Chapter 10

Belief Revision

Suppose that an agent believes ¢1,...,p, and then learns or observes .
How should she revise her beliefs? If 1 is consistent with @1 A ... A ©n,
then it seems reasonable for her to just add v to her stock of beliefs. This
is just the situation considered in Section 4.1. But what if v is, say, —¢17?
It does not seem reasonable to just add —p; to her stock of beliefs, for then
her beliefs become inconsistent. Nor is it just a simple matter of discarding
1 and adding —;. Discarding ¢; may not be enough, for (at least) two
reasons:

1. Suppose that @7 is @2 A 3. If the agent’s beliefs are closed under
implication (as I will be assuming they are), then both ¢y and 3
must be in her stock of beliefs. Discarding ¢; and adding —; still
leaves an inconsistent set. At least one of ¢y or 3 will also have to
be discarded to regain consistency, but which one?

2. Even if the result of discarding ¢; and adding —¢1 is consistent, it
may not be an appropriate belief set. For example, suppose that ¢y is
(1 Vp. Since 4 is a logical consequence of 1, it seems reasonable to
assume that o4 is in the agent’s belief set (before learning —q). But
suppose that the only reason that the agent believed ¢4 originally
was that she believed ¢;. By discarding 3, we have removed the
justification for ¢4. Shouldn’t it be removed too?

Intuitively, it seems reasonable to insist that the agent revise her beliefs
in light of learning/observing ¢ by making the “minimal change” necessary
to incorporate . If v is consistent with ¢1,..., @, then the “minimal
change” is clearly to just add 1 to the stock of beliefs and (perhaps all the
logical consequences of 1 A 1 A ... A @, that were not there already). But
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254 CHAPTER 10. BELIEF REVISION

in general, “minimal change” is a tricky notion, and seems to involve issues
such as justification.

We have seen a similar intuition before, back in Section 4.10. There
we were looking for the probability distribution that was “closest” to the
original measure that satisfied certain constraints. Here we are essentially
looking for the beliefs that are “closest” to the original beliefs but satisfy
the constraint of including the new observation. The properties (4.1) and
(4.2) can be viewed as trying to characterize the conditional probability
measure p|U as being the probability measure closest to the prior proba-
bility measure y that gives U probability 1. In fact, in Section 4.10, I said
that, for various reasonable notions of closeness, this was indeed the case.

As we saw in Chapter 7, probability is not so useful as a model of belief;
however, plausibility can be used (where the agent is said to believe ¢ if the
plausibility of ¢ is greater than that of —; see also Section 8.3). In this
chapter, using plausibility to model belief, I show that many conditional
plausibility provides a useful model for belief revision.

10.1 The Circuit-Diagnosis Problem

The circuit-diagnosis problem provides a good testbed for understanding
the issues involved in belief revision, so I start with that here.

A circuit consists of a number of components (AND, OR, NOT, and
XOR gates) and lines. For example, the circuit of Figure 10.1 contains 5
components, Xy, Xa, A1, A3,01 and 8 lines, ly,...,ls. Inputs (which are
either 0 or 1) come in along lines Iy, I3, and l3. A; and Ay are AND gates;
the output of an AND gate is 1 if both of its inputs are 1, otherwise it is
0. O; is an OR gate; its output is 1 if either of its inputs is 1, otherwise it
is 0. Finally, X7 and X5 are XOR gates; the output of a XOR gate is 1 iff
exactly one of its inputs is 1.

The circuit-diagnosis problem is that of identifying which components
in a circuit are faulty. An agent is given a circuit diagram as in Figure 10.1;
she can set the values of input lines of the circuit and observe the output
values. By comparing the actual output values with the expected output
values, the agent can attempt to locate faulty components.

The agent’s knowledge about a circuit can be modeled using a Kripke
structure Mﬁag = (Waiag, Kdiag: Tdiag). Each possible world w € Wyiag is
composed of two parts: fault(w), the failure set, that is, the set of faulty
components in w, and value(w), the value of all the lines in the circuit.
Formally, value(w) is a set of pairs of the form (l,4), where [ is a line in
the circuit and ¢ is either 0 or 1. Components that are not in the failure
sets perform as expected. Thus, for the circuit in Figure 10.1, if w € Wyja,
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Figure 10.1: A typical circuit.

and A; ¢ fault(w), then (I5,1) is in value(w) if and only if both (I3,1) and
(I2,1) are in value(w).

What language should we use to reason about faults in circuits? Since
we need to talk about which components are faulty and the values of various
lines, it seems reasonable to take @ g;q = {faulty(c1),. .., faulty(cy), hi(l1), ..., hi(lg)},
where faulty(c;) denotes that component 4 is faulty and hi(l;) denotes that
line 7 in a “high” state (i.e., has value 1). Define the interpretation T diag
in the obvious way: 7giag(w)(faulty(c;)) = true if ¢; € fault(w), and
Tdiag (W) (hi(l;)) = true if (I;,1) € value(w).

The agent knows which tests she has performed and the results she
observed. Let obs(w) C walue(w) consist of the values of those lines that
the agent sets or observes. (For the purposes of this discussion, I assume
that the agent sets the value of a line only once.) Thus, (w,w’) € Kaiqg if
obs(w) = obs(w’). For example, suppose that the agent observes hi(l1) A
hi(l2) A hi(l3) A hi(l7) A hi(lg). The agent then considers possible all worlds
where lines [y, I3, I3, I7 and lg have value 1. Since these observations are
consistent with the circuit being correct, one of these worlds has an empty
failure set. However, other worlds are possible. For example, it might be
that the AND gate As is faulty. This would not affect the outputs in this
case, since if A; is nonfaulty, then its output is “high”, and thus, O;’s
output is “high” regardless of As’s output.

Now suppose that the agent observes hi(ly) A =hi(l2) A hi(l3) A hi(l7) A
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—hi(lg). These observations imply that the circuit is faulty. (If Iy and I3
are “high” and I3 is “low”, then the correct values for l7 and lg should be
“low” and “high”, respectively.) In this case there are several failure sets
consistent with the observations, including { X1}, {Xs, 01}, and {Xa, A2}.

In general, there is more than one explanation for the observed faulty
behavior. Thus, the agent cannot know exactly which components are
faulty, but she may have beliefs on that score. To model these beliefs,
we must decide on the plausibility measure the agent has at any world.
Assume for simplicity that a set’s plausibility is determined by the failure
sets at the worlds in the set. To construct a plausibility measure with this
property, it seems reasonable to start by constructing a plausibility measure
over possible failures of the circuit. I actually construct two plausibility
measures over failures, each capturing slightly different assumptions. Both
plausibility measures embody the assumptions that failures are unlikely and
failures of individual components are independent of one another. It follows
that the failure of two components is much more unlikely than the failure
of any one of them. The plausibility measures differ in what they assume
about the relative likelihood of the failure of different components.

