
A secure address resolution protocol

Mohamed G. Gouda *, Chin-Tser Huang

Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712-1188, USA

Received 19 September 2000; received in revised form 9 November 2001; accepted 17 June 2002

Responsible Editor: M. Singhal

Abstract

We propose an architecture for securely resolving IP addresses into hardware addresses over an Ethernet. The

proposed architecture consists of a secure server connected to the Ethernet and two protocols: an invite–accept protocol

and a request–reply protocol. Each computer connected to the Ethernet can use the invite–accept protocol to peri-

odically record its IP address and its hardware address in the database of the secure server. Each computer can later use

the request–reply protocol to obtain the hardware address of any other computer connected to the Ethernet from the

database of the secure server. These two protocols are designed to overcome the actions of any adversary that can lose

sent messages, arbitrarily modify the fields of sent messages, and replay old messages.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Authentication; Ethernet; Internet; Network protocol; Security; Subnetwork

1. Introduction

The address resolution protocol [11], or ARP

for short, is a protocol for mapping an IP address

to a hardware address that is recognized in the

local network, in particular an Ethernet. Unfor-

tunately, as we point out below, there are some

insecurities in ARP which an adversary can exploit

to disrupt the normal communications among

computers connected to the Ethernet. In this paper
we propose a secure ARP that can overcome the

actions of any adversary which may attempt to

lose sent messages, arbitrarily modify the fields of

sent messages, or replay old messages. The new

protocol consists of a secure server connected to

the Ethernet, and consists of two (sub)protocols:
an invite–accept protocol and a request–reply

protocol.

The rest of this paper is organized as follows. In

Section 2, we describe the insecurities associated

with the ARP, and discuss why current proposed

solutions cannot fully overcome these insecurities.

In Section 3, we propose an architecture for a se-

cure ARP. In Sections 4 and 5, we describe in
detail the design of the invite–accept protocol and

the request–reply protocol respectively, and give

formal verification of the correctness of these two

protocols. In Section 6, we show some extensions

and applications of our architecture. We conclude

our presentation in Section 7.

In verifying the two protocols presented in

this paper, we based our reasoning on the state

*Corresponding author.

E-mail addresses: gouda@cs.utexas.edu (M.G. Gouda),

chuang@cs.utexas.edu (C.-T. Huang).

1389-1286/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S1389-1286 (02)00326-2

Computer Networks 41 (2003) 57–71

www.elsevier.com/locate/comnet

mail to: gouda@cs.utexas.edu

transition diagrams of the protocols, rather than

on the well-known BAN logic [2]. This is because

we wanted to verify the protocols with timeout

actions, and BAN logic can be only used in veri-

fying idealized versions of the protocols without

timeout actions. For curious readers, the verifica-
tion of idealized versions of our protocols using

BAN logic can be found in [7].

2. Insecurities in address resolution protocol

Consider a network that consists of n computers

h½0�; h½1�; . . . ; h½n� 1� connected to the same
Ethernet. Before any computer h½i� can send a

message m to any other computer h½j� in this net-

work, h½i� needs to obtain the hardware address of

h½j�. This can be accomplished using ARP as fol-

lows. First, the ARP process in h½i� broadcasts a
rqst(ipa) message over the Ethernet to every other

computer in the network, where ipa is the IP ad-

dress of the destination computer h½j�. Second,
when the ARP process in any computer other than

h½j� receives the rqst(ipa) message, it detects that

ipa is not its own IP address and discards the

message. Third, when the ARP process in computer

h½j� receives the rqst(ipa) message, it detects that ipa
is its own IP address, and sends a rply(ipa, hda)

message over the Ethernet to computer h½i�, where
hda is the required hardware address of compu-
ter h½j�. When computer h½i� receives the rply(ipa,
hda) message, it attaches hda to message m before

sending m(hda) over the Ethernet to computer h½j�.
This scenario demonstrates that there are three

functions for ARP:

• Resolving IP addresses: Using ARP, each com-

puter can obtain the hardware address of any
other computer (using the IP address of that

other computer) on the same Ethernet.

• Supporting dynamic assignment of addresses:

ARP can be used to resolve the IP addresses

of computers on the same Ethernet even if the

IP addresses assigned to these computers change

over time. For example, consider the case where

a mobile computer visits an Ethernet. In this
case, the mobile computer can be assigned a

temporary IP address through some configura-

tion protocol like DHCP [4]. Then, the other

computers on the Ethernet can use ARP to re-

solve this temporary IP address to the hardware

address of the mobile computer, and so can send

messages to that computer.
• Detecting destination failures: Consider the case

where a computer h½i� needs to resolve the IP ad-

dress ipa of another computer h½j� on the same

Ethernet. Computer h½i� broadcasts a rqst(ipa)

message over the Ethernet. If h½j� happens to

be down at this time, then no rply(ipa, hda) mes-

sage will be returned to h½i� and h½i� will not send
an m(hda) message over the Ethernet. Thus,
ARP ensures that no m(hda) message is sent

over the Ethernet unless the destination com-

puter of this message has been up shortly before

m(hda) is sent.

The simplicity of ARP has made it widely used

in the Internet. Unfortunately, this simplicity

makes ARP vulnerable to two types of attacks. To
describe these two types of attacks, consider a

scenario where a computer h½i� needs to resolve the
IP address ipa of another computer h½j� over the
same Ethernet. Thus, h½i� broadcasts a rqst(ipa)

message over the Ethernet. If h½j� happens to be

down at this time, then an adversary computer h½k�
on the same Ethernet can return a rply(ipa, hda) to

h½i�. There are two cases to consider.

