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Abstract—In this paper, we investigated image retrieval 

based on image content, Content Based Image Retrieval (CBIR) 
and proposed a framework to characterize the image content 
and similarity between the images.  Our paper discusses the 
CBIR problem and the solution. Due to the enormous increase in 
image database sizes, the need for the development of CBIR 
systems arose. Firstly, this paper outlines feature extraction 
methods for color and texture. The extracted features for each 
image in the database used as the basis for similarity between 
the images. We built user interface based on Java, in which user 
can easily select query image and view top ten retrieved images 
based on decreasing order. We extended our approach to sub 
image retrieval also. Our results report that HSV based color 
features and contrast based texture features outperform than 
RGB based features and results reported in the paper are 
convincing. 
 

Index Terms—Colour, Texture, Query, CBIR. 

I. INTRODUCTION 

     There has been a rapid increase in the size of digital image 
collections in the recent years. Everyday, both military and 
civilian equipment generates giga-bytes of images. A huge 
amount of information is out there. However, it cannot be 
accessed or made use of the information unless it is organized 
so as to allow efficient browsing, searching, and retrieval. 
There has been a very active research in the area of image 
retrieval since the 1970s, with the thrust from two major 
research communities, database management and computer 
vision. These two research communities study image retrieval 
from different angles, one being text-based and the other 
visual-based.  
    The text-based image retrieval can be traced back to the 
late 1970s. A very popular framework of image retrieval then 
was to first annotate the images by text and then use 
text-based database management systems (DBMS) to perform 
image retrieval. Representatives of this approach are [1, 
2,3,4]. Two comprehensive surveys on this topic are [5,6].  
Many advances, such as data modeling, multidimensional 
indexing, and query evaluation, have been made along this 
research direction. However, there exist two major 
difficulties, especially when the size of image collections is 
large (tens or hundreds of thousands). One is the vast amount 
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of labor required in manual image annotation. The other 
difficulty, which is more essential, results from the rich 
content in the images and the subjectivity of human 
perception. That is, for the same image content different 
people may perceive it differently. The perception 
subjectivity and annotation impreciseness may cause 
unrecoverable mismatches in later retrieval processes. In the 
early 1990s, because of the emergence of large-scale image 
collections, the two difficulties faced by the manual 
annotation approach became more and more acute. 
Content-based image retrieval was propose, to overcome 
these difficulties. That is, instead of being manually annotated 
by text-based key words, images would be indexed by their 
own visual content, such as colour and texture. Since then, 
many techniques in this research direction have been 
developed and many image retrieval systems, both research 
and commercial, have been built. The advances in this 
research direction are mainly contributed by the computer 
vision community. Many special issues of leading journals 
have been dedicated to this topic [7,8,9,10,11]. Content-based 
image retrieval, we feel there is a need to survey what has 
been achieved in the past few years and what are the potential 
research directions which can lead to compelling 
applications. Since excellent surveys for text-based image 
retrieval paradigms already exist [5, 6], in this paper we will 
devote our effort primarily to the content-based image 
retrieval paradigm. There are three fundamental bases for 
content-based image retrieval, i.e. visual feature extraction, 
multidimensional indexing, and retrieval system design. The 
fundamental difference between content-based and text-based 
retrieval systems is that the human interaction is an 
indispensable part of the latter system. Humans tend to use 
high-level features (concepts), such as keywords, text 
descriptors, to interpret images and measure their similarity. 
While the features automatically extracted using computer 
vision techniques are mostly low-level features (colour, 
texture, shape, spatial layout, etc.). In the past decade, a few 
commercial products and experimental prototype systems 
have been developed, such as QBIC [4], Photobook [5], 
Virage [6], VisualSEEK[7], Netra [8], SIMPLIcity [9]. 
 