The first plausibility measure embodies the assumption that the like-
lihood of each component failing is the same. This leads to an obvious
ordering on failure sets: If fi; and f; are two failure sets, then f; =1 fo
if [f1] < |fzl, that is, if fi consists of fewer faulty components than fs.
This leads to an ordering on worlds: wy =1 we if fault(wi) =1 fault(ws).
Using the construction of Section 2.3, this gives a total order >{ on sets of
worlds. Moreover, by Proposition 2.3.4, >3 can be viewed as a qualitative
plausibility measure. Call this plausibility measure Pl;.

P1; can also be constructed by using probability sequences. Let u,, be
the probability measure that takes the probability of a component failing
to be 1/m and takes component failures to be independent. Then for a
circuit with n components,

1 | fault(w)| m—1 n—|fault(w)|
fim (w) = m T :

Then it is easy to check that Pl; is just the plausibility measure obtained
from the probability sequence (u1, 2, i3, - . .) using the construction pre-
ceding Theorem 7.2.11 (Exercise 10.1(a)). Note that as we go out further in
the sequence, the probability of a component being faulty becomes smaller
and smaller. However, at each measure in the sequence, each component is
equally likely to fail and the failures are independent.

In some situations it might be unreasonable to assume that all compo-
nents have equal failure probability. Moreover, the relative probability of
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failure for various components might be unknown. Without assumptions
on failure probabilities, it is not possible to compare failure sets unless one
is a subset of the other. This intuition leads to a different ordering on fail-
ure sets: define f =5 f/ if f D f’. Again this leads to on ordering worlds
by taking wy »o wy if fault(wy) =2 fault(ws) and, again, the construc-
tion of Section 2.3 gives us a plausibility measure Pl on Wy;a,. It is not
hard to find a probability sequence that gives the same plausibility measure
(Exercise 10.1(b)).

Pl; and Ply determine structures Mgiqq,1 and M gqq,2, respectively, for
knowledge and plausibility: Myiag,i = (Waiag: Kdiags PLdiag,is Tdiag ), Where
'Pﬁdiag’i(w, 1) = (’Cdiag (w), Pl;;,l) and Pl,lu_,yl(U) = Pli(K:diag (’U)) n U), for
i=1,2.

Suppose that the agent makes some observations o. In both Mg 1
and M giqq,2, if there is a world w compatible with the observations o and
fault(w) = B, then the agent believes that the circuit is fault-free. That
is, the agent believes the circuit is fault-free as long as her observations
are compatible with this hypothesis. If not, then the agent looks for a
minimal explanation of her observations, where the notion of minimality
differs in the two structures. More precisely, if f is a failure set, let Diag(f)
be the formula that says that precisely the failures in f occur, so that
(M, w) [= Diag(f) if and only if fault(w) = f. For example, if f = {¢1,ca},
then Diag(f) = faulty(c1) A faulty(ca) A —faulty(cs) A ... A =faulty(cy,). The
agent believes that f is a possible diagnosis (i.e., an explanation of her
observations) in world w of structure Mgiag,i if (Mgjaq,:, w) = ~B—Diag(f).
The set of diagnoses the agent considers possible is DIAG(M,w) = {f :
(M,w) = ~B-Diag(f)}. A failure set f is consistent with an observation
o if it is possible to observe o when f occurs, i.e., if there is a world w in
W such that fault(w) = f and obs(w) = o.

Proposition 10.1.1

(a) DIAG(M gigg1,w) contains all failure sets f that are consistent with
obs(w) such that there is no failure set f' with |f'| < |f] that is
consistent with obs(w).

(b) DIAG(M gjaq,2,w) contains all failure sets f that are consistent with
obs(w) such that there is no failure set f" with f' C f that is consistent
with obs(w).

Proof See Exercise 10.2. 1

Thus, both DIAG(M gjag,1, w) and DIAG(M giag,2, w) consist of minimal
sets of failure sets consistent with obs(w), for different notions of minimality.
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In the case of Mgjag,1, “minimality” means “of minimal cardinality”, while
in the case of Mgjqq.2, it means “minimal in terms of set containment”.
More concretely, in the circuit of Figure 10.1, if the agent observes hi(l;) A
—hi(la) Ahi(l3) Ahi(lz) A=hi(lg), then in Mg;q4 1 she would believe that X is
faulty, since {X;} is the only diagnosis with cardinality one. On the other
hand, in Mg;4g,2 she would believe that one of the three minimal diagnoses
occurred: {Xl}, {XQ,Ol} or {XQ,AQ}.

The structures Mg;ag,:, © = 1,2, model a static situation. They describe
the agent’s beliefs given some observations, but do not describe the process
of belief revision—how those beliefs change in the light of new observations.
One way to model the process is to add time to the picture, and model the
agent and the circuit as part of an interpreted plausibility system. This can
be done by a straightforward modification of what was done in the static
case.

The first step is to describe the agent’s set of local states and the set of
environment states. In the spirit of the static model, I assume that the agent
sets the value of some lines in the circuit and observes the value of others.
Let o(,n) be a description of what the agent has set/observed in round
m of run r, where o, ) is a a conjunction of formulas of the form hi(l;)
and their negations. To model the agent’s local states, we need to ask the
same questions as in the Listener-Teller protocol of Section 9.6.1. Does the
agent remember her observations? If not, what does she remember of them?
For simplicity here, I assume that the agent remembers all her observations,
and makes an observation at each round. Given these assumptions, it seems
reasonable to model the agent’s local state at a point (r,m) as the sequence
(0(r,1)s - +++0(r,m)). Thus, the agent’s initial state at (r,0) is (), since she
has not made any observations; after each round in r, a new observation is
added.

The environment states play the role of the worlds in the static mod-
els; they describe the faulty components of the circuit and the values of
all the lines. Thus, I assume that the environment’s state at (r,m) is a
pair (fault(r,m), value(r,m)), where fault(r,m) describes the failure set at
the point (r,m) and value(r,m) describes the values of the lines at (r, m).
Of course, 0(,,) must be compatible with value(r,m)—the values of the
lines that the agent observes/sets at (r,m) must be the actual values. (In-
tuitively, this says that the agents observations are correct and when the
agent sets a line’s value, it actually has that value.) Moreover, fault(r,m)
must be compatible with value(r,m), in the sense discussed earlier: if a
component c¢ is not in fault(r,m), then it outputs values according to its
specification, while if ¢ is in fault(r,m), then it exhibits its faultiness by
not obeying its specification for all inputs. I further assume that the set of
faulty components does not change over time; this is captured by assuming
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fault(r,m) = fault(r,0) for all r and m. On the other hand, I do not assume
that the values on the lines are constant over time since, by assumption,
the agent can set certain values. Let R 449 consist of all runs r satisfying
these requirements.

