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Abstract

A novel, exact class of solutions to the Vlasov–Maxwell system, with self–

generated magnetic fields and nonuniform plasma flows, are constructed. It

is shown that a gyrotropic distribution function (independent of gyrophase)

does not allow equilibrium shear flow; introduction of agyrotropy is essen-

tial for the maintenance of spatially nonuniform velocity fields. The new

self–consistent sheared–flow solutions include the shearless Harris Sheet [E.G.

Harris, Nuovo Cimento 23, 117 (1962)] solution as a special case. These

equilibria are likely to be relevant to a variety of astrophysical flows (most

natural flows are sheared) and to a better understanding of the laboratory

phenomena observed, for example, in the device MRX (Magnetic Reconnec-

tion Experiment, M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bretz,

F. Jodes, Y. Ono, and F. Perkins, Phys. Plasma 4, 1936 (1997)) designed to

study magnetic reconnection.
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I. INTRODUCTION

In 1962 Harris [1] displayed an exact, one–dimensional solution to the Vlasov equation

with a localized plasma current J(x), and therefore a near discontinuity in the self–consistent

magnetic field B(x). Such a configuration, generally called the Harris Sheet, is relevant to

various magnetospheric, solar and astrophysical phenomena, as well as to certain laboratory

experiments, such as the MRX [2,3] device at Princeton. Indeed there is evidence that the

profiles in MRX are qualitatively similar to those predicted by Harris.

However, in order to model either the laboratory experiments or the space and astro-

physical phenomena, several modifications of the original theory are necessary. The Harris

solution assumes a one–dimensional Cartesian geometry, while cylindrical symmetry is of-

ten pertinent—and we shall find that cylindrical effects are significant. More importantly,

the flow speeds of both species in the (quasineutral) Harris solution are spatially uniform;

indeed, for the form of the distribution function assumed, velocity shear is not permitted.

The inclusion of velocity shear,therefore, is essential to give a widespread applicability to

the theory. Most flows of experimental and observational interest are sheared.

Notice that for spatially uniform flows, the self–consistent plasma current profile is con-

strained to follow the density profile, n(x):

J(x) ∝ n(x), (1)

restricting the class and nature of equilibrium configurations. In the present work, we derive

exact Vlasov solutions, in both Cartesian and cylindrical geometry, with arbitrary amounts

of shear in the flow speeds of both species. Thus the current profile and the density profile

are fully independent. While these solutions preserve the sheet–current nature of the Harris

solution, their generality (in profiles and geometry) should allow more useful comparison to

observation and experiment.

The Harris solution, derived by assuming a uniform–velocity, drifting–Maxwellian distri-

bution function, is, by construction, free of velocity shear. If we were to naively generalize
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this very distribution to assign spatial dependence to the drift speed, we would find that this

distribution function no longer satisfies the Vlasov equation; a simple drifting Maxwellian

with sheared flow is just not an equilibrium distribution. Although this interesting fact

can be understood in a variety of ways, the explanation is most transparent in the case of

a magnetized plasma, where the gyroradius is smaller than gradient scale lengths. (Note,

however, that the solutions we consider can have arbitrary magnetic field strength and need

not be “magnetized.”) It is well known [4] that a magnetized plasma is nearly gytrotropic,

that is, nearly isotropic in velocity space in the two directions transverse to the magnetic

field:

f(x,v) ≈ f(x, v‖, |v⊥|). (2)

Here v‖ = b · v and v⊥ = b× (v × b), with b ≡ B/B. We show in Sec. II that a gyrotropic

distribution cannot reach equilibrium in the presence of velocity shear. On the other hand,

in the magnetized case even a very small agyrotropy can allow for a strongly sheared flow.

The Harris distribution is isotropic (and therefore gyrotropic) in the moving frame, ruling

out velocity shear. In Sec. III we generalize it to derive the Cartesian equilibrium with

velocity shear. The result is closely related to a family of equilibria derived previously by

Mahajan [5]. The cylindrical case is developed in Sec. IV, using an analogous distribution

but simplifying the argument by means of dynamical constants. The scope of our results

and their possible bearing on the MRX program are discussed in the concluding section.