II.   RELATED WORK 

 Due to the high ambiguity involved in interpreting visual 
information on the affective level, it is very difficult to predict 
human emotions from visual information. As such, 
determining the relation between human emotions and visual 
information is very important. Generally, images provide 
colour, texture, shape, and pattern information. 
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The colour feature is one of the most widely used visual 

features in image retrieval. It is relatively robust to 
background complication and independent of image size and 
orientation. Some representative studies of colour perception 
and colour spaces can be found in [12,13, 14]. In image 
retrieval, the colour histogram is the most commonly used 
colour feature representation. Statistically, it denotes the joint 
probability of the intensities of the three colour channels. 
Swain and Ballard proposed histogram intersection, an L1 
metric, as the similarity measure for the colour histogram 
[15]. To take into account the similarities between similar but 
not identical colours, Ioka [16] and Niblack et al. [17] 
introduced an L2-related metric in comparing the histograms. 
Furthermore, considering that most colour histograms are 
very sparse and thus sensitive to noise, Stricker and Orengo 
proposed using the cumulated colour histogram. Their 
research results demonstrated the advantages of the proposed 
approach over the conventional colour histogram approach 
[18]. Besides the colour histogram, several other colour 
feature representations have been applied in image retrieval, 
including colour moments and colour sets. To overcome the 
quantization effects, as in the colour histogram, Stricker and 
Orengo proposed using the colour moments approach. The 
mathematical foundation of this approach is that any colour 
distribution can be characterized by its moments. 
Furthermore, since most of the information is concentrated on 
the low-order moments, only the first moment (mean), and the 
second and third central moments (variance and skewness) 
were extracted as the colour feature representation. 

 
To facilitate fast search over large-scale image collections, 
Smith and Chang proposed colour sets as an approximation to 
the colour histogram [19, 20]. They first transformed the (R, 
G, B) colour space into a perceptually uniform space, such as 
HSV, and then quantized the transformed colour space into M 
bins. A colour set is defined as a selection of colours from the 
quantized colour space. Because colour set feature vectors 
were binary, a binary search tree was constructed to allow a 
fast search. The relationship between the proposed colour sets 
and the conventional colour histogram was further discussed 
[19, 20]. 
 

III.   OVERVIEW OF PROPOSED APPROACH 

A. Solution  

The solution proposed is to extract the primitive features of 
the query image and compare them to those of database 
images. The image features under consideration are colour (in 
the HSB colour space) and texture. For the purpose of 
querying with respect to a part (or parts) of the query-image, 
each image in the database is divided into nine sections as 
shown infigure1. Each section is represented by a vector 
which consists of a total of 18 values, of which the first 6 
values represent the average hue, average saturation, average 
brightness, variance of hue, variance of saturation and 
variance of brightness respectively. The next 12 values of 
each section vector represent the texture attributes. Thus, each 
image in the database is stored as a vector of 162 floating 

point values (or 9 sections, each section being represented by 
a vector of 18 floating point values).  

 
Table1. Image subsections Matrix 
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When a query-image is presented, if the query is with 

respect to the whole image, the distance of each image in the 
database with respect to the query-image is calculated, and the 
top five images with the least distance with the query-image 
are displayed as results. If the query is with respect to a 
section (or sections) of the query-image, then these distance 
metrics are calculated with respect to sections only. The user 
can select the way he wishes to query a sub-image.  Finally, 
resultant images are displayed based on increasing similarity. 

 

IV.   IMAGE CONTENT  CHARACTERIZATION 

 

A.  Colour representation  

One of the most important features that make possible the 
recognition of images by humans is colour. Colour is a 
property that depends on the reflection of light to the eye and 
the processing of that information in the brain. We use colour 
everyday to tell the difference between objects, places, and 
the time of day. Usually colours are defined in three 
dimensional colour spaces. These could either be RGB (Red, 
Green, and Blue), HSV (Hue, Saturation, and Value) or HSB 
(Hue, Saturation, and Brightness). Thus, a vector with three 
co-ordinates represents the colour in this space. 

 
 

B.  Motivation for using HSV Color Space 

 Hue, Saturation and Value are based on the artist concepts 
of Tint, Shade, and Tone, respectively. The HSV colour space 
is really a cylinder, and not a cone or hexcone as usually 
pictured. However, the perceived change in colour as 
saturation varies between 0 and 1 is less for dark colours (i.e. 
ones with a low Value parameter) than for light ones (i.e. ones 
with a high Value parameter), so the colour space is usually 
distorted to form a cone to help compensate for this 
perception imbalance (although the space is still not 
perceptually uniform -- for an example of a perceptually 
uniform space, see the CIE LUV colour space).The HSV 
colour space, like RGB, is a device-dependent colour space, 
meaning the actual colour you see on your monitor depends 
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on what kind of monitor you are using, and what its settings 
are Complementary colours in the hexcone are 180 degrees 
opposite one another. One of the first colour systems based on 
polar coordinates and perceptual parameters was Munsell's (A 
Colour Notation. Baltimore MD: Munsell Colour Co. 1946), 
which defined the terms: "Hue: It is that quality by which we 
distinguish one colour family from another, as red from 
yellow, or green from blue or purple." "Chroma [Saturation in 
HSV]: It is that quality of colour by which we distinguish a 
strong colour from a weak one; the degree of departure of a 
colour sensation from that of a white or gray; the intensity of a 
distinctive hue; colour intensity." "Value: It is that quality by 
which we distinguish a light colour from a dark one."  