There are obvious analogues to Pl; and Ply defined on runs; I abuse
notation and continue to call these Pl; and Ply. For example, to get Ply,
first define a total order 1 on the runs in Rgy by taking ri =1 7o if
fault(r1(0)) =1 fault(r2(0)); the construction of Section 2.3 then gives a
total order on sets of runs, which can be viewed as a plausibility measure
on runs. Similarly, the plausibility measure Pl on Rgieg is the obvious
analogue to Ply defined earlier on Wqg.

Pl; and Pl; determine two interpreted plausibility system satisfying
PRIOR whose set of runs is Ragiag; call them Zgiag,1 and Zgiag,2. In each
of these systems, Q(,.,,,1) = Ki(r,m). Thus, at (r,m), the agent considers
possible all the points where she performed the same tests up to time m and
observed the same results. As before, the agent believes that the failure set
is one of the ones that provides a minimal explanation for her observations,
where the notion of minimal depends on the plausibility measure. As the
agent performs more tests, her knowledge increases and her beliefs might
change.

Let DIAG(Z,r,m) be the set of failure sets (i.e., diagnoses) that the
agent considers possible at the point (r,m) in the system Z. Belief change
in Zgieq,1 is characterized by the following proposition, similar in spirit to
Proposition 10.1.1.

Proposition 10.1.2 If there is some f € DIAG(Zgiag,1,7,m) that is con-
sistent with the new observation oy 41y, then DIAG(Zgiag,1,7, m+1) con-
sists of all the failure sets in DIAG(Zgiag,1,7,m) that are consistent with
o(rm+1)- If all f € Bel(Zgiag,1,7,m) are inconsistent with o1y, then
Bel(Zdiag,1, 7, m~+1) consists of all failure sets of cardinality j that are con-
sistent with o(y 1y, where j is the least cardinality for which there is at
least one failure set consistent with o(y my1)-

Proof See Exercise 10.3. 1

Thus, in Zg;ag,1, if an observation is consistent with the pre-observation
set of most likely explanations, then the post-observation set of most likely
explanations is a subset of the pre-observation set of most likely explana-
tions (the subset consisting of those explanations that are consistent with
the new observation). On the other hand, a surprising observation (one
inconsistent with the current set of most likely explanations) has a rather
drastic effect. It easily follows from Proposition 10.1.2 that if o, p,41) is
surprising, then DIAG(Zgiqg,1.7, m) N DIAG(Zgiag,1,7,m + 1) = 0, so the
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agent discards all her pre-observation explanations. Moreover, an easy in-
duction on m shows that if DIAG(Z4iq9,1, 7, m)NDIAG(Z gjqq 1,7, m+1) = 0,
then the cardinality of the failure sets in DIAG(Zg;qq,1,7, m + 1) is greater
than the cardinality of the failure sets in DIAG(Zg;qq,1,7,m). Thus, in
this case, the explanations in DTAG (Idz'ag,ly r,m+ 1) are more complicated
than those in Bel(Zgjqq,1,7,m). Notice that the fact that the agent con-
siders o(,,,41) surprising can be expressed by the formula B= O o(,,m+1)-
That is, 0(,m41) is a surprising or unexpected observation at (r,m) iff
(Idiag,la T m) ': B;— O O(r,m)-

Belief change in Zgjaq,2 is quite different, as the following proposition
shows. Roughly speaking, it says that after making an observation, the
agent believes possible all minimal extensions of the diagnoses she believed
possible before making the observation that are consistent with the obser-
vation.

Proposition 10.1.3 DIAG(Zgjag,2, 7, m + 1) consists of the minimal (ac-
cording to C) failure sets in {f' : f' D f for some f € DIAG(Zgiag,2,7,m)}
that are consistent with o(, 1)

Proof See Exercise 10.4. 1

As with Zgeg,1, diagnoses that are consistent with the new observa-
tion are retained. However, unlike Zg;q4,1, diagnoses that are discarded are
replaced by more complicated diagnoses even if some of the diagnoses con-
sidered at (r,m) are consistent with the new observation. Moreover, while
new diagnoses in DIAG(Zgjqq,1,7,m + 1) can be unrelated to the diagnoses
in DIAG(Zgjag,1,7,m), in Zgiag,> the new diagnoses must be extensions of
some discarded diagnoses. Thus, in Z 44,1 the agent does not consider new
diagnoses as long as the observation is not surprising. On the other hand,
in Zgjaq,2 the agent has to examine new candidates after each test.

This point is perhaps best understood by example. Suppose that in
the circuit of Figure 10.1, the agent initially sets [; = 1 and [ = I3 = 0.
If there were no failures, then Iy and [7; would be 1, while, I5, lg, and [g
would be 0. However, the agent observes that [g is 1. In that case, in
both systems, the agent would believe that exactly one of X7, A1, As, or
0, was faulty—that would be the minimal explanation of the problem,
under both notions of minimality. However, suppose that the agent then
observes that [y = 0 while all the other settings remain the same. In that
case, the only diagnosis according to Pl is that X3 is faulty. This is also
a minimal explanation according to Pls, but there are three other possible
diagnoses: X5 and one of Ay, As, or O; could be faulty. Thus, even though
an explanation considered most likely after the first observation—that X3
is faulty is consistent with the second observation, some new diagnoses
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(all extensions of the diagnoses considered after the first observation) are
also considered.

10.2 Belief-Change Systems

I now abstract the discussion of the previous section and consider belief
change more generally in the context of interpreted plausibility systems.
To do so, I consider a particular class of systems called belief change sys-
tems. In belief change systems, the agent makes observations about an
external environment. For simplicity, as in the analysis of circuit-diagnosis
problem, I assume that these observations are described by formulas in
some logical language. I then make other assumptions regarding the plau-
sibility measure used by the agent. Among other things, these assumptions
make precise that belief change proceeds by conditioning. The assump-
tions are formalized by conditions BCS1-BCS4, described below. A system
I = (R,n,P) is a belief-change system (BCS) if it satisfies these conditions.

Assumption BCS1 formalizes the intuition that the language includes
propositions for reasoning about the environment, whose truth depends
only on the environment state.

BCS1. There is a subset ®. of the set ® of primitive propositions whose
truth depends only on the environment state; that is, for each primi-
tive proposition p € ®., w(r,m)(p) = true iff 7(r’',m’) = true for all
points (7, m’) such that r.(m) = r.(m’).

BCS1 certainly holds for the interpretations used to capture the circuit-
diagnosis problem: ®, = @ j;44.