II. VELOCITY SHEAR AND AGYROTROPY

Our purpose in this section is to show that the plasma distribution functions cannot be

gyrotropic in the presence of (perpendicular) velocity shear. The reason is simple: shear

drives gyroviscosity, and the gyroviscous tensor is not gyrotropic. The following demonstra-

tion, however, does not assume familiarity with gyroviscosity.

All that is needed is the second moment of the kinetic equation. Let u denote the flow
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velocity of some plasma species,

nu ≡
∫
d3vf(x,v, t)v

where f is the distribution function. Denoting the velocity in the moving frame by w ≡ v−

u, we define the stress tensor,

p =
∫
d3vf(x,v, t)mww.

Its trace is of course the scalar pressure, denoted by

p ≡ (1/3)Tr(p).

We denote the traceless part of p by π:

π ≡ p− Ip

where I is the unit tensor. We will also need the third order moment

Γ3 ≡
∫
d3vf(x,v, t)mwww (3)

whose trace, with respect to any two indices, is the heat–flow vector,

q =
1

2
Tr(Γ3).

For generality we include collisions, denoting the second (tensor) moment of the collision

operator by C2:

C2 ≡
∫
d3vmww,

although our attention in this work is on the collisionless, Vlasov systems. With these

definitions we compute the exact mww–moment of the Boltzmann equation to obtain the

evolution law

∂p

∂t
+∇ · Γ3 + (p · ∇)u+ [(p · ∇)u]T + p∇ · u+ Ω[b× π + (b× π)T ] = C2. (4)

Here we have introduced the gyrofrequency

Ω = eB/mc
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and the superscript T refers to the transpose tensor.

The trace of (4) is the familiar law (see, for example, [6]) for plasma energy conservation,

∂p

∂t
+

2

3
∇ · q +

2

3
π:∇u+

5

3
p∇ · u =

1

3
Tr(C2),

but our attention here is reserved for the traceless part.

We express the traceless version in Cartesian coordinates, with the z–axis along the

direction of the magnetic field. For simplicity we assume that spatial variation occurs only

in the x–direction, and that the drift or flow velocity is in the y–direction,

u = ŷu(x).

Then the traceless part of (4) leads to the equation

∂x

(
Γ3xαβ −

2

3
δαβqx

)
+ pWαβ + παx∂xuβ + πβx∂xuα −

2

3
δαβπγx∂xuγ

+Ω(εαzγπγβ + εβzγπγα) = Ĉ2αβ. (5)

Here Ĉ refers to the traceless part of the collisional tensor, we use the abbreviation

∂α ≡
∂

∂α

and

Wαβ ≡ ∂αuβ + ∂βuα −
2

3
δαβ∇ · u

is the rate of strain tensor. For a magnetized plasma, (5) can be solved for π in order to derive

both gyroviscosity (from the stress tensor) and collisional viscosity (from the collisional

term) [6]. For present purposes we can ignore collisions and consider the simple case when

α = x, β = y:

∂xΓ3xxy + (p + πxx)∂xu + Ω(πxx − πyy) = 0. (6)

It is easily seen from (2) that both Γ3xxy and (πxx − πyy) vanish for a gyrotropic plasma, in

which, therefore, velocity shear cannot be supported. This explains the absence of shear in

the conventional Harris sheet.

5



In a magnetized plasma, velocity shear is mainly supported by the difference πxx − πyy,

the contribution from Γ3 being of higher order in the gyroradius expansion. Indeed, we

show next that agyrotropy with vanishing Γ3 occurs quite naturally in distribution functions

similar to that of Harris: drifting Maxwellians.

The distribution given in the following section is a natural extension of the Harris dis-

tribution and probably its simplest generalization. Its Maxwellian form could result from

persistent collisional diffusion, which is effective even when the collision frequency is small

enough to justify Vlasov theory. However, collisional friction would act to eliminate flow

shear. Therefore our analysis makes physical sense in the presence of weak collisions when

some (unspecified) external agent drives the sheared flow.