The advantage of HSV colour space is its ability to separate 
chromatic and achromatic components. Therefore we selected 
the HSV colour space to extract the colour features according 
to hue, saturation and value. HSV colour space is widely used 
in computer graphics, visualization in scientific computing 
and other fields [21,22]. 

The proposed method used HSV(Hue, Saturation and 
Value) Colour space, because it is natural and is 
approximately perceptually uniform. 

Traditionally, the main method of representing colour 
information of images in CBIR systems has been through 
colour histograms. But in our approach, we have represented 
colour in the HSB colour space, as floating point values. Each 
section in an image has six values representing colour. These 
six values represent the average hue, average saturation, 
average brightness, hue variance, saturation variance and 
brightness variance respectively, for that section.  
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          V        =     maxC                                              (3) 

Where     maxC    = MAX (R, G, B)      and 

               minC   = MIN (R, G, B) 

C. Texture Representation  

Because the final formatting of your Texture is that innate 
property of all surfaces that describes visual patterns, each 
having properties of homogeneity. It contains important 
information about the structural arrangement of the surface, 
such as; clouds, leaves, bricks, fabric, etc. It also describes the 

relationship of the surface to the surrounding environment. 
The ability to retrieve images on the basis of texture 

similarity may not seem very useful. But the ability to match 
on texture similarity can often be useful in distinguishing 
between areas of images with similar colour (such as sky and 
sea, or leaves and grass). A variety of techniques has been 
used for measuring texture similarity; the best-established 
rely on comparing values of what are known as second-order 
statistics calculated from query and stored images. 
Essentially, these calculate the relative brightness of selected 
pairs of pixels from each image. From these it is possible to 
calculate measures of image texture such as the degree of 
contrast, coarseness, directionality and regularity, or 
periodicity, directionality and randomness. 

In our approach, while the first six values in each section 
vector represent colour, the next twelve values represent 
texture.  Now, these values are calculated iteratively by 
finding the characteristics for each overlapping 5 x 5 contrast 
element matrix, along 0 degree, 45 degrees, 90 degrees and 
135 degrees, within each section. The meaning of these 
characteristics along different angles are: Along x-axis  =>  0 
degree, Along x=y axis  =>  45 degree, Along y-axis  =>  90 
degree, Along x=-y axis  =>  135 degree. 

 Along each angle, values are calculated so as to indicate 
the number of 5 x 5 pixel regions in that section, where the 
upper half of that region is brighter (or darker) than the lower 
half, where the left half of that region is brighter (or darker) 
than the right half, where the half to the left diagonal is 
brighter (or darker) than the other half, where the half to the 
right diagonal is brighter (or darker) than the other half, and 
where the two portions in consideration are almost same( with 
a 10% difference).  

When all these calculations are complete, we get our twelve 
texture features representing the total number of bright, equal 
and dark regions along the four different angles.  

 Thus, now the feature vector for one section of an image 
is computed, and it is represented by 18 values. Similarly, the 
vectors are computed for all the remaining eight sections. 
Thus, the feature vector for an image comprises (18 x 9) 162 
values. Similarly, the feature vectors for all other images in 
the database are computed and stored. 

 
He and Wang [23] determine a texture spectrum using 3×3 

windows. The gray level of the central pixel is compared with 
the other eight pixels in the window. Each pixel is assigned a 
value of  0  if its value is less than, 1 if its value is equal to, and 
2 if its value is greater than that of the central pixel. The 
central pixel is not assigned any value. Using such a scheme, 
the number of gray levels is reduced to 3. After the reduction, 
the number of all combinations within the 3 × 3 window is 38 
= 6561. He and Wang proposed a simple scheme to assign a 
number between 0 and 6560 automatically to each possible 
pattern of 0s, 1s and 2s in a window. We now extend the same 
idea to a larger, and visually more meaningful 5×5 window. 
The number of possible patterns is a prohibitive 324 if we 
blindly follow He and Wang’s approach. Our idea is to reduce 
the 5 × 5 window to a 3 × 3 window. Let W be a 5 × 5 block of 
pixels. We use only 17 out of the 25 pixels, indexed as shown 
in Fig. 1, in our reduction. These pixels are in the eight 
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        Fig.  2.  Surrounding contrast patterns 

compass directions with respect to the central pixel ac. The 
average intensity of the pixels along each direction is 
compared with that of the central pixel in the reduction. The 
reduction of a 5×5 window W into a 3×3 block U is given. 
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          Fig.  1.    Pixel  index   values         
 