1. Message redirection: In this case, hda in the re-

turned message is the hardware address of h½k�.
If h½i� caches this hda and uses it for sending fu-
ture messages intended for h½j�, then these mes-

sages will end up at h½k� and never reach h½j�,
even if h½j� becomes up shortly after.

2. Transmission inducement: In this case, hda in
the returned message is the hardware address

of h½j�. The returned message convinces h½i� that
h½j� is up and so h½i� proceeds to transmit sev-

eral m(hda) message, intended for h½j�, over

the Ethernet. Computer h½j� will not receive

these messages, because it is down, but the ad-

versary computer h½k� in a promiscuous mode

can receive these messages from the Ethernet.

In order to counter these potential attacks two

solutions have been proposed recently. In one so-

58 M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71

lution, a tool called ARPWATCH [10] is proposed

to monitor the activities over the Ethernet (such as

the transmission of rqst(ipa) and rply(ipa, hda)

messages over the Ethernet) and check these ac-

tivities against a database of (IP address, hardware

address) pairings. In another solution, permanent
entries for trusted hosts [1,13] are stored in the ARP

caches in all computers in the Ethernet, so that

rqst(ipa) and rply(ipa, hda) messages are not sent

over the Ethernet and ARP spoofing is prevented.

Both of these solutions suffer from some problems.

ARPWATCH supports two functions of ARP,

namely resolving IP addresses and detecting desti-

nation failures, but it does not support the dynamic
assignment of IP addresses. In the case of perma-

nent entries for trusted hosts, detecting destination

failures and dynamically assigning addresses are

not supported. Moreover, neither of the two solu-

tions can overcome transmission inducement.

3. Architecture of secure address resolution

To perform secure address resolution in an

Ethernet, a secure server s is added to the Ethernet.

Then, every communication concerning address

resolution in this Ethernet is either from s to some

computer in the Ethernet, or from some computer

in the Ethernet to s.

The secure ARP between s and a computer h½i�
in the Ethernet is partitioned into two protocols:

the invite–accept protocol and the request–reply

protocol. The function of the invite–accept pro-

tocol is to allow the different computers in the

Ethernet to communicate, periodically and se-

curely, their IP addresses and hardware addresses

to the secure server s. The function of the request–

reply protocol is to allow each computer in the
Ethernet to resolve an IP address of some other

computer in the same Ethernet to its hardware

address. As shown in Fig. 1, the invite–accept

protocol is between process sn in server s and

process hn½i� in computer h½i�, and the request–

reply protocol is between process sr in server s and

process hr½i� in computer h½i�.
Both the invite–accept protocol and the re-

quest–reply protocol are designed to tolerate the

actions of any adversary that happens to be on the

Ethernet. We assume that an adversary can per-

form the following three types of actions to disrupt

the communications between server s and any

computer h½i� on the Ethernet:

• Message loss: After a message is sent (by a pro-
cess in s or h½i�), the message is discarded by the

adversary, and is never received (by the intended

process in h½i� or s, respectively).
• Message modification: After a message is sent

and before it is received, the message fields are

arbitrarily modified by the adversary.

• Message replay: After a message is sent and be-

fore it is received, the message is replaced by a
copy of an earlier message of the same type by

the adversary.

Fig. 1. Architecture of secure address resolution.

M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71 59

Note that by executing a sequence of these ad-

versary actions, the adversary can launch the

message redirection attacks or the transmission

inducement attacks, described in Section 2.

To tolerate these adversary actions, the invite–

accept protocol and the request–reply protocol use
the following three mechanisms:

• Timeouts to counter message loss: If a process

(in s or h½i�) sends a message and does not re-

ceive a reply for this message for a relatively

long time, the process times out and sends an-

other copy of the same message or sends an-

other message.
• Shared secrets to counter message modification:

Server s shares a unique secret scr[i] with each

computer h½i� on the Ethernet. This secret is

used to compute an integrity check to be added

to each message that is sent between s and h½i�.
For example, assume that a message acpt(c, ip,

hd), with three fields c, ip, and hd, is to be sent

between s and h½i�. Then an integrity check d for
this message can be computed as follows:

d :¼ MDðc; ip; hd; scr½i�Þ
where MD is a message digest function, such as

MD5 [12], SHA [9], or HMAC [8], and ‘‘c; ip;

hd; scr½i�’’ is a concatenation of the three mes-

sage fields and the shared secret. This integrity

check d is added to the message, to become

acpt(c, ip, hd, d), before sending it so that if the

message fields are arbitrarily modified (by the
adversary) to become acpt(c0, ip0, hd0, d 0), then

d 0 is no loger equal to MD(c0; ip0; hd0; scr½i�).
Thus, arbitrarily modifying the fields of a

message can be detected by the message re-

ceiver.

• Nonces to counter message replay: Before a pro-

cess (in s or h½i�) sends a message that requires a
reply to another process (in h½i� or s, respec-
tively), the sending process attaches to the mes-

sage a unique integer nc, called the message

nonce. When the receiving process receives the

message and prepares a reply, it attaches the

message nonce nc to the reply. Finally, when

the sending process receives the reply and

checks that the message nonce is the same as

that in the original message, it concludes cor-

rectly that neither the original message nor the

reply were replaced by earlier messages (by

the adversary).

In the next two sections, we describe in some
detail the two protocols and discuss their correct-

ness proofs. The invite–accept protocol is dis-

cussed in Section 4, and the request–reply protocol

is discussed in Section 5.

We describe these two protocols using a varia-

tion of the abstract protocol notation presented in

[6]. In this notation, each process in a protocol is

defined by a set of inputs, a set of variables, and a
set of actions. For example, in a protocol con-

sisting of processes p and q, process p can be de-

fined as follows:

process p

inp <name of input> : <type of input>
. . .
<name of input> : <type of input>

var <name of variable> : <type of variable>
. . .
<name of variable>: <type of variable>

begin

<action>
[] <action>
. . .
[] <action>
end

Comments can be added anywhere in a process

definition; each comment is placed between the

two brackets { and }.

