

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-5, November 2011

122

Abstract—In this paper, we investigated image retrieval

based on image content, Content Based Image Retrieval (CBIR)
and proposed a framework to characterize the image content
and similarity between the images. Our paper discusses the
CBIR problem and the solution. Due to the enormous increase in
image database sizes, the need for the development of CBIR
systems arose. Firstly, this paper outlines feature extraction
methods for color and texture. The extracted features for each
image in the database used as the basis for similarity between
the images. We built user interface based on Java, in which user
can easily select query image and view top ten retrieved images
based on decreasing order. We extended our approach to sub
image retrieval also. Our results report that HSV based color
features and contrast based texture features outperform than
RGB based features and results reported in the paper are
convincing.

Index Terms—Colour, Texture, Query, CBIR.

I. INTRODUCTION

 There has been a rapid increase in the size of digital image
collections in the recent years. Everyday, both military and
civilian equipment generates giga-bytes of images. A huge
amount of information is out there. However, it cannot be
accessed or made use of the information unless it is organized
so as to allow efficient browsing, searching, and retrieval.
There has been a very active research in the area of image
retrieval since the 1970s, with the thrust from two major
research communities, database management and computer
vision. These two research communities study image retrieval
from different angles, one being text-based and the other
visual-based.
 The text-based image retrieval can be traced back to the
late 1970s. A very popular framework of image retrieval then
was to first annotate the images by text and then use
text-based database management systems (DBMS) to perform
image retrieval. Representatives of this approach are [1,
2,3,4]. Two comprehensive surveys on this topic are [5,6].
Many advances, such as data modeling, multidimensional
indexing, and query evaluation, have been made along this
research direction. However, there exist two major
difficulties, especially when the size of image collections is
large (tens or hundreds of thousands). One is the vast amount

 J. Sreedhar, Associate Professor in Computer Science & Engineering,,
DVRCET, Hyderabad, India, Mobile No: 8790423564, (e-mail:
sreedharyd@gamil.com).

Dr. S. Viswanadha Raju, Professor in CSE, SIT, JNT University,
Hyderabad, India, 9963701506, (e-mail: svraju.jntu@gmail.com).

Dr. A. Vinaya Babu, Professor in CSE & Director of Admissions, JNT
University, Hyderabad, India.

of labor required in manual image annotation. The other
difficulty, which is more essential, results from the rich
content in the images and the subjectivity of human
perception. That is, for the same image content different
people may perceive it differently. The perception
subjectivity and annotation impreciseness may cause
unrecoverable mismatches in later retrieval processes. In the
early 1990s, because of the emergence of large-scale image
collections, the two difficulties faced by the manual
annotation approach became more and more acute.
Content-based image retrieval was propose, to overcome
these difficulties. That is, instead of being manually annotated
by text-based key words, images would be indexed by their
own visual content, such as colour and texture. Since then,
many techniques in this research direction have been
developed and many image retrieval systems, both research
and commercial, have been built. The advances in this
research direction are mainly contributed by the computer
vision community. Many special issues of leading journals
have been dedicated to this topic [7,8,9,10,11]. Content-based
image retrieval, we feel there is a need to survey what has
been achieved in the past few years and what are the potential
research directions which can lead to compelling
applications. Since excellent surveys for text-based image
retrieval paradigms already exist [5, 6], in this paper we will
devote our effort primarily to the content-based image
retrieval paradigm. There are three fundamental bases for
content-based image retrieval, i.e. visual feature extraction,
multidimensional indexing, and retrieval system design. The
fundamental difference between content-based and text-based
retrieval systems is that the human interaction is an
indispensable part of the latter system. Humans tend to use
high-level features (concepts), such as keywords, text
descriptors, to interpret images and measure their similarity.
While the features automatically extracted using computer
vision techniques are mostly low-level features (colour,
texture, shape, spatial layout, etc.). In the past decade, a few
commercial products and experimental prototype systems
have been developed, such as QBIC [4], Photobook [5],
Virage [6], VisualSEEK[7], Netra [8], SIMPLIcity [9].

II. RELATED WORK

 Due to the high ambiguity involved in interpreting visual
information on the affective level, it is very difficult to predict
human emotions from visual information. As such,
determining the relation between human emotions and visual
information is very important. Generally, images provide
colour, texture, shape, and pattern information.

Query Processing for
Content Based Image Retrieval

J. Sreedhar, S. Viswanadha Raju, A. Vinaya Babu

Query Processing for Content Based Image Retrieval

123

The colour feature is one of the most widely used visual

features in image retrieval. It is relatively robust to
background complication and independent of image size and
orientation. Some representative studies of colour perception
and colour spaces can be found in [12,13, 14]. In image
retrieval, the colour histogram is the most commonly used
colour feature representation. Statistically, it denotes the joint
probability of the intensities of the three colour channels.
Swain and Ballard proposed histogram intersection, an L1
metric, as the similarity measure for the colour histogram
[15]. To take into account the similarities between similar but
not identical colours, Ioka [16] and Niblack et al. [17]
introduced an L2-related metric in comparing the histograms.
Furthermore, considering that most colour histograms are
very sparse and thus sensitive to noise, Stricker and Orengo
proposed using the cumulated colour histogram. Their
research results demonstrated the advantages of the proposed
approach over the conventional colour histogram approach
[18]. Besides the colour histogram, several other colour
feature representations have been applied in image retrieval,
including colour moments and colour sets. To overcome the
quantization effects, as in the colour histogram, Stricker and
Orengo proposed using the colour moments approach. The
mathematical foundation of this approach is that any colour
distribution can be characterized by its moments.
Furthermore, since most of the information is concentrated on
the low-order moments, only the first moment (mean), and the
second and third central moments (variance and skewness)
were extracted as the colour feature representation.