III. GENERALIZED SHEET IN CARTESIAN GEOMETRY

A. Nonlinear equations

A simple distribution with the properties necessary to support velocity shear, as found

in the previous section, is given by

f(x, vx, vy, vz) =
n(x)
√

1 + α

π3/2v3
t

exp
[
−s2

x − s2
z − (1 + α)(sy − û(x))2

]
. (7)

Here vt =
√

2T/m is a thermal speed, s ≡ v/vt, û ≡ u/vt and α = constant measures the

temperature anisotropy between the x–y directions:

Tx − Ty =
αTx

1 + α
.

The temperature anisotropy is the source of agyrotropy in this distribution. Note that

spatial variation enters f only through the flow u(x) and the density n(x). We substitute

this distribution into the Vlasov equation

v · ∇f +
e

m
(−∇Φ + c−1v ×B) · ∂f

∂v
= 0, (8)

where Φ(x) is the electrostatic potential, and find that it provides an exact solution only if

the density and flow satisfy
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n′

n
+

eΦ′

T
=

muΩ

T
(9)

u′ = − αΩ

1 + α
. (10)

Here the primes denote x–derivatives. Note that, as was anticipated, the velocity shear

vanishes at α = 0. It should be further noted that the velocity shear has a very specific form,

proportional to the magnetic field. In fact this is a general feature of all kinetic equilibria

with a direction of symmetry. Since the equilibrium distribution must be constructed from

the constants of motion, the only source for inhomogeneity in physical variables (density

and velocity) are the electromagnetic potentials. For the velocity field, therefore, the spatial

variation must come from the canonical momentum, and hence from the component of the

vector potential in the ignorable direction. This feature becomes explicit in the next section.

In order to combine these results with Maxwell’s equations we need to distinguish the ion

and electron distributions. We distinguish electron parameters with an e–subscript, leaving

ion parameters unsubscripted. Thus the quasineutrality condition n = ne yields the electric

field in terms of the magnetic and the velocity fields,

eΦ′

T
(1 + τ) =

m

T
Ω(u + τue) (11)

where

τ ≡ T/Te

is the temperature ratio. Substituting this result into (9) we find

n′

n
=

m

T

τ

1 + τ
Ω(u− ue). (12)

Regarding the electron flow, we note that the electron version of (10) will contain the

electron gyrofrequency, which is larger than Ω by a factor of the mass ratio m/me. For

a maximal ordering (in which u and ue contribute comparably to the current) we take

(m/me)αe ∼= α, writing

m

me

αe = ζα.

7



Thus, neglecting me/m compared to unity, we can write the electron version of (10) as

u′e = −ζαΩ.

That is,

u′ − u′e =
(

α

1 + α
− ζα

)
Ω. (13)

Finally we consider Amperé’s law. Only its y–component is of interest:

B′ = −4πe

c
n(u− ue).

Measuring B in terms of the gyrofrequency, we express this relation as

δ2Ω′ = −n(x)

n0

(u− ue) (14)

where n0 is a constant reference value of the density and δ is the ion collisionless skin depth

δ ≡ c

ωpi
=

cm
1/2
i

e
√

4πn0

.

Equations (12), (13), and (14) constitute a closed set for the three unknown functions

n(x), u(x)− ue(x) and Ω(x).

B. Structure of the Cartesian sheet

It is convenient to introduce the following dimensionless variables

X =

√
τ

1 + τ

x

δ
,

F (X) =

√
τ

1 + τ

δΩ

vt
,

N(X) = n/n0,

U(X) = (u− ue)/vt.

Then our three equations become
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F ′ = −NU, (15)

N ′ = 2FNU, (16)

U ′ = α∗F, (17)

where

α∗ =
α(1 + τ)

τ(1 + α)
[1− ζ(1 + α)]

conveniently measures the agyrotropy of the 2–species plasma. Here of course the primes

indicate derivatives with respect to the dimensionless variable X.

The nonlinear equations (15)–(7) can be analyzed using standard methods. Although it

is not possible to obtain a general closed-form solution, it is possible to reduce the system

to a quadrature. But before working out explicit solutions, we point out that the general-

ization has added a qualitatively new feature, in addition to the expected modification of

the standard Harris sheet. We note from Eq. (17) that for an even (in x) density function,

the product FU must be odd in x. Therefore for the standard Harris sheet with a constant

velocity U (even function), the magnetic field must necessarily be odd. The picture changes

completely with sheared velocity fields: the system now allows even parity magnetic fields

in conjunction with odd parity velocity fields. The existence of velocity fields can lead to

equilibria with topologically distinct magnetic structures.