BCS2 is concerned with the form of the agent’s local state. Intuitively,
the agent’s local state is supposed to encode the information available to
the agent. Thus, the agent’s local state should be a function of her initial
state and her observations. BCS2 makes a stronger assumption. Just as
in the structures used for the circuit-diagnosis problem, it asserts that the
agent’s local state is just the sequence of observations made. This means
that the agent remembers all her past observations (so that the agent has
perfect recall, in the sense of Section 9.4) and that she has no information
at time 0. There is an additional, quite nontrivial, condition imposed by
BCS2 (that was also assumed in the analysis of circuit diagnosis): that the
agent’s observations can be described by formulas in £.. This says that
L. may have to be quite an expressive language. In the case of an agent
observing a circuit, perhaps all that can be observed is the value of various
lines. However, in the case of agents observing people, the observations
can include obvious features eye color and skin color (but even getting a
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language rich enough to describe all the gradations of eye and skin color is
nontrivial) as well as more subtle features like facial expressions. £, must
be expressive enough to describe whatever can be observed.

In BCS2 and for the remainder of this chapter, I use r, to denote the
agent’s local state rather than 71, to stress that we are dealing with a single
agent.

BCS2. For all » € R and for all m, the agent’s local state r,(m) =
(O(r,1ys -+, O(r,m)) Where o(,. 1) € L, for 1 <k <m.

Clearly we want to reason in the language about the observations the
agent makes. Thus, we assume that ® includes propositions that describe
the observations made by the agent.

BCS3. The set @ includes a set ®,p5 of primitive propositions disjoint from
@, such that D45 = {learn(p) : ¢ € L.}. Moreover, w(r, m)(learn(p)) =
true if and only if o(,,,) = ¢ for all runs r and times m.

Finally, BCS4 asserts that belief change proceeds by conditioning. While
there are certainly other assumptions that can be made, conditioning is a
principled approach that captures the intuitions of minimal change, given
the observations. For ease of exposition, I make a somewhat stronger as-
sumption; not only does the system satisfy PRIOR, but it is a standard
SDP plausibilistic interpreted system. That is, the agent has a single plau-
sibility measure on all of R, and it is the same plausibility measure in all
runs.

BCS4. 7 is a standard SDP system.

As we observed (Exercise 9.4), in a standard SDP system, the agent’s
plauibility assignment at each point satisfies the SDP property. It follows
from Proposition 8.3.1(b) that the agent’s beliefs depend only on the agent’s
local state. T use the notation (Z, s,) = By as shorthand for (Z,7,m) = By
for some (and hence for all) (r,m) such that r,(m) = s,. The agent’s belief
set at s, is

Bel(Z,5,) = {¢ € e : (Z,54) = Bp}.

Since the agent’s state is a sequence of observations, the agent’s state after
observing ¢ is simply s4-¢, where - is the append operation. Thus, Bel(Z, s,-
) is the belief set after observing ¢. We adopt the convention that if there
is no point where the agent has local state s, in system Z, then Bel(Z, s,)
consists of all the propositional formulas over ®.. With these definitions,
we can compare the agent’s belief set before and after observing ¢, that
is Bel(Z, s,) and Bel(Z, s, - ¢). Thus, in a BCS, we can conveniently talk
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about belief change. The agent’s state encodes observations and there are
propositions that allow us to talk about what is observed and how the
agents beliefs change over time.

There is one other requirement that is standard in many approaches to
belief change considered in the literature: that observations are “accepted”,
so that after the agent observes ¢, she believes ¢. This assumption is
enforced by the next assumption, BCS5, by assuming that observations
are reliable, so that the agent observes ¢ only if the current state of the
environment satisfies ¢. This is certainly not the only way of enforcing the
assumption that observations are accepted, but it is perhaps the simplest.

BCS5. (Z,7r,m) = o(y,m) for all runs  and times m.

Note that BCS5 implies that the agent never observes false. Moreover, it
implies that after observing ¢, the agent knows that ¢ is true. A system
that satisfies BCS1-5 is said to be a reliable BCS.

Example 10.2.1 As they stand, the systems Zgiq9,1 and Zg;eqg,2 are not
quite BCSs, since mgiq4 is not defined on primitive propositions of the
form learn(p). This can easily be rectified. Let fIJ;m consist of @ g;qaq
together with all the primitive propositions of the form learn(p) for ¢ €
LFrop (P giag). Let w;a p be the obvious extension of 7444 to &t defined

diag’®
so that BCS3 holds. Let Z7 and T+

diag 1 diag,2 be the systems that result when

, and Tt

Tdiag 15 Teplaced by ﬂ;i"mg. Clearly, both Tt diag,

diag, 5 are reliable
BCSs. 1

10.3 Belief Revision

The most common approach to studying belief change in the literature has
been the axiomatic approach: this has typically involved starting with a col-
lection of postulates, arguing that they are reasonable, and proving some
consequences of these postulates. And perhaps the most-studied postu-
lates are the AGM postulates, named after the researchers who introduced
them, Alchourrén, Gérdenfors, and Makinson. These axioms are intended
to characterize a particular type of belief change, called belief revision.
The AGM approach assumes that an agent’s epistemic state is repre-
sented by a belief set, that is, a set K of formulas in a logical language
L, describing the subject matter about which the agent holds beliefs. For
simplicity here, I assume that £ is propositional (which is consistent with
most of the discussions of the postulates). In the background, there are also
assumed to be some axioms AX, characterizing the situation. For example,
for the circuit-diagnosis example of Figure 10.1, £ could be £F7oP (P diag)-
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There would then be an axiom in AX, saying that if A; is not faulty, then
l5 is 1 if and only iff both I; and I are:

~faulty(Ay) = (hi(ls) & (hi(ly) A hi(l2)).

Similar axioms would be used to characterize all the other components.

I assume that there is a consequence relation Fp such ¥ F, ¢ holds iff
@ is provable from ¥ and the axioms in AX, using standard propositional
reasoning (Prop and MP). CI(X) denotes the logical closure of the set X
under AX.; that is, CI(X) = {¢ : & k¢ ¢}. T assume for simplicity that
belief sets are closed under logical consequence, so that if K is a belief
set, then CI(K) = K. This assumption, which is standard in all the belief
change literature, essentially says that agents are being treated as perfect
reasoners, and can compute all logical consequences of their beliefs.

What the agent learns is assumed to be characterized by some formula
p, also in L; K % ¢ describes the belief set of an agent who starts with
belief set K and learns ¢. There are two subtle but important assumptions
implicit in this notation:

e The functional form of * suggests that all that matters regarding how
an agent revises her beliefs is the belief set and what is learnt. In any
two situations where the agent has the same beliefs, she will revise
her beliefs in the same way.

e The notation also suggests that the second argument of * can be an
arbitrary formula in L.