The inputs of process p can be read but not

updated by the actions of process p. Thus, the

value of each input of p is either fixed or is up-
dated by another process outside the protocol

consisting of p and q. The variables of process

p can be read and updated by the actions of

process p. Each <action> of process p is of the

form:

< guard >!< statement >

The guard of an action of p is either a <boolean

expression> or a <receive> statement of the form:

rcv < message > from q

60 M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71

The <statement> of an action of p is a sequence of

<skip>, <assignment>, <send>, <selection>, or

<iteration> statements of the following forms:

Executing an action consists of executing the
statement of this action. Executing the actions (of

different processes) in a protocol proceeds ac-

cording to the following three rules. First, an ac-

tion is executed only when its guard is true.

Second, the actions in a protocol are executed one

at a time. Third, an action whose guard is con-

tinuously true is eventually executed.

4. The invite–accept protocol

The invite–accept protocol consists of process sn

in server s and every process hn½i� in computer h½i�.
Process sn shares a unique secret scr½i� with every

process hn½i�, and it stores the shared secrets in an

input array scr[0 . . . n� 1]. This array is defined as
an input in process sn because the actions of sn can

read this array but cannot update it. (The initial

shared secret of a host can be assigned to this host

along with its IP address when the host is added to

the Ethernet. The shared secret can be renewed

once in a long period, for example a month.)

Process sn also maintains three variable arrays

ipa½0 . . . n� 1�, hda½0 . . . n� 1�, and valid½0 . . .
n� 1�. Array ipa½0 . . . n� 1� and array hda½0 . . .
n� 1� are used to record the IP addresses and

hardware addresses of all computers on the

Ethernet. Array valid½0 . . . n� 1� is the validity

count for the entries in arrays ipa½0 . . . n� 1� and
hda½0 . . . n� 1�. When sn writes ipa½i� and hda½i�,
valid½i� is assigned its highest possible value vmax.

Periodically, sn decrements valid½i� by one. If

the value of valid½i� ever becomes zero, then the
current values of ipa½i� and hda½i� are no longer

valid.

There are two types of messages in the invite–

accept protocol: invite and accept messages. The

invite messages are sent from process sn to every

process hn½i�, whereas the accept messages are sent
from every process hn½i� to process sn. Every T

seconds, process sn sends an invite message to
every process hn½i�. Then every hn½i� replies by

sending an accept message to s.

Each invite message is of the form invt(nc, md),

where nc is the unique nonce of the message and

md is a list md½0�; . . . ;md½n� 1� of message di-

gests. Before sending an invt(nc, md) message,

process sn computes a unique value for nc, and

computes every md½i� as follows:

nc :¼ NONCE;

for every i; 06 i < n; md½i� :¼ MDðnc; scr½i�Þ

where NONCE is a function that when invoked

returns a fresh nonce.
When a process hn½i� receives an invt(nc, md)

message, it computes the value MD(nc; sc) and

compares the computed value with the received

value md½i� in the message. If they are equal, then

hn½i� concludes correctly that this message was

indeed sent by sn, and sends an accept message to

sn. Otherwise, hn½i� discards the received invite

message.
Each accept message, sent by a process hn½i�, is

of the form acpt(c, x, y, d), where c is the message

nonce that hn½i� found in the last received invite

message, x is the IP address of hn½i�, y is the

hardware address of hn½i�, and d is the message

digest computed by hn½i� as follows:

d :¼ MDðc; x; y; scÞ

where sc is the secret that h½i� shares with server s.

When process sn receives an acpt(c, x, y, d)

message from a process hn½i�, it checks that c

equals the nonce nc in the last invite message sent

<skip> : skip

<assignment> : <variable of p>

:¼ <expression>

<send> : send <message> to q

<selection> : if <boolean expression>

!<statement>
. . .
[] <boolean expression>

!<statement>

fi

<iteration> : do <boolean expression>

!<statement>

od

M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71 61

by sn and that d is a correct digest for the accept

message. If so, sn concludes correctly that the ac-

cept message was indeed sent by hn½i� and stores x

in ipa½i� and stores y in hda½i�. Otherwise, sn dis-

cards the accept message. Process sn can be de-

fined as follows:

process sn

inp scr : array [0 . . . n� 1] of integer

{shared secrets}

T : integer {T 	 round trip delay

between sn and each hn[i]}

vmax : integer

var ipa : array [0 . . . n� 1] of integer
hda : array [0 . . . n� 1] of integer

valid : array [0 . . . n� 1] of 0 . . . vmax
md : array [0 . . . n� 1] of integer

nc, c, d : integer

x, y : integer

begin

timeout (T seconds passed since this action

executed last) ! nc :¼ NONCE;
i :¼ 0;

do i < n ! md½i� :¼ MD(nc; scr[i]);

i :¼ iþ 1

od;

send invt(nc, md) to hn;

i :¼ 0;

do i < n !
valid½i� :¼ maxð0; valid½i� � 1Þ;
i :¼ iþ 1

od

[] rcv acpt(c, x, y, d) from hn[i] !
if c ¼ nc ^ d ¼ MDðc; x; y; scr½i�Þ !

ipa½i� :¼ x;

hda½i� :¼ y;

valid½i� :¼ vmax

[] c 6¼ nc _ d 6¼ MDðc; x; y; scr½i�Þ !
{discard message} skip

fi

end

Process sn has two actions. In the first action, sn

broadcasts an invite message to every process hn½i�
on the Ethernet every T seconds. In the second

action, process sn receives an accept message from
hn½i�, checks that the message is correct, and if so,

it stores the IP address and hardware address

contained in the accept message in ipa½i� and

hda½i�.
Note that when sn broadcasts an invite mes-

sage, it decrements the value of every valid½i�
by one, and when sn receives an accept message

from hn½i� and checks that the message is correct,
it resets the value of valid½i� to vmax. Thus, if

sn does not receive any accept message from hn½i�
for vmax � T seconds, then valid½i� becomes 0 in

sn.