     
 
mathematically by 
 
 
            2,if  aW
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with the superscripts on the right hand sides indicating that 

the pixels are taken from the 5 × 5 window W. The reduced 
block U is identical to the 3×3 window used by He and Wang 
and we apply the same method proposed by them to generate a 
unique texture unit number 

 

τ (U) =  i

i

U
ia 3

7

0
∑

=

                       (5) 

For any M×N pixel image, there will be (M−2)×(N−2) 
intensity patterns of size 5 × 5, each described uniquely by τ 
(U) such that 0 ≤ τ (U) ≤ 6560. Texture Unit Spectrum, TUS 
(t, 0 ≤ t ≤ 6560), is the histogram of τ (U)s within an image. 
Several useful features, corresponding to visually meaningful 
patterns, may be defined on the TUS. 

 
i. Surrounding contrast 
Surrounding contrast (sc) features define the set of patterns 

that have a uniform neighbourhood around the central pixel. 
All the pixels in the neighbourhood have the same property 
with respect to the central pixel, they are all brighter, darker or 
equally bright as the central pixel. These three neighborhoods 
are shown in Fig. 3: (a) defines the pattern where the 
surrounding pixels are all brighter, (b) the pattern where the 
surrounding pixels are equally bright, and (c) the pattern 

where the surrounding pixels are darker than the central pixel. 
Sc_bright feature measures the frequency of occurrence of 
pattern in Fig. 3(a) in the image and is given by TUS(t = 
6560). Sc_equal and sc dark are similarly defined based on 
the patterns in Fig. 3(b) and (c) respectively and are given by 
TUS(3280) and TUS(0). 

 
 
 
 
 
 
 
 
 
 

 
ii. Alternating contrast 
Alternating contrast (ac) features measure the frequency of 

occurrence of local patterns in which the brightness of the 
surrounding pixels alternates between being brighter and 
being darker than the central pixel. There are six such possible 
configurations as shown in Fig. 4. 

 

 

            Fig.  3.  Alternating Contrast Patterns 
 
These are grouped into two groups of three each. ac_bright 

is the collection of patterns in which the 4-connected 
neighbours are brighter than the remaining pixels while 
ac_dark refers to alternating patterns in which they are darker. 
ac_bright consists of patterns (a), (c) and (e) given by 
TUS(2460), TUS(4920) and TUS(5740) respectively. ac dark 
refers to patterns (b), (d) and (f) given by TUS(820), 
TUS(1640) and TUS(4100) respectively.  
 
ac_bright = TUS(2460) + TUS(4920) + TUS(5740) 
ac_dark = TUS(820) + TUS(1640) + TUS(4100) 
 

iii. Vertical and horizontal contrasts 
 
Vertical contrast (vc) feature measures three groups of 

vertical stripes, vc_bright, vc_equal and vc_dark shown in 
Figs. 5(a), (b) and (c) respectively. x is one of 0, 1 or 2. In 
each group, one of the possible values of x makes the 
configuration identical to surrounding contrast feature. For 
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example, if x = 2 in Fig. 5(a), then the configuration is the 
same as that of sc_bright. Therefore, the possible number of 
patterns for vc_bright, vc_equal and vc_dark each is two and 

 
 

 
  
 

    
      (a)                     (b)                           (c)  
 

   Fig.  4. Vertical  Contrast   Patterns 
 

vc feature is a summation of the frequencies of occurrence 
of these six patterns. 

vc_bright = TUS(6068) + TUS(6314) 
vc_ equa l = TUS(3034) + TUS(3526) 
vc _dark = TUS(246) + TUS(492) 