These are nontrivial assumptions. With regard to the first one, it is quite
possible for two different plausibility measures to result in the same belief
sets and yet behave differently under conditioning, leading to different be-
lief sets after revision. With regard to the second one, at a minimum, it
is not clear what it would mean to observe false. (It is perfectly reason-
able to observe something inconsistent with one’s current beliefs, but that
is quite different from observing false, which is an inconsistent formula.)
But even putting this issue aside, it may not be desirable to allow every
consistent formula to be observed in every circumstance. For example, in
the circuit-diagnosis problem, the agent does not observe the behavior of a
component directly; she can only infer it by setting the values of some lines
and observing the values of others. While there are some observations that
are essentially equivalent to observing that a particular component is faulty
(for example, if setting setting l; to 1 and Iz to 1 results in [5 being 0 in the
circuit of Figure 10.1, then A; must be faulty), there are no observations
that can definitively rule out a component being faulty (the faulty behavior
may display itself only sporadically).
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Indeed, in general, what is observable may depend on the belief set
itself. Consider a situation where an agent can reliably observe colors.
After observing that a coat is blue (and thus, having this fact in her belief
set), it would not be possible for her to observe that the same coat is red.

The impact of these assumptions will be apparent shortly. For now,
I simply state the eight postulates used by Alchourrén, Gérdenfors, and
Makinson to characterize belief revision:

R1. K o ¢ is a belief set.

R2. ¢ € Koop.

R3. Kop CCIHK U {p}).

R4. If =p ¢ K then CI(K U {p}) C Ko .

R5. K o @ = Cl(false) if and only if 2 —.

R6. IfFz o & 4 then Koy = K o1,

R7. Ko (pA9) CCIUK opU{t}).

R8. If -¢p &€ K o ¢ then Cl(K o U{¢}) C Ko (p A2).

The essence of these postulates is the following. Revision by ¢ results
in a belief set (postulate R1) that includes ¢ (R2). If the new belief is
consistent with the belief set, then the revision should not remove any of the
old beliefs nor add any new beliefs except these implied by the combination
of the old beliefs with the new belief (R3 and R4). This condition is called
persistence, and essentially characterizes conditioning in the simple case
discussed in Section 4.1. The next two conditions discuss the coherence of
beliefs. Postulate R5 states that ¢ is consistent with the axioms iff K o ¢
is a nontrivial belief set. (Cl(false) is the trivial belief set consisting of all
formulas in L, since all formulas are provable from false.) R6 states that
the syntactic form of the new belief does not affect the revision process; it is
much in the spirit of the rule LLE in system P from Section 7.1. The last
two postulates enforce a certain coherency on the outcome of successive
revisions. Basically, they state that if ¢ is consistent with A o ¢ then
Ko (pAt)isjust (K op)o. (Recall that, by R3 and R4, if -1 ¢ K o ¢,
then (K o) ot = CI(K opU{1}).) This is a property that we have seen
before in the context of probabilistic conditioning: if pu(U; N Us) # 0, then
(ulU)|U2 = (p|U2)|Ur = p|(Ur N V).

My goal now is to relate AGM revision to BCSs. More precisely, the
plan is to find some additional conditions (REV1 REV3 below) on BCSs
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that ensure that belief change in a BCS satisfies R1-R8. Doing this will
help bring out the assumptions implicit in the AGM approach.

The first assumption is that, although the agent’s beliefs may change,
the propositions about which the agent has beliefs do not change during
the revision process. The original motivation for belief revision came from
the study of scientists’ beliefs about laws of nature. These laws were taken
to be unvarying, although experimental evidence might cause scientists to
change their beliefs about the laws.

This assumption underlies R3 and R4. If ¢ is consistent with K, then
according to R3 and R4, observing ¢ should result in the agent adding ¢ to
her stock of beliefs and the closing off under implication. In particular, this
means that all her old beliefs are retained. But if the world can change,
then there is no reason for the agent to retain her old beliefs. Consider the
systems Zgiag,1 and Zgiaq,2 used to model the diagnosis problem. In these
systems, the values on the line could change at each step. If [ = 1 before
observing I3 = 1, then why should I; = 1 after the observation, even if it is
consistent with the observation that [ = 1?7 Perhaps if [ is not set to 1,
its value goes to 0.

In any case, it is easy to capture the assumption that the propositions
observed do not change their truth value—that is the role of REV1.

REV1. n(r,m)(p) = n(r,0)(p) for all p € @, and points (r, m).

Note that REV1 does not say that all propositions are time-invariant,
nor that the environment state does not change over time. It simply says
that the propositions in ®. do not change their truth value over time.

In the BCSs I;l'_z'ag,l and I;iag,m propositions of the form faulty(c) do not
change their truth value over time, by assumption; however, propositions
of the form hi(l) do. There is a slight modification of these systems that
does satisfy REV1. The idea is to take L. to consist only of Boolean
combinations of formulas of the form faulty(c) and then convert the agent’s
observations to formulas in L.. Note that to every observation o made by
the agent regarding the value of the lines, there corresponds a formula in £,
that characterizes all the fault sets that are consistent with o. For example,
the observation hi(l1) A hi(l2) A hi(ly) corresponds to the conjunction of the
formulas characterizing all fault sets that include X; (which is equivalent to
the formula faulty(X1)). For every observation ¢ about the value of lines, let
o' € L. be the corresponding observation regarding fault sets. Given a run

re Ijmg’i, i = 1,2, let r' be the run where each observation ¢ is replaced by
of. Let I:;mg ;, be the BCS consisting of all the run rt corresponding to the
runs in Ij[m gi T he plausibility assignments in ILZ-G oy and I;m oy correspond

in the obvious way. That means that the agent has the same beliefs about
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formulas in L. at corresponding points in the two systems. More precisely,

if o € L, then (I:;mg’i,ﬂ,m) = ¢ if and only if (I(}"mm,r, m) = ¢ for

all points (r,m) in Zgeg,, and hence (I:;mg,i,ﬁ,m) = By if and only if
(Ijmg i i = 1,2, are BCSs that satisfy
REVI.

Belief change in Ijh.a ;.1 can be shown to satisfy all of R1-8 in a precise

r,m) = By. By construction, IL

iag,s’

sense (see Theorem 10.3.2 and Exercise 10.7); however, I:;mg,z does not
satisfy R8. Consider the example discussed just after Proposition 10.1.3.
Initially (before making any observations) that agent believes that no com-
ponents are faulty. Let K = Bel(I:;mg,Q, ()). Then the agent sets I; = 1
and [ = I3 = 0, and observes that lg is 1. That is, the agent observes
o = (hi(ly) A —hi(l2) A =hi(l3))T, which is equivalent to observing a fault
set that contains at least one of X, A1, Ao, or O;1. Since the agent prefers
minimal explanations, Bel(ﬂ;w 9.2 (1)) includes the belief that exactly one
of X1, A1, A, or Oy is faulty. Think of Bel(Z},,, . (¢7)) as K o of. It is
consistent with K o o' to observe that [; = 0 in addition to all the other
observations—this is equivalent to observing 1f, the formula that says that
the fault set contains Xi or contains both X5 and one of A1, Ay, or Os.
That is, Bel(I;iagg, (ot AYT)) = Bel(I:;mg’Z, (¢1)) includes the belief that
the fault set is exactly one of X1, {Xo, A1}, {X3, A2}, and {X5,0;}. By
way of contrast, Bel(I:;mg,l, (¢1)) includes the belief that X; is the only
fault. It is also a consequence of K o ¢f U {1} that X is the only fault.
It follows that Bel(Z),,, 5. (¢! A ¥1)) € CI(K o ot U {w1}).

