for quadratic (parabolic) fits (QuadraticLeastSquares.xls/ods). 

Applications. For some examples of applications to calibration in chemical analysis, see “Calibration     Curve 
Fitting   Methods in   Absorption Spectroscopy” and “Error propagation   in Analytical   Calibration”. For the 
purposes of measurement calibration, there are specific versions of these spreadsheets that use the best-fit 
equation to calculate x (e.g. the concentrations) given the instrument responses of the unknowns. For more 
on this, see http://terpconnect.umd.edu/~toh/models/  Calibration  Curve.html. A typical application of these 
spreadsheet templates to pXRF (X-ray fluorescence) analysis is show in this YouTube video: 
https://www.youtube.com/watch?v=U3kzgVz4HgQ

GaussianLeastSquares.odt/.xls are spreadsheets that fit a quadratic function to the natural log of y(x) and 
computes the height, position, and width of the best-fit Gaussian. LorentzianLeastSquares.ods/.xls fits a 
quadratic function to the reciprocal of y(x) and computes the height, position, and width of the best-fit 
Lorentzian. Note that the data may not contain zeros or negative points, and the baseline (value that y 
approaches far from the peak center) must be zero. See page 43.

SPECTRUM (page 70) includes least-squares curve fitting for polynomials of order 1 through 5, plus 
exponential, logarithmic, and power relationships. 

Matlab and Octave have simple built-in functions for polynomial least-squares curve fitting: polyfit and 
polyval. For example, if you have a set of x,y data points in the vectors “x” and “y”, then the vector of 
coefficients for the least-squares fit, in decreasing powers of x, are given by coef=polyfit(x,y,n), where 
“n” is the order of the polynomial fit: n = 1 for a straight-line fit, 2 for a quadratic (parabola) fit, etc. For a 
straight-line fit (n=1), coef(1) is the slope (“b”) and coef(2) is the intercept (“a”). For a quadratic fit (n=2), 
coef(1) is the x2 term (“c”), coef(2) is the x term (“b”) and coef(3) is the constant term (“a”). The fit equation 
can be evaluated using the function polyval, for example y= polyval(coef,x). This works for any order 
of polynomial fit (“n”). Writing [coef,S] = polyfit(x,y,n) also returns a structure 'S' for use with 
polyval to obtain coefficient error estimates (page 40); the vector of standard deviations can be computed 
directly from S by: sqrt(diag(inv(S.R)*inv(S.R')).*S.normr.^2./S.df)', in the same order as 
the coefficients. You can plot the data in blue and the fitted equation in red together in one graph this way: 
xx=linspace(min(x),max(x)); plot(x,y,'ob',xx,polyval(coef,xx),'-r').

You may also perform the polynomial least squares calculations for the row vectors x,y without using the 
Matlab/Octave built-in polyfit function by using the matrix method. The coefficients of a first order fit are 
given by y/[x;ones(size(y))] and a second order (quadratic) fit by y/[x.^2;x;ones(size(y))] . 
For higher-order polynomials, just add additional x.^n rows to the denominator matrix, e.g. for a third order: 
y/[x.^3;x.^2;x;ones(size(y))]. The coefficients are returned in the same order as polyfit.

Fitting peaks. The function gaussfit.m performs a least-squares fit of a single Gaussian function to an x,y 
data set, returning the height, position, and width of the best-fit Gaussian. The syntax is 
[Height,Position,Width] = gaussfit(x,y). See page 43. Plotgaussfit.m does the same thing but 
also plots the data and the fit. The similar function lorentzfit.m performs an analogous calculation for a 
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Lorentzian peak shape. An expanded variant of gaussfit.m, is bootgaussfit.m, which does the same thing but 
also optionally plots the data and the fit and computes estimates of the random error in the height, width, and 
position of the fitted Gaussian function by the bootstrap sampling method (page 41-42). For example:
>> x=50:150;y=100.*gaussian(x,100,100)+10.*randn(size(x));
>> [Height,Position,Width,BootResults]=bootgaussfit(x,y,1);
This code additionally returns the error estimates of the height, position, and width, which are displayed in a 
table and returned in the 3×5 matrix “BootResults”. Type “help bootgaussfit” for help. 
               Height     Position       Width
Bootstrap Mean: 100.84     101.325      98.341
Bootstrap STD:  1.3458     0.63091      2.0686
Bootstrap IQR:  1.7692     0.86874      2.9735
Percent RSD:    1.3346     0.62266      2.1035
Percent IQR:    1.7543     0.85737      3.0237
Plotit. The graph on the right was generated by my downloadable 
function plotit(x,y,polyorder). It uses all the techniques mentioned  
in the previous paragraph. It accepts data in the form of a single 
vector, or a pair of vectors “x” and “y”, or a 2×n or n×2 matrix with 
x in the first row or column and y in the second, and plots the data 
points as small red dots. If the optional input argument “polyorder” 
is provided, it fits a polynomial of order “polyorder” to the data and 
plots the fit as a green line and displays the fit coefficients, their 
standard deviations, and the goodness-of-fit measure R2 (R-
squared) in the upper left corner of the graph. Some examples, 
assuming x=[1 2 3 4 5] and y=[0 2 3 2 0]:
For plotting only: plotit(y) or plotit(x,y) or plotit([x;y]) or plotit([x;y]');
Including an integer as the third input argument triggers the polynomial fitting routine:
  plotit(y,1); plots y vs its index and fits to first order (linear) equation.
  plotit(x,y,2); plots x vs y and fits to second order (quadratic) polynomial
  [coef,RSquared]=plotit([x;y],2) returns fit coefficients (coef) and R-squared (RSquared)
  [coef,RSquared,stdev]=plotit([x;y],2) returns standard deviations of coefficients 'stdev'
  plotit(x,y,2,datastyle,fitstyle) where datastyle and fitstyle are optional strings specifying 
the line and symbol style and color, in standard Matlab convention (in version 6 and later).
You can use plotit.m to linearize and plot other nonlinear relationships (page 43) such as:
y = a exp(bx): [coeff,R2]=plotit(x,log(y),1);a=exp(coeff(2));b=coeff(1); 
y = a ln(bx) : [coeff,R2]=plotit(log(x),y,1);a=coeff(1);b=log(coeff(2));
y=a xb : [coeff,R2]=plotit(log(x),log(y),1);a=exp(coeff(2));b=coeff(1);
Don't forget that in Matlab/Octave, "log" means natural log; the log to base 10 is "log10". 
  Plotit.m also has a built-in bootstrap routine (page 41-42) that gives another estimate of the coefficient 
standard deviations and returns the results in the matrix “BootResults” (of size 5 × polyorder+1). The 
bootstrap calculation is triggered by including a third output argument, e.g.[coef, Rsquared, BootResults]= 
plotit(x,y,polyorder). This works for any polynomial order. You can change the number of bootstrap samples 
in line 93 (higher = slower but more accurate error estimates). There are two variations: plotfita animates the 
bootstrap process for instructional purposes, and logplotfit plots and fits log(x) vs log(y), for data that 
follows a power law relationship or that covers a very wide numerical range. Type “help plotit” for more.
  Other functions employing curve fitting. My Matlab/Octave function trypolyplot(x,y) fits the data in x,y 
with a series of polynomials of degree 1 through length(x)-1 and returns the coefficients of determination 
(R2) of each fit as a vector, and plots order vs R2, showing that, for any data, R2 approaches 1 as the 
polynomial order approaches length(x)-1. The related function trydatatrans(x,y,polyorder) tries 8 different 
simple data transformations on the x,y data, fits a polynomial of order 'polyorder' to the transformed data, 
displays results graphically in 3 x 3 array of small plots, and returns the R2 values in a vector. 
  The latest versions of my downloadable interactive Matlab functions iSignal.m (page 85) and ipf.m (page 
90) have a built-in polynomial fitting function: press the Shift-o key, then enter the desired polynomial order.
Download any of these functions or spreadsheets from http://tinyurl.com/cey8rwh.
  Note: recent versions of Matlab have a convenient tool for interactive manually-controlled (rather than 
programmed) polynomial curve fitting in the Figure window. Also, the add-on Matlab Curve Fitting Toolbox 
includes a very flexible curve fit function. If you do not have the Matlab Curve Fitting Toolbox, you may still 
use any of my curve fitting functions described here.
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Curve fitting B: Multicomponent Optical Spectroscopy
The optical spectroscopic analysis of mixtures, when the optical spectra of the individual 
components overlap considerably, requires special calibration methods based on a type of linear least 
squares called multiple linear regression. This method is widely used in multiwavelength techniques 
such as diode-array, Fourier transform, and automated scanning spectrometers. In this case the math 
involves the application of a little basic matrix algebra (a.k.a., “linear algebra”), which is just a 
shorthand notation for dealing with signals expressed as equations with one term for each data point.
Definitions:

A = analytical signal n = number of distinct chemical components in the mixture.
e = analytical sensitivity c1, c2 = component 1, component 2, etc. (up to n)
c = molar concentration l1, l2 = wavelength 1, wavelength 2, etc. (up to w)
s = number of samples s1, s2 = sample 1, sample 2, etc. (up to s)
w = number of wavelengths at which signal is measured

Assumptions:
a. The measured analytical signal, A (such as absorbance in absorption spectroscopy, fluorescence 

intensity in fluorescence spectroscopy, and reflectance in reflectance spectroscopy) is directly 
proportional to concentration, c. The proportionality constant (the slope of a plot of A vs c) is e. 

A = ec
b. The total signal observed for the mixture is the sum of the signals for each component in a 

mixture, which is at least approximately true for many forms of spectroscopy:
Atotal = Ac1 + Ac2 + ... for all n components, where Ac1 is the signal for component 1, etc.

c. The wavelength registration of all the optical spectra is perfect (no uncertainty in the x-axis)

Classical Least Squares (CLS) calibration. This method is applicable to the quantitative analysis 
of a mixture of components when the optical spectra of the individual components are known. 
Measurement of the spectra of known concentrations of the separate components allows their 
analytical sensitivity e at each wavelength to be determined. Then it follows that:

Al1=ec1,l1 cc1 + ec2,l1 cc2 + ec3,l1 cc3 + … for all n components.

Al2=ec1,l2 cc1 + ec2,l2 cc2 + ec3,l2 cc3 + ...

and so on for all w wavelengths - λ3, λ4, etc. It's too tedious to write out all these individual terms 
every time, especially because there may be hundreds of wavelengths in modern array-detector 
spectrometers. And despite the large number of terms, these are really nothing more than long linear 
equations, and the calculations required are actually very simple - certainly trivial for a computer to 
do. So it would be nice to have a correspondingly simple notation that would save us from writing 
out all those terms. That's what “matrix notation” does. We can write this big set of linear equations:

A = eC
where bold-face A represents the w-length vector of measured signals of the mixture at each 
wavelength (i.e. the optical spectrum), boldface e is the n x w rectangular matrix of the known e-
values for each of the n components at each of the w wavelengths, and boldface C is the n-length 
vector of concentrations of all the components. eC means that e “pre-multiplies” C, which means 
that each column of e is multiplied point-by-point by the vector C. The beauty of this notation is that 
it's the same no matter how many wavelengths (w) or components (n) you have. That's a big 
advantage, especially as you might easily have spectra with many hundreds of wavelengths.
  If you have a sample solution containing a mixture of unknown concentrations of those n com­
ponents, then you measure its spectrum A and seek to calculate the n-length concentration vector C. 
In order to solve the above matrix equation for C, the number of wavelengths w must be equal to or 
greater than the number of components n. If w = n, then we have a system of n equations in n 
unknowns which can be solved by pre-multiplying both sides of the equation by e-1, the matrix 
inverse of e, and using the fact that any matrix times its inverse is unity:
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C = e-1
A

  Because real experimental spectra are subject to random noise (e.g. photon noise and detector 
noise), the solution will be more precise if signals at a larger number of wavelengths are used, that is 
if w > n. In general, the more wavelengths are used, the more effectively the random noise will be 
“averaged out” - although it won’t help to use wavelengths where none of the components produce 
analytical signals. The optimum region is usually determined empirically. But then the equation can 
not be solved by matrix inversion, because the e matrix is a w x n matrix and a matrix inverse exists 
only for square matrices. But a solution can still be obtained in this case by pre-multiplying both 
sides of the equation by the expression (eTe)-1eT, where eT means the transpose of e:

(eTe)
-1eTA = (eTe)

-1eTeC = (eTe)
-1

(eTe)C
But the quantity (eTe)-1(eTe) is a matrix times its inverse and is therefore unity. Thus:

C = (eTe)
-1eTA

Once the quantity (eTe)
-1eT is computed, you can measure multiple samples containing different 

unknown amounts of the components by measuring the spectrum A of each sample and pre-
multiplying it by that quantity.
  Two extensions of the CLS method are commonly made. First, in order to account for baseline shift 
caused by drift, spectral background, and light scattering, a column of 1s is added to the e matrix. 
This has the effect of introducing into the solution an additional component with a flat spectrum; this 
is referred to as “baseline correction”. Second, in order to account for the fact that the precision of 
measurement may vary with wavelength, it is common to perform a weighted least squares solution 
that de-emphasizes wavelength regions where precision is poor:

C = (eT V
-1e)

-1
 eT V

-1 
A

where V is an w x w diagonal matrix of variances at each wavelength. In absorption spectroscopy, 
where the precision of measurement is poor in spectral regions where the absorbance is very high 
(and the light level and signal-to-noise ratio therefore low), it is common to use the transmittance T 
or its square T2 as weighting factors.
  The classical least-squares method is in principle applicable to any number of overlapping 
components. Its accuracy is limited by how accurately the spectra of the individual components are 
known, the amount of noise in the signal, the extent of overlap of the spectra, the x-axis (wave­
length) registration, and the linearity of the analytical curves of each component (the extent to which 
the signal amplitudes are proportional to concentration). The method is widely applied in absorption 
spectrophotometry, especially using array detectors or Fourier transform instruments. The well-
known deviations from   analytical curve     linearity set a limit to the performance to this method, but 
they can be circumvented by applying curve fitting to the transmission spectra (see page 103). 

Inverse Least Squares (ILS) calibration. Inverse Least Squares (also called the K-matrix method) 
is a method that can be used to measure the concentrations of components in samples in which the 
optical spectrum of the components in the sample is not known beforehand. Whereas the classical 
least squares (CLS) method models the signal at each wavelength as the sum of the concentrations of 
the components times the analytical sensitivity, inverse least squares methods use the reverse 
approach and models the components concentration c in each sample as the sum of the signals A at 
each wavelength times calibration coefficients m that express how the concentration of that 
component is related to the signal at each wavelength:

cs1 = ml1As1,l1 + ml2As1,l2 + ml2As1,l2 + ... for all w wavelengths.

cs2 = ml1As2,l1 + ml2As2,l2 + ml2As2,l2 + ...

and so on for all s samples. In matrix form:
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C = AM
where C is the s-length vector of concentrations of the components in the s samples, A is the w x s 
matrix of measured signals at the w wavelengths in the s samples, and M is the w-length vector of 
calibration coefficients. 
  Now, suppose that you have a set of standard samples that are typical of the type of sample that you 
wish to be able to measure and which contain a range of components concentrations that span the 
range of concentrations expected to be found in other samples of that type. This will serve as the 
calibration set. You measure the optical spectrum of each of the samples in this calibration set and 
put these data into a w x s matrix of measured signals A. You then measure the component 
concentrations in each of the samples by some reliable and independent analytical method and put 
those data into a s-length vector of concentrations C. Together these data allow you to calculate the 
calibration vector M by solving the above equation. This only works if the number of samples in the 
calibration set is greater than the number of wavelengths at which the samples are measured. The 
least-squares solution is:

M = (ATA)
-1

ATC

(Note that ATA is a square matrix of size w, the number of wavelengths, which must be less than s). 
This calibration vector can be used to compute the components concentrations of other samples, 
which are similar to but not in the calibration set, from the measured spectra of the samples:

C = AM
  Clearly this will work well only if the analytical samples are similar to the calibration set. However, 
this is a very common analytical situation in commerce, for example in industrial quality control and 
in agricultural foodstuffs analysis, where large numbers of samples of a similar predictable type 
must be analyzed quickly and cheaply.

Software details. Most modern spreadsheets have basic matrix manipulation capabilities and can be used for 
multicomponent calibration, for example Excel, OpenOffice   Calc, or WingZ. The spreadsheets 
Regression  Demo.xls/.ods demonstrate the classical least squares procedure for a simulated optical 
spectrum of a 5-component mixture measured at 100 wavelengths. (Download from 
http://tinyurl.com/cey8rwh). The matrix calculations described above solves for the concentration of the 
components on the unknown mixture:

C = (eTe)-1eTA

This calculation is performed in these spreadsheets by the TRANSPOSE (matrix transpose), MMULT 
(matrix multiplication), and MINVERSE (matrix inverse) array functions, laid out step-by-step in rows 123 
to 158 of this   spreadsheet. Alternatively, these array operations may be combined into one cell equation: 

C = MMULT(MMULT(MINVERSE(MMULT(TRANSPOSE(e);e));TRANSPOSE(e));A)

where C is the vector of the 5 concentrations of all the components in the mixture, e is the 5 x 100 
rectangular matrix of the known sensitivities (e.g. absorptivities) for each of the 5 components at each of the 
100 wavelengths, and A is the vector of measured signals at each of the 100 wavelengths (i.e. the signal 
spectrum) of the unknown mixture. (Note: spreadsheet array functions like this must be entered by typing 
Ctrl-Shift-Enter, not just Enter as usual. For more help on this, see https://support.office.com/en-

51

https://support.office.com/en-us/article/Guidelines-and-examples-of-array-formulas-7d94a64e-3ff3-4686-9372-ecfd5caa57c7
http://terpconnect.umd.edu/~toh/spectrum/RegressionSteps.jpg
http://terpconnect.umd.edu/~toh/spectrum/RegressionSteps.jpg
http://terpconnect.umd.edu/~toh/spectrum/RegressionSteps.jpg
http://terpconnect.umd.edu/~toh/spectrum/functions.html
http://terpconnect.umd.edu/~toh/spectrum/RegressionDemo.xls
http://terpconnect.umd.edu/~toh/spectrum/RegressionDemo.xls
https://terpconnect.umd.edu/~toh/models/CLS.html
http://www.openofficetips.com/blog/archives/2004/10/array_formulas.html
http://www.openofficetips.com/blog/archives/2004/10/array_formulas.html
http://www.stanford.edu/~wfsharpe/mia/mat/mia_mat4.htm#operations
http://terpconnect.umd.edu/~toh/spectrum/RegressionDemoSpreadsheet.gif


us/article/Guidelines-and-examples-of-array-formulas-7d94a64e-3ff3-4686-9372-ecfd5caa57c7)

Using the LINEST function. Alternatively, you can skip over all the math above and use the LINEST 
function, in Excel or OpenOffice Calc, which performs this type of calculation in a single function statement. 
This is illustrated in RegressionTemplate.xls, in cell Q23. A slight modification of the function syntax (cell 
Q32) performs a baseline corrected calculation (page 50). An advantage of the LINEST function is that it 
can compute the standard errors of the coefficients and the R2 value in the same operation; using Matlab or 
Octave, that would require some extra work. (LINEST is also an array function that must also be entered by 
typing Ctrl-Shift-Enter, not just Enter). Note that this is the same LINEST function that was used for the 
polynomial least-squares on page 46; the difference is that in polynomial least-squares, the multiple columns 
of x values are computed, for example by taking the powers (squares, cubes, etc) of the first column of x 
values, whereas in the multicomponent CLS method, the multiple columns of x values are experimental 
values of the different standard solutions. The math is the same, but the origin of the x data is different. 

A template for performing a 100-point 5-component analysis on your own data, with step-by-step 
instructions, in available as RegressionTemplate.xls and RegressionTemplate.ods (Graphic with example 
data). Replace the data in columns A - G, rows 23 -123 with your own data and adjust the formulas if your 
number of data points or of components is different from this example (100 and 5, respectively). 

Matlab and Octave are really the natural computer approach to multicomponent analysis because they 
handle all types of matrix math so easily, compactly, and quickly, adapting automatically to any number of 
components and wavelengths. In these languages, the notation is very compact but a little different: the 
transpose of a matrix A is A', the inverse of A is inv(A), and matrix multiplication is designated by *. Thus 
the solution to the classical least squares method above is written C = inv(E'*E)*E'*A, where E is the 
rectangular matrix of sensitivities at each wavelength for each component and A is the observed optical 
spectrum of the mixture. Note that the Matlab/Octave notation is not only shorter than the spreadsheet 
notation, it's also closer to the traditional mathematical notation, and it's the same no matter the number of 
components and wavelengths. (Alternatively, you can write C = A * pinv(E')' or just C = A/E, which use 
different internal mathematics to yield essentially the same results in the same execution time - except for the 
numerical floating point precision of the computer, which is usually negligible in scientific applications). 

The script Regression  Demo.m (for Matlab or Octave) demonstrates the 
same classical least squares procedure for a simulated absorption 
spectrum of a 5-component mixture, illustrated on the left. In this 
example the dots represent the observed spectrum of the mixture (with 
noise) and the five colored bands represent the five components in the 
mixture, whose spectra are known but whose concentrations in the 
mixture are unknown. The black line represents the “best fit” to the 
observed spectrum calculated by the program. In this example the 
concentrations of the five components are measured to an accuracy of 
about 1% relative (limited by the noise in the observed spectrum). 
Comparing RegressionDemo.m to its spreadsheet equivalent, 

RegressionDemo.xls, both running the same computer, you can see that the Matlab/Octave code computes 
and plots the results quicker than the spreadsheet, although neither takes no more than a fraction of a second 
for this example. 

  The extension to “background correction” is easily accomplished in Matlab/Octave by adding a column of 
1s to the A matrix containing the absorption spectrum of each of the components:
 background=ones(size(ObservedSpectrum));
  A=[background A1 A2 A3];
where A1, A2, A3... are the absorption spectra of the individual components. Performing a T-weighted 
regression is also readily performed:
 weight=T;
  MeasuredAmp=([weight weight] .* A)\(ObservedSpectrum .* weight);
where T is the transmission spectrum. Here, the matrix division backslash “\” is used as a shortcut to the 
classical least-squares matrix solution (See http://www.mathworks.com/help/techdoc/ref/mldivide.html). 
Using a computer-generated calibration matrix. Ordinarily, the calibration matrix M is assembled from 
the experimentally measured signals (e.g. spectra) of the individual components of the mixture, but it is also 
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possible to fit a computer-generated model of basic peak shapes (e.g. Gaussians, Lorentzians, etc) to a signal 
to determine if that signal can be represented as the weighted sum of overlapping basic peak shapes.  The 
function cls.m computes such a model consisting of the sum of any number of peaks of known shape, width, 
and position, but of unknown height, and fit it to noisy x,y data sets. The syntax is 

heights=cls(x,y,NumPeaks,PeakShape,Positions,Widths,extra)
where x and y are the vectors of measured data (e.g. x might be wavelength and y might be the absorbance at 
each wavelength), 'NumPeaks' is the number of peaks, 'PeakShape' is the peak shape number (1=Gaussian, 
2=Lorentzian, 3=logistic distribution, 4=Pearson, 5=exponentially broadened Gaussian; 6=equal-width 
Gaussians; 7=Equal-width Lorentzians; 8=exponentially broadened equal-width Gaussian, 9=exponential 
pulse, 10=sigmoid, 11=Fixed-width Gaussian, 12=Fixed-width Lorentzian; 13=Gaussian/Lorentzian blend; 
14=BiGaussian, 15=BiLorentzian), 'Positions' is the vector of peak positions on the x axis (one entry per 
peak), 'Widths' is the vector of peak widths in x units (one entry per peak), and 'extra' is the additional shape 
parameter required by the exponentially broadened, Pearson, Gaussian/Lorentzian blend, BiGaussian and 
BiLorentzian shapes. Cls.m returns a vector of measured peak heights for each peak. 
 The downloadable Matlab/Octave function "clsdemo.m" creates some noisy model data, fits it with cls.m, 
computes the accuracy of the measured heights, then repeats the calculation using iterative non-linear least 
squares peak fitting (INLS, covered in on page 54) with the downloadable peakfit.m function, making use of 
the known peak positions and widths only as starting guesses ("start"). You can see that CLS is faster and 
(usually) more accurate, especially if the peaks are highly overlapped. (This script requires cls.m, 
modelpeaks.m, and peakfit.m in the Matlab/Octave path). A related function, cls2.m, also computes the 
baseline, using the extension described on page 52, and returns it as the first element of the heights vector. 
SmallPeak.m is a demonstration of several techniques applied to the challenging problem of measuring the 
height of a small peak that is closely overlapped with and completely obscured by a much larger peak. 

Weighted regression. Another example of the classical least squares procedure applied to a mixture 
measurement problem is contained in the demo function “tfit  .m”, which simulates the measurement 
measurement of the absorption spectrum of a mixture of three components by weighted linear regression (on 
line 61), demonstrates the effect of  the amount of noise in the signal, the extent of overlap of the spectra, and 
the linearity of the analytical curves of each component. (This demo also compares the results to another 
calibration method that applies convolution and curve fitting to the transmission spectra rather than to the 
absorbance spectra, treated on page 103). The idea of weighting is also applied to polynomial regression 
(page 37), for example when applied to measurement calibration.

The Inverse Least Squares (ILS) technique is demonstrated by 
the Matlab/Octave example wheat.m, (located at 
http://terpconnect.umd.edu/~toh/spectrum/wheatILS.zip), shown 
in the graph on the right. The math, described on page 50, is 
similar to the Classical Least Squares method, and can be done 
by any of the methods on page 52. This example is based on a 
real data set derived from the near infrared (NIR) reflectance 
spectroscopy of agricultural wheat samples analyzed for protein 
content. In this example there are 50 calibration samples 
measured at 6 carefully chosen wavelengths. The samples had 
already been analyzed by a reliable, but laborious and time 
consuming, wet chemical reference method. 
  The purpose of this calibration is to establish whether near-
infrared reflectance spectroscopy, which can be measured much 
more quickly on wheat paste preparations, correlates to their protein content. These results indicate that it 
does, at least for this set of 50 wheat samples, and therefore is it likely that near-infrared spectroscopy should 
do a pretty good job of estimating the protein content of similar unknown samples. The key is that the 
unknown samples must be similar to the calibration samples, except for the protein content. However, this is 
a very common analytical situation in quality control, where large numbers of samples of products of a 
similar predictable type must often be tested quickly and cheaply. Cf. http://en.wikipedia.org/wiki/Near-
infrared_spectroscopy. You may download any of these functions from http://tinyurl.com/cey8rwh.
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Curve fitting C: Non-linear Iterative Curve Fitting (“spectral 
deconvolution” or “peak deconvolution”)
The linear least squares curve fitting described above in “Curve Fitting   A” is simple and fast, but it 
is limited to situations where the dependent variable can be modeled as a polynomial with linear 
coefficients. We saw on page 43 that in some cases a non-linear situation can be converted into a 
linear one by a coordinate transformation, but this is possible only in some special cases and, in any 
case, the resulting transformation of the noise in the data can result in inaccuracies in the parameters 
measured in that way. 
 The most general way of fitting any model to a set of data is the iterative method, a kind of “trial and 
error” procedure in which the parameters of the model are adjusted in a systematic fashion until the 
equation fits the data as close as required. This is basically a brute-force approach. In fact, in the 
days before computers, this method was only grudgingly applied. But its great generality, coupled 
with huge advances in computer speed and algorithm efficiency in recent decades, means that 
iterative methods are now more widely used now than ever before. 
 Iterative methods proceed in the following general way: 

(1) You select a model for the data (e.g, a straight line, parabola, Gaussian, Lorentzian, etc);
(2) You (or a computer program) make first guesses of all the variable parameters (e.g. slopes, 

intercepts, positions, widths); 
(3) A computer program computes the model and compares it to the data set, calculating a fitting 

error; 
(4) If the fitting error is greater than the required fitting accuracy, the program systematically 

changes one or more of the parameters and loops back around to step 3. This continues until 
the fitting error is less than the specified acceptable error. One popular technique for doing 
this is called the Nelder-Mead Modified   Simplex. This is essentially a way of organizing and 
optimizing the changes in parameters (step 4, above) to shorten the time required to fit the 
function to the required degree of accuracy. 

With modern personal computers, the entire process typically takes only a fraction of a second. The 
first guess (step 2) can usually be supplied automatically by software, using various approximate 
methods that give rough but quick estimates, but in difficult cases you can provide your own starting 
first guess. 
  The reliability of iterative fitting, like classical least-squares fitting (page 37), depends strongly on 
the suitability of the model, the signal-to-noise ratio of the data, and the number of independent non-
linear variables that must be adjusted. It is not possible to predict the standard deviations of the 
measured model parameters using the algebraic approach, but both the Monte Carlo simulation and 
bootstrap method (page 41-42) are applicable. (See #15 on page 93 for a specific example of a 
bootstrap statistics function in an iterative curve fitting program).
  The main difficulty of the iterative methods is that they sometime fail to converge at an optimum 
solution in difficult cases. The standard approach to handle this is to restart the algorithm with a 
slightly different set of first guesses; software can automate that process, trying different starting 
points until the best fit is obtained. Iterative curve fitting also takes longer than linear regression - 
with typical modern personal computers, an iterative fit might take fractions of a second where a 
multilinear regression might take fractions of a millisecond. Still, this is already fast enough for 
many purposes, and computers will only continue to get faster and faster in the future.
 Note: the term “spectral deconvolution” or “band deconvolution” or “curve deconvolution” is often 
used to refer to this technique, but in this essay, “deconvolution” specifically means Fourier 
deconvolution, an independent concept that is treated on page 32.
  It's instructive to compare this iterative method with classical least-squares curve fitting, discussed 
on page 49, which can also fit peaks in a signal. The difference is that in the classical least squares 
method, the positions, widths, and shapes of all the individual components are all known 
beforehand; the only unknowns are the amplitudes (e.g. peak heights) of the components in the 
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mixture. In non-linear iterative curve fitting, on the other hand, the positions, widths, and heights of 
the peaks are all unknown beforehand; the only thing that is known is the fundamental underlying 
shape of the peaks. So, because it is determining more unknown variables, the non-linear iterative 
curve fitting is more difficult to do computationally and more prone to error, but it's necessary if you 
need to track shifts in peak position or widths or to fit peaks in a signal knowing only their shape. 
(See “CLSvsINLS.m” on page 57, and Appendix Q on page 132, for some examples). 

Spreadsheets and stand-alone programs. Both Excel and OpenOffice Calc has a "Solver" capability that 
will automatically change specified cells in an attempt to produce a specified goal, such as minimizing a 
value like the RMS fitting error between a set of data and a proposed calculated model. This is readily 
applied to the problem of fitting a set of overlapping Gaussian bands to a set of x-y data, as described in 
Appendix H on page 126. Go to http://bit.ly/1XXdLxZ for a set of free Excel spreadsheet templates for 
multiple peak curve fitting that you can download and modify for your own purposes. 

There are also a number of downloadable non-linear iterative curve fitting adds-ons and macros for Excel and 
OpenOffice, as well as some stand-alone freeware and commercial programs that perform this type of 
optimization. Code for Nelder-Mead optimization in the C language and in Fortran is available from Mike 
Hutt. Dr. Roger Nix of Queen Mary University of London has developed a very nice Excel/VBA spreadsheet 
for curve fitting X-ray photoelectron spectroscopy (XPS) data, but it could be used to fit other types of 
spectroscopic data; a 4-page instruction sheet is provided. 

The disadvantage of using a spreadsheet for this type of curve fitting is that you have to make a custom 
spreadsheet for each problem, with the right number of rows for the data and with the desired number of 
components and baseline type. The template CurveFitter.xlsx is only for a 100-point signal and a 5-
component Gaussian model; you would have to edit it to handle other number of components or data points 
or model shapes or baseline types. In contrast, my Matlab/Octave peakfit functions automatically adapt to 
any number of data points and is easily set to different model shapes, numbers of peaks, and baseline 
correction methods. But a real advantage of spreadsheets is that it is relatively easy to add your own shape 
functions and constraints, even complicated ones, using standard spreadsheet cell formula construction.

Matlab and Octave have a function called “fminsearch” that uses the Nelder-Mead method. It was originally 
designed for finding the minimum values of functions, but it can be applied to least-squares curve fitting by 
creating an anonymous “fitting function” that computes the model, compares it to the data, and returns the 
fitting error to the fminsearch function, which attempts to minimize that error by adjusting the parameters of 
the model. For example, writing 

parameters = fminsearch(@(lambda)(fitfunction(lambda,x,y)),start)

performs an iterative fit of the data in the vectors x,y to a model described in a previously-created function 
called fitfunction, using the first guesses in the vector start. The parameters of the best-fit model are 
returned in the vector “parameters”, in the same order as they appear in “start”. Note: Octave users must 
install the latest version of “Optim” and other packages from http://  octave  .sourceforge.net/packages.php; 
follow the directions on that site.

A simple example is fitting the blackbody equation to the optical spectrum of an incandescent body for the 
purpose of estimating its color temperature. In this case there is only one nonlinear parameter (temperature) 
and one linear parameter (emissivity). BlackbodyDataFit.m demonstrates the technique, placing the 
experimentally measured optical spectrum in the vectors “wavelength” and “radiance” and then calling 
fminsearch with the fitting function fitblackbody.m. 

Another application is demonstrated by Matlab's built-in demo fitdemo.m and its fitting function fitfun.m  , 
which models the sum of two exponential decays. (Type “fitdemo” in the command window). 

Fitting peaks. Many experiments produce signals in the form of peaks of various types; a common require-
ment is to measure the positions, heights, widths, and/or areas of those peaks, even when they are noisy or 
overlapped with one another. This cannot be done by linear least-squares methods, because such signals can 
not be modeled as polynomials with linear coefficients (the positions and widths of the peaks are not linear 
functions), so iterative curve fitting techniques are used instead, often using Gaussian, Lorentzian, or some 
other basic peak shape as a model. 
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The Matlab/Octave demonstration script Demofitgauss.m 
demonstrates fitting a Gaussian function to a set of data, using 
the fitting function fitgauss2.m. In this case there are two 
iterated non-linear parameters: the peak position and the peak 
width. The peak height is a linear parameter and is determined by 
linear regression in line 9 of the fitting function fitgauss2.m and 
returned in the global variable “c”. To accommodate the 
possibility that the baseline may shift, we can add a column of 1s 
to the A matrix, as was done in the CLS method on page 53, and 
the baseline amplitude is returned with the peak heights in the 
vector “c”; Demofitgaussb.m and fitgauss2b.m illustrates this.

This is easily extended to two or more overlapping peaks of the same type in Demofitgauss2.m (shown in 
the figure on the left) using the same fitting function, which adapts to any number of peaks, depending on the 
length of the first-guess “start” vector. All these functions can call any of the user-defined peak type func-
tions such as gaussian  .m, lorentzian  .m, and others that might be similarly designed (see functions.html). A 
more detailed explanation of the Matlab code is available online.

fitshape.m ([Positions,Heights,Widths,FittingError]=fitshape(x,y,start)) pulls all of this 
together into a simplified Matlab/Octave function for fitting a multi-peak model to x,y data in the vector 
variables x and y. You must provide x and y and the first-guess starting vector 'start', in the form [position1 
width1 position2 width2 ...etc], which specifies the first-guess position and width of each component (one 
pair of position and width for each peak in the model). The function returns the parameters of the best-fit 
model in the vectors Positions, Heights, and Widths, and computes the percent error between the data and the 
model in FittingError. It also plots the data as dots and the fitted model as a line. What's notable about this 
function is that the only part that defines the shape of the model is the last line. Initially that line contains the 
expression for a Gaussian peak, but you could change that to any other expression or multi-line algorithm 
that computes g as a function of x with two unknown parameters pos and wid (position and width, respective-
ly, for peak-type shapes); everything else can remain the same and it will still work. There are also two 
variations for models with one iterated variable (fitshape1.m) and three iterated variables (fitshape3.m). 

Variable shapes, such as the Voigt profile, Pearson, and the exponentially-broadened types, are defined not 
only by a peak position, height, and width, but also by an additional parameter that fine tunes the shape of the 
peak. If that parameter is equal for all peaks in a group, it can be passed as an additional input argument to 
the peak function, as shown in VoigtFixedAlpha.m. If the shape parameter is allowed to be different for 
each peak in the group and is to be determined by iteration (just as is position and width), then the routine 
must be modified to accommodate three, rather than two, iterated variables for each peak, as shown in 
VoigtVariableAlpha.m. Although the fitting error is lower with variable alphas, the execution time is longer 
and the alphas values so determined are not very stable, especially for multiple peaks. Version 7 of the 
downloadable Matlab/Octave function peakfit.m includes independently variable shape types for the 
Pearson, ExpGaussian, Voigt, and Gaussian/Lorentzian blend. Signals with peaks of different shape in one 
signal can be fit by the fitting function fitmultiple.m, which takes as input a vector of peak types and a 
vector of shape variables (See Demofitmultiple.m).