To facilitate fast search over large-scale image collections,
Smith and Chang proposed colour sets as an approximation to
the colour histogram [19, 20]. They first transformed the (R,
G, B) colour space into a perceptually uniform space, such as
HSV, and then quantized the transformed colour space into M
bins. A colour set is defined as a selection of colours from the
quantized colour space. Because colour set feature vectors
were binary, a binary search tree was constructed to allow a
fast search. The relationship between the proposed colour sets
and the conventional colour histogram was further discussed
[19, 20].

III. OVERVIEW OF PROPOSED APPROACH

A. Solution

The solution proposed is to extract the primitive features of
the query image and compare them to those of database
images. The image features under consideration are colour (in
the HSB colour space) and texture. For the purpose of
querying with respect to a part (or parts) of the query-image,
each image in the database is divided into nine sections as
shown infigure1. Each section is represented by a vector
which consists of a total of 18 values, of which the first 6
values represent the average hue, average saturation, average
brightness, variance of hue, variance of saturation and
variance of brightness respectively. The next 12 values of
each section vector represent the texture attributes. Thus, each
image in the database is stored as a vector of 162 floating

point values (or 9 sections, each section being represented by
a vector of 18 floating point values).

Table1. Image subsections Matrix

1

2

3

 4

5

6

 7

8

9

When a query-image is presented, if the query is with

respect to the whole image, the distance of each image in the
database with respect to the query-image is calculated, and the
top five images with the least distance with the query-image
are displayed as results. If the query is with respect to a
section (or sections) of the query-image, then these distance
metrics are calculated with respect to sections only. The user
can select the way he wishes to query a sub-image. Finally,
resultant images are displayed based on increasing similarity.

IV. IMAGE CONTENT CHARACTERIZATION

A. Colour representation

One of the most important features that make possible the
recognition of images by humans is colour. Colour is a
property that depends on the reflection of light to the eye and
the processing of that information in the brain. We use colour
everyday to tell the difference between objects, places, and
the time of day. Usually colours are defined in three
dimensional colour spaces. These could either be RGB (Red,
Green, and Blue), HSV (Hue, Saturation, and Value) or HSB
(Hue, Saturation, and Brightness). Thus, a vector with three
co-ordinates represents the colour in this space.

B. Motivation for using HSV Color Space

 Hue, Saturation and Value are based on the artist concepts
of Tint, Shade, and Tone, respectively. The HSV colour space
is really a cylinder, and not a cone or hexcone as usually
pictured. However, the perceived change in colour as
saturation varies between 0 and 1 is less for dark colours (i.e.
ones with a low Value parameter) than for light ones (i.e. ones
with a high Value parameter), so the colour space is usually
distorted to form a cone to help compensate for this
perception imbalance (although the space is still not
perceptually uniform -- for an example of a perceptually
uniform space, see the CIE LUV colour space).The HSV
colour space, like RGB, is a device-dependent colour space,
meaning the actual colour you see on your monitor depends

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-5, November 2011

124

on what kind of monitor you are using, and what its settings
are Complementary colours in the hexcone are 180 degrees
opposite one another. One of the first colour systems based on
polar coordinates and perceptual parameters was Munsell's (A
Colour Notation. Baltimore MD: Munsell Colour Co. 1946),
which defined the terms: "Hue: It is that quality by which we
distinguish one colour family from another, as red from
yellow, or green from blue or purple." "Chroma [Saturation in
HSV]: It is that quality of colour by which we distinguish a
strong colour from a weak one; the degree of departure of a
colour sensation from that of a white or gray; the intensity of a
distinctive hue; colour intensity." "Value: It is that quality by
which we distinguish a light colour from a dark one."

The advantage of HSV colour space is its ability to separate
chromatic and achromatic components. Therefore we selected
the HSV colour space to extract the colour features according
to hue, saturation and value. HSV colour space is widely used
in computer graphics, visualization in scientific computing
and other fields [21,22].

The proposed method used HSV(Hue, Saturation and
Value) Colour space, because it is natural and is
approximately perceptually uniform.

Traditionally, the main method of representing colour
information of images in CBIR systems has been through
colour histograms. But in our approach, we have represented
colour in the HSB colour space, as floating point values. Each
section in an image has six values representing colour. These
six values represent the average hue, average saturation,
average brightness, hue variance, saturation variance and
brightness variance respectively, for that section.