 
Horizontal contrast (hc) measures the frequency of 

occurrence of horizontal stripes in an image. The brightness 
of the central pixel is compared against that of the pixels in the 
previous and succeeding rows. If the neighbouring pixels are 
all brighter than the central pixel, then we define a hc_bright 
pattern. Similarly, we define hc_equal and  hc_dark patterns. 
The three patterns and possible configurations are 90◦ rotated 
versions of vertical contrast patterns. The horizontal contrast 
features are computed from the TUS as 

hc_bright = TUS(2132) + TUS(6533) 
hc _equal = TUS(1066) + TUS(5494) 

          hc_dark = TUS(2214) + TUS(4428) 
 
  In summary, we define four sets of useful patterns easily 
computable from the texture unit spectrum, viz., surrounding 
contrast, alternating contrast, vertical and horizontal 
contrasts. In each category, with the exception of alternating 
contrast, there are three sub-classes of patterns depending on 
whether the neighbouring pixels are brighter, equal in 
brightness, or darker than the central pixel. There are only two 
sub-classes in alternating contrast feature and that gives a total 
of 11 features based on the visually observable texture 
patterns in 5 × 5 windows. 

iv. Contrast Patterns In 5 × 5 Windows 

In this section, we define a new set of patterns on 5 × 5 
windows based on contrast variations rather than intensity.     

We consider the four major directions: 00 , 450 , 900  and 

1350 . Contrast is measured by the difference in the sums of 
intensities of pixels lying on either side of a line drawn in the 
specified direction through the centre of the 5×5 window. For 

example, contrast at 450  is measured as shown in Fig. 6. Ai 
are always to the left as we walk in the direction of the line. 
Contrast is then reduced to three categories: bright, equal or 
dark depending on whether it is greater than, equal to or less 
than 0. In practice, contrast is considered equal if the 
difference is less than a predefined tolerance factor  expressed 

as a percentage of ai . Thus, each window in the image is 

characterized by the four directional contrast categories. 

Contrast features for the image are given by the frequency of 
occurrence of each of the 12 categories: three each 
(bright,equal and dark) in the four directions, and thus form a 
12- dimensional feature vector. In an M × N pixel image, 
there are (M−2)×(N−2) windows each contributing to all the 
four contrast features such that the sum of frequencies of 
bright,equal and dark categories for any direction is 
(M−2)×(N −2). 

Table 4 : Matrix Values 
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=
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                    Fig.  6. Calculating contrast at 450  
      

Along each angle, values are calculated so as to indicate the 
number of 5 x 5 pixel regions in that section, where the upper 
half of that region is brighter (or darker) than the lower half, 
where the left half of that region is brighter (or darker) than 
the right half, where the half to the left diagonal is brighter (or 
darker) than the other half, where the half to the right diagonal 
is brighter (or darker) than the other half, and where the two 
portions in consideration are almost same( with a 10% 
difference). When all these calculations are complete, we get 
our twelve texture features representing the total number of 
bright, equal and dark regions along the four different angles. 
Thus, now the feature vector for one section of an image is 
computed, and it is represented by 18 values. Similarly, the 
vectors are computed for all the remaining eight sections. 
Thus, the feature vector for an image comprises (18 x 9) 162 
values. Similarly, the feature vectors for all other images in 
the database are computed and stored. 

D. Similarity Measures 

The distance between feature vectors is calculated using 
two methods: 

• Square root (Euclidean distance) 
• Absolute value (Manhattan distance) 

The results produced by these two methods can be 
different, hence the results produced by each method are 
displayed to the user is separate areas. 

If q = 1, d is Manhattan distance  
 

    d(i,j)  = |x1i -x 1j |+|x 2i -x 2j |+ …+|xip - x jp |  
                      (7)   
  If q = 2, d is Euclidean distance 

 

d(i,j) =                     
                       (5) 

                    (8) 
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Where   i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are 
two p-dimensional data objects, and q is a positive integer. 

V. RESULTS  

A.   Query-By-Example : Whole Image: 

 When the user opts for Query-By-Example, he chooses or 
presents an example-image, or a query-image. The query can 
now relate to the whole image, or only to a section or sections 
of the image. In all cases, the feature-vector representing the 
query image is automatically retrieved from the database 
values. If the query is with respect to the whole image, all the 
162 feature values of each image in the database are retrieved 
and used to calculate the distance of the database image with 
the query image. Finally, when the distances for all the images 
in the database are calculated, the top 7 images with the least 
distance are displayed as results. As such, for the 
whole-image query, very few inconsistencies have been 
reported. The approach works very well for finding similar 
images, when considering the whole images except for a very 
rare occurrence of a not-so-relevant image.  

