
Regular Real Analysis

Swarat Chaudhuri
Rice University

swarat@rice.edu

Sriram Sankaranarayanan
University of Colorado, Boulder

srirams@colorado.edu

Moshe Y. Vardi
Rice University

vardi@cs.rice.edu

Abstract—We initiate the study of regular real analysis,
or the analysis of real functions that can be encoded by
automata on infinite words. It is known that ω-automata
can be used to represent relations between real vectors,
reals being represented in exact precision as infinite
streams. The regular functions studied here constitute the
functional subset of such relations.

We show that some classic questions in function analysis
can become elegantly computable in the context of regu-
lar real analysis. Specifically, we present an automata-
theoretic technique for reasoning about limit behaviors
of regular functions, and obtain, using this method, a
decision procedure to verify the continuity of a regular
function. Several other decision procedures for regular
functions—for finding roots, fixpoints, minima, etc.—are
also presented. At the same time, we show that the class of
regular functions is quite rich, and includes functions that
are highly challenging to encode using traditional symbolic
notation.

I. INTRODUCTION

Real analysis is the branch of mathematics dealing
with real numbers and functions over these. In par-
ticular, real analysis studies analytic properties of real
functions and sequences, including convergence and
limits of sequences of real numbers, the calculus of
the real numbers, continuity, smoothness and related
properties of real-valued functions. Calculus is a branch
of real analysis that focuses, in essence, on the compu-
tational aspects of real analysis. The notation underlying
calculus has evolved primarily to facilitate symbolic
computation by hand. Therefore, the notation based on
polynomials, ratios, radicals, exponentials, logarithms,
and the like is intimately familiar to us.

While the standard notation of calculus continues
to serve well for numerous applications to the natural
sciences, there are at least two reasons why alternative
representations of real functions are of interest. First,
the traditional notation finds it difficult to express many
natural functions. Consider for example the Cantor
function, which: (A) takes an input x ∈ [0, 1] expressed

This research was supported by NSF grants CCF-1156059 (CA-
REER), CCF-1162076, CNS-0953941 (CAREER), CNS-1049862,
and CCF-1139011; NSF Expeditions in Computing project 1139011;
BSF grant 9800096; and a gift from Intel.

in base 3; (B) if x contains a 1, then replaces every digit
after the first 1 by a 0; (C) replaces all 2s with 1s; and
(D) interprets the result as a binary number, and returns
this number (Cf. Example 1 and Fig. 2). Aside from
being among the most well-known examples of fractal
functions, this function is a frequently-cited example
of a real function that is uniformly continuous but not
absolutely continuous. At the same time, it is difficult to
express this function in traditional analytical notation;
neither is it easy to use the traditional calculus to infer
its nontrivial analytical properties (e.g., continuity).

Second, even for the functions that the traditional
notation can express, automated mathematical reasoning
can pose a challenge. Consider the triangle waveform
(Fig. 1), a fundamental class of waves in electrical engi-
neering. Analytical representations of the characteristic
function ∆(x) of a triangular wave with period 2 and
varying between −1 and 1 include

∆(x) =
2

π
sin−1[sin(πx)]

= 1− 4|1/2− frac(x/2 + 1/4)|

where frac(x) is the fractional part of x. However, we
do not know of any natural, efficient procedure for
deciding properties such as the continuity of expessions
involving sin−1(·), sin(·) or frac(·).

In this paper, we study an alternative, finite represen-
tation of functions of type Rk → Rl as automata on
infinite words. Functions expressible this way will be
called regular real functions.

It is well known that automata on infinite words can
represent regular relations over real numbers, encoded
as infinite streams of digits. Such representations have
been used, for example, to develop decision procedures
for real addition [1] and ω-automatic structures [2]. Our
idea is to represent real regular functions as regular
functional relations on the reals.

This new notation is quite conducive to efficient
automated analysis. Indeed, the study of such automated
analysis algorithms, rather than the expressiveness of the
automata-based notation, forms the primary focus of this
paper. Our central technical contribution is an automata-

Figure 1. The triangle wave function.

theoretic technique for reasoning about limit behaviors
of regular functions, which we apply in a PTIME
(O(n4)) decision procedure for verifying that a regular
function is continuous. The same procedure can verify
in PTIME that a regular function enjoys K-Lipschitz-
continuity, a strong form of uniform continuity that
implies differentiability almost everywhere. A corollary
is that a continuous regular function is also Lipschitz-
continuous. With minor modifications, the procedure
can approximate, up to a constant factor, the optimal
K for which the function is K-Lipschitz.

We also give an O(n2)-time procedure for deciding
the continuity of regular functions that can be repre-
sented by deterministic automata. Finally, we present
procedures for linear rational arithmetic over functions,
inverting a function, finding a function’s roots and fixed
points, and globally optimizing a function.

At the same time, we show our automata notation
allows the encoding of functions that are extremely
challenging to describe in a symbolic notation. For
example, the Cantor function is now represented as a
simple automaton that operates on inputs encoded in
base 3 and generates outputs encoded in base 2. Other
functions in this category include functions defined on
fractals such as the Cantor set, and functions that mask
bits in their real-valued inputs. The representation also
allows the simple encoding of some functions like the
triangle waveform that are expressible in the traditional
symbolic notation, but not in a way that is amenable to
automated symbolic reasoning.