 RCif
CC

BG =








−
−+ max

minmax

,060

H = GCif
CC

RB =








−
−+ max

minmax

,260 (1)

BCif
CC

GR =








−
−+ max

minmax

,460

 S =
max

minmax

C

CC −
 (2)

 V = maxC (3)

Where maxC = MAX (R, G, B) and

 minC = MIN (R, G, B)

C. Texture Representation

Because the final formatting of your Texture is that innate
property of all surfaces that describes visual patterns, each
having properties of homogeneity. It contains important
information about the structural arrangement of the surface,
such as; clouds, leaves, bricks, fabric, etc. It also describes the

relationship of the surface to the surrounding environment.
The ability to retrieve images on the basis of texture

similarity may not seem very useful. But the ability to match
on texture similarity can often be useful in distinguishing
between areas of images with similar colour (such as sky and
sea, or leaves and grass). A variety of techniques has been
used for measuring texture similarity; the best-established
rely on comparing values of what are known as second-order
statistics calculated from query and stored images.
Essentially, these calculate the relative brightness of selected
pairs of pixels from each image. From these it is possible to
calculate measures of image texture such as the degree of
contrast, coarseness, directionality and regularity, or
periodicity, directionality and randomness.

In our approach, while the first six values in each section
vector represent colour, the next twelve values represent
texture. Now, these values are calculated iteratively by
finding the characteristics for each overlapping 5 x 5 contrast
element matrix, along 0 degree, 45 degrees, 90 degrees and
135 degrees, within each section. The meaning of these
characteristics along different angles are: Along x-axis => 0
degree, Along x=y axis => 45 degree, Along y-axis => 90
degree, Along x=-y axis => 135 degree.

 Along each angle, values are calculated so as to indicate
the number of 5 x 5 pixel regions in that section, where the
upper half of that region is brighter (or darker) than the lower
half, where the left half of that region is brighter (or darker)
than the right half, where the half to the left diagonal is
brighter (or darker) than the other half, where the half to the
right diagonal is brighter (or darker) than the other half, and
where the two portions in consideration are almost same(with
a 10% difference).

When all these calculations are complete, we get our twelve
texture features representing the total number of bright, equal
and dark regions along the four different angles.

 Thus, now the feature vector for one section of an image
is computed, and it is represented by 18 values. Similarly, the
vectors are computed for all the remaining eight sections.
Thus, the feature vector for an image comprises (18 x 9) 162
values. Similarly, the feature vectors for all other images in
the database are computed and stored.

He and Wang [23] determine a texture spectrum using 3×3

windows. The gray level of the central pixel is compared with
the other eight pixels in the window. Each pixel is assigned a
value of 0 if its value is less than, 1 if its value is equal to, and
2 if its value is greater than that of the central pixel. The
central pixel is not assigned any value. Using such a scheme,
the number of gray levels is reduced to 3. After the reduction,
the number of all combinations within the 3 × 3 window is 38
= 6561. He and Wang proposed a simple scheme to assign a
number between 0 and 6560 automatically to each possible
pattern of 0s, 1s and 2s in a window. We now extend the same
idea to a larger, and visually more meaningful 5×5 window.
The number of possible patterns is a prohibitive 324 if we
blindly follow He and Wang’s approach. Our idea is to reduce
the 5 × 5 window to a 3 × 3 window. Let W be a 5 × 5 block of
pixels. We use only 17 out of the 25 pixels, indexed as shown
in Fig. 1, in our reduction. These pixels are in the eight

Query Processing for Content Based Image Retrieval

125

 Fig. 2. Surrounding contrast patterns

compass directions with respect to the central pixel ac. The
average intensity of the pixels along each direction is
compared with that of the central pixel in the reduction. The
reduction of a 5×5 window W into a 3×3 block U is given.

 a0 - a2 - a4

 - a1 a3 a5 -

 a14 a15 ac a7 a6

- a13 a11 a9 -

 a12 - a10 - a8

 Fig. 1. Pixel index values

mathematically by

 2,if aW

i2 + aW
i 12 + - 2aW

c > 0

aU
i = 1,if aW

i2 + aW
i 12 + - 2aW

c = 0 , 0 ≤ i≤7 (4)

 0, if aW
i2 + aW

i 12 + - 2aW
c < 0

with the superscripts on the right hand sides indicating that

the pixels are taken from the 5 × 5 window W. The reduced
block U is identical to the 3×3 window used by He and Wang
and we apply the same method proposed by them to generate a
unique texture unit number

τ (U) = i

i

U
ia 3

7

0
∑

=

 (5)

For any M×N pixel image, there will be (M−2)×(N−2)
intensity patterns of size 5 × 5, each described uniquely by τ
(U) such that 0 ≤ τ (U) ≤ 6560. Texture Unit Spectrum, TUS
(t, 0 ≤ t ≤ 6560), is the histogram of τ (U)s within an image.
Several useful features, corresponding to visually meaningful
patterns, may be defined on the TUS.