 

 
 

Fig 5:Results of Query-By-Image, when query is  
              with   respect to the whole image 
 

When the user clicks on the “Find Images” button, the 
similarity metrics are performed, and the results are displayed 
to the user in two separate panes. The results in the first pane 
are the matches according to square root method, and those in 
the second pane are according to absolute value method. 

B.   Query-By-Example : Part or parts of image 

  If the user wishes to query with respect to sub-images, i.e., 
part (or parts) of image, the following five options are 
presented.  

• One selected section of query-image Vs All 
sections of database-images 

• One selected section of query-image Vs All 
sections of database-images, as well as the 
database-image as a whole 

• An adjacency-pattern of query-image Vs All 
possible adjacency patterns in the 
database-images 

• A two-section-diagonal-pattern in query-image Vs 
All possible two-section-diagonal-patterns in the 
database-images 

 In the case of sub image retrieval, query-image is visually 
divided into nine sections, or sub-images. The user can select 

the sections with regard to which the images are to be 
compared. In case of the first two options, the user should 
select only one section in the query image. For the third 
option, user should select exactly two sections, which may or 
may not be adjacent to each other. For the fourth option, 
diagonal sections (which should essentially be adjacent) 
should be selected. Violation of any of these 
Query-image-section-selection rules produces results which 
are not correct. For the ease of query-processing with respect 
to sections, each section is represented as a Rectangle object. 

C.  Query Processing for One Section Vs All Sections  

If the user selects one section in the query-image, and 
wishes to find those images in the database in which the 
features of any one of the nine sections are similar to those of 
the selected section of the query-image.  The features of the 
selected section are retrieved by just identifying the index of 
the section which is selected.  

For each image in the database, distance of each section 
with the selected section of the query-image is calculated, and 
the distance value of the section with the least distance is 
saved. 

 
Figure 6 : Results of Sub-image query, w. r. t. one selected 

section of the query image 
 
One section of the query image is to be selected by the user, 

and then the user has to click on the “Find Images” button. If 
the user selects more than one section for this query, the 
results displayed will be misleading. 

D. Query Processing for One Section Vs All Sections and 
Whole-Image  

In this section, we compared with all the nine sections of 
each image in the database, and also the with the image as a 
whole, as there may be cases in which the selected section of 
the query image can be in the form of images in which that 
selected section itself appears spanning the entire image.  

 Consider a query-image and a section of that image is 
selected by the user, to find images in the database, in which 
either a section is similar to the selected section or as such, the 
image as a whole is more similar to the selected section, than 
the individual sections that make up the image. To process 
such query, consider a database image D1, comprising nine 
section s1, s2, s3 … s9. The distance of each section, s1 thru 
s9, with the selected section is computed, and the section si 
with the least distance is temporarily chosen as the 
representative distance (tmpDist) for that image D1. Further, 
the feature vector of 162 floating point values representing D1 
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is normalized to a feature vector of just 18 features, by 
summing up all values representing the same feature and 
dividing the sum by 9. Now, the distance of this normalized 
feature vector with the selected section feature vector is 
computed. If this distance is less than the tmpDist computed 
above, then it means that this image D1, as a whole, is more 
similar to the selected section of the query-image, than the 
individual sections of D1. An example of the application of 
this query can be as follows:  

  A car appears in a section of a query-image. There might 
be many images in the database, which have a car. Besides, 
there can be an image such that the entire image is just a car, 
each section representing just a part of the car. To enhance the 
chance of such database-image to be retrieved as a result, the 
above functionality is provided. The following test result 
represents the method called when the user query is with 
respect to one section of query-image and all sections of the 
database images, as well as whole images. 

  It has been surprisingly observed that the results 
produced by this query are just the same as those produced by 
the query relating to one section vs. all sections. After a brief 
discussion, we were able to conclude that in any image in the 
database, the image whose normalized features are more close 
to the features of the selected section of the query-image is 
essentially close to the selected section because of the 
presence of a section which is very close to the selected 
section. 

 
The user has to select a query from the list available and the 

number of sections selected should be in conformance with 
the type of query selected. Else, the results will be wrong. For 
example, if the user selects “One with all” query, then he 
should select only one section in the query-image.  

E.  Query processing for two selected sections of 
query-image Vs All possible adjacent two section pairs in the 
database-images 

This query and the next query can process requests where 
the user is trying to find images in the database in which a 
specific pattern from two or more selected sections of the 
query image can be found. The use of this particular query is 
to find more subtle patterns in the database-images.  