The paper is organized as follows. In Sec. II, we de-
fine the class of regular real functions. Sec. IV, our main
technical section, presents our decision procedures. We
conclude with some discussion in Sec. V.
Related Work: Muller studied real functions computable
online by a finite automaton [3], and Konecný studied
real functions computable by finite transducers [4].
Rutten’s study [5] of power series from an automata-
theoretic perspective explored the expressive power of
automata representing analytic objects. Also, the idea
of representing exact reals by streams has been pursued
in depth [6], [7]. In contrast, expressiveness is not the

real concern of this work. Our study, instead, can be
viewed as being part of computable analysis, which
is concerned with the parts of analysis that can be
carried out in a computable manner [8]. Our focus is
on representation of functions as finite automata and
the algorithmic consequences of such a representation.

Our focus here is also different than that of automatic
structures [9], [2], [10]. In automatic structures the
focus is on relational structures where the domain and
relations can be represented by finite automata, as the
first-order theory of such structures is decidable. Here
we focus on functions that can be represented by finite
automata, and our interest is in developing algorithms
for their analytic properties.

Recently, some of us have studied algorithmic analy-
sis of real functions encoded as programs [11], [12],
[13], [14]. The procedures studied in those papers
are sound but incomplete. In contrast, here we study
analysis of functions represented by finite automata,
and obtain efficient decision procedures for problems
that are obviously undecidable in a Turing-complete
notation.

Topological notions like continuity have been previ-
ously considered [15], [16] for automata representing
functions from words to words. In particular, Carton et
al. [16] study the continuity of functions over words rep-
resented by synchronized rational relations. Our work
can be seen to study the implications of interpreting the
input and output words of such functions as reals, with
distances between them given by the Euclidean metric.

II. REGULAR REAL FUNCTIONS

In this section, we define ω-automata that recognize
functions between real vector spaces. This definition
depends on a representation of reals as infinite words;
now we define this representation.

Modeling reals by ω-words: Let β ≥ 2 be an
integer-valued base. Let the digits under this base be
d0, . . . , dβ−1, in increasing order, and let Digβ =
{d0, . . . , dβ−1}. Let value(dj) : j for j ∈ [0, β−1]. Let
positions in an ω-word be numbered 0, 1, . . . , and for
any ω-word w, let w(i) denote the symbol in the i-th
position of w. Also, for x ∈ R, let Intx,β and Fracx,β
be the unique ω-words over Digβ such that

|x| =

∞∑
i=0

βivalue(Intx,β(i))

+

∞∑
i=1

β−ivalue(Fracx,β(i− 1))

Fracx,β /∈ (Digβ)∗(dβ−1)ω

Intx,β ∈ (Digβ)∗ dω0

2

Thus, Intx,β(i) and Fracx,β(i) are respectively the i-th
least significant digit in the base-β representation of the
integer part of x, and the i-th most significant digit in
the base-β representation of the fractional part of x.

Now, let Σβ = Digβ × Digβ . Under base β, we
represent a real x by a word ρx,β = sgn · w, where:

1) sgn denotes the sign symbol. It equals the symbol
+ if x ≥ 0, and − otherwise.

2) w is the unique ω-word over Σβ such that for all
i > 0, ρx,β(i) = (Intx,β(i),Fracx,β(i)).

The set of all words ρx,β is denoted by Rβ .
To define vectors, we need some more notation. Let

k > 0 be a constant, integral dimension, let Σkβ =∏k
i=1 Σβ , and for σ = (x1, . . . , xk) ∈ Σkβ ∪ {+,−}k,

define Proj j(σ) = xj for all j. For σ1 ∈ Σk1β ∪
{+,−}k1 , σ2 ∈ Σk2β ∪ {+,−}k2 , let

〈〈σ1, σ2〉〉 = (Proj 1(σ1), . . . ,Proj k1(σ1),
Proj 1(σ2), . . . ,Proj k2(σ2)).

For words w1 ∈ (Σk1β ∪ {+,−}k1)ω and w2 ∈
(Σk2β ∪ {+,−}k2)ω , let 〈〈w1, w2〉〉 be the word w such
that for all i, w(i) = 〈〈w1(i), w2(i)〉〉. We abbreviate
〈〈w1, 〈〈w2, . . . , wk〉〉 . . .〉〉〉〉 by 〈〈w1, . . . , wk〉〉.

Now, a vector x ∈ Rk is represented by a word
ρx,β = 〈〈w1, . . . , wk〉〉 such that wi = ρx(i),β . The set
of all words ρx,β , for some x, is denoted by Rkβ . For
w ∈ Rkβ , we let [[w]] be x ∈ Rk such that ρx,β = w.

Modeling functions: We define regular functions as
restrictions of synchronized rational relations [17], or
word relations that are accepted by finite automata
operating on a product alphabet. The automata chosen
for our definition are nondeterministic, and accept via
the Büchi condition. Also, we allow the component
words of our relations to be over different bases.

Recall that a Büchi automaton over a finite alphabet
Σ is a tuple A = (Q,Σ, q0,−→, G), where Q is a finite
set of states, q0 ∈ Q is the initial state, −→⊆ Q×Σ×Q
is an edge relation, and G ⊆ Q is a set of repeating
states. We write q1

a−→ q2 if (q1, a, q2) ∈−→, and let
the size of A be (|Q|+ | −→ |). A run of A on w ∈ Σω

is a word η ∈ Qω such that: (1) η(0) = q0; and (2) for

all i, qi
w(i)−→ qi+1. The run η is accepting of some state

in G appears infinitely often in η. The language L(A)
of A is the set of words on which A has an accepting
run.

Also, let us lift the map Proj j as follows. Let w ∈
(Σmβ ∪ {+,−}m)ω , and let w1, . . . , wm be such that
w(i) = (w1(i), . . . , wm(i)) for all i ≥ 0. For 1 ≤ j ≤
j′ ≤ m, we define Proj [j,j′](w) = 〈〈wj , . . . , wj′〉〉.