i. Surrounding contrast
Surrounding contrast (sc) features define the set of patterns

that have a uniform neighbourhood around the central pixel.
All the pixels in the neighbourhood have the same property
with respect to the central pixel, they are all brighter, darker or
equally bright as the central pixel. These three neighborhoods
are shown in Fig. 3: (a) defines the pattern where the
surrounding pixels are all brighter, (b) the pattern where the
surrounding pixels are equally bright, and (c) the pattern

where the surrounding pixels are darker than the central pixel.
Sc_bright feature measures the frequency of occurrence of
pattern in Fig. 3(a) in the image and is given by TUS(t =
6560). Sc_equal and sc dark are similarly defined based on
the patterns in Fig. 3(b) and (c) respectively and are given by
TUS(3280) and TUS(0).

ii. Alternating contrast
Alternating contrast (ac) features measure the frequency of

occurrence of local patterns in which the brightness of the
surrounding pixels alternates between being brighter and
being darker than the central pixel. There are six such possible
configurations as shown in Fig. 4.

 Fig. 3. Alternating Contrast Patterns

These are grouped into two groups of three each. ac_bright

is the collection of patterns in which the 4-connected
neighbours are brighter than the remaining pixels while
ac_dark refers to alternating patterns in which they are darker.
ac_bright consists of patterns (a), (c) and (e) given by
TUS(2460), TUS(4920) and TUS(5740) respectively. ac dark
refers to patterns (b), (d) and (f) given by TUS(820),
TUS(1640) and TUS(4100) respectively.

ac_bright = TUS(2460) + TUS(4920) + TUS(5740)
ac_dark = TUS(820) + TUS(1640) + TUS(4100)

iii. Vertical and horizontal contrasts

Vertical contrast (vc) feature measures three groups of

vertical stripes, vc_bright, vc_equal and vc_dark shown in
Figs. 5(a), (b) and (c) respectively. x is one of 0, 1 or 2. In
each group, one of the possible values of x makes the
configuration identical to surrounding contrast feature. For

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-5, November 2011

126

example, if x = 2 in Fig. 5(a), then the configuration is the
same as that of sc_bright. Therefore, the possible number of
patterns for vc_bright, vc_equal and vc_dark each is two and

 (a) (b) (c)

 Fig. 4. Vertical Contrast Patterns

vc feature is a summation of the frequencies of occurrence
of these six patterns.

vc_bright = TUS(6068) + TUS(6314)
vc_ equa l = TUS(3034) + TUS(3526)
vc _dark = TUS(246) + TUS(492)

Horizontal contrast (hc) measures the frequency of

occurrence of horizontal stripes in an image. The brightness
of the central pixel is compared against that of the pixels in the
previous and succeeding rows. If the neighbouring pixels are
all brighter than the central pixel, then we define a hc_bright
pattern. Similarly, we define hc_equal and hc_dark patterns.
The three patterns and possible configurations are 90◦ rotated
versions of vertical contrast patterns. The horizontal contrast
features are computed from the TUS as

hc_bright = TUS(2132) + TUS(6533)
hc _equal = TUS(1066) + TUS(5494)

 hc_dark = TUS(2214) + TUS(4428)

 In summary, we define four sets of useful patterns easily
computable from the texture unit spectrum, viz., surrounding
contrast, alternating contrast, vertical and horizontal
contrasts. In each category, with the exception of alternating
contrast, there are three sub-classes of patterns depending on
whether the neighbouring pixels are brighter, equal in
brightness, or darker than the central pixel. There are only two
sub-classes in alternating contrast feature and that gives a total
of 11 features based on the visually observable texture
patterns in 5 × 5 windows.

iv. Contrast Patterns In 5 × 5 Windows

In this section, we define a new set of patterns on 5 × 5
windows based on contrast variations rather than intensity.

We consider the four major directions: 00 , 450 , 900 and

1350 . Contrast is measured by the difference in the sums of
intensities of pixels lying on either side of a line drawn in the
specified direction through the centre of the 5×5 window. For

example, contrast at 450 is measured as shown in Fig. 6. Ai
are always to the left as we walk in the direction of the line.
Contrast is then reduced to three categories: bright, equal or
dark depending on whether it is greater than, equal to or less
than 0. In practice, contrast is considered equal if the
difference is less than a predefined tolerance factor expressed

as a percentage of ai . Thus, each window in the image is

characterized by the four directional contrast categories.

Contrast features for the image are given by the frequency of
occurrence of each of the 12 categories: three each
(bright,equal and dark) in the four directions, and thus form a
12- dimensional feature vector. In an M × N pixel image,
there are (M−2)×(N−2) windows each contributing to all the
four contrast features such that the sum of frequencies of
bright,equal and dark categories for any direction is
(M−2)×(N −2).