Why does RS hold in I:; , and not Ijliag,2? It turns out that the key
reason is that the plausibility measure in Ijzm g1 18 totally ordered; in Ijlm 9.2
it is only partially ordered. In fact, as we shall see shortly, R8 turns out
to be rational monotonicity in disguise. REV2 strengthens BCS4 to ensure
that rational monotonicity holds for —.

iag,

REV2. The prior Pl, on runs that is guaranteed by BCS4 is totally ordered,
that is, for all U,V C R, either P1,(U) < Pl,(V) or P1,(U) < Pl (V);
moreover, P1,(U UV) = max(P1,(U), P, (V)).

There is yet a third condition on BCSs required to make belief change
satisfy R1 R8. It makes precise the intuition that observing ¢ does not
give any information beyond ¢. This issue was discussed before, in Ex-
ample 4.1.2. To see its impact on belief revision, consider the following
example.

Example 10.3.1 Suppose that Z is a BCS such that the agent observes
p1 at time 0 only if p; and g are also true and she observes p; A py at time
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0 only if ¢ is false. It is easy to construct a BCS satisfying REV1 and
REV2 that also satisfies this requirement (Exercise 10.6). In this system,
after observing pp, the agent believes ps and ¢ (and does not believe —q)
but after observing p; A pa, the agent believes (indeed, knows) —¢q. This
violates both R7 and R8. To see this, note that the assumptions about Z
can be phrased as ps A ¢ € K op; and —q¢ € K o (p; A p2). RT requires
that K o (p1 Ap2) C CI(K op; U{p2}). Now suppose that R7 holds. Then
—q € Cl(K op; U{p2}). But CI(K opy U{p2}) = K opy, since ps € K o p;.
Thus, —q € K o p;. But, by assumption, p Aq € K op;, so K opy is
inconsistent. Belief sets in a BCS are always consistent, so R7 cannot hold
in Z. Similar arguments show that R8 is violated in Z (Exercise 10.6). The
problem here is that observing p; A p2 gives a great deal of information
beyond just the fact that p; Aps is true it guarantees that —q is also true.

Assumption REV3 ensures that observations do not give such additional
information. Given a BCS Z and formulas ¢,01,...,0; in L., let R[y]
consist of all runs r where ¢ is true initially (if Z satisfies REV1, that
means that ¢ is also true throughout the run); let R[ps;01,. .., 0] consist
of all runs r where ¢ is true initially and the agent observes o1,..., 0.
That is,

’R[cp] = {T €l: (I,T’,O) |: (,0}
Rlp;01,...,05] ={reZ:(Z,r0) = ¢ and r.(k) = (01,...,0k)}.

REV3. If Plo(R[p; 01, - ..,0m]) > 0, then Plo(R[p; 01, - - ., 0m]) > Plo(R[¢Y;01,-..,0m])
if and only if Pl,(R[p Ao1 A ... Aop]) = Pl (R[Y Aor A...Aop]).

This assumption captures the intuition that observing o1,...,0r pro-
vides no more information than just the fact that o1 A ... A o, is true.
That is, the agent compares the plausibility of ¢ and 1 in the same way
after conditioning by the observations o1, ..., 0,, as after conditioning by
the fact that o1 A ... A o, is true. It is not hard to see that REV3 fails
in the BCS 7 constructed in Example 10.3.1. For suppose that Pl, is the
prior plausibility in Z. By assumption, in Z, after observing p;, the agent
believes ps and ¢, but after observing p; A pa, the agent believes —g. Thus,

Plo(R[p2 A q;p1]) > Pla(R[=(p2 A q); p1]) (10.1)

and
Pla(R[=q; p1 A p2]) > Pla(R[g; p1 A p2]). (10.2)

If REV3 held, then (10.1) and (10.2) would imply

Ply(R[p1 Ap2 A q]) > Pla(R[p1 A =(p2 A q))) (10.3)
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and
Pla(R[p1 A p2 A —q]) > Pla(R[p1 A p2 A q)). (10.4)

Since R[p1 A =(p2 A q)] 2 R[p1 A p2 A g, from (10.3) it follows that
Pla(Rlp1 Ap2 A q]) > Pla(Rlp1 A p2 A —=q)),

contradicting (10.4). Thus, REV3 does not hold in Z.

Let REV consist of all reliable BCSs satisfying REV1 REV3. It is easy
to see that Ijliag,l € REV (Exercise 10.7). The next result shows that, in a
precise sense, every BCS in REV satisfies R1 R8.

Theorem 10.3.2 Suppose that T € REV and s, is a local state of the
agent at some point in I. Then there is a belief revision operator os,
satisfying R1-R8 such that for all ¢ € L. such that the observation ¢ can
be made in s, (i.e., for all @ such that s, - p is a local state at some point
inT), Bel(Z, sq) o5, ¢ = Bel(Z, 84 - ).

Proof See Exercise 10.8. 1

Theorem 10.3.2 is interesting not just for what it shows, but for what
it does mot show. Theorem 10.3.2 considers a fixed local state s, in Z and
shows that there is a belief revision operator o, characterizing belief change
from s,. It does not show that there is a single belief revision operator
characterizing belief change in all of Z. That is, it does not say that there
is a belief revision operator oz such that Bel(Z, s,) oz ¢ = Bel(Z, s, - ¢),
for all local states s, in Z. This stronger result is, in general false. That is
because there is more to a local state than the beliefs that are true at that
state. The following example illustrates this point.

Example 10.3.3 Consider a BCS Z = (R, w, PL) such that the following
hold:

— / / /
e R={ry,r],ra,rh r3, 5}

e 7 is such that p; Aps Aps is true throughout ry and 77, —=p1 A—p2 Aps
is true throughout r2 and r2’, and p; A =pa A —p3 is true throughout
rg and 74.

e In runs r1, r2, and r3, the agent observes whether or not p; is true
in the first round, and then observes whether or not ps is true at all
subsequent rounds; at runs 71, 15, and % observes whether or not po
is true at the first round and then observes whether or not p; is true
at all subsequent rounds. Thus, for example,
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_ O(rl,l) =D and 0(7‘1,2) = 0(7”1,3) =...=p3;
— 0@ 1) = P2 and 0( 2) = 0(y1 3) ... = P1;
— 0(7’2,1) = p1 and 0(,,‘272) = 0(7,273) =...= "ps.

e PL is determined by a prior Pl, on runs, where

Ply(r1) = Pla(r}]) > Ply(r2) = Pla(rh) > Pla(r3) = Pla(r3).

