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Abstract 

 

This thesis describes the design and implementation of a fully monolithic 10 Gb/s phase 

and frequency-locked loop based clock and data recovery (PFLL-CDR) integrated circuit, 

as well as the Verilog-A modelling of an asynchronous serial link based chip to chip 

communication system incorporating the proposed concept. The proposed design was 

implemented and fabricated using the 130 nm CMOS technology offered by UMC (United 

Microelectronics Corporation). Different PLL-based CDR circuits topologies were 

investigated in terms of architecture and speed. Based on the investigation, we proposed a 

new concept of quarter-rate (i.e. the clocking speed in the circuit is 2.5 GHz for 10 Gb/s 

data rate) and dual-loop topology which consists of phase-locked and frequency-locked 

loop. The frequency-locked loop (FLL) operates independently from the phase-locked loop 

(PLL), and has a highly-desired feature that once the proper frequency has been acquired, 

the FLL is automatically disabled and the PLL will take over to adjust the clock edges 

approximately in the middle of the incoming data bits for proper sampling. Another 

important feature of the proposed quarter-rate concept is the inherent 1-to-4 demultiplexing 

of the input serial data stream. A new quarter-rate phase detector based on the non-linear 

early-late phase detector concept has been used to achieve the multi-Giga bit/s speed and to 

eliminate the need of the front-end data pre-processing (edge detecting) units usually 

associated with the conventional CDR circuits. An eight-stage differential ring oscillator 

running at 2.5 GHz frequency centre was used for the voltage-controlled oscillator (VCO) 

to generate low-jitter multi-phase clock signals. The transistor level simulation results 

demonstrated excellent performances in term of locking speed and power consumption. In 

order to verify the accuracy of the proposed quarter-rate concept, a clockless asynchronous 

serial link incorporating the proposed concept and communicating two chips at 10 Gb/s has 

been modelled at gate level using the Verilog-A language and time-domain simulated.          
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interconnections. However, in a high performance SOC, a long parallel link suffers from 

several problems. An asynchronous serial link is one solution that can overcome such 
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Serial links have been widely used for long-haul fibre optic and cable based 

communication medium (e.g. WAN, MAN and LAN) and in some computer networks, 

where the cable cost and synchronization difficulties make parallel communication 

impractical. Serial links have recently found a greater number of applications in consumer 

electronics, such as USB (Universal Serial Bus) that connects peripheral electronic systems 

to computer, and SATA (Serial Advanced Technology Attachment) which communicates 

the computer motherboard with mass storage devices (e.g. hard disk) and PCI-Express 

(Peripheral Component Interconnect) normally connect cards (sound, video or other) to the 

motherboard. Therefore serial communication has become the solution to higher and more 

efficient data transmission in order to meet the demands and trends of the higher capacity 

of communication technology. A relatively recent analytical study has been conducted by 

R. Dobkin [81] in which comparing in term of power and area serial to parallel links that 

have been implemented in various feature size of CMOS technologies. The result of that 

study is illustrated in Figure 1-2 and provides the following important remarks: 

1. For any particular feature size of the CMOS technology, there is a limiting value of 

the link length above which, it is better to implement the link as serial rather than 

parallel because it is more advantageous in term of power and area. 

2. The limiting value discussed in 1 which defines the frontiers between the two types 

of the link implementations is scaling down as the relative scaling down of the 

CMOS technology feature size.  

               

Figure 1-2: Area and power for serial and parallel links versus  technology node [81]. 
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Therefore, for a particular CMOS technology feature size and link length, a serial link may 

have the following advantages over the parallel one: 

1. A serial link generally occupies less area; hence the communication and area cost 

is reduced due to decreased number of pins and occupied area. The saved area can 

be used to isolate the link better from its surrounding components and to integrate 

more units. 

2. The presence of multiple conductors in parallel and close proximity as in bus and 

point-to-point parallel links implies cross-talk and especially at higher frequency. 

In a serial link the undesired cross-talk is minimized. 

3. The skew between the clock and data signals normally occurs in bus and point-to-

point parallel links is irrelevant in a serial link, because the transferring of data is 

carried out without a clock signal.  

4. A serial link can provides reliable intra/inter chip data communication at multi 

Gb/s rate. 
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1.2 Research Objectives and Summary of Contribution s 

The processing speed of chips in a PCB (Printed Circuit board), or modules within an SOC 

is normally higher than the speed at which those units normally communicate. In this thesis 

we attempt to make the communication speed (e.g. 10 Gb/s) few order of magnitude higher 

than the processing speed of units (e.g. 1.25 Gb/s) themselves by using a SERDES based 

serial link. The contributions of this thesis can be summarized as follows. 

• A referenceless quarter-rate PLL-based clock and data recovery has been proposed 

in which the deserializer does not need a clock reference, the deserializer is 

clocked at quarter-rate (2.5 GHz) of the incoming data rate (10 Gb/s) and the input 

data stream is 1-to-4 automatically demultiplexed for further processing. 

• In order to verify the accuracy of the proposed concept, a 10 Gb/s serial link based 

chip-to-chip communication medium incorporating the proposed concept has been 

implemented using the Verilog-A language and simulated in Cadence. 

1.3 Organization of the Thesis 

The reminder of the thesis is divided into six chapters. 

1.3.1 Chapter 2 

In this chapter we first present the limitations and problems associated with the use of the 

traditional multi-bit parallel bus and point-to-point parallel link as communication 

mediums, and second we present a review of the literature relevant to the design of 

different architectures of clock and data recovery circuits. 

1.3.2 Chapter 3 

The PLL theory will be presented in this chapter and analytical expressions will be 

developed. The resulting equations will relate the PLL parameters such as stability and 

bandwidth to the low pass filter components values. 
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1.3.3 Chapter 4 

This chapter will focus on the current-mode logic transistor level design and optimization 

at 10 Gb/s of the different parts of the proposed concept Those parts are the voltage 

controlled oscillator, the proposed quarter-rate phase detector and proposed quarter-rate 

frequency detector.  

1.3.4 Chapter 5 

Once all the circuits are designed and optimized at transistor level, their parameters (i.e. 

delay, rise and fall times) will be extracted and implemented in their correspondent 

Verilog-A description. This chapter will be dedicated to implement a complete 10 Gb/s 

serial link in Verilog-A language using the proposed concept.  

1.3.5 Chapter 6 

This chapter will concentrate on the layout implementation, post-layout transistor level 

simulations and characterization of the proposed concept of quarter-rate clock and data 

recovery circuit as well as its comprising blocks. 

1.3.6 Chapter 7 

This chapter draws conclusions and offers some suggestions for future works. 
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2 Introduction

This chapter contains a review of literature describing the problems associated with the use 

of traditional multi line parallel busses as a communication medium in today system

chip (SOC). One solution that

parallel link that is briefly described here. An alternative approach that is proposed in this 

thesis is clockless serial link. It has the potential to be a high
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performance requires enhancing the 

the interconnects

 

Advances in Integrated Circuit (IC) fabrication technology have led to an exponential 

growth of IC speed and integration level [1]. Howeve
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2.2 Point-to-Point Links 

The physical and electrical constraints of busses make them viable for only small scale 

systems that incorporate few IP’s, such as memory or peripheral busses. For larger scale 

systems such as multi-processors or communication switches an alternative and attractive 

solution is to replace the bus by a point to point link as a medium of communication. This 

approach has advantages from both circuit and architectural points of view. From a circuit 

design perspective, a point-to-point link has a higher communication bandwidth than a bus, 

due to its reduced signal integrity problems. Moreover, a point-to-point transmission line 

offers greater flexibility in the physical construction of the system. From an architectural 

perspective, the bandwidth demands of high-speed systems make the shared bus medium 

the main performance bottleneck. For this reason, the hierarchical bus has been gradually 

replacing single busses as a medium of communication in high performance multi-IP SOC 

[3], while the architecture of most high performance communication switches is based on 

point-to-point interconnection [4, 5]. 

2.3 The Key Elements of a Link 

There are three key components in a link: the transmitter, the channel and the receiver. The 

transmitter converts the digital data stream into an analog signal; the channel is the 

transmission medium in which the signal is travelling; and the receiver converts the analog 

received signal back to a digital data sequence. Figure 2-3 illustrates the block diagram of a 

typical link and its primary components. 

The transmitter comprises an encoder and a modulator, while the receiver contains a 

demodulator and a decoder. Generally, the bit sequence is first encoded, by inserting some 

redundant bits to guarantee signal transition and ease the timing recovery operation. But, in 

this work, the data is not coded and sent directly on the channel using a simple non-return-

to-zero (NRZ) format, and the signal levels (high and low) are represented by two different 

electrical voltages. 
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Serial links are the design of choice in any application where the cost of communication 

channels is high and duplicating the links in large number is uneconomical. Its application 

spans every sector, including short and long distance communication and the networking 

markets [13-16]. The principal design goal of serial links is to maximize the data rate 

across the link and to extend the transmission range. Although, serial links requires 

serializer and deserializer circuits, but they are more advantageous over parallel links 

because they occupy less area and they are inherently insensitive to delay and skew. 

2.5 Point-to-Point Serial Link Block Diagram 

Exchanging high speed serial data involves three primary components as previously 

described: transmitter, channel and receiver. A transmitter gathers low rate parallel data 

and serializes it into high speed serial data. The signal is then transported through the 

channel to the receiver. The receiver must then demodulate the signal, extract the clock and 

demultiplex the data. The received information is fed out of the receiver as low speed 

parallel data for further processing as illustrated in Figure 2-5. 