Process hn½i� stores the secret it shares with

process sn in an input named sc. (Thus, the value

of sc in hn½i� equals the value of scr½i� in sn.) Pro-

cess hn½i� has two other inputs, namely ip and hd,
that stores the IP address and the hardware ad-

dress of computer h½i�, respectively. Process hn½i�
can be defined as follows.

process hn[i: 0 . . . n� 1]

inp sc : integer {sc in hn½i� ¼ scr½i� in sn}
ip, hd : integer

var e : array [0 . . . n� 1] of integer
c, d : integer

begin

rcv invt(c, e) from sn !
d :¼ MDðc; scÞ;
if d ¼ e½i� !

d :¼ MDðc; ip; hd; scÞ;
send acpt(c, ip, hd, d) to sn

[] d 6¼ e½i� ! {discard message}
skip

fi

end

To verify the correctness of the invite–accept

protocol, refer to the state transition diagram of

this protocol in Fig. 2. This diagram has seven

nodes that represent all possible reachable states of

the protocol. Every transition in the diagram
stands for either a legitimate action (of process sn

or process hn½i�), or an illegitimate action of the

adversary. For convenience, each transition is la-

beled by the message event that is executed during

the transition. In particular, each transition has a

label of the form

< event type >:< message type >

where <event type> is one of the following:

62 M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71

• S stands for sending a message,

• R stands for receiving and accepting a message,

• D stands for receiving and discarding a message,

• L stands for losing a message,

• M stands for modifying a message,

• P stands for replaying a message.

Initially, the network starts at a state S.0 where

the two channels between processes sn and hn½i�
are empty. This state can be defined by the fol-

lowing predicate:

S:0 ¼ ch:sn:hn½i� ¼<> ^ch:hn½i�:sn ¼<>

At state S.0, exactly one action, namely the

timeout action in process sn, is enabled for exe-

cution. Executing this action at state S.0 leads the

network to state S.1 defined as follows:

S:1 ¼ ch:sn:hn½i� ¼< invtðc; eÞ > ^c ¼ nc^
e½i� ¼ md½i� ^ e½i� ¼ MDðc; scr½i�Þ^
ch:hn½i�:sn ¼<>

Note that in state S.1, the channel from process

sn to process hn½i� has only one message: invt(c, e),
where the following three conditions hold. First,
the value of field c in the message equals the value

of variable nc in sn. Second, the ith element in

array e in the message equals the ith element in

array md in sn. Third, the ith element in array e

Fig. 2. State transition diagram of the invite–accept protocol.

M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71 63

equals the message digest of the concatenation of

the value of field c and the ith element in array scr

in sn.

At state S.1, exactly one legitimate action,

namely the receive action in process hn½i�, is en-
abled for execution. Executing this action at state
S.1 leads the network to state S.2 defined as fol-

lows:

S:2 ¼ ch:sn:hn½i� ¼<> ^
ch:hn½i�:sn ¼< acptðc; x; y; dÞ > ^c ¼ nc^
d ¼ MDðc; x; y; scÞ

Note that in state S.2, the channel from process
hn½i� to process sn has only one message: acpt(c, x,
y, d), where the following two conditions hold.

First, the value of field c in the message equals the

value of variable nc in sn. Second, the value of field

d in the message equals the message digest of the

concatenation of the values of fields c, x, y, and the

value of input sc in hn½i�.
At state S.2, exactly one legitimate action,

namely the receive action in process sn, is enabled

for execution. Executing this action at S.2 leads the

network back to S.0 defined above.

States S.0, S.1 and S.2 are called good states

because the transitions between these states only

involve the legitimate actions of processes sn and

hn½i�. The sequence of the transitions from state

S.0 to state S.1, from state S.1 to state S.2, and
from state S.2 to state S.0, constitutes the good

cycle in which the network performs progress. If

only legitimate actions of processes sn and hn½i�
are executed, the network will stay in this good

cycle indefinitely. Next, we discuss the bad effects

caused by the actions of an adversary, and how the

network can recover from bad states to good

states.
First, the adversary can execute a message loss

action at state S.1 or S.2. If the adversary executes

a message loss action at S.1, the only message in

the channel from process sn to process hn½i� is
removed. If the adversary executes a message loss

action at S.2, the only message in the channel from

hn½i� to sn is removed. In either case, the network

returns to state S.0 where both channels are
empty.

Second, the adversary can execute a message

modification action at state S.1 or S.2. If the ad-

versary executes a message modification action at

S.1, the network moves to state M where the ith

element of array e in message invt(c, e) is not equal

to the message digest of the concatenation of c and
scr½i�. This message invt(c, e) will be received and

discarded by hn½i� because it cannot pass the in-

tegrity check in the receive action of hn½i�. If the
adversary executes a message modification action

at S.2, the network moves to state M 0 where the

value of field d in message acpt(c, x, y, d) is not

equal to the message digest of the concatenation

of the values of fields c, x, y in the message and
input sc in hn½i�. This message acpt(c, x, y, d) will
be received and discarded by sn because it can-

not pass the integrity check in the receive action of

sn. In either case, the network returns to state

S.0.