Let us first recover the modified Harris sheet. The appropriate boundary conditions,

consistent with the presence of a field–reversing current layer at x = 0, are:

Ω(0) = 0, (18)

n(0) = n0, (19)

u(0)− ue(0) = J0/(en0), (20)

where J0 is a specified constant. For the normalized variables, these translate into

F (0) = 0, (21)

N(0) = 1, (22)

U(0) = U0 ≡ J0/(en0vt). (23)
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Combining (15) and (16) yields the relation

(F 2)′ + N ′ = 0, (24)

which expresses plasma diamagnetism in a conventional way. (In this regard, note that F 2

is essentially the inverse of the plasma beta, β = 4πnT/B2.) In view of (21) and (22) the

solution is

N = 1− F 2. (25)

Similarly from (16), (17), and (23) we find

U =
√
U2

0 + α∗ logN =
√
U2

0 + α∗ log(1− F 2), (26)

or equivalently

N = exp

[
U2 − U2

0

α∗

]
. (27)

Combining (18), (25), and (26), we finally obtain the first–order, separable, differential

equation

F ′ = (1− F 2) ∗
√
U2

0 + α∗ log(1− F 2) (28)

describing the magnetic field in the modified sheet. Notice that for α∗ = 0, the shearless

Harris sheet (U0 = 1),

F = tanhX, (29)

N = sech2X, (30)

is automatically recovered.

We have not been able to express the solution to (28) in terms of known elementary

functions. It is straightforward, however, to find the effects of the velocity shear (controlled

by the agyrotropy parameter α∗) on the sheet structure by numerically solving (28). In

Figures (1)–(3), we plot (as a function of x) the set of normalized self–consistent physical
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quantities, the magnetic and velocity fields and the density and current profiles, for several

values of α∗.

Notice that for moderate values of α∗, the fundamental character of the sheet is main-

tained even in the presence of a respectable shear flow. It is this quality of ruggedness which

makes the Harris sheet such an interesting and important structure; it is recognizable even

in plasmas that differ considerably from the simple ideal plasma investigated by Harris.

However, the presence of the shear does bring about essential and important changes. The

density and the current profile are no longer the same and the sheet–width also changes due

to the sheared field. Furthermore the form of solution changes dramatically as the shear

parameter changes sign.

The origin of this bifurcation at α∗ = 0 may be seen by a re–examination of the defining

equations. Differentiating (17) and, using (15), we find

U ′′ + α∗N U = 0, (31)

and since the density profile factor N is always positive (and choosing its maximum value

to be N = 1), Eq. (31) yields oscillatory solutions for the velocity field for positive α∗. Since

N is a sharp function of x, U , though periodic will be quite a complicated function.

Several other qualitative features of the solution can be inferred:

(1) Since log N ≤ 0 (therefore N ≤ 1), Eq. (26) reveals that U > (<)U0 for α∗ < (>)0;

the flow speed is bounded for positive α∗.

(2) For any finite positive α∗, the density N cannot even reach zero; in fact, the lowest

value attained is

N = e−
U2

0
α∗ . (32)

(3) The oscillation frequency is proportional to
√
α∗.

Although a detailed discussion of the oscillatory solution is beyond the scope of this

paper, a few explanatory remarks may be in order. The sheared velocity field tends to

increase (decrease) the effective strength of the self–magnetic field for negative (positive)

11



value of α∗. The self–organizing Harris sheet requires a minimum strength of the magnetic

field for confining pressure (density in our case because the temperature is a constant) — this

minimum strength corresponds to α∗ = 0, the original shearless configuration. For negative

α∗, the confining ability of the magnetic field is fortified by the shear–generated effective

field, and the basic localized character of the Harris sheet is maintained with appropriate

modifications; the density localization is sharper, and the current and density profile are no

more the same.

For positive α∗, however, the ‘effective’ magnetic field goes below the minimum required,

and the plasma is no longer confined. For relatively small α∗, the density shows a periodic

but peaked structure. As α∗ increases, the density tends to be unity with a very small

periodic part superimposed upon it. This situation idealizes a finite structure with nearly

periodic striation, similar to the structures sometimes seen in non-neutral plasmas [8]. A

more detailed assessment of the physics and realizability of the positive α∗ structures will

be given in a later publication.