 

Figure 2-5: Simplified top level block diagram of a serial link.  
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2.5.1 Serializer or Transmitter 

The transmitter’s role is to accept several parallel data streams with a specified rate and 

then serialize and drive the data into the channel. As an example, a 10 Gb/s serializer 

would require eight parallel streams of 1.25 Gb/s each. Serializing involves multiplexing 

the data into an ordered bit stream using a NRZ format.  

Driving the channel requires adding a 50 Ω output load amplifier, or in certain cases may 

require adding a sophisticated circuit that is capable of driving an optical driver. In most 

communication systems, the data is first encoded. The encoding process may include 

compression, encryption, error checking and framing [17]. Another important role of the 

encoder is to introduce additional transitions to the data stream to help a phase-locked loop 

(PLL) in the receiver acquire the correct clock frequency of the transmitter. The 8B/10B 

encoding scheme is the most popular and it guarantees at least one transition every 5 bits 

[18]. A PLL in the transmitter clocks the multiplexer and the multiplexer then performs the 

serialization function. Multiple clock frequencies are needed in order to properly perform 

the multiplexing operation. The PLL in the transmitter is responsible for generating the 

multiple clock frequencies, often known as the frequency synthesizer or the clock 

multiplier unit. The frequency synthesizer is required to have low phase noise and jitter to 

generate a similarly low phase noise data stream. The PLL locks the phase of an internal 

high speed clock to an externally supplied low speed reference. For example, a 10 Gb/s 

system may have a 156.25 MHz reference clock, and a 10 GHz internal clock. The PLL 

must then compare and match the two frequencies after dividing the internal clock by 64. 

The multiplexer is generally unable to drive the transmission medium directly, so a line 

driver is needed [19, 20]. The line driver matches the internal circuit impedance to the 

transmission line impedance and amplifies the signal to a suitable voltage swing. An 

important figure of merit of the transmitter is the output data jitter. The internal voltage-

controlled oscillator (VCO), the multiplexer and all other circuits create and add jitter to 

signal. The VCO jitter is normally partially filtered out by the PLL.            
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2.5.2 Transport Channel 

The channel carries the data signal from the transmitter to the receiver and could be 

electrical, optical or a combination of both. For long-haul communications the channel is a 

dominant source of phase noise and jitter. However for short-distance communications, the 

channel is considered as a negligible source of noise and jitter. 

2.5.3 Deserializer or Receiver 

The receiver must extract a clock from a noisy and jittered high frequency signal, and the 

extracted clock is then used to sample the received data stream. This process is called clock 

and data recovery (CDR) and it is difficult because the extraction process is based on the 

data signal transitions, the presence of which is not guaranteed. A line amplifier with a 50 

Ω input impedance amplifies the signal to a suitable level for internal circuits while 

minimizing the distortion. Noise injection from this amplifier must be minimized because 

the received data signal is already saturated with jitter coming from the transport channel. 

If the data is of the NRZ type, then the PD must also be able to handle random data that 

has random transition locations. Moreover, the key parameters of the PLL must be tuned to 

a signal with high noise content as compared to the PLL in the transmitter which has a low 

noise reference at its input. Additional circuits are needed to sample the data using the 

recovered clock unless the PD does so automatically. In some cases, a low frequency 

reference clock may be used to bring the frequency of the receiver’s VCO close to the data 

rate before clock extraction occurs.  

The architecture with a reference clock enhances the operation range of the receiver’s PLL. 

Its drawback is that two separate PD’s are needed and a circuit that can switch between 

them is necessary. This introduces two loops sharing common components which must be 

able to operate independently. A common component in a dual loop PLL is a lock detector 

circuit that determines if phase lock is lost in the data loop. If lock is lost the loop switches 

back to the external reference loop.  
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The dual loop architecture is useful in a high noise environment where the data jitter can 

cause the PLL to become unstable. Once the clock is extracted from the serial signal, the 

data can then be demultiplexed through a series of multiplexers at decreasing clock rates. 

For example, in a 10 Gb/s system the first re-sampled data would pass through a 1-to-2 

demultiplexer driven by a 5 GHz clock. The second stage would consist of two 1-to-2 

demultiplexers driven by a 2.5 GHz clock, and so on. If a multiphase clock is used, then 

multiple samples can be taken with separate samplers. This allows the use of a clock at a 

fraction of the data bit rate, hence reducing the power consumption associated with clock 

switching.   

2.6 CDR Based Serial Link Applications 

Much of this work focuses on the design of circuits and architecture development that will 

eventually leads to the implementation of a 10 Gb/s intra-chip and inter-chip high-speed 

interconnections in system-on-chip (SOC). The architectures and circuits presented here 

have a wider applicability to any high-speed communication system; such applications 

include the following [21]: 

• LANs (local area networks), for broadband data communication links between 

computers over optical fibers such as Fiber-Distributed Data Interface (FDDI). 

• WANs (Wide Area Networks) for multimedia applications. 

• High-speed read/write channels for magnetic data-storage devices. 

• High-speed serial data communication on metallic transmission media, such as 

coaxial cables and twisted pairs. 

• Fiber optic receivers for long-haul optical communication networks. 
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2.9 Open Loops CDR Architectures

An edge detection system is illustrated in Figure 2
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Although this simple approach proves to be useful for applications where the two inputs 

have identical frequencies and different phases, it falls short in providing frequency error 

information as the two inputs frequencies start to grow apart from each other. The reason is 

that if the two frequencies are not equal, the detector generates a beat frequency with an 

average value of zero (Figure 2-11(c)). The beat signal can still provide efficient 

information about the phase and frequency difference if the two frequencies are slightly 

different. To improve the capture range of the phase detector, phase locked loop circuits 

use additional means of frequency acquisition.  

A circuit that can detect both phase and frequency difference is extremely useful because it 

significantly increases the acquisition range and lock speed of PLL’s. The sequential phase 

and frequency detector (PFD) proves to provide a large range for periodic waveforms [22]. 

Figure 12-2 shows the implementation of this circuit and the corresponding waveforms 

when the two inputs have different frequencies and phases. As shown in Figure 2-12(b), if 

the frequency of input A is greater than of input B, then the PFD produces positive pulses 

at QA, while QB remains zero. Conversely, if fA < fB, positive pulses appear at QB while QA 

= 0. If fA = fB, then the circuit generates pulses at either QA or QB with a width equal to the 

phase difference between the two inputs as illustrated in Figure 2-12(c). Thus the average 

value of difference (QA-QB) is an indication of the frequency or the phase difference 

between A and B. The sequential PFD is a major block used for phase detection in 

frequency synthesizers and clock generators. Its compact and power-efficient structure 

makes it attractive for low power applications. However, this circuit cannot be used to 

provide phase error information for random data because in contrast to periodic data a zero 

crossing at the end of each bit is not guaranteed. Consecutive ones and zeros are very 

likely to appear in a random sequence hence producing erroneous pulses at QA and QB.  

If for instance, the PLL is in locked state the clock frequency and the data rate will be the 

same, and the clock edges will be in the middle of the data bits, hence no error pulses will 

be required to adjust the phase and frequency of the VCO clock signal. However, the 

sequential PFD produces pulses at QA and QB driving the VCO clock signal away from its 

locked state. Therefore this type of PFD is not suitable for random data sequences.       
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2.13 Random Data Signal Phase Detectors 

Binary data is commonly transmitted in the NRZ format. In this format each bit has 

duration Tb (bit period), is equally likely to be zero or one, and is statistically independent 

of other bits. A NRZ data signal has two properties that make the clock recovery task 

difficult. First, data may exhibit long sequences of consecutive ones or zeros, demanding 

the clock recovery circuit to “remember” the bit rate during such an interval. This means 

that, in the absence of data transitions, the clock recovery circuit should not only continue 

to produce clock, but also cause only a negligible drift in the clock frequency.  Second, the 

spectrum of NRZ data has nulls at frequencies that are integer multiples of the bit rate. Due 

to the absence of a spectral component at the bit rate in the NRZ format, a CDR circuit 

may lock to spurious signals or simply may not lock at all. Phase detectors operating with 

random data sequences are generally categorized in two groups, linear and binary. In a 

linear phase detector, the phase error signal is linearly proportional to the phase difference, 

falling to zero in the locked condition. In a binary phase detector, an early or late (binary) 

signal is generated in response to a phase difference between the clock and data.    

2.13.1 Full-Rate Linear Phase Detector for Random Data 

In a linear PD, such as the one proposed by Hogge [23], the phase error information is 

generated at each data transition and produced by taking the difference of two pulses. One 

of them is width modulated the width is linearly proportional to the phase difference 

between the clock and data, whereas the other pulse has a fixed width. Gate-level 

implementation of Hogge’s phase detector is shown in Figure 2-13. The NRZ input data 

signal is sent through two D-type flip-flops. The first flip-flop samples the data signal on 

the rising edge of the clock, whereas the second flip-flops samples the output of the first 

one on the falling edge of the clock. If the three signals, Din, A, and Dout are applied to two 

XOR gates, the resulting output signals will have the properties of a linear phase detector. 

The Error output signals will appear at each data transition with a width proportional to the 

phase difference between the clock and the data. The reference output will always have 

pulses as wide as half the clock period. An important feature of the Hogge PD is the 

automatic retiming of the data sequence.  
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2.13.2 Full-Rate Binary Phase Detector for Random Data 

In a binary phase detector, a binary error signal is generated in response to an arbitrary 

phase difference between the clock and the data. This binary error signal determines 

whether the clock phase is “early” or “late” with respect to the data phase. A commonly 

used binary phase detector is the one proposed by Alexander [24], in which the zero 

crossings of the data are measured as early or late events when compared with the 

transitions of the clock signal. The structure of the Alexander phase detector allows for 

automatic retiming of the data. During any particular clock interval, this binary phase 

detector provides three binary samples of the data signal: the previous bit (A), a sample of 

the current bit at the zero crossing (B); and the current bit (C) (Figure 2-14(b)). Figure 2-14 

(a) depicts the value of these samples for the late and early clocks.  The retimed data is 

taken from A. The location of the clock edge with respect to the data edge can be 

determined based on the following rules: 

• If A = B ≠ C, clock is early. 