Third, the adversary can execute a message re-

play action at state S.1 or S.2. If the adversary

executes a message replay action at S.1, the net-
work moves to state P 0 where the value of field c in

message invt(c, e) is not equal to the value of

variable nc in sn, the ith element of array e in the

message is not equal to the ith element of array md

in sn, but the ith element of array e is equal to the

message digest of the concatenation of the values

of field c in the message and the ith element of

input array scr in sn. This message invt(c, e) will
be received by hn½i� and it will pass the integrity

check in the receive action of hn½i�. Then, hn½i�
sends a message acpt(c, x, y, d) to sn, and

the network enters state P 0 where the value of field

c in message acpt(c, x, y, d) is not equal to the

value of variable nc in sn. This message acpt(c, x,

y, d) will be received and discarded by sn because

it cannot pass the integrity check in the receive
action of sn, and the network returns to state

S.0 where both channels are empty. If the adver-

sary executes a message replay action at S.2, the

network moves to state P 0 as described above.

Then, the message acpt(c, x, y, d) will be received

and discarded by sn, and the network returns to

S.0.

From the state transition diagram, it is clear
that each imposed illegitimate action by the ad-

versary will eventually lead the network back to

64 M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71

S.0, which is a good state. Once the network enters

a good state, the network can make progress in the

good cycle. Hence the correctness of the invite–

accept protocol is established.

5. The request–reply protocol

The request–reply protocol consists of process

sr in server s and every process hr½i� in computer

h½i�. Process sr in server s shares the same unique

secret with process hr½i� in computer h½i� as shared
between processes sn and hn½i� in the invite–accept

protocol.
There are two types of messages in the request–

reply protocol: request and reply messages. The

request messages are sent from process hr½i� to
process sr, whereas the reply messages are sent

from process sr to process hr½i�. When process hr½i�
needs to resolve an IP address into its corre-

sponding hardware address, and hr½i� is not wait-
ing for a reply message for a previous request
message, hr½i� sends a request message to process

sr. Then sr replies by sending a reply message to

process hr½i�.
Each request message is of the form rqst(nc, dst,

d), where nc is the unique nonce of the message,

dst is the IP address of the destination computer

process hr½i� needs to resolve, and d is a message

digest computed by hr½i�. Before sending a rqst(nc,
dst, d) msg, process hr½i� computes a unique value
for nc, and computes d as follows:

nc :¼ NONCE;

d :¼ MDðnc;dst; scÞ

When process sr receives a rqst(nc, dst, d)

message, it computes the value MD(nc; dst; scr½i�)
and compares the computed value with the re-

ceived value d in the message. If they are equal,
then sr concludes correctly that this message was

indeed sent by hr½i�, searches its database for the
corresponding hardware address of dst, and sends

a reply message to hr½i�. Otherwise, sr discards the
received request message.

Each reply message, sent by process sr, is of the

form rply(c, x, y, d), where c is the message nonce

that sr found in the last received request message,

x is the IP address of the destination computer

requested by hr½i�, y is the corresponding hardware
address of x, and d is the message digest computed

by sr as follows:

d :¼ MDðc; x; y; scr½i�Þ

where scr½i� is the secret that server s shares with
computer h½i�.

When process hr½i� receives a rply(c, x, y, d)

message from process sr, it checks that c equals

the nonce nc in the last request message sent by

hr½i�, that x equals dst in the last request message

sent by hr½i�, and that d is a correct digest for

the reply message. If so, hr½i� concludes correctly
that the reply message was indeed sent by sr and
takes y as the hardware address of the desti-

nation computer. Otherwise, hr½i� discards the

reply message. Process hr½i� can be defined as fol-

lows:

process hr[i: 0 . . . n� 1]

inp sc : integer{sc in hr½i� ¼ scr½i� in sr}

t : integer
var nc, c, d : integer

dst, x, y : integer

wait : boolean

begin

� wait !
wait :¼ true;

nc :¼ NONCE;

dst :¼ any;
d :¼ MD(nc; dst; sc);

send rqst(nc, dst, d) to sr

[] rcv rply(c, x, y, d) from sr !
if nc ¼ c ^ dst ¼ x ^ d ¼ MDðc; x; y; scÞ

! {y is requested information

about x} wait :¼ false

[] nc 6¼ c _ dst 6¼ x _ d 6¼ MDðc; x; y; scÞ
! discard message skip

fi

[] timeout wait ^ (t seconds passed since first

action executed last) !
d :¼ MD(nc; dst; sc);

send rqst(nc, dst, d) to sr

end

M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71 65

Process hr½i� has three actions. In the first action,
process hr½i� sends a request message to process sr

while not waiting. In the second action, hr½i� re-
ceives a reply message from sr, and derives the

hardware address of the destination computer. In

the third action, hr½i� times out after waiting for T
seconds, and resends the same request message to sr.

Note that in the second action, process hr½i�
checks both field c and field x in message rply(c, x,

y, d) to see if they are equal to the values of nc and

dst respectively. The purpose of this double-

checking is to make sure that the reply message

corresponds to the request message for which hr½i�
is waiting for a reply, and that the hardware address
contained in the reply message corresponds to the IP

address hr½i� needs to resolve, and also to make it

harder for the adversary to modify the message.