 For the quantitative measurement of peaks, it's instructive to compare the iterative least-squares method with 
simpler, less computationally-intensive, methods. For example, the measurement of the peak height of a 
single peak of uncertain width and position could be done simply by taking the maximum of the signal in that 
region. If the signal is noisy, a more accurate peak height will be obtained if the signal is smoothed before-
hand. But smoothing can distort the signal and reduce peak heights. Using an iterative peak fitting method, 
assuming only that the peak shape is known, can give the best possible accuracy and precision, without 
requiring smoothing even under high noise conditions, e.g. when the signal-to-noise ratio is 1, as in the demo 
script SmoothVsFit.m:
   True peak height = 1    NumTrials = 100    SmoothWidth = 50
         Method        Maximum y    Max Smoothed y    Peakfit
   Average peak height   3.65         0.96625         1.0165
   Standard deviation    0.36395      0.10364         0.11571
If peak area is measured rather than peak height, smoothing is unnecessary (unless to locate the peak 
beginning and end) but peak fitting still yields the best precision. See SmoothVsFitArea.m. 
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The Matlab/Octave script “CLSvs  INLS  .m” compares the classical least-squares (CLS) method with three 
different variations of the iterative method (INLS) method for measuring the peak heights of three Gaussian 
peaks in a noisy test signal, demonstrating that the fewer the number of unknown parameters, the faster and 
more accurate is the peak height calculation.

          Peak Height  Peak Position Peak Width
     mean:  93.543      97.0227     99.8805
     STD:    4.7441      3.8025      5.6621

If you were to run this simulation again, you'd get different results, but the mean peak parameters will almost 
always be within two standard deviations of the true values (100). A similar demonstration function, 
“BootstrapIterativeFit2.m”, is expanded to two overlapping Gaussian peaks. 

  You can create your own fitting functions for any purpose; they are not limited to single algebraic 
expressions, but can be any complex multi-step algorithm. (For example, in the Tfit method in optical 
absorption spectroscopy, page 103, a model of the instrumentally-broadened transmission spectrum is fit to 
the observed transmission data, using a fitting function that performs Fourier convolution of the transmission 
spectrum with the slit function of the spectrometer, resulting in an extension of the dynamic range and 
calibration linearity beyond the normal limits). The bootstrap sampling method can be used to predict the 
precision of the measured model parameters in complicated methods such as this where the algebraic method 
is impossible. Note: You can download any of these m-files from http://tinyurl.com/cey8rwh. 

Peak Fitter functions for Matlab and Octave. These are Matlab or Octave peak fitting programs for time-
series signals, which uses an unconstrained non-linear 
optimization algorithm to decompose a complex, overlapping 
peak signal into its component parts. The objective is to 
determine whether your signal can be represented as the sum 
of any combination of  fundamental underlying peaks shapes. 
They accept signals of any length, including those with non-
uniform x-values, can fits groups of peaks with many 
different peak shape models, and they can rough first guesses 
('start'). There are two different versions, peakfit.m, a 
command line version for Matlab and Octave (page 90), and 
ipf.m, a keypress operated interactive version for Matlab 

only (page 95). These functions can optionally estimate the expected standard deviation and interquartile 
range of the peak parameters using the bootstrap sampling method (Page 41 – 42). The peakfit.m function is 
also an keypress-selected internal function of iPeak (page 78) and iSignal (page 85). 
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Accuracy and precision of peak parameter measurement
This section describes the sources of error in measuring the “peak parameters” (peak positions, 
heights, widths, and areas) by iterative curve fitting, using the downloadable Matlab/Octave 
peakfit.m function described in detail on page 90.
a. Model errors. 
Peak shape. If you have the wrong model for your peaks, the 
results can't be expected to be accurate; for instance, if your 
actual peaks are Lorentzian in shape, but you fit them with a 
Gaussian model, or vice versa. For example, a single isolated 
Gaussian peak at x=5, with a height of 1.000 fits a Gaussian 
model virtually perfectly, as shown on the right. The 5th input 
argument for the peakfit function specifies the shape of peaks 
to be used in the fit; “1” means Gaussian. 
>> x=[0:.1:10];y=exp(-(x-5).^2);
>> [FitResults,FitError]=peakfit([x' y'],5,10,1,1)
           Peak #   Position  Height        Width     Area
FitResults =  1     5    1   .6649  1.7724
FitError = 0.001679
  The “FitResults” are, from left to right, peak number, peak position, peak height, peak width, and 
peak area. The fitting error “FitError” is the root mean square difference between the data and the 
best-fit model, as a percentage of the maximum signal in the fitted region. Note that the area, 1.7724, 
agrees with the theoretical area under the curve of exp(-x2), which is the square root of p.
  But this same peak, when fit with a Logistic distribution (peak shape number 3), gives a fitting 
error of 1.4% and height and width errors of 3% and 6%, respectively. So clearly the larger the 
fitting errors, the larger are the parameter errors, but the parameter errors are of course not equal to 
the fitting error (that would just be too easy). Also, clearly the peak width and area are the 
parameters most susceptible to errors. The peak positions, as you can see here, are measured 
accurately (and will be, even if the model is way wrong, as long as the peak is symmetrical and not 
highly overlapping with other peaks). 
If you do not know the shape of your peaks, you can use use peakfit.m or ipf.m to try different 
shapes to see if one of the standard shapes included in those programs fits the data; try to find a peak 
in your data that is typical, isolated, and that has a good signal-to-noise ratio. For example, the 
Matlab function ShapeTest.m creates a test signal consisting of a single (asymmetrical) peak, adds 
random white noise, fits it with six different candidate model peak shapes using peakfit.m, plots 
each fit in a separate figure window, and prints out a table of fitting errors in the command window. 
In this particular case, the last two model shapes fit almost equally well (because they are 
mathematically the same, just parameterized differently). You can set the noise level in line 5. If 
there is too much noise, the results can be misleading; for example, if Noise=.2, the "three 
Gaussians" model is likely to fit slightly better because it has more degrees of freedom and can "fit 
the noise". ShapeTest.m has only six potential candidate shape in its current form; the Matlab 
function peakfit.m has many more built-in shapes to choose from, but still it is a finite list and it's 
always possible that the actual underlying peak shape is not available in the software you are using.  
A good fit is not by itself proof that the shape function you have chose is the correct one; in some 
cases the wrong function can give a fit that looks perfect. As an example, a data set consisting of 
peaks with a Voigt profile peak shape can be fit with a weighted sum of a Gaussian and a Lorentzian 
almost as well as an with an actual Voigt model, even though those models are not the same 
mathematically; the difference in fitting error is so small that it would likely be obscured by the 
random noise if it were a real experimental signal. A pair of simple 2-parameter logistic functions 
seems to fit this example data pretty well, with a fitting error of less than 1%; you would no reason 
to doubt the goodness of fit unless the random noise is low enough so you can see that the residuals 
are wavy. But a 3-parameter logistic fits much better, and the residuals are random, not wavy. In 
such cases you can not depend solely on what looks like a good fit to determine whether the fit is 
model is optimum; sometimes you need to know more about the peak shape.
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Number of peaks. Another source of model error occurs if you have the wrong number of peaks in 
your model, for example if the signal actually has n peaks but you try to fit it with only n-1 peaks. In 
the example below, a bit of Matlab/Octave code generates a simulated signal with of two Gaussian 
peaks at x=4 and x=6 with peaks heights of 1.000 and 0.5000 respectively and widths of 1.665, plus 
random noise with a standard deviation 5% of the height of the largest peak (an SNR of 20): 
>> x=[0:.1:10];y=exp(-(x-6).^2)+.5*exp(-(x-4).^2) +.05*randn(size(x));

  In a real experiment you would not usually know the peak positions, heights, and widths; you 
would be using curve fitting to measure those parameters. Let's assume that, on the basis of previous 
experience or some preliminary trial fits, you have established that the optimum peak shape model is 
Gaussian, but you don't know for sure how many peaks are in this group. If you fit this signal with a 
single-peak Gaussian model, you get these results:
>> [FitResults,FitError]=peakfit([x' y'],5,10,1,1)

           Peak #   Position  Height      Width     Area 
FitResults = 1      5.5291    0.86396     2.9789    2.7392
FitError = 10.467

The residual plot shown in the bottom panel on the right 
exhibits a “wavy” structure rather than a completely random 
scatter of points due to the random noise in the signal. This 
means that the fitting error is not limited by the random 
noise; that is a clue that the model is not quite right. 
  But a fit with two peaks yields much better results (The 4th 

input argument for the peakfit function specifies the number 
of peaks to be used in the fit).
>>[FitResults,FitError]=peakfit([x' y'],5,10,2,1)

Peak #   Position  Height      Width     Area 
       1     4.0165    0.50484    1.6982    0.91267
   2     5.9932    1.0018     1.6652    1.7759
FitError = 4.4635
 Now the residuals have a random scatter of points, as would be expected if the signal is accurately 
fit except for the random noise. Moreover, the fitting error is 
much lower (less than half) of the error with only one peak. 
In fact, the fitting error is just about what we would expect 
in this case based on the 5% random noise in the signal 
(estimating the relative standard deviation of the points in 
the baseline visible at the edges of the signal). 

  Because this is a simulation, and we know beforehand the 
true values of the peak parameters (peaks at x=4 and x=6 
with peaks heights of 1.0 and 0.50 respectively and widths 
of 1.665), we can actually calculate the parameter errors (the 
difference between the real peak positions, heights, and 
widths and the measured values). We see that they are quite accurate (in this case within about 1% 
relative on the peak height and 2% on the widths), which is actually better than the 5% random noise 
in this signal because of the averaging effect of fitting to multiple data points in the signal. 

  But if going from one peak to two peaks gave us a better fit, 
why not go to three peaks? Changing the number of peaks to 
three (the fourth argument) gives these results:
>> [FitResults,FitError]=peakfit([x' y'],5,10,3,1)
Peak #   Position  Height      Width     Area
FitResults =
       1     4.0748    0.51617     1.7874   0.98212
       2     6.7799    0.089595    2.0455   0.19507
       3     5.9711    0.94455     1.53     1.5384
FitError = 4.3878
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  The fitting algorithm has now tried to fit an additional low-amplitude peak (numbered peak 2 in 
this case) located at x=6.78. The fitting error is actually lower than for the 2-peak fit, but only 
slightly lower, and the residuals are no less visually random that with a 2-peak fit. So, knowing 
nothing else, a 3-peak fit might be rejected on that basis alone. In fact, there is a serious downside to 
fitting more peaks than are present in the signal: it increases the parameter measurement errors of 
the peaks that are actually present. Again, we can prove this because we know beforehand the true 
values of the peak parameters: clearly the peak positions, heights, and widths of the two real peaks 
than are actually in the signal (peaks 1 and 3) are significantly less accurate than the 2-peak fit. This 
can be verified by performing a bootstrap test (pages 41-42 and #16 on page 98).
  If we repeat that fit with the same signal but with a different sample of random noise (simulating a 
repeat measurement of a stable experimental signal in the presence of random noise), the third peak 
in the 3-peak fit will vary from fit to fit, because the third peak is actually fitting the random noise, 
not an actual peak in the signal). This is called “fitting the noise”.
>> x=[0:.1:10];
>> y=exp(-(x-6).^2)+.5*exp(-(x-4).^2)+.05*randn(size(x));
>> [FitResults,FitError]=peakfit([x' y'],5,10,3,1
Peak #   Position  Height      Width     Area)
FitResults =
  1     4.115    0.44767     1.8768    0.89442
  2     5.3118   0.093402    2.6986    0.26832
  3     6.0681   0.91085     1.5116    1.4657
FitError = 4.4089

With this new set of data, two of the peaks (numbers 1 and 3) have roughly the same position, 
height, and width, but peak number 2 has changed substantially compared to the previous run. Now 
we have an even more compelling reason to reject the 3-peak model: the 3-peak solution is not 
stable. And because this is a simulation in which we know the right answers, we can also verify that 
the accuracy of the known peak heights is substantially poorer (about 10% error) than expected with 
this level of random noise in the signal (5%). If we were to run a 2-peak fit on the same new data, we 
get much better measurements of the peak heights.
>> [FitResults,FitError]=peakfit([x' y'],5,10,2,1) 
Peak #   Position  Height      Width     Area
FitResults =
  1     4.1601    0.49981     1.9108    1.0167
  2     6.0585    0.97557     1.548     1.6076
FitError = 4.4113

  If this is repeated several times, the peak parameters of the peaks at x=4 and x=6 are, on average, 
more accurately measured by the 2-peak fit. In practice, the best way to evaluate a proposed fitting 
model is to fit several repeat measurements of the same signal (if that is practical experimentally) 
and to compute the standard deviation of the peak parameter values. Or, you can use the “bootstrap 
method” (pages 42, 93, 100) to evaluate the robustness of the model with respect to noise in the data; 
superfluous peaks will reveal themselves as unstable.
  In real experimental work, of course, you usually don't know the right answers beforehand, so that's 
why it's important to use methods that work well when you do know. Here's a real data example in a 
spreadsheet, fit with 2, 3, 4 and 5 Gaussians, until the residuals become random. Another way to find 
the minimum number of models peaks is to fit the data with increasing numbers of model peaks until 
the fitting error stops decreasing or reaches a minimum; see Matlab/Octave script NumPeaksTest.m.

Peak width constraints. Finally, there is one more thing that we can do that might improve the peak 
parameter measurement accuracy, and it concerns the peak widths. In all the above simulations, the 
basic assumption that all the peak parameters were unknown and independent of one another. In 
some types of measurements, however, the peak widths of each group of adjacent peaks can be ex­
pected to be equal to each other, on the basis of first principles or previous experiments. This is a 
common situation in analytical chemistry, especially in atomic spectroscopy and in chromatography, 
where the peak widths are determined largely by instrumental factors. In the current simulation, the 
true peaks widths are in fact equal, but all the results above show that the measured peak widths are 
close but not quite equal, due to random noise in the signal. But we can introduce an equal-width 
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constraint into the fit by using peak shape 6 (Equal width Gaussians) or peak shape 7 (Equal width 
Lorentzians). Using peak shape 6 on the same set of data as the previous example:
>> [FitResults,FitError]=peakfit([x' y'],5,10,2,6)
 Peak #   Position  Height      Width     Area
FitResults =
    1     4.0435    0.4942     1.6559    0.87113
    2     6.0039    0.99218    1.6559    1.7489
FitError = 4.5076
This “equal width” fit forces all the peaks within one group to have exactly the same width, but that 
width is adjusted by the program to fit the data. The result is a slightly higher fitting error (in this 
case 4.5 rather than 4.4), but - perhaps surprisingly - the peak parameter measurements are usually 
more accurate and more reproducible (Specifically, the relative standard deviations are on average 
lower for the equal-width fit than for an unconstrained-width fit to the same data, assuming of course 
that the true underlying peak widths are really equal). This is an exception to the general expectation 
that lower fitting errors result in lower peak parameter errors. The more general rule is that the more 
you know about the nature of your signals, and the closer your chosen model adheres to that knowl­
edge, the better the results. In this case we knew that the peak shape was Gaussian (although we 
could have verified that choice by trying other candidate peaks 
shapes), we determined that the number of peaks was two by 
inspecting the residuals and fitting errors for 1, 2, and 3 peak 
models, and then we introduced the constraint of equal peak 
widths within each group of peaks (based on prior knowledge 
of the experiment rather than on inspection of residuals and fit­
ting errors). Not every experiment yields peaks of equal width, 
but when it does, it's better to make use of that constraint. 

  Going one step beyond equal widths, you can also specify 
fixed-width Gaussian or Lorentzian shapes (shape numbers 11, 
12, 34-37), in which the width of the peaks are not only equal 
to each other but are known beforehand and are specified in a vector as input argument 10, rather 
than being determined from the data as in the equal-width fit above. Introducing this constraint onto 
the previous example, and supplying an (almost-accurate) width as the 10th input argument:
>> [FitResults,FitError]=peakfit([x' y'],0,0,2,11,0,0,0,0,[1.666 1.666])
     Peak #   Position     Height         Width        Area 
FitResults =
       1       3.9943      0.49537        1.666      0.87849
       2       5.9924      0.98612        1.666       1.7488
FitError = 4.8128
  Comparing to the previous equal-width fit, the fitting error is slightly larger here (because there are 
fewer degrees of freedom to minimize the error), but the parameter errors, particularly the peaks 
heights, are more accurate because the width information provided in the input argument was more 
accurate (1.666) than the width determined by the equal-width fit (1.5666). Again, not every 
experiment yields peaks of known width, but when it does, it's better to make use of that constraint. 
(For a more complex example of model selection with real data, see this link).  Note that if the peak 
positions are also known, and only the peak heights are unknown, you don't even need to use the 
iterative fitting method at all; you can use the much easier and faster multilinear regression technique 
(“classical least squares”) described on pages 49 – 53. See also Appendix Q on page 132.
b. Background correction.  The peaks that are measured in many scientific instruments are often 
superimposed on a non-specific background. Ordinarily the experiment protocol is designed to mini­
mize the background or to compensate for the background, for example by subtracting a “blank” sig­
nal from the signal of an actual specimen. But even so there is often a residual background that can 
not be eliminated completely experimentally. The origin and shape of that background depends on 
saturthe specific measurement method, but often this background is a flat, tilted, or curved shape, 
and the peaks of interest are comparatively narrow features superimposed on that background. The 
presence of the background has little effect on the peak positions, but it is impossible to measure the 
peak heights, width, and areas accurately unless the background is corrected or subtracted.
  There are various methods described in the literature for estimating and subtracting the background 
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in such cases. The simplest assumption is that the background can be approximated as a simple 
function in the local region of group of peaks being fit together, for example as a constant (flat), 
straight line (linear), or curved line (quadratic). This is the basis of the "autozero" modes in the 
ipf.m, iSignal.m, and iPeak.m functions, which are selected by the T key to cycle thorough none, 
linear, quadratic, and flat modes. In the flat mode, a constant baseline is included in the curve fitting 
calculation, as described on page 55. In linear mode, a straight-line baseline connecting the two ends 
of the signal segment in the upper panel will be automatically subtracted. In quadratic mode, a 
parabolic baseline is subtracted. (In the last two modes, you must adjust the pan and zoom controls 
to isolate the group of overlapping peaks to be fit, so that the signal returns to the local background  
at the left and right ends of the window). 

 Above: Example of an experimental chromatographic signal. From left to right, (1) Raw data with peaks 
superimposed on a sloping baseline. One group of peaks is selected using the pan and zoom controls, 
adjusted so that the signal returns to the local background at the edges of the segment displayed in the upper  
window; (2) The linear baseline is subtracted when the “autozero” mode 1 in ipf.m; (3) the signal in this 
region is fit with a three-peak Gaussian model, by pressing the keys: 3, G, F (3 peaks, Gaussian, Fit). 

Left: Raw data with peaks 
superimposed on a baseline. 

Right: Baseline subtracted from the 
entire signal using the multi-point 
background subtraction function in 
iPeak  .m. (ipf.m and iSignal.m have 
the same function).

Another possibility is to subtract the background from the entire signal first, before further 
operations are performed. The simplest assumption is that the background is piece-wise linear and 
can be approximated as a series of small straight line segments. This is the basis of the multipoint 
background subtraction mode in ipf.m (page 95), iPeak.m (page 76), and iSignal.m (page 85). The 
user enters the number of points that is thought to be sufficient to define the baseline, then clicks 
where the baseline is thought to be along the entire length of the signal in the lower whole-signal 
display (e.g. on the valleys between the peaks), and the program interpolates between the clicked 
points and subtracts the piece-wise linear background from the original signal.
  In some cases the background may be able to be modeled as one or more peaks whose maxima may 
fall outside of the range of data acquired, and you can fit it simply by including extra peaks in the 
model to account for the baseline. (Don't use the equal-width shapes for this, because it's likely that 
measured and background peaks have different widths). You can model the baseline with a different 
shape by using a vector of shapes in peakfit.m. For some examples, see Example 12b on page 93 , 
Example 20 on page 94, and page 129. If the baseline seems to be flat but at a different level on 
either side of the peak, it might be useful to use an up-sigmoid (shape 10) or down-sigmoid (shape 
23) to model the baseline; for example  peakfit([x;y],0,0,2,[1 23],[0 0]). The downside 
is that including the baseline as a variable component increases the number of degrees of freedom, 
increases the execution time, and increases the possibility of unstable fits. 
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c. Random noise in the signal. 
Any experimental signal has a certain amount of random noise, which means that the individual data 
points scatter randomly above and below their mean values. Ordinarily one assumes that the scatter 
is equally above and below the true signal, so that the long-term average approaches the true mean 
value; the noise “averages to zero”, as it is often said. The practical problem is that any given 
recording of the signal contains only one finite sample of the noise. If another recording of the signal 
is made, it will contain another independent sample of the noise. These noise samples are not 
infinitely long and therefore do not represent the true long-term nature of the noise. This presents 
two problems: (1) an individual sample of the noise will not “average to zero” and thus the 
parameters of the best-fit model will not necessarily equal the true values, and (2) the magnitude of 
the noise during one sample might not be typical; the noise might have been randomly greater or 
smaller than average during that time. Smoothing before curve fitting usually does not help, because 
the peak signal information is concentrated in the low frequency range, but smoothing reduces 
mainly the noise in the high frequency range (page 69). A smoothed signal may look like it has less 
noise, but the performance of curve fitting is not improved. Additionally, the mathematical “propa-
gation of error” methods, which seek to estimate the likely error in the model parameters based on 
the noise in the signal, will underestimate the error if the noise in that sample happens to be lower 
than average and overestimate the error if the noise happens to be larger than average in that sample. 
  A better way to estimate the parameter errors is to record multiple samples of the signal, fit each of 
those separately, compute the models parameters from each fit, and calculate the standard error of 
each parameter. This is exactly what the script Demo  Peakfit  .m does (which requires the peakfit  .m 
function) for simulated noisy peak signals such as those illustrated in the figure below. It's easy to 
demonstrate that, as expected, the average fitting error precision and the relative standard deviation 
(RSD) of the parameters increases directly with the random noise level in the signal. But the 
precision and the accuracy of the measured parameters also depend on which parameter it is (peak 
positions are always measured more accurately than their heights, widths, or areas) and on the peak 
height and extent of peak overlap. The two left-most peaks in this example are not only weaker but 
also more overlapped than the right-most peak, and thus exhibit poorer parameter measurements. In 
this example, the fitting error is 1.6% and the percent RSD of the parameters ranges from 0.05% for 
the peak position of the largest peak to 12% for the peak area of the smallest peak.

The errors in the values of peak parameters measured by curve fitting depend not only on the characteristics  
of the peaks in question and the signal-to-noise ratio, but also upon other peaks that are overlapping it. 
From left to right: (1) a single peak at x=100 with a peak height of 1.0 and width of 30 is fit with a Gaussian 
model, yielding a relative fit error of 4.9% and relative standard deviation (RSD) of peak position, height, 
and width of 0.2%, 0.95%, and 1.5% , respectively. (2) The same peak, with the same noise level but with 
another peak overlapping it, reduces the relative fit error to 2.4% (because the addition of the second peak 
increases overall signal amplitude), but increases the RSD of peak position, height, and width to 0.84%, 5%, 
and 4% - a seemingly better fit, but with poorer precision for the first peak. (3) The addition of a third peak 
further reduces the fit error to 1.6% , but the RSD of peak position, height, and width of the first peak are 
still 0.8%, 5.8%, and 3.64%, about the same as with two peaks, as the third peak does not overlap the first.

  If it is not possible to record multiple samples of the signal, if the average noise in the signal is not 
known, or if its probability distribution is uncertain, it is still possible to use the bootstrap sampling 
method to estimate the uncertainty of the peak heights, positions, and widths, as described on page 
41 - 42, as long as the data are unsmoothed. The latest versions of peakfit.m (page 93, example 15) 
and of ipf.m (page 95) have a function that estimates the expected standard deviation of the peak 
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parameters from a single signal, using the “bootstrap method” (#16 on page 98). Don't smooth the 
data before curve fitting; it will not actually reduce the accuracy of peak parameter measurement and 
it will cause the bootstrap method to seriously underestimate the parameter errors. The same thing 
occurs if the noise is “pink” (page 8) ; the errors will be underestimated by the bootstrap. 
Unfortunately, the bootstrap method will also totally underestimate the parameter errors resulting 
from poor model selection and imperfect baseline correction; it works only for noise errors.
  One way to reduce the effect of noise is to take more data per signal. If the experiment makes it 
possible to reduce the x-axis interval between points, or to take multiple readings at each x-axis 
value, then the resulting increase in the number of data points in each peak should help reduce the 
effect of noise. As a demonstration, using the script Demo  Peakfit  .m to create a simulated 
overlapping peak signal like that shown above right, it's possible to change the interval between x 
values and thus the total number of data points in the signal. With a noise level of 1% and 75 points 
in the signal, the fitting error is 0.35 and the average parameter error is 0.8%. With 300 points in the 
signal and the same noise level, the fitting error is essentially the same, but the average parameter 
error drops to 0.4%, suggesting that the accuracy of the measured parameters varies inversely with 
the square root of the number of data points in the peaks. 
  The figure on the right below illustrates 
the importance of sampling rate and data 
density. The signal consists of two 
Gaussian peaks, one located at x=50 and 
the second at x=150. Both peaks have a 
peak height of 1.0 and a peak half-width of 
10 units, and normally-distributed random 
white noise with a standard deviation of 
0.1 has been added to the entire signal. The 
x-axis sampling interval, however, is 
different for the two peaks; it's 0.1 for the 
first peaks and 1.0 for the second peak. 
This means that the first peak is characterized by ten times more data points than the second peak. 
When you fit these peaks to a Gaussian model (e.g. using peakfit.m or ipf.m), you will find that the 
parameters of the first peak are measured more accurately than the second, even though the fitting 
error is not much different (because the noise is the same for both peaks):
 First peak: Second peak
   Percent Fitting Error = 7.6434%     Percent Fitting Error = 8.8827%
   Position   Height   Width           Position   Height   Width
   49.95      1.005    10.11           149.64     1.0313   9.94

Noise color (page 8) also has an important effect on curve-fitting. So far this discussion has applied 
to white noise. But other noise colors have different effects. Low-frequency weighted (“pink”) noise 

has a greater effect on the accuracy of peak parameters 
measured by curve fitting, and, in a nice symmetry, high-
frequency “blue” noise has a smaller effect on the accuracy of 
peak parameters that would be expected on the basis of its 
standard deviation, because the signal information in a 
smooth peak signal is concentrated at low frequencies (page 
7, 29). An example of this occurs when curve fitting is 
applied to a signal that has been previously deconvoluted to 
remove a broadening effect (Appendix H: page 121). 
  Sometimes you may notice that the signals and the residuals 
in a curve fitting operation are weirdly structured into bands 
or lines rather than being completely random and 
unstructured. This can occur if either the independent variable 
or the dependent variable is quantized into discrete steps. This 
is called quantization noise or digitization noise and is 
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discussed on page 122. It may look strange, but it usually has relatively little effect on the results, 
which remain limited by the random noise in the signal.
d. Iterative fitting errors. 
Unlike multiple linear regression curve fitting, iterative methods may not converge on the exact 
same model parameters each time the fit is repeated with slightly different starting values (first 
guesses). The Interactive Peak Fitter (ipf.m, page 95) makes it easy to test this, because it uses 
slightly different starting values each time the signal is fit (by pressing the F key in ipf.m, for 
example). Even better, by pressing the X key, the ipf.m function silently computes 10 fits with 
different starting values and takes the one with the lowest fitting error. It is a basic assumption of 
any curve fitting operation is that if the fitting error (the RMS difference between the model and the 
data) is minimized, the parameter errors 
(the difference between the actual 
parameters and the parameters of the best-
fit model) will also be minimized. This is 
usually a good assumption. For example, 
the graph on the right shows typical percent 
parameters errors as a function of fitting 
error for the left-most peak in one sample of 
the simulated signal generated by the script 
Demo  Peakfit  .m (shown in the previous 
section). The variability of the fitting error 
here is caused by random small variations 
in the first guesses, rather than by random 
noise in the signal. In many practical cases 
there is enough random noise in the signals 
that the iterative fitting errors within one 
sample of the signal are small compared to the random noise errors between samples.
  Remember that the variability in measured peak parameters from fit to fit of a single sample of the 
signal is not a good estimate of the precision or accuracy of those parameters, for the simple reason 
that those results represent only one sample of the signal, noise, and background. The sample-to-
sample variations are likely to be much greater than the within-sample variations due to the iterative 
curve fitting. (In this case, a “sample” is a single recording of signal). To estimate the contribution of 
random noise to the variability in measured peak parameters when only a single sample if the signal 
is available, use the “bootstrap method” (page 41 – 42).

So, to sum up, we can make the following observations about the accuracy of peak parameters:

1. Parameter errors depend on the accuracy of the model and the number of overlapping peaks; 
2. All else being equal, the parameter errors are directly proportional to the noise in the data 

(and worse for low-frequency or pink noise); 
3. All else being equal, parameter errors are proportional to the fitting error, but a constrained 

model that fits the underlying reality better, e.g. equal or fixed widths or shapes, often gives 
lower parameter errors even if the fitting error is larger; 

4. The errors are typically least for peak position and worse for peak width and area; 
5. The errors depend on the data density (number of independent data points in the width of 

each peak) and on the extent of peak overlap (the parameters of isolated peaks are easier to 
measure than highly overlapped peaks); 

6. If only a single signal is available, the effect of noise on the standard deviation of the peak 
parameters in many cases can be predicted approximately by the bootstrap method (page 40), 
but if the overlap of the peaks is too great, the actual errors of the parameter measurements 
can be much greater than predicted. 
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Fitting signals that are subject to exponential broadening.
Data  Matrix2 (right) is a computer-generated 
test signal consisting of 16 symmetrical 
Gaussian peaks with random white noise 
added. The peaks occur in groups of 1, 2, or 3 
overlapping peaks, and the peak maxima are 
located at exactly integer values of x from 300 
to 3900 (on the 100's) and the peak widths are 
always exactly 60 units. The peak heights vary 
from 0.06 to 1.85. The standard deviation of 
the noise is 0.01. (You can use this signal to 
test curve-fitting programs and to determine 
the accuracy of their measurements of peak parameters. Download these mat files from the bottom of 
http://tinyurl.com/cey8rwh, put it in the Matlab/Octave path, then type “load Data  Matrix2” to load 
it into the workspace). Data  Matrix3 (below left) is an exponentially broadened version of 
DataMatrix2, with a “time constant” of 33 points on the x-axis. The result of the exponential 
broadening is that all the peaks in this signal are asymmetrical, their peak maxima are shifted slightly 

to longer x values, and their peak heights 
are smaller and their peak widths are 
larger than the corresponding peaks in 
DataMatrix2. Also, the random noise is 
damped in this signal compared to the 
original and is no longer “white”, as a 
consequence of the broadening. This type 
of effect is common in physical 
measurements and often arises from some 
physical or electrical effect in the 

measurement system that is apart from the fundamental peak characteristics. In such cases it is 
usually desirable to compensate for the effect of the broadening, either by Fourier deconvolution 
(page 32) or by curve fitting, in an attempt to measure what the peak parameters would have been 
before the broadening (and also to measure the broadening itself). This can be done for Gaussian 
peaks that are exponentially broadened by using the “ExpGaussian” peak shape in peakfit.m and 
ipf.m. The example illustrated on the right focuses on the single isolated peak whose “true” peak 
position, height, width, and area in the original 
unbroadened signal, are 2800, 0.52, 60, and 33.2 
respectively. (The relative standard deviation of the 
noise is 0.01/0.52=2%.) In the broadened signal, the 
peak is visibly asymmetrical, the peak maximum is 
shifted to larger x values, and it has a shorter height 
and larger width, as demonstrated by the attempt to 
fit a normal (symmetrical) Gaussian to the broad­
ened peak. (Note that the peak area, in contrast, is 
not much effected). 
>> load DataMatrix3
>> (DataMatrix3);

Peak Shape = Gaussian
Autozero ON
Number of peaks = 1
Fitted range = 2640 - 2979.5 (339.5) (2809.75) 
Percent Error = 1.2084
Peak #   Position  Height    Width      Area
1        2814.832  0.4510    68.4412    32.8594 
The large “wavy” residual plot is a tip-off that the model is not quite right. Moreover, the fitting 
error (1.2%) is larger than expected for a peak with a half-width of 60 points and a 2% noise RSD 
(which should have been roughly 2%/sqrt(60)=0.25%).
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Fitting to an exponentially-broadened Gaussian 
(pictured on the right) gives a much lower fitting 
error (“Percent error”) and a more random residual 
plot. But the interesting thing is that it also recovers 
the original peak position, height, and width to an 
accuracy of a fraction of 1%. In performing this fit, 
the time constant (“extra”) was experimentally 
determined from the broadened signal by adjusting it 
with the A and Z keys to give the lowest fitting error; 
that also gives a pretty good measurement of the 
broadening factor (32.6, vs the actual value of 33). 
Note: When using peakshape 5 (exponentially 
broadened Gaussian) you have to give it a reasonably 
good value for the time constant ('extra'), the input 
argument right after the peakshape number. If the value is too far off, the fit may fail completely, 
returning all zeros. A little trial and error suffice. (Or use peakfit.m version 7, shape number 31, to 
measure the time constant as an iterated variable). 

Peak Shape = Exponentially-broadened Gaussian
Autozero ON
Number of peaks = 1
Extra = 32.6327
Percent Error = 0.21696
Peak #   Position   Height      Width     Area
1        2800.13    0.5183     60.086     33.152 

  Comparing the two methods, the exponentially-broadened Gaussian fit recovers all the underlying 
peak parameters quite accurately:

Position Height Width Area
Actual peak parameters 2800 0.52 60 33.2155
Gaussian fit to broadened signal 2814.832 0.45100549 68.441262 32.859436
ExpGaussian fit to broadened signal 2800.1302 0.51829906 60.086295 33.152429

Other peaks in the same signal, if they are under the broadening influence of the same time constant, 
can be fit with similar settings, for example the set of three overlapping peaks near x=2400. The 
peak positions are recovered almost exactly and even the width measurements are reasonably 
accurate (1% or better). (The smaller fitting error evident here is just a reflection of the larger peak 
heights in this group of peaks - the noise is the same everywhere in this signal). 

Peak Shape = Exponentially-broadened Gaussian
Autozero OFF
Number of peaks = 3
Extra = 31.9071
Fitted range = 2206 - 2646.5 (440.5) (2426.25) 
Percent Error = 0.11659
Peak #   Position     Height        Width        Area
1       2300.2349    0.83255884    60.283214    53.422354
2       2400.1618    0.4882451     60.122977    31.24918
3       2500.3123    0.85404245    60.633532    55.124839 

The residual plots in both of these examples still have some “wavy” character, rather than being 
completely random and “white”. The exponential broadening smooths out any white noise in the 
original signal that was introduced before the exponential effect, acting as a low-pass filter in the 
time domain and resulting in a low-frequency dominated “pink” noise, which is what remains in the 
residuals after the broadened peaks have been fit as well as possible. On the other hand, white noise 
that is introduced after the exponential effect would remain white and random in the residuals. In 
real experimental data, both types of noise may be present in varying amounts. 
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  One warning: peak asymmetry similar to expo­
nential broadening can in principle be the result a 
pair of closely-spaced peaks of different peak 
heights. In fact, a single exponential broadened 
Gaussian peak can be fit with two or three 
symmetrical Gaussians to a fitting error at least as 
low as a single exponential broadened Gaussian fit. 
This makes it hard to distinguish between these 
two models on the basis of fitting error alone. 
However, this can usually be decided by inspecting 
the other peaks in the signal: in many experiments, 
the same exponential broadening applies to every 
peak in the signal, and the broadening is either 
constant or changes gradually over the length of the signal. On the other hand, it is less likely that 
every peak in the signal will be accompanied by a smaller side peak that varies in exactly this way. 
So, if a only one or a few peaks exhibit asymmetry, and the others are symmetrical, it's most likely 
that the asymmetry is due to closely-spaced peaks of different peak heights. If all peaks have the 
same or similar asymmetry, it's more likely to be caused by a broadening factor that applies to the 
entire signal. Human judgment, based on knowledge of the experimental system and the types of 
signals it generates, is always valuable and is often essential in such cases.