Table 4 : Matrix Values

c 45 =∑
=

10

1i
ia - ∑

=

10

1i
ib (6)

 Fig. 6. Calculating contrast at 450

Along each angle, values are calculated so as to indicate the
number of 5 x 5 pixel regions in that section, where the upper
half of that region is brighter (or darker) than the lower half,
where the left half of that region is brighter (or darker) than
the right half, where the half to the left diagonal is brighter (or
darker) than the other half, where the half to the right diagonal
is brighter (or darker) than the other half, and where the two
portions in consideration are almost same(with a 10%
difference). When all these calculations are complete, we get
our twelve texture features representing the total number of
bright, equal and dark regions along the four different angles.
Thus, now the feature vector for one section of an image is
computed, and it is represented by 18 values. Similarly, the
vectors are computed for all the remaining eight sections.
Thus, the feature vector for an image comprises (18 x 9) 162
values. Similarly, the feature vectors for all other images in
the database are computed and stored.

D. Similarity Measures

The distance between feature vectors is calculated using
two methods:

• Square root (Euclidean distance)
• Absolute value (Manhattan distance)

The results produced by these two methods can be
different, hence the results produced by each method are
displayed to the user is separate areas.

If q = 1, d is Manhattan distance

 d(i,j) = |x1i -x 1j |+|x 2i -x 2j |+ …+|xip - x jp |
 (7)
 If q = 2, d is Euclidean distance

d(i,j) =
 (5)

 (8)

2 X 2

2 2

2 X 2

1 X 1

1 1

1 X 1

0 x 0

0 0

0 x 0

a1 a2 a3 a4 -

a5 a6 a7 - b1

a8 a9 - b 2 b3

a10 - b 4 b5 b6

 - b 7 b8 b9 b10

(|x 1i -x 1j |2 +|x 2i -x 2j |2 + ……+|xip - x jp |2)

Query Processing for Content Based Image Retrieval

127

Where i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are
two p-dimensional data objects, and q is a positive integer.

V. RESULTS

A. Query-By-Example : Whole Image:

 When the user opts for Query-By-Example, he chooses or
presents an example-image, or a query-image. The query can
now relate to the whole image, or only to a section or sections
of the image. In all cases, the feature-vector representing the
query image is automatically retrieved from the database
values. If the query is with respect to the whole image, all the
162 feature values of each image in the database are retrieved
and used to calculate the distance of the database image with
the query image. Finally, when the distances for all the images
in the database are calculated, the top 7 images with the least
distance are displayed as results. As such, for the
whole-image query, very few inconsistencies have been
reported. The approach works very well for finding similar
images, when considering the whole images except for a very
rare occurrence of a not-so-relevant image.

Fig 5:Results of Query-By-Image, when query is
 with respect to the whole image

When the user clicks on the “Find Images” button, the
similarity metrics are performed, and the results are displayed
to the user in two separate panes. The results in the first pane
are the matches according to square root method, and those in
the second pane are according to absolute value method.

B. Query-By-Example : Part or parts of image

 If the user wishes to query with respect to sub-images, i.e.,
part (or parts) of image, the following five options are
presented.

• One selected section of query-image Vs All
sections of database-images

• One selected section of query-image Vs All
sections of database-images, as well as the
database-image as a whole

• An adjacency-pattern of query-image Vs All
possible adjacency patterns in the
database-images

• A two-section-diagonal-pattern in query-image Vs
All possible two-section-diagonal-patterns in the
database-images

 In the case of sub image retrieval, query-image is visually
divided into nine sections, or sub-images. The user can select

the sections with regard to which the images are to be
compared. In case of the first two options, the user should
select only one section in the query image. For the third
option, user should select exactly two sections, which may or
may not be adjacent to each other. For the fourth option,
diagonal sections (which should essentially be adjacent)
should be selected. Violation of any of these
Query-image-section-selection rules produces results which
are not correct. For the ease of query-processing with respect
to sections, each section is represented as a Rectangle object.

C. Query Processing for One Section Vs All Sections

If the user selects one section in the query-image, and
wishes to find those images in the database in which the
features of any one of the nine sections are similar to those of
the selected section of the query-image. The features of the
selected section are retrieved by just identifying the index of
the section which is selected.

For each image in the database, distance of each section
with the selected section of the query-image is calculated, and
the distance value of the section with the least distance is
saved.

Figure 6 : Results of Sub-image query, w. r. t. one selected

section of the query image

One section of the query image is to be selected by the user,

and then the user has to click on the “Find Images” button. If
the user selects more than one section for this query, the
results displayed will be misleading.

D. Query Processing for One Section Vs All Sections and
Whole-Image

In this section, we compared with all the nine sections of
each image in the database, and also the with the image as a
whole, as there may be cases in which the selected section of
the query image can be in the form of images in which that
selected section itself appears spanning the entire image.