Definition 1 (Function automata, regular real functions).
Let β and γ, both positive integers greater than 1,
respectively be the input base and the output base. Let
k, l > 0 be integral dimensions. A function automaton
of type Rk → Rl and over bases (β, γ) is a nondeter-
ministic Büchi automaton over (Σkβ ×Σlγ)∪{+,−}k+l
such that the following conditions hold:

(1) for all inputs w ∈ Rkβ , there is at most one output
w′ ∈ Rlγ such that 〈〈w,w′〉〉 ∈ L(A); and

(2) for all inputs w ∈ Rkβ , there exists an output w′ ∈
Rlγ such that 〈〈w,w′〉〉 ∈ L(A).

The (analytical) semantics of A is the function [[A]] :
Rk → Rl such that for all x ∈ Rk,y ∈ Rl,

[[A]](x) = y iff 〈〈ρx,β , ρy,γ〉〉 ∈ L(A).

A function f : Rk → Rl is regular under input base β
and output base γ iff it is the analytical semantics of a
function automaton as above.

Our definition of regular functions is naturally gen-
eralized to one where different components of the input
and output vectors of a function are coded in different
bases. All the results of this paper hold even under this
generalization. However, to keep our notation simple,
we continue working with Definition 1.

We will also find useful a definition of regular sets of
real vectors. Let us fix a base β. We let an automaton
over (length-k) real vectors be a Büchi automaton V
such that L(V) ⊆ Rkβ . The semantics of V is the set
[[V]] such that [[V]] = {x : ρx ∈ L(V)}. A set of real
vectors is regular under base β if it equals [[V]], for some
automaton V as above.

Recognizing sets and functions: The recognition
problem for regular functions (similarly, regular sets
of real vectors) is to determine, given an arbitrary
Büchi automaton A, whether A is a function automaton
(similarly, automaton over real vectors). We have:

Theorem 1. The recognition problem for regular sets
of vectors can be solved in O(n2) time. The recognition
problem for regular functions is in PSPACE.

Proof: (Sketch) We sketch a proof of the second
statement. Given an automaton Ain, we construct an
automaton A that only runs on words of form 〈〈w1, w2〉〉
where w1 ∈ Rkβ , w2 ∈ Rlγ , and accepts such a word iff
Ain does. This is done by intersectingAin with k copies
of an automaton recognizing words in Rβ that represent
valid real number encodings and l copies of Rγ that
represent valid words in base γ. To check if condition
(1) in Definition 1 holds, we construct a product A′ that

3

s0start s1

(2), (1)

(0), (0)

(1), (1)

(∗), (0)

Figure 2. (Top) A plot of the cantor function on the [0, 1) interval.
(Bottom) A regular function representation with input base 3 and
output base 2. The integer part since the inputs are in the [0, 1)
interval. Each edge is labeled by a pair (i), (j) where i is the base 3
input bit and j is the base 2 output bit. ∗ denotes a don’t-care digit
(0, 1 or 2)

operates over the alphabet Σk+2l and satisfies

L(A′) = {〈〈w1, w2, w3〉〉 : 〈〈w1, w2〉〉 ∈ L(A),
〈〈w1, w3〉〉 ∈ L(A), w2 6= w3}.

Condition (1) in Def. 1 holds iff the language of this
automaton is empty, which can be checked in quadratic
time. To check condition (2), we construct an automaton
A′ such that L(A′) = {w : ∃w′.〈〈w,w′〉〉 ∈ L(A)},
then check that A′ contains the language Rkβ of all valid
words encoding real valued k−vectors.

III. EXAMPLES

In this section, we present some regular functions,
showcasing some functions that can be represented
succinctly by automata, but are challenging to describe
in traditional symbolic notation.

Example 1 (Cantor function). Consider the Cantor
function CF (x), which is a popular example of a
fractal function and a function that is uniformly but not
absolutely continuous, and is defined as follows:

1) Express x in base 3.
2) If x contains a 1, replace every digit after the first

1 by 0.
3) Replace all 2s with 1s.
4) Interpret the result as a binary number. The result

CF (x) is this number.
A plot of CF (x) is provided in Fig. 2. It is easy to
express CF (x) by a function automaton over input base
3 and output base 2—the automaton is shown in Fig. 2
as well.

Example 2 (Modified Cantor Set). Consider the Cantor
set, defined informally as the limit of the following
recursive subdivision process:

1) Start with an interval [n, n+ 1) where n ∈ Z.

s1

s0start

s2

(∗, 0),
(0, 0)

(∗, 0),
(0, 0)

(∗, 1),
(0, 0)

(∗, 1),
(0, 0)

t1

t0start t3

t2

(b, 0),
(b, 0)

(b, 0),
(b, 0)

(b, 1),
(b, 1)

(b, 1),
(b, 1)

(b, 1),
(b, 1)

(b, 0),
(b, 0)

(b1, b2),
(b1, b2)

Figure 3. Automaton representing a function fC which is non-zero
outside the modified Cantor set. Note that that we have two start states
s0 and t0. Each transition is labeled as (i, r), (i′, r′) where (i, r)
represents the integer and fractional parts of the input; and (i′, r′)
represents integer/fractional parts of the output. Here b denotes a 0
or 1 bit that has the same value in the input and output. We omit the
transitions reading the sign of the input.

Figure 4. (Left) Function fC on the modified Cantor set and (Right)
A bitmasking function applying xi ∧ xi−1 on successive bits of the
binary expansion.

2) For each interval [`, u) ⊆ R encountered, we
recursively apply the procedure on intervals [`, `+
(u−`)

4) and [`+ 3(u−`)
4 , u).

Let C be the set obtained in the limit, which we will
call the modified Cantor set. The set C is represented
by real numbers r such that the fractional parts of the
binary expansion of r lies in the language (00|11)ω .