In the query-image, the user selects two non-adjacent (or 
adjacent) sections, and desires to find images in the database 
in which these two sections appear adjacently. For example, 
the user selects two sections in query image, such that one 
section has water, and the other section has some buildings. 
The interpretation of this query is that the user wishes to find 
images in the database such that water and buildings appear in 
adjacent sections. The important characteristic of this 
particular query is that the adjacency can be between sections. 
As such, for an image of 9 sections as follows, there can be 20 
pairs of adjacent sections which are mentioned in Table1. 

 From the above diagrammatic representation of the nine 
sections of an image, it can be easily observed that the 
sections which are adjacent to each other and form pairs are as 
follows: For example, section 2 , section 4 and section 5 are 
adjacent to section 1. Similarly adjacent sections are 
calculated for all sections.  

It is worth noticing that a pair of section1 and section2 is as 
good as a pair of section2 and section1 and hence only one 
such pair is considered. 

For any two selected sections of the query image, (adjacent 
or non-adjacent) this query processing involves the 
comparison of the aggregated features of the two selected 
sections of the query-image with all the possible 20 pairs of 
adjacent sections of each database image. When the user 
selects the two sections, the aggregate features of these 
selected sections are calculated by just adding up the 
respective features of the same index. Thus, we have an array 
of 18 floating point values representing the selected sections.  

 Consider an image in database as D1. There can be 20 
pairs of adjacent sections (as mentioned above). For each pair 
of adjacent sections in the database image, we compute an 
aggregate feature vector as representing those two adjacent 
sections. Thus, we have 20 such feature vectors for D1. Of 
these twenty pairs of adjacent sections, we find the one with 
the least distance with respect to the selected adjacent sections 
of the query image. This operation is performed for each 
image in the database, and the top 5 database-images with the 
least distance representative values are retrieved and 
displayed to the user as matching images to his query.   

The following test result represents the output produced 
when the user query is with respect to two sections of 
query-image and all possible two-adjacent sections of the 
database images.  Here again, it is imperative that the user 
select exactly two sections. The misleading results produced 
in case of selecting more or less than two sections are 
summarized in the following test results description.  

 
Figure 7 : Results of Sub-image query, w.r.t. two selected 

adjacent sections of the query-image 
 
This screen appears when the user chooses the “Diagonal 

Pattern, Occurring Diagonally” option from the ComboBox, 
selects two diagonally adjacent sections in the query-image, 
and clicks on the “Find Images” button. If the user selects two 
sections, which are not diagonally adjacent, it is sure to 
produce wrong results. 

F. Query Processing  for a two-section-diagonal-pattern in 
query-image Vs all possible two-section-diagonal-patterns in 
the database-images 

This query is more specific than the previous query where 
the pattern of the selected sections of the query-image can 
appear in any pair of adjacent sections in a database image. 
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This query finds patterns only in diagonals, and the selected 
pattern of the query image should also be a diagonal pattern. 
To make it clear, the query image (and in fact any image ion 
the database) can have a two-section diagonal selection. 

 In the query-image, the user selects two essentially 
adjacent sections, and that too sections which are in diagonal 
order, and desires to find images in the database in which 
these two sections appear as diagonal sections. For example, 
the user selects two sections in query image, such that one 
section has water, and the other section has some buildings. 
The interpretation of this query is that the user wishes to find 
images in the database such that water and buildings appear in 
diagonally adjacent sections. The important characteristic of 
this particular query is that the diagonal adjacency can be 
between sections. As such, for an image of 9 sections as 
follows, there can be 8 pairs of diagonally adjacent sections 
which are mentioned in Table1. 

  From the figure 7,  representation of the nine sections 
of an image, it can be easily observed that the sections which 
are adjacent to each other and form diagonal pairs are as 
follows , for example , section 5 is diagonal section for section 
1. Similarly diagonal sections are calculated for sub image 
blocks. 

It is worth noticing that a pair of section1 and section5 is as 
good as a pair of section5 and section1 and hence only one 
such pair is considered. 

For any two selected sections of the query image, 
(essentially diagonally adjacent) this query processing 
involves the comparison of the aggregated features of the two 
selected sections of the query-image with all the possible 8 
pairs of diagonally adjacent sections of each database image. 
When the user selects the two sections, the aggregate features 
of these selected sections are calculated by just adding up the 
respective features of the same index. Thus, we have an array 
of 18 floating point values representing the selected sections.  