As pointed out earlier, the sheared velocity field allows the possibility of magnetic config-

urations which are topologically distinct from the Harris sheet. The new configurations have

an even parity magnetic field (a magnetic well rather than a ‘discontinuity’ of the velocity

field. These configurations, shown in Fig. 5, are quite similar to the diamagnetic structures

discussed by Mahajan and Yoshida [7].

IV. CYLINDRICAL GEOMETRY

A. Distribution function

In the case of cylindrical symmetry, we use polar coordinates (r, θ, z), allowing variation

only in the radial direction. The magnetic field is taken to be axial, B = ẑB(r) as before,

and the flow is assumed to be azimuthal,

u = θ̂u(r).
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It is convenient to express

B(r) = A′(r) + A(r)/r,

where A is the θ–component of the vector potential. As in the previous section we measure

B in terms of the gyrofrequency, and therefore introduce the normalized vector potential

a(r) ≡ eA(r)

mc
. (33)

We could now march through the cylindrical version of our previous development, but it is

quicker to notice that the energy E and canonical angular momentum p, given respectively

by

E ≡ 1

2
mv2 + eΦ(r), (34)

p ≡ mr(vθ + a), (35)

are constants of the motion. (A third constant, vz, does not enter our analysis.) Therefore

the Vlasov equation is solved by any function of E and p; in the spirit of Harris and of

Sec. III we choose the distribution

f(r, vr, vθ, vz) =
n0

π3/2v3
t

exp

(
−E + ωp + (1/2)κ2p2

T

)
. (36)

Here the constants n0 and T = (1/2)mv2
t have the same meaning as in Sec. III, while ω,

representing the rotation frequency in the rigid–body limit, and κ, representing an inverse

shear–length, are constants characterizing the azimuthal flow.

To include the case of rapid (thermal speed) rotation we allow

ωr ∼= vt; (37)

to treat flows with arbitrary shear we assume

κr ∼= 1. (38)
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B. Maxwell equations

We now require our cylindrical distribution to satisfy quasineutrality and Ampere’s law.

Thus we compute the two moments

n(r) =
∫
d3vf(r, vr, vθ, vz), (39)

n(r)u(r) =
∫
d3vvθf(r, vr, vθ, vz). (40)

Evaluation of either integral is a straightforward exercise in completing the square in the

exponent. For the density we find

n(r) =
n0√

1 + κ2r2
exp

[
−eΦ(r)

T
+ ξ(r)

]

where

ξ(r) ≡ ω2r2 + 2a(ωr − aκ2r2)

v2
t (1 + κ2r2)

. (41)

Note here that the gauge choice

Φ(0) = 0,

implies n0 = n(0).

In equating the ion and electron densities, we use the same convention as in the previous

Section, omitting the ion subscript, and adopt a similarly maximal ordering:

κ2
eae
∼= κ2a.

Indeed we introduce the parameter

ζ ≡ mκ2
e

meκ2
(42)

which is analogous to, although distinct from, the ζ of Sec. III. We also allow for comparable

ion and electron rotation frequencies,

ωe ∼= ω.
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Since (33) shows that

ae = − m

me

a

we see that κ2
er

2 ∼= me/m can be neglected compared to unity, and that ωer is negligible

compared to ae. Thus the electron version of (41) is

ξe(r) = −τv−2
t a(r)(ζκ2r2a(r) + 2ωer). (43)

With these remarks, it is straightforward to solve the quasineutrality condition n = ne for

Φ(r); one finds

(1 + τ)
eΦ(r)

T
= ξ(r)− ξe(r)−

1

2
log(1 + κ2r2). (44)

The density is therefore given by

n(r) = n0(1 + κ2r2)−
τ

2(1+τ) exp

(
ξe + τξ

1 + τ

)
. (45)

Notice that the vector potential appears quadratically in the exponent; we explicate this

dependence by using (41) and (43) to write

ξe + τξ

1 + τ
= ξ0(r) + ξ1(r)a(r) + ξ2(r)a

2(r) (46)

with

ξ0 =
mω2r2

2(T + Te)(1 + κ2r2)

ξ1 =
mr[(1 + κ2r2)ωe − ω]

(T + Te)(1 + κ2r2)

ξ2 =
mκ2r2(1 + ζ + ζκ2r2)

2(T + Te)(1 + κ2r2)
.