Consider the following piecewise function fC :

fC(x) =

{
x if x 6∈ C
0 otherwise

Figure 3 shows an automaton with input base 2
and output base 2 that recognizes the function fC .
Note that the automaton has two start states, and uses
nondeterminism to guess upfront whether the input is
expected to belong to C or otherwise.

Example 3 (Triangle waveform). Consider the triangle
waveform ∆(x) (Fig. 1) with period 2 and varying
between −1 and 1. One definition of this function is

4

∆(x) = 1− 4|1/2− frac(x/2 + 1/4)|, where frac(x) is
the fractional part of x.

This function is easily encoded using an automaton A
with input and output bases 2. Note that there is a simple
automaton encoding the absolute value function | · |: it
just reads the sign of the input x and switches it from −
to + if needed. An automaton for frac(x) is also easy
to construct. Now we construct A using procedures for
composing and doing arithmetic over regular functions
that we give in Sec. IV.

Example 4 (Bit Masking Functions). Consider the
function that operates on the binary expansion of the
fractional part by setting the value of the current bit
f ′i of the output to be fi ∧ fi−1. Likewise, for the
integer part, we have b′i ← bi ∧ bi+1. The boundary
case for i = 0 for the fractional part is handled by
setting f ′0 ← f0 ∧ b0. Figure 4 plots this function over
a range of inputs in (−16, 16). Note the fractal (self-
similar) nature of this function. In fact, such functions
which are readily expressible by finite state machines
defy an easy analytical closed form characterization in
terms of familiar algebraic or transcendental functions.

IV. A CALCULUS OF REGULAR REAL FUNCTIONS

This section presents our “calculus”: a set of deci-
sion procedures for reasoning about regular functions.
The central contribution here is an automata-theoretic
method for reasoning about limit behaviors of regular
functions, which we apply in a decision procedure to
verify the continuity of a regular function f (Sec. IV-B).

A. Elementary operations

We start by giving procedures for some elementary
operations on regular functions. Our first procedure is
for composing two regular functions:

Theorem 2 (Composition). Given function automata
A1 and A2 over the same input/output bases, one can
construct in O(n2) time a function automaton A such
that [[A]] = [[A1]] ◦ [[A2]].

Proof: We first add an extra input to A1 to yield
A′1 that operates over a triple 〈〈w1, w, w2〉〉 by simply
ignoring w2 and accepting the input if 〈〈w1, w〉〉 is
accepted by A1. Likewise, A′2 is obtained by adding
an extra input so that 〈〈w1, w, w2〉〉 is accepted by A′2
iff 〈〈w,w2〉〉 is accepted by A2. We intersect A′1 and A′2,
and project the middle input w. This yields the required
function composition.

A variant of the above construction shows that:

Theorem 3 (Application). Let A be an automaton
accepting f : Rk → Rl, and V an automaton encoding

a set S of length-k vectors such that the input base of
A equals the base of V . The set f(S) is regular, and
an automaton for it can be constructed in O(n2) time.

Regular functions are closed under linear arithmetic
operations of addition, subtraction and scaling by ra-
tionals. These results are interesting given that it is
known that addition over rationals is not expressible
using automata over finite words [18]. Recent work
by Abu Zaid et al. demonstrates the surprising result
that if for any chosen representation for real numbers
addition is ω−automatic then multiplication is not, and
vice-versa [19]. It follows that regular functions are
not closed under multiplication under the representation
chosen in this paper.

Theorem 4. Given function automata A1 and A2 over
the same input/output bases, one can construct in O(n2)
time function automata A+ and A− such that [[A+]] =
[[A1]] + [[A2]] and [[A−]] = [[A1]]− [[A2]].

Theorem 5. Given a function automaton A1 and a
rational scalar x (encoded in the same base as the input
base of A1), one can construct in O(n2) time a function
automaton A such that [[A]] = x[[A1]].

B. Reasoning about limit behaviors: Continuity and
Lipschitz-continuity

Classical analysis is fundamentally the study of limit
behaviors of functions. Now we present the centerpiece
of this paper: an automata-theoretic method for rea-
soning about limit behaviors of regular functions. We
show our method in action by using it in a PTIME
decision procedure for verifying continuity, the most
fundamental of analytic properties. The same procedure
can decide Lipschitz-continuity.

For simplicity, we restrict ourselves here to regular
functions of type (0, 1) → (0, 1).1 Such functions can
be represented by automata that make sure that the
integral parts of the input and output are always of the
form (d0)ω . In fact, we assume that these integral parts,
as well as the initial sign bit, do not exist at all—i.e.,
a real is just represented by an infinite word over the
set of digits Dig. A function is then represented by
an automaton over the alphabet Dig ×Dig, where the
first component represents the input bit and the second
component represents the output.

Definition 2 (Continuity, Lipschitz). A function f :
(0, 1) → (0, 1) is continuous at y ∈ (0, 1) if
limx→y f(x) = f(y). By an alternate definition,

1This assumption is only for simpler exposition. Our results extend
to general regular functions f : Rk → Rl.

5

f is continuous if for any sequence {xn}n∈N of
points in (0, 1), we have limn→∞ xn = y =⇒
limn→∞ f(xn) = f(y). By yet another definition (the
Weierstrass definition), f is continuous at y if

∀ε > 0 : ∃δ > 0 : ∀x :
y − δ < x < y + δ ⇒ f(y)− ε < f(x) < f(y) + ε.

The function f is K-Lipschitz (or Lipschitz-
continuous with Lipschitz constant K) if for all x, y ∈
(0, 1) such that x 6= y, |f(x)−f(y)||x−y| < K.