•  If A ≠ B = C, clock is late. 

•  If A = B = C, no data transition has occurred 

Using the above observations, the three samples can be used to produce a phase error in a 

CDR circuit. The early signal can be formed as B ⊕ C and the late signal is generated as   

A ⊕ B. The desired phase error can be obtained by subtracting the early signal from the 

late signal. Figure 2-14(d) shows a CDR circuit employing an Alexander phase detector. 

The XOR gate outputs drive voltage-to-current converters so that the two signals can be 

summed in the current domain, and the result is applied to the loop filter. The high gain of 

the Alexander PD yields a small phase offset in the locked condition. CDR circuits using 

similar PD are described in [25-27]. 
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2.14 Frequency Detectors 

Data communication standards require operation at a precise data rate. Therefore the 

frequency of the VCO should be equal to the data rate. However, the VCOs in the CDR 

circuits are generally designed with a large tuning range to accommodate for the process 

and temperature variations. On the other hand, the phase-locking CDR circuits have 

narrow capture range. This range is primarily determined by two factors: the PLLs 

bandwidth and the phase detector topology. The loop bandwidth is a communication 

standard dependent and does not exceed normally a few MHz. The capture range of the 

linear PD is a fraction of one percent of the incoming data rate, and it is typically a few 

percent for binary a PD. Therefore the CDRs capture range is much smaller than the 

VCO’s tuning range. For this reason, it is unlikely that CDR circuits will acquire lock to 

the data when the circuit turns on and the VCO starts oscillating at a frequency that is very 

different from the data rate. This limitation calls for an aided acquisition mechanism. 

Various frequency detection techniques have been used that operate with or without a 

reference signal. The idea is that as the circuit is turned on, the frequency detector (FD) 

pushes the VCO frequency close to the data rate. When the frequency difference between 

the VCO and the data rate is small enough to fall into the capture range of PD, the FD is 

then disabled and the PD takes over. A frequency detector must generate an output the 

average of which represents the polarity and magnitude of the frequency difference at its 

inputs. Considering the block diagram of the circuit shown in Figure 2-16, and assuming 

for instance that all input signals are periodic, example:  
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2.15 CDR Architectures

After studying the design and analysis of PD and FD for periodic a

complete CDR architectures can now be developed. A robust architecture must perform the 

following operations: phase and frequency acquisition to ensure lock despite process and 

temperature variations of the VCO frequency and; data retiming

to avoid systematic skew [28].

2.15.1 

Using random data based FD eliminates the need for external reference frequencies. Figure 

2-18 depicts a referenceless architecture containing two loops: a f

a digital quadricorrelator FD from Figure 2
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2.15.2 

As illustrated in Figure 2

multiplexer (MUX). When the circuit’s power is turned on, the multiplexer activates the 

frequency loop first

frequency close to the data rate. Once the required frequency is reached, the frequency 

detector is then disabled reducing the power consumption, and the MUX switches to the 

phase loop. The op

measures the frequency difference between the reference clock and the VCOs frequency 
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2.16 Summary of Prior Art 

State of the art works on CDR circuits are summarized in Table 2.2. The indicated data rate 

corresponds to the data speed at the CDR input. The clock frequency is the frequency of 

the clock signal that is used to transmit the data and has to be extracted by the CDR circuit.   

Ref. Technology 

 
Supply 
Voltage 

(V) 

Data rate 
Gb/s 

 
Architecture 

Loop Number 
 

Clock rate 
GHz 

Architecture 
Type 

Our 
[34] 0.13-µm CMOS 1.2 10 2-loop PLL 2.5 Quarter-Rate 

[25] 0.18-µm CMOS 1.8 3.125 2-loop PLL 1.56251 Half-Rate 

[26] 0.18-µm CMOS 1.8 10 2-loop PLL 5 Half-Rate 

[27] 0.18-µm CMOS 1.8 10 1-loop PLL 5 Full-Rate 

[35] 0.18-µm CMOS 2.5 10 1-loop PLL 5 Half-Rate 

[36] 0.35-µm CMOS 3.3 0.622 2-loop PLL 0.622 Full-Rate 

[37] Si-Bipolar 5 2.488 2-loop PLL 2.488 Full-Rate 

[38] 0.35-µm CMOS 3.3 1.25 1-loop PLL 0.625 Half-Rate 

[39] Si-Bipolar 4.5 1.5 1-loop PLL 1.5 Full-Rate 

[33] Si-Bipolar 5.25 2.488 2-loop PLL 2.488 Full-Rate 

[40] 0.4-µm CMOS 3.3 2.5 1-loop PLL 2.5 Full-Rate 

[41] 0.18-µm CMOS 1.8 5 1-loop PLL 2.5 Half-Rate 

[42] 0.18-µm CMOS 1.8 9-16 2-loop PLL 4.5-8 Half-Rate 

[43] 0.35-µm BiCMOS 3.3 10 2-loop PLL 10 Full-Rate 

[44] 1-µm BiCMOS 3 2.5 2-loop PLL 2.5 Full-Rate 

Table 2-2: Summary of the prior art, including the work done in this thesis. 
 

We presented in this chapter the problems and limitations associated with the use of busses 

as a medium of synchronous communication in today’s complex SOC. To alleviate 

previous problems an asynchronous link based on PLL CDR circuits has been proposed as 

a high performance alternative solution. Furthermore, we reviewed the current state of the 

art of PLL-based CDR; from the literature it is apparent that there is considerable scope of 

improvement in their designs for asynchronous link based communication in SOC. This 

thesis therefore presents a detailed study of quarter-rate PLL-based CDR circuit.  
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3 Introduction 

In this chapter, a mathematical development of the PLL will be carried out covering the 

following subjects: 

1. Simplified time-domain analysis of the PLL in the locked state. In other words, 

studying the tracking property of the PLL, in which any change in the frequency 

input will be tracked by the output through the phase error signal [Eq. 3.10] 

2. Frequency-domain stability analysis of the PLL with a simple RC filter and 

without a charge pump. We will find analytical expressions relating the value of 

the filter components R and C to the stability parameters such as, the phase margin 

(φm), damping factor (ξ), and bandwidth (ω−3dB) [Eq.  3.19-3.22].  

3. Same as in (2), but for a charge pump PLL (CP-PLL) [Eq.  3.33-3.35]. 

4. Stability parameters comparison of the PLL and the CP-PLL [Table 5.1]. 

5. CDR jitter specifications and its relation to the PLL parameters [Eq. 3.49, & 3.58]. 

A phase-locked loop (PLL) is a circuit that synchronizes the phase and frequency of a 

signal generated by a local oscillator with that of a reference signal, by means of the phase 

difference between the two signals. PLLs are primarily used in communication systems. 

For example, they recover clock signals from digital data signals, recover the carrier from 

satellite transmission signals, perform frequency and phase modulation/demodulation, and 

synthesize exact frequencies for receiver tuning [47]. 
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3.1   Simplified PLL Block Diagram

As shown in figure 3
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Where ω0 is the free running angular frequency, corresponding to vf = 0, and kvco is the 

VCO conversion gain, expressed in units of radians per volt per second (rad/V.sec).  

3.2 PLL time-domain operation in the locked state 

In this section, the time-domain operation of the PLL will be studied. When the PLL is 

operating in the synchronized state, the angular frequency of both the input reference 

signal (ωref) and the VCO’s output signal (ωvco) will be equal. Let the following 

expressions represent, respectively, the input reference and the VCO output signal: 
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      (3.3) 

As the PD is performing a multiplication, the signal at its output is giving by: 
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Where β is a constant. After filtering we obtain the following signal 
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  (3.5) 

At the start, there is no voltage (vf) applied to the input of the VCO, thus (ωvco = ωref). As 

shown in equation 3.5, the signal issued from the filter vf carries information about the 

frequency error (ωvco-ωref) and the phase error (ψ0-φ0), between the input (reference) and 

the output (VCO) signals.  

Since; ee θθ ∀≤≤− 1sin1  then pdfpd kvk ≤≤−  and, based on the Eq. 3.2, the angular 

frequency (ωvco) of the VCO will be limited by the range [ωmin, ωmax] such that: 
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   Where 
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ωω
ωω

ωωω
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Since the VCO’s angular frequency is limited by the range [ωmin, ωmax], then in the locked 

state, there exist a value in that range which is equal to the reference angular frequency 

(ωref). Therefore, based on the equation 3.1, the following double equations are fulfilled in 

the locked state of the PLL: 

    
vco

vco

vco

ref
f kk

v 00 ωωωω −
=

−
=     (3.7) 

The above equation shows that in the locked state any change that may occur on (ωref) or 

(ωvco), will be tracked by the PLL, and the filter voltage (vf) will change accordingly. As an 

example, if for instance a random signal decreases the VCO frequency by an amount of 

(∆ωvco), then the filter voltage (vf) will be increased by an amount of (∆vf) and the VCO 

will be controlled by the total voltage (vf + ∆vf) and hence the VCO angular frequency will 

be increased to compensate for the action of the disturbance. The result will then be: 

     fvcovco vk ∆=∆ .ω     (3.8)      

Therefore, as soon as the VCO angular frequency is driven away from the reference one by 

a random signal, or a temperature variation, a phase error signal is generated and hence a 

voltage will also be generated, forcing the VCO to be synchronized with the reference 

angular frequency. As shown in Eq. 3.5, the signal issued from the filter is giving by: 

  [ ]{ } )(sin)()(sin 00 tktkv epdrefvcopdf θϕψωω =−+−=   (3.9) 

For a small phase error, the last equation can be simplified to: 
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The last expression of the phase error signal shows that the VCO is forced to shift its 

angular frequency to become identical to the reference one through the phase error signal 

∆θe(t). 

