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Summary. We discuss the current state of investigations into the domain theoretic
structure of spacetime, including recent developments which explain the connection
between measurement, the Newtonian concept of time and the Lorentz distance.

1 Introduction

Domains [AJ94, GKK] are special types of posets that have played an impor-
tant role in theoretical computer science since the late 1960s when they were
discovered by Dana Scott [Sco70] for the purpose of providing a semantics for
the lambda calculus. They are partially ordered sets that carry intrinsic (order
theoretic) notions of completeness and approximation. The basic intuition is
that the order relation captures the idea of approximation qualitatively. There
is an abstract notion of finite piece of information, or of finite approximation,
which plays a key role in the analysis of computation.

These posets have a number of topologies defined on them: the Scott topol-
ogy and the interval topology, in particular. The Scott topology is particularly
important in that continuity with respect to this topology captures some of the
information processing aspects of computability. In particular, a Scott contin-
uous function has the following property: a finite piece of information about
the output requires only a finite piece of information about the input. While
this does not completely reduce Turing computability to topology it captures
a very crucial information processing aspect of computable functions.

General relativity is Einstein’s theory of gravity in which gravity is under-
stood not in terms of mysterious “universal” forces but rather as part of the
geometry of spacetime. It is profoundly beautiful and beautifully profound
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from both the physical and mathematical viewpoints and it teaches us clear
lessons about the universe in which we live that are easily explainable. For
example, it offers a wonderful explanation of gravity: if an apple falls from a
tree, the path it takes is not determined by the Newtonian ideal of an “invisi-
ble force” but instead by the curvature of the space in which the apple resides:
gravity is the curvature of spacetime. In addition, the presence of matter in
spacetime causes it to “bend” and Einstein even gives us an equation that
relates the curvature of spacetime to the matter present within it.

The study of spacetime structure from an abstract viewpoint – i.e., not
from the viewpoint of solving differential equations – was initiated by Pen-
rose [Pen65] in a dramatic paper in which he showed a fundamental incon-
sistency of gravity. It was known since Chandrasekhar [Cha31] that since
everything attracts everything else a gravitating mass of sufficient size will
eventually collapse. What Penrose showed was that any such collapse eventu-
ally leads to a singularity where the mathematical description of spacetime as
a continuum breaks down. This leads to the need to reformulate gravity. It is
hoped that the elusive quantum theory of gravity will resolve this problem.

Since the first singularity theorems [Pen65, HE73] causality has played a
key role in understanding spacetime structure. The analysis of causal struc-
ture relies heavily on techniques of differential topology [Pen72]. For the past
decade Sorkin and others [Sor91] have pursued a program for quantization
of gravity based on causal structure. In this approach the causal relation is
regarded as the fundamental ingredient and the topology and geometry are
secondary.

In a paper that appeared in 2006 [KP], we prove that the causality relation
is much more than a relation – it turns a globally hyperbolic spacetime into
what is known as a bicontinuous poset. The order on a bicontinuous poset
allows one to define an intrinsic topology called the interval topology. On a
globally hyperbolic spacetime, the interval topology is the manifold topology.
Theorems that reconstruct the spacetime topology have been known [Pen72]
and Malament [Mal77] has shown that the class of time-like curves determines
the causal structure. We establish these results as well though in a purely order
theoretic fashion: there is no need to know what “smooth curve” means.

Our more abstract stance also teaches us something new : a globally hyper-
bolic spacetime itself can be reconstructed in a purely order theoretic manner,
beginning from only a countable dense set of events and the causality rela-
tion. The ultimate reason for this is that the category of globally hyperbolic
posets, which contains the globally hyperbolic spacetimes, is equivalent to a
very special category of posets called interval domains. This provides a pro-
found connection between domain theory, first introduced for the purposes of
assigning semantics to programming languages, and general relativity, a the-
ory meant to explain gravity. Even from a purely mathematical perspective
this equivalence is surprising, since globally hyperbolic spacetimes are usually
not order theoretically complete, but interval domains always are.
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Measurements were introduced by Martin in [Mar00a]. One thing they
provide is a way of incorporating quantitative information into domain the-
ory. More recently we have also shown how the geometry of spacetime can be
reconstructed order theoretically. The reason is that the Lorentz distance de-
fines a Scott continuous function on the domain of spacetime intervals. What
is even more interesting, though, is that our setting provides a way to topolog-
ically distinguish between Newtonian and relativistic notions of time. Every
global time function defines a measurement on the domain of spacetime in-
tervals, in particular, it is Scott continuous. The Lorentz distance is not only
Scott continuous, but satisfies a stronger property, that it is interval contin-
uous. An interval continuous function must assign zero to any element which
approximates nothing. Thus, no interval continuous function on the domain
of spacetime intervals can ever be a measurement and the reason for this has
entirely to do with relativity: a clock moving at the speed of light records
no time as having elapsed, so an interval continuous function is incapable of
distinguishing between a single event and a null interval.