It is well-known that for any function f , if f is
Lipschitz-continuous, then f is continuous everywhere.

Now note that a decision procedure for continuity of
regular functions follows from the Weierstrass defini-
tion: because regular functions are closed under addition
and Büchi automata permit elimination of quantifiers
over words, we can construct an automaton accepting
the set of points at which a function is continuous.
However, due to quantifier alternation in the definition,
the complexity of this procedure is EXPSPACE [20]. In
contrast, the method we present is in PTIME (O(n4)).
It is completely different from the above naive approach
in that it relies on the definition of continuity in terms
of limit sequences.

Now we proceed to our decision procedure. First we
give a fast, O(n2)-time procedure for the case when the
automaton encoding the function is deterministic. For
notational simplicity, we restrict ourselves in the rest of
this section to the case where the input and output bases
are both 2. However, the results are easily extended to
general input/output bases.

1) Continuity Analysis: Deterministic Automaton:
Let us define deterministic function automata in the
standard way. For a deterministic automaton A, and
reachable state s, let outs(w) represent the output real
number obtained for the input string with fractional part
w and integer part 0ω , with the automaton initialized to
state s.

Theorem 6. The function represented by A is contin-
uous if and only if for every reachable state s in A,
outs(01ω) = outs(10ω).

The reader may notice that the fractional part 01ω

in base 2 does not represent a valid real number.
However, this fact is immaterial to our theorem. The
fact that the automaton is deterministic means that it
produces outputs for αi : 01i0ω for each i ∈ N.
We can invoke pumping lemma and the properties of
deterministic Büchi languages to show that A must
necessarily produce some output for the string 01ω

starting from any reachable state s. Continuity analysis

concerns this output. We now provide a proof of the
theorem above, starting with the forward direction.

Lemma 1. If there exists a reachable state s of A such
that for strings α : 01ω and γ : 10ω , outs(α) 6=
outs(γ) then the function f is discontinuous.

Proof: Consider the sequence of inputs αi :
0(1)i0ω for i = 1, 2, . . . ,∞. We note that since A is
deterministic, the output produced by A starting at state
s when fed the string αi will coincide with the output
from α upto i or more places. Let the output from α
and γ deviate after N digits. Due to determinism we
conclude that the outputs for αN+1, αN+2, . . . deviate
from the output for γ.

Now let π be some finite prefix that allows us to reach
the state s starting from the initial state s0. Consider the
real value represented by x : (πγ) and the sequence of
real values represented by xi : (παi). We note that xi →
x as i→∞. However, |f(xi)− f(x)| > 2−(1+N+|π|).
Therefore, f is discontinuous at x.

We now prove the other direction of the implication.
We note that, in general, every discontinuity of f is
witnessed by the input r and a sequence x1, x2, . . .
such that xj → r as j → ∞ and f(xj) 6→ f(r). The
following claim is quite useful in proving the reverse
direction. Let wr be the word in (0+1)ω that represents
r and zj represent xj .

Lemma 2. Assume that wr has infinitely many 0s
and infinitely many 1s. For any sequence xj → r,
let Kj ≥ 0 be the length of the longest common
subsequence between the ω-words zj and wr. It follows
that Kj →∞ as j →∞.

Lemma 3. If f is discontinuous at r then r must be
represented by a string of the form π0ω .

Proof: We split cases on wr, the word representa-
tion of r. (case-1) wr has infinitely many zeros and
infinitely many ones. From Lemma 2 above, zj and
wr coincide to arbitrarily many positions as j → ∞.
Therefore, the determinism of A guarantees that a dis-
continuity cannot occur at r since if the inputs coincide
to Kj places, then so must the outputs.

(case-2) The only possible case is that wr has finitely
many 1s (finitely many zeros is not a possible represen-
tation of a real). Therefore r must be represented by a
string of the form π0ω .

Finally, we can prove the reverse direction.

Lemma 4. If a function is discontinuous then there
exists a reachable state s of A such that outs(10ω) 6=
outs(01ω).

6

Theorem 6 extends to bases β ≥ 2. For base 3, we
require that at each state the outputs for the string α1 :
10ω coincide with γ1 : 02ω , and the output for α2 : 20ω

be equal to γ2 : 12ω .

Example 5. Consider the automaton for the Can-
tor function from Example 1 (see Fig. 2). We ver-
ify continuity by comparing the output on states s0
and s1 for the strings αj , γj for j = 1, 2. State
s1 has an output 0ω regardless of the input. For s0,
outs0(10ω) = 10ω and outs0(01ω) = 01ω . Both 10ω

and 01ω are binary representations of 1
2 (we ignore the

fact that the latter input/output pair are disallowed in
our formalism). Next, we observe that outs0(20ω) =
10ω and outs0(12ω) = 10ω . Therefore, we verify that
the Cantor function is continuous.

Theorem 7. Given a deterministic regular function A
the complexity of checking continuity is O(|A|2).

2) Continuity Analysis: Nondeterministic Automata:
Now we consider continuity analysis for the more
general case where the automaton encoding a regular
function f is nondeterministic. In fact, what we give
is an automata-based construction to search for a real
number x ∈ (0, 1) at which the function is discontin-
uous. In more detail, the construction simulates two
sequences {xi} and {yi} that converge to x in the
limit as i → ∞, such that, f(xi) and f(yi) converge
to different limits, or diverge. The main technique is
to define an automaton AR that accepts a four-tuple
of reals (x, y, f(x), f(y)). The automaton’s states are
labelled by propositions to track positional differences
between the binary expansions of x, y and f(x), f(y)
respectively. A discontinuity is found when the position
of divergence between x, y can be pushed arbitrarily
far away from the radix point whereas the divergence
between f(x), f(y) can be made to stay within some
initial bound. Such a pattern is established by finding a
lasso in AR.