3.3 Frequency-domain PLL stability analysis 

In the previous section, an elementary time-domain analysis of the PLL in the locked state 

was performed, and an approximation expression was developed relating the phase error 

signal to the required change of the VCO’s angular frequency in order to maintain 

synchronization. Since the PLL is a feedback loop system, a stability analysis of that 

system is necessary in order to guarantee its stability; otherwise the PLL may oscillate and 

never reach the required steady state. In this section a frequency domain analysis will be 

carried out to determine the stability limits and conditions of the PLL circuit, as well as a 

calculation of the low pass filter components (i.e. R and C) based on the previous 

conditions results. In order to transform the time domain PLL block diagram of figure 3-1 

to the frequency domain, a simple case will be considered, and its results will be 

generalized.  
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Let us consider the filter illustrated in figure 3

    

  

Taking the Laplace transform of equation 3.11 give us:
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Based on the definition of the feedback system in control theory, the open loop transfer 

function G(s) of the PLL is giving as follow: 
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Setting kkk vcopd =⋅  which is measured in sec-1, the open loop transfer function G(s) 

becomes: 

    
)1()1(

)(
+

=
+

⋅
=

ττ ss

k

ss

kk
sG vcopd     (3.16) 

And the closed loop transfer function of the PLL, H(s) will be defined as follow: 
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Since the denominator of the function H(s) is a polynomial of second order, the loop is 

second order and it has the following general form: 
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Comparing Eq. 3.17 with 3.18, we obtain: 
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    (3.19) 

Where (ξ) is the damping factor of the loop and is unitless. (ωn) is the natural angular 

frequency of the loop and is measured in radian per second (rad/s). From Eq. 3.19, we 

notice that increasing the factor ξ, and hence the loop stability, requires a decreasing of 

design parameters (k) and (τ). 
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3.3.2 Bode stability analysis of the PLL 

For convenience, we rewrite the open loop transfer function of the PLL without a charge 

pump by substituting s with (jω). 
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=    

The function G(jω) is a complex function. Its magnitude and phase are giving as follow: 
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The angular frequency for which |G(jω)| = 1 is called the cut-off frequency of the PLL and 

is denoted by (ω−3dB). 
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Rearranging last equation and using equation 3.19, one can obtain: 

    04 42
3

224
3 =−+ −− ndBndB ωωωξω   

Solving the last equation with respect to (ω−3dB), the cut-off frequency of the PLL can be 

determined in terms of the damping factor (ξ): 

    24
3 241 ξζωω −+=− ndB     (3.21) 

Substituting equation 3.21 in 3.20, one can obtain the phase of the open loop transfer 

function G(jω) at the cut-off frequency ω−3dB which correspond to the phase margin 

(φmargin). 
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The phase margin of the function G(jω)  is defined as: o
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 The PLL is normally stable when the phase margin is equal to 45o and higher. Thus to find 

the corresponding value of (ξ), the following equations should be solved with respect to 

(ξ): 
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The solution resulting from solving 3.23 is ξ=0.42. Figure 3.4 illustrate the Bode diagram, 

and it corresponds to the amplitude and phase of the open loop transfer function G(jω). 
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3.3.3 Charge pump PLL (CP
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analysis has been also performed on the same PLL and an analytical expression for its 
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been found. In this section, a charge pump PLL with a s

compared to its counterpart without the charge pump. Let us consider the simple RC filter 

with a charge pump of current (
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With this type of circuit, the linear expression of the phase detector will be modified by 

incorporating current flowing into or from the filter. Based on the first expression of Eq. 

3.10 and figure 3-5, one can write: 
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t
Iti e

pd ⋅±=      (3.24) 

Where (id(t)) is the current that has been delivered (pumping) or taken from (sinking) the 

filter in response to a phase error (θe(t)). The sign in the last expression represent the 

polarity of the frequency difference-being positive or negative depending on the difference 

between the reference and the VCO signals. Considering the filter of the figure 3-5, the 

voltage at its output can be written as follow: 

    filterdf Ztitv ⋅= )()(      (3.25) 

Where, (Zfilter) is the total impedance of the filter. Taking the Laplace transform of the 

equation 3.25, we obtain the following equation: 
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Thus, the transfer function of the combined phase detector and the charge pump filter 

blocks will be: 
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The transfer function for the VCO is unchanged to that of the previous section, we rewrite 

it for convenience: 
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transfer functions of the PLL will be giving as follow: 

(3.28) 

(3.29) 

(3.30) 

(3.31) 



Chapter 3  Theoretical Background 
 

 48 

3.3.4 Bode stability analysis of the charge pump PLL 

Substituting s by (jω) in the open loop transfer function G(s) of the charge pump PLL (CP-

PLL), the magnitude of that function will be giving as follow: 

    
4

422

|)(|
ω

ωωω nk
jG

+
=     (3.32) 

Solving the equation |G(jω)|=1 with respect to (ω) give us the cut-off frequency (ω-3dB) of 

the CP-PLL. 

    24
3 241 ξζωω ++=− ndB     (3.33) 

The phase margin of the function G(s) is giving as follow: 

    }2412arctan{ 24
arg ξζξφ ++=inm   (3.34) 

For convenience we rewrite the equations describing the main characteristics of the CP-

PLL in term of the design parameters R, C and Ip, and in term of the stability parameter 

such as the damping factor ξ and the natural frequency (ωn). The open G(s) and closed 

loop H(s) transfer functions, the cut-off frequency (ω-3dB) and the phase margin (φmargin) are 

giving respectively by the following relationships: 
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3.4 Phase Noise and Jitter in PLL

The design of reliable communication circuits and systems normally concerns the 

reduction of phase noise and jitter. These two undesirable effects are closely related, and 

sought to be considered in the context of oscillators and PLL’s.

3.4.1 Oscillator Phase Noise

In order to study and estimate the impact of phase noise on an oscillator’s output, let us 

consider, for instance an ideal oscillator producing a sinusoidal signal at frequency 

ω0 = 2πf0 

frequency spectrum

this sinusoid is an ideal one, its zero

(T0). Also,

than (ω0). 

 
In real oscillator, its internal devices and the circuits surrounding it will randomly vary its 

oscillation period 

shown in Fig. 3
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integers multiples of (T0) and the output spectrum spreads out around the peaks, revealing 

that the signal carries finite energy at (ω0 + ∆ω). 

In order to find a mathematical expression for this phase noise, we suppose that the 

amplitude of the output signal is constant and unaffected by the noise. Since the 

instantaneous frequency varies randomly, the oscillator signal can be written as: 

    )](cos[)( 00 ttVtV nout φω +=     (3.36) 

Where φn(t) is a small random phase component with zero average. Thus, the zero crossing 

points of the signal Vout(t) occur randomly because they appear at instants given as: 

    
0

)()2/(

ω
φπ tk

t n−
=      (3.37) 

Where (k) is an odd number. Equivalently, the oscillation period varies from one cycle to 

the next. The frequency spectrum of the signal φn(t) is called the phase noise and is denoted 

by Sφn. Since φn(t) is typically very small, we therefore can assume: 

   nnnn andthenradt φφφφ ≈≈<< sin1cos,1)(   (3.38) 

Thus, simplifying Eq. (3.36) to 
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  (3.39) 

Eq. 3.39 dictates that the spectrum of Vout consists of impulses at ω = ±ω0 and that the 

spectrum of φn(t) translated to  ±ω0  as illustrated in Fig. 3-8(b). To quantify the phase 

noise Sφn, we measure the average power carried in ∆f = 1 Hz in the phase noise area of 

Fig. 3.8(b). Since the intensity of φn is frequency dependant, the power must be measured 

at a consistent specified frequency offset (∆ω) from (ω0) as shown in Fig. 3-9. Also, the 

measured power in 1 Hz at ∆ω must be normalized to the carrier power, Pc (i.e. the power 
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  Relative Phase Noise HzdBc/136)10533.2log(10 14 −≈×= −  

 

3.4.2 Oscillator Jitter 

The signal jitter is defined as the deviation of the zero crossings from their ideal position in 

time, or alternatively could be defined as the deviation of each period from the ideal value.    

Consider a noisy oscillator operating at a nominal frequency ω0 = 2πf0 = 2π/Τ0 with its 

output compared against an ideal square wave with period T0 [Fig. 3.10(a)]. 

To estimate the jitter, we measure the deviation of each positive (or negative) transition 

point of x2(t) from its corresponding point in the ideal signal x1(t), i.e., ∆Τ1, 

∆Τ2, ..., ∆ΤΝ. This type of jitter is called “absolute jitter” because it results from 

comparison with an ideal reference. Since the measured deviations are random, we 

therefore measure a very large number of deviations (i.e. ∆Τ) and evaluate the root mean 

square value of absolute jitter as: 

   ]......
1

[lim 22
1

2
1 N

N

abs
rms TTT

N
T ∆++∆+∆=∆

∞→
   (3.41) 

Another type of jitter which does not require a reference signal and is called “cycle-to-

cycle” jitter. It is obtained by measuring the difference between each two consecutive 

cycles of the waveform, and taking the root mean square of the values [Fig. 3.10(b)]: 
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The summation can be approximated by an integral: 
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The limit represents the average power of φn and, from Parceval’s theorem [29], is 

equivalent to the area under the spectrum of φn: 
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3.5 Jitter in CP-PLL Based CDR Circuits 

CDR circuits used for wireline, optical and other communication systems must satisfy 

certain jitter criteria specified by the standard associated to a particular type of 

communication system. In this section, a description and estimation of the CDR jitter 

characteristics will be carried out. The main CDR jitter characteristics are, jitter transfer, 

jitter generation and jitter tolerance. Each type of jitter will be studied and related through 

analytical expressions to the PLL parameters ξ, ωn, ω-3dB, R, C, and Ip. 