  More generally, it is technically possible to fit any arbitrary peak, symmetrical or not, with the sum 
of a number of Gaussians; and the greater the number of Gaussians, the lower will be the fitting 
error. But the Gaussian peak parameters so determined will usually not be reproducible with respect 
to small changes in starting values or to variations in the noise in the data.

Here's another illustrative simulation: the original 
signal here consists of five overlapping Gaussian 
peaks with the same initial peak height (1.0) and 
width (FWHM=3) that have been subjected to 
increasing degrees of exponential broadening 
(similar to the broadening of peaks encountered in 
chromatography), and white noise is added after the 
broadening. Each peak has a different degree of 
broadening, so we use peakfit (page 90) with vectors 
of peak shapes and 'extra' values. It works best if we 
supply a vector of 'start' values [position1 width1 
position2 width2 …] obtained from findpeaksG 
(page74) or by preliminary fitting with 5 plain 
Gaussians. The measured peak parameters of the 
original signal (bottom panel) are accurate to 0.3%. 

x=5:.1:65;;
y=modelpeaks2(x,[1 5 5 5 5], [1 1 1 1 1], [20 25 30 35 40], [3 3 3 3 3], [0 -5 
-10 -15 -20])+.01*randn(size(x));

Alternatively, you could try peak shape 31 to measure the time constants directly, but that can be 
unstable with multiple peaks (because there are too many interacting variables); you'll need a good 
'start' value, the 8th input argument, as shown in this peakfit.m example:

FitResults,FittingError]=peakfit([x;y], 30, 54, 5, [1 8 8 8 8], [0 -5 -10 -15 
-20],10, [20 3.5 25 3.5 31 3.5 36 3.5 41 3.5],0)
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Effect of smoothing before curve fitting: To Smooth or not to Smooth
 In general, it is not advisable to smooth a signal before applying least-squares fitting (reference 43), 
because doing so might distort the signal, make it hard to evaluate the residuals properly, and bias 
the results of bootstrap sampling estimations of precision, causing it to underestimate the between-
signal variations in peak parameters. 

  The Matlab/Octave script SmoothOptimization.m (download from http://tinyurl.com/cey8rwh) 
compares the effect of smoothing on the measurements of peak height of a Gaussian peak with a 
half-width of 166 points, plus white noise with a signal-to-noise ratio (SNR) of 10, using three 
different methods: 

(a) simply taking the single point at the center of the peak as the peak height; 
(b) using the gaussfit method to fit the top half of the peak (page 43), and 
(c) fitting the entire signal with a Gaussian using the iterative method (page 54).

The results of 150 trials with 
independent white noise samples are 
shown on the left: a typical raw signal is 
shown in the upper left. The other three 
plots show the effect of the SNR of the 
measured peak height vs the smooth 
ratio (the ratio of the smooth width to 
the half-width of the peak) for those 
three measurement methods. 

  The results show that the simple 
single-point measurement is indeed 
much improved by smoothing, as would 
be expected; however, the optimum 
SNR is achieved only when the smooth 
ratio approaches 1.0 (which improves 
the SNR by roughly the square root of 
the peak width of 166 points), but that 
much smoothing distorts the peak shape 
significantly, reducing the peak height 
by about 40%. The curve-fitting 
methods are much less effected by 

smoothing and the iterative method hardly at all. In terms of harmonic analysis (page 28), smoothing 
removes only the high-frequency noise, leaving the low-frequency noise where most of the signal 
information is located, resulting in no real improvement. Smoothing just makes things look better.

  So the conclusion is that you should not smooth prior to curve-fitting, because it will distort the 
peak and will not gain any significant SNR advantage. The only situation where it might be 
advantageous so smooth is when the noise in the signal is high-frequency weighted (page 7) or if the 
signal is contaminated with high-amplitude narrow spike artifacts, in which case a median-based 
pre-filter is useful (page 14). 

  Unfortunately in some cases the signal source itself may be filtered internally (either inherently or 
by design, to make the output look better), and in those cases the usual methods of error prediction 
(page 40) will not be accurate.

 If a commercial instrument has the option to smooth the data for you, it's best to disable that 
smoothing and record the unsmoothed data; you can always smooth it later yourself for visual 
presentation, and it will be better to use the unsmoothed data for least-squares curve fitting or other 
processing that you may want to do later. 
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Software details
1. SPECTRUM for Macintosh OS 7 or 8
Some of the figures in this essay are screen images from S.P.E.C.T.R.U.M. (Signal Processing for 
Experimental Chemistry Teaching and Research/ University of Maryland), a simple Macintosh 
program that I wrote in 1989 for teaching signal processing to chemistry students. Unfortunately it 
runs only in Mac OS 8.1 and earlier, but it can be made to run on Windows 7 PCs and various 
specific Linux distributions using the Executor emulator.

 
SPECTRUM is designed for post-run (rather than real-time) processing of “spectral” or time-series 
data (y values at equally-spaced x intervals), such as spectra, chromatograms, electrochemical 
signals, etc. The program enhances the information content of instrument signals, for example by 
reducing noise, improving resolution, compensating for instrumental artifacts, and testing 
hypotheses. 

SPECTRUM was the winner of two EDUCOM/NCRIPTAL national higher education software 
awards in 1990, in two categories: Best Chemistry software and Best Design.

Features

• Reads one- or two- column (y-only or x-y) text data tables with either tab or space separators
• Displays fast, labeled plots in standard re-sizable windows with full x- and y-axis scale 

expansion and a mouse-controlled measurement cursor
• Addition, subtraction, multiplication, and division of two signals
• Two kinds of smoothing. 
• Three kinds of differentiation
• Integration
• Resolution enhancement
• Interpolation 
• Fused peak area measurement by perpendicular drop or tangent skim methods, with mouse-

controlled setting of start and end points
• Fourier transformation 
• Power spectra 
• Fourier filtering 
• Convolution and Deconvolution 
• Cross- and auto-correlation 
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• Built-in signal simulator with Gaussian and Lorentzian bands, sine wave and normally-
distributed random noise

• A number of other useful functions, including: inspect and edit individual data points, 
normalize, histogram, interpolate, zero fill, group points by 2s, bridge segment, superimpose, 
extract subset of points, concatenate, reverse X-axis, rotate, set X axis values, reciprocal, log, 
ln, antilog, antiln, standard deviation, absolute value, square root

SPECTRUM can be used both as a simple research tool and as an instructional aid in teaching signal 
processing techniques. The program and its associated tutorial was originally developed for students 
of analytical chemistry, but the program could be used in any field in which instrumental 
measurements are used: e.g. chemistry, biochemistry, physics, engineering, medical research, clinical 
psychology, biology, environmental and earth sciences, agricultural sciences, or materials testing.

SPRECTUM performs only polynomial curve fitting and does not include non-linear iterative curve 
fitting.

Machine Requirements: SPECTRUM runs on older Macintosh models running OS 7 or 8, 
minimum 1 MByte RAM, any standard printer. Color screen desirable. SPECTRUM has been tested 
on most Macintosh models and on all versions of the operating system through OS 8.1. No PC 
version or more recent Mac version is available or planned, but if you have some older model Macs 
laying around, you might find this program useful. 

SPECTRUM was written in Borland's Turbo Pascal in 1989 (yes, it's that old). Borland has long 
been out of business, neither Turbo Pascal nor the executable code generated by that compiler runs 
on current Macs, and therefore there is no way for me to update SPECTRUM without completely 
rewriting it in another language. 

SPECTRUM also runs on Windows 7 PCs using the Executor emulator, which since 2008 has been 
made available as open source software. 

The full version of SPECTRUM 1.1 is available as freeware, and can be downloaded from 
http://terpconnect.umd.edu/~toh/spectrum/. There are two versions: 

SPECTRUM 1.1e: Signals are stored internally as extended-precision real variables and 
there is a limit of 1024 points per signal. This version performs all its calculations in 
extended precision and thus has the best dynamic range and the smallest numeric round-off 
errors. The download address of this version in HQX format is 
http://terpconnect.umd.edu/~toh/spectrum/SPECTRUM11e.hqx. 

SPECTRUM 1.1b: Signals are stored internally as single-precision real variables and there 
is a limit of 4000 points per signal. This version is less precise in its calculations (has more 
numerical round-off error) than the other version, but allows signals with data more points. 
The download address of this version in HQX format is 
http://terpconnect.umd.edu/~toh/spectrum/SPECTRUM11b.hqx. 

The two versions are otherwise identical. 

There is also a documentation package (located at 
http://terpconnect.umd.edu/~toh/spectrum/SPECTRUMdemo.hqx) consisting of:

a. Reference manual. Macwrite format (Can be opened from within MacWrite, Microsoft 
Word, ClarisWorks, WriteNow, and most other full-featured Macintosh word processors). 
Explains each menu selection and describes the algorithms and mathematical formulas for 
each operation. The SPECTRUM Reference Manual is also available separately in PDF 
format at http://terpconnect.umd.edu/~toh/spectrum/SPECTRUMReferenceManual.pdf.

b. Signal processing tutorial. Macwrite format (Can be opened from within MacWrite, 
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Microsoft Word, ClarisWorks, WriteNow, and most other full-featured Macintosh word 
processors). Self-guided tutorial on the applications of signal processing in analytical 
chemistry. This tutorial is also available in PDF format and in Web format 
(http://terpconnect.umd.edu/~toh/Chem498C/SignalProcessing.html)

c. Tutorial signals: A library of prerecorded data files for use with the signal processing 
tutorial. These are plain decimal ASCII (tab-delimited) data files.

These files are binhex encoded: use Stuffit Expander to decode and decompress as usual. If you are 
downloading on a Macintosh, all this should happen completely automatically. If you are viewing 
this online, shift-click on the download links above to begin the download. If you are using the 
ARDI Executor Mac simulator, download the “HQX” files to your C drive, launch Executor, then 
open the downloaded HQX files with Stuffit Expander, which is pre-loaded into the Executor 
Macintosh environment. Stuffit Expander will automatically decode and decompress the 
downloaded files. 

Note: Because it was developed for academic teaching application where the most modern and 
powerful models of computers may not be available, SPECTRUM was designed to be “lean and 
mean” - that is, it has a simple Macintosh-type user interface and very small memory and disk space 
requirements. It will work quite well on Macintosh models as old as the Macintosh II, and will even 
run on older monochrome models (with some cramping of screen space). It does not require a math 
co-processor. 

What SPECTRUM does not do: this program does not have a peak detector, multiple linear 
regression, or an iterative non-linear curve fitter. It also does not have scripting abilities to automate 
repetitive tasks.

(c) 1989 T. C. O'Haver. This program is free and may be freely distributed. It may be included on 
CD-ROM collections or other archives.
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2. Matlab and Octave (for PC, Macintosh, and Unix)
Matlab is a fourth-generation high-performance commercial numerical computing environment and 
programming language that is very widely used in research and education. There is a good reason 
why this language is so massively popular in science and engineering; it's powerful, fast, you can 
download thousands of useful user-contributed functions, it can interface to C, C++, Java, Fortran, 
and Python, and it's extensible to symbolic computing and model-based design for dynamic and 
embedded systems. Bite the bullet and go for it. See http://en.wikipedia.org/wiki/  MATLAB for a 
general description. There are many good tutorials, YouTubes, and collections of sample code:

a. Video Tutorials for New MATLAB Users (http://www.youtube.com/results?
search_query=  matlab  +tutorial&aq=f ). 

b. A Brief Introductory Guide to MATLAB. (http://www.cs.unc.edu/~snoeyink/c/c205/matlab.htm)

c. Matlab Summary and Tutorial. (http://www.math.ufl.edu/help/  matlab  -tutorial/)

d. A Practical Introduction to Matlab (http://www.math.mtu.edu/~msgocken/intro/intro.html)

e. Matlab Chemometrics Index http://www.mathworks.com/  matlab  central/linkexchange/?
term=chemometrics 

f. Introduction to Matlab: http://homepages.math.uic.edu/~jan/mcs320s07/ 

g. Practical Statistical Signal Processing using MATLAB: 
http://www.aticourses.com/sampler/Practical%20Signal%20Processing%20using  %20  MATLAB  .pdf. 

h. Multivariate Curve Resolution. http://www.mcrals.info/ 

      i. MATLAB Tutorials and Learning Resources: 
http://www.mathworks.com/academia/student_center/tutorials/launchpad.html

A Google or YouTube search for “signal processing” or “matlab” will often prove useful in turning 
up recently available tutorial materials. Several experienced Matlab users, as well as the MathWorks 
company itself, have produced excellent tutorial YouTube videos.

A collection of downloadable Matlab modules that I have written is freely available on  
https://bit.ly/1r7oN7b. These are described in the following sections of this document.

Octave. There are less expensive alternatives to the relatively costly Matlab that operate in the same 
way. I recommend Octave (http://www.gnu.org/software/  octave  /); it's free and almost completely 
compatible with Matlab; DspGURU says that Octave is “...a mature high-quality Matlab clone. It has 
the highest degree of Matlab compatibility of all the clones.” In fact, all of my command-line 
functions, scripts, demos, and examples work in the latest version of Octave without change. 
However, the keyboard-operated interactive functions of iPeak, iSignal, iFilter, and ipf do not 
currently work in Octave (but that might change in the future if I can figure out how to get my 
keypress-reading code working in Octave). The latest version is 4.0.0, as of June, 2015, which has a 
screen layout similar to Matlab. There are Windows, Mac, and Unix versions of Octave; download 
Windows versions from Octave Forge (http://sourceforge.net/projects/  octave  /). Be sure to install all 
the “packages”. Installation of Octave is somewhat more laborious than installing a commercial 
package like Matlab. More seriously, Octave is slower than Matlab computationally - see 
TimeTrial.txt for specific execution time comparisons for typical signal processing tasks. There is a 
lot of help available online: Google “GNU   Octave” or see the YouTube videos for help. For signal 
processing applications specifically, Google "signal processing octave" to find the latest stuff.
There are also other alternatives to MATLAB, in particular Scilab, FreeMat, Julia, and Sage which 
are intended to be mostly compatible with the MATLAB language. For a discussion of other 
possibilities, see http://www.dspguru.com/dsp/links/  matlab  -clones.
An additional advantage of Matlab and Octave is that their function and script files (“m-files”) are 
just plan text files with a “.m” extension, so those files can be opened and inspected even on devices 
that do not have Matlab or Octave installed.
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3. Peak Finding and Measurement
A common requirement in signal processing is to detect peaks in signals and to measure their 
positions, heights, widths, and areas. A common way to do this is to make use of the fact that the 
first derivative (page 17) of a peak has a downward-going zero-crossing at the peak maximum. But 
the presence of random noise in real experimental signal will cause many false zero-crossing simply 
due to the noise. To avoid this problem, the technique described here first smooths (page 11) the first 
derivative of the signal before looking for the zero-crossings, and then it takes only those zero 
crossings whose slope exceeds a predetermined minimum, called the “slope threshold”, at a point 
where the original signal exceeds a certain minimum, called the “amplitude threshold”. The idea is 
to adjust the smooth width and the slope and amplitude thresholds to detect only the “real” peaks and 
to ignore peaks that are too small, too wide, or too narrow. The routine is available in two formats: 
(a) a series of command-line functions, available in several different variations; 
(b) an interactive keypress-operated function (  ipeak  .m) for adjusting the peak detection criteria in 
real-time to optimize for any particular peak type, described on page 78. (iPeak is capable of 
utilizing non-linear iterative curve fitting, page 54, For the most accurate measurement of highly 
overlapped peaks of any shape). If you are viewing this online, click here to   download   the ZIP file 
“Peakfinder.zip” that includes all the findpeaks variants and supporting functions and several self-
contained demos to show how it works. Download from http://tinyurl.com/cey8rwh. 

a. Command-line peak finding functions
findpeaksx.m is a command-line function to locate and count the positive peaks in a noisy data sets. 
P=findpeaksx(x,y,SlopeThreshold,AmpThreshold,SmoothWidth,PeakGroup,smoothtype)
It's an alternative to the findpeaks function in the   Signal Processing Toolkit. It detects peaks by 
looking for downward zero-crossings in the smoothed first derivative that exceed SlopeThreshold 
and peak amplitudes that exceed AmpThreshold, and returns a list (in matrix P) containing the peak 
number and the position and height of each peak. It can find and count over 10,000 peaks per second 
in very large signals. The data are passed to the findpeaksx function in the vectors x and y (x = 
independent variable, y = dependent variable). The other parameters are: 

SlopeThreshold - Slope of the smoothed first-derivative that is taken to indicate a peak. This discriminates 
on the basis of peak width. Larger values of this parameter will neglect broad features of the signal. A 
reasonable value is 0.7*WidthPoints^-2, where WidthPoints is the number of data points in the peak width.
AmpThreshold - Discriminates on the basis of peak height. Smaller peaks than this are ignored.
SmoothWidth - Width of the smooth function that is applied to data before the slope is measured. Larger 
values of SmoothWidth will neglect small, sharp features. A reasonable value is about equal to 1/2 of the 
number of data points in the half-width of the peaks. 
PeakGroup - The number of points around the "top part" of the (unsmoothed) peak that are taken to 
estimate the peak heights. If the value of PeakGroup is 1, the y value at the point of zero-crossing is taken 
as the peak height value; if PeakGroup is > 1, the mean of that many points is taken as the peak height. For 
very narrow peaks, keep PeakGroup=1 or 2, for broad or noisy peaks, make it larger to reduce noise.
Smoothtype determines the smoothing algorithm (see page 11): 1=rectangular (sliding-average or boxcar) ; 
2=triangular (2 passes of sliding-average); 3=pseudo-Gaussian (3 passes of sliding-average). Basically, 
higher values yield greater reduction in high-frequency noise, at the expense of slower execution. See page 
110 for a comparison of smooth types.

Example (demonstrating ability to detect 12000 peaks in under 1 second):
>> x=[0:.01:500]';y=x.*sin(x.^2).^2;

• >>tic;P=findpeaksx(x,y,0,440,3,3);toc;NumPeaks=max(P(:,1))
Elapsed time is 0.577598 seconds.
NumPeaks = 12028 
findpeaksG.m is a command-line function that locates and measures the positive peaks in a noisy 
data sets. It detects peaks like findpeaksx and then determines the position, height, and approximate
 (P=findpeaksG(x,y,SlopeThreshold,AmpThreshold,SmoothWidth,PeakGroup,smoothtype)
width of each peak by least-squares curve fitting the top part of the peak assuming they are 
Gaussian. As a result, even if heavy smoothing of the first derivative is necessary to provide reliable 
discrimination against noise peaks, the peak parameters extracted by curve fitting are not distorted. 
(This is useful primarily for signals that have several data points in each peak, not for spikes that 
have only one or two points). The technique is capable of measuring peak positions and heights quite 
accurately, but the measurements of peak widths and areas is accurate only if the peak shapes are 
approximately Gaussian (or Lorentzian, using findpeaksL.m). The function returns a peak table 
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matrix containing the peak number and the estimated position, height, width, and area of each peak. 
findpeaks  plot.m plots the x,y data and numbers the peaks on the graph (if any are found). The signal 
is passed to the function in the vectors x and y (independent and dependent variables); other 
parameters are user-adjustable:
Example: >> x=[0:.01:50]; y=(1+cos(x)).^2; P=findpeaksG(x,y,0,-1,5,5); plot(x,y)
P =  1    6.2832     4     2.3548     10.028
     2    12.566     4     2.3548     10.028
     3     18.85     4     2.3548     10.028...etc.

How are these 'findpeaks...' different from 'findpeaks' in the Signal Processing Toolkit?
The function 'findpeaks.m' in Matlab's Signal Processing Toolbox (SPT) can be used to find the 
values and indexes of all the peaks in a vector that are higher than a specified peak height and are 
separated from their neighbors by a specified minimum distance. My findpeaksG.m function accepts 
both an independent variable (x) and dependent variable (y) vectors, finds the places where the 
average curvature over a specified region is concave down, 
fits that region with a least-squares fit, and returns the peak 
position (in x units), height, width, and area, of any peak 
that exceeds a specified height. For example, let's create a 
noisy series of peaks (plotted on the right) and apply each 
of the functions to the resulting data.
>> x=[0:.1:100];
>> y=5+5.*sin(x)+randn(size(x));
>> plot(x,y)
Now, anyone looking at this plot of data would count 16 
peaks, with peak heights averaging about 10 units. Every 
time these three statements are run, the  noise is different, but you would still count the 16 peaks. But 
the findpeaks function in the SPT 
>> [PKS,LOCS]=findpeaks(y,'MINPEAKHEIGHT',5,'MINPEAKDISTANCE',11)
counts anywhere from 11 to 20 peaks, with an average height (PKS) of 11.5. In contrast, my 
findpeaksG function returns 16 peaks every time, with a mean height of 10 ±0.3.
>> findpeaksG(x,y,0.001,5,11,11,3)
It also measures the width and area, if the peaks are Gaussian (or Lorentzian, in the variant 
findpeaksL). Findpeaksx, or findpeaks in the Signal Processing Toolbox, works better for peaks that 
have only 1-3 data points on the peak; findpeaksG is better for peaks with more than 3 data points. 
Findvalleys. There is also a similar function for finding valleys (minima) called findvalleys.m, 
which works the same way as findpeaksG.m, except that it locates minima instead of maxima. Only 
valleys above (that is, more positive or less negative than) the AmpThreshold are detected; if you 
wish to detect valleys with negative minima, AmpThreshold must be set more negative than that.
>> x=[0:.01:50];y=cos(x);P=findvalleys(x,y,0,-1,5,5)
ans =  1     3.1416      -1     2.3571  0
       2     9.4248      -1     2.3571  0
       3     15.708      -1     2.3571  0 ...etc.
The accuracy of the measurements of peak position, height, width, and area by findpeaksG 
depends on the shape of the peaks, the extent of peak overlap, the baseline, and signal-to-noise ratio. 
The width and area measurements particularly are strongly influenced by peak overlap, noise, and 
the choice of FitWidth. Isolated peaks of Gaussian shape are measured most accurately. For 
Lorentzian peaks, use findpeaksL.m instead (the only difference is that the reported peak heights, 
widths, and areas will be more accurate if the peak are actually Lorentzian). See “ipeak  demo.m” 
(below) for an accuracy trial and peakfitVSfindpeaks.m for a comparison of findpeaks to peakfit.
findpeaksb.m is a variant of findpeaksG.m that more accurately measures peak parameters by using 
iterative least-square curve fitting based on peakfit.m. This yields better peak parameter values that 
findpeaksG alone, because it can be set for 30 different peak shapes, it fits the entire peak, not just 
the top part, and it has provision for background correction (linear, quadratic, or flat). This function 
works best with isolated peaks that do not overlap. The syntax is P=findpeaksb(x,y, 
SlopeThreshold,AmpThreshold,smoothwidth,peakgroup,smoothtype,windowspan, 
PeakShape,extra,autozero). The first seven input arguments are exactly the same as for the 
findpeaksG.m function; if you have been using findpeaksG or iPeak to find and measure peaks in 
your signals, you can use those same input argument values for findpeaksb.m. The remaining four 
input arguments of are for the peakfit function: "windowspan" specifies the number of data points 
over which each peak is fit to the model shape (if the peaks are superimposed on a background, 
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'windowspan' must be large enough to cover the entire single peak and get down to the background 
on both sides of the peak. Some trial and error may be needed to get this setting right.); "PeakShape" 
specifies the model peak shape (1=Gaussian, 2=Lorentzian, etc), "extra" is the shape modifier 
variable for the Voigt, Pearson, exponentially broadened Gaussian and Lorentzian, Gaussian/ 
Lorentzian blend, and bifurcated Gaussian and Lorentzian shapes to fine-tune the peak shape; 
“autozero” is 0, 1, 2, or 3 for no, linear, quadratic, or flat background subtraction. The peak table 
returned by the function has a 6th column listing the percent fitting errors for each peak. This 
example illustrates the accuracy advantages of this function over findpeaksG.m:
x=1:.2:100;Heights=[1 2 3];Positions=[20 50 80];Widths=[3 3 3];
y=2-(x./50)+modelpeaks(x,3,1,Heights,Positions,Widths)
+.02*randn(size(x));plot(x,y);
disp('        Peak     Position     Height     Width       Area       % error')
PlainFindpeaks=findpeaksG(x,y,.00005,.3,15,15,3)
NoBackgroundSubtraction=findpeaksb(x,y,.00005,.5,30,20,3,150,1,0)
LinearBackgroundSubtraction=findpeaksb(x,y,.00005,.5,30,20,3,150,1,1)

findpeaksb3.m is a variant of findpeaksb.m that fits each detected peak along with the previous and 
following peaks found by findpeaksG.m, so as to deal better with overlapping peaks. Type “help 
findpeaksb3.m” for syntax and examples. See this example graphic.
findpeaksE.m is a variant of findpeaksG.m that returns the percent relative fitting error of each peak 
(assuming a Gaussian peak shape) in the 6th column of the peak table. Example: 
x=[0:.01:5];findpeaksnr(x,x.*sin(x.^2).^2+.1*whitenoise(x),.001,1,15,10) 

Peak start and end. Defining the "start" and "end" of the peak (the x-values where the peak begins 
and ends), is a bit arbitrary because typical peak shapes approach the baseline gradually rather than 
abruptly. You might define the peak start and end points as where the y value is low, say, 1% of the 
peak height. But then the random noise on the baseline will often be a large fraction of the signal 
amplitude at that point. Smoothing to reduce noise is known to distort and broaden peaks, effectively 
changing their start and end points. Overlap of peaks also greatly complicates the issue. One solution 
is to fit each peak to a model shape, then calculate the peak start and end from the model expression. 
That minimizes the noise problem by fitting the data over the entire peak, and it can handle 
overlapping peaks, but it works only if the peaks can be modeled by available fitting programs. For 
example, Gaussian peaks reach a fraction a of the peak height of x=p±sqrt(w^2 log(1/a))/(2 sqrt 
(log(2))) where p is the peak position and w is the peak width. So, for example if a=.01 (that is, 1%), 
x=p±1.288784*w. Lorentzian peaks reach a fraction a of the peak height of x=p±sqrt[(w^2 - a 
w^2)/a]/2. If a=.01, x=p±4.97493*w. The findpeaksG variants findpeaksGSS.m and 
findpeaksLSS.m, for Gaussian and Lorentzian peaks respectively, compute the 1% peak start and 
end positions in this manner and return them in the 6th and 7th columns of the peak table.
findpeaksT.m is like findpeaksG, except that it measures the peak parameters by constructing a 
triangle with sides tangent to the sides of each peak. See triangulation.m for a demonstration.
findpeaksfit.m is a serial combination of findpeaksG.m and peakfit.m, using the number of peaks 
and the peak positions and widths determined by findpeaksG as input for the peakfit.m function, 
which then fits the entire signal with the specified peak model. This yields better values than 
findpeaks alone, because peakfit fits the entire peak, not just the top part, and it deals with non-
Gaussian and overlapped peaks, but it fits only those peaks that are found by findpeaks. It can 
measure peak areas, even of overlapping peaks, without defining the peak start and stop times.
peakstats.m uses the same algorithm as findpeaksG.m, but it returns a table of summary statistics of 
the peak intervals (the x-axis interval between adjacent detected peaks), heights, widths, and areas, 
listing the max, min, average, median, mode, and percent standard deviation of each, and optionally 
plotting the x,y data with numbered peaks in figure window 1, displaying the table of peak statistics 
in the command window and histograms of the peak intervals, heights, widths, and areas in figure 2.
>> x=[0:.1:1000];y=5+5.*cos(x)+randn(size(x));PS=peakstats(x,y,0,-1,15,23,3,1);
Peak Summary Statistics: 15 peaks detected
          Interval      Height      Width          Area
Maximum    6.6552      10.7393       4.2968       47.1482
Minimum    5.8525       9.5884       2.2744       26.0028
Mean       6.272       10.1845       3.0942       33.4194
% STD      3.1852       3.4479      18.3062       16.5684
In version 2 of peakstats.m, the median and the mode are also reported.

tablestats.m is similar to peakstats.m except that it takes as input a peak table P returned from any 
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of my peak finding functions listed above whose name begins with “findpeaks...”.
findsteps.m  P=findpulses(x,y,SlopeThreshold,AmpThreshold,SmoothWidth,peakgroup) has 
the same input arguments as findpeaksG.m, but it locates positive transient steps (a sharp rise 
followed by a flat plateau or slow drop). Returns list (P) with step number, x position, y position, 
and the step height of each step detected. "SlopeThreshold" and "AmpThreshold" control step 
sensitivity; higher values will neglect smaller features. Increasing "SmoothWidth" reduces small 
sharp false steps caused by random noise. Click findsteps.png for a real example. 

Demo scripts: DemoFindPeak.m and DemoFindPeaksb.m
These are demo scripts using the findpeaks and findpeaksb functions on 
noisy synthetic data. They number the peaks and print out the P matrix 
in the Matlab/Octave command window. The difference between them 
is that DemoFindPeaksb.m uses findpeaksb, which has the ability to 
correct for background. (The findpeaksG function can't give accurate 
measurements for this signal, because it does not correct for back-
ground). Demo  FindPeak  S  NR is a variant of DemoFindPeak.m that 
computes the signal-to-noise ratio (SNR) of each peak and returns it in 
the 5th column. 

Which to use: findpeaksG, findpeaksb, findpeaksb3, or findpeaksfit?  The Matlab/Octave script 
“FindpeaksComparison.m” compares these four peak detection functions applied to an adjustable 
computer-generated signal with multiple peaks plus variable types and amounts of baseline and 
random noise. Discover which works best for your own type of peak data. Click here for details. 

Using the peak table matrix. The above functions return the peak table as a matrix, in the order 
peak number, position, height, width, etc, which you can assign to a variable (e.g. P) and then use 
Matlab/Octave functions to extract specific information. For example:[P(:,2) P(:,3)] is the time 
series of peak heights); mean(P(:,3)) returns the average peak height (because peak height is in 
the 3rd column); max(P(:,3)) returns the maximum peak height; hist(P(:,3)) displays the 
histogram of peak heights; std(P(:,4))/mean(P(:,4)) returns the relative standard deviation of 
the peak widths (column 4); P(:,3)./max(P(:,3)) returns the ratio of each peak height (column 
3) to the height of the highest peak detected. 100.*P(:,5)./sum(P(:,5)) returns the percentage 
of each peak area (column 5) of the total area of all peaks detected. for n=1:length(P)-
1;d(n)=max(P(n+1,2)-P(n,2));end creates "d" as the vector of x-axis distance between peaks. 
sortrows(P,2) sorts P by peak position. sortrows(P,3) sorts P by peak height.
  Using my downloadable val2ind.m function: val2ind(P(:,3),7.5) returns the peak number of 
the peak whose height is closest to 7.5; P(val2ind(P(:,2),18.5),3) returns the peak height (3rd 
column) whose position (2nd column) is closest to 18.5; P(val2ind(P(:,3),max(P(:,3))),:) 
returns the row vector of peak parameters of the highest peak in peak table P. 

Peak Identification 
The command line function idpeaks.m is used for identifying peaks according to peak positions: 
[IdentPeaks,AllPeaks]=idpeaks(M,AmpT,SlopeT,sw,fw,maxerror,Positions,Names)

It finds peaks in the signal “M” (x-values in column 1 and y-values in column 2), according to the 
peak detection parameters AmpT, SlopeT, sw, fw (see the “findpeaks” function above), then 
compares the found peak positions (x-values) to a database of known peaks, in the form of an array 
of known peak maximum positions (“Positions”) and matching cell array of names (“Names”). If the 
position of a peak found in the signal is closer to one of the known peaks by less than the specified 
maximum error “maxerror”, that peak is considered a match and its peak position, name, error, and 
peak amplitude (height) are entered into the output cell array “IdentPeaks”. The full list of detected 
peaks, identified or not, is returned in “AllPeaks”. You can use “cell2mat” to access numeric 
elements of IdentPeaks, e.g. cell2mat(IdentPeaks(2,1)) returns the position of the first identified 
peak, cell2mat(IdentPeaks(2,2))returns its name, and so forth for the peak position error and 
peak height. The related function idpeaktable.m does the same thing for a peak table P returned by 
any of my peak finder (page 74) or peak fitting (page 90) functions, with P having one row for each 
peak and columns for peak number, position, and height as the first three columns. (The interactive 
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iPeak function, discussed in the next section, has the same peak identification feature; see page 81). 
Example: Download idpeaks.zip, extract it, and place the extracted files in the Matlab or Octave 
path. This contains a high-resolution atomic emission spectrum of copper ('spectrum') and a data 
table of known Cu I and II atomic lines ('DataTable') containing their positions and names.
>> load DataTable
>> load spectrum
>> idpeaks(Cu,0.01,.001,5,5,.01,Positions,Names)
ans=
    'Position'    'Name'             'Error'          'Amplitude'
    [  221.02]    'Cu II 221.027'    [ -0.0025773]    [ 0.019536]
    [  221.46]    'Cu I 221.458'     [ -0.0014301]    [   0.4615]
    [  221.56]    'Cu I 221.565'     [-0.00093125]    [  0.13191]

The lower the settings of the AmpThreshold, SlopeThreshold, and SmoothWidth, the more peaks 
will be detected; and the higher the setting of "MaxError", the more peaks will be close enough to 
the reference peaks to be considered identified. Of course, the accuracy of identification depends on 
the x-axis calibration of the measuring instrument (e.g. the wavelength accuracy of a spectrometer). 
For atomic emission or absorption spectroscopy, tables of known atomic lines can be obtained from 
NIST (the National Institute for Standards and Technology) and other sources.
Flat-topped pulses require a different approach, based on a simple amplitude threshold rather than 
differentiation. The function "findsquarepulse.m" (syntax S=findsquarepulse 
(t,y,threshold) locates the sections in the signal t,y that exceed a y-value of "threshold" and 
determines their start time, average height (relative to the baseline) and width. Returns the start time, 
height, and width of each pulse. DemoFindsquare.m demonstrates this function.
b. The iPeak Function (ipeak  .m), for Matlab

ZIP file available at http://terpconnect.umd.edu/~toh/spectrum/ipeak7.zip
Animated step-by-step instructions at http://terpconnect.umd.edu/~toh/spectrum/ipeak.html
iPeak is a Matlab keyboard-operated interactive peak finder for time series data, based on the 
“findpeaksG.m” function. It displays the entire signal in the lower half of the Figure window and an 
adjustable zoomed-in section in the upper window. Simple keystrokes allow you to adjust the peak 
detection parameters AmpThreshold (A/Z keys), SlopeThreshold (S/X keys), SmoothWidth (D/C 
keys), FitWidth (F/V keys), and other controls. (See list of Keyboard Controls, below). This function 
can be used to determine experimentally what values of those parameters give the most reliable peak 
detection for a particular type of data, detecting the desired peaks and ignoring those that are too 
small, too broad, or too narrow to be of interest. Detected peaks are numbered from left to right. 
Returns the peak table in a matrix (columns: peak #, position, height, width, area, and percent fitting  
error; one row for each peak detected). Press P to display a labeled peak table of all the detected 
peaks in the command window. Press Shift-P to save peak table as disc file.
 EXAMPLE 1: Two input arguments; data in separate x and y vectors
 >> x=[0:.1:100];y=(x.*sin(x)).^2;ipeak(x,y);
 EXAMPLE 2: One input argument; data in two columns of a matrix
 >> x=[0:.01:5]';y=x.*sin(x.^2).^2;ipeak([x y])
 EXAMPLE 3: One input argument; data in single vector
 >> y=cos(.1:.1:100);ipeak(y) 
The cursor keys pan and zoom the signal in the upper window, to inspect each peak in detail if 
desired. You can set the initial values of pan and zoom in optional input arguments 7 ('xcenter') and 
8 ('xrange'). See example 6 below. 
EXAMPLE 4: An additional scalar argument (shown in bold face below) controls peak sensitivity.