Our construction uses a widget automaton Aw for
tracking positional differences between two input se-
quences in Σω . This automaton recognizes a relation
over inputs x, y ∈ (0, 1). The states of Aw are par-
titioned into two sets S (standing for “Same”) and D
(standing for “Different”).
Aw has the following key property: For each input

(x, y) such that 2−(1+K) ≤ |x − y| < 2−K for some
K ≥ 0, every resulting run remains in a S state for
the first K + 1 steps and then transitions to a D state,
remaining in a D state for the rest of the run.

Formally, the language accepted by Aw is Lw =
{(x, y) | x 6= y, x, y ∈ (0, 1)}. However, more impor-

tant than the language accepted is the labeling function
performed by the run of Aw, which precisely pinpoints
the first point of difference between the sequences
representing (x, y). In this regard, we may also regard
Aw as a finite state transducer outputting a label S or
D upon encountering each bit of (x, y).

1) Consider inputs x = 010011101 . . . and y =
0010011000 We note that the first position of
difference is at the second significant digit (implic-
itly, all digits are after the radix point). Therefore,
we require each run of Aw to be of the form S2Dω .

2) On the other hand, consider the input x =
0010000ω and y = 000111 The significant
difference here is actually at the sixth digit, even
though the two inputs seem to have diverged at
the third significant place. This subtlety arises for
inputs that fit the pattern (0+1)∗10ω , wherein there
is an infinite trail of zeros. Therefore, we expect
each run of Aw upon input (x, y) to be of the form
S6Dω .

We now describe the construction of Aw. For the sake
of presentation, we do not show all the parts of the
construction, appealing instead to well known closure
properties of ω- automata.

We construct Aw by composing together the follow-
ing components:

1) Let A|x−y| represent the function automaton that
computes |x − y|. This is obtained by composing
the functions f(x, y) = (x− y) and g(z) = |z|.

2) Let A1 represent the automaton with two states
S,D, standing for same and different, respectively,
that remains in the S state as long as the input is
0 and transitions to a D state as soon as a 1 is
encountered:

Sstart D

0

1

∗

The overall automaton Aw is obtained by composing
the automaton for A|x−y| with the automaton A1 to
track the first position of difference, as explained above.
The composition is intended to simulate the computa-
tion of |x− y| by A|x−y| upon encountering x, y. The
result is fed to A1 operating on the output of A|x−y|. A
standard product construction between A|x−y| and A1

achieves the composition. The output of A|x−y| is then
projected away.

Each state of Aw is a pair consisting of a state of
A|x−y| and A1. A state of Aw is said to be a S state
if the component corresponding to A1 of the state is S.

7

Likewise, a state of Aw is said to be a D state if the
component of Aw is said to be D.

Lemma 5. For any inputs x, y, where 2−K > |x −
y| ≥ 2−(1+K) then every accepting run of Aw remains
in a S state for the first K + 1 steps and in a D state
for the remainder of the run.

Proof: Aw works (conceptually) by first computing
A|x−y| and then feeding the output to A1. Since |x −
y| is a function, the output for a given x, y is unique.
Likewise, note that A1 is deterministic. Therefore, for
a given output |x−y|, the run induced on A1 is unique.
Furthermore, if |x−y| ∈ [2−K , 2−(1+K)), then |x−y| is
of the form 0K1(0+1)ω . Therefore, A1 has a run of the
form SK+1Dω . As a result, for the overall composition
Aw, any resulting run (note that A|x−y| need not be
deterministic) has a prefix of K + 1 states labelled S
and the remainder of the states labelled as D.

The next step of the procedure constructs an automa-
ton AR representing a relation R between four real
numbers (x, y, z, w) such that:

1) z = f(x) and w = f(y). This is obtained as an
interaction between two copies of the automaton
for f , one for each of the equalities. Extra tapes
added to the first copy enforcing z = f(x), to
accommodate y, w, and likewise x, z tapes added
to the second copy enforcing w = f(y).

2) We take the product with Aw(x, y) and Aw(z, w)
to mark the positional differences between the
inputs x, y and the outputs f(x), f(y).

We label a state in the product automaton AR as
SI if the component corresponding to Aw(x, y) is a S
state and DI otherwise. Likewise, we label a state SO
if the component Aw(z, w) is part of a S state and DO
otherwise.

Informally, a state labelled SI in AR tells us that the
inputs x, y have not diverged. Likewise a state labelled
DI tells us that the inputs have diverged sometime in
the past. The same consideration applies to the SO and
DO labels.

We assume that all states in AR are reachable from
the initial state and furthermore, every state in AR can
reach a repeating cycle. States that do not satisfy these
criteria can be removed from AR without modifying its
language.

To decide if f is discontinuous, we search for a
(SI ,DO) lasso in AR—i.e., a substructure of AR with
the following components (see Figure 5):

1) A path π1 from some start state s0 satisfying SI to
a state s1 satisfying (SI ,DO). The states involved
in the path π1 are all SI states.

s0
SI ,SO

start s1
SI ,DO

s2
DI ,DO

SI
π1

SI ,DO
π2

DO
π3

DI ,DO
πa

Figure 5. A (SI ,DO) lasso for finding discontinuity.

2) A (SI ,DO) cycle π2 from s1 onto itself.
3) A path π3 from s1 to a repeating state s2 satisfying

(DI ,DO) that lies in a cycle.
4) An accepting cycle πa containing s2.
The main result of our approach is based on the

following theorem:

Theorem 8. Function f is discontinuous if and only if,
AR has a (SI ,DO) lasso.