2 Domains, continuous posets and topology

A poset is a partially ordered set, i.e., a set together with a reflexive, anti-
symmetric and transitive relation.

Definition 1. Let (P,v) be a partially ordered set. A nonempty subset S ⊆ P
is directed if (∀x, y ∈ S)(∃z ∈ S) x, y v z. The supremum of S ⊆ P is the
least of all its upper bounds provided it exists. This is written

⊔
S.

These ideas have duals that will be important to us: a nonempty S ⊆ P is
filtered if (∀x, y ∈ S)(∃z ∈ S) z v x, y. The infimum

∧
S of S ⊆ P is the

greatest of all its lower bounds provided it exists.

Definition 2. For a subset X of a poset P , set

↑X := {y ∈ P : (∃x ∈ X)x v y} & ↓X := {y ∈ P : (∃x ∈ X) y v x}.

We write ↑x = ↑{x} and ↓x = ↓{x} for elements x ∈ X.

A partial order allows for the derivation of several intrinsically defined topolo-
gies. Here is our first example.

Definition 3. A subset U of a poset P is Scott open if

(i) U is an upper set: x ∈ U & x v y ⇒ y ∈ U , and
(ii) U is inaccessible by directed suprema: For every directed S ⊆ P with a

supremum, ⊔
S ∈ U ⇒ S ∩ U 6= ∅.

The collection of all Scott open sets on P is called the Scott topology.
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Posets can have a variety of completeness properties. The following com-
pleteness condition has turned out to be particularly useful in applications.

Definition 4. A dcpo is a poset in which every directed subset has a supre-
mum. The least element in a poset, when it exists, is the unique element ⊥
with ⊥ v x for all x.

The set of maximal elements in a dcpo D is

max(D) := {x ∈ D : ↑x = {x}}.

Each element in a dcpo has a maximal element above it.

Definition 5. For elements x, y of a poset, write x � y iff for all directed
sets S with a supremum,

y v
⊔
S ⇒ (∃s ∈ S) x v s.

We set ↓↓x = {a ∈ D : a� x} and ↑↑x = {a ∈ D : x� a}.

For the symbol “�,” read “approximates.”

Definition 6. A basis for a poset D is a subset B such that B ∩ ↓↓x contains
a directed set with supremum x for all x ∈ D. A poset is continuous if it has
a basis. A poset is ω-continuous if it has a countable basis.

Continuous posets have an important property, they are interpolative.

Proposition 1. If x � y in a continuous poset P , then there is z ∈ P with
x� z � y.

This enables a clear description of the Scott topology,

Theorem 1. The collection {↑↑x : x ∈ D} is a basis for the Scott topology on
a continuous poset.

Definition 7. A continuous dcpo is a continuous poset which is also a dcpo.
A domain is a continuous dcpo.

The next example is due to Scott[Sco70] and worth keeping in mind when
we consider the analogous construction for globally hyperbolic spacetimes.

Example 1. The collection of compact intervals of the real line

IR = {[a, b] : a, b ∈ R & a ≤ b}

ordered under reverse inclusion

[a, b] v [c, d]⇔ [c, d] ⊆ [a, b]

is an ω-continuous dcpo:
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• For directed S ⊆ IR,
⊔
S =

⋂
S,

• I � J ⇔ J ⊆ int(I), and
• {[p, q] : p, q ∈ Q & p ≤ q} is a countable basis for IR.

The domain IR is called the interval domain.

We also have max(IR) ' R in the Scott topology. Approximation can help
explain why:

Example 2. A basic Scott open set in IR is

↑↑[a, b] = {x ∈ IR : x ⊆ (a, b)}.