Process sr can read (but not write) the three ar-

rays ipa½0 . . . n� 1�, hda½0 . . . n� 1�, and valid½0 . . .
n� 1� that are updated regularly by process sn of

the invite–accept protocol. Process sr can be de-

fined as follows:

process sr

inp scr : array [0 . . . n� 1] of integer

ipa : array [0 . . . n� 1] of integer

hda : array [0 . . . n� 1] of integer

valid : array [0 . . . n� 1] of integer

var c, d : integer

x, i, j : integer
begin

rcv rqst(c, x, d) from hr[i] !
if d ¼ MD(c; x; scr[i]) !

j :¼ 0,

do ipa½j� 6¼ x ^ j < n !
j :¼ jþ 1

od;

if j < n ^ valid½j� > 0 !
d :¼ MD(c; x; hda[j]; scr[i]);

send rply(c, x, hda[j], d) to hr[i]

[] j ¼ n _ valid½j� ¼ 0 !
d :¼ MD(c; x; 0; scr[i]);

send rply(c, x, 0, d) to hr[i]

fi

[] d 6¼ MDðc; x; scr½i�Þ ! {discard message}

skip
fi

end

Process sr has only one action, in which sr re-

ceives a request message from process hr½i� and
sends a reply message to hr½i�.

Note that when process sr receives a request

message from process hr½i�, it first checks the in-

tegrity of the message. Then, sr searches array ipa
for the IP address that hr½i� requests to resolve.

If the requested IP address exists in array ipa and

the validity count for it is larger than 0, then sr

sends a reply message, containing the correspond-

ing hardware address, to hr½i�. If the requested IP

address does not exist in array ipa or the validity

count is equal to 0, then sr sends a reply message,

containing an empty hardware address, to hr½i�.
To verify the correctness of the request–reply

protocol, refer to the state transition diagram as

shown in Fig. 3. This diagram has eight states that

represent all possible reachable states of the pro-

tocol.

Initially, the network starts at a state S.0 where

the value of variable wait in process hr½i� is false
and the two channels between processes hr½i� and
sr are empty. At S.0, exactly one action, namely

the first action in hr½i�, is enabled for execution.

Executing this action at S.0 leads the network to

state S.1, where the channel from hr½i� to sr has

only one message rqst(c, x, d). In this message,

the value of field c equals the value of variable nc

in hr½i�, the value of field x equals the value of

variable dst in hr½i�, and the value of field d equals
the message digest of the concatenation of the

values of fields c, x, and the value of input sc in

hr½i�.
At state S.1, exactly one legitimate action,

namely the receive action in process sr, is enabled

for execution. Executing this action at S.1 leads the

network to state S.2, where the channel from sr to

hr½i� has only one message rply(c, x, y, d). In this
message, the value of field c equals the value of

variable nc in hr½i�, the value of field x equals the

value of variable dst in hr½i�, and the value of field

d equals the message digest of the concatenation of

the values of fields c, x, y, and the ith element of

input array scr in sr.

At state S.2, exactly one legitimate action,

namely the receive action in hr½i�, is enabled for
execution. Executing this action at S.2 leads the

network back to S.0.

66 M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71

States S.0, S.1 and S.2 are the good states of the

request–reply protocol, and the sequence of the
transitions from S.0 to S.1, from S.1 to S.2, and

from S.2 to S.0, constitutes the good cycle in which

the network performs progress. Next, we discuss

the bad effects caused by the actions of the ad-

versary, and how the network can recover from

bad states to good states.

First, the adversary can execute a message

loss action at state S.1 or S.2. If the adver-
sary executes a message loss action at S.1 or

S.2, the network moves to state L where the

value of variable wait in hr½i� is true and the

two channels between hr½i� and sr are empty.

After the timeout action, the network returns to

S.1.

Fig. 3. State transition diagram of the request–reply protocol.

M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71 67

Second, the adversary can execute a message

modification action at state S.1 or S.2. If the ad-

versary executes a message modification action at

S.1, the network moves to state M where the

value of field d in message rqst(c, x, d) is not equal

to the message digest of the concatenation of the
values of fields c, x in the message and input sc in

hr½i�. This message rqst(c, x, d) will be received

and discarded by sr because it cannot pass the

integrity check. If the adversary executes a mes-

sage modification action at S.2, the network

moves to state M 0 where the value of field d in

message rply(c, x, y, d) is not equal to the message

digest of the concatenation of the values of fields
c, x, y in the message and the ith element of input

array scr in sr. This message rply(c, x, y, d) will be

received and discarded by hr½i� because it cannot
pass the integrity check. In either case, the net-

work moves to state L next and eventually returns

to S.1.

Third, the adversary can execute a message

replay action at state S.1 or S.2. If the adversary
executes a message replay action at S.1, the net-

work moves to state P where the value of field c

in message rqst(c, x, d) is not equal to the value

of variable nc in hr½i�, and the value of field d

equals the message digest of the concatenation of

the values of fields c and x in the message and

input sc in hr½i�. This message rqst(c, x, d) will be
received and accepted by sr because it can pass
the integrity check. Thus sr sends to hr½i� a mes-

sage rply(c, x, y, d), and the network moves to

state P 0 where the value of field c in message

rply(c, x, y, d) is not equal to the value of variable

nc in hr½i�, and the value of field d equals the

message digest of the concatenation of the values

of fields c, x, y, and the ith element of input array

scr in sr. If the adversary executes a message re-
play action at S.2, the network moves to state P 0

as well. From state P 0, message rply(c, x, y, d) will

be received and discarded by hr½i� because it can-
not pass the integrity check, and the network

moves to state L. Eventually, the network returns

to S.1.

From the state transition diagram, it is clear

that each imposed illegitimate action by the ad-
versary will eventually lead the network back to

S.1, which is a good state. Once the network enters

a good state, the network can make progress in the

good cycle. Hence the correctness of the request–

reply protocol is verified.

6. Extensions

In this section, we outline four extensions of the

secure address resolution protocol. First, we ex-

tend the protocol to support insecure address res-

olution for mobile computers that may visit an

Ethernet but share no secrets with the secure server

in that Ethernet. Second, we make the protocol
more reliable by adding a backup server to its

architecture. Third, we make the protocol perform

some system diagnosis tasks. Fourth, we make the

secure server act as a server for several Ethernets

to which the server is attached.