78

http://terpconnect.umd.edu/~toh/spectrum/ipeak.html
http://terpconnect.umd.edu/~toh/spectrum/ipeak7.zip
http://terpconnect.umd.edu/~toh/spectrum/ipeak.m
http://terpconnect.umd.edu/~toh/spectrum/ipeak.m
http://terpconnect.umd.edu/~toh/spectrum/DemoFindsquare.m
http://terpconnect.umd.edu/~toh/spectrum/findsquarepulse.m
https://www.google.com/search?q=ASTM+atomic+lines&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:unofficial&client=seamonkey-a#rls=org.mozilla:en-US:unofficial&q=atomic+line+database
http://physics.nist.gov/PhysRefData/ASD/lines_form.html
http://terpconnect.umd.edu/~toh/spectrum/idpeaks.zip


 >> x=[0:.1:100];y=5+5.*cos(x)+randn(size(x));ipeak(x,y,10);
 or  >> ipeak([x;y],10);
 or  >> ipeak(humps(0:.01:2),3)
 or  >> x=[0:.1:10];y=exp(-(x-5).^2);ipeak([x' y'],1)
This additional argument is an estimate of the ratio of the typical peak width to the length of the 
entire data record. Small values detect fewer peaks; larger values detect more peaks. It effects only 
the starting values for the peak detection parameters, and it's a quick way to set initial values for all 
the peak detection parameters, rather than specifying each one individually as in the next example).
 EXAMPLE 5: Six input arguments. As above, but input arguments 3 to 6 directly specify the initial 
values of PeakD, AmpT, SlopeT, SmoothW, FitW. (PeakD is ignored in this case, so just type a '0' 
as the second argument after the data matrix).
 >> ipeak(datamatrix,0,.5,.0001,20,20);

EXAMPLE 6: Eight input arguments. As above, but input arguments 7 and 8 specify the initial pan 
and zoom settings, 'xcenter' and 'xrange', respectively. In this example, the x-axis data are 
wavelengths in nanometers (nm), and the upper window zooms in on a very small 0.4 nm region 
centered on 249.7 nm. (These data are from a high-resolution atomic spectrum).
    >> load ipeakdata.mat
    >> ipeak(Sample1,0,110,0.06,3,4,249.7,0.4);

EXAMPLE 7: Nine input arguments. As example 6, but the 9th input argument controls the baseline 
correction mode (equivalent to pressing the T key), which can be 0 (none), 1 (linear), 2 (quadratic), 
or 3 (flat). If not specified, it is 0 (none).
 >> ipeak(Sample1,0,110,0.06,3,4,249.7,0.4,1);

The Spacebar/Tab keys jump to the next/previous detected peak and displays it in the upper 
window at the current zoom setting (use the up and down cursor arrow keys to adjust the zoom 
range). Or you can press the J key to jump directly to a specified peak number. The L key turns off 
and on peak parameter labeling. The Y key toggles between linear and log y-axis scale in the lower 
window (good for inspecting signals with high dynamic range; it effects only the lower window 
display and has no effect on the peak detection or measurements). The U key switches between peak 
and valley mode. Shift-G cycles through Gaussian, Lorentzian, and flat-top shape modes. 

The T key cycles the baseline correction mode through four modes: OFF, linear, quadratic, and flat. 
When OFF, peak heights are measured relative to zero. (If the peaks are superimposed on a 
background, use the baseline subtract keys - B and G - first to subtract the background). In linear and 
quadratic modes, peak heights are automatically measured relative to a calculated baseline that is 
linearly or quadratically interpolated from the signal at the edges of the signal in the upper window; 
use the zoom controls to isolate the peaks so that the signal returns to the local baseline between the 
peaks as displayed in the upper window. (In those modes, the peak heights, widths, and areas in the 
peak table (R or P keys) will be automatically corrected for the baseline. OFF will give better results 
when the baseline is zero, or has been subtracted using the B key, even if the peaks are partly 
overlapped. Linear and quadratic will work best if the peaks are well separated so that the signal 
returns to the local baseline between the peaks. Flat mode applies only to the curve fitting operation 
(N and M keys); it corrects for a flat baseline shift even if the signal does not return to the baseline.
Peak summary statistics table. The E key command prints a table of summary statistics of the peak 
intervals (the x-axis interval between adjacent detected peaks), heights, widths, and areas, listing the 
maximum, minimum, average, and percent standard deviation, and displaying the histogram of each 
of these in figure window 2. 
Ensemble averaging. For signals that contain repetitive waveform patterns occurring in one 
continuous signal, with nominally the same shape except for noise, the ensemble averaging function 
(Shift-E) can compute the average of all the repeating waveforms. It works by detecting a single 
peak in each repeat waveform in order to synchronize the repeats (and thus does not require that the 
repeats be equally spaced or synchronized to an external reference signal). To use this function, first 
adjust the peak detection controls to detect only one peak in each repeat pattern, then zoom in to 
isolate any one of those repeat patterns, and press Shift-E. The average waveform is displayed in 
Figure 2 and saved as “EnsembleAverage.mat” in the current directory so that other processing (e.g. 
curve fitting) may be applied. For an example, see page 117.
Normal and Multiple Curve fitting: If the peaks are highly overlapped, or if they are not Gaussian 
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in shape, better results will be obtained by using the curve fitting function - the N or M keys. The N 
key applies iterative curve fitting only to the detected peaks that are displayed in the upper window 
(referred to here as “Normal” curve fitting). The use of the iterative least-squares function can result 
in more accurate peak parameter measurements that the normal peak table (R or P keys), especially 
if the peaks are non-Gaussian in shape or are highly overlapped. If the peaks are superimposed on a 
background, use the T key to set the baseline correction mode to flat, linear, or quadratic. Then use 
the pan and zoom keys to select a peak or a group of overlapping peaks in the upper window, with 
the signal returning all the way to the local baseline at the ends of the upper window. Make sure that 
AmpThreshold, SlopeThreshold, SmoothWidth are adjusted so that each peak is numbered once. 
Then press the N key, type a number for the desired peak shape from the menu displayed in the 
Command window and press Enter, then type in a number of repeat trial fits and press Enter (the 
default is 1; start with that and then increase if necessary). If you have selected a variable-shape 
peak, the program will ask you to type in a number that controls the shape (“extra” in the peakfit 
input arguments). The program performs the fit and prints out the peakfit function with all its input 
arguments and shows the results in Figure window 2 and in the command window:
Peak shape (1-37): 1 
Number of trials: 1
Least-squares fit to Gaussian peak model using the peakfit function:
>> peakfit(DataMatrix,355,292,3,1,1,1,[225 54 274 55 323 45],0); 
Fitting Error 0.23243%
          Peak#     Position     Height       Width         Area       Extra
            2       224.63       214.31       60.949        10106
            3       276.35       278.66       47.409        14057
            4       324.67       403.88       50.321        21634
The use of this function gives more accurate peak parameter measurements that the normal peak 
table (R or P keys) if the peaks are non-Gaussian in shape or are highly overlapped.
There is also a “Multiple” peak fit function (M key) that will apply iterative curve fitting to all the 
detected peaks in the signal simultaneously. Before using this function, it's best to set the baseline 
mode to 'none' (T key) and use the multi-segment baseline correction function (B key) to remove the 
background (because the autozero function will probably not be able to subtract the baseline from 
the entire signal). Then press M and proceed as for the normal curve fit. A multiple curve fit may 
take a minute or so to complete if the number of peaks is large, possibly longer than the Normal 
curve fitting function on each group of peaks separately. It will fit only those peaks that it finds.
The N and M key fitting functions perform non-linear iterative curve fitting (page 54) using the 
peakfit  .m function (page 90). The number of peaks and the starting values of peak positions and 
widths for the curve fit function are automatically supplied by the findpeaks function, so it is 
essential that the peak detection variables in iPeak be adjusted so that all the peaks in the selected 
region are detected and numbered once. (For more flexible curve fitting, use ipf.m, page 95). 
Pressing the H key may help to detect overlapped peaks.
Note 1: If the peaks are too overlapped to be detected and numbered separately, try pressing the H key to 
activate the sharpen function before pressing M. If they are too overlapped even for that, use ipf.m instead.
Note 2: If you plan to use a variable-shape peak (numbers 4, 5, 8, 13, 14, 15, 30-33) for the Multiple peak fit, 
it's a good idea to obtain a reasonable value for the requested “extra” shape parameter by performing a 
Normal peak fit on an isolated single peak (or small group of partly-overlapping peaks) of the same shape, 
then use that value for the Multiple curve fit of the entire signal. 
Note 3: If the peak shape varies across the signal, you can either use the Normal peak fit to fit each section 
with a different shape rather than the Multiple fit, or you can use the unconstrained shapes that fit the shape 
individually for each peak: Voigt (30), ExpGaussian (31), Pearson (32), or Gaussian/Lorentzian blend (33).
Note 4: If the density of data points on the peaks is too low - less than about 4 points - the peaks may not be 
reliably detected; you can improve reliability by using the interpolation command (Shift-I) to re-sample the 
data by linear interpolation to a larger number of points. Conversely, if the density of data points on the 
peaks is very high, then you can speed up iPeak by interpolating to a smaller number of points.

Peak identification: There is an optional “peak identification” function if optional input arguments 
9 (“MaxError”), 10 (“Positions”), and 11 (“Names”) are included. The “i” key toggles this function 
ON and OFF. This function compares the found peak positions (maximum x-values) to a database of 
known peaks, in the form of an array of known peak maximum positions (“Positions”) and matching 
cell array of names (“Names”). If the position of a found peak in the signal is closer to one of the 
known peaks by less than the specified maximum error (“MaxError”), then that peak is considered a 
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match and its name is displayed next to the peak in the upper window. When the “o” key is pressed, 
the peak positions, names, errors, and amplitudes are printed out in a table in the command window.
 EXAMPLE 8: Eleven input arguments. As above, but also specifies “MaxError”, “Positions”, and 
“Names” in optional input arguments 9, 10, and 11, for peak identification function. Pressing the “i” 
key toggles off and on the peak identification labels in the upper window. Pressing “o” prints the 
peak positions, names, errors, and amplitudes in a table in the command window. These data 
(provided in the ZIP file mentioned above) are from an atomic spectrum (x-axis in nanometers).
   >> load ipeakdata.mat
  >> ipeak(Sample1,0,120,0.06,3,6,296,5,0.1,Positions,Names);
Note: This ZIP file contains the latest version of the iPeak function as well as some sample data to 
demonstrate peak identification (Example 7 and 8). Obviously for your own applications, it's up to 
you to provide your own array of known peak maximum positions ('Positions') and matching cell 
array of names ('Names') for your particular types of signals. 
 iPeak Keyboard Controls

 Pan signal left and right; Coarse ….< and > keys
                      Fine : left and right cursor arrow keys
                      Nudge left and right.... [ and ] keys
  Zoom in and out.; Coarse................ / and ' keys
                       Fine: up and down cursor arrow keys
 Resets pan and zoom....................... ESC
 Select entire signal........................... Crtl-A  Zooms out to entire signal
 Change plot color............................. Enter
 Adjust AmpThreshold...................... A,Z  (Larger values ignore short peaks)
 Type in AmpThreshold..................... Shift-A
 Adjust SlopeThreshold..................... S,X  (Larger values ignore broad peaks)
 Type in SlopeThreshold.................... Shift-S
 Adjust SmoothWidth........................ D,C  (Larger values ignore sharp peaks}
 Adjust FitWidth................................ F,V  (Adjust to cover just top part of peaks)
 Toggle sharpen mode ...................... H  Helps detect overlapped peaks.
 Baseline correction........................... B, then click baseline at multiple points 
 Restore original signal...................... G  to cancel previous background subtraction
 Invert signal...................................... -  Invert (negate) the signal (flip + and -)
 Set minimum to zero........................ 0 (Zero) Sets minimum signal to zero
 Interpolate signal.............................. Shift-I Interpolate (re-sample) to N points
 Toggle log y mode OFF/ON............. Y  Plot log Y axis on lower graph  
 Cycles baseline modes...................... T  0=none; 1=linear; 2=quadratic; 3=Flat.
 Toggle valley mode OFF/ON............U  Switch between peak and valley modes
 Gaussian/Lorentzian switch.............. Shift-G  Cycle Gaussian/Lorentzian/flat-top modes 
 Print peak table................................. P  Prints Peak #, Position, Height, Width
 Save peak table..................................Shift-P  Saves peak table as disc file
 Step through peaks............................ Space/Tab  Jumps to next/previous peak
 Jump to peak number........................ J  Type peak number and press Enter.
 Normal peak fit................................. N  Fit peaks in upper window with peakfit.m
 Multiple peak fit............................... M  Fit all peaks in signal with peakfit.m 
 Ensemble Average all peaks............. Shift-E  (Zoom to display single peak first)
 Print keyboard commands................ K  Prints this list
 Print findpeaks arguments................ Q  Prints findpeaks function with arguments.
 Print ipeak arguments....................... W  Prints ipeak function with all arguments.
 Print report........................................ R  Prints Peak table and parameters
 Print peak statistics........................... E  prints mean, std of peak intervals, heights...
 Peak labels ON/OFF........................ L  Label all peaks detected in upper window.
 Peak ID ON/OFF.............................. I  Identifies closest peaks in 'Names' database.
 Print peak Ids.................................... O  Prints table of peaks Ids 
 Switch to ipf.m................................. Shift-Ctrl-F  Transfer current signal to ipf.m
 Switch to iSignal.............................. Shift-Ctrl-S  Transfer current signal to iSignal.m

Which to use: iPeak or Peakfit? To help decide, download the ZIP file at 
http://terpconnect.umd.edu/~toh/spectrum/idemos.zip that contains some Matlab demo functions 
comparing iPeak.m with Peakfit.m for signals with a few peaks and signals with many peaks and 
that shows how to adjust iPeak to detect broad or narrow peaks. These are self-contained demos that 
include all required Matlab functions. Just place them in your path and click Run or type their name 
at the command prompt.
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iPeak Demo functions 
The ZIP file at http://terpconnect.umd.edu/~toh/spectrum/  ipeak  7.zip contains several demo functions 
(ipeakdemo.m, ipeakdemo1.m, etc) that illustrate various aspect of the iPeak function:

 ipeakdemo: effect of the peak detection parameters
Four Gaussian peaks with the same heights but different widths (10, 30, 50 and 
70 units). This demonstrates the effect of SlopeThreshold and SmoothWidth 
on peak detection. Increasing SlopeThreshold (S key) will discriminate against 
the broader peaks. Increasing SmoothWidth (D key) will discriminate against 
the narrower peaks and noise. FitWidth (F/V keys) controls the number of 
points around the “top part” of the (unsmoothed) peak that are taken to 
estimate the peak heights, positions, and widths. A reasonable value is about 
equal to 1/2 of the number of data points in the half-width of the peaks. In this 
case, where the peak widths are different, set it to about 1/2 of the number of 
data points in the narrowest peak.

ipeakdemo1: the background correction modes
Demonstration of background correction, for separated, narrow peaks on a 
large baseline. A table of the actual peak positions, heights, widths, and areas 
is printed out in the command window. Jump to the next/previous peaks 
using the Spacebar/Tab keys. Hint: Use the T key to set the baseline 
correction mode to “Linear” or “Quadratic”, adjust the zoom setting so that 
the peaks are shown one at a time in the upper window, then press the P key 
to display the peak table. (Each time you run this demo, you will get a 
different set of peaks and noise). 

ipeakdemo2: peak overlap and the curve fitting functions. 
Demonstration of error caused by overlapping peaks on a large offset baseline. 
A table of the actual peak positions, heights, widths, and areas is printed out 
in the command window. Jump to the next/previous peaks using the 
Spacebar/Tab keys. Hint: Use the B key and click on the baseline points, then 
press the P key to display the peak table. Or turn on the baseline correction 
mode (T key) and use the Normal curve fit (N key) or Multiple curve fit (M 
key). (Each time you run this demo, you will get a different set of peaks and 
noise).

ipeakdemo3: Non-Gaussian peak shapes 
Demonstration of overlapping Lorentzian peaks, without an added 
background. Overlap of peaks causes significant errors in peak height, width, 
and area. Jump to the next/previous peaks using the Spacebar/Tab keys. 
Each time you run this demo, you will get a different set of noise. A table of 
the actual peak positions, heights, widths, and areas is printed out in the 
command window. Hint: Press Shift-G to switch to Lorentzian mode; set the 
baseline correction mode to OFF (T key) and use the Normal curve fit (N 
key) with peak shape 2 (Lorentzian). 

ipeakdemo4: dealing with very noisy signals
Detection and measurement of four peaks in a very noisy signal. The signal-
to-noise ratio of first peak is 2. A table of the actual peak positions, heights, 
widths, and areas is printed out in the command window. Jump to the 
next/previous peaks using the Spacebar/Tab keys. The peak at x=100 is 
usually detected, but the accuracy of peak parameter measurement is poor 
because of the low signal-to-noise ratio. Hint: Increase SmoothWidth and 
FitWidth to help reduce the effect of the noise. Each time you run this demo, 
you will get a different noise. 
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ipeakdemo5: dealing with highly overlapped peaks
In this demo the peaks are so highly overlapped that only one or two of 
the highest peaks yield distinct maxima that are detected by iPeak. The 
height, width, and area estimates are highly inaccurate because of this 
overlap. The normal peak fit function ('N' key) would be useful in this 
case, but it depends on iPeak for the number of peaks and for the initial 
guesses, and so it would fit only the peaks that were found and num­
bered. To help in this case, pressing the 'H' key will activate the peak 
sharpen function (page 26) that decreases peak width and increases 
peak height of all the peaks, making it easier for Findpeaks to detect 
and number them for use by the peakfit function. Note: peakfit fits the 
original unsharpened peaks; sharpening is used only to locate the peaks.

Note: The ZIP file available at http://terpconnect.umd.edu/~toh/spectrum/  ipeak  7  .zip contains findpeaks, 
DemoFindPeaks, ipeak.m, all the ipeakdemos described above, and the ipeakdata.mat file with the high-
resolution atomic spectrum used in example 8.

c. Peak Finding and Measurement Spreadsheet

The spreadsheets PeakDetection.xls/xlsx (pictured above with data) implements a simple derivative-
based peak detection method described on page 19. The input x,y data are contained in columns A 
and B, rows 9 to 1200. You can Copy and Paste your own data there. The amplitude threshold and 
slope threshold are set in cells B4 and E4, respectively. Smoothing and differentiation are performed 
by the convolution technique used by the DerivativeSmoothing.xls spreadsheet (page 24). The 
Smooth Width and the Fit Width are both controlled by the number of non-zero convolution 
coefficients in row 6, columns J through Z. (In order to compute a symmetrical first derivative, the 
coefficients in columns J to Q must be the negatives of the positive coefficients in columns S to Z). 
The original data and the smoothed derivative are shown in the two charts on Sheet1. To detect 
peaks in the data, a series of three conditions are tested for each data point in columns F, G, and H, 
corresponding to the three nested loops in findpeaksG.m:

1. Is the signal greater than Amplitude Threshold? (line 45 of findpeaksG.m; column F)
2. Is there a downward directed zero crossing in the smoothed first derivative? (line 43 of 

findpeaksG.m; column G in the spreadsheet)
3. Is the slope of the derivative at that point greater than the Slope Threshold? (line 44 of 

findpeaksG.m; column H in the spreadsheet)
If the answer to all three questions is yes (highlighted by blue cell coloring), a peak is registered at 
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that point (column I), counted in column J, and assigned an index number in column K. The original 
data and the smoothed derivative are shown in the two charts. The peak index numbers, X-axis 
positions, and peak heights are listed on the right in columns AC to AF. Peak heights are computed 
two ways: "Height" is based on slightly smoothed Y values (which is more accurate if the data are 
noisy) and "Max" is the highest individual Y value near the peak (which is more accurate if the data 
are smooth or if the peaks are very narrow). You can extend the spreadsheet to longer columns of 
data by dragging down the last row of columns A through K as needed, and to greater number of 
peaks by dragging down the last row of columns AC - AF as needed and modifying cell R7 to 
include the additional peaks. See PeakDetectionExample.xlsx/.xls) for an example with data 
already pasted in, and PeakDetectionDemo2.xls/xlsx is a demonstration with a user-controlled 
computer-generated series of noisy peaks. 
  An extension of that method is made in PeakDetectionAndMeasurement.xlsx, which makes the 
assumption that the peaks are Gaussian and measures their height, position, and width using a least-
squares technique, just like "findpeaksG.m". For the first 10 peaks found, the x,y original 
unsmoothed data are copied to Sheet2 through Sheet11, where that segment of data is subjected to a 
Gaussian least-squares fit, using the technique described on page 43. The best-fit Gaussian parameter 
results are copied back to Sheet1, in the table in columns AH-AK. (In its present form, the 
spreadsheet is limited to measuring 10 peaks, although it can detect any number of peaks. It's also 
limited in Smooth Width and Fit Width by the 17-point convolution coefficients). 
  This spreadsheet template is available in OpenOffice (.ods) and in Excel (.xls) and (.xlsx) formats. 
They are functionally equivalent and differ only in minor cosmetic aspects. An example spreadsheet, 
with data, is available. A demo version, with a calculated noisy waveform that you can modify, is 
also available. If the peaks in the data are too much overlapped, they may not make sufficiently 
distinct maxima to be detected reliably. If the noise level is low enough, the peaks can be artificially 
sharpened by the technique described on page 26. This idea is implemented by the spreadsheet 
template PeakDetectionAndMeasurementPS.xlsx and its calculated demo version 
PeakDetectionAndMeasurementDemoPS.xlsx. Download from http://tinyurl.com/cey8rwh.
  To expand this spreadsheet to larger numbers of data points, simply drag down the last row of 
columns A through K, so that the formulas in those rows are replicated for the required number of 
additional rows, then adjust the charts to accommodate the extra rows. However, expanding the 
spreadsheet to larger numbers of measured peaks is more difficult: (1) drag down row 17, columns 
AC through AK, and adjust the formulas in those rows for the required number of additional peaks; 
(2) copy all of Sheet11 and paste it into a series of new sheets (Sheet12, Sheet13, etc), one for each 
additional peak; (3) adjust the formulas in columns B and C in each of these additional sheets to 
refer to the appropriate row in Sheet1; (4) carefully modify these additional equations in the added 
sheets, using the same pattern as those for peaks 1-10. Whew!
  A comparison of this spreadsheet to its Matlab/Octave equivalent “findpeaksplot.m” is instructive. 
On the positive side, the spreadsheet literally "spreads out" the data and the calculations spatially 
over a large number of cells and sheets, breaking down the discrete steps in a very graphic way. In 
particular, the use of conditional formatting in columns F through K make the peak detection 
decision process more evident for each peak, and the least-squares sheets 2 through 11 lay out every 
detail of those calculations. Spreadsheet programs have many flexible formatting options to make 
displays more attractive. Data entry, by typing or pasting, is intuitive. On the down side, a 
spreadsheet as complicated as this one is far more difficult to construct than its Matlab/Octave 
equivalent. Much more serious, the spreadsheet is less flexible and harder to expand to larger signals 
and larger number of peaks. In contrast, the Matlab/Octave equivalent, while requiring some 
understanding of programming to construct initially, is more flexible, can easily handle signals and 
smooth/fit widths of any size, and can detect and measure any number of peaks, with no additional 
effort on your part. The Matlab equivalent is about 50 times faster than the Excel or Calc spreadsheet 
above. Moreover, because it is written as a function, it can readily be employed as an element in your 
own custom Matlab/Octave scripts to perform even larger tasks. See reference 50 on page 134.
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4. iSignal: Interactive Smoothing, Differentiation, and Peak Sharpening 
iSignal is a Matlab function, written as a single self-contained m-file, for performing smoothing 
(page 11), differentiation (page 16), peak sharpening (page 26), peak area measurement (page 35), 
signal and noise measurement (page 6), frequency spectra (page 28), least-squares fitting (page 37) 
and other useful functions on time-series data. Using simple keystrokes, you can select any region of 
the signal and adjust the signal processing parameters continuously while observing the effect on 
your signal dynamically. The ZIP file for the current version is available for download from 
http://tinyurl.com/cey8rwh. Instructions for their use are available online at http://bit.ly/1r7oN7b.

The syntax of iSignal is: Y=isignal(Data);   or
[pY,SpectrumOut]=isignal(Data,xcenter,xrange,SmoothMode,SmoothWidth,ends,... 
DerivativeMode,Sharpen,Sharp1,Sharp2,SlewRate,MedianWidth,SpectrumMode);

or [pY,SpectrumOut,,maxy,miny,area,stdev]=isignal(Data,...

“Data” may be a 2-column matrix with the independent 
variable (x-values) in the first column and dependent 
variable (y values) in the second column, or separate x and y 
vectors, or a single y-vector (in which case the data points 
are plotted against their index numbers on the x axis). Only 
the first argument is required; all the others are optional. 
Returns the processed dependent axis (Y) vector as the 
output argument. Plots the data in the figure window, the 
lower half of the window showing the entire signal, and the 
upper half showing a selected portion controlled by the pan 
and zoom keystrokes, with the initial pan and zoom settings 
optionally controlled by input arguments 'xcenter' and 
'xrange', respectively. Other keystrokes allow you to control the smooth type, width, and ends 
treatment, the derivative order (0th through 5th), and peak sharpening. (The initial values of all these 
parameters can be passed to the function via the optional input arguments SmoothMode, 
SmoothWidth, ends, DerivativeMode, Sharpen, Sharp1, and Sharp2. See the examples below). 
Press K to see all the keyboard commands. 
Smoothing (see page 11)
 The S key (or input argument “SmoothMode”) cycles through four smoothing modes: 0, the signal 
is not smoothed; =1, rectangular (sliding-average or boxcar); 2, triangular (2 passes of sliding-
average); 3, pseudo-Gaussian (3 passes of sliding-average); 4, Savitzky-Golay smooth.
The A and Z keys (or input argument SmoothWidth) control the SmoothWidth, w.
The X key toggles “ends” between 0 and 1. This determines how the “ends” of the signal (the first 
w/2 points and the last w/2 points) are handled when smoothing. If ends=0, the ends are zero. If 
ends=1, the ends are smoothed with progressively smaller smooths the closer to the end. 
Notes: (1) When smoothing peaks, you can easily measure the effect of smoothing on peak height 
and width by turning on peak measure mode (press P) and then press S to cycle through the smooth 
modes. (2) There are two functions for removing or reducing sharp spikes in signals: the M key, 
which implements a median filter (it asks you to enter the spike width, e.g. 1, 2, 3... points). The ~ 
key limits the maximum rate of change, which can reduce the amplitude of sharp spikes and steps.
Differentiation (see page 17)
The D / Shift-D keys (or optional input argument “DerivativeMode”) increase/decrease the 
derivative order. The default is 0. Optimization of smoothing of derivatives is critical for good SNR.
Peak sharpening or resolution enhancement (see page 26)
The E key (or optional input argument “Sharpen”) turns off and on peak sharpening (resolution 
enhancement). The sharpening strength is controlled by the F and V keys (or optional input 
argument “Sharp1”) and B and G keys (or optional argument “Sharp2”). The optimum values 
depend on the peak shape and width. iSignal can calculate sharpening and smoothing settings for 
Gaussian and for Lorentzian peak shapes using the Y and U keys, respectively. Just isolate a single 
typical peak in the upper window using the pan and zoom keys, press P to turn on the peak 
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measurement mode, then press Y for Gaussian or U for Lorentzian peaks. (The optimum settings 
depends on the width of the peak, so if your signal has peaks of widely different widths, one setting 
will not be optimum for all the peaks). Fine-tune the sharpening with the F/V and G/B keys and the 
smoothing with the A/Z keys. Expect a decrease in peak width (and corresponding increase in peak 
height) of about 20% - 50%, depending on the shape of the peak (the peak area is largely 
unchanged). Excessive sharpening leads to baseline artifacts and increased noise. iSignal allows you 
to experimentally determine the values of these parameters that give the best trade-off between 
sharpening, noise, and baseline artifacts, for your purposes. To measure the effect of sharpening on 
peak width, turn on peak measure mode (press P) and then press E to toggle the sharpen mode. 
Signal measurement
The cursor keys control the position of the green cursor and the dotted red cursors that mark the 
selected range displayed in the upper graph window. The label under the top graph window shows 
the value of the signal (y) at the green cursor, the peak-to-peak (min and max) signal range, the area 
under the signal, and the standard deviation within the selected range (the dotted cursors). Pressing 
the Q key prints out a table of the signal information in the command window. If the optional output 
arguments maxy, miny, area, stdev are specified, iSignal returns the maximum and minimum 
values of y, the total area under the curve, and the standard deviation of y, in the selected range 
displayed in the upper panel. The demo script demoisignal.m illustrates some of these features. 
Background correction
Background (or baseline) correction is important because the peak heights, widths, and areas 
measured by the Peak Measure (P) command are based on the assumption that the baseline under the 
peaks is zero. There are two methods: manual and automatic. The Backspace key starts manual 
background correction operation. In the command window, type in the number of background points 
to click and press the Enter key. The cursor changes to cross hairs; click along the presumed 
background, starting to the left of the x axis and placing the last click to the right of the x axis. When 
the last point is clicked, the linearly interpolated baseline between those points is subtracted from the 
signal. To restore the original background (i.e. to correct an error or to try again), press the '\' key. 
  To select the automatic baseline correction, press the T key repeatedly; it cycles thorough four 
modes: No baseline correction, linear, quadratic, and flat mode. In linear mode, a straight-line 
baseline connecting the two ends of the signal segment in the upper panel will be subtracted. In 
quadratic mode, a parabolic baseline connecting the two ends of the signal segment in the upper 
panel will be automatically subtracted. The baseline is calculated by computing a least-squares fit to 
the signal in the first 1/10th of the points and the signal last 1/10th of the points. Try to adjust the 
pan and zoom to include some of the baseline at the beginning and end of the segment in the upper 
window, allowing the automatic baseline subtract gets a good reading of the baseline. The 
calculation of the signal amplitude, peak-to-peak signal, and peak area are all based on the baseline-
subtracted signal in the upper window. The flat baseline mode is used only for peak fitting (Shift-P).
Saving the results
To save the processed signal as a .mat file, press the 'o' key, type in a file name, then press Enter.
Peak measurement
The P key turns off and on the “peak” mode, which attempts to measure the one peak (or valley) that 
is centered in the upper window under the green cursor by superimposing a least-squares best-fit 
parabola, in red, on the center portion of the signal displayed in the upper window. (Zoom in so that 
the red overlays just the top of the peak or the bottom of the valley as closely as possible). Peak 
position, height, and “Gaussian width” are measured by least-squares curve fitting of a parabola to 
the isolated peak. “RSquared” is the coefficient of determination; the closer to 1.00 the better. 
“SNR” is the signal-to-noise-ratio of the peak under the green cursor - the ratio of the peak height to 
the standard deviation of the residuals between the data and the red best-fit line. The peak parameters 
will most accurate if the peaks are Gaussian; other shapes, and very noisy peaks of any shape, will 
give only approximate results. However, the values are pretty good for any peak shape as long as the 
“RSquared” value is at least 0.99. The “total area” is measured by the trapezoidal method over the 
entire selected segment displayed in the upper window. If the peaks are superimposed on a non-zero 
background, subtract the background before measuring peaks, either by using auto baseline 
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correction (T key) or the multi-point background 
subtraction (backspace key). Press the R key to print out 
the measured peak parameters in the command window.
Note: Peak width is actually measured two ways: the "Gaussian 
Width" is the full width at half maximum ('FWHM') of the 
Gaussian curve that is a best fit over the region colored in red 
in the upper panel) and is strictly accurate only for Gaussian 
peaks. Version 5.5 (shown on the right) adds direct measure­
ment of the FWHM; this works for peaks of any shape, but it is 
displayed only for the tallest peak and only if the half-maxi­
mum points fall within the zoom region displayed in the upper 
panel. It will not be accurate for very noisy peaks. Peak area is 
also measured in two ways: the “Gaussian area” and the “Total 
area”. The “Gaussian area” is the area under the Gaussian that 
is a best fit to the center portion of the signal displayed in the 
upper window, marked in red. The “Total area” is the area by the trapezoidal method over the entire selected 
segment displayed in the upper window. (The percent of total area is also calculated). If the portion of the 
signal displayed in the upper window is a pure Gaussian with no noise and a zero baseline, then the two mea­
sures should agree almost exactly. If the peak is not Gaussian in shape, then the total area is likely to be more 
accurate, as long as the peak is well separated from other peaks. See the web site for a quantitative example.
Peak fitting (version 5). To fit an overlapping peak model to the data in the upper panel, press 
Shift-F, type in the desired peak shape number from the menu, enter the number of peaks, enter the 
number of repeat trial fits, then click the mouse pointer on each proposed peak position. A graph of 
the fit is displayed in Figure window 2 and a table of results is printed out. See page 90 for details. 
Note: if you have a peak that is an exponentially-broadened Gaussian or Lorentzian, you can 
measure both the "after-broadening" height, position, and approximate width using the P key 
function, and the "before-broadening" height, position, and width by fitting the peak to an 
exponentially-broadened Gaussian or Lorentzian model (shapes 5, 8, 36, 31, or 18) using the Shift-F 
key function. The peak areas will be the same; broadening does not effect the total peak area. 
Polynomial fitting. Shift-o fits a simple polynomial (linear, quadratic, cubic, etc) to the upper panel 
segment and displays the coefficients (in descending powers) and the R2. See page 37.
Fourier convolution and deconvolution (Experimental in version 5.7). Shift-V displays a menu of 
Fourier convolution and deconvolution operations that allow you to convolute a Gaussian or 
exponential function with the signal, or to deconvolute a Gaussian or exponential function from the 
signal, and asks you for the Gaussian width or the time constant (in X units).  
Frequency Spectrum. The Shift-S key toggles on and off the Frequency Spectrum mode, which 
computes the Fourier frequency spectrum (page 28) of the segment of the signal displayed in the 
upper window and displays it in the lower window, temporarily replacing the full-signal display. Pan 
and zoom to adjust the region of the signal to be viewed. Shift-A cycles through four plot modes 
(linear, semilog X, semilog Y, or log-log) and Shift-X toggles between a frequency on the x axis and 
time on the x-axis (periodogram). Shift-Z toggles on and off peak detection and labeling on the 
frequency spectrum or periodogram. You can adjust the peak detection in lines 1970-1973. All signal 
processing functions remain active in the frequency spectrum mode (smooth, derivative, etc) so you 
can observe the effect of these functions on the frequency spectrum of the signal. Press Shift-Z to 
label the peaks in the frequency spectrum with their frequencies. Press Shift-S again to return to the 
normal mode. To save the frequency spectrum as a new variable, call iSignal with output arguments 
[pY,Spectrum] and set the 13th input argument 'SpectrumMode' to 1. Shift-W displays the 3D 
waterfall spectrum, by dividing up the signal into segments and computing the power spectrum of 
each; you choose the number of segments and the type of 3D display from a menu. Shift-T replaces 
the signal with its frequency spectrum, to measure or curve-fit it directly.
Other keystroke controls. The L key toggles off and on the Overlay mode, which overlays the 
current processed signal with the original signal as a dotted line, for the purposes of comparison. The 
tab key restores the original signal and cursor settings. Shift-L “locks in” the current processing and 
resets all settings. The “-” (minus sign) key is used to negate the signal (flip + for -). The “+” key 
computes the absolute value of the entire signal. Press H to toggle the display between a linear y and 
semilog y plot in the lower window, which is useful for signals with very wide dynamic range (zero 
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and negative points are ignored in the log plot). The 0 key (number 0) removes offset from the 
signal; sets minimum y value to zero. The semicolon (;) key sets the selected region (between the 
dotted red cursor lines) to zero; use it to remove uninteresting regions of the signal. The C key 
condenses the signal by the specified factor n, replacing each group of n points with their average, 
prompts the user to enter the value of n. (typically, 2, 3, 4, etc). The I key replaces the signal with a 
linearly interpolated version containing m data points, prompts the user to enter the value of m. This 
can be used to increase or decrease the sampling rate or to change an unevenly sampled signal to an 
evenly sampled one. You can press Shift-C, then click on the graph to print out the x,y coordinates 
of that point. This works on both the upper and lower panels, and on the frequency spectrum as well. 
Spacebar or Shift-P plays the signal segment in the upper panel as a sound; Shift-R allows you to 
enter the sampling rate at which the signal will be played back.
EXAMPLE 1: Single input argument; data in two columns [x;y] or in a single y vector
      >> isignal(y); or >> isignal([x;y]);
EXAMPLE 2: Two input arguments. Data in separate x and y vectors.
       >> isignal(x,y);
EXAMPLE 3: Three or four input arguments. The arguments two and three specify the initial values of pan 
(xcenter) and zoom (xrange) in the last two input arguments. Using data in the iSignal ZIP file: 
       >> load data.mat
       >> isignal(DataMatrix,180,40); or
       >> isignal(x,y,180,40);
EXAMPLE 4: As above, but additionally specifies initial values of SmoothMode, SmoothWidth, ends, and 
DerivativeMode in input arguments 4 - 7. 
       >> isignal(DataMatrix,180,40,2,9,0,1);
EXAMPLE 5: As above, but additionally specifies initial values of the peak sharpening parameters Sharpen, 
Sharp1, and Sharp2 (input arguments 8, 9 and 10). Press E to turn sharpening on and off.
       >> isignal(DataMatrix,180,40,2,9,0,0,1,51,6000);
EXAMPLE 6:  Using the built-in “humps” function:

       >> x=[0:.005:2];y=humps(x);Data=[x;y];
 4th derivative of the peak at x=0.9:
       >> isignal(Data,0.9,0.5,1,3,1,4);
 Peak sharpening applied to the peak at x=0.3:
       >> isignal(Data,0.3,0.5,1,3,1,0,1,220,5400);
Press 'E' key to toggle sharpening ON/OFF to compare)

EXAMPLE 7: Measurement of peak area. 
       >> x=[0:.01:20];
       >> y=exp(-(x-4).^2)+exp(-(x-9).^2)+exp(-(x-13).^2)+exp(-(x-15).^2);
       >> isignal(x,y); 

This example generates four Gaussian peaks with the exact same peak height (1.00) and area (1.77). The 
first peak (at x=4) is isolated, the second peak (x=9) is slightly overlapped with the third one, and the last 
two peaks (at x= 13 and 15) are strongly overlapped. To measure the area under a peak using the 
perpendicular drop method, position the dotted red marker lines straddling the peak at the minimum of the 
valley between the overlapped peaks. 