One of the interesting things about IR is that it is a domain that is derived
from an underlying poset with an abundance of order theoretic structure. Part
of this structure is that the real line is bicontinuous, a fundamental notion in
the present work:

Definition 8. A continuous poset (P,≤) is bicontinuous if

• For all x, y ∈ P , x� y iff for all filtered S ⊆ P with an infimum,∧
S ≤ x⇒ (∃s ∈ S) s ≤ y,

and
• For each x ∈ P , the set ↑↑x is filtered with infimum x.

Example 3. R, Q are bicontinuous.

Definition 9. On a bicontinuous poset P , sets of the form

(a, b) := {x ∈ P : a� x� b}

form a basis for a topology called the interval topology.

The proof uses interpolation and bicontinuity. In contrast to a domain, a
bicontinuous poset P has ↑↑x 6= ∅ for each x, so it is rarely a dcpo. We tend to
prefer the notation≤ for the order on a poset that is known to be bicontinuous.
Otherwise, we use the notation v.

Definition 10. For x, y in a poset (P,≤),

x < y ≡ x ≤ y & x 6= y.

In general, < and � are completely different ideas.
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3 The causal structure of spacetime

A manifold M is a locally Euclidean Hausdorff space that is connected and
has a countable basis. Such spaces are paracompact. A Lorentz metric on
a manifold is a symmetric, nondegenerate tensor field of type (0, 2) whose
signature is (−+ ++).

Definition 11. A spacetime is a real four-dimensional1 smooth manifold M
with a Lorentz metric gab.

Let (M, gab) be a time-orientable spacetime. Let Π+
≤ denote the future

directed causal curves, and Π+
� denote the future directed time-like curves.

Definition 12. For p ∈M,

I+(p) := {q ∈M : (∃π ∈ Π+
�)π(0) = p, π(1) = q}

and
J+(p) := {q ∈M : (∃π ∈ Π+

≤ )π(0) = p, π(1) = q}

Similarly, we define I−(p) and J−(p).

We write the relation J+ as

p ≤ q ≡ q ∈ J+(p).

The following properties from [HE73] are very useful:

Proposition 2. Let p, q, r ∈M. Then

(i) The sets I+(p) and I−(p) are open.
(ii) p ≤ q and r ∈ I+(q) ⇒ r ∈ I+(p)

(iii) q ∈ I+(p) and q ≤ r ⇒ r ∈ I+(p)
(iv) Cl(I+(p)) = Cl(J+(p)) and Cl(I−(p)) = Cl(J−(p)).

We always assume the chronology conditions that ensure (M,≤) is a par-
tially ordered set. We also assume strong causality which can be characterized
as follows [Pen72]:

Theorem 2. A spacetime M is strongly causal iff its Alexandroff topology is
Hausdorff iff its Alexandroff topology is the manifold topology.

The Alexandroff topology on a spacetime has {I+(p) ∩ I−(q) : p, q ∈M}
as a basis [Pen72]2.

1 The results in the present paper work for any dimension n ≥ 2 [J93].
2 This terminology is common among relativists but order theorists use the phrase

“Alexandrov topology” to mean something else: the topology generated by the
upper sets.
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4 Global hyperbolicity

Penrose has called globally hyperbolic spacetimes “the physically reasonable
spacetimes [Wal84].”

Definition 13. A spacetime M is globally hyperbolic if it is strongly causal
and if ↑a ∩ ↓b is compact in the manifold topology, for all a, b ∈M.

Theorem 3 ([KP]). If M is globally hyperbolic, then (M,≤) is a bicontin-
uous poset with � = I+ whose interval topology is the manifold topology.

This result motivates the following definition:

Definition 14. A poset (X,≤) is globally hyperbolic if it is bicontinuous and
each interval [a, b] = {x : a ≤ x ≤ b} is compact in the interval topology.

Globally hyperbolic posets have rich enough structure that we can deduce
many properties of spacetime from them without appealing to differentiable
structure or geometry. Here is one such example:

Definition 15. Let (X,≤) be a globally hyperbolic poset. A subset π ⊆ X is
a causal curve if it is compact, connected and linearly ordered. We define

π(0) := ⊥ and π(1) := >

where ⊥ and > are the least and greatest elements of π. For P,Q ⊆ X,

C(P,Q) := {π : π causal curve, π(0) ∈ P, π(1) ∈ Q}

and call this the space of causal curves between P and Q.