 Consider an image in database as D1. There can be 8 
pairs of diagonally adjacent sections (as mentioned above). 
For each pair of diagonally adjacent sections in the database 
image, we compute an aggregate feature vector as 
representing those two adjacent sections. Thus, we have 8 
such feature vectors for D1. Of these eight pairs of diagonally 
adjacent sections, we find the one with the least distance with 
respect to the selected adjacent sections of the query image. 
This operation is performed for each image in the database, 
and the top 5 database-images with the least distance 
representative values are retrieved and displayed to the user as 
matching images to his query.  

The following test result represents the output produced 
when the user query is with respect to two diagonally adjacent 
sections of query-image and all possible two-diagonally 
adjacent sections of the database images.  Here again, it is 
imperative that the user select exactly two sections, and these 
selected sections be diagonally adjacent. The misleading 
results produced in case of selecting more or less than two 
sections or selecting sections which are not diagonally 
adjacent are summarized in the following test results 
description. 

  

 
 
Fig 8: Results of Sub-image query, w.r.t. two selected  
         diagonally-adjacent sections of the query-image. 
 
This particular test result produces null results. This is the 

only query which actually produces “null” as results in 
response to wrong selection of sections by the user. Results of 
Sub-image query, w.r.to. two selected sections of the 
query-image. 

 
 The two sections selected by the user are compared with 

all possible two-adjacent section pairs in the database. This 
type of query can enhance our capability to locate patterns. 

 
Table 3 .Performance of different colour spaces for a test 

set of 10 images taken from the first database. 
  

RGB HSV  
 
 
  Query          
  Image 

No. Of  
images 
Retriev

ed 
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retrieve

d 
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(%) 

 
No.of 

relevent 
Images 
retrieve

d 

 
 

Precisi
on 
(%) 

Query 1 24 16 62.5 19 77.66 

Query 2 24 20 68.83 22 80.00 
Query 3 24 18 65.00 20 78.00 
Query 4 24 20 63.33 18 76.33 

Query 5 24 15 60.83 20 78.32 
Query 6 24 20 71.63 21 79.33 
Query 7 24 14 50.33 18  77.00 

Query 8 24 20 65.83 22 80.10 
Query 9 24 17 57.50 20 78.86 

Query10 24 15 52.00 20 78.83 
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Table 4: the average precision using RGB, HSV and colour 
spaces for the two data sets used in testing. 

 

 
In general, we found that the three colour spaces give 

similar performance. Precision of  a  CBIR  system is defined 
as the ratio of the number of relevant images retrieved to the 
number of images retrieved.For example, in Figure 3, the 
number of images retrieved is 24 while the number of relevant 
images is 22.Precision is, thus, 22/24 = 0.92. It is often 
expressed as a percentage, and then precision is 92%. 

Table 2 gives the performance of different colour spaces 
for a test set of 10images taken from the first database. Table 
3 gives the average precision using RGB, HSV and colour 
spaces for the two data sets used in testing. It is seen that the 
performance of HSV spaces are comparable to RGB space. 
As RGB space is primarily developed for modeling colour 
hardware capabilities and the other two spaces are more 
closely related to human perception of colour, the result is 
somewhat unexpected. However, closer examination of the 
results indicate that HSV space in particular spaces give 
higher rank to images that are more similar to the query 
image. 

 

VI.   CONCLUSION 

Our proposed application performs a simple color and 
texture-based search in the image database for an input query 
image.  HSV based color features and local contrast varying 
texture features are extracted for each image in the entire 
database.  Most similar images are retrieved based on distance 
metrics like Euclidian and Manhattan distance. The retrieved 
images are displayed in decreasing order of similarity. We 
compared our retrieval results with RGB and HSV color 
features along with texture features.  Our results report that 
HSV based color features outperform than RGB features.  
The average retrieval performance for HSV based features 
tested on database1 of size 5000 images is reported as 
80.15%.  Although, we have not evaluated for sub image 
retrieval performance but results are encouraging as shown in 
the paper.  We conclude that HSV color space mimic human 
perception of colors so HSV color space features are best 
suited for applications like CBIR where human evaluation is 
involved. 
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     Average Precision (%)  

 
       RGB                              HSV    

Dataset1 67.08 80.15 

Dataset2 67.04 78.88 
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