EXAMPLE 8: Measurement of single peak with random noise spikes. Compare smoothing vs spike filter (M 
key). Alternatively, use the slew rate limit (~ key) to reduce the step response rate and spike amplitude.
>> x=-5:.01:5;
>> y=exp(-(x).^2);for n=1:1000,if 
randn()>2,y(n)=rand()+y(n);end,end;

   >> isignal(x,y); 

EXAMPLE 9: The example on the right shows a 1.58 second 
duration audio recording of the phrase "Testing, one, two, three" 
recorded at 44000 Hz, saved in WAV format (click to 
download), loaded into iSignal and zoomed in on the "oo" sound 
in the word "two". Press the Spacebar to play  the selected sound; 
press Shift-S to display the frequency spectrum of the selected 
region. Press Shift-R and type 44000 to set the sampling rate:
>> v=wavread('TestingOneTwoThree.wav');
>> t=0:1/44001:1.5825;
>> isignal(t,v(:,2)); 

88

https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/TestingOneTwoThree.wav
https://terpconnect.umd.edu/~toh/spectrum/iSignal5.zip


    It's interesting to experiment with the effect of smoothing, differentiation, and interpolation on the sound of 
speech; it will change timbre of the voice but has little effect on the intelligibility, because the frequency 
components of the sounds are not shifted in pitch or time but merely changed in amplitude by smoothing and 
differentiation. In fact, recorded speech can typically survive digitization, compression, truncation, 
transmission over long distances, and playback via tiny speakers without significant loss of intelligibility.

   EXAMPLE 10: Weak peaks on a strong baseline. The demo script isignaldemo2 creates a test signal 
(Click for graphic) containing four peaks with heights 4, 3, 2, 1, with equal widths, superimposed on a very 
strong curved baseline, plus added random white noise. The objective is to extract a measure that is 
proportional to the peak height but independent of the baseline strength. Some things to try: (a) Use 
automatic or manual baseline subtraction to remove the baseline, measure peaks with the P-P measure in the 
upper panel; or (b) use differentiation (with smoothing) to suppress the baseline; or (c) use curve fitting 
(Shift-F), with baseline correction (T), to measure peak height. After running the script, you can press Enter 
to have the script perform an automatic 3rd derivative calibration, performed by lines 56 to 74. As indicated in 
the script, you can change several of the constants; search for the work "change" in that script. 

iSignal 5.7 keyboard controls
 Pan left and right........... Coarse pan: < and >
                                Fine pan: left and right cursor arrows
                                Nudge one point left or right: [ and ] 

  Zoom in and out.............. Coarse zoom: / and " 
                                 Fine zoom: up and down cursor arrows
  Reset pan and zoom........... ESC (resets to initial default values)
  Select entire signal..........Ctrl-A  Zooms out to entire signal
  Display Grid (on/off).........Shift-G Temporarily displays grid on plots 
  Adjust smooth width.......... A,Z (A=>more smoothing, Z=>less smoothing) 
  Adjust smooth type........... S (Cycles through None, Rectangular, Triangle, 
                                   Gaussian, Savitzky-Golay)
  Toggle smooth ends........... X Flips between 0=ends zeroed  1=ends smoothed 
  Adjust derivative order...... D/Shift-D (Increase/Decrease derivative order)
  Toggle peak sharpening....... E (flips between 0=OFF 1=ON)
  Sharpening for Gaussian...... Y  Set sharpen settings for Gaussians
  Sharpening for Lorentzian.... U  Set sharpen settings for Lorentzians
  Adjust sharp1................ F,V  F=>sharper, V=>less sharpening
  Adjust sharp2................ G,B  G=>sharper, B=>less sharpening
  Slew rate limit (0=OFF)...... ~  Largest allowed y change between points
  Spike filter width (0=OFF)... M  spike filter eliminates sharp spikes
  Toggle peak labeling......... P  Labels center peak in upper window
  Fits peak in upper window.... Shift-F (Asks for shape, number of peaks, etc)
  Fit polynomial................Shift-o  Fits polynomial to data in upper panel
  Toggle Spectrum mode on/off.. Shift-S (Shift-A and Shift-X to change axes)
  Peak labels on spectrum.......Shift-Z (on frequency spectrum or periodogram)
  Transfer power spectrum.......Shift-T  Replaces signal with its power spectrum
  Display Waterfall spectrum....Shift-W in mesh, surf, contour, or pcolor form
  Click graph to print out x,y..Shift-C  Click graph to print coordinates
  Lock in current processing....Shift-L  Replace signal with processed version
  ConVolution/DeconVolution.....Shift-V  Fourier convolution/deconvolution
  Toggle overlay mode.......... L  Overlays original signal in upper window
  Toggle log y mode............ H  Display semilog y plot in lower window
  Select baseline mode......... T  no, linear, quadratic, or flat baseline mode
  Restores original signal..... Tab key resets to original signal and modes
  Baseline subtraction......... Backspace, then click baseline at 8 points
  Restore background........... \  to cancel previous background subtraction
  Invert signal................ -  Invert (negate) the signal (flip + and -)
  Remove offset................ 0  (zero) set minimum signal to zero 
  Trim region to zero.......... ;  Sets selected region to zero.
  Absolute value................+  Computes absolute value of entire signal
  Condense signal.............. C  Condense oversampled signal by factor of N
  Interpolate signal........... i  Interpolate (re-sample) to N points
  Print keyboard commands...... K  Prints this list
  Print signal report.......... Q  Prints signal info and current settings
  Print iSignal arguments...... W  Prints iSignal (with current arguments)
  Save output to disk.......... O  Save .mat file containing processed signal and, 
                                   in Spectrum Mode, the frequency spectrum.
  Play signal as sound..........Spacebar or Shift-P Play through computer
  Set sound sample rate.........Shift-R for the Shift-P command. 
  Switch to ipf.m...............Shift-Ctrl-F  Transfer current signal to ipf.m
  Switch to iPeak...............Shift-Ctrl-P  Transfer current signal to ipeak.m
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5. Peak Fitter 
This section describes Matlab and Octave peak fitting program for time-series signals that uses an 
unconstrained non-linear optimization algorithm (Page 54). The objective is to determine whether 
your signal can be represented as the sum of fundamental underlying peaks shapes. The program 
accepts signals of any length, including those with non-integer and non-uniform x-values and fits any 
number of peaks at a time with 43 selectable peak shapes. Type 'help peakfit'. (To add new peak 
shapes, see http://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#NewShape). 

a. Command line function: peakfit.m, for Matlab or Octave (Version 7.9)
P  eakfit  .m is a user-defined command-line window peak fitting 
function, usable from a remote terminal. It is written as a self-
contained Matlab/Octave function in a single m-file. The screen 
display is shown on the right; the upper panel shows the data as 
blue dots, the combined model as a red line (ideally overlapping the 
blue dots), and the model components as green lines. The residuals 
are shown in the lower panel. Download peakfit.m and related files 
from http://tinyurl.com/cey8rwh. The peakfit.m function can also 
be accessed by the keypress-operated interactive functions ipf (page 
95), iPeak (page 78) and iSignal (page 85).

As a command line function, peakfit has flexible input argument requirements:
peakfit(S);
Performs an iterative least-squares fit of a single Gaussian peak to the entire data matrix “S”, which 
has X values in row 1 and Y values in row 2 (e.g. [x y]) or which may be a single signal vector.
peakfit(S,center,window);
Fits a single Gaussian peak to a portion of the matrix “S” centered on the x-value “center” and has 
width “window” (in x units). All input arguments (except the signal itself) can be replaced by zeros 
to use their default values.
 peakfit(S, center, window, NumPeaks);
“NumPeaks” = number of peaks in the model (Any positive integer, 1 if not specified). 

peakfit(S,center,window,NumPeaks,peakshape);
Specifies the peak shape of the model: “peakshape” = 1-37. (1=unconstrained Gaussian, 
2=unconstrained Lorentzian, 3=logistic distribution, 4=Pearson, 5=exponentially broadened 
Gaussian; 6=equal-width Gaussians, 7=equal-width Lorentzians, 8=exponentially broadened equal-
width Gaussians, 9=exponential pulse, 10=up-sigmoid (logistic function), 11=fixed-width Gaussians, 
12=fixed-width Lorentzians, 13=Gaussian/Lorentzian blend; 14=bifurcated Gaussian, 15=Breit-
Wigner-Fano; 16=Fixed-position Gaussians; 17=Fixed-position Lorentzians; 18= exponentially 
broadened Lorentzian; 19=alpha function; 20=Voigt profile; 21=triangle; 23=down-sigmoid; 
25=lognormal; 26=slope (see Example 12b, page 92); 28=polynomial (Example 26, page 95); 
29=articulated linear segmented (see Example 26, page 95); 30= unconstrained Voigt; 31= 
unconstrained exponentially broadened Gaussian; 32= unconstrained Pearson; 33= unconstrained 
Gaussian/Lorentzian blend; 34=fixed-width Voigt; 35=fixed-width Gaussian/Lorentzian blend; 
36=fixed-width exponentially-broadened Gaussian; 37=fixed-width Pearson; 38= independently-
variable time constant ExpLorentzian; 40=sine wave; 41=rectangle; 42=flattened Gaussian; 
43=Gompertz (3 parameter logistic); 44=1-exp(-k*x); 45: 4-parameter logistic; 46=quadratic. 

Note 1: Shapes 11, 12, 16, 17 and 34 require the the fixed parameter be specified in the 10th input 
argument. Note 2: “peakshape” can be a vector of different shapes for each peak, e.g. [1 2 1] for a 
Gaussian, Lorentzian, Gaussian sequence. See Example 22 on page 94. Note 3: "unconstrained" 
simply means that the position, height, and width of each peak in the model can vary independently 
of the other peaks, as opposed to the equal-width, fixed-width, or fixed-position variants. Shapes 4, 
5, 13, 14, 15, 18, 20, 34-37 are constrained to the same specified shape constant ('extra') specified in 
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the 6th input argument "extra" (extra=1 if not specified); shapes 30-33 are unconstrained in position, 
width, and shape; “extra” is automatically determined from the data by iterative fitting.
peakfit(S,center,window,NumPeaks,peakshape,extra)
  The 'extra' variable is used in shapes 4, 5, 8, 13, 14,15, 18, and 20 to fine-tune the peak shape. It 
can be a vector of different values for each peak. See Example 23 on page 94. 
peakfit(S,center,window,NumPeaks,peakshape,extra,NumTrials);
  Restarts the fit “NumTrials” times and selects the best one (with lowest fitting error). NumTrials 
can be any positive integer (default is 1).
peakfit(S,center,window,NumPeaks,peakshape,extra,NumTrials,start)
  Specifies the first guesses vector “start” for the starting values of peak positions and widths, e.g. 
start=[position1 width1 position2 width2 …]. Only necessary on difficult cases. The start values can 
usually be approximate average values based on your experience. If you leave this off, or set start=0, 
the program will generate its own start values (which is often good enough). 
peakfit(S,center,window,NumPeaks,peakshape,extra,NumTrials,...
start,autozero)
 Specifies the autozero mode in the 9th argument; it can have 4 values: 0, 1, 2, or 3: mode 0 (default) 
does not subtract baseline from data segment; 1 interpolates a linear baseline from the edges of the 
data segment and subtracts it from the signal (assumes that the peak returns to the baseline at the 
edges of the signal); 2, like mode 1 except that it computes a quadratic curved baseline; 3 corrects 
for a flat baseline without reference to the signal itself (works even if the peak does not return to the 
baseline at the edges). In modes 1 and 2, the 3rd output argument 'baseline' returns the polynomial 
coefficients of the baseline; in mode 3, the baseline value itself is returned as an output argument.
peakfit(S,center,window,NumPeaks,peakshape,extra,NumTrials,start,... 
autozero,fixedparameters)
Uses optional 10th input argument to set fixed width or positions in shapes 11, 12, 16, 17, 34-37.
peakfit(S,center,window,NumPeaks,peakshape,extra,NumTrials,start,... 
autozero,fixedparameters,0)
Uses optional 11th input argument set to 0 to suppress plotting and printing (default is 1).
peakfit(S,center,window,NumPeaks,peakshape,extra,NumTrials,start,...
autozero,fixedparameters,plot,bipolar)
'bipolar', optional 12th input argument, is set to 1 to allow negative as well as positive peak heights in 
the fit. The default is 0, which allows only positive peak heights.
peakfit(signal,center,window,NumPeaks,peakshape,extra,NumTrials,...
start,autozero,fixedparameters,plots,bipolar,minwidth)
'minwidth' ( optional 13th input argument) sets the minimum allowed peak width. The default if not 
specified is equal to the x-axis interval. Can be a vector of minimum widths. 
peakfit(signal,center,window,NumPeaks,peakshape,extra,NumTrials,...
start,autozero,fixedparameters,plots,bipolar,minwidth,DELTA)
'DELTA' (optional 14th input argument) controls the restart variance when NumTrials>1. Default 
value is 1.0. Larger values give more variance.
peakfit(signal,center,window,NumPeaks,peakshape,extra,NumTrials,...
start,autozero,fixedparameters,plots,bipolar,minwidth,DELTA,SatPoint)
'SatPoint' (optional 15th input argument) skips any data points greater than this value, useful for 
flat top peaks that are clipped or saturated, e.g. by the detector or electronics.

Optional output arguments:
[FitResults,LowestError,Baseline,coeff,residuals,xi,yi,BootstrapErrors]=....
1. FitResults: a table of model peak parameters, one row for each peak, listing Peak number, Peak 
position, Height, Width, and Peak area (or, for shape 28, the polynomial coefficients, and for shape 
29, the x-axis breakpoints).
2. GOF (Goodness of Fit), GOF(1) = % fitting error of best-fit model; GOF(2) = R2. 
3. baseline: the polynomial coefficients of the baseline in linear and quadratic baseline modes 
    1 and 2 or the value of the constant baseline in flat baseline mode 3 (version 6.1 or later).
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4. coeff: Coefficients for the polynomial fits (shapes 26, 27, 28).
5. residual: the difference between the data and the best fit. 
6. xi: vector containing 600 interpolated x-values for the model peaks. 
7. yi: matrix containing the y values of model peaks at each x, e.g. plot(xi,yi(1,:)) plots peak 1.
8. BootstrapErrors: a matrix containing bootstrap standard deviations and interquartile ranges for 

each peak parameter of each peak in the fit.

Example 1: Signal is a single vector: Create a small data set and fit Gaussian model to the data:
>> peakfit([1 4 9 14 17 14 9 4 1])
    Peak #  Position    Height      Width       Area 
        1       5       16.75       4.151       72.3

Example 2: Signal is a matrix: Fits exp(-x)^2 with a single Gaussian peak model. 
 >> x=[0:.1:10];y=exp(-(x-5).^2);peakfit([x' y'])
  ans =  1       5       1     1.665     1.7725

Example 3:  Measurement of very noisy peak with signal-to-noise ratio = 1. (Try several times).
>> x=[0:.01:10];y=exp(-(x-5).^2)+randn(size(x));peakfit([x;y])

ans=   1       5.0951       1.0699       1.6668       1.8984

Example 4:  Fits a noisy two-peak signal with a double Gaussian model (NumPeaks=2).
 >> x=[0:.1:10];y=exp(-(x-5).^2)+.5*exp(-(x-3).^2)+.1*randn(1,length(x));
 >> peakfit([x' y'],5,19,2,1,0,1)
   ans =       1     3.0001    0.4948      1.642    0.86504
                      2     4.9927    1.0016      1.6597   1.7696

Example 5: Fits a portion of the “humps” function, 0.7 units wide, centered on x=0.3, with a single 
(NumPeaks=1) Pearson function (peakshape=4) with extra=3 (controls shape).
  >> x=[0:.005:1];y=humps(x);peakfit([x' y'],.3,.7,1,4,3);
Example 6: Creates a data matrix 'smatrix', fits a portion to a two-peak Gaussian model, takes the 
best of 10 trials. Returns FitResults and FitError.
 >> x=[0:.005:1];y=(humps(x)+humps(x-.13)).^3;smatrix=[x' y'];
 >> [FitResults,FitError]=peakfit(smatrix,.4,.7,2,1,0,10)

Example 7: As above, but specifies the first-guess position and width of the two peaks, in the order 
[position1 width1 position2 width2]
 >> peakfit([x' y'],.4,.7,2,1,0,10,[.3 .1 .5 .1]);
Example 8: As above, returns the vector xi containing 100 interpolated x-values for the model peaks 
and the matrix yi containing the y values of each model peak at each xi. Type plot(xi,yi(1,:)) to 
plot peak 1 or plot(xi,yi) to plot all peaks.
>> [FitResults,LowestError,residuals,xi,yi]=peakfit(smatrix,.4,.7,2,1,0,10)

Example 9: Sets the baseline correction mode (0, 1, 2, or 3) in the last argument.
>> peakfit([x' y'],.4,.7,2,1,0,10,[.3 .1 .5 .1],mode);

Example 10: Fits a group of three peaks near x=2400 in DataMatrix3 with three equal-width 
exponentially-broadened Gaussians.
>> [FitResults,FitError]=peakfit(DataMatrix3,2400,440,3,8,31,1)

Example 11: Example of an unstable fit to a signal consisting of two Gaussian peaks of equal height 
(1.0). The peaks are too highly overlapped for a stable fit, even though the fit error is small and the 
residuals are unstructured. Each time you re-generate this signal, it gives a different fit, with the 
peaks heights varying about 15% from signal to signal.
>> x=[0:.1:10]';y=exp(-(x-5.5).^2)+exp(-(x-4.5).^2)+.01*randn(size(x));
[FitResults,FitError]=peakfit([x y],5,19,2,6,0,10)
The equal-width Gaussian model (peak shape 6) yields more stable results, but that is justified only 
if the experiment is legitimately expected to yield peaks of equal width. See pages 60-62 and 132.
Example 12a: Baseline correction mode 3 (9th input argument), which subtracts a flat baseline 
automatically without requiring that the signal return to the baseline at the edges. Flat baseline with 
single Gaussian: position=10, height=1, width=1.66, 
>> x=8:.05:12;y=1+exp(-(x-10).^2); 
>> [FitResults,FitError,Baseline]=peakfit([x;y],0,0,1,1,0,1,0,3)
  FitResults =  1           10      0.99999       1.6651       1.7641
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  FitError = 0.0012156
  Baseline= 0.99985

Example 12b:  Same signal, using a 2-peak fit with one Gaussian and one “slope” (shape 26).
>> peakfit([x;y],0,0,2,[1 26],[1 1],1,0)

Example 13: Same as example 4, with 2 fixed-width Gaussians (shape 11), width=1.666 for both.
>> x=[0:.1:10];y=exp(-(x-5).^2)+.5*exp(-(x-3).^2)+.1*randn(size(x));
>> [FitResults,FitError]=peakfit([x' y'],0,0,2,11,0,0,0,0,[  1.666 1.666])
FitResults = 1       3.9943      0.49537        1.666      0.87849
             2       5.9924      0.98612        1.666       1.7488

Example 14: Peak area measurements. Same as the example in the figure on page 34.  All four 
peaks have the same theoretical peak area (1.772) and can be fit together in one fitting operation 
using a 4-peak Gaussian model, with only rough estimates of the first-guess positions and widths.  
The measurements are much more accurate than the perpendicular drop method:
>> x=[0:.01:18];
>> y=exp(-(x-4).^2)+exp(-(x-9).^2)+exp(-(x-12).^2)+exp(-(x-13.7).^2);
>> peakfit([x;y],0,0,4,1,0,1,[4 2 9 2 12 2 14 2],0,0)
         Peak#    Position       Height       Width         Area
ans=        1            4            1       1.6651       1.7725
            2            9            1       1.6651       1.7725...
This works well even in the presence of substantial amounts of random noise:
>> x=[0:.01:18];y=exp(-(x-4).^2)+exp(-(x-9).^2)+exp(-(x-12).^2)+... 
exp(-(x-13.7).^2)+.1.*randn(size(x));
>> peakfit([x;y],0,0,4,1,0,1,[4 2 9 2 12 2 14 2],0,0)
ans=        1       4.0086      0.98555       1.6693       1.7513
            2       9.0223       1.0007        1.669       1.7779...
Sometimes experimental peaks are effected by exponential broadening, which does not by itself 
change the true peak areas, but does shift peak positions and increases peak width, overlap, and 
asymmetry, making it harder to separate the peaks. Peakfit.m (and ipf.m) have an exponentially-
broadened Gaussian peak shape (shape #5) that works well in those cases, recovering the original 
peak positions, heights, and widths:
>> y1=ExpBroaden(y',-50);
>> peakfit([x;y1'],0,0,4,5,50,1,[4 2 9 2 12 2 14 2],0,0)
ans=        1            4            1       1.6651       1.7725
            2            9            1       1.6651       1.7725...
Example 15: Prints out a table of peak parameter errors, determined by the bootstrap procedure 
(page 42). See DemoPeakfitBootstrap.m for a self-contained demo of this function.
x=0:.05:9;y=exp(-(x-5).^2)+.5*exp(-(x-3).^2)+.01*randn(1,length(x));
Results,FitError,Baseline,Start,xi,yi,PErrors]=peakfit([x;y],0,0,2,6,0,1,0,0,0);

Peak #1         Position    Height       Width       Area
Bootstrap Mean: 2.9987      0.49717     1.6657      0.88151
Percent RSD:    0.13175     0.37726     0.15769     0.37047
Percent IQR:    0.18271     0.55234     0.19502     0.50658
 
Peak #2  ... etc

Example 16: Fits a slightly asymmetrical peak with a bifurcated Gaussian (shape 14). The 'Extra' 
argument (=45) controls the peak asymmetry (50 is symmetrical).
 >> x=[0:.1:10];y=exp(-(x-4).^2)+.5*exp(-(x-5).^2)+.01*randn(size(x));
 >> [FitResults,FitError]=peakfit([x' y'],0,0,1,14,45,10,0,0,0) 
 FitResults = 1       4.2028       1.2315        4.077       2.6723
 FitError = 0.84461

Example 17: Returns output arguments only, no plotting or command window printing (11th input 
argument = 0).
 >> x=[0:.1:10]';y=exp(-(x-5).^2);FitResults=peakfit([x y],0,0,1,1,0,0,0,0,0,0)
Example 18. Same as example 4, but with fixed-position Gaussian (shape 16), positions=[3 5]. 
>> x=[0:.1:10];y=exp(-(x-5).^2)+.5*exp(-(x-3).^2)+.1*randn(size(x));
>> [FitResults,FitError]=peakfit([x' y'],0,0,2,16,0,0,0,0,[3 5])
                      Position    Height       Width       Area
FitResults = 1            3      0.49153       1.6492      0.86285
             2            5      1.0114        1.6589      1.786
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Example 19. “Humps” function fit with two Voigt profiles, flat baseline mode 3.
>> [FitResults,FitError]=peakfit(humps(0:.01:2),71,140,2,20,1.7,1,...
[31 4.7 90 8.8],3)
 FitResults = 1       31.047       96.762       4.6785       2550.1
              2        90.09       22.935       8.8253       1089.5
 FitError = 0.80501
Example 20. peakfitdemob.m Measures the heights of three weak Gaussian peaks (true heights 1, 2, 
and 3), buried in a very strong baseline, plus noise. The peakfit function actually fits four peaks, 
treating the baseline as an 4th peak whose first-guess peak position is negative. (You can “stress” this 
method by changing the peak parameters in lines 11, 12, and 13 and see if the peakfit function will 
successfully track those changes and give accurate results).

Example 21. 12th input argument (+/- mode) set to 1 (bipolar) to allow negative as well as positive 
peak heights. (Default is 0)
 >> x=[0:.1:10];y=exp(-(x-5).^2)-.5*exp(-(x-3).^2)+.1*randn(size(x));
 >> peakfit([x' y'],0,0,2,1,0,1,0,0,0,1,1)
 FitResults = 1 3.1636    -0.5433      1.62    -0.9369
              2 4.9487     0.96859     1.8456   1.9029

Example 22. Fits humps function to a model consisting of one Lorentzian and one Gaussian peak 
(5th input argument is a vector = [1 2]).
 >> x=[0:.005:1.2];y=humps(x);
 >> [FitResults,FitError]=peakfit([x' y'],0,0,2,[2 1],[0 0])

Example 23. Five peaks, five different shapes, all heights = 1, all widths = 3, "extra" vector has 
values for peaks 4 and 5. Click for graphic.
>> x=0:.1:60; y=modelpeaks2(x, [1 2 3 4 5], [1 1 1 1 1], [10 20 30 40 50], [3 3 
3 3 3], [0 0 0 2 -20])+.01*randn(size(x));
>>  peakfit([x' y'],0,0,5, [1 2 3 4 5], [0 0 0 2 -20])   

You can also use this technique to create models with all the same shapes but with different values 
of  'extra' using a vector of 'extra' values, or with different minimum width restrictions by using a 
vector of  'minwidth' values as input argument 13. 

Example 24. Minimum width limit (13th input argument)
>> x=1:30;y=gaussian(x,15,8)+.05*randn(size(x));
No constraint (minwidth=0): peakfit([x;y],0,0,5,1,0,10,0,0,0,1,0,0);
Widths constrained to values 7 or above: peakfit([x;y],0,0,5,1,0,10,0,0,0,1,0,7); 

Example 25. Demo  PeakFit  .m generates an overlapping Gaussian peak signal, adds noise, fits with  
peakfit  .m (in line 78), repeats several times (NumRepeats in line 20), compares the peak parameters 
(position, height, width, and area) of the measurements to their actual values and computes the 
accuracy and relative standard deviation). You can change any of the initial values in lines 13-30. 

Example 26. Polynomial fit (shape 28); x=[0.3:.005:1.7];y=humps(x);y=y+cumsum(y);
peakfit([x' y'],0,0,1,28,6,10,0,0,0,1,1)
Example 27. Articulated segmented fit (shape 29); NumPeaks = number of linear segments.
>> x=[0.9:.005:1.7];y=humps(x);peakfit([x' y'],0,0,9,29,0,1,0,0,0,1,1)

Example 29: NumPeaksTest.m demonstrates one way to determine the minimum number of model 
peaks needed to fit a set of data, by plotting the fitting error vs the number of model peaks and 
looking for the point at which the fitting error reaches a minimum. 
Example 30a, b, c, d: Version 7 and later supports unconstrained variable shapes 30-33 and 38 that 
include the shape in the fit; they have three iterated variables per peak (position, width, and shape): 
 a. Voigt (shape 30): x=1:.1:30;y=modelpeaks2(x,[13 13],[1 1],[10 20],[3 3],[20 80]); 
[FitResults,FitError] = peakfit([x;y],0,0,2,30,0,10).
 b. ExpGaussian/ExpLorentzian (shape 31/38): load DataMatrix3;[FitResults,FitError] = 
peakfit(DataMatrix3,1860.5,364,2,31,32.9731,5,[1810 60 30 1910 60 30])
 c. Pearson (shape 32) x=1:.1:30;y=modelpeaks2(x,[4 4],[1 1],[10 20],[5 5],[1 10]); 
[FitResults,FitError] = peakfit([x;y],0,0,2,32,0,5)
 d. Gaussian/Lorentzian blend (shape 33): x=1:.1:30;y=modelpeaks2(x,[13 13],[1 1],[10 
20],[3 3],[20 80]); [FitResults,FitError]=peakfit([x;y],0,0,2,33,0,5) 
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Example 31: Fixed-height Gaussians (heights vector specified in 10th input argument).
x=[0:.1:10];y=exp(-(x-5).^2)+.5*exp(-(x-3).^2)+.1*randn(size(x));
peakfit([x' y'],0,0,2,34,0,0,0,0,[.5 1])

Example 32: Fixed-width 50% Gaussian/Lorentzian blend, shape 35. 
x=0:.1:10;y=GL(x,4,3,50)+.5*GL(x,6,3,50)+.1*randn(size(x));
[FitResults,FitError]=peakfit([x;y],0,0,2,35,50,1,0,0,[  3 3  ])
Compare to variable width shape 13: ...peakfit([x;y],0,0,2,13,50,1)
Example 33: 3-parameter logistic (Gompertz), shape 43. (Version 7.9 and above only). Parameters 
labeled Bo, Kh, and L. FitResults extended to 6 columns. 
t=0:.1:10; Bo=6;Kh=3;L=4;
y=Bo*exp(-exp((Kh*exp(1)/Bo)*(L-t)+1))+.1.*randn(size(t));
FitResults,GOF]=peakfit([t;y],0,0,1,43)

DemoPeakFitTime.m is a simple script that demonstrates how to apply multiple curve fits to a 
signal that is changing with time. Each signal (x,y) contains two noisy Gaussian peaks (similar to the 
illustration above) in which the peak position of the second peak increases with time and the other 
parameters remain fixed. The script creates a matrix of 100 noisy signals (on line 5) each containing 
two Gaussian peaks where the position of the second peak changes with time (from x=6 to 8) and the 
first peak remains the same. Then it fits a 2-Gaussian model to each of those signals (on line 8), 
displays the signals and fits graphically with time as an animation, then plots the measured peak 
position of the two peaks vs time on line 12. A real-data example w/animation.

Finding peaks, fitting peaks, or both? Which to use: Peakfit or iPeak? You can download some 
Matlab demos that compare Peakfit.m with iPeak.m for signals with a few peaks and signals with 
many peaks. DemoPeakfitBootstrap demonstrates the ability of peakfit to compute estimates of the 
errors in the measured peak parameters. These are self-contained demos that include all required 
Matlab functions. Just place them in your path and click Run or type their name at the command 
prompt. Findpeaks and peakfit are combined in findpeaksfit.m (page 76) is combination of 
findpeaksG.m (page 74) and peakfit.m (page 90). It uses the number of peaks and the positions and 
widths determined by findpeaks as input for the peakfit.m function, which then fits the entire signal 
with the specified peak model. This yields better values than findpeaks alone, because peakfit fits the 
entire peak, not just the top part, and it handles non-Gaussian and overlapped peaks. It fits only those 
peaks that are found by findpeaks. See demo.

b. Interactive version: ipf.m, for Matlab
ipf.m is an interactive peak fitter that uses 
keyboard commands and the mouse cursor. The 
syntax is ipf(x,y), where x and y are the 
independent and dependent variables of your 
data set, or ipf(M) where “M” is a matrix that 
has x values in row 1 and y values in row 2. It 
shows the entire signal in the lower panel and 
the selected region in the upper panel (adjusted 
by the same cursor controls keys as in iPeak and 
iSignal). After performing a fit (figure on the 
right), the upper panel shows the data as blue 
dots, the total model as a red line, and the 
model components as green lines; the lower 
panel shows the residuals (the difference 
between the data and the total model).
Example 1: Test with pure Gaussian function, default settings of all input arguments.
>> x=[0:.1:10];y=exp(-(x-5).^2);ipf(x,y)
Here the fit is almost perfect. However, the peak area (the last fit result reported) includes only the 
area within the upper window, so it varies with the pan and zoom settings. (If there were noise in the 
data or if the model were imperfect, then all results will depend on the pan and zoom settings). 
Example 2: x=[0:.005:1];y=humps(x).^3;ipf(x,y) fits the entire signal; 
ipf(x,y,0.335,0.39) focuses on first peak; ipf(x,y,0.91,0.18) focuses on second peak.
Example 3: load(DataMatrix2);ipf(DataMatrix2,3434.5,590) loads a .mat file containing an 
x,y data set and opens ipf.m on the region between x=3200 and 3700.
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Some examples with experimental data
Example 1: In the example shown on the right, a sample of 
room air is analyzed by gas chromatography (data source: 
reference 48). The resulting chromatogram shows two 
overlapping peaks, the first for oxygen and the second for 
nitrogen. The area under each peak is expected to be 
proportional to the gas composition. Because the peaks are 
visibly asymmetric, I chose an exponentially-broadened 
Gaussian model (a commonly encountered peak shape in 
chromatography) to fit the data, using ipf.m and adjusting the 
exponential term with the A and Z keys to get the best fit. 
The results, shown in the ipf.m screen on the left and in the 
Q-key report below, show that the peak areas are in a ratio of 
23% and 77%. This is fairly close to the actual 21% and 78% 
composition, and the results would have been even more accurate if argon were included and if the 
areas were calibrated for the different detector responses of nitrogen and oxygen.
Percent Fitting Error = 2.9%    Elapsed time = 11.5 sec.
Peak#  Position    Height    Width      Area
  1      4.8385     17762   0.081094   1533.2
  2      5.1439     47142   0.10205    5119.2

Example 2. In this example, ipf.m is used to examine an experimental high-resolution atomic 
emission spectrum in the region of the well-known spectral lines of the element sodium. Two lines 
are found there (figure on the right), and when fit to a 
Lorentzian model, the peak wavelengths are determined to be 
588.98 nm and 589.57 nm. Compare this to the ASTM 
recommended wavelengths for sodium (588.995 and 589.59 
nm) and you can see that the error is no greater than 0.02 nm 
(less than the interval between the data points, 0.05 nm), 
despite the fact that the fit is not very good because the peaks 
shapes are rather distorted (perhaps by self-absorption).
Percent Fitting Error 6.9922%
Peak#  Position Height Width Area
1  588.98 234.34 0.16079 56.473
2  589.57 113.18 0.17509 29.63

These results show that the wavelength calibration of the 
instrument on which these experimental data were obtained is 
excellent. In general, peak position is by far the most accurately measurable parameter in peak 
fitting. The bootstrap standard deviation estimates for both wavelengths is 0.015 nm, so using the 2 x 
standard deviation rule-of-thumb would have predicted a probable error within 0.03 nm. 

Operating instructions for ipf.m (Version 11.3)
1. Make sure you have the most recent version of ipf.m. At the command line, type ipf(x, y), (x = 

independent variable, y = dependent variable) or ipf(M) where “M” is a 2 x n or n x 2 matrix that 
has x values the first row or column. Or if you have only one signal vector y, type ipf(y). 
Optionally, you can specify the initial focus by adding “center” and “window” values as 
additional input arguments, where 'center' is the desired x-value in the center of the upper 
window and “window” is the desired width of that window: ipf(x,y,center,window) or 
ipf(M,center,window).

2. Use the four cursor arrow keys on the keyboard to pan and zoom the signal to isolate the peak 
or group of peaks that you want to fit in the upper window. (Use the < and > and ? and " keys for 
coarse pan and zoom and the square bracket keys [ and ] to nudge one point left and right). The 
curve fitting operation applies only to the segment of the signal shown in the top plot. The bottom 
plot shows the entire signal. Try not to get any undesired peaks in the upper window or the 
program may try to fit them. Or press Ctrl-A to select the entire signal.