It is easy to check that Z € REV (Exercise 10.9). Since p is true in the
most plausible runs (r; and r}), p1 € Bel(Z, ()). By R3 and R4, the agent’s
beliefs do not change if she observes p;. Thus, Bel(Z, ()) = Bel(Z, (p1)). Let
K =Bel(Z, ()) = Bel(Z, (p1)). Suppose that there were a revision operator
o such that Bel(Z, s,)op = Bel(Z, s,-¢) for all local states s,. It would then
follow that Bel(Z, (—p2)) = Bel(Z, (p1; —p2)) = K o —py. However, it is easy
to see that ps € Bel(Z, (-p2)) and —ps € Bel(Z, (p1; —p2)) (Exercise 10.9)
which leads to a contradiction with R5.

Example 10.3.3 illustrates a problem with the assumption implicit in
AGM belief revision, that all that matters regarding how an agent revises
her beliefs is her belief set and what is learnt. I return to this problem in
the next section.

Theorem 10.3.2 shows that for every BCS Z € REV and local state sg,
there is a revision operator characterizing belief change at s,. The next
result is essentially a converse.

Theorem 10.3.4 Let o be a belief revision operator satisfying R1 RS and
let K C L. be a consistent belief state. Then there is a BCS Tk in REV
such that Bel(Zg,()) = K and

Bel(Zg, () o o = Bel(Zx, ()
forall p € L.

Proof See Exercise 10.10. i

Notice that Theorem 10.3.4 considers only consistent belief sets K. The
AGM postulates allow the agent to “escape” from an inconsistent belief
set, so that K o ¢ may be consistent even if K is inconsistent. Indeed, R5
requires that it be possible to escape from an inconsistent belief set. The
requirement that K be consistent is necessary in Theorem 10.3.4. If false €
Bel(Zx, sq) for some state s, and 7,(m) = s4, then Plg. ) (W my) = L.
Since updating is done by conditioning, Pl ,;41)(W(pm41)) = L, so the
agent’s belief set will remain inconsistent no matter what she learns. Thus,
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BCSs do not allow an agent to escape from an inconsistent belief set. This
is a consequence of the use of conditioning to update.

Although it would be possible to modify the definition of BCSs to handle
updates of inconsistent belief sets differently (and thus to allow the agent
to escape from inconsistent belief set), I believe that it would in fact be
more appropriate to reformulate R5 so that it does not require escape from
an inconsistent belief set. Consider the following postulate.

R5*. K o = Cl(false) if and only if -, —¢ or false € K.

If R5 is replaced by R5*, then Theorem 10.3.4 holds even if K is inconsistent
(for trivial reasons, since in that case K o ¢ = K for all ).

I conclude this section with a result that relates belief revision in systems
in REV to the conditional logic considered in Section 7.4. It is perhaps not
surprising that there should be a connection between the two, given that
both use plausibility measures as a basis for their semantics.

Theorem 10.3.5 Suppose that T is a reliable BCS that satisfies REV1 and
REVS. If ris a run in T such that o, my1y = @, then (Z,r,m) = @ — 1
iff (Z,rym+1) | By. Equivalently, if sq - ¢ is a local state in T, then

(Z,50) Eo = ¥ iff (Z,54-0) | B.
Proof See Exercise 10.11. i

Using Theorems 10.3.4 and 10.3.5, I can make the connection between
R8 and rational monotonicity (axiom C5 in Section 7.4) mentioned earlier:
If 7 is a BCS satisfying REV1 and REV3, then 7 satisfies rational mono-
tonicity iff belief change in 7 satisfies R8. For suppose that Z is a BCS sat-
isfying REV1 and REV3, and K = Bel(Z, s,) for some local state s, in Z.
Then ) ¢ Koy iff wp ¢ Bel(Z, s, -¢). By Theorem 10.3.5, this is the case
iff (Z, s4) = ~(¢ — —). I T satisfies REV2, then it satisfies rational mono-
tonicity. Thus, (Z,s.) E (¢ — ') = ((¢ A ) — ¢'). By Theorem 10.3.5
again, this means that if (Z, s, -¢) | By’ then (Z,s,-(pAv) E By'. That
is, Kop C Ko(pA1). Since Ko(pA) = Bel(Z, sq-(pA1)) contains Ko
and ¢, and is a closed set, it follows that CI(K o ¢ U{¢}) C K o (¢ A1),
as required by R8. The argument works equally well in the other direction,
showing that R8 implies rational monotonicity.

10.4 Epistemic States and Iterated Revision

Agents do not change their beliefs just once. They do so repeatedly, each
time they get new information. The BCS framework models this naturally,
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showing how the agent’s local state changes as a result of each new observa-
tion. It would seem at first that revision operators make sense for iterated
revision as well. Given a revision operator o and an initial belief set K,
it seems reasonable, for example, to take (K o (1) o ¢35 to be the result of
revising first by ¢; and then by (3. However, Example 10.3.3 indicates
that there is a problem with this approach. Even if (K o 1) = K, we may
not want to have (K o ¢1) o w2 = K o 9. In Example 10.3.3, revising by
1 and then 9 is not the same as revising by 2, even though the agent
has the same belief set before and after revising by ;.

The culprit here is the assumption that revision depends only on the
agent’s belief set. In a BCS, there is a clear distinction between the agent’s
epistemic state at a point (r,m) in Z, as characterized by her local state
Sa = Tq(m), and the agent’s belief set at (r,m), Bel(Z,s,). As Exam-
ple 10.3.3 shows, in a system in REV, the agent’s belief set does not in
general determine how the agent’s beliefs will be revised; her epistemic
state does.

It is not hard to modify the AGM postulates to deal with revision op-
erators that take as their first argument epistemic states rather than belief
sets. Suppose that there is a set of epistemic states (the exact form of
the epistemic state is irrelevant for the following discussion) and a function
BS(-) that maps epistemic states to belief sets. There is an analogue to
each of the AGM postulates, obtained by replacing each belief set by the
beliefs in the corresponding epistemic state. Letting F stand for a generic
epistemic state, the modified postulates are

R1’. E o is an epistemic state.
R2. ¢ € BS(E 0 o).
R3'. BS(E o) C CI(BS(E) U {p}).

and so on, with the obvious transformation. The only problematic postulate
is R6. The question is whether R6’ should be “If F,_ ¢ < ¢ then BS(E o
©) =BS(Eow)” or “Ift,, ¢ < 1 then Eop = Eot)”. Dealing with either
version is straightforward. For definiteness, I adopt the first alternative
here.