Proof: We will show that if such a path exists, then
f is indeed discontinuous. Next we will show that if f
is discontinuous, then such a lasso can be found.

We recall that f is continuous iff for every sequence
{xi} converging to x, the sequence {f(xi)} converges
to f(x). Our approach will demonstrate two different
sequences converging to some x, wherein, the values of
the functions converge to different values.

(⇐) Assume that a (SI ,DO) lasso, as described in
Figure 5, can be found in the automaton AR.

We consider sequences {xi}, {yi} that follow the
path π(n) : π1π

n
2 π3π

ω
a for each n > 0. Let Nj

represent the length of a path πj for j = 1, 2, 3. Let
V (x, π) represent the value of x along a path segment
π (assuming that the implicit radix point lies just before
the path).

The value of x represented by π(n) is

xn = V (x, π1) + 21−N1(1− 2−nN2−1)V (x, π2)
+2−N1−nN2V (x, π3) + 21−N1−nN2−N3V (x, πa) .

Likewise, the value of y represented by π(n) is

yn = V (y, π1) + 21−N1(1− 2−nN2−1)V (y, π2)
+2−N1−nN2V (y, π3) + 21−N1−nN2−N3V (y, πa) .

Note that since π1, π2 are part of SI , we have

V (x, π1) = V (y, π1), V (x, π2) = V (y, π2) .

Consider the limits of the sequence xn, yn, as n→∞.
Specifically,

limn→∞ xn = V (x, π1) + 21−N1V (x, π2)
= V (y, π1) + 21−N1V (y, π2)
= limn→∞ yn

8

Likewise, we note that V (f(x), π1) 6= V (f(y), π2).
Therefore, for all n,

|f(xn)− f(yn)| > 2−N1 .

Therefore, we have∣∣∣(lim
n→∞

f(xn))− (lim
n→∞

f(yn))
∣∣∣ > 2−N1 .

Therefore, f is discontinuous at x = V (x, π1) +
21−N1V (x, π2).

(⇒) We will now prove that if AR does not have
a (SI ,DO) lasso, then the function f is Lipschitz
continuous. I.e.,

(∃ K) (∀ x, y)(x 6= y) ⇒ |f(x)− f(y)|
|x− y|

≤ K .

It is well-known that Lipschitz continuity implies conti-
nuity. Consider any two inputs x, y such that x 6= y. The
tuple (x, y, f(x), f(y)) has an accepting run through
AR. Each run starts in a (SI ,SO) state and ends up in
a (DI ,DO) repeating cycle. We differentiate two types
of accepting runs:

1) The run reaches a DO state at the same step or after
reaching a DI state. We note that in this case, the
output diverges at the same step or after the inputs
do. Therefore, |f(x)− f(y)| ≤ |x− y|.

2) The run reaches a (SI ,DO) state before reaching a
(DI ,DO) state. The diagram below illustrates the
prefix of such a run:

SI ,SOstart SI ,DO DI ,DO
π1 π2

In this case, there are no cycles involving (SI ,DO)
states, or else, we will have a (SI ,DO) lasso in
AR. Therefore, the length of the run segment π2
is bounded by Ns, the number of states satisfy-
ing (SI ,DO). As a result, in this case, we have
|f(x)−f(y)| < 2−|π1| while |x−y| > 2−|π1|−Ns .
Therefore, |f(x)−f(y)||x−y| < 2Ns = 2O(N2).

Observe that the essential idea in the above proof—
capturing a limit of the form limx→0 g(x) using a cycle
in an automaton that can be “pumped” arbitrarily many
times—is not restricted to continuity. We can apply this
idea to other properties that involve limits as well.

Theorem 9. Given a function automaton A, we can
check if [[A]] is continuous in O(n4) time.

Proof: The automaton AR is quadratic in the size
of A. We can determine if AR has a (SI , DO) lasso in
O(|A2

R|) time.

Now we note that:

Theorem 10. If a regular function f is continuous then
it is K-Lipschitz with K < 2O(n2), where n is the size
of the automaton representing f . Further, in this case
our decision procedure can compute at no extra cost a
K such that K ≤ γKmin, where Kmin is the minimum
Lipschitz constant for which f is Lipschitz-continuous,
and γ is the output base.

Proof: The proof of the first statement simply
copies the (⇒) direction of the proof of Theorem 8.

We prove the rest for γ = 2. If f is continuous,
then our procedure can compute using a graph search
the maximum length Ns of the fragment π2 in any
run of AR (π2 and AR are as before). Let the K in
the theorem statement equal 2Ns . Now observe that
if Kmin < K/2 = 2Ns−1, this maximum length is
(Ns − 1) rather than Ns, which is a contradiction.

We note that by Rademacher’s theorem [21], a K-
Lipschitz function f : Rk → Rl is differentiable almost
everywhere (i.e., the set of all its nondifferentiable
points has measure 0). It follows that a continuous
regular function is differentiable almost everywhere.

Can we verify that a regular function is differentiable
everywhere? Note that a witness to a function’s non-
differentiability is a pair of sequences that show that
the limit limh→0D(x, h) where D(x, h) = f(x+h)−f(x)

h
does not exist. If D was a regular function, our approach
for reasoning about limits would extend to this problem
as well. The challenge, however, is that D(x, h) con-
tains a division, which cannot in general be encoded by
finite automata.

C. Inversion, roots, fixpoints, optimization

An appealing feature of regular functions is that their
roots can be found easily. Before we show why, observe
that regular functions are easily invertible:

Theorem 11. Given a function automaton A for a
bijective regular function f : Rk → Rl, we can
construct a function automaton for f−1 in O(n) time.