 Consider a query-image and a section of that image is
selected by the user, to find images in the database, in which
either a section is similar to the selected section or as such, the
image as a whole is more similar to the selected section, than
the individual sections that make up the image. To process
such query, consider a database image D1, comprising nine
section s1, s2, s3 … s9. The distance of each section, s1 thru
s9, with the selected section is computed, and the section si
with the least distance is temporarily chosen as the
representative distance (tmpDist) for that image D1. Further,
the feature vector of 162 floating point values representing D1

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-5, November 2011

128

is normalized to a feature vector of just 18 features, by
summing up all values representing the same feature and
dividing the sum by 9. Now, the distance of this normalized
feature vector with the selected section feature vector is
computed. If this distance is less than the tmpDist computed
above, then it means that this image D1, as a whole, is more
similar to the selected section of the query-image, than the
individual sections of D1. An example of the application of
this query can be as follows:

 A car appears in a section of a query-image. There might
be many images in the database, which have a car. Besides,
there can be an image such that the entire image is just a car,
each section representing just a part of the car. To enhance the
chance of such database-image to be retrieved as a result, the
above functionality is provided. The following test result
represents the method called when the user query is with
respect to one section of query-image and all sections of the
database images, as well as whole images.

 It has been surprisingly observed that the results
produced by this query are just the same as those produced by
the query relating to one section vs. all sections. After a brief
discussion, we were able to conclude that in any image in the
database, the image whose normalized features are more close
to the features of the selected section of the query-image is
essentially close to the selected section because of the
presence of a section which is very close to the selected
section.

The user has to select a query from the list available and the

number of sections selected should be in conformance with
the type of query selected. Else, the results will be wrong. For
example, if the user selects “One with all” query, then he
should select only one section in the query-image.

E. Query processing for two selected sections of
query-image Vs All possible adjacent two section pairs in the
database-images

This query and the next query can process requests where
the user is trying to find images in the database in which a
specific pattern from two or more selected sections of the
query image can be found. The use of this particular query is
to find more subtle patterns in the database-images.

In the query-image, the user selects two non-adjacent (or
adjacent) sections, and desires to find images in the database
in which these two sections appear adjacently. For example,
the user selects two sections in query image, such that one
section has water, and the other section has some buildings.
The interpretation of this query is that the user wishes to find
images in the database such that water and buildings appear in
adjacent sections. The important characteristic of this
particular query is that the adjacency can be between sections.
As such, for an image of 9 sections as follows, there can be 20
pairs of adjacent sections which are mentioned in Table1.

 From the above diagrammatic representation of the nine
sections of an image, it can be easily observed that the
sections which are adjacent to each other and form pairs are as
follows: For example, section 2 , section 4 and section 5 are
adjacent to section 1. Similarly adjacent sections are
calculated for all sections.

It is worth noticing that a pair of section1 and section2 is as
good as a pair of section2 and section1 and hence only one
such pair is considered.

For any two selected sections of the query image, (adjacent
or non-adjacent) this query processing involves the
comparison of the aggregated features of the two selected
sections of the query-image with all the possible 20 pairs of
adjacent sections of each database image. When the user
selects the two sections, the aggregate features of these
selected sections are calculated by just adding up the
respective features of the same index. Thus, we have an array
of 18 floating point values representing the selected sections.

 Consider an image in database as D1. There can be 20
pairs of adjacent sections (as mentioned above). For each pair
of adjacent sections in the database image, we compute an
aggregate feature vector as representing those two adjacent
sections. Thus, we have 20 such feature vectors for D1. Of
these twenty pairs of adjacent sections, we find the one with
the least distance with respect to the selected adjacent sections
of the query image. This operation is performed for each
image in the database, and the top 5 database-images with the
least distance representative values are retrieved and
displayed to the user as matching images to his query.

The following test result represents the output produced
when the user query is with respect to two sections of
query-image and all possible two-adjacent sections of the
database images. Here again, it is imperative that the user
select exactly two sections. The misleading results produced
in case of selecting more or less than two sections are
summarized in the following test results description.

Figure 7 : Results of Sub-image query, w.r.t. two selected

adjacent sections of the query-image

This screen appears when the user chooses the “Diagonal

Pattern, Occurring Diagonally” option from the ComboBox,
selects two diagonally adjacent sections in the query-image,
and clicks on the “Find Images” button. If the user selects two
sections, which are not diagonally adjacent, it is sure to
produce wrong results.

F. Query Processing for a two-section-diagonal-pattern in
query-image Vs all possible two-section-diagonal-patterns in
the database-images

This query is more specific than the previous query where
the pattern of the selected sections of the query-image can
appear in any pair of adjacent sections in a database image.

Query Processing for Content Based Image Retrieval

129

This query finds patterns only in diagonals, and the selected
pattern of the query image should also be a diagonal pattern.
To make it clear, the query image (and in fact any image ion
the database) can have a two-section diagonal selection.

 In the query-image, the user selects two essentially
adjacent sections, and that too sections which are in diagonal
order, and desires to find images in the database in which
these two sections appear as diagonal sections. For example,
the user selects two sections in query image, such that one
section has water, and the other section has some buildings.
The interpretation of this query is that the user wishes to find
images in the database such that water and buildings appear in
diagonally adjacent sections. The important characteristic of
this particular query is that the diagonal adjacency can be
between sections. As such, for an image of 9 sections as
follows, there can be 8 pairs of diagonally adjacent sections
which are mentioned in Table1.