Next we turn our attention to the vθ–moment. Straightforward evaluation of the integral

in (40) provides the flow speeds

(1 + κ2r2)u = ωr − a(r)κ2r2, (47)

ue = ωer + ζa(r)κ2r2. (48)
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Notice that ω measures the rigid–body rotation frequency in the Harris limit, κ → 0, as

anticipated. On the other hand comparison with (10) shows that the cylindrical case is

considerably more complicated than slab geometry.

Thus we have explicit expressions for the density and for the flow speeds of both species.

All that is needed to close the system is a single equation for the vector potential, a(r). This

is provided by Ampere’s law, in the form

θ̂ · ∇ × (∇×A) = (4π/c)en(u− ue).

Combining (45), (47), and (48) and normalizing in the usual way we find that

δ2

[
(ra)′

r

]′
= (1 + κ2r2)−

2+3τ
2(1+τ) exp

(
ξ0 + ξ1a + ξ2a

2
)

×
{
ωer(1 + κ2r2)− ωr + aκ2r2[ζ(1 + κ2r2)− 1]

}
. (49)

Equation (49), complicated as it is, can be readily solved using Mathematica. Once we know

the vector potential a, all quantities of physical interest can be readily computed.

It turns out that the rigid–rotor cylindrical equilibrium is analytically solvable like its

Cartesian counterpart, the constant flow speed equilibrium. The simplified system can be

cast in the following suggestion form

1

N

1

r

dN

dr
= −b + h (50)

1

r

db

dr
= N, (51)

where N and b are the appropriately normalized density and the z component of the magnetic

field. The constant h is a measure of the centrifugal force (∼ δ2ω2/v2
t ), a purely cylindrical

effect. For the boundary conditions that at r = r0, N = 1 and b = 0 (the equivalent

Cartesian sheet located at r = r0), the exact solution is

b = h + (2 + h2)1/2 tanh

[
(2 + h2)1/2

4
(r2 − r2

0)− tanh−1 h

(2 + h2)1/2

]

N =
1

2
(2 + h2)sech2

[
(2 + h2)1/2

4
(r2 − r2

0)− tan−1 h

(2 + h2)1/2

]
,
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reminding us of the Cartesian analogue. Notice that the centrifugal force term modifies

the effective field and distorts the symmetric character of the equivalent Cartesian sheet.

For r0 = 0, the physical fields vary as tanh r2 and sech2 r2 implying that the cylindrical

geometry forces a stronger density fall–off in the radial direction. For more general velocity

fields, Eq. (49) has to be solved.

Extensive numerical calculations show that the cylindrical effects, though quantitatively

very strong, leave the qualitative character of the various Cartesian configurations un-

changed. Their importance in detailed comparisons with the experiments like MRX, cannot

be, however, underestimated. Some typical solutions are displayed in Figs. 5–6.

The primary aim of this paper was to investigate the properties of a Harris–sheet–like

solution for a near–Maxwellian sheared plasma in both the Cartesian and cylindrical geome-

tries. The results of our investigation can be summarized as follows:

(1) Sheared flows are possible if and only if the distribution function is agyrotropic. A

temperature anisotropy, for example, can lead to a sheared flow.

(2) In addition to the extended Harris–sheet structures, the sheared velocity fields can

generate a totally distinct magnetic configuration in which the magnetic field provides a

localized well, instead of a discontinuity associated with the Harris sheet. In the Cartesian

geometry this pertains when the velocity field has odd parity.

(3) The effect of the sheared field has a ‘direction’ — if for a given sign of the anisotropy

parameter, the sheared field tends to fortify the confining capabilities of the magnetic field,

it tends to decrease them for the opposite sign. In fact, for the examples given in the paper,

for positive α∗, the solutions become periodic, and the confinement is lost. This case needs

further investigation.

(4) The effects of the cylindrical geometry can be quantitatively quite strong. They must

be taken into consideration for a detailed comparison with the experiment.
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