6.1. Insecure address resolution

Consider an Ethernet that has several comput-

ers h½0 . . . n� 1� and a secure server s. Assume that
these computers and server use the secure ARP

(discussed above) to resolve IP addresses to

hardware addresses. Assume also that a mobile

computer h½n� visits this Ethernet but does not

share any secret with the secure servers. In order
that computer h½n� can exchange messages with the
other computers on this Ethernet, h½n� needs to use
an ‘‘insecure’’ version of the ARP. Thus, server s

needs to support two versions of the ARP: secure

and insecure. A binary field b needs to be added to

each message of type invite, accept, request, or

reply to indicate whether the message belongs to

the secure or insecure version of the protocol. In
particular, if the value of field b in a message is

zero, then the information in the message is inse-

cure. Otherwise, the value of b in the message is

one, and the information in the message is secure.

For example, an accept message becomes of the

form acpt(nc, x, y, b, d), where, nc is the nonce of

the message, x is the IP address of the message

sender, y is the hardware address of the message
sender, b is the security indicator of the mes-

sage, d is the message digest computed as follows:

68 M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71

d :¼ MD(nc; x; y; b; sc) if b ¼ 1, d :¼ arbitrary

value if b ¼ 0, sc is the secret shared between the

message sender and server s.

The insecure version of the ARP proceeds as

follows. Whenever server s sends a invt(nc, b, md)

to every computer in the Ethernet, computer h½n�
replies by sending back an acpt(nc, x, y, b, d)

message, where b equals zero and d has an arbi-

trary value, to server s.

When server s receives the acpt(nc, x, y, b, d)

message and checks that b equals zero, it concludes

that the message is insecure and so it does not

attempt to check the correctness of the message

digest d. Nevertheless, s stores in its database the
IP address x and the hardware address y of com-

puter h½n� along with an indication that this in-

formation is unreliable. Later, s may receive a

rqst(nc, x, b, d) message from a computer h½i�,
where x is the IP address of computer h½n�, b
equals one, and 06 i < n. In this case, s replies

by sending a rply(nc, x, y, b, d) message to com-

puter h½i�, where y is the hardware address of
computer h½n�, b equals zero (indicating that the

returned y is unreliable), and d ¼ MD(nc; x; y; b;

scr½i�).

6.2. A backup server

The main problem of the secure ARP discussed

above is that its secure server s represents a single
point of failure. This problem can be resolved

somewhat by adding a backup server bs to the

Ethernet. Initially server bs is configured in a

promiscuous mode so that it receives a copy of

every message sent over the Ethernet. Because

server bs receives copies of all accept messages sent

over the Ethernet, bs keeps its database up-to-date

in the same way server s keeps its database up-to-
date. (This necessitates that server bs is provided

with all the secrets that server s shares with the

computers on the Ethernet.)

Server bs sends no message as long as server s

continues to send invite messages every T seconds

over the Ethernet. If server bs observes that server

s has not sent an invite message for vmax * T

seconds, it concludes that server s has failed. In
this case, bs reports the failure, and assumes the

duties of s: it starts to send invite messages every T

seconds and to send a reply message for every re-

ceived request message.

6.3. System diagnosis

In the ARP, the secure server s may conclude
that some computer h½i� on the Ethernet has failed.
This happens when s sends vmax consecutive in-

vite messages and does not receive an accept

message for any of them from computer h½i�. Thus,
server s can be designed to report computer fail-

ures to the system administrator, whenever s de-

tects such failures. In this case, system diagnosis

becomes a side task of the secure ARP.

6.4. Serving multiple Ethernets

The architecture of the secure ARP can be ex-

tended to allow s to act as a secure server for

several Ethernets (rather than a single Ethernet) to

which s is attached [3]. With this extension, the

computers h½0 . . . n� 1� can be distributed over
several Ethernets and n can become large. In the

extended architecture, server s sends invite mes-

sages over the different Ethernets at the same time,

then waits to receive accept messages over the

different Ethernets. Also, each computer on an

Ethernet can request (from server s) the hardware

address of any other computer on the same

Ethernet or on a different Ethernet.

7. Conclusions

In this paper, we have presented an architec-

ture for securely resolving IP addresses into

hardware addresses over an Ethernet. The pro-

posed architecture consists of a secure server
connected to the Ethernet and two protocols: an

invite–accept protocol and a request–reply pro-

tocol. We have showed formally that these pro-

tocols are correct.

In the invite–accept protocol, the secure server

regularly sends an invite message to every host on

the Ethernet every T seconds. Obviously, T needs

to be longer than the round-trip time, usually 50
ms in a normal Ethernet. However, in choosing a

value for T, one needs to address two conflicting

M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71 69

concerns. On one hand, T should be large enough

so that the overhead incurred by sending invite

messages is kept small. On the other hand, T

should be small enough so that the secure server is

sensitive to host failures on the Ethernet.

In some cases, the adversary is stronger than
discussed above in that it can insert messages (ar-

bitrarily modified messages or old messages). We

believe that the proofs of the secure ARP can be

extended to the case where the adversary can insert

arbitrarily modified messages or old messages.

Besides ARP, there is another widely used ARP

named Reverse ARP [5] (or RARP for short).

RARP can help diskless computers get their IP
addresses by resolving hardware addresses into IP

addresses. Our protocol can be modified slightly to

support secure RARP.

Acknowledgements

We would like to thank the referees and Pro-

fessor Mukesh Singhal for making several sug-
gestions to improve our presentation.

This work is supported in part by the DARPA

contract F33615-01-C-1901 from the Defense

Advanced Research Projects Agency. It is also

supported in part by three IBM Faculty Partner-

ship Awards for the academic years 2000–2001,

2001–2002, and 2002–2003, and by the grant

TARP 14-970823 from the Texas Advanced Re-
search Program provided by the Texas Higher

Education Coordinating Board.