This definition is motivated by the fact that a subset of a globally hy-
perbolic spacetime M is the image of a causal curve iff it is the image of a
continuous monotone increasing π : [0, 1] →M iff it is a compact connected
linearly ordered subset of (M,≤).

Theorem 4 ([Mar06]). If (X,≤) is a separable globally hyperbolic poset,
then the space of causal curves C(P,Q) is compact in the Vietoris topology
and hence in the upper topology.

This result plays an important role in the proofs of certain singularity theo-
rems [Wal84], in establishing the existence of maximum length geodesics [HE73],
and in the proof of certain positive mass theorems [Pen93]. Moreover, while
events in spacetime are maximal elements of IM, causal curves are maximal
elements in a higher order domain C(IM), called the convex powerdomain of
IM. This is discussed in more detail in [Mar06].

We can also deduce new aspects of spacetime. Globally hyperbolic posets
are very much like the real line. In fact, a well-known domain theoretic con-
struction pertaining to the real line extends in perfect form to the globally
hyperbolic posets:
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Theorem 5 ([KP]). The closed intervals of a globally hyperbolic poset X

IX := {[a, b] : a ≤ b & a, b ∈ X}

ordered by reverse inclusion

[a, b] v [c, d] ≡ [c, d] ⊆ [a, b]

form a continuous domain with

[a, b]� [c, d] ≡ a� c & d� b.

The poset X has a countable basis iff IX is ω-continuous. Finally,

max(IX) ' X

where the set of maximal elements has the relative Scott topology from IX.

This observation – that spacetime has a canonical domain theoretic model
– teaches us something new: from only a countable set of events and the
causality relation, one can reconstruct spacetime in a purely order theoretic
manner. Explaining this requires domain theory.

5 Spacetime from a discrete causal set

An abstract basis is a set (C,�) with a transitive relation that is interpolative
from the − direction:

F � x⇒ (∃y ∈ C)F � y � x,

for all finite subsets F ⊆ C and all x ∈ F . Suppose, though, that it is also
interpolative from the + direction:

x� F ⇒ (∃y ∈ C)x� y � F.

Then we can define a new abstract basis of intervals

int(C) = {(a, b) : a� b} =�⊆ C2

whose relation is
(a, b)� (c, d) ≡ a� c & d� b.

Let IC denote the ideal completion of the abstract basis int(C).

Theorem 6 ([KP]). Let C be a countable dense subset of a globally hyperbolic
spacetime M and �= I+ be timelike causality. Then

max(IC) 'M

where the set of maximal elements have the Scott topology.
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In “ordering the order” I+, taking its completion, and then the set of
maximal elements, we recover spacetime by reasoning only about the causal
relationships between a countable dense set of events. One objection to this
might be that we begin from a dense set C, and then order theoretically
recover the space M – but dense is a topological idea so we need to know
the topology of M before we can recover it! But the denseness of C can be
expressed in purely causal terms:

C dense ≡ (∀x, y ∈M)(∃z ∈ C)x� z � y.

Now the objection might be that we still have to reference M. We too would
like to not reference M at all. However, some global property needs to be
assumed, either directly or indirectly, in order to reconstruct M.

Theorem 6 is very different from results like “LetM be a certain spacetime
with relation ≤. Then the interval topology is the manifold topology.” Here
we identify, in abstract terms, a process by which a countable set with a
causality relation determines a space. The process is entirely order theoretic
in nature, spacetime is not required to understand or execute it (i.e., if we put
C = Q and�=<, then max(IC) ' R). In this sense, our understanding of the
relation between causality and the topology of spacetime is now explainable
independently of geometry.

Ideally, one would now like to know what constraints on C in general imply
that max(IC) is a manifold.

6 Spacetime as a domain

The category of globally hyperbolic posets is naturally isomorphic to a special
category of domains called interval domains.