3. Press the number keys (1– 9) to choose the number of model peaks, that is, the minimum number 
of peaks that you think will suffice to fit this segment of the signal. For more than 9 peaks, press 
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0 , type the number of peaks, and press Enter.
4. Select the desired model peak shape by pressing the '-' key and selecting the desired shape by 

number from the menu that is displayed. Or you can also type in a vector of shape numbers with a 
different shape for each peak, e.g. [1 2 1]. Or you can select single-shape models in one keystroke 
by pressing the following keys: unconstrained Gaussian (lower case g), equal-width Gaussians 
(lower case h), fixed-width Gaussians (Shift-G), fixed-position Gaussians (Shift-P), 
exponentially-broadened Gaussian (e), exponentially-broadened equal-width Gaussians (j); 
bifurcated Gaussian (Shift-H), unconstrained Lorentzian (lower case L), exponentially-
broadened Lorentzian (Shift-E); fixed-width Lorentzians (Shift-L), fixed-position Lorentzians 
(Shift [ ), equal-width Lorentzians (lower case ;), Breit-Wigner-Fano resonance (Shift-B), Voigt 
profile (Shift-V), triangular (Shift-T), logistic distribution (lower case o), Pearson (p), 
exponential pulse (u), alpha function (Shift-U), logistic function or up-sigmoid (s), down-
sigmoid (Shift-D), and Gaussian/Lorentzian blend (`). 
  If the peak widths of each group of peaks is expected to be the same, select the equal-  width or 
fixed-width fits (available only for the Gaussian and Lorentzian shapes), which are faster, easier, 
and much more stable than regular variable-width fits, especially if the number of model peaks is 
greater than three, because there are fewer variable parameters for the program to adjust. 

5. A set of vertical dashed lines are shown on the plot, one for each model peak. Try to fine-tune the 
Pan and Zoom keys so that the signal drops down to the baseline at both ends of the upper plot 
and so that the peaks (or humps) in the signal roughly line up with the vertical dashed lines. This 
does not have to be exact.

6. If you want to allow negative peaks as well as positive peaks, press the + key to flip to the +/- 
mode (indicated by the +/- sign in the y-axis label of the upper panel). Press it again to return to 
the + mode (positive peaks only). You can switch at any time.

7. Press F to initiate the curve-fitting calculation. Each time press F, another fit of the selected 
model to the data is performed with slightly different starting values, so that you can judge the 
stability of the fit with respect to starting guesses. (To judge the stability of the fit with respect to  
noise in the data, press N. See #16). Keep your eye on the residuals plot and on the “Error” 
display. Do this several times, trying for the lowest error and the most unstructured random 
residuals plot. If the fit is unstable, try pressing X, which takes longer to compute but may give 
better results (see #13). At any time, you can refine the signal region to be fit (step 2), change the 
number or peaks (step 3), peak shape (step 4), or change the baseline correction mode (T key) to 
get a better fit. 

8. The model parameters of the last fit are shown the lower window. For example, for a 3-peak fit:
Peak#  Position    Height    Width      Area
 1    5.33329    14.8274    0.262253    4.13361
 2    5.80253    26.825     0.326065    9.31117
 3    6.27707    22.1461    0.249248    5.87425

The columns are, left to right: the peak number, peak position, peak height, peak width, and the 
peak area. Press R to print this table out in the command window. Peaks are numbered from left 
to right. (The area of each component peak within the upper window is computed using the 
trapezoidal method). 
 Pressing Q prints out a report of settings and results in the command window, like so:
Peak Shape = Gaussian
Positive peaks only
Flat baseline mode
Number of peaks = 3
Fitted range = 5 - 6.64
Percent Error = 7.4514
Peak#  Position    Height     Width       Area
  1    5.33329    14.8274    0.262253    4.13361
… etc

9. To select the baseline correction mode, press the T key repeatedly; it cycles thorough none, 
linear, quadratic, and flat background modes. In linear mode, a straight-line baseline connecting 
the two ends of the signal segment in the upper panel will be automatically subtracted. In 
quadratic mode, a parabolic baseline connecting the two ends of the signal segment in the upper 
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panel will be automatically subtracted. (Use quadratic mode if the baseline is curved). Use the 
flat mode if the signal does not return to the baseline at the ends.

10. If you prefer to set the baseline manually, press the B key, then click on the baseline to the LEFT 
of the peak(s), then click on the baseline to the RIGHT of the peak(s). The new baseline will be 
subtracted and the fit re-calculated. (The new baseline remains in effect until you use the pan or 
zoom controls). Alternatively, you may use the multi-point background correction for the entire 
signal: press the Backspace key, type in the desired number of background points and press the 
Enter key, then click on the baseline starting at the left of the lowest x-value and ending to the 
right of the highest x-value. Press \ to restore the previous background to start over.

11. If the peaks are not approximately lined up with the dotted magenta marker lines, it may help to 
manually customize the first-guess peak positions: press C, then click on your estimates of the 
peak positions in the upper graph, once for each peak. The fit is automatically performed after the 
last click. Peaks are numbered in the order clicked. Or type Shift-C to type in or paste in the start 
vector, e.g. “[pos1 wid1 pos2 wid2 ...]”. (The custom start values remain in effect until you 
change the number of peaks or use the pan or zoom controls).

12. The A and Z keys control the “extra” parameter that is used only if you are using Pearson, 
exponentially-broadened Gaussian and Lorentzian (ExpGaussian and ExpLorentzian), bifurcated 
Gaussian, Breit-Wigner-Fano, Gaussian/Lorentzian blend, or Voigt models. For the Pearson 
shape, an “extra” value of 1.0 gives a Lorentzian shape, a value of 2.0 gives a shape roughly half-
way between a Lorentzian and a Gaussian, and a larger values give a nearly Gaussian shape. For 
the exponentially broadened Gaussian shapes, “extra” controls the exponential “time constant” 
(expressed as the number of points). For the Gaussian/Lorentzian blend and the bifurcated 
Gaussian and Lorentzian shapes, “extra” controls the peak asymmetry (a values of 50 gives a 
symmetrical peak). You can also enter an initial value of “extra” directly by pressing Shift-X , 
typing in a value (or vector, for multiple shape models), and pressing the Enter key. Then you 
can adjust this value using the A and Z keys (hold down the Shift key to fine tune). Seek to 
minimize the Error % or set it to a previously-determined value. (Note: if fitting multiple over­
lapping peaks with an “extra” parameter, it's better to fit a single peak first, to get a rough value 
for the “extra” parameter, then just fine-tune that parameter for the multi-peak fit if necessary). 

13. For difficult fits, press X, which restarts the fit 10 times with slightly different first guesses and 
takes the one with the lowest fitting error. This also resets the starting points for subsequent fits, 
so pressing X repeatedly will usually converge on the best fit. (You can change the number of 
trials,”NumTrials”, in or near line 224 in ipf.m; the factory default is 10). As always: equal-width 
Gaussian (H key) and Lorentzian (; key) shapes, and exponentially-broadened equal-width 
Gaussian (J key) peak shapes and fixed-width  Gaussian (Shift-G key) shapes Lorentzian (Shift-
L key) shapes, are faster, easier, and more stable than regular variable-width fits, so use equal-
width fits whenever the peak widths are expected to be equal or nearly so, or fixed-width fits 
when the peak widths are known.

14. Press Y to display the entire signal full screen without cursors, with the last fit displayed in 
green. The residual is displayed in red, on the same y-axis scale.

15. Press M to switch back and forth between log and linear modes. In log mode, the y-axis of the 
upper plot switches to semilog-y, and log(model) is fit to log(y), which may be useful if the peaks 
vary greatly in amplitude. The first-guess values and 'extra' values do not change.

16. Press the D key to print out a table of model data in the command window (x, y1, y2, ..., where x 
is the column of x values of the fitted region and the y's are the y-values of each component, one 
for each peak in the model. You can then Copy and Paste this table into a spreadsheet or data 
plotting program of your choice.

17. Press W to print out the ipf.m function in the command window with the current values of 
'center' and 'window' as input arguments. This is useful when you want to return to that specific 
data segment later. Also prints out peakfit.m with all input arguments, including the last best-fit 
values of the first guess vector. You can copy and Paste the displayed text into your own code.

18. ipf.m can estimate the expected variability of the peak position, height, width, and area from 
thesignal, by using the bootstrap sampling method (see page 41 - 42). This involves extracting 
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100 bootstrap samples from the signal, fitting each of those samples with the model, then 
computing the percent relative standard deviation (RSD) and the interquartile range (IQR) of the 
parameters of each peak. Basically this method calculates weighted fits to a single data set, using 
a different set of different weights for each fit. (The process is computationally intensive can take 
several minutes to complete, especially if the number of peaks in the model is high or if you are 
using an exponentially broadened shape). 
  To activate this process, press the V key. It first asks you to type in the number of “best-of-x” 
trial fits per bootstrap sample (the default is 1, but you may use a higher number here if the fits 
are too unstable). The results are displayed in the command window. For example, for a three-
peak fit (to the same 3 peaks used by the Demoipf demo script described in the next section):

   >> Number of fit trials per bootstrap sample (0 to cancel): 10

     Computing bootstrap sampling statistics....May take several minutes.
       
      Peak #1         Position   Height      Width      Area
      Bootstrap Mean: 800.5387   2.969539    31.0374   98.10405
      Bootstrap STD:  0.20336    0.02848      0.5061    1.2732

     Bootstrap IQR:  0.21933    0.027387     0.5218    1.1555
     Percent RSD:    0.025402   0.95908      1.6309    1.2978
     Percent IQR:    0.027398   0.92226      1.6812    1.1778

       
    (Peak #2, etc..... for all other peaks)

      Elapsed time is 98.394381 seconds.
      Min/Max Fitting Error of the 100 bootstrap samples: 3.0971/2.5747

Observe that the percent RSD and IRQ of the peak positions are lowest, followed by heights and 
widths and areas. This is a typical pattern. Also, remember that these results depend on the 
assumption that the noise in the signal is unsmoothed and is representative of the average noise 
in repeated measurements. If the number of data points in the signal is small, these estimates can 
be very approximate. Don't smooth the data beforehand; that will cause the bootstrap to 
underestimate the variability drastically. 

  One pitfall with the bootstrap method when applied to iterative fits is the possibility that one (or 
more) of the bootstrap fits will go astray, that is, will result in peak parameters that are wildly 
different from the norm, causing the estimated variability of the parameters to be too high. For 
that reason, in ipf 8.7, the interquartile range (IQR) as well as the standard deviation (STD) is 
reported. The IQR is more robust to outliers. For a normal distribution, the interquartile range is 
equal to 1.34896 times the standard deviation. But if one or more of the bootstrap sample fits 
fails, resulting in a distribution of peak parameters with large outliers, the STD will be much 
greater than the IQR. In that case, a more realistic estimate of standard deviation without the 
outliers is IRQ/1.34896. 

  It's best to increase the fit stability by choosing a better model (for example, using an equal-
width of fixed-width model, if appropriate), adjusting the fitted range (pan and zoom keys), the 
background subtraction (T or B keys), or the start positions (C key), and/or selecting a higher 
number of fit trials per bootstrap (which will increase the computation time). As a quick test of 
bootstrap fit stability, the N key will perform a single fit to a single random bootstrap sample and 
plot the result; do that several times to see whether the bootstrap fits are stable enough to be 
worth computing the statistics of 100 bootstrap samples. 

  Note: it's normal for the stability of the bootstrap sample fits (N key) to be poorer than the full-
sample fits (F key) because the latter includes only the variability caused by changing the 
starting positions for one set of data and noise, whereas the N and V keys aim to include the 
variability caused by the random noise in the sample by fitting bootstrap sub-samples. Moreover, 
the best estimates of the measured peak parameters are those obtained by the normal fits of the 
full signal (F and X keys), not the means reported for the bootstrap samples (V and N keys), 
because there are more independent data points in the full fits and because the bootstrap means 
are influenced by the outliers that occur more commonly in the bootstrap fits. Use the bootstrap 
results for estimating the variability of the peak parameters, not for estimating their mean values. 
The N and V keys are also very useful way to determine if you are using too many peaks in your 
model; superfluous peaks will be very unstable when N is press repeatedly and will have much 
higher standard deviation of its peak height when the V key is used. 
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19. Shift-o fits a simple polynomial (linear, quadratic, cubic, etc) to the upper panel segment and 
displays the polynomial coefficients (in descending powers) and R2. See page 37.
20. If some peaks are saturated (clipped at a maximum height), you can make the program ignore 
the saturated points by pressing Shift-M and entering the maximum Y values to keep.
21. If there are very few data points on the peak, it might be necessary to reduce the minimum 
width (set by 'minwidth' in peakfit.m or Shift-W in ipf.m) to zero or to something smaller than 
the default minimum (which defaults to the x-axis spacing between adjacent points). 
22. If you try to fit a very small independent variable (x-axis) segment of a very large signal, for 
example, a region that that is only 1000th or less of the current x-axis value, you might encounter 
a problem with unstable fits. If that happens, try subtracting a constant from x, then perform the 
fit, then add in the subtracted amount to the measured x positions. 

Demo  ipf.m
 Demo  ipf.m is a demonstration script for ipf.m, with a built-in simulated signal generator. The true 
values of the simulated peak positions, heights, and widths are displayed in the Matlab command 
window, for comparison to the Fit Results obtained by peak fitting. The default simulated signal 
contains six independent groups of peaks that you can use for practice: a triplet near x = 150, a 
singlet at 400, a doublet near 600, a triplet near 850, and two broad single peaks at 1200 and 1700. 
Run this demo and see how close to the actual true peak parameters you get. 
  The useful thing about a simulation like this is that 
you can get a feel for the accuracy of peak parameter 
measurements, that is, the difference between the true 
and measured values of peak parameters. To run it, 
place both ipf.m and Demo  ipf.m in the Matlab path, 
then type Demoipf at the Matlab command prompt. 
The ipf ZIP file contains peakfit.m, DemoPeakFit.m, 
ipf.m, Demoipf.m, and some data for testing.

An example of the use of this script is shown on the 
right. Here we focus in on the 3 fused peaks located 
near x=850. The true peak parameters (before the 
addition of the noise) are:
         Position   Height     Width     Area
            800         3          30      95.808
            850         2          40      85.163
            900         1          50      53.227
When these peaks are isolated in the upper window and fit with three Gaussians, the typical 
measured peak parameters are:       
         Position   Height     Width      Area  
           800.04     3.0628     29.315    95.583
           850.15     1.9881     41.014    86.804
           901.3      0.9699     46.861    48.376

So you can see that the accuracy of the measurements are excellent for peak position, good for peak 
height, and least good for peak width and area. As expected, the least accurate measurements are for 
the smallest peak with the poorest signal-to-noise ratio. 
Note: The expected standard deviations of these peak parameters can be determined by the bootstrap 
sampling method (page 41 - 42), as described in the previous section. We would expect that the 
measured values of the peak parameters (comparing the true to the measured values) would be 
within about 2 standard deviations of the true values listed above). 
Peak identification. You can use the peak identifier function idpeaktable.m (page 77, 81) with 
the peak table P that is returned by either peakfit.m or ipf.m, for identifying peaks according to their 
peak positions. 
Adding new peak shapes. It's easier than you think to add new peak shapes to peakfit.m or to 
ipf.m; see http://terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#NewShape
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In this example with experimental data, pan and zoom controls  
are used to isolate a segment of a chromatogram that contains  
three very weak peaks near 5.8 minutes The lower plot shows  

the whole chromatogram and the upper plot shows the segment.  
Only the peaks in that segment are subjected to the fit. Pan and  

zoom are adjusted so that the signal returns to the local  
baseline at the ends of the segment.

 Pressing T sets the baseline mode to linear, causing the  
program to compute and subtract a linear baseline between  

the ends of the upper segment. Pressing 3, E, F performs a 3-
peak exponentially-broadened Gaussian fit. The time constant  

of the exponential is adjusted by the A and Z keys. The  
randomness and lack of obvious structure of the residuals  

indicates that the fit is as good as possible with this level of  
noise. 

Execution time
By “execution time” I mean the time it takes for one fit to be performed, exclusive of plotting or 
printing the results. The major factors that determine the execution time are the peak shape, the 
number of peaks, and the speed of the computer:

a) The execution time varies greatly (sometimes by a factor of 100 or more) with the peak shape, with the 
exponentially-broadened Gaussian being the slowest and the fixed-width Gaussian being the fastest. 
See Peakfit  TimeTest2.m and Peakfit  TimeTest2a.m. The equal-width and fixed-width shape variations 
are always faster than the corresponding variable-width models. Unconstrained variable shapes in 
peakfit 7 that have three iterated variables (30: variable-alpha Voigt; 31: variable time constant 
ExpGaussian; 32: variable shape Pearson; 33: variable Gaussian/ Lorentzian blend) are slower.

b) The execution time typically increases with the square of the number of peaks in the model.

c) The execution time can vary over a factor of 4 or 5 or more between different computers, for example, 
between a small laptop with 1.6 GHz, dual core Athlon CPU and 4 Gbytes RAM, compared to a big 
desktop with a 3.4 GHz i7 CPU and 16 Gbytes RAM). Run the Matlab “bench.m” benchmark test to 
see how your computer stacks up compared to other computers.

d) The execution time increases directly with NumTrials in peakfit.m; the “Best of 10 trials” function (X 
key in ipf.m) takes about 10 times longer than a single fit.

e) Other factors that influence execution time but are less important are (1) the number of data points in 
the fitted region (see Peakfit  TimeTest3.m) and (2) the starting values (good starting values can reduce 
execution time slightly; Peakfit  TimeTest2.m and Peakfit  TimeTest2a.m have examples. (Some of these 
scripts need Data  Matrix2.mat and Data  Matrix3.mat). 

Note: All these scripts (m-files) and data files (mat-files) can be downloaded from http://tinyurl.com/cey8rwh.

Notes concerning the interactive functions ipeak.m, isignal.m, and ipf.m: 
(a) Make sure you don't click on the “Show Plot Tools” button in the toolbar above the figure; that will 
disable normal program functioning. If you do; close the Figure window and start again. 
(b) To facilitate transfer of settings from one of these functions to another or to a command-line version, all 
these functions use the W key to print out the syntax of other related functions, with the pan and zoom 
settings and other numerical input arguments specified, ready for you to Copy, Paste and edit into your own 
scripts or back into the command window. For example, you can convert an curve fit from ipf.m into the 
command-line peakfit.m function; or you can convert a peak finding operation from ipeak.m into the 
command-line findpeaksG.m or findpeaksb.m or findpeaksb3.m functions. 
(c) Recent versions of these three programs use the Shift-Ctrl-S, Shift-Ctrl-F, and Shift-Ctrl-P keys to 
transfer the current signal between iSignal.m, ipf.m, and iPeak.m, respectively, if you have installed those 
functions in your Matlab path. Think Signal, Fit, and Peak. This is done via the global variables X and Y.
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Ipf 11.2 Keyboard Controls
 Pan signal left and right...Coarse: < and >
                             Fine: left and right cursor arrow keys
                             Nudge: [ ] 
 Zoom in and out.............Coarse zoom: ?/ and "'  
                             Fine zoom: up and down cursor arrow keys
 Select entire signal........Crtl-A (Zoom all the way out)
 Resets pan and zoom.........ESC
 Select # of peaks...........Number keys 1-9, or press 0 key to enter number 
 Select peak shape from menu _- (minus or hyphen), type number or shape vector
 Select peak shape by key....g Gaussian
                             h equal-width Gaussians
                             Shift-G fixed-width Gaussians
                             Shift-P fixed-position Gaussians
                             Shift-H bifurcated Gaussian (a,z keys adjust shape)
                             e Exponential-broadened Gaussian 
                               (a,z keys adjust broadening)
                             j exponential-broadened equal-width Gaussians
                                 (a,z keys adjust broadening)
                             l Lorentzian
                             :; equal-width Lorentzians
                             Shift [ fixed-position Lorentzians
                             Shift-E Exponential-broadened Lorentzians 
                                 (a,z keys adjust broadening)
                             Shift-L Fixed-width Lorentzians 
                               (a,z keys adjust broadening)
                             o LOgistic distribution (Sigmoid=logistic function)
                             p Pearson (a,z keys adjust shape)
                             u exponential pUlse  
                               y=exp(-tau1.*x).*(1-exp(-tau2.*x))
                             Shift-U Alpha function: 
                               y=(x-tau2)./tau1.*exp(1-(x-tau2)./tau1)
                             s Up Sigmoid (logistic function): 
                                y=.5+.5*erf((x-tau1)/sqrt(2*tau2))
                             Shift-D Down Sigmoid 
                               y=.5-.5*erf((x-tau1)/sqrt(2*tau2))
                             ~` Gauss/Lorentz blend (a/z adjust % Gaussian)
                             Shift-V Voigt profile (a/z adjusts shape)
                             Shift-B Breit-Wigner-Fano (a/z adjusts Fano factor)
 Fit.........................f  Perform single Fit from another start point.
 Select autozero mode........t  selects none, linear, quadratic, or flat 
baseline mode
 + or +/- peak mode..........+=  Flips between + peaks only and +/- peak mode
 Invert (negate) signal......Shift-N
 Fit polynomial..............Shift-o  Fits polynomial to data in upper panel
 Toggle log y mode OFF/ON....m  Log mode plots and fits log(model) to log(y).
 2-point Baseline............b, then click left and right baseline
 Set manual baseline.........Backspace, then click baseline at multiple points
 Restore original baseline...|\  to cancel previous background subtraction
 Click start positions.......c  Click on estimated peak position for each peak.
 Type in start vector........Shift-C Type or Paste start vector [p1 w1 p2 w2..]
 Print current start vector..Shift-Q
 Enter value of 'extra'......Shift-x, type value (or vector in brackets).
 Adjust 'extra' up/down......a,z: 5% change; upper case A,Z: 0.5% change.
 Print parameters & results..q
 Print fit results only......r
 eValuate errors.............v  Estimates standard deviations of parameters.
 Test effect of Noise........n  by fitting a subset of data points.
 Plot signal in figure 2.....y
 Print model data table......d
 Refine fit..................x  Takes best of 10 trial fits (change in line 219)
 Print peakfit function......w  Print peakfit function with all input arguments
 Enter minimum width.........Shift-W
 Enter saturation maximum....Shift-M  Ignores points above this magnitude 
 Save Figure as png file.....Shift-S  Saves as Figure1.png, Figure2.png, etc.
 Display current settings....Shift-? displays list of current settings 
 Switch to iPeak.m...........Shift-Ctrl-P  Transfer current signal to iPeak.m
 Switch to iSignal...........Shift-Ctrl-S  Transfer current signal to iSignal.m 

* To specify a multiple shape model, press the '-' key, type a vector of "Shape" values, one for every peak, enclosed 
in square brackets, e.g. [1 1 3], and press Enter.
** The a and z keys adjust the “extra” variable that controls the alpha of the Voigt profile, the time constant of the 
exponentially broadened Gaussian and Lorentzian, the peak shape of the Pearson and bifurcated Gaussian, the 
Fano factor of the Breit-Wigner-Fano peak, and the % Gaussian of the Gaussian-Lorentzian blend.
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6. Combining techniques: Hyperlinear analytical absorption spectroscopy
This example shows how knowledge of a specific measurement system can be used to design a 
custom signal processing procedure that expands the classical limits of measurement. This is a 
Matlab/Octave implementation of a computational method for quantitative analysis by multi-
wavelength absorption spectroscopy, called the transmission-fitting or “TFit” method, based on 
fitting a model of the instrumentally-broadened transmission spectrum to the observed transmission 
data, rather than the conventional calculation of absorbance as log(Izero/I). The method is described 
in References 25, 26, and 27 on page 134. It is included here because it combines several important 
concepts that are covered in this essay: signal-to-noise ratio (pg 6), Fourier convolution (pg 31), 
multicomponent spectroscopy (pg 49), iterative least-squares fitting (pg 54), and calibration (pg 47). 

Advantages of the TFit method compared to conventional absorbance-based methods are: 

(a) much wider dynamic range (i.e., the concentration range over which one calibration curve 
can be expected to give good results) ; 
(b) greatly improved calibration linearity, which reduces the labor and cost of preparing and 
running large numbers of standard solutions and safely disposing of them afterwards
(c) operation under conditions that are optimized for signal-to-noise ratio rather than for 
absorbance linearity (e.g. small spectrometers with low dispersion and large slit widths).

Just like the multilinear regression (classical least squares) methods commonly used in absorption 
spectroscopy (Page 49), the Tfit method:

(a) requires an accurate reference spectrum of each component, 
(b) utilizes accurately-registered multi-wavelength data such as would be acquired on diode-
array, Fourier transform, or automated scanning spectrometers, and 
(c) applies both to single-component and multi-component mixture analysis.

The disadvantages of the TFit method are: 

(a) it makes the computer work harder (but, on a typical personal computer, calculations take 
only a fraction of a second, even for the analysis of a mixture of several components); 
(b) it requires knowledge of the instrument function, i.e, the slit function or the resolution 
function of an optical spectrometer (but this is a fixed characteristic of the instrument and 
can be measured beforehand by scanning the spectrum of a narrow atomic line source such as 
a hollow cathode lamp); and 
(c) it is an iterative method that under unfavorable circumstances can converge on a local 
optimum (but this is handled by proper selection of the starting values, which are 
automatically supplied by the simple approximations calculated by conventional methods).

If you are viewing this online, click here to download a self-contained demo m-file that works in 
recent versions of Matlab. (You can also download the ZIP file “  TFit.zip” ; you can also download it 
from the Matlab   File Exchange  . 

a. Background
In a  bsorption spectroscopy, the intensity I of light passing through an absorbing sample is given by 
the Beer-Lambert Law. In Matlab/Octave notation:
     I = Izero.*10^-(alpha*L*c)

where “Izero” is the intensity of the light incident on the sample, “alpha” is the absorption 
coefficient of the absorber, “L” is the distance that the light travels through the material (the path 
length), and “c” is the concentration of absorber in the sample. The variables I, Izero, and alpha are 
all functions of wavelength; L and c are scalar.

  In conventional applications, measured values of I and Izero are used to compute the quantity 
called “absorbance”, defined as
       A = log10(Izero./I)
Absorbance is defined in this way so that, when you combine this definition with the Beer-Lambert 
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law, you get: 
       A = alpha*L*c

  So, absorbance is proportional to concentration, ideally, which simplifies analytical calibration. 
However, any real spectrometer has a finite spectral resolution, meaning that the light beam passing 
through the sample is not truly monochromatic, with the result that an intensity reading at one 
wavelength setting is actually an average over a small spectral interval. More exactly, what is 
actually measured is the convolution of the true spectrum of the absorber and the instrument 
function. If the absorption coefficient “alpha” varies over that interval, then the calculated 
absorbance will no longer be linearly proportional to concentration (this is called the 
“polychromicity” error). The effect is most noticeable at high absorbances. In practice, many 
instruments will become non-linear starting at an absorbance of 2 (~1% Transmission). As the 
absorbance increases, the effect of unabsorbed stray light and instrument noise also becomes more 
significant. Traditionally, there was no way to circumvent these problems, and the non-linearity so 
produced made calibration more complex and less certain.

  The theoretical best signal-to-noise ratio and absorbance precision for a photon-noise limited 
optical absorption instrument can be shown to be close to an absorbance of 1.0 (see 
http://terpconnect.umd.edu/~toh/models/AbsSlitWidth.html#Best  Absorbance). However, if one 
attempts to arrange sample dilutions and absorption cell path lengths to obtain a working range 
centered on an absorbance of 1.0 , for example over the range .1 – 10, or 0.01 – 100, the measure­
ments will obviously fail at the high end. (Clearly, the direct measurement of an absorbance of 100 is 
unthinkable, as it implies the measurement of light attenuation of 100 powers of ten - no real 
measurement system has a dynamic range remotely close to that). In practice, it is difficult to achieve 
an dynamic range even as high as 5 or 6 absorbance, so that much of the theoretically optimum 
absorbance range is actually unusable. (c.f. http://en.wikipedia.org/wiki/  Absorbance). So, one is 
forced to use greater sample dilutions and shorter path lengths to get the absorbance range to lower 
values, even if this means poorer signal-to-noise ratio and measurement precision at the low end. 
  It is true that the non-linearity caused by polychromicity can be reduced by operating the instrument 
at the highest resolution setting (reducing the instrumental slit width). However, this has a serious 
undesired side effect: in dispersive instruments, reducing the slit width to increase the spectral 
resolution degrades the signal-to-noise substantially. It also reduces the number of atoms or 
molecules that are actually measured. Here's why: UV/visible absorption spectroscopy is based on 
the the absorption of photons of light by molecules or atoms resulting from transitions between 
electronic energy states. It's well known that the absorption peaks of molecules are more-or-less wide 
bands, not monochromatic lines, because the molecules are undergoing vibrational and rotational 
transitions as well and are under the perturbing influence of their environment. This is the case also 
in atomic absorption spectroscopy: the absorption "lines" of gas-phase free atoms, although much 
narrower that molecular bands, have a finite non-zero width, mainly due to their velocity 
(temperature or Doppler broadening) and collisions with the matrix gas (pressure broadening). A 
macroscopic collection of molecules or atoms, therefore, presents to the incident light beam a 
distribution of energy states and absorption wavelengths. Absorption results from the interaction of 
many individual atoms or molecules with individual photons. A purely monochromatic incident light 
beam would have photons all of the same energy, ideally corresponding to the average in the energy 
distribution of the collection of atoms or molecules being measured. But most of the atoms or 
molecules would have a energy greater or less than the average and would thus not be measured. If 
the bandwidth of the incident beam is increased, more of those non-average atoms or molecules 
would by measured, but then the simple calculation of absorbance as log10(Izero/I) would no longer 
result in a nice linear response to concentration. The problem is the reliance on log10(Izero/I). 
Numerical simulations show that the optimum signal-to-noise ratio is achieved when the resolution 
of the instrument approximately matches the width of the analyte absorption, but operating the 
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instrument in that way would result in very substantial non-linearity over most of the absorbance 
range because of the “polychromicity” error. This non-linearity has its origin in the spectral domain 
(intensity vs wavelength), not in the calibration domain (absorbance vs concentration). Therefore it 
should be no surprise that curve fitting in the calibration domain, for example fitting the non-linear 
calibration data with a quadratic or cubic fit, might not be the best solution. A better approach might 
be to perform the curve fitting in the spectral domain, where the problem originates. This is possible 
with modern absorption spectrometers that use array detectors with many tiny detector elements that 
slice up the spectrum of the transmitted beam into many small wavelength segments, rather than 
detecting the sum of all those segments with a single detector as older instruments do. 
  The TFit method does exactly that by calculating the absorbance in a completely different way: it 
starts with the reference spectra (an accurate absorption spectrum for each analyte, recorded in the 
linear absorbance range, which is also required by the multilinear regression methods described on 
page 49), normalizes them to unit height, multiplies each by an adjustable coefficient (usually equal 
to the conventional absorbance measurement for that component in the mixture), adds them up, 
computes the transmission spectrum by taking the antilog, and convolutes it (page 31) with the 
previously-measured slit function. The result, representing the instrumentally broadened 
transmission spectrum, is compared to the observed transmission spectrum. The adjustable 
coefficients (one for each unknown component in the mixture) are adjusted by Nelder-Mead 
Modified Simplex Optimization (page 54) until the computed transmission model is a least-squares 
best fit to the observed transmission spectrum. The best-fit coefficients are then equal to the 
absorbances that would have been observed under ideal optical conditions. Provision is also made 
to compensate for unabsorbed stray light and changes in background intensity (background 
absorption). The Fit method gives measurements of absorbance that are much closer to the “true” 
peak absorbance that would have been measured in the absence of stray light and polychromatic light 
errors, and it allows linear and wide dynamic range measurements to be made even if the slit width 
of the instrument is increased to optimize the signal-to-noise ratio. (The calculations are performed 
by the function fitM, used as a fitting function for the fminsearch.m in Matlab or Octave). 
  Iterative least-squares methods (page 54) are ordinarily considered to be more difficult and less 
reliable than multilinear   regression   methods (page 49), and this can be true if there are more than one 
nonlinear variable that must be iterated, especially if those variables are correlated. However, in the 
TFit method, there is only one iterated variable (absorbance) per measured component, and 
reasonable first guesses are readily available from the conventional single-wavelength absorbance 
calculation or multiwavelength regression methods. As a result, an iterative method works well here. 
  The TFit method does not of course guarantee a perfectly linear analytical curve under all 
conditions, despite the impression given by the simulations below. It simply removes the non-
linearity caused by unabsorbed stray light and the polychromatic light effect. Other sources of non-
linearity remain - in particular, chemical effects such as photolysis, equilibrium shifts, temperature 
and pH effects, binding, dimerization, polymerization, molecular phototropism, fluorescence, etc. 
But generally a well-designed quantitative analytical method is designed to minimize those effects.
The Bottom Line: It's important to understand that the TFit method is based on the Beer-Lambert 
Law, but it calculates the absorbance in a different way that does not require the assumption that 
stray light and polychromatic radiation effects are zero, and it uses the conventional log(Izero/I) 
absorbance only as a starting point. It allows larger slit widths to be used without calibration non-
linearity, so you get greater signal-to-noise ratios and much wider linear dynamic range than usual. 
The log(Izero/I) absorbance is a 160-year-old simplification that was driven by the desire for 
mathematical convenience, not by the quest for detection sensitivity and signal-to-noise ratio. It dates 
from the time before electronics and computers, when the only computational tools were pen and 
paper and slide rules, and when a method such as described here would have been unthinkably 
impractical. It's still the most widely used method today, despite the wide availability of computers. 
Sometimes convenience is more important than measurement performance.

105

http://terpconnect.umd.edu/~toh/spectrum/CurveFittingB.html/
http://CurveFittingB.html/
http://CurveFittingB.html/
http://terpconnect.umd.edu/~toh/spectrum/CurveFittingC.html/
http://CurveFittingC.html/
http://terpconnect.umd.edu/~toh/spectrum/fitM.m


b. Spreadsheet templates and demos for Excel and Calc.
Excel templates and demos for the Tfit method, which use a combination of shift-and-multiple 
convolution and the Solver add-in, are described in Appendix N on page 128 (click for graphic). 

c. The Matlab/Octave fitM.m function
function err = fitM(lambda,yobsd,Spectra,InstFun,StrayLight)
fitM is a fitting function for the Tfit method, for use with the nonlinear iterative fminsearch function 
(page 55). The input arguments of fitM are:

lambda = vector of adjustable parameters (in this case, peak absorbances) that are varied to obtained 
the best fit.
yobsd = observed transmission spectrum of the mixture sample over the spectral range (column 
vector)
Spectra = reference spectra for each component, over the same spectral range, one 
column/component, normalized to 1.00. 
InstFun = Zero-centered instrument function or slit function (column vector)
StrayLight = fractional stray light (scalar or column vector, if it varies with wavelength)

Note: yobsd, Spectra, and InstFun must have the same number of rows (wavelengths). Spectra 
must have one column for each absorbing component. Typical use: 
absorbance=fminsearch(@(lambda)(fitM(lambda, yobsd, TrueSpectrum, 
InstFunction, straylight)), start);

where start is the first guess (or guesses) of the absorbance(s) of the analyte(s); the Tfit method 
uses the conventional log10(Izero/I) estimate of absorbance(s) for its start. The other arguments 
(described above) are passed on to FitM. In this example, fminsearch returns the value of absorbance 
that would have been measured in the absence of stray light and polychromatic light errors (which is 
either a single value or a vector of absorbances, if it is a multicomponent analysis). The absorbance 
can then be converted into concentration by any of the usual calibration procedures (Beer's Law, 
external standards, standard addition, etc.)

Here is a very simple numerical example for a single absorbing component, using only 4-point 
spectra for simplicity (normally an array-detector system would acquire many more wavelengths 
than that). In this case the true monochromatic absorbance is 1.00, but the instrument width 
(InstFun) is twice the absorption width, and the stray light is 0.01 (1%), so the conventional single-
wavelength estimate of absorbance, based on the minimum transmission, is far too low: 
log10(1/.38696)=0.4123. In contrast, the TFit method using fitM,
fminsearch(@(lambda)(fitM(lambda,[0.56529 0.38696 0.56529 0.73496]',[0.2 
1 0.2 0.058824]',[1 0.5 0.0625 0.5]',.01)),.4)

returns the correct value of 1.0. (The "start" value, which is .4 in this case, is not critical and can be 
just about any value you like). 

Comparing the expression for absorbance given above for the TFit method to that for the weighted 
regression method:
 absorbance=([weight weight].*[Background ReferenceSpectra])\(-
log10(yobsd).*weight)

You can see that, in addition to the ReferenceSpectra and observed transmission spectrum (yobsd), 
the TFit method additionally requires a measurement of the Instrument function (spectral bandpass) 
and the stray light (which the linear regression methods assume to be zero). However, these are fixed 
characteristics of the spectrometer and need be determined only once for a given instrument, either 
by calculating from the optical setup or by scanning a narrow line source. 
  Finally, although the TFit method does make the computer work harder, the computation time on a 
typical laboratory personal computer is only about 25 µsec per spectral data point per component 
analyzed, using Matlab as the computational environment. So a 3-component analysis with 1000-
point spectra would take less than 0.1 second, hardly a deal-breaker.
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d. Basic demo of the Tfit method: TfitDemo.m (Matlab) and tfit.m (Octave)

The Matlab-only script TfitDemo is an 
interactive explorer for the Tfit method 
applied to the measurement of a single 
component with a Lorentzian or Gaussian 
absorption peak, with keystroke controls 
for adjusting the parameters while 
observing the effects graphically and 
numerically. The adjustable parameters 
are: the true absorbance, “True A” 
(adjusted with the A/Z keys), the spectral 
width of the absorption peak, 
“AbsWidth”, (adjusted with the S/X 
keys), the spectral width of the slit 
function, “SlitWidth” (adjusted with the 
D/C keys), the percent stray light, 
“Straylight” (adjusted with the F/V keys), 
and the noise level, “Noise” (adjusted with the G/B keys). (The x-axis, and the values of both 
AbsWidth and SlitWidth, are in arbitrary units).