3.5.1 Jitter Transfer 

The jitter transfer function of a CDR circuit represents the output jitter as a function of the 

input one, when the input jitter is varied at different rates. If, for example, the input jitter 

varies slowly and therefore the waveform zero-crossing points move slowly around their 

ideal positions then the output can follow the input to ensure phase locking. On the other 

hand, if the input jitter varies rapidly, the CDR circuit must filter the jitter, i.e., the output 

tracks the input to a lesser extent. Thus, the jitter transfer exhibits a low-pass characteristic, 

as in the case of the PLL. The jitter transfers required by communication standards must 

generally meet difficult specifications. First, the CDR bandwidth should be small enough 

to attenuate jitter components above the CDR bandwidth. Second, the amount of peaking 

in the jitter transfer (jitter peaking) must be also small to avoid any eventual instability. 

Reducing the CDR bandwidth requires a reduction its CP-PLL bandwidth (ω-3dB), giving as 

(Eq. 3.35)  
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To reduce (ω-3dB), either (ξ) or (ωn) must be reduced. However, loop stability requires that 

ξ stays higher than 0.707, leaving (ωn) as the only parameter which may be reduced. 

Lowering (kvco) and (Ip) will reduce (ωn), but will also reduce (ξ). Thus, C is the principal 

parameter that can be increased to decrease the loop bandwidth (ω-3dB) while increasing the 

damping factor (ξ). 

For, ξ >> 1 , the CP-PLL bandwidth expression (Eq. 3.45) can be reduced to  

    
π

ξωω
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23dB-
vcop

n

kRI
==  

Now, in order to reduce the jitter peaking, the damping factor ξ should have a large value, 

and careful attention must be paid to the poles and zeros of the closed loop transfer 

function. The closed loop transfer function of the CP-PLL is giving by (Eq. 3.35) 
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And the poles are equal to  
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For a large damping factor (i.e. ξ >>1 ), the square root function can be approximated as 
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assumes a constant value for ω > ωp1, and begins to fall at 20 dB/decade at ω > ωp2, 

dropping to -3 dB at ω = 2ξω. With logarithmic scales, the value of jitter peaking (Jp) can 

be written as [29] 

    zppJ ωω log20log20log20 1 −=  

That is,     
2

1

4

1
1

ξω
ω

+≈=
z

p
pJ  

Expressing the jitter peaking Jp in decibels, we can write 

   )
4

1
1ln(686.8logln20log20

2ξ
+=⋅= eJJ epp  

Which, for ξ >> 1 . Hence 4ξ2 >> 1, can be reduced to 

    
22

172.2686.8
log20

ξξ
=≈pJ     (3.48) 

Using expression 3.45, Eq. 3.48 can be expressed in terms of the CP-PLL design 

parameters kvco, R, C, and Ip   

    
vcop

p
CkIR

J
2

686.8
log20 =     (3.49) 

If the resistor value R is lowered to reduce the jitter bandwidth (ω-3dB), then the capacitor 

value C must be raised substantially to maintain Jp constant. 
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3.5.2 Jitter Generation 

Jitter generation refers to the jitter produced by the CDR circuit itself, when the input 

random data is jitter free. The source of jitter in CDR circuits can be summarized as 

follow: 

• VCO phase noise due to the electronic noise of its constituent devices 

• Ripple on the VCO control voltage issued from the filter 

• Coupling of data switching to the VCO through the phase and frequency detectors 

• Power supply and substrate noise 

To estimate the VCO noise contribution to CDR jitter, an expression relating PLL jitter to 

the jitter of the free-running VCO must be derived. The phase noise and cycle-to-cycle 

jitter of the free-running VCO are related by the following equation [45] 

    2
3
0

2 )(
4 ωω
ω

π
φ ∆∆≈∆ STcc     (3.50) 

Where ω0 denotes the oscillation frequency and Sφ(∆ω) represents the relative phase noise 

power at an offset frequency (∆ω) [45]. The jitter given by Eq. 3.50 will be shaped due to 

the PLL effect. As illustrated in Fig. 3.12, it can be assumed that for a loop bandwidth of 

2πfu, the jitter rises with the square root of time until the instant t1 = 1/2π fu and saturates 

thereafter [46]. The total jitter accumulated over time t1 by a free-running oscillator is 

equal to [45] 

    1
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1 2
tT

f
T cc∆=∆      (3.51) 

Substituting (3.50) in (3.51) yields the closed loop jitter 
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π φ
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3.5.3 Jitter Tolerance
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3.5.4 R, C, and Ip Value Optimization Algorithm and Performance 

Comparison of the PLL and the CP-PLL 

After studying the time domain tracking property of the PLL, and the stability analysis of 

the PLL and the CP-PLL incorporating a simple RC filter, we will now look for the 

optimized value of R, C and Ip to obtain reasonable value of the loop parameters (φm, ξ and 

ω−3dB). Once the optimized value is obtained, a performances comparison of the PLL and 

the CP-PLL will be carried out. To do this, we will start from initial value of the design 

parameters R, C, and Ip. The VCO’s conversion gain kvco is taken from the transistor level 

design of the PLL.  

Equations for the PLL are:  

 24
3 241 ξζωω −+=− ndB , ]

241

2
arctan[

2 24
arg

ξζ

ξπφ
−+

−=inm  

Where,   
τ

ξ
τ

ω
τ

ωξ
⋅
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nn
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2 2  

And for the CP-PLL are: 

 24
3 241 ξζωω ++=− ndB , 24

arg 2412arctan{ ξζξφ ++=inm   

  Where, RCand
k

kR
I

kk nn
p

vco ==== τω
τ

ξω
π

2,2,
2

  

We have, kvco = 2π (1.7x109) rad/V.sec. The values of the parameters resulting from the 

optimization are the following: R = 370 Ω, C = 2.3 nF, Ip = 30 µA. 
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Parameter 

ξ ωn (rad/sec) 

ω-3dB 

(rad/sec) 

φmargin 

(degrees) 

Jitter 

Peaking (dB) 

Jitter   

Tolerance (UI) 

PLL 0.0312 18.86x106 18.84x106 58 2.24x103 2.7577x10-3 

CP-PLL 2 4.71x106 18.84x106 86.48 0.543 11.314 

Table 3-1: PLL and CP-PLL loop parameters for the optimized value of R, C and Ip. 

 
Table 3-1 shows clearly that the CP-PLL is much better than the PLL in term of damping 

factor, phase margin, jitter peaking and jitter tolerance. 

3.6 Summary 

In this chapter, a simplified time-domain analysis of the PLL in the locked state has been 

carried out illustrating the tracking property of the PLL. In order to properly select the low 

pass filter components (i.e. R and C), a frequency-domain stability analysis of the PLL and 

the CP-PLL has been carried out, this analysis results in analytical expression relating the 

stability parameters to R and C. Finally, as the jitter is predominant parameters in the CDR 

circuits, a study of the jitter in the CP-PLL and its relation to R and C has been carried out. 
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4 Inter Chip Communication and Verilog-A System 

Modelling 

The Verilog-A language is relatively new. It is an extension of SPICE; hence they have a 

compatible simulation environment. In this work, we have adopted an efficient bottom-up 

extraction approach to build and simulate a gate-level model for the clockless SerDes-

based serial link for an asynchronous inter-chip communication system [34, 65, 66, 67]. 

First, the dynamic (e.g. Latch, DFF, DETFF) and static gates (e.g. AND, OR, XOR) were 

designed at transistor level using the resistively loaded MOS current mode logic, then the 

characteristic parameters (e.g. delay, rise and fall time) of those gates were extracted. 

Finally all the extracted parameters were incorporated into the behavioral model of the 

reciprocal gates. In order to verify the accuracy of the quarter-rate concept, a 10 Gb/s 

point-to-point based serial link interfacing two 8 bits chips will be implemented using the 

Verilog-A language [34]. The proposed serial link will be incorporating the proposed 

quarter-rate PLL-based CDR circuits. Based on the diagram illustrated on Figure 4-2, the 

optimization implementation and simulations of this link will be carried out as follow: 

1. Optimization, implementation and time domain simulation of the 8-to-1 serializer, 

the serializer data input is 8 parallel PRBS data streams at 1.25 Gb/s each, its 

output will be a single data stream at 10 Gb/s (section 4.2.1). 

2. Optimization, implementation and time domain simulations of the 1-to-8 

deserializer, the deserializer data input is a single 10 Gb/s PRBS data stream, its 

output will be 8 parallel data streams at 1.25 Gb/s each. The quarter-rate circuit 

will be incorporated in the deserializer circuit (section 4.2.2). 

3. Optimization, implementation and time domain simulations of the complete serial 

link involving the serializer and the deserializer. The link input at the serializer 

side will be 8 parallel PRBS data streams at 1.35 Gb/s each, whereas its output at 

the deserializer should 8 parallel data streams at 1.35 Gb/s each, if the 8 parallel 

data streams at the input are the same as the 8 parallel data streams at the output, 

hence the serial link is working properly and therefore the concept of quarter-rate 

PLL-based CDR is a working one. (section 4.2.3)  
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4.2 Serializer/Deserializer (SerDes) System 

As discussed earlier, a SerDes circuit performs two functions, serialization and des-

serialization in a lossy and noisy environment. As shown in Figure 4-2, the serializer 

converts the 8 bits parallel data streams into a single serial data stream. The conversion is 

done with the clocks generated from the transmitter’s clock generator. Usually a high 

speed clock running at the serial data rate is required. A practical and cost effective 

solution is to generate this high speed clock from an off-chip low frequency quartz crystal 

oscillator. As a result, a PLL based frequency multiplier is required in the transmitter side; 

another important design challenge for the PLL is to maintain a minimum amount of clock 

jitter despite all the switching noise generated by the surrounding circuits.  
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Figure 4-5: Serializer test bench circuit. 