Proof: We simply swap the inputs and outputs of
A—i.e., we replace each transition q

〈〈σ1,σ2〉〉−→ q′ in A,
where σ1 ∈ Σk, σ2 ∈ Σl, by the transition q

〈〈σ2,σ1〉〉−→
q′. As f is bijective, this modified automaton A′ is a
function automaton encoding f−1 : Rl → Rk.

Note that the problem of checking whether a given
function automaton represents a bijective function is
in PSPACE. We simply use the above construction to
generate A′, then check that this automaton is a function
automaton using the algorithm in Theorem 1.

9

Now consider the problem of computing the roots of
a regular function f—i.e., the set of all solutions to the
equation f(x) = 0. We have:

Theorem 12. The set R of roots of a regular function
f is regular as well. Given an automaton A for f , an
automaton for R can be constructed in O(|A|) time.

Proof: Let A0 be the automaton that accepts
〈〈w, 0〉〉 for arbitrary string w and output 0. The size
of A0 is fixed given the dimensionality of the output
for f . We intersect A with A0 and project the second
(output) component away from the result. The resulting
automaton accepts the set of roots of A.

The above proof can be easily modified to show that:

Theorem 13. The set F of fixpoints of a regular
function f is regular as well. Given an automaton A for
f , an automaton for F can be constructed in O(|A|)
time.

It is also easy to globally optimize a regular function.
Given a regular function f , let us seek the set of
minima (maxima) of f—i.e., inputs x for which f(x)
is minimized (maximized). We have:

Theorem 14. If f is a regular function, then the set
µf of minima of f is regular as well. Further, given an
automaton for f , we can construct in exponential time
an automaton for µf .

V. CONCLUSION

In this paper, we have introduced ω-automata as a
representation of real functions. We have given exam-
ples of nontrivial functions (e.g., the Cantor function)
expressible this way, and presented a PTIME method
for deciding the continuity of a regular function.

We leave open two questions. First, is it decidable to
check whether a regular function is differentiable? For
reasons given at the end of Sec. IV-B, this problem is
challenging. Second, is there a simple characterization
of the class of continuous or differentiable regular
functions? Note that the Cantor function is an example
of a nontrivial regular function that is also continuous.

REFERENCES

[1] B. Boigelot, S. Jodogne, and P. Wolper, “An effective
decision procedure for linear arithmetic over the integers
and reals,” ACM Trans. Comput. Log., vol. 6, no. 3, pp.
614–633, 2005.

[2] A. Blumensath and E. Grädel, “Automatic structures,” in
LICS, 2000, pp. 51–62.

[3] J. Muller, “Some characterizations of functions com-
putable in on-line arithmetic,” IEEE Trans. Computers,
vol. 43, no. 6, pp. 752–755, 1994.

[4] M. Konecný, “Real functions computable by finite au-
tomata using affine representations,” Theor. Comput. Sci.,
vol. 284, no. 2, pp. 373–396, 2002.

[5] J. Rutten, “Automata, power series, and coinduction:
Taking input derivatives seriously,” in ICALP, 1999, pp.
645–654.

[6] H.-J. Boehm, R. Cartwright, M. Riggle, and
M. O’Donnell, “Exact real arithmetic: A case study in
higher order programming,” in LISP and Functional
Programming, 1986, pp. 162–173.

[7] P. Potts, A. Edalat, and M. Escardó, “Semantics of exact
real arithmetic,” in LICS, 1997, pp. 248–257.

[8] K. Weihrauch, Computable analysis: an introduction.
Springer, 2000.

[9] B. Khoussainov and A. Nerode, “Automatic presenta-
tions of structures,” in LCC, 1994, pp. 367–392.

[10] B. Khoussainov, A. Nies, S. Rubin, and F. Stephan, “Au-
tomatic structures: Richness and limitations,” Logical
Methods in Computer Science, vol. 3, no. 2, 2007.

[11] S. Chaudhuri, S. Gulwani, and R. Lublinerman, “Conti-
nuity analysis of programs,” in POPL, 2010, pp. 57–70.

[12] S. Chaudhuri, S. Gulwani, R. Lublinerman, and
S. NavidPour, “Proving programs robust,” in SIGSOFT
FSE, 2011, pp. 102–112.

[13] S. Chaudhuri, S. Gulwani, and R. Lublinerman, “Conti-
nuity and robustness of programs,” CACM, vol. 55, no. 8,
pp. 107–115, 2012.

[14] S. Chaudhuri and A. Solar-Lezama, “Smooth interpreta-
tion,” in PLDI, 2010, pp. 279–291.

[15] C. Prieur, “How to decide continuity of rational functions
on infinite words,” Theor. Comput. Sci., vol. 276, no. 1-2,
pp. 445–447, 2002.

[16] O. Carton, O. Finkel, and P. Simonnet, “On the conti-
nuity set of an omega rational function,” ITA, vol. 42,
no. 1, pp. 183–196, 2008.

[17] C. Elgot and J. Mezei, “On relations defined by gen-
eralized finite automata,” IBM Journal of Research and
Development, vol. 9, no. 1, pp. 47–68, 1965.

[18] T. Tsankov, “The additive group of the rationals does
not have an automatic presentation,” Journal of Symbolic
Logic, vol. 76, no. 4, pp. 1341–1351, 2011.

[19] F. Abu Zaid, E. Grädel, and Ł. Kaiser, “The Field of
Reals is not omega-Automatic,” in STACS’12, 2012.

[20] A. P. Sistla, M. Vardi, and P. Wolper, “The complemen-
tation problem for büchi automata with appplications to
temporal logic,” Theor. Comput. Sci., vol. 49, pp. 217–
237, 1987.

[21] E. DiBenedetto, Real analysis. Springer, 2002.

10