The equivalent function for Octave users is tfit.m; the true absorbance is specified in the single 
input argument of that function, while the other parameters are set in lines 28-33.

The simulation includes the effect of photon noise, unabsorbed stray light, and random background 
intensity shifts (light source flicker), and it compares observed absorbances computed by the single-
wavelength, “Single”, weighted multilinear regression, “WReg” (sometimes called Classical Least 
Squares in the chemometrics literature), and the TFit methods. If you are viewing this online, right-
click TFitDemo.m click “Save link as...”, save it in a folder in the Matlab path, then type 
“TFitDemo” at the Matlab command prompt. With the figure window topmost, press K to get a list 
of the keypress functions. 
In the example shown in the figure above right, the true peak absorbance is exactly 1.0564, the 
absorption widths and slit function widths are equal, the unabsorbed stray light is 0.5%, and the 
photon noise is 5%. The results below the graphs show that the TFit method gives a much more 
accurate measurement (1.0583) than the single-wavelength method (0.6246) or weighted multilinear 
regression method (0.8883). 

TFitDemo KEYBOARD COMMANDS
Peak shape....Q.....Toggles between Gaussian and Lorentzian shapes
True peak A...A/Z...True absorbance of analyte at peak center, without
                    instrumental broadening, stray light, or noise.
AbsWidth......S/X...Width of absorption peak
SlitWidth.....D/C...Width of instrument function (spectral bandpass)
Straylight....F/V...Fractional unabsorbed stray light.
Noise.........G/B...Random noise level
Re-measure....Spacebar   Re-measure signal
Switch mode...W.....Switch between transmission and absorbance display
Statistics....Tab...Prints table of statistics of 50 repeats
Cal. Curve....M.....Displays analytical calibration curve in Figure 2
Keys..........K.....Print this list of keyboard commands

Why does the noise on the graph change if I change the instrument function (slit width or 
InstWidth)? In the most common type of absorption spectrometer, the spectrometer's spectral 
bandwidth (InstWidth) is changed by changing the slit width, which also effects the light intensity at 
the detector and thus the signal-to-noise ratio. Therefore, in all these programs, when you change 
InstWidth, the photon noise changes just as it would in a real spectrophotometer.
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e. TFitStats.m: Statistics of methods compared (Matlab or Octave)
The Matlab/Octave script TFitStats computes the statistics of the TFit method compared to single- 
wavelength (SingleW), simple regression (SimpleR), and weighted regression (WeightR) methods. 
Simulates photon noise, unabsorbed stray light and random background intensity shifts. Estimates 
the precision and accuracy of the four methods by repeating the calculations 50 times with different 
random noise samples. Computes the mean, relative percent standard deviation, and relative percent 
deviation from true absorbance. Parameters are easily changed in lines 19 - 26. Results are displayed 
in the MATLAB command window. Note: This statistics function is included as a keypress 
command (Tab key) in the Matlab interactive demo TFitDemo.m. 
  Typical results are shown in the table on the next page, for a simulation with AbsWidth=10; 
SlitWidth=20; Straylight=0.5%, and Noise=5% of Izero). Results for true absorbances of 0.001. 
1.00, and 100 are compared, demonstrating that the accuracy and the precision of these methods over 
a 10,000-fold concentration range. Notice how much closer the TFit method comes to the True A.

Statistical comparison of single-wavelength, weighted regression and TFit methods
True A SingleW SimpleR WeightR TFit

Mean result* .0010 .0003 .00057 .00070 .00097
% RSD** 435% 275% 40% 38%
% Accuracy*** -70% -40% -30% 2.30%
Mean result* 1.0000 0.599 0.656 0.841 1.001
% RSD** 0.69% 0.33% 0.27% 0.32%
% Accuracy*** -40% -34% -16% 0.07%
Mean result* 100 2.0038 3.7013 57.1530 99.9967
% RSD** 22.00% 23.00% 78.00% 6.80%
% Accuracy*** -98.00% -96.00% -43.00% 0.33%
* Average value of the 50 measured absorbances
** Percent relative standard deviation of the 50 measured absorbances
*** Percent difference between the average of the 50 measured absorbances and the true absorbance

f. TFitCalDemo.m: Comparison of analytical curves (Matlab or Octave)
 Matlab/Octave function that compares the 
analytical curves for single-wavelength, simple 
regression, weighted regression, and the TFit 
method over any specified absorbance range 
(specified by the vector “absorbancelist” in 
line 20). Simulates photon noise, unabsorbed 
stray light and random background intensity 
shifts. Plots a log-log scatter plot with each 
repeat measurement plotted as a separate 
point, so you can see the scatter of points at 
low absorbances. Change the parameters in 
lines 43 - 51. 

In the sample result shown on the right, 
analytical curves for the four methods are 
computed over a 10,000-fold range, up to a 
peak absorbance of 100, demonstrating that 
the TFit method (shown by the green circles) is much more linear over the whole range than the 
single-wavelength, simple regression, or weighted regression methods. Note: The calibration curve 
function is included  in the Matlab interactive demo function TfitDemo.m (press the M key).
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g. Application to a three-component mixture: TFit3Demo.m and Tfit3.m
  Tfit3Demo is a Matlab interactive demonstration function of the T-Fit method applied to the multi­
component absorption spectroscopy of a mixture of three absorbers, with keystrokes that allow you 
to adjust the parameters continuously while observing the effect dynamically. The adjustable 
parameters are: the absorbances of the three components (A1, A2, and A3, adjusted by the A/Z, S/X, 
and D/C keys respectively), spectral overlap between the component spectra (“Sepn”, adjusted by 
the F/V keys), width of the instrument function (“InstWidth” adjusted by the G/B keys), and the 
noise level (“Noise”, adjusted by the H/N keys). The equivalent function for Octave users is Tfit.m, 
which has the syntax Tfit(AbsorbanceVector), where AbsorbanceVector is the vector of the three 
true absorbances in the mixture, for example: TFit3([3 .1 5]).
This demonstration compares quantitative measurement by weighted regression (page 50) and TFit 
methods. It simulates photon noise, unabsorbed stray light and random background intensity shifts. 
Note: After executing this m-file, slide the “Figure 1” and “Figure 2” windows side-by-side so that 

they don't overlap. Figure 1 shows a log-log scatter 
plot of the true vs. measured absorbances, with the 
three absorbers plotted in different colors and 
symbols. Figure 2 shows the transmission spectra of 
the three absorbers plotted in the corresponding 
colors. As you adjust the variable parameters in 
Figure No. 1, both graphs change accordingly. 

In the sample calculation shown above, component 2 
(shown in blue) is almost completely buried by the 
stronger absorption bands on either side, giving a 
much weaker absorbance (0.1) than the other two 
components (3 and 5, respectively). Even in this case 
the TFit method gives a result within 1 to 2% of the 
correct value (A2=0.1). In fact, over most 

combinations of the three concentrations, the TFit method works better, although of course nothing 
works if the spectral differences between the components is too small. (In this program, as in all of 
the above, when you change InstWidth, the photon noise is automatically changed accordingly just 
as it would in a real spectrophotometer).

TFitDemo3 KEYBOARD COMMANDS
A1..........A/Z  Increase/decrease true absorbance of component 1
A2..........S/X  Increase/decrease true absorbance of component 2
A3..........D/C  Increase/decrease true absorbance of component 3
Sepn........F/V  Increase/decrease spectral separation of the components
InstWidth...G/B  Increase/decrease width of spectral bandpass
Noise.......H/N  Increase/decrease random noise level when InstWidth = 1
Peak shape..Q    Toggles between Gaussian and Lorentzian absorption peak shape
Table.......Tab  Print table of results
Keys........K    Print this list of keyboard commands

Another run of the same simulation, showing the results table obtained by pressing the Tab key:
              True      Weighted    TFit
           absorbance   Regression  method
Component 1    3.00       2.06      3.001       
Component 2    0.10       0.4316    0.098    
Component 3    5.00       2.464     4.998  
Note for Octave users: the current versions of fitM.m, tfit.m, TfitStats.m and TfitCalDemo.m work in Octave 
as well as in Matlab. However, the interactive features of TfitDemo.m and Tfit3Demo.m work only in 
Matlab; Octave users should use the command-line functions tfit.m and Tfit3.m. See 
http://tinyurl.com/cey8rwh for a list of and links to these and other Matlab and Octave functions.
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Appendix A: More on smoothing 
This section presents additional supporting information related to smoothing (page 11). 

1. Can smoothed noise may be mistaken for an actual signal? Here are two examples that show 
that the answer to this question is yes. The first example is 
shown on the left. This shows iSignal (page 85) displaying a 
computer-generated 4000-point signal consisting only of 
random white noise, smoothed with a 19-point Gaussian 
smooth. The upper window shows a tiny slice of this signal 
that looks like a Gaussian peak with a calculated SNR over 
1000. Only by looking at the entire signal (bottom window) 
do you see the true picture; that “peak” is just part of the 
noise, smoothed to look nice. Don't fool yourself.
  The second example is a simple series of three Matlab 
commands that uses the 'randn' function to generate a 10000-
point data set containing only normally-distributed white 
noise. Then it uses 'fastmooth' (page 15-16) to smooth that 

noise, resulting in a 'signal' with a standard deviation of about 0.3 and a maximum value around 1.0. 
That signal is then submitted to iPeak (page 78). If the peak detection criteria (e.g. AmpThreshold 
and SmoothWidth) are set too low, many peaks will be found. But setting the AmpThreshold to 3 
times the standard deviation (3 x 0.3 = 0.9) will greatly reduce the incidence of these false peaks. 
>> noise=randn(1,10000);
>> signal=fastsmooth(noise,13);
>> ipeak([1:10000;signal],0,0.9,1e-006,17,17)

The peak identification function, described on page 77 and 80, which identifies peaks based on their 
exact x-axis peak position, is even less likely to be fooled by random noise, because in addition to 
the peak detection criteria of the findpeaks algorithm, any detected peak must also match closely to a 
peak position in the table of known peaks, in order for it to be reported as an identified peak. 

2. Smoothing performance comparison. The Matlab/Octave function “smoothdemo.m” (on 
http://tinyurl.com/cey8rwh) is a self-contained function that compares the performance of four types 
of smooth operations: (1) sliding-average, (2) triangular, (3) pseudo-Gaussian (equivalent to three 

passes of a sliding-average), and (4) Savitzky-Golay. These are the four smooth types discussed on 
page 11, corresponding to the four values of the SmoothMode input argument of the iSignal function 
(page 85). These four smooth operations are applied to a 2000-point signal consisting of a Gaussian 
peak with a FWHM (full-width at half-maximum) of 322 points and to a noise array consisting of 
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107 samples of normally-distributed random white noise with a mean of zero and a standard 
deviation of 1.0. The peak height of the smoothed peak, the standard deviation of the smoothed 
noise, and the signal-to-noise ratio are all measured as a function of smooth width, for each smooth 
type. Smooth width is expressed in terms of “smooth ratio”, the ratio of the width of the smooth to 
the width (FWHM) of the peak. You may download this from http://tinyurl.com/cey8rwh.

  The results, when “smoothdemo.m” is run (with a noise array length of 107 to insure accurate 
sampling of the noise), are shown by the figure and text print-out below. The four quadrants of the 
graph are: (upper left) the original Gaussian peak before smoothing and without noise; (upper right) 
the peak height of the smoothed signal as a function of smooth ratio; (lower left) the standard 
deviation of the noise as a function of smooth ratio; the signal-to-noise ratio (SNR) as a function of 
smooth ratio (lower right). The different smooth types are indicated by color: blue - sliding-average; 
green - triangular; red - pseudo-Gaussian, and cyan - Savitzky-Golay. The function also calculates 
and prints out the elapsed time for a each smooth type and the maximum in the SNR plot.

1. Sliding-average: Elapsed Time: 0.2615 sec   Optimum SNR: 15.1 at a smooth width of 1.26
2. Triangular: Elapsed Time: 0.5956 sec   Optimum SNR: 15.8 at a smooth width of 1.11
3. Pseudo-Gaussian: Elapsed Time: 0.8695 sec   Optimum SNR: 15.6 at a smooth width of 0.94
4. Savitzky-Golay: Elapsed Time: 4.4995 sec   Optimum SNR: 20.3 at a smooth width of 1.74

  These results clearly show that the Savitzky-Golay smooth gives the smallest peak distortion 
(smallest reduction in peak height), but, on the other hand, it gives the smallest reduction in noise 
amplitude and the longest computation time (by x5 or more). The pseudo-Gaussian smooth gives the 
greatest noise reduction and, below a smooth ratio of about 1.0, the highest signal-to-noise ratio, but 
the Savitzky-Golay smooth gives the highest SNR above a smooth ratio of 1.0.
  For applications where speed is not an issue and where the shape of the signal must be preserved as 
much as possible, the Savitzky-Golay is clearly the method of choice. In the peak detection function 
described in page 74, on the other hand, the purpose of smoothing is to reduce the noise in the 
derivative signal and the retention of the shape of that derivative is less important, because it is 
looking for the peak top, which is not much affected. Therefore the triangular or pseudo-Gaussian 
smooth is well suited to this purpose and has the additional advantage of faster computation speed.
  The conclusions are essentially the same for a Lorentzian peak, as demonstrated by a similar 
function “smoothdemoL.m”, the main difference being that the peak height reduction is greater for 
the Lorentzian at a given smooth ratio. 

3. Effect of noise color. The frequency distribution of noise, designated by noise “color” (page 8), 
substantially effects the ability of smoothing to reduce noise. The Matlab/Octave function 
“NoiseColorTest.m” compares the effect of a 100-point boxcar (unweighted sliding average) 
smooth on the standard deviation of white, pink, and blue noise (page 8), all of which have an 
original unsmoothed standard deviation of 1.0. Because smoothing is a low-pass filter process, it 
effects low frequency (pink) noise less, and high-frequency (blue) noise more, than white noise.

Original unsmoothed noise 1
Smoothed white noise 0.1

Smoothed pink noise 0.55
Smoothed blue noise 0.010

4. It is possible to reverse the effect of smoothing? Not generally, because smoothing is essentially 
averaging and you can not recreate a set of numbers given only its average. There are many sets of 
numbers that could have the same average; there's no single right answer. However, you could apply 
a high-pass filter or peak-sharpening algorithm to partially compensate for a previous low-pass 
filtering (pages 26, 34). Alternatively, if you knew the response function of the smoothing operation 
that had been applied, you could deconvolute it from the smoothed data (page 32). But such 
operations are only approximate and invariably degrade the signal-to-noise ratio.
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Appendix B. Case study of an unusual signal.
The experimental signal in this case was unusual in that it 
did not look like a typical signal when plotted. In fact, at 
first glance it looked a lot like random white noise with a 
standard deviation of about 1.0 The figure on the left 
compares the raw signal (bottom) with the same number 
of points of normally-distributed white noise (top) with a 
mean of zero and a standard deviation of 1.0 (obtained 
from the Matlab/ Octave 'randn' function). As you can see, 
the main visible difference is that the experimental signal 
has more large 'spikes', especially in the positive direction. 
This difference is evident when you look at the descriptive 
statistics of the signal and the 'randn' function:

DESCRIPTIVE STATISTICS Raw signal random noise (randn function)

Mean 0.4 0

Maximum 38 about 5

Standard Deviation (STD) 1.05 1.0

Inter-Quartile Range (IQR) 1.04 1.3489

Kurtosis 38 3

Skewness 1.64 0

Even though the standard deviations of these two are about the same, the other statistics (especially 
the kurtosis and skewness) indicate that the probability distribution of the signal is far from normal; 

in particular, there are far more positive spikes in the 
signal than expected for pure noise. Most of these are 
actually the peaks of interest for this signal; they look like 
spikes only because the length of the signal (over 1 
million points) causes the peaks to be compressed into 
one screen pixel or less when the entire signal is plotted 
on the screen. In the figures on the left, iSignal (page 85) 

is used to “zoom in” on some of the larger of these peaks. The peaks are very sparsely separated (by 
an average of 1000 half-widths between peaks) and are 
well above the level of background noise (which has a 
standard deviation of roughly 0.9 throughout the signal). 

The researcher who obtained this signal said that a 'good' 
peak was 'bell shaped', with an amplitude above 5 and a 
width of 500-1000 x-axis units. So that means that we 
can expect the signal-to-background-noise ratio to be at 

least 5/0.9 = 5.5. You can see in the three example peaks on the left that the peak widths do indeed 
meet those expectations. The interval between adjacent 
x-axis points is 25, so we can expect the peaks to have 
about 20 to 40 points in their widths. Based on that, we 
can expect that the positions, heights and widths of the 
peaks should be able to be measured fairly accurately 
using least-squares methods (which reduce the 
uncertainty of measured parameters by about the square 

root of the number of points used, about a factor of 5 in this case). However, the noise appears to be 
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signal-dependent (page 8); that is, the noise on the top of the peaks is distinctly greater than the noise 
on the baseline. The result is that the actual signal-to-noise ratio of the peak  parameter 
measurements for the larger peaks will not be as good as expected based on the ratio of the peak 
height to the noise on the background. Most likely, the total noise in this signal is the sum of at least 
two major components, one with a fixed standard deviation of 0.9 and the other equal to about 10% 
of the peak height.

To automate the detection of large numbers of peaks, we can use the findpeaksG function (page 74). 
Reasonable initial values of the input arguments AmplitudeThreshold, SlopeThreshold, 
SmoothWidth, and FitWidth for those functions can be estimated based on the expected peak height 
(5) and width (20 to 40 data points) of the “good” peaks. For example, using AmplitudeThreshold=5, 
SlopeThreshold=.001, SmoothWidth=25, and FitWidth=25, findpeaks detects 76 peaks above an 
amplitude of 5 and with an average peak width of 523. My Matlab interactive peak finder iPeak 
(page 76) is especially convenient for exploring the effect of these peak detection parameters and for 
graphically inspecting the peaks that it finds. Ideally the objective is to find a set of peak detection 
arguments that detect and accurately measure all the peaks that you would consider 'good' and skip 
all the 'bad' ones. But in reality the criteria for good and bad peaks is at least partly subjective, so it's 
usually best to err on the side of caution and avoid skipping 'good' peaks at the risk of including a 
few 'bad' peaks, which can be weeded out manually based on unusual position, height, width, or 
appearance by simple processing on the peak table P (e.g. page 77).

Of course it must be expected that the values of the peak position, height, and width given by the 
findpeaks or iPeak functions will only be approximate and will vary depending on the exact setting 
of the peak detection arguments; the noisier the data, the greater the uncertainty in the peak 
parameters. In this regard the peak-fitting functions peakfit.m and ipf.m (page 90, 95) may give 
slightly more accurate results, because they make use of all the data across the peak, not just the top 
of the peak as do findpeaks and iPeak. Also, the peak fitting functions are better for dealing with 
overlapping peaks, and they have the ability to estimate the uncertainty of the measured peak 
parameters, using the bootstrap options of those functions (pages 42 and 96). Using that method, the 
largest peak in the signal is found to have an x-axis position of 2.8683e+007, height of 32, and width 
of 500, with standard deviations of 4, 0.92, and 9.3, respectively. 

Because the signal in the case was so large (over 1,000,000 points), the interactive programs such as 
iPeak (page 74), iSignal (page 85), and ipf (page 95) may be sluggish in operation, especially if your 
computer is not fast computationally or graphically. If this is a serious problem, it may be best to 
break the signal up into two or more segments, deal with each segment separately, then combine the 
results. Alternatively, you can use the condense function to average the entire signal into a smaller 
number of points by a factor of 2 or 3, at the risk of slightly reducing peak heights and increasing 
peak widths, but then you should adjust “SmoothWidth” and “FitWidth” to compensate for the 
reduced number of data points across the peaks.
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Appendix C. Buried treasure.
The experimental signal in this case, shown on the right, had a 
number of narrow spikes above a seemingly flat baseline. 

Using iSignal to investigate the signal, it was found that the 
positive spikes were single points of very large amplitude (up 
to 106), whereas the regions between the spikes contained 
bell-shaped peaks so small they can't be seen on this scale. 

For example, using 
the cursor keys in 
iSignal to zoom in to the region around x=26300, I found 
one of those bell-shaped peaks, with a single-point 
negative spike near its peak, in the screen shot on the left. 

Very narrow spikes like this are common artifacts in some 
experimental 
signals; they are 
easy to eliminate 
by using a 

median filter (the M key in iSignal) or the killspikes 
function (page 15). The result, in the plot on the right, 
shows that the single-point spike artifacts have been 
eliminated, with little effect on the character of the bell-
shaped peak. Other filter types, like most forms of 
smoothing, would be far less effective than a median filter 
for this type of artifact and would distort the peaks. The 
negative spikes in this signal turned out to be negative-
going steps, which can either be reduced by using iSignal's slew rate limit function (the ` key) or 

manually eliminated by using the semicolon key (;) to set 
the selected region between the dotted red cursor lines to 
zero. Using the latter approach, the entire cleaned-up signal 
is shown on the left. The remaining peaks are all positive, 
smooth, bell-
shaped and 
have 
amplitudes 
from about 6 to 
about 750.

iPeak can automate the estimation of peak positions, 
heights, and widths for the entire signal, finding 50 
peaks above the amplitude threshold (see figure on 
right). 

Individual 
peaks can be measured more accurately, if necessary, by 
fitting the whole peak with iPeak's “N” key or with the 
peak-fitting funcitons peakfit.m or ipf.m. The peaks are 
all slightly asymmetrical. Fitting an exponentially-
broadened Gaussian model (page 66) to a fitting error 
less than about 0.5%, as shown on the left. The smooth 
shape of the residual plot suggests that the signal was 
smooth before the spikes were introduced.
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Appendix D. The Battle Rounds: a comparison of methods.
This example compares the application of several techniques described in this book to the 
quantitative measurement of a weak peak buried in an noisy and unstable background, a common 
problem in the quantitative analysis applications of various forms of spectroscopy (ref 49) and 
remote sensing. The objective is to derive a measure of peak amplitude that varies linearly with the 
actual peak amplitude but that is not effected by the changes in the background and the random 
noise. In this example, the peak to be measured is located at a fixed location in the center of the 
recorded signal, at x=100, and has a fixed shape (Gaussian) and width (30). The background, on the 
other hand, is highly variable, both in amplitude and in shape. The simulation shows six 
superimposed recordings of the signal with six increasing peak amplitudes and with randomly 
varying background amplitudes and shapes (top row left in the figures below). The signal processing 
techniques that are used here include smoothing (page 10), differentiation (page 16), classical least 
squares multicomponent method (CLS, page 48), and iterative non-linear curve fitting (page 53). 

This example is illustrated by CaseStudyC.m, a self-contained Matlab/Octave function (download 
from http://tinyurl.com/cey8rwh and place in the Matlab path). To run it, just type “CaseStudyC” at 
the command prompt. Each time you run it, you get the same series of true peak amplitudes (set by 
the vector “SignalAmplitudes”) but a different set of noise, background shapes and amplitudes. The 
background is modeled as a Gaussian peak of randomly varying amplitude, position, and width; you 
can control the average amplitude of the background by changing “BackgroundAmplitude” and the 
average change in the background by changing “BackgroundChange”. 
The five methods compared here are:

1: Top row center. A simple zero-to-peak measurement of the smoothed signal, which will be 
accurate only if the background is zero.

2: Top row right. The difference between the peak signal and the average background on both 
sides of the peak (both smoothed), which assumes that the background is flat.

3: Bottom row left. A smoothed derivative-based method, based on the assumption that the 
background is very broad compared to the measured peak.

4: Bottom row center. Classical least squares (CLS, page 48) applied to the raw signal, which 
assumes that the background is a peak of known shape, width, and position (but not height).

5: Bottom row right. iterative non-linear curve fitting (INLS, page 53) applied to the raw signal, 
which assumes that the background is a peak of known shape but unknown width and position. 
This method can track changes in the background peak position and width (within limits), as 
long as the measured peak and the background shapes are known.

These five methods are compared by plotting the actual peak heights (defined by the vector 
“SignalAmplitudes”) vs the measure derived from that method, fitting the data to a straight line, and 
computing the coefficient of determination, R2 which ideally is 1.0000.
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For the first test (shown in the figure above on the previous page), both “BackgroundAmplitude” and 
“BackgroundChange” are set to zero, so that only the random noise is present. In that case all the 
methods work well, with R2.values all very close to 1.0000. Too easy, right?

For the second test (shown in the figure immediately above), the background is allowed to have 
significant amplitude variation but a fixed shape, position, and width, so we set 
“BackgroundAmplitude”=1 and “BackgroundChange”=0. In that case, the first two methods fail 
completely, but the derivative and INLS methods still work well.

For the third test, shown in the figure above, “BackgroundAmplitude”=1 and 
“BackgroundChange”=100, so the background varies in position, width, and amplitude (but remains 
broad compared to the signal). In that case, the CLS methods fails as well, because that method 
assumes that the background varies only in amplitude.
 However, if we go one step further and set “BackgroundChange”=1000, the background shape is 
now so unstable that even the INLS method fails, but still the derivative method remains effective as 
long as the background is broader than the measured peak, whatever its shape. On the other hand, if 
the width and position of the measured peak changes from sample to sample, the derivative method 
will fail and the INLS method is more effective, because width and position are not fixed but are 
measured variables in the INLS method, so the method will adjust to those changes, as long as the 
changes are not too great and the basic shape of both measured peak and the background are 
accurately modeled. Bottom line: the best method depends on the situation. (See page 125 for an 
example where the shape of the measured peak changes from measurement to measurement).
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Appendix E: Ensemble averaging patterns in a continuous signal.
Ensemble averaging (page 7) is a powerful method of reducing the effect of random noise in 
experimental signals, when it can be applied. The idea is that the signal is repeated, preferably a 
large number of times, and all the repeats are averaged. The signal builds up, and the noise gradually 
averages towards zero, as the number of repeats increases. 
  An important requirement is that the repeats be aligned or synchronized, so that in the absence of 
random noise, the repeated signals would line up exactly. There are two ways of managing this: (a) 
the signal repeats are triggered by some external event and the data acquisition uses that trigger to 
synchronize the acquisition of signals, or (b) the signal itself has some internal feature that can be 
used to detect each repeat, whenever it occurs.
  The first method has the advantage that the signal-to-noise ratio can be arbitrarily low and the 
average signal will still gradually emerge from the noise if the number of repeats is large enough. 
However, not every experiment has a reliable external trigger.

  The second method can be used to average repeated patterns in one signal without an external 
trigger, but then the signal must then contain some feature (for example, a peak) with a signal-to-
noise ratio large enough to detect reliably in each repeat. This method can be used even when the 
signal patterns occur at random intervals. The interactive peak detector iPeak (page 78) has a built-in 
ensemble averaging function (Shift-E) can compute the average of all the repeating waveforms. It 
works by detecting a single peak in each repeat in order to synchronize the repeats. 
  The Matlab script iPeakEnsembleAverageDemo.m demonstrates this idea, with a signal that 
contains a repeated underlying pattern of two overlapping Gaussian peaks, 12 points apart, both of 
width 12, with a 2:1 height ratio. These patterns occur a random intervals, and the noise level is 
about 10% of the average peak height. Using iPeak (above left), you adjust the peak detection 
controls to detect only one peak in each repeat pattern, zoom in to isolate any one of those repeat 
patterns, and press Shift-E. In this case there are about 60 repeats, so the expected signal-to-noise 
ratio improvement is sqrt(60) = 7.7. You can save the averaged pattern (above right) into the Matlab 
workspace as “EA” by typing “load EnsembleAverage; EA=EnsembleAverage;”, then 
curve-fit this averaged pattern to a 2-Gaussian model 
using the peakfit.m function (page 90):
 
peakfit([1:length(EA);EA],40,60,2,1,0,10)
  Position  height   width   area
  32.54     13.255   12.003  169.36
  44.722    6.7916   12.677  91.648

This is a significant improvement in the measurement of 
the peak separation, height ratio and width, compared to 
fitting a single pattern in the original x,y signal: 
peakfit([x;y],16352,60,2,1,0,10) 
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Appendix F: Harmonic Analysis of the Doppler Effect
The wav file “horngoby.wav” (Ctrl-click to open) is a 2-second recording of the sound of a passing 
automobile horn, exhibiting the familiar Doppler effect. The sampling rate is 22000 Hz. You can 
load this into the Matlab workspace as the variable “doppler” using Matlab's 'wavread' function and 
display it using iSignal (page 85):
t=0:1/21920:2;
doppler=wavread('horngoby.wav');
isignal(t,doppler);

Press Shift-S to switch to frequency spectrum mode (page 28) and zoom in on different portions of 
the waveform to observe the downward frequency shift and measure it quantitatively. Actually, it's 
much easier to hear the frequency shift (Shift-P) than to see it graphically; the shift is rather small 
on a percentage basis, but human hearing is   very sensitive to small pitch (frequency) changes. It 
helps to re-plot the data to stretch out the frequency region around the fundamental frequency or one 
of the harmonics. I used iSignal to zoom in on three time slices of this waveform and to plot the 
frequency spectrum near the beginning (plotted in blue), middle (green), and end (red) of the sound.  
A portion of those data are plotted in the figure below:

The group of peaks near 200 are the fundamental frequency of the lowest note of the horn and the 
group of peaks near 400 are its second harmonic. (Pitched sounds usually have a harmonic structure 
of 1, 2, 3... times a fundamental frequency). The group of peaks near 250 are the fundamental 
frequency of the next higher note of the horn, and the group of peaks near 500 are its second 
harmonic. (Car and train horns often have two or more harmonious notes sounded together). In each 
of these groups of harmonics, you can clearly see that the blue peak (the frequency spectrum 
measured at the beginning of the sound) has a higher frequency than the red peak (the spectrum 
measured at the end of the sound). The green peak is taken in the middle of the sound. The peaks are 
ragged because the amplitude and frequency varies somewhat over each slice of waveform, but 
despite that you can still get good quantitative measures of the frequency of each component by 
curve fitting (page 39, 54) using peakfit.m or ipf.m (page 74): 
       Peak       Position   Height       Width    Area
   Beginning   206.69    3.0191e+005    0.81866   2.4636e+005
   Middle      202.65    1.5481e+005    2.911     4.797e+005
   End         197.42        81906      1.3785    1.1994e+005

The precision of the peak position (i.e. frequency) is about 0.2% relative, by the “bootstrap method”, 
page 41), good enough to allow accurate calculation of the frequency shift and the speed of the 
vehicle. Also the ratio of the second harmonic to the fundamental for these data is 2.0023, which is 
very close to the expected theoretical value of 2. 
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Appendix G: Measuring spikes
Spikes, narrow pulses with a width of only one or two points, are sometimes encountered in signals 
as a result of an electronic “glitch” or stray pickup from nearby equipment. On page 15, we saw that 
narrow spikes can easily be eliminated by the use of a “median” filter. But it is possible that in some 
experiments the spikes themselves are important and that it is required to count or measure them in 
the presence of interfering signals. That opens up some interesting twists on the usual procedures. 
For example, the Matlab/Octave simulation SpikeDemo1.m creates a waveform (top panel of figure 
below) in which a series of spikes are randomly distributed in time, contaminated by two types of 

noise: white noise (page 7) and a large-amplitude oscillatory interference simulated by a swept-
frequency sine wave. Direct application of findpeaks or iPeak does not work well in this case 
because the baseline of the spikes is relatively large and highly variable.

A single-point spike, called a delta function in mathematics, has a power spectrum that is flat; that is, 
it has equal power at all frequencies, just like white noise, so there is not much hope of reducing the 
white noise by smoothing or low-pass filtering without broadening and shortening the spikes. But the 
oscillatory interference in this case is located in a specific range of frequencies, which leads to some 
interesting possibilities. One approach would be to use a Fourier filter (page 34), for example, a 
notch or band-reject filter to remove the troublesome oscillations selectively. But if the objective of 
the measurement is only to count the spikes and measure their times, a simpler approach would be to 

(1) compute the second derivative (which greatly amplifies the spikes relative to the 
oscillations),

(2) smooth the result slightly (to limit the white noise amplification caused by differentiation), 
(3) invert the result and count the positive peaks. 

The first two steps can be done in a single line of Matlab/Octave code:

>> y1=-fastsmooth((deriv2(y)),3,2);plot(x,y1)

The result, shown the lower panel of the figure on the left above, is an almost complete extraction of 
the spikes, which can then be counted with findpeaksG.m or peakstats.m or iPeak.m, e.g. 

P=ipeak([x;y1],0,0.1,2e-005,1,3,3,0.2,0);

The second simulation, SpikeDemo2.m, is similar except that in this case a very strong oscillatory 
interference is caused by two fixed-frequency sine waves at a higher frequency, which completely 
obscure the much weaker spikes in the raw signal (top panel of the left figure below). In the power 
spectrum (bottom panel, in red), the oscillatory interference shows as two sharp peaks that dominate 
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the power spectrum and have a huge maximum intensity of 106, whereas the spikes show as the 
much lower broad flat plateau at about 10. In this case, use can be made of an interesting property of 
sliding-average smooths, such as the boxcar, triangular, and Gaussian smooths (page 11, 16); their 
frequency responses exhibit a series of deep dips or cusps at frequencies that are inversely 
proportional to their filter widths. So this suggests the possibility of suppressing specific frequencies 
of oscillatory interference by adjusting the filter widths appropriately. Since the signal in this cases 
are spikes that have a flat power spectrum, they are simply smoothed by this operation, which will 
reduce their heights and increase their widths, but will have little or no effect on their number, x-axis 
positions, or areas. In this particular case a 9 or 10-point pseudo-Gaussian is about optimum. 

In the figure on the right, you can see the effect of applying this filter; the spikes, which were not 
even visible in the original signal, are now cleanly extracted (upper panel), and you can see in the 
power spectrum (right lower panel, in red) that the oscillatory interference is reduced by about a 
factor of about 106. This simple operation can be performed by a single command-line function, 
adjusting the smooth width (second input argument) by trial and error to minimize the oscillatory 
interference: 

  y1=fastsmooth(y,9,3);

The extracted peaks can then be counted with any of the peak finding functions, such as:

  P=findpeaksG(x,y1,2e-005,0.01,2,5,3);
  or
  P=findpeaksplot(x,y1,2e-005,0.01,2,5,3);
  or
  PS=peakstats(x,y1,2e-005,0.01,2,5,3,1);

The simple script “iSignalDeltaTest” demonstrates the power spectrum of the smoothing and 
differentiation functions of iSignal by applying them to a delta function. Use the keypress controls of 
this program to change the smooth type (S key), smooth width A and Z keys), and derivative order 
(D key) and other functions in order to see how the power spectrum changes. Press K to display a list 
of keypress controls.
  Spikes can also be measured using the findpeaksx.m function (page 74) with the PeakGroup input 
argument set to 1 or 2. The script FindpeaksSpeedTest.m compares the speed of  findpeaksx.m, 
findpeaksG, and the findpeaks function in Matlab's Signal Processing Toolkit. 