 
The test bench of the serializer circuit is shown in Figure 4-5. The input signal of the 

serializer circuit is 8 parallels channels of PRBS (pseudo-random bit sequence generator) 

at 1.25 Gb/s data rate each representing for example the output of an 8-bits microprocessor, 

this former communicates with a hard-drive disk or a memory. The serializer output should 

be a single data stream at 8X1.25 Gb/s (=10 Gb/s). The serializer time domain simulations 

results are shown in Figure 4-6, once the PLL in the serializer reached the steady state, and 

for data input bits width of 800 ps (red signal in Figure 4-6(a)), the serializer data output 

bits have a width of 100 ps (blue signal in Figure 4-6(b)), and the clock issued from the 

PLL in the serializer has a period width of 100 ps (red signal in Figure 4-6(b)) which 

confirms the operation accuracy of the serializer. 
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Figure 4- 6: Serializer time domain results, data bit input width is                                            
800 ps (a) and, (b) output bit width is 100 ps. 
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As shown in Figure 4-8, the deserializer circuit, comprise our proposed quarter-rate PLL 

based clock and data recovery circuit. Its input is a one PRBS serial data stream at 10 Gb/s 

data rate without any clock signal associated to it. The VCO frequency in the CDR was 

2.45 GHz, which is 50 MHz below the required frequency of 2.5 GHz (i.e. quarter-rate of 

the data rate). The task of the deserializer is to, extracts the clock signal embedded in the 

data stream, demultiplexes (1-to-4) the former one and simultaneously retime (sample) 

them for further processing. In our case an additional demultiplexing (4-to-8) is required in 

order to compare the 8 inputs of the serializer (section 4.2.1) to the 8 outputs of the 

deserializer. As shown in Figure 4-9(a,) the PLL in the deserializer reached the steady state 

within 2.3 µs, and extracted clock has a frequency of 2.5 GHz (Figure 4-9(b)). 

 

Figure 4-8: Deserializer test bench circuit. 
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Figure 4-9: Low pass filter output showing the deserializer P LL locking process (a)           
and, (b) DFT of the quarter-rate recovered clock output signal. 
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4.2.3 Complete Serial Link (SerDes) Time Domain Simulations 

The test bench circuit of the serial link is shown in figure 4-10. This circuit includes 8 

PRBS parallel data channels at 1.35 Gb/s each, the PLL-based 8-to-1 serializer and the 

PLL-based 1-to-8 deserializer (our proposed 1-to-4 CDR plus an additional 4-to-8 

DEMUX). The VCO minimum frequency in the CDR was 2.6 GHz, which is mean 100 

MHz below the required one (2.7 GHz). Figure 4-11 (a and b) illustrates the transient 

simulation results. The serializer reaches the steady-state within 1.2 µs, followed by the 

deserializer in less than 2 µs later. As shown in Figure 4-12(a) the serial link is working 

properly, because the deserializer outputs d1 and d2 are the same as the serializer inputs 

in1 and in2. 

 

Figure 4-10: SerDes circuit test bench. 
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Figure 4-11: Low-pass filter output voltage showing the serial link locking process                
(a and b), and the DFT of the recovered clock in the deserializ er (c). 
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Figure 4-12: Serial link data input and output (a) and,                                                              
serializer data and clock output (b). 

 
In this chapter, we proved using the serial link schematic view and the Verilog-A language 

that our proposed quarter-rate concept PLL-Based CDR is a working concept for a point-

to-point clockless based serial link interfacing two chips communicating serially at 10 Gb/s 

data rate.
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The MCML gates are fully differential and steer current between the two pull-up resistors. 

The total voltage swing, ∆V = R.Itail, is set by adjusting the resistance of the pull-up 

devices for a given current. The voltage swing ∆V is not rail to rail but in fact is much less, 

of the order of several hundred millivolts. 

5.1.1 CML Circuit Design Advantages and Comparison  

CML circuits are widely known to have advantages over their CMOS counterparts which 

are especially useful for this application. First, CML circuits operate differentially; hence 

inherently rejecting any common-mode noise introduced by the power supply and the 

surrounding environment. Also, due to its reduced logical voltage swing, propagation 

delays are shorter [54], which will be translated to a faster switching circuit. Although 

CML logic style is known to suffer from more static power dissipation than the CMOS 

logic, properly designed CML gates can consume less power than the CMOS style at 

higher frequency of operation [55]. Especially, CML gates reduce current spikes and peak 

during logical transitions, which in turn reduce the effects of power supplies bouncing. 

CML circuits are mainly designed for low power and high frequency applications such as 

communication transceivers and serial links; they are usually incorporating resistive load 

rather than PMOS active load devices because the PMOS transistors severely limit the 

maximum operating frequency of the circuit [56, 57]. There are generally several 

techniques to implement logic circuits and functions in CMOS technology such as 

complementary MOS logic (CMOS), the MOS current mode logic (MCML), folded source 

mode logic (FSCL), domino logic, and complementary pass logic (CPL). The most popular 

design styles are based on the CMOS logic for digital circuits. The CMOS logic design 

style is known for being robust to the variations of fabrication process, hence producing 

reliable integrated circuits. In the other hand, the resistively loaded MCML circuits are 

sensitive to process variations and mismatch. For example, certain type of resistors can 

vary up to 30% in CMOS technology, which may affect the proper functionality of the 

logic circuits. Due to the popularity of using the CMOS logic style in VLSI systems, the 

MCML characteristics will be compared to it. The main parameters to be compared 

between the two logic styles are generally the delay, the power consumption and power-

delay product.  
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Let’s assume that our circuit is composed of an integer number N of identical gates 

connected in series, all with load capacitance C. The total propagation delay through the N 

gates will be given as follow [82]: 
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While the CMOS logic gates dissipate static and dynamic power, the MCML gates are 

drawing constant current over time and independent of the switching activity. Based on the 

above assumption, expressions for power, power-delay product can be written as follow: 
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The delay of static CMOS logic gates is given by: 
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Where Isat is the saturation sourcing or sinking current provided respectively by a 

PMOSFET or NMOSFET transistor in the CMOS gate.  One core advantage of CMOS is 

that it draws minimal power under quiescent conditions. However, for our application of 

high speed data transfer we make the assumption that the CMOS is never quiescent, but 

continually switching. Under these conditions, the CMOS gate is continually charging or 

discharging a capacitor C between 0 and VDD, and we can write the following expression: 
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This CMOS power-delay product, under conditions of continual dynamic load, is higher 

than that for the MCML gate by a factor VDD/∆V, where ∆V is the lower voltage swing of 

the MCML system. In effect the MCML circuit trades noise margin for a significantly 

improved power-delay product. If for instance the MCML tail current I tail is equal to the 

PMOSFET (NMOSFET) saturation current in the CMOS gate, one therefore can compare 

the delay in both logics. 
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As an example, for the CMOS technology provided by UMC (United Microelectronics 

Corporation) and having 130 nm feature size, VDD = 1.2 Volts and ∆V = 0.2 Volts, hence, 
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The selected value of ∆V above is the minimum voltage swing required to make the 

NMOSFET differential pairs in the MCML gate switch properly between on and off. The 

example above clearly shows that the delay is larger in CMOS than its counterpart in 

MCML logic and hence the operation frequency is higher in MCML, thus retaining only 

the delay (or frequency) parameter and ignoring the other, the MCML logic style is more 

suitable than CMOS logic for our particular high speed applications [82]. Another 

interesting point to be compared between the two logic styles is actually the common 

supply lines fluctuations during the bits transitions in digital integrated circuits. Since the 

voltage swing in MCML is much less than its CMOS counterpart, therefore the supplied 

lines current fluctuations for the CMOS inverter for example is higher than those in the 

MCML buffer. This reduced fluctuations in common supply lines, decrease in turn the 

amount of jitter propagated throughout the integrated circuit. 
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5.2 Oscillator Fundamentals
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5.2.2 Negative Resistance Based Oscillator 

An alternative way of generating oscillation is to employ the concept of negative 

resistance, as the Colpitts oscillator [70-74] or LC-based oscillators [78-80]. To properly 

explain this concept, let us consider a simple tank composed of a coil with an inductance 

Lp, a capacitor with a capacitance Cp, and a resistor with a resistance Rp connected in 

parallel and excited by a current impulse as depicted in Figure 5-4(a). The tank responds 

with a decaying oscillatory behavior because, in every cycle, some of the energy that 

transferred between the capacitor and inductor is lost in the form of heat in the resistor. As 

shown in Figure 5-4(b), if a negative resistor equal to -Rp is placed in parallel with Rp and 

the experiment is repeated, now since Rp||(-Rp) = ∞, then the tank will oscillate 

indefinitely. One of the methods to produce negative resistance is to use a positive 

feedback around a source follower [29]. As shown in Figure 5-5(a), the feedback is 

implemented by using a common gate stage and add the current source Ib to provide the 

bias current of M2. From the equivalent circuit in Figure 5-5(b), we have 

     1122 VgVgI mmX −==  

Where, gm1 and gm2 are the transconductance of transistors M1 and M2 respectively. 