 From the figure 7, representation of the nine sections
of an image, it can be easily observed that the sections which
are adjacent to each other and form diagonal pairs are as
follows , for example , section 5 is diagonal section for section
1. Similarly diagonal sections are calculated for sub image
blocks.

It is worth noticing that a pair of section1 and section5 is as
good as a pair of section5 and section1 and hence only one
such pair is considered.

For any two selected sections of the query image,
(essentially diagonally adjacent) this query processing
involves the comparison of the aggregated features of the two
selected sections of the query-image with all the possible 8
pairs of diagonally adjacent sections of each database image.
When the user selects the two sections, the aggregate features
of these selected sections are calculated by just adding up the
respective features of the same index. Thus, we have an array
of 18 floating point values representing the selected sections.

 Consider an image in database as D1. There can be 8
pairs of diagonally adjacent sections (as mentioned above).
For each pair of diagonally adjacent sections in the database
image, we compute an aggregate feature vector as
representing those two adjacent sections. Thus, we have 8
such feature vectors for D1. Of these eight pairs of diagonally
adjacent sections, we find the one with the least distance with
respect to the selected adjacent sections of the query image.
This operation is performed for each image in the database,
and the top 5 database-images with the least distance
representative values are retrieved and displayed to the user as
matching images to his query.

The following test result represents the output produced
when the user query is with respect to two diagonally adjacent
sections of query-image and all possible two-diagonally
adjacent sections of the database images. Here again, it is
imperative that the user select exactly two sections, and these
selected sections be diagonally adjacent. The misleading
results produced in case of selecting more or less than two
sections or selecting sections which are not diagonally
adjacent are summarized in the following test results
description.

Fig 8: Results of Sub-image query, w.r.t. two selected
 diagonally-adjacent sections of the query-image.

This particular test result produces null results. This is the

only query which actually produces “null” as results in
response to wrong selection of sections by the user. Results of
Sub-image query, w.r.to. two selected sections of the
query-image.

 The two sections selected by the user are compared with

all possible two-adjacent section pairs in the database. This
type of query can enhance our capability to locate patterns.

Table 3 .Performance of different colour spaces for a test

set of 10 images taken from the first database.

RGB HSV

 Query
 Image

No. Of
images
Retriev

ed

No.of

relevent
Images
retrieve

d

Precis
ion
(%)

No.of

relevent
Images
retrieve

d

Precisi
on
(%)

Query 1 24 16 62.5 19 77.66

Query 2 24 20 68.83 22 80.00
Query 3 24 18 65.00 20 78.00
Query 4 24 20 63.33 18 76.33

Query 5 24 15 60.83 20 78.32
Query 6 24 20 71.63 21 79.33
Query 7 24 14 50.33 18 77.00

Query 8 24 20 65.83 22 80.10
Query 9 24 17 57.50 20 78.86

Query10 24 15 52.00 20 78.83

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-5, November 2011

130

Table 4: the average precision using RGB, HSV and colour
spaces for the two data sets used in testing.

In general, we found that the three colour spaces give

similar performance. Precision of a CBIR system is defined
as the ratio of the number of relevant images retrieved to the
number of images retrieved.For example, in Figure 3, the
number of images retrieved is 24 while the number of relevant
images is 22.Precision is, thus, 22/24 = 0.92. It is often
expressed as a percentage, and then precision is 92%.

Table 2 gives the performance of different colour spaces
for a test set of 10images taken from the first database. Table
3 gives the average precision using RGB, HSV and colour
spaces for the two data sets used in testing. It is seen that the
performance of HSV spaces are comparable to RGB space.
As RGB space is primarily developed for modeling colour
hardware capabilities and the other two spaces are more
closely related to human perception of colour, the result is
somewhat unexpected. However, closer examination of the
results indicate that HSV space in particular spaces give
higher rank to images that are more similar to the query
image.

VI. CONCLUSION

Our proposed application performs a simple color and
texture-based search in the image database for an input query
image. HSV based color features and local contrast varying
texture features are extracted for each image in the entire
database. Most similar images are retrieved based on distance
metrics like Euclidian and Manhattan distance. The retrieved
images are displayed in decreasing order of similarity. We
compared our retrieval results with RGB and HSV color
features along with texture features. Our results report that
HSV based color features outperform than RGB features.
The average retrieval performance for HSV based features
tested on database1 of size 5000 images is reported as
80.15%. Although, we have not evaluated for sub image
retrieval performance but results are encouraging as shown in
the paper. We conclude that HSV color space mimic human
perception of colors so HSV color space features are best
suited for applications like CBIR where human evaluation is
involved.

REFERENCES

[1] N. S. Chang and K. S. Fu, A Relational Database System
for Images, Technical Report TREE 79-28, Purdue
University, May 1979.

[2] N. S. Chang and K. S. Fu, Query-by pictorial-example,
IEEE Trans. on Software Engineering SE-6(6), 1980.

[3] S.-K. Change Pictorial database systems, IEEE
Computer, 1981.

[4] S.-K. Chang, C. W. Yan, D. C. Dimitroff, and T. Arndt,
An intelligent image database system, IEEE Trans.
Software Eng. 14(5), 1988.