References

[1] Derek Atkins et al., Internet Security, 2nd ed., New Riders,

1997.

[2] Michael Burrows, Martin Abadi, Roger Needham, A logic

of authentication, ACM Transactions on Computer Sys-

tems 8 (1) (1990) 18–36.

[3] Smoot Carl-Mitchell, John S. Quarterman, Using ARP to

Implement Transparent Subnet Gateways, RFC 1027,

October 1987.

[4] Ralph Droms, Dynamic Host Configuration Protocol,

RFC 2131, March 1997.

[5] Ross Finlayson, Timothy Mann, Jeffrey Mogul, Marvin

Theimer, A Reverse Address Resolution Protocol, RFC

903, June 1984.

[6] Mohamed G. Gouda, Elements of Network Protocol

Design, Wiley, New York, 1998.

[7] Mohamed G. Gouda, Chin-Tser Huang, A Secure Address

Resolution Protocol, Technical Report TR-02-34, Depart-

ment of Computer Sciences, The University of Texas at

Austin, June 2002.

[8] Hugo Krawczyk, Mihir Bellare, Ran Canetti, HMAC:

Keyed-Hashing for Message Authentication, RFC 2104,

February 1997.

[9] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

[10] Network Research Group, Lawrence Berkeley Na-

tional Laboratory, ARPWATCH 2.0, available at: ftp://

ftp.ee.lbl.gov/arpwatch.tar.Z.

[11] David C. Plummer, An Ethernet Address Resolution

Protocol or Converting Network Protocol Addresses to

48.bit Ethernet Address for Transmission on Ethernet

Hardware, RFC 826, November 1982.

[12] Ronald Rivest, The MD5Message Digest Algorithm, RFC

1321, April 1992.

[13] Marco de Vivo, Gabriela O. de Vivo, Germinal Isern,

Internet security attacks at the basic levels, Operating

Systems Review 32 (2) 1998.

Mohamed G. Gouda was born in
Egypt. His first B.Sc. was in En-
gineering and his second was in
Mathematics; both are from Cairo
University. Later, he obtained M.A.
in Mathematics from York University
and Masters and Ph.D. in Computer
Science from the University of Wa-
terloo. He worked for the Honey-
well Corporate Technology Center in
Minneapolis 1977–1980. In 1980, he
joined the University of Texas at
Austin where he currently holds the
Mike A. Myers Centennial Profes-

sorship in Computer Sciences. He spent one summer at Bell
labs in Murray Hill, one summer at MCC in Austin, and one
winter at the Eindhoven Technical University in the Nether-
lands.
His research areas are distributed and concurrent computing

and network protocols. In these areas, he has been working on
abstraction, formality, correctness, nondeterminism, atomicity,
reliability, security, convergence, and stabilization. He has
published over fifty journal papers, and over one seventy
conference papers. He supervised over seventeen Ph.D. Dis-
sertations.
Prof. Gouda was the founding Editor-in-Chief of the

Springer-Verlag journal Distributed Computing 1985–1989. He
served on the editorial board of Information Sciences 1996–
1999, and he is currently on the editorial boards of Distributed
Computing and the Journal of High Speed Networks.
He was the program committee chairman of ACM SIG-

COMM Symposium in 1989. He was the first program com-
mittee chairman of IEEE International Conference on Network
Protocols in 1993. He was the first program committee chair-
man of IEEE Symposium on Advances in Computers and
Communications, which was held in Egypt in 1995. He was the
program committee chairman of IEEE International Confer-
ence on Distributed Computing Systems in 1999. He is on the
steering committee of IEEE International Conference on Net-
work Protocols, and is an original member of the Austin
Tuesday Afternoon Club.

70 M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71

ftp://ftp.ee.lbl.gov/arpwatch.tar.Z
ftp://ftp.ee.lbl.gov/arpwatch.tar.Z

Prof. Gouda is the author of the textbook ‘‘Elements of
Network Protocol Design’’, published by John Wiley & Sons in
1998. This is the first ever textbook where network proto-
cols are presented in abstract and formal setting. Currently, he
is writing the textbook ‘‘Elements of Secure Network Proto-
cols’’.
Prof. Gouda is the 1993 winner of the Kuwait Award in Basic

Sciences. He was the recipient of an IBM Faculty Partnership
Award for the academic year 2000–2001 and again for the ac-
ademic year 2001–2002. He won the 2001 IEEE Communica-
tion Society William R. Bennet Best Paper Award for his paper
‘‘Secure Group Communications Using Key Graphs’’, coau-
thored with C.K. Wong and S.S. Lam and published in the
February 2000 issue of the IEEE/ACM Transactions on Net-
working (vol. 8, no. 1, pp. 16–30).

Chin-Tser Huang received his B.S. in
Computer Science and Information
Engineering from National Taiwan
University in 1993, and the M.S. in
Computer Sciences from the University
of Texas at Austin in 1998.
Currently, he is pursuing the Ph.D.

degree in computer sciences at the
University of Texas at Austin. He also
works as a Research Assistant at the
Network Protocol Design Lab in his
department. His research interests in-
clude network security, network pro-
tocol design and verification, and
distributed systems.

M.G. Gouda, C.-T. Huang / Computer Networks 41 (2003) 57–71 71

	A secure address resolution protocol
	Introduction
	Insecurities in address resolution protocol
	Architecture of secure address resolution
	The invite-accept protocol
	The request-reply protocol
	Extensions
	Insecure address resolution
	A backup server
	System diagnosis
	Serving multiple Ethernets

	Conclusions
	Acknowledgements
	References