And,   )
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And, if gm1 = gm2 = gm, then 
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Z

2−==     (5.3) 

Since gm > 0, then ZX < 0.  In other word, if the input voltage in Figure 5-5(a) is increased, 

so does the source of the transistor M1, reducing the drain source voltage of M2 thus 

reducing the drain current of M2, and allowing part of Ib to flow back to the input source 

hence reducing it. One of the negative resistance based oscillator design is shown in Figure 

5-6(a). Here, Lp provides the bias current to M2 and Rp denotes the equivalent parallel 

resistance of the tank and, for oscillation to occur Rp – 2/gm ≥ 0.  
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If the transfer function of each gain stage is H0(s), then the open loop transfer function of 

the eight gain stages will be given by 
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The oscillation will start only if the total frequency dependant phase shift equal 180o, or if 

each stage contributes 22.5o (=180o/8). The frequency at which this occurs is given by 

     oosc 5.22tan
0

1 =
ω
ω−     (5.5) 

And hence,    045.0 ω=ωosc      (5.6) 

The minimum voltage gain per stage must be such that the magnitude of the open loop gain 

at ωosc is equal to unity: 

     1

])(1[ 82

0

8
0 =

ω
ω

+ osc

A
    (5.7) 

It follows from Eq. 5.5 and Eq. 5.6 that 

     1.1min,0 =A      (5.8)    

In summary, an eight-stage ring oscillator requires a low frequency gain of 1.1 per stage, 

and it oscillates at a frequency of 0.45ω0, where ω0 is the -3dB bandwidth of each stage. 
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Where, Ron3,4 is the on-resistance of the PMOS transistors M3 and M4. Thus 
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Where, CL represents the total capacitance seen by each output to ground including the 

input capacitance of the following stage. The total delay in the circuit is proportional to the 

delay in each stage, hence 
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Eq. 5.4 shows that the frequency of oscillation fosc of an N stages ring oscillator is linearly 

proportional to the control voltage Vcont and inversely proportional to the number of stages 

N of the oscillator. 

5.3.2 Delay Variation by Positive Feedback 

An alternative tuning technique is based on the current controlled negative resistance. As 

seen earlier, a cross coupled transistor pair such that of Figure 5-7 exhibits a negative 

resistor of -2/gm, a value that can be controlled by the bias current of the cross coupled 

transistors. If a negative resistance RN is placed in parallel with a positive resistance RP the 

equivalent resistor Req. will be given by 

    
PN

PN
PNeq RR

RR
RRR

+
== ||.  

If for example |||| PN RR 〉 , then Req. is less negative and it has therefore a higher value. 

This concept can be used in each stage of a ring oscillator as illustrated in Figure 5-12(b). 
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A drawback in the circuit of Figure 5-12 is that as Icc varies, so does the current steered by 

the pair M3-M4 through R1 and R2. Thus, the output voltage swing is not constant across the 

tuning range. To reduce this effect, Is can be varied in the opposite direction of Icc such that 

the total current steered between R1 and R2 remains constant. In other words, it is 

preferable to vary Icc and Is differentially while their sum is fixed, this property is normally 

provided by a differential pair. As illustrated in Figure 5-13, the idea is to use the 

differential pair M5-M6 to steer IT between the two pairs M1-M2 and M3-M4 such that the 

expression IT = Is + Icc is always verified. Since IT must flow through R1 and R2, if M1-M4 

experience complete switching in each cycle of oscillation, then IT is steered to R1 (through 

M1 and M3) in half a period and to R2 (through M2 and M4) in the other half, giving a 

differential swing of 2RpIT. The control voltages Vcont1 and Vcont2 in the circuit of Figure 5-

13 can be viewed as differential control lines if they vary by equal and opposite amounts. 

Differential topology provides normally higher noise immunity for the control input than if 

Vcont is single ended.  

As Vcont2 increases and Vcont1 decreases, the transconductance of the cross coupled pair 

increases, increasing the time constant τ and hence reducing the frequency of oscillation. A 

drawback of circuit in Figure 5-13 is that when the current IT is completely steered by M6 

through the pair M3-M4. Since the pair M1-M2 carries no current at all, hence the gain of 

each stage will fall eventually to zero, preventing oscillation. To avoid the occurrence of 

this situation, a small constant current Ibias is added to the pair M1-M2, thereby ensuring M1 

and M2 remain always on. We calculate the required minimum value of Ibias in Figure 5-13 

to guarantee a low frequency gain of 1.1 (for N = 8) when all of IT is steered to the cross 

coupled pair M3-M4. The small signal gain of the circuit 5-13 is given by [29] 

    1.1
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5.4 A Novel Quarter-Rate Early-Late Phase-Detector 

Before presenting our novel quarter-rate early-late PD (ELPD), we will briefly explain the 

concept of full-rate (i.e. the clock frequency is equal the data rate) ELPD that is originally 

proposed by Alexander [24]. Figure 5-14, illustrates the concept of early-late detection 

method. Using three data samples taken by three consecutive clock edges, the PD can 

determine whether a data transition is present, and whether the clock leads or lags the data. 

In the absence of data transitions, all three samples are equal and no action is taken. If the 

clock leads (it is early), the first sample S1, is unequal to the last two (i.e. S2 and S3). 

Conversely, if the clock lags (it is late), the first two samples, S1 and S2, are equal but 

unequal to the last S3. Thus, S1 ⊕ S2, and S2 ⊕ S3 provide the early-late information: 

• If S1 ⊕ S2 is high and S2 ⊕ S3 is low, the clock is late. 
• If S1 ⊕ S2 is low and S2 ⊕ S3 is high, the clock is early. 
• If S1 ⊕ S2 is equal to S2 ⊕ S3, no data transition is present. 

 
Based on the above observations, the Table 5-2, and Figure 5-14 can be constructed. 
 

S1 S2 S3 Y = S1 ⊕⊕⊕⊕ S2 X = S2 ⊕⊕⊕⊕ S3 Detection (Action) 

0 0 0 0 0 no decision (no action) 

0 0 1 0 1 early (slow down) 

0 1 0 1 1 no decision (no action) 

0 1 1 1 0 late (speed up) 

1 0 0 1 0 late (speed up) 

1 0 1 1 1 no decision (no action) 

1 1 0 0 1 early (slow down) 

1 1 1 0 0 no decision (no action) 

Table 5-1: Truth table representing all states of the Alexan der ELPD. 
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In this work, we propose a quarter-rate DQFD [34, 64], the proposed architecture 

comprises eight DFFs, two XOR gates, and combinational logics as shown in Figure 5-17. 

The combinational logics truth table of the proposed quarter-rate DQFD is shown in Table 

5-1. Clocks 0o, 22.5o, 45o and 67.5o are first sampled by input data, each half of a clock 

period (i.e. 200 ps) is divided into four states, I, II, III, and IV as shown in Figure 5-16(b). 

In the proposed DQFD four DFFs triggered by rising and falling edges of the clock 0o will 

store the sampled values and record the states. The arrow in Figure 5-16(b) represents the 

rising or falling edge of the clock 0o to appear at the boundary between the states IV and I. 

the operational Principle of the proposed quarter-rate DQFD will be discussed in the 

following. For a slow periodic data stream as shown in Figure 5-16(a), suppose that the 

first rising edge of the data appears at the boundary between the states III and IV. Then the 

second rising edge crosses the boundary between the states IV and I and appears in state I. 

The state transition rotated from state IV to I would be detected. This state transition 

indicates that the clock is faster than quarter the data rate and frequency down pulses are 

generated. For a fast data periodic data as shown in Figure 5-16(a), the first rising edge 

appears at the boundary between the states I and II. Then the second rising edge crosses the 

boundary between the states IV and I and appears in state IV. The last state transition 

indicates that the clock is slower than quarter the data rate and frequency up pulses are 

generated. The truth table 5-1 represents the states transition of the proposed quarter-rate 

DQFD.   

Q5Q6 

Q7Q8 

State I State II State III State IV 

10 11 01 00 

State I (10) X X DOWN DOWN 

State II (11) X X X DOWN 

State III (01) UP X X X 

State IV (00) UP UP X X 

Table 5-3: Truth table of the proposed quarter-rate DQFD. 
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6 PLL-Based CDR Circuit Implementation 

The results of design and transistor level simulation of a novel architecture for PLL-based 

clock and data recovery (CDR) circuit are presented in this chapter. The proposed PLL-

based CDR is a referenceless quarter-rate design (i.e., the clock frequency is quarter the 

input data rate), comprising a novel quarter-rate phase detector, a novel quarter-rate 

frequency detector and can be used in a deserializer as part of the Serializer/Deserializer 

(SerDes) device usually utilized in inter-chip communication networks [34]. The proposed 

CDR circuit is designed in a standard 0.13 µm CMOS technology, and simulated at 

transistor level to verify its accuracy as well as to evaluate its characteristics and 

performances. 

6.1 Voltage Controlled Oscillator 

For proper operation of the phase and frequency detectors, eight clock signals and their 

complements (separated by 22.5º) are required. Due to its wide tuning range an eight-stage 

ring oscillator structure was chosen. As shown in Figure 6-1, the VCO consists of eight 

stages, each one of them comprising a delay cell and a control circuit for generating 

differential control voltages Vinc and Vdec for the delay cell. The controlling signals Vinc and 

Vdec can be viewed as differential control lines and hence providing higher noise immunity 

to the VCO controlled input.  The dimensions of transistor M7 and the voltage at its gate 

Vbias should be carefully adjusted such that proper VCO gain, linearity and tuning range 

will be obtained. The tuning technique in this architecture is already described in 5.3.2 and 

based on the concept of bias current controlled negative resistance [64]. As the bias current 

of the cross-coupled pair of transistors (M3 and M4) increases, their negative small-signal 

resistance becomes less negative; hence the total resistance seen by the outputs nodes out 

and outb increase, thereby lowering the oscillation frequency. The eight clock signals 

generated by the VCO are shown in Figure 6-2(a). 
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Figure 6-2: Post- layout simulation, (a) the clock signals generated by the VCO                               
and, (b) the VCO's conversion gain. 
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parameters to vary, such as sheet resistance, capacitance and transistors threshold voltage
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illustrates the dependence of frequency and amplitude of oscillation of the VCO to the 

corners process of the transistors and resistors. The maximum relative change (i

max(∆f/f)) of frequency due to the variations of the resistor corner process from the 

minimum to maximum corner is about 21% of the centre frequency, whereas the same type 
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Figure 6-4: Layout of the proposed VCO. 
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Figure 6-6: Phase detector output for 10 ps out of phase two signal s at its input. 