Function         peaks   time     peak/sec
findpeaks (SPT)   160   0.16248     992
findpeaksx        158   0.00608   25958
findpeaksG        157   0.091343   1719 
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Appendix H: Fourier deconvolution vs curve fitting (they are not the same)
Some experiments produce peaks that are distorted by 
convolution by processes (in this example, exponential 
broadening, page 66) that make peaks less distinct and 
modify their position, height and width. Fourier decon­
volution (page 32) and iterative curve fitting (page 54) 
are two methods that can help to measure the true under­
lying peak parameters, assuming that the exponential 
broadening time constant is known or can be estimated or 
measured. In the simulation below, the underlying signal 
(uyy) is a set of four Gaussians, but the observed signal 
(yy) is broadened exponentially by the function cc, 
resulting in shifted, shorter, and wider peaks, and then a 
little constant white noise is added after the broadening. 

xx=5:.1:65;
% Underlying Gaussian peaks with unknown heights, positions, and widths.
uyy=modelpeaks2(xx,[1 1 1 1],[1.2 1.1 1 .9],[10 20 30 40 50],[3 4 5 6],...
[0 0 0 0]);
% Observed signal yy, with noise added AFTER the broadening convolution 
Noise=.001; % Try larger amounts of noise to see how this method handles it.
yy=modelpeaks2(xx,[5 5 5 5],[1.2 1.1 1 .9],[10 20 30 40 50],[3 4 5 6],...
[-40 -40 -40 -40])+Noise.*randn(size(xx));
% Compute transfer function, cc, 
cc=exp(-(1:length(yy))./40);
% Attempt to recover original signal uyy by deconvoluting cc from yy
% It's necessary to zero-pad the observed signal yy as shown here.
yydc=deconv([yy zeros(1,length(yy)-1)],cc).*sum(cc); 
subplot(2,2,1);plot(xx,uyy);title('Underlying four Gaussian signal, uyy');
subplot(2,2,2);plot(xx,cc);title('Exponential transfer function, cc')
subplot(2,2,3);plot(xx,yy);title('observed broadened and noisy signal, yy');
subplot(2,2,4);plot(xx,yydc);title('Recovered underlying signal, yydc') 

  The deconvolution of cc from yy successfully removes the broadening (yydc), but at the expense of 
a substantial noise increase. However, the extra noise in the deconvoluted signal is high-frequency 
weighted ("blue", see page 8, 64) and so is easily reduced by smoothing and has less effect on least-
squares fits than does white noise. To plot the recovered signal overlaid with the underlying signal: 
plot(xx,uyy,xx,yydc). To plot the observed signal overlaid with the underlying signal: 
plot(xx,uyy,xx,yy). Excellent values for the original underlying peak positions, heights, and 
widths can be obtained by curve-fitting the recovered signal to four Gaussians:[FitResults, 
FitError]= peakfit([xx;yydc],26,42,4,1,0,10); click for a graphic. But for a greater 
challenge, try more noise in line 5 or a bad estimate of time constant in line 8. With ten times the 
previous noise level (Noise=.01), the values of peak parameters determined by curve fitting are still 
quite good, and even with 100x more noise (Noise=.1) the peak parameters are more accurate than 
you might expect for that amount of noise (That's because the noise is blue). 
  An alternative to the above deconvolution approach, if the shape of the underlying peak is known, 
is to curve-fit (page 54) the observed signal directly with an exponentially broadened Gaussian with 
fixed time constant (shape number 5): [FitResults, FitError]= peakfit([xx;yy], 26, 
50, 4, 5, 40, 10). Both methods give good values of the peak parameters, but the deconvo­
lution method is faster, especially if the number of peaks is large (page 101) and it does not require 
that the underlying peak shape be known. But an advantage of the curve fitting method is that, if the 
exponential factor “cc” is not known, it can be measured by fitting one peak of the observed signal 
using peakfit.m version 7 with shape number 31, which measures the time constant as an iterated 
variable. If the time constant is expected to be the same for all peaks, you can use shape 31 to 
measure the time constant of one peak (preferably an isolated one with a good signal-to-noise ratio), 
then apply that fixed time constant with shape 5 to all the other groups of overlapping peaks. 
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Appendix I: Digitization noise - can adding noise really help?
Digitization noise, also called quantization noise, is an artifact caused by the rounding or truncation 
of numbers to a fixed number of figures. It can originate in the analog-to-digital converter that 
converts an analog signal to a digital one, or in the circuitry or software involved in transmitting the 
digital signal to a computer, or even in the process of transferring the data from one program to 
another, for example in copying and pasting data to and from a spreadsheet. The result is a series of 
non-random steps of equal height, as shown in the figure below. The frequency distribution is white, 
because of the sharpness of the steps, as you can see by observing the power spectrum.

The figure on the left, top panel, shows the effect of integer digitization on a sine wave with an 
amplitude of +/- 10. Ensemble averaging (page 7), which is usually a highly effective noise 
reduction technique, does not reduce this type of noise (bottom panel) because it is non-random. 
   Interestingly, if additional random noise is present in the signal, then ensemble averaging becomes 
effective in reducing both the random noise and the digitization noise. In essence, the added noise 
randomizes the digitization, allowing it to be reduced by ensemble averaging. Moreover, if there is 
insufficient random noise already in the signal, it can actually be beneficial to add additional noise 
artificially! The Matlab/Octave script RoundingError.m illustrates this effect, as shown the figure 
above on the right. The top panel shows the sine wave with both digitization noise and added 
random noise (generated by the randn.m function), and the bottom panel shows an ensemble average 
of 100 repeats. The optimum standard deviation of random noise is about 0.36 times the quantization 
size, as you can demonstrate by adding lesser or greater amounts via the variable Noise in line 6 of 
this script. This technique is called "dithering"; it is also used in audio and in image processing. A 
similar effect is observed when large numbers of individually imprecise temperature measurements 
are averaged to increase accuracy in global temperature measurements (reference 60) and as a means 
to increase the resolution of analog-to-digital converters (http://www.atmel.com/images/doc8003.pdf).

Appendix J: How Low can you Go? Signals with very low signal-to-noise ratios.
  This section simulates the application of several techniques described in this book to the 
quantitative measurement of a peak that is buried in excess of random noise, where the signal-to-
noise ratio is below 2, plus a flat non-zero baseline. The Matlab/Octave script LowSNRdemo.m 
performs the simulations and calculations and compares the results graphically, focusing on the 
behavior of each method as the signal-to-noise ratio approaches zero. Four methods are compared:

(1) simple peak-to-peak measurement of the smoothed signal and background (page 11);
(2) a peak finding method based on the findpeakG function (page 74);
(3) unconstrained iterative least-squares fitting (INLS) based on the peakfit.m function (page 54);
(4) constrained classical least squares fitting (CLS) based on the cls2.m function (page 49).

The measurements are carried out over a range of peak heights for which the signal-to-noise ratio 
varies from 0 to 2 (similar to the picture at the bottom of page 13). The noise is random, constant, 
and white. Each time you run the script, you get another sample of the random noise. 
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  Results for the initial values in the 
script are show in the plots on the left 
and in the table printed below, both of 
which are created by the script 
LowSNRdemo.m. The graphs on the 
left show correlation plots of the 
measured peak height vs the real peak 
height, which should ideally be a 
straight line with a slope of 1, an 
intercept of zero, and an R of 1. As you 
can see, the simplest smoothed-peak 
method (upper left) is completely 
inadequate, with a low slope (because 
smoothing reduces peak height) and a 
high intercept (because even smoothed 
noise has a non-zero peak-to-peak 
value). The findpeaks function (upper 
right) works OK for higher peak heights 
but fails completely below a signal-to-
noise ratio of 0.5 because the peak 

height falls below the amplitude threshold setting and because the baseline (set in line 7) is not 
corrected. In comparison, the two least-squares techniques work much better, reporting much better 
values of slope, intercept, and R2. But if you look closely at the low end of the peak height range, 
near zero, you can see that the values reported by the unconstrained fit (lower left) occasionally stray 
far from the line, whereas the constrained fit (lower right) decrease gracefully all the way to zero 
every time you run the script. The reason why it's even possible to make measurements at such low 
signal-to-noise ratios is that the data density is very high: that is, there are many data points in each 
signal: about 1000 points across the half-width of the peak in the initial script. Change the increment 
(line 4) to change the data density; more data is always better. 
 The results are summarized in the table below. The height errors are reported as a percentage of the 
maximum height (initially 2). You can see that the CLS method has a slight edge in accuracy, but 
you have to consider also that this method works well only if the peak shape, position, and width are 
known. The unconstrained iterative method can track changes in peak position and width. (For the 
first three methods, the peak position is also measured and its relative accuracy is reported. The 
constrained classical least squares fitting does not measure peak position but rather assumes that it 
remains fixed at the initial value of 100). 

Number of points in half-width of peak: 1000
Method       Height Error   Position Error
Smoothed peak    21.2359%        120.688%
findpeaksG.m     32.3709%        33.363%
peakfit.m        2.7542%         4.6466%
cls2.m           1.6565%   

 You can change several of the factors in this simulation to test the robustness of these methods. 
Search for the word 'change' in the comments for values that can be changed. You can reduce 
MaxPeakHeight (line 8) to make the problem harder, or change peak position and/or width (lines 9 
and 10) to show how the CLS method fails. As usual, the more you know, the better your results. 
(For an even more challenging example like this, see Appendix Q on page 132).
LowSNRdemo.m also computes the power spectrum of the signal and the amplitude (square root of 
the power) of the fundamental, where most of the power of a broad Gaussian peak falls, and plots it 
in Figure(2). The correlation to peak height is similar to the CLS method.
 The 21st century is the era of "big data", where high-speed automated data acquisition can acquire, 
store, and process greater quantities of data than ever before. As this little example shows, greater 
quantities of data allow researchers to probe deeper and to measure smaller effects than ever before.

123

https://terpconnect.umd.edu/~toh/spectrum/LowSNRdemo.m
file:///C:/Users/Tom/Dropbox/SPECTRUM/CurveFittingB.html
https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm#findpeaks
https://terpconnect.umd.edu/~toh/spectrum/LowSNRdemo.m


Appendix K: Signal processing and the search for extraterrestrial intelligence
The signal detection problems facing those who search the sky for evidence of extraterrestrial 

civilizations or interesting natural phenomena 
are enormous. Among those problems are the 
fact that we don't know much about what to 
expect. In particular, we don't know exactly 
where to look, or what frequencies might be 
used, or the possible forms of the transmissions. 
Moreover, the many powerful sources of natural 
and terrestrial sources of interfering signals must 
not be confused for extraterrestrial ones. There 
is also the massive computer power required, 
which has driven the development of specialized 
hardware and software as well as distributed 
computation over thousands of Internet-
connected personal computers across the world 
using the SETI@home computational screen-

saver shown above. Although many of the computational techniques used in this search are far more 
sophisticated than those in this book, they begin with the basic concepts covered here.
 One of the reoccurring themes of this essay has been that the 
more you know about your data, the more likely you are to obtain 
a reliable measurement. In the case of possible extraterrestrial 
signals, we don't know much, but we do know a few things. We 
know that electromagnetic radiation over a wide range of 
frequencies is used for long-distance transmission on earth and 
between earth and satellites and probes far from earth. 
Astronomers already use radio telescopes to receive natural 
radiations from vast distances. In order to look at different 
frequencies at once, Fourier transforms (page 28) of the raw 
telescope signals are computed over multiple time segments. The 
figure on the right is a simulation that shows how hard it is to see a periodic component in the 
presence of random noise (upper panel), and yet how easy it is to pick it out in the frequency 
spectrum (lower panel). Also, transmissions from extraterrestrial civilizations might be in the form 
of groups of spaced pulses, so their detection and verification is also part of SETI signal processing. 
 One thing that we know for sure that the earth rotates around its axis once a day and that it revolves 
around the sun once a year. So if we look at a fixed direction out from the earth, the distant stars will 
seem to move in a predictable pattern, whereas terrestrial sources will remain fixed on earth. Many 
terrestrial radio telescopes, such as the huge Arecibo Observatory in Puerto Rico, are fixed in 
position and are often used to look in one selected direction for extended periods of time. The field 
of view of this telescope is such that a point source at a distance takes 12 seconds to pass. As SETI 
says: “Radio signals from a distant transmitter should get stronger and then weaker as the telescope's 
focal point moves across that area of the sky. Specifically, the power should increase and then 
decrease with a bell shaped curve (a Gaussian curve). Gaussian curve-fitting...” (page 55) “...is an 
excellent test to determine if a radio wave was generated 'out there' rather than a simple source of 
interference somewhere here on Earth, since signals originating from Earth will typically show 
constant power patterns rather than curves”. Any observed 12 second peaks are re-examined with 
another focal point shifted towards the west to see if it repeats at the expected time and duration. 
 We also know that there will be a Doppler shift in the frequencies observed if the source is moving 
relative to the receiver; this is observed with sound waves (page 118) as well as with electromagnetic 
waves like radio or light. Because the earth is rotating and revolving at a known and constant speed, 
we can accurately predict and compensate for the Doppler shift caused by earth's motion, which is 
called “de-chirping” the data. (For more on the details of SETI signal processing, see SETI@home).
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Appendix L: Why measure peak area rather than peak height? 
This appendix examines more closely the question of measuring peak area rather than peak height to 

reduce the effect of peak broadening, which 
commonly occurs in chromatography, for 
reasons that are discussed on page 35, and also 
in some forms of spectroscopy. Under what 
conditions might the measurement of peak area 
be better than peak height? The Matlab/ Octave 
script “HeightVsArea.m” simulates the 
measurement of a series of standard samples 
whose concentrations are given by the vector 
'standards'. Each standard produces an isolated 
peak whose peak height is directly proportional 
to the corresponding value in 'standards' and 
whose underlying shape is a Gaussian with a 
constant peak position ('pos') and width ('wid'). 
To simulate the measurement of these samples 

under typical conditions, the script changes the shape of the peaks (by exponential broadening) and 
adds a variable baseline and random noise. You can control, by means of the variable definitions in 
the first few lines of the script, the peak beginning and end, the sampling rate 'deltaX' (increment 
between x values), the peak position and width ('pos' and 'wid'), the sequence of peak heights 
('standards'), the baseline amplitude ('baseline') and its degree of variability ('vba'), the extent of 
shape change ('vbr'), and the amount of random noise added to the final signal ('noise'). The resulting 
peaks are shown in Figure 1, above. The script prepares a “calibration curves” plotting the values of 
'standard' against the measured peak heights or areas for each measurement method. The measure-
ment methods (page 35) include peak height in Figure 2, peak area in Figure 3, and curve fitting 
height and area in Figures 4 and 5, respectively (pages 54, 74). These plots should ideally have an 
intercept of zero and an R2 of 1.000, but the slope will be greater for the peak area measurements 
because area has different units and is numerically greater than peak height. All the measurement 
methods are baseline corrected; that is, they include code to compensate for changes in the baseline.
 With the initial values of 'baseline', 'noise', 'vba', and 'vbr', you can clearly see the advantage of peak 
area measurements (figure 3) compared to peak height (figure 2). This is primarily due to the effect 
of the variability of peak shape broadening ('vbr') and to the reduced effect of noise on the area.
                                          Figure 2                                                                                         Figure 3

If you set 'baseline', 'noise', 'vba', and 'vbr' all to zero, all methods work perfectly.
 Curve fitting (page 54) can measure both peak height and area; it is not even necessary to use an 
accurate peak shape model. For example, using a simple Gaussian model in this case works much 
better for peak area (figure 5) than for peak height (Figure 4) but is not significantly better than a 
simple peak area measurement (Figure 3). Better results are obtained if an exponentially-broadened 
Gaussian model (shape 31) is used, as shown in line 27. If the measured peak overlaps another peak 
significantly, curve fitting both of those peaks together can give more accurate results (page 36). 
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Appendix M: Peak fitting in Excel and OpenOffice Calc.
Both Excel and OpenOffice Calc have a "Solver" capability that will change the numbers contained 
in specified cells in an attempt to produce a specified goal; this can be used in peak fitting to 
minimize the fitting error between a set of data and a proposed calculated model, such as a set of 
overlapping Gaussian bands. The latest version includes three different solving methods. The Excel 
spreadsheet example shown below demonstrates how this is used to fit the sum of four Gaussian 
components to a sample set of x,y data that has already been entered into columns A and B, rows 22 
to 101 (you could type or paste in your own data there).  

After entering the data, do a visual estimate of how many Gaussian peaks it might take to represent 
the data, and their locations and widths, and type those values into the 'Proposed model' table. The 
spreadsheet calculates the best-fit values for the peak heights (by multilinear regression) in the 
'Calculated amplitudes' table and plots the data and the fit. (Adjust the x-axis scale of the graphs to 
fit your data). The next step is to use Solver function to "fine-tune" the position and width of each 
component to minimize the % fitting error (in red) and to make the residual plot as random as 
possible: click Data in the top menu bar, click Solver (upper right) to open the Solver box, into 
which you type "C12" into "Set Objective", click "min", select the cells in the "Proposed Model" that 
you want to optimize, add any desired constraints in the "Subject to the Constraints" box, and click 
the Solve button. The position, width, and amplitude of all the components are automatically 
optimized by Solver and best fit is displayed. (You can see that the Solver has changed the selected 
entries in the proposed model table, reduced the fitting error (cell C12, in red), and made the 
residuals smaller and more random). If the fit fails, change the starting values, click Solver, and 
click the Solve button. 

So, how many Gaussian components does it take to fit the data? One way to tell is to look at the plot 
of the residuals (which shows the point-by-point difference between the data and the fitted model), 
and add components until the residuals are random, not wavy, but this works only if the data are not 
smoothed before fitting. Here's an example - a set of real data that are fit with an increasing sequence 
of two Gaussians, three Gaussians, four Gaussians, and five Gaussians. As you look at this sequence 
of screenshots, you'll see the percent fitting error decrease, the R2 value become closer to 1.000, and 
the residuals become smaller and more random. (Note that in the 5-component fit, the first and last 
components are not peaks within the 250-600 x range of the data, but rather account for the 
background). There is no need to try a 6-component fit because the residuals are already random at 5 
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components and more components than that would just "fit the noise" and would likely be unstable 
and give a very different result with another sample of that signal with different noise. 

There are a number of downloadable non-linear iterative curve fitting adds-ons and macros for Excel 
and OpenOffice, as well as some stand-alone freeware and commercial programs that perform this 
optimization. For example, Dr. Roger Nix of Queen Mary University of London has developed a 
very nice Excel/VBA spreadsheet for curve fitting X-ray photoelectron spectroscopy (XPS) data; it 
could be used to fit other types of spectroscopic data also. A 4-page instruction sheet is also 
provided. 

If you use a spreadsheet for this type of curve fitting, you have to build a custom spreadsheet for 
each problem, with the right number of rows for the data and with the desired number of 
components. For example, CurveFitter.xlsx is only for a 100-point signal and a 5-component 
Gaussian model. It's easy to extend to a larger number of data points by insert rows between 22 and 
100, columns A through N, and drag-copying the formulas down into the new cells (e.g. 
CurveFitter2.xlsx is extended to 256 points). To handle other numbers of components or model 
shapes you would have to insert or delete columns between C and G and between Q and U and edit 
the formulas, as has been done in this set of templates for 2 Gaussians, 3 Gaussians, 4 Gaussians, 5   
Gaussians, and 6 Gaussians. 

If your peaks are superimposed on a baseline, you can include a model for the baseline as one of the 
components; for instance, if you wish to fit 2 Gaussian peaks on a linear tilted slope baseline, select 
a 3-component spreadsheet template and change one of the Gaussian components to the equation for 
a straight line (y=mx+b, where m is the slope and b is the intercept). A template for that particular 
case is CurveFitter2GaussianBaseline.xlsx (graphic);. When you are using this template, don't click 
"Make Unconstrained Variables Non-Negative", because the baseline model may well need negative 
variables, as it does in this example. (If you want to use another peak shape or another baseline 
shape, you'd have to modify the equation in row 22 of the corresponding columns C through G and 
drag-copy the modified cell down to the last row, as was done to change  the Gaussian peak shape 
into a Lorentzian shape in CurveFitter6Lorentzian.xlsx. Or you could make columns C through G 
contain equations for different peak or baseline shapes).

The point is that you can do - in fact, you must do - a lot of custom editing to get a spreadsheet 
template that fits your data. In contrast, my Matlab/Octave peakfit.m function automatically adapts 
to any number of data points and is easily set to over 40 different model peak shapes and any number 
of peaks simply by changing the input arguments. Using the interactive peak fitter ipf.m in Matlab, 
you can press a single keystroke to instantly change the peak shape, number of peaks, baseline mode, 
or to re-calculate the fit with different start or with a bootstrap subset of the data. That's far quicker 
and easier than the spreadsheet. 

But on the other hand, a real advantage of spreadsheets in this application is that it is relatively easy 
to add your own custom shape functions and constraints, even complicated ones, using standard 
spreadsheet formula construction (there's a scrolling box named “Subject to the constraints:” where 
you can type in math expressions for any number of constraints). And if you are hiring help, it's 
probably easier to find an experienced spreadsheet programmer than a good Matlab programmer. 

Templates can be downloaded from http://tinyurl.com/cey8rwh.
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Appendix N: Using macros to extend the capability of spreadsheets
  Both Excel and Calc have the ability to automate repetitive tasks using “macros”, a saved sequence 
of commands or keystrokes that are stored for later use. Macros can be most easily created using the 
built-in “Macro Recorder”, which will literally watch all your clicks, drags, and keystrokes and 
record them. Or you can write or edit your macros in the macro language of that spreadsheet (VBA 
in Excel; Python or JavaScript in Calc). To enable macros in Excel, click on File >> Options, click 
Customize Ribbon Tab and check 'Developer' and click 'OK'. To access the macro recorder, click 
Developer, Record Macro, give the macro a name, click Options, assign a Ctrl-key shortcut, and 
click OK. Then perform your spreadsheet operations, and when finished, click Stop Recording.

 Here I will demonstrate two applications in Excel using macros and the Solver function. 
The previous appendix (p. 126) described the use of the Solver function applied to the iterative 
fitting of overlapping peaks in a spreadsheet. The steps listed in the second paragraph on that page 
can easily be captured with the macro recorder and saved with the spreadsheet. A different macro 
will needed for each different number of peaks, because the “Proposed Model” will be different. The 
template CurveFitter2Gaussian.xlsm includes a macro for a 2-peak fit, activated by pressing Ctrl-f.
  Another application of the Solver function is in the Tfit method for hyperlinear absorption spectro-
scopy (page 103). The method is performed in a spreadsheet using shift-and-multiply convolution of 
the reference spectrum with the slit function and the "Solver" function for the iterative fitting of the 
model to the observed transmission spectrum. Macros automate the process. 
TransmissionFittingTemplate.xls (screen image) is an empty template for a single isolated peak;  the 
same template with example data is TransmissionFittingTemplateExample.xls (screen image). 
TransmissionFittingDemoGaussian.xls (screen image) is a demonstration with a simulated Gaussian 
absorption peak with variable peak position, width, and height, plus added stray light, photon noise, 
and detector noise, as viewed by a spectrometer with a triangular slit function. You can vary all the 
parameters and compare the best-fit absorbance to the true peak height and to the conventional 
log(1/T) absorbance. Both of these spreadsheets include a macro (click to see text), activated by 
Ctrl-f. Each time you press Ctrl-f, it repeats the fit with another set of random noise samples.
  A more elaborate example of a macro is   TransmissionFittingCalibrationCurve.xls (screen image) 

concentration and repeats for each concentration value. Then it constructs and plots the log-log 
calibration curve (shown on the right) for both the TFit method (blue dots) and the conventional (red 
dots) and computes the trend-line equation and the R2 value for the TFit method, in the upper right 
corner of graph. Each time you press Ctrl-f, it repeats the whole calibration curve with another set of 
random noise samples. (Note: you can also use this spreadsheet to compare the precision and 
reproducibility of the two methods by entering the same concentration 9 times in AF10 - AF18. The 
result should ideally be a straight flat line with zero slope).

128

https://terpconnect.umd.edu/~toh/spectrum/macro2.txt
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingDemoGaussian.xls
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingCalibrationCurve.png
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingCalibrationCurve.xls
https://terpconnect.umd.edu/~toh/spectrum/macro1.txt
https://terpconnect.umd.edu/~toh/spectrum/TFitSpreadsheetDemoGaussian.png
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingDemoGaussian.xls
https://terpconnect.umd.edu/~toh/spectrum/TFitSpreadsheetTemplateExample.png
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingTemplateExample.xls
https://terpconnect.umd.edu/~toh/spectrum/TFitSpreadsheetTemplate.png
https://terpconnect.umd.edu/~toh/spectrum/TransmissionFittingTemplate.xls
https://terpconnect.umd.edu/~toh/spectrum/CurveFitter2Gaussian.xlsm
http://www.openoffice.org/documentation/manuals/userguide3/0312CG3-CalcMacros.pdf
http://www.excel-easy.com/vba.html
https://terpconnect.umd.edu/~toh/spectrum/TFitCalibrationCurve.png


Appendix O: Random walks and baseline correction
The random walk is a running accumulation of small random steps which describes and serves as a 
model for many kinds of unstable behavior observed in 
experimental signals. Whereas white, 1/f, or blue noises 
are anchored to a mean value to which they tend to return, 
random walks tend to be more aimless and to drift off in 
one or another direction, possibly never to return. The 
graph on the right compares a 200-point sample of white 
noise (shown in blue) to a random walk (shown in red); 
both samples are scaled to have exactly the same 
standard deviation, but their behavior is vastly different. 
The random walk has much more low frequency behavior, 
wandering off beyond the range of the white noise. This 
type of random behavior is more disruptive to the 
measurement process, distorting the shapes of peaks and 
causing baselines to shift and tilt and making them hard to define. In this particular example, the 
random walk has an overall positive slope and has a "bump" near the middle that might be confused 
for a real signal peak (it's really just noise). But another sample might have very different behavior.    
To demonstrate the measurement difficulties, the script RandomWalkBaseline.m simulates a 
Gaussian peak of known position and width, superimposed on a random walk baseline, with a 
signal-to-noise ratio of 15. It is measured by peakfit.m using two methods of baseline correction: (a) 
a single-shape model (shape 1) with autozero set to 1 (a linear baseline is first interpolated from the 
edges of the data segment and subtracted from the signal): peakfit([x;y],0,0,1,1,0,10,1);  
(b) a 2-shape model composed of a Gaussian (shape 1) and a linear slope (shape 26), with autozero 
set to 0: peakfit([x;y],0,0,2,[1 26],[0 0],10,0). The results are similar for both 
methods on average, but method b works better if the peak is near the edges of the data range.

         

 The relative percent errors of the peak parameters in this case are:
Position Error  Height Error  Width Error

Method a:  0.27722           3.0306            0.01247
Method b:  0.49384           2.3085            1.5418

You can compare this to WhiteNoiseBaseline.m which has the same average signal and signal-to-
noise ratio, except that the noise is white. Interestingly, the fitting error with white noise is greater, 
but the parameter errors (peak position, height, width, and area) are lower and the residuals are more 
random and less likely to produce false noise peaks. This is because the random walk noise is very 
highly concentrated at low frequencies where the signal frequencies usually lie, whereas white noise 
has equal power at higher frequencies, which increases the fitting error but does comparatively little 
damage to signal measurement accuracy. Ensemble averaging and modulation (page 130) may help.
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Appendix P: Modulation and synchronous detection
In some experimental designs it may be beneficial to apply the technique of modulation, in which 
one of the controlled independent variables is oscillated in a periodic fashion, and then detecting the 
resulting oscillation in the measured signal. With the right instrumental design, some types of noise 
and drift may be greatly reduced or eliminated.  

A simple example is a optical chopper, a device that periodically interrupts a light beam. In the 
figure above, the rotating chopper interrupts the light beam falling on the test object. Depending on 
the type of measurement, the photo detector may measure the light transmitted by, reflected by, 
scattered by, or excited by the light beam. Because of the chopper, the detector sees an oscillating 
signal, and the electronic system is designed to measure only the oscillating component and to reject 
the constant unmodulated component. The advantage of this arrangement is that any interfering 
signals introduced after the chopper (such as constant background light that comes from the test 
object itself or any background generated by ambient light or by the photo detector itself) are not 
modulated and are thus rejected. This works best if the electronics is synchronized to the chopper 
frequency; that's actually the function of the lock-in amplifier, an electronic system which receives a 

synchronizing reference signal directly from the chopper 
to guarantee synchronization even if the chopper 
frequency were to vary. 
   AmplitudeModulation.m is a Matlab/Octave script 
simulation of modulation and synchronous detection, in 
which the signal created when the light beam scans the 
test sample is modeled as a Gaussian band ('y'), whose 
parameters are defined in the first few lines. As the 
spectrum of the sample is scanned, the light beam is 
amplitude modulated by the chopper, represented as a 
square wave defined by the bipolar vector 'reference', 
which switches between +1 and -1, shown in the top 
panel on the left. The modulation frequency is many 
times faster than the rate at which the sample is scanned. 
The light emerging from the sample therefore shows a 
finely chopped Gaussian ('my'), shown in the second 
panel. But the total signal seen by the detector also 
includes an unstable background introduced after the 
modulation ('omy'), such as light emitted by the sample 
itself or detector background. In this simulation the 
background is modeled as a “random walk” (Appendix 
O), which seriously distorts the signal, shown in the 3rd 
panel. The detector signal is then sent to a lock-in 
amplifier that is synchronized to the reference 
waveform; the action of the lock-in is to multiply signal 
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by the bipolar reference waveform, inverting the signal when the light of off and passing it 
unchanged when the light is on. This causes the unmodulated background signal to be converted into 
a bipolar square wave, whereas the modulated signal is not effected because it is "off" when the 
reference signal is negative. The result ('dy') is shown in the 4th panel. Now this can be low-passed 
filtered to remove the modulation frequency, resulting in the recovered signal peak 'sdy' shown in the 
bottom panel. In effect, the modulation transforms the signal to a higher frequency, where low-
frequency noises are less intense. 

  These various signals are compared in 
the figure on the right. The Gaussian 
signal peak is shown as the blue line, and 
the contaminating background is shown 
in black, in this case modeled as a random 
walk. The total signal that would have 
been seen by the detector without modu-
lation is shown in green; the signal 
distortion is evident, and any attempt to 
measure the signal peak in that signal 
would be greatly in error. The signal 
recovered by the modulation and lock-in 
system is shown in red and overlayed 
with the original signal peak in blue for 
comparison. The script also measures the 
peak parameters in the original unmodu-
lated total signal (green line) and in the 
modulated recovered signal using the 
peakfit.m function, and it computes the 
relative percent error in peak position, height, and width by both methods:

SignalToNoiseRatio = 4
               % Position Error   % Height Error   % Width Error
Original:        8.07                       23.1                       13.7
Modulated:    0.11                      0.22                        1.01

  Each time you run it you will get the same signal peak but a very different random walk 
background. The signal-to-noise ratio will vary from about 4 to 9. It's not uncommon to see a 100-
fold improvement in peak height accuracy with modulation, as in the example shown here. You can 
change the signal peak parameters and the noise level in the first few code lines of this simulation. 

   This huge improvement in measurement accuracy works only because the dominant random error 
is (1) introduced after the modulation, and (2) a mostly low-frequency noise. If the noise were white, 
there would be no improvement - in fact there could be a slight reduction in precision because of the 
fact that the chopper blocks half of the light on average. For a mixture of white and random walk 
noise, make line 47 "baseline=10.*noise+cumsum(noise);" - it even works well in that case.

   In a computer-interfaced experimental system, you may not actually need a physical lock-in 
amplifier. It's possible to simulate the effect in software, as is done in this simulation. You need only 
digitize both the modulated sample signal and modulation reference signal. 

   Another useful type of modulation is “wavelength modulation”, in which the wavelength of the 
light source is oscillated (reference 32); this is often used in tunable diode laser spectroscopy and 
applied to the measurement of gases such as methane, water vapor, and carbon dioxide, especially in 
remote sensing, where the sample may be far from the detector. Various modulation techniques are 
also applied in “AC” (alternating current) electrochemistry and in spectroelectrochemistry.
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Appendix Q: Measuring a buried peak
Here we explore the problem of measuring the height of a small peak that is buried in the tail of a 
much stronger overlapping peak, so that the smaller peak is not even visible to the unaided eye. 
Three different measurement tools will be explored: iterative least-squares (page 54), classical least-
squares regression (page 49) and peak detection (page 74) using either the Matlab/Octave tools 
(peakfit.m, CLS.m, or findpeaksG.m respectively) or the corresponding spreadsheet templates. In 
this example the larger peak is located at x=4 and has a height of 1.0 and a width of 1.66; the smaller 
measured peak is located at x=5 and has a height of 0.1; both have a width of 1.66 (of course, for the 
purposes of this simulation, we pretend that we don't know all of these facts and try to find methods 
that will extract such information from the data). The measured peak is small enough and close 
enough (separated by less than the width of the peaks) to the stronger overlapping peak that it never 
forms a maximum and it looks like there is only one peak, as shown on the figure on the right. For 
that reason the findpeaks.m function (which automatically finds maxima) will not be useful by itself. 
(If you wish, you can change the values in lines 11 - 20 or peak shape in line 26). 
  The selection of the best method will depend on what is known about the signal and the constraints 
that can be imposed, which will depend in your 
knowledge of your experimental signal. In this 
simulation (performed by the Matlab/Octave script 
SmallPeak.m), the signal is composed of two 
Gaussian peaks, although that can be changed if 
desired in line 26. The first question is: is there 
more than one peak there? An unconstrained 
iterative fit of a single Gaussian to the data, shown 
on the right, shows little or no evidence of a second 
peak. (If you could reduce the noise, or ensemble-
average even as few as 10 repeat signals, then the 
noise would be low enough to see evidence of a 
second peak - click for graphic). 
  But suppose we suspect that there should be 

another peak of the same shape just on the right side 
of the larger peak. We can try fitting a pair of 
Gaussians to the data (figure on the left), but in this 
case the random noise is enough that the fit is not 
stable. The Matlab/Octave script SmallPeak.m 
performs 20 repeat fits (NumSignals in line 20) with 
the same underlying peaks but with 20 different 
random noise samples, revealing the stability (or 
instability) of each measurement method. The fitted 
peaks in unconstrained 2 Gaussian fit (in Figure 1) 
bounce around all over the place as the script runs. 
The fitting error is a little lower that the single-
Gaussian fit, but that by itself does not mean that the 

peak parameters so measured will be reliable; it could just be "fitting the noise". (Hint: After running 
SmallPeak.m the first time, spread out all the figure windows so they can all be seen separately.)
  But suppose that we have reason to expect that the two peaks will have the same width, but we don't 
know what that width might be. We could try an equal width Gaussian fit (peak shape #6); the 
resulting fit is much more stable and shows that a small peak is located at about x=5 on the right of 
the bigger peak, shown below on the left. On the other hand, if we know the peak positions 
beforehand, but not the widths, we can use a fixed-position Gaussian fit (shape #16) on the right. 
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So far all of these examples have used iterative peak fitting with at least one peak parameter 
(position and/or width) unknown and determined by 
measurement. If, on the other hand, all the peak 
parameters are known except the peak height, then the 
faster and more direct classical least-squares 
regression (CLS) can be employed. In this case you 
need to know the peak position and width of both the 
measured and the larger interfering peak (cls.m will 
calculate their heights). If the positions and the 
heights are really constant and known, then this 
methods gives the best stability and precision of 
measurement. It's also computationally faster, which 
might be important if you have lots of data to process.
  The problem with CLS is that it fails to give accurate measurements if the peak position and/or 
width changes without warning, whereas two of the iterative methods (unconstrained Gaussian and 
equal-width Gaussian fits) can adapt to such changes. It some experiments it is possible to have 
unexpected shifts in the peak position, especially in chromatography or other flow-based measure-
ments, caused by uncontrolled changes in temperature, pressure, flow rate or other instrumental 
factors. In SmallPeaks.m, such x-axis shifts can be simulated using the variable "xshift" in line 18. 
It's initially zero, but it you set it to something greater (e.g. 0.2) you'll get quite different results. Now 
the equal-width Gaussian fit works because it tries to keep up with the x-axis shifts.
  With a greater x-axis shift (xshift=1.0) even the equal-width fit has trouble. But if we know the 
width and the separation between the two peaks, it's possible to use the findpeaksG function (page 
74), which can search for and locate the larger peak and calculate the position of the smaller one. 
Then the CLS method, with the peak positions so determined for each separate signal, works better. 
Alternatively, another way to use the findpeaks results is a variation of the equal-width iterative 
fitting method in which the first guess peak positions (line 82) are derived from the findpeaks 
results, shown in Figure window 6 and labeled findpeaksP2 in the table below; that method does not 
depend on accurate knowledge of the peak widths, only their equality. 
  Each time you run SmallPeaks.m, all six methods are computed “NumSignals” times (set in line 
20) and compared in a table giving the average percent peak height accuracy of all the repeat runs: 
         Unconstr. EqualW  FixedP  FixedP&W  findpeaksP  findpeaksP2
xshift=0  35.607    16.849  5.1375  4.4437    13.384     16.849
xshift=1  31.263    44.107  22.794  46.18     10.607     10.808
Bottom line: the more you know about your signals, the better you can measure them. A stable signal 
with known peak positions and widths is the most accurately measurable (FixedP&W), but if the 
positions or widths vary from measurement to measurement, different methods must be used and 
accuracy is degraded, because more of the available information is used to account for the big peak.
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