Definition 16. An interval poset is a posetD that has two functions left : D → max(D)
and right : D → max(D) such that

(i) Each x ∈ D is an “interval” with left(x) and right(x) as endpoints:

(∀x ∈ D)x = left(x) u right(x),

(ii) The union of two intervals with a common endpoint is another interval:
For all x, y ∈ D, if right(x) = left(y), then

left(x u y) = left(x) & right(x u y) = right(y),

(iii) Each point p ∈↑x ∩max(D) of an interval x ∈ D determines two subin-
tervals, left(x) u p and p u right(x), with endpoints:

left(left(x) u p) = left(x) & right(left(x) u p) = p

left(p u right(x)) = p & right(p u right(x)) = right(x)



10 Keye Martin and Prakash Panangaden

Notice that a nonempty interval poset D has max(D) 6= ∅ by definition. With
interval posets, we only assume that infima indicated in the definition exist;
in particular, we do not assume the existence of all binary infima.

Definition 17. For an interval poset (D, left, right), the relation≤ on max(D)
is

a ≤ b ≡ (∃x ∈ D) a = left(x) & b = right(x)

for a, b ∈ max(D).

The axioms of interval posets imply that (max(D),≤) is a poset.

Definition 18. An interval domain is an interval poset (D, left, right) where
D is a continuous dcpo such that

(i) If p ∈ ↑↑x ∩max(D), then

↑↑(left(x) u p) 6= ∅ & ↑↑(p u right(x)) 6= ∅.

(ii) For all x ∈ D, the following are equivalent:
(a) ↑↑x 6= ∅
(b) (∀y ∈ [ left(x), · ] )( y v x ⇒ y � right(y) in [ ·, right(y) ] )
(c) (∀y ∈ [·, right(x)])( y v x ⇒ y � left(y) in [ left(y), · ] )

(iii) Invariance of endpoints under suprema:
(a) For all directed S ⊆ [p, ·]

left(
⊔
S) = p & right(

⊔
S) = right(

⊔
T )

for any directed T ⊆ [q, ·] with right(T ) = right(S).
(b) For all directed S ⊆ [·, q]

left(
⊔
S) = left(

⊔
T ) & right(

⊔
S) = q

for any directed T ⊆ [·, p] with left(T ) = left(S).
(iv) Intervals are compact: For all x ∈ D, ↑x ∩max(D) is Scott compact.

Interval domains are interval posets whose axioms also take into account
the completeness and approximation present in a domain: (i) says if a point
p belongs to the interior of an interval x ∈ D, the subintervals left(x)u p and
p u right(x) both have nonempty interior; (ii) says an interval has nonempty
interior iff all intervals that contain it have nonempty interior locally; (iii)
explains the behavior of endpoints when taking suprema.

For a globally hyperbolic (X,≤), we define:

left : IX → IX :: [a, b] 7→ [a]

and
right : IX → IX :: [a, b] 7→ [b].
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Lemma 1. If (X,≤) is a globally hyperbolic poset, then (IX, left, right) is an
interval domain.

In essence, this is the only example.

Lemma 2. If (D, left, right) is an interval domain, then (max(D),≤) is a
globally hyperbolic poset.

The equivalence between globally hyperbolic posets and interval domains is
as follows:

Definition 19. The category IN of interval domains and commutative maps
is given by

• objects Interval domains (D, left, right).
• arrows Scott continuous f : D → E that commute with left and right,

i.e., such that both

D
leftD- D D

rightD- D

and

E

f

?

leftE
- E

f

?
E

f

?

rightE
- E

f

?

commute.
• identity 1 : D → D.
• composition f ◦ g.

Definition 20. The category G is given by

• objects Globally hyperbolic posets (X,≤).
• arrows Continuous in the interval topology, monotone.
• identity 1 : X → X.
• composition f ◦ g.

It is routine to verify that IN and G are categories.

Proposition 3. The correspondence I : G→ IN given by

(X,≤) 7→ (IX, left, right)

(f : X → Y ) 7→ (f̄ : IX → IY )

is a functor between categories.

Proposition 4. The correspondence max : IN→ G given by

(D, left, right) 7→ (max(D),≤)

(f : D → E) 7→ (f |max(D) : max(D)→ max(E))

is a functor between categories.
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Before the statement of the main theorem in this section, we recall the
definition of a natural isomorphism.