[5] H. Tamura and N. Yokoya, Image database systems: A
survey, Pattern Recognition 17(1), 1984.

[6] S.-K. Chang and A. Hsu, Image information systems:
Where do we go from here? IEEE Trans. On Knowledge
and Data Engineering 4(5), 1992.

[7] V. N. Gudivada and J. V. Raghavan, Special issue on
content-based image retrieval systems, IEEE Computer
Magazine 28(9), 1995.

[8] A. Pentland and R. Picard, Special issue on digital
libraries, IEEE Trans. Patt. Recog. and Mach.
Intell.,1996.

[9] A. D. Narasimhalu, Special section on content-based
retrieval, Multimedia Systems, 1995.

[10] Special issue on visual information management (R. Jain,
Guest Ed.), Comm. ACM, Dec. 1997.

[11] B. Schatz and H. Chen, Building large scale digital
libraries, Computer, 1996.

[12] C. S. McCamy, H. Marcus, and J. G. Davidson, A
colour-rendition chart, Journal of Applied Photographic
Engineering 2(3), 1976.

[13] M. Miyahara, Mathematical transform of (r,g,b) colour
data to munsell (h,s,v) colour data, SPIE Visual
Commun. Image Process. 1001, 1988.

[14] J. Wang, W.-J. Yang, and R. Acharya, Colour clustering
techniques for colour-content-based image retrieval from
image databases, in Proc. IEEE Conf. on Multimedia
Computing and Systems, 1997.

[15] M. Swain and D. Ballard, Colour indexing, International
Journal of Computer Vision 7(1), 1991.

[16] M. Ioka, A Method of Defining the Similarity of Images
on the Basis of Colour Information, Technical Report
RT-0030, IBM Research, Tokyo Research Laboratory,
Nov. 1989.

[17] W. Niblack, R. Barber, and et al., The QBIC project:
Querying images by content using colour, texture and
shape, in Proc. SPIE Storage and Retrieval for Image and
Video Databases, Feb. 1994.

[18] M. Stricker and M. Orengo, Similarity of colour images,
in Proc. SPIE Storage and Retrieval for Image and Video
Databases, 1995.

[19] J. R. Smith and S.-F. Chang, Single colour extraction
and image query, in Proc. IEEE Int. Conf. on Image
Proc., 1995.

[20] J. R. Smith and S.-F. Chang, Tools and techniques for
colour image retrieval, in IS & T/SPIE Proceedings, Vol.
2670, Storage & Retrieval for Image and Video
Databases IV, 1995.

[21] Cao LiHua, Liu Wei, and Li GuoHui, “Research and
Implementation of an Image Retrieval Algorithm Based
on Multiple Dominant Colours ”,Journal of Computer
Research & Development, Vol 36, No.
1,pp.96-100,1999.

[22] Song Mailing, Li Huan, “An Image Retrieval Technology
Based on HSV Colour Space”, Computer Knowledge
and Technology, No. 3,pp.200-201, 2007.

[23] D.C. He and Li Wang. Texture filters based on texture
spectrum. Pattern Recognition, 24(12):1187–1195,
1991.

 Average Precision (%)

 RGB HSV

Dataset1 67.08 80.15

Dataset2 67.04 78.88

Query Processing for Content Based Image Retrieval

131

J. Sreedhar obtained my M.Tech(C.S.T) from Andhra University Vizag
, Pursuing Ph.D in Computer Science & Engineering discipline from JNT
University, Kakinada. Working as Assoc Professor in the Department of
CSE, DVRCET, Hyderabad.

 Dr. S. Viswanadha Raju obtained his Ph.D in Computer Science &
Engineering from ANU. He obtained his M.Tech in CSE from
JNTUniversity. He has a good academic background with a very sound and
academic research experience. At present he is working as a professor in
School of Information Technology in JNTUniversity, Hyderabad. He is
guiding 10 research scholors for Ph.D and also conducted several
conferences/workshops/seminars with sponsored agencies such as AICTE,
DST, TCS, IEEE and CST. His research includes Information Retrieval,
Databases, Image Retrieval, Data Mining and related areas. He published 25
research papers in reputed International Journals/Conferences proceedings
in his research area. He is active member in different professional bodies
with life membership like IETE, ISTE and CSI.

Dr. A. Vinay Babu,. obtained his Ph.D in Computer Science & Engineering
from JNTU. He obtained his M.Tech in CSE from JNTUniversity. He
obtained his ME from Osmania University. He obtained his BE in ECE from
Osmania University He has a good academic background with a very sound
and academic research experience. At present he is working as a professor in
School of Information Technology in JNTUniversity, Hyderabad. He is
guiding 10 research scholors for Ph.D and also conducted several
conferences/workshops/seminars with sponsored agencies such as AICTE,
DST, TCS, IEEE and CST. His research includes Information Retrieval,
Databases, Image Retrieval, Data Mining and related areas. He published 82
research papers in reputed International Journals/Conferences proceedings
in his research area. He is active member in different professional bodies
with life membership like IETE, ISTE and CSI.