 

 

Figure 6-7: Layout of the proposed phase detector. 
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Figure 6-9: Frequency down pulses generated when the frequency                                              
of the VCO is higher that the frequency of the incoming data. 

 

 

Figure 6-10: Operating range of the proposed frequency detector. 
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To determine the operating range of the proposed frequency detector, we apply two 

periodic signals to its inputs. One of them is considered as a reference and has a quarter-

rate constant frequency (2.5 GHz) and the other signal is swept in frequency at a constant 

rate of 5 MHz/ns starting from 9 GHz and stopping at 11 GHz. The transfer curve of the 

proposed frequency detector is illustrated on Figure 6-10. It exhibits a 1 GHz operating 

range around the nominal frequency of 10 GHz. 

 

Figure 6-11: Layout of the proposed frequency detector. 
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6.4 Transistor Level Simulation of the Proposed PLL -

Based Quarter-Rate Clock and Data Recovery Circuit 

The proposed quarter rate PLL-CDR has been designed in UMC 0.13µm CMOS 

technology and simulated at transistor level using the schematic view of the CDR circuit 

[64]. Since we are using a quarter-rate based CDR topology, the input data rate should be 

four times the VCO centre frequency. Based on the VCO schematic simulation 

characteristic curve of Figure 6-12, the VCO centre frequency is about 5.5 GHz, therefore 

the data rate should be about 22 Gb/s. As shown in Figure 6-13, the input data signal is 

PRBS (N=32) with a data rate of 21.85 Gb/s. The data rate is 160 MHz below the required 

centre frequency of the VCO (i.e. 5.35 GHz). Figure 6-14(b), illustrates the transient 

simulation results of the circuit locking process, the PLL reaches the steady state within 

500 ns. As shown in Figure 6-14(a), once the desired frequency has been acquired the 

frequency detector is disabled, hence generating no outputs. Table 6-1 summarizes the 

PLL-CDR circuits performances based on schematic view simulation results.  

 

Figure 6-12: Frequency tuning range of the schematic view of                                                    
the VCO for (a) V bias = 0.75 V and (b) V bias = 0.6V. 
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Figure 6-13: Block diagram of the proposed quarter-rate PLL-Base d CDR circuit. 

 

Table 6-2 : CDR characteristics table. 

 
Parameter Simulation 

Input data rate 21.84 Gb/s 

PRBS 232-1 

VCO frequency range 4.9-6 GHz 

VCO conversion gain 1.7 GHz/V 

CDR bandwidth 3 MHz 

Lock-in time 750 ns 

Pull-in range 5.284-5.71 GHz 

CDR power 97 mW 
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Figure 6-14: Frequency detector outputs (a) and output of the                                                        
low pass filter showing the PLL locking process. 

 



Chapter 6                                                    PLL-Based CDR Circuit Implementation and Simulations 
 

 121 

Based on the schematic view simulation results illustrated on Figure 6-14 (a) and (b), the 

quarter-rate PLL-based CDR is a working concept. Although the schematic view of the 

CDR circuit is working at around 22 Gb/s data rate, the fabricated chip is expected to work 

at about 10 Gb/s, because the VCO centre frequency is expected to be lower than the 

schematic one due to the presence of parasitic capacitors and resistors associated to the 

fabricated chip. 

 

Figure 6-15: Layout of the complete PLL-Based CDR circuit and its  constituting circuits. 

 
As shown in Figure 6-15, the design occupies an area of 920 µm x 315 µm and is expected 

to dissipate approximately 97 mW, excluding the output buffers, at a supply voltage of   

1.2 V according to the transistor level simulation results [64].  
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7 Conclusion and Future Work 

In this thesis, we considered the design, modelling and implementation of a referenceless 

quarter-rate PLL-based clock and data recovery integrated circuit. Up to a certain extent 

this has been achieved at transistor level design, simulation and Verilog-A modelling, 

despite the fact that the chip was not working. This chapter will review the findings of this 

study and present some suggestions for future work.  

7.1 Conclusions 

Serial data communications are widely used in today’s data communication systems such 

as fibre optic and wireline based communication links, they as well as are aggressively 

substituting the communication based on the source synchronous parallel links and the 

multi-bit parallel bus because they are more power and space efficient. Higher volume of 

transmitted data requires higher and higher bandwidth. CMOS technology is largely used 

and highly desired for monolithic implementation because of its advantages of low cost 

and wide availability. The primary goal of this dissertation is to implement a new concept 

of a clock and data recovery circuit in 130nm CMOS technology for 10 Gb/s operation, 

modelling it with the Verilog-A language and ultimately using it as part of the receiver in a 

chip-to-chip serial link transceiver, another advantage of the proposed concept is that, the 

serial data stream is inherently 1-to-4 demultiplexed.  

The existing works of Gb/s clock and data recovery circuits are full, half data rate, 

reference or referenceless based architectures. The proposed architecture of this circuit is a 

referenceless quarter-rate PLL-based clock and data recovery circuit, it means that first, the 

circuit does not require a reference clock signal because it is internally generated from the 

VCO and, second for a 10 Gb/s incoming data rate, the internal parts of the circuit (i.e. 

VCO, DFFs and primitive gates) are actually working at a clock speed of 2.5 GHz. 

Working at quarter-rate relaxes the timing constraints of the dynamic elements and the 

static gates as well as reducing the dynamic power consumption resulting from the 

switching activities in the circuits. 
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The proposed topology contains two loops operating independently, the phase and 

frequency-locked loops; the frequency detector is for frequency acquisition only. Once the 

frequency lock is acquired (i.e. the clock frequency is equal to quarter of the data rate), the 

frequency detector is disabled and the phase detector will take over to properly adjust the 

clock phase with respect to the data stream (i.e. the clock edges occurs in the middle of the 

data bit). When the lock is lost, the frequency detector is automatically activated.  

The proposed quarter-rate frequency detector has two advantages, first because the 

frequency detector is completely disabled when the lock is acquired, it does not contribute 

any jitter to the system, second because the gain or the operating range of the frequency 

detector is reasonably large, hence the process of frequency acquisition is faster while the 

loop dynamics of the phase locked loop and the jitter performance of the system are not 

disturbed. From the transistor level simulations, the frequency detector demonstrated a 

detecting range ±25% of the data rate. The proposed phase detector is a symmetric quarter-

rate and nonlinear; because it is nonlinear, hence it has a large gain and therefore it is 

suitable for Gb/s data rate. An 8-stage differential ring oscillator was used for the voltage 

controlled oscillator (VCO). The differential architecture is widely used because it rejects 

noises from both the power lines and the substrate. Eight phases and their complements 

separated by 22.5o are produced from the 8-stage ring oscillator and ready to use for proper 

operation of the phase and frequency detector. The chip was designed, transistor level 

simulated, modelled with the Verilog-A language and fabricated using the CMOS UMC 

130nm technology process. The simulation results showed that the circuit has excellent 

performance in term of locking time (500 ns), small silicon area and power consumption 

(97 mW), having short acquisition time reduce the number of preamble or training bits 

required and results in higher efficiency. Unfortunately the fabricated chip was not 

working because the VCO was not generating any signal normally required for the proper 

operation of the phase and frequency detector. The VCO was not oscillating because the 

measured DC voltage level at the output of the VCO was much lower (0.2 V) than the 

simulated and expected value (0.8 V). Since the VCO architecture is a current mode based 

design, hence between the power supply (VDD) and the ground (GND), there is one load 

resistor cascoded (stacked) with two stacked transistors below it. Having low DC voltage 

level at the output of the load resistor makes the bottom two transistors below it completely 

off and hence preventing the VCO from oscillating.  
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7.2 Future Work 

In semiconductor industries and research, the most important figure of merit of any new 

circuit design and system architecture is a working silicon implementation of the proposed 

circuit. Although our proposed concept or approach of the PLL-based clock and data 

recovery is a working concept at transistor level simulation and Verilog-A modelling, but 

we still need to have working silicon of such new concept. For a better chance of having a 

successful implementation in the future, we propose the following steps: 

1. As a preliminary proof of concept the proposed idea could be implemented 

using an FPGA such as Altera DE2-70 or other. 

2. Implementation of the new concept in a widely used and a well reputed 

technology such as Austria Mikro Systems (AMS) or Taiwan Semiconductor 

Microelectronic Corporation (TSMC). 

3. Implementing of the new idea at lower data rate (e.g. 1 Gb/s) using the rail-to-

rail CMOS logic and using as much as possible primitive logic cells and 

dynamic gates already available in the libraries provided by AMS or TSMC. 

Using the rail-to-rail logic alleviates the problem of proper biasing normally 

encountered in current mode logic. 

4. Once the concept is proved to work in silicon, at a lower data rate using rail-to-

rail logic, we can eventually move forward and implement the idea using the 

current mode logic for higher data rate (e.g. 10 Gb/s).  
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