Definition 21. A natural transformation η : F → G between functors F :
C → D and G : C → D is a collection of arrows (ηX : F (X) → G(X))X∈ C
such that for any arrow f : A→ B in C,

F (A)
ηA- G(A)

F (B)

F (f)

?

ηB
- G(B)

G(f)

?

commutes. If each ηX is an isomorphism, η is a natural isomorphism.

Categories C and D are equivalent when there are functors F : C → D and
G : D → C and natural isomorphisms η : 1C → GF and µ : 1D → FG.

Theorem 7 ([KP]). The category of globally hyperbolic posets is equivalent
to the category of interval domains.

This result suggests that questions about spacetime can be converted to
domain theoretic form, where we can use domain theory to answer them,
and then translate the answers back to the language of physics (and vice-
versa). Notice too that the category of interval posets and commutative maps
is equivalent to the category of posets and monotone maps.

It also shows that causality between events is equivalent to an order on
regions of spacetime. Most importantly, we have shown that globally hyper-
bolic spacetime with causality is equivalent to a structure IX whose origins
are “discrete.” This is the formal explanation for why spacetime can be re-
constructed from a countable dense set of events in a purely order theoretic
manner.

7 Time and measurement

A domain is a partially ordered set with intrinsic notions of completeness and
approximation defined by the order. A measurement is a function µ that to
each informative object x assigns a number µx which measures the information
content of the object x. Let us now define the latter term precisely before
discussing it further.

A function f : D → E between domains is Scott continuous if the inverse
image of a Scott open set in E is Scott open in D. This is equivalent [AJ94]
to saying that f is monotone,



Domain theory and general relativity 13

(∀x, y ∈ D)x v y ⇒ f(x) v f(y),

and that it preserves directed suprema:

f(
⊔
S) =

⊔
f(S),

for all directed S ⊆ D. In particular, for the domain [0,∞)∗ of nonnegative
reals in their opposite order, a Scott continuous function µ : D → [0,∞)∗ will
satisfy

1. For all x, y ∈ D, x v y ⇒ µx ≥ µy, and
2. If (xn) is an increasing sequence in D, then

µ

 ⊔
n≥1

xn

 = lim
n→∞

µxn.

This is the case of Scott continuity that we are most interested in presently:

Definition 22. A Scott continuous µ : D → [0,∞)∗ is said to measure the
content of x ∈ D if for all Scott open sets U ⊆ D,

x ∈ U ⇒ (∃ε > 0)x ∈ µε(x) ⊆ U

where
µε(x) := {y ∈ D : y v x & |µx− µy| < ε}

are called the ε-approximations of x.

We often refer to µ as simply ‘measuring’ x ∈ D or as measuring X ⊆ D when
it measures each element of X. The last definition, as well as the next, easily
extend to maps µ that take values in an arbitrary domain E.

Definition 23. A measurement µ : D → [0,∞)∗ is a Scott continuous map
that measures the content of ker(µ) := {x ∈ D : µx = 0}.

The order on a domain D defines a clear sense in which one object has
‘more information’ than another: a qualitative view of information content.
The definition of measurement attempts to identify those monotone map-
pings µ which offer a quantitative measure of information content in the sense
specified by the order. The essential point in the definition of measurement
is that µ measure content in a manner that is consistent with the particular
view offered by the order. There are plenty of monotone mappings that are not
measurements – and while some of them may measure information content in
some other sense, each sense must first be specified by a different information
order. The definition of measurement is then a minimal test that a function µ
must pass if we are to regard it as providing a measure of information content.

We now consider a few properties that measures of information content
have which arbitrary monotone mappings in general need not have: qualities
that make them ‘different’ from maps that are simply monotone. Other such
properties may be found in [Mar00a].



14 Keye Martin and Prakash Panangaden

Theorem 8 ([Mar00a]). Let µ : D → [0,∞)∗ be a measurement.

(i) If x ∈ ker(µ), then x ∈ max(D) = {x ∈ D : ↑x = {x}}.
(ii) If µ measures the content of y ∈ D, then

(∀x ∈ D) x v y & µx = µy ⇒ x = y.

(iii) If µ measures X ⊆ D, then

{↑µε(x) ∩X : x ∈ X, ε > 0}

is a basis for the Scott topology on X.

A global time function t :M→ R on a globally hyperbolic spacetime M
is a continuous function such that x < y ⇒ t(x) < t(y) and t−1(r) = Σ is a
Cauchy surface for M, for each r ∈ R.

Theorem 9. For any global time function t :M→ R on a globally hyperbolic
spacetime, the function ∆t : M → [0,∞)∗ given by ∆t[a, b] = t(b) − t(a)
measures all of I(M). It is a measurement with ker(∆t) = max(I(M)).

Let d : I(M) → [0,∞)∗ denote the Lorentz distance on a globally hyper-
bolic spacetime

d[a, b] = sup
πab

len(πab)

where the sup is taken over all causal curves that join a to b.

Definition 24. The interval topology on a continuous poset P exists when
sets of the form

(a, b) = {x ∈ P : a� x� b} & ↑↑x = {y ∈ P : x� y}

form a basis for a topology on P .

For bicontinuous posets, this definition of interval topology is equivalent to the
definition considered earlier. A function between continuous posets is interval
continuous when each poset has an interval topology and the inverse image of
an interval open set is interval open. By the bicontinuity of M, the interval
topology on I(M) exists, so we can consider interval continuity for functions
I(M)→ [0,∞)∗.

Theorem 10. The Lorentz distance d : I(M) → [0,∞)∗ has the following
properties:

(i) It is monotone: x ≤ y ⇒ d(x) ≥ d(y),
(ii) It preserves the way below relation: x� y ⇒ d(x) > d(y),
(iii) It is interval continuous and hence Scott continuous.

It does not measure I(M) at any point of ker(d).
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That the Lorentz distance is not a measurement is a direct consequence of
the fact that a clock travelling at the speed of light records no time as having
elapsed i.e. the set of null intervals is equal to

ker(d) \max(I(M)) 6= ∅

but measurements always have the property that µx = 0 implies x ∈ max(D)
(Theorem 8).

In fact, no interval continuous function µ : I(M)→ [0,∞)∗ can be a mea-
surement: by interval continuity, µx = 0 for any x with ↑↑x = ∅. Just like the
Lorentz distance, an interval continuous µ will also assign 0 to “null inter-
vals.” In this way, we see that interval continuity captures an essential aspect
of the Lorentz distance. In addition, since ∆t is a measurement, it cannot be
interval continuous. This provides a surprising topological distinction between
the Newtonian and relativistic concepts of time: d is interval continuous, ∆t is
not. Put another way, ∆t can be used to reconstruct the topology of spacetime
(Theorem 8(iii)), while d is used to reconstruct its geometry.

8 Spacetime geometry from a discrete causal set

Let us return now to the reconstruction of spacetime (Section 5) from a
countable dense set (C,�). Specifically, we take the rounded ideal completion
I(C)of the abstract basis of intervals

int(C) = {(a, b) : a� b} =�⊆ C2

whose relation is
(a, b)� (c, d) ≡ a� c & d� b.

We are then able to recover spacetime as

max(IC) 'M

where the set of maximal elements have the Scott topology. Let us now suppose
that in addition to int(C) that we also begin with a countable collection of
numbers lab chosen for each (a, b) ∈ int(C) in such a way that the map

int(C)→ [0,∞)∗ :: (a, b) 7→ lab

is monotone. Then in the process of reconstructing spacetime, we can also
construct the Scott continuous function d : IC → [0,∞)∗ given by

d(x) = inf{lab : (a, b)� x}.

In the event that the countable number of lab chosen are the Lorentz distances
lab = d[a, b], then the function d constructed above yields the Lorentz distance
for any spacetime interval, the reason being that both are Scott continuous
and are equal on a basis of the domain.

Thus, from a countable dense set of events and a countable set of distances,
we can reconstruct the spacetime manifold together with its geometry in a
purely order theoretic manner.
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9 Conclusions

We have seen the following ideas in this paper:

1. how to reconstruct the spacetime topology from the causal structure using
purely order-theoretic ideas,

2. an abstract order-theoretic definition of global hyperbolicity,
3. that one can reconstruct spacetime, meaning its topology and geometry,

from a countable dense subset,
4. an equivalence of categories between the category of interval domains and

the category of globally hyperbolic posets.
5. a topological distinction between Newtonian and relativistic notions of

time.
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