There is an analogue of Theorem 10.3.2 that works at the level of epis-
temic states. Indeed, working at the level of epistemic states gives a more
elegant result. Given a BCS 7 € REV, there is a single revision operator o
that characterizes belief revision in Z; it is not necessary to use a different
revision operator for each local state s, in Z.

To make this precise, given a language L., let L} consist of all sequences
of formulas in £.. In a BCS, the local states are elements of £ (although
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some elements in £, such as (p, —p), cannot arise as local states in a reliable
BCS). Define a revision function o on £} in the obvious way: if £ € L,
then Fop=FE - .

Theorem 10.4.1 Let Z be a system in REV whose local states are in L.
There is a function BSt that maps epistemic states to belief sets such that

e if sq is a local state of the agent in T, then Bel(Z, s,) = BSz(sa), and
e (o, BSr) satisfies R1'-RS'.
Proof Note that BS7 must be defined on all sequences in £}, including
ones that are not local states in Z. Define BSz(sq) = Bel(Z, s,) if s, is a
local state in Z. If s, is not in Z, then BSz(s,) = Bel(Z, ), where s’ is the

longest suffix of s, that is a local state in Z. The argument that this works
is left to the reader (Exercise 10.13). I

At first blush, the relationship between Theorem 10.4.1 and Theo-
rem 10.3.2 may not be so clear. However, note that, by definition,

BSI(I, <Sa> o] (pl 0...0 (pk) = BSI(I, Sq - <(p1, .. .,(pk>),

so, at the level of epistemic states, Theorem 10.4.1 is a generalization of
Theorem 10.3.2.

Theorem 10.4.1 shows that any system in REV corresponds to a revision
operator over epistemic states that satisfies the modified AGM postulates.
Is there a converse, analogous to Theorem 10.3.47 Not quite. It turns out
that R7" and R8&' are not quite strong enough to capture the behavior of
conditioning given a consistent observation. It is not hard to show that R7’
and R8' (together with R4’ and R5’) imply that

if 1) ¢ BS(E o ), then BS(F o p o)) = BS(E o (¢ A)) (10.5)
(Exercise 10.12(a)). The following postulate strengthens this:
RY. Tf Hr, —(p A1) then BS(E o p o)) = BS(E o p A ).

R9’ says that revising E by ¢ and then by 1 is the same as revising by
@ A if o A1) is consistent. This indeed strengthens (10.5), since (given
R1’ and if ) ¢ BS(F o) then /., = (¢ A1) (Exercise 10.12(b)). It is not
hard to show that it is a nontrivial strengthening; there are systems that
satisfy (10.5) and do not satisfy R9’ (Exercise 10.12(c)).

The following generalization of Theorem 10.4.1 shows that R9’ is sound
in REV.
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Theorem 10.4.2 Let I be a system in REV whose local states are E .
There is a function BSt that maps epistemic states to belief sets such that

e if s, is a local state of the agent in I, then Bel(Z, s,) = BSz(s4), and
e (o, BST) satisfies RI" RY .
Proof See Exercise 10.13. 11

The converse to Theorem 10.4.2 does hold: a revision system on epis-
temic states that satisfies the generalized AGM postulates and R9 corre-
sponds to a system in REV. Let L] consist of all the sequences (1, ..., @)
in £ that are consistent, in that Fz, —(p1 A... A pp).

Theorem 10.4.3 Given a function BSe, mapping epistemic states in L},
to belief sets over L. such that BSr_(()) is consistent and (BS¢,, o) satisfies
RI'-RY, there is a system T € REV whose local states consist of all the
states in LI such that BSr,(sa) = BS(sa) for sq € L.

Proof Let Z = (R,PL,w) be defined as follows. A run in R is de-
fined by a truth assignment « to the primitive propositions in £, and an
infinite sequence (01, 02,...) of observations each of which is true under
truth assignment «. The pair («, (01,02, ...)) define a run r in the obvi-
ous way: 7.(m) = « for all m and r,(m) = (01,02,...,0,,). R consists
of all runs that can be defined in this way. The interpretation is deter-
mined by a: w(r,m) = r.(m). All that remains is to define a prior that
ensures that BSg, (s,) = BS(s,) for all s, € £I. This is left to the reader
(Exercise 10.14). 1

So where does this leave us? This discussion shows that, at the level of
epistemic states, the AGM postulates are very reasonable (with the possible
exception of R5, which perhaps should be modified to R5*) provided that
(a) we are interested in reasoning only about static propositions (whose
truth values do not change over time), (b) observations are reliable (in that
we take what is observed to be true), (c¢) nothing is learned from observing ¢
beyond the fact that ¢ is true, and (d) there is a totally ordered plausibility
on truth assignments (which by (a) and (c) determines the plausibility on
runs). The generality of plausibility measures is not required for (d); using
ranking functions, possibility measures, or total preference orders will do
as well.

But what happens if want to consider situations where some of these
assumptions are violated? Nothing in the BCS framework requires them; it
makes perfect sense to consider BCSs that violate any or all of them. For
example, it is easy enough to allow partial orders instead of total orders on
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runs—the effect of this is just that R8 (or R8') no longer holds. Still, it
would be useful to have a model of belief change that does not make these
assumptions, but still has enough structure to be comprehensible. The
Markov assumption discussed in Section 9.7 has the required properties.
This topic is the subject of the next section.

10.5 Markovian Belief Revision

For the purposes of this section, I restrict attention to BCSs where the
plausibility measures are algebraic, in the sense defined in Section 4.8; that
is, they have operations @ and ® such that PI(U|V) PV |V’) = P(U|V’)
ifUCV CV’'and Pl(Ul U U2|V) = PI(U1|V) D PI(U2|V) if Uy NUy = 0.

In BCSs with an algebraic prior plausibility, the notion of a Markovian
plausibility measure makes perfect sense. Not surprisingly, such BCSs are
called Markovian BCSs. To see the power of Markovian BCSs as a modeling
tool, consider the following example.

Example 10.5.1 A car is parked with a nonempty fuel tank at time O.
The owner returns at time 2 to find his car still there. Not surprisingly, at
this point he believes that the car has been there all along and still has a
nonempty tank. He then observes that the fuel tank is empty. He considers
two possible explanations: that his wife borrowed the car to do some errands
or that the gas leaked. (Suppose that the “times” are sufficiently long and
the tank is sufficiently small that it is possible that both doing some errands
and a leak can result in an empty tank.)

To model this as a BCS, suppose that ®. consists of two primitive propo-
sitions: Parked (which is true if car is parked where the owner originally left
it) and Empty (which is true if the tank is empty). The environment state
is just a truth assignment to these two primitive propositions. This truth
assignment clearly change over time, so REV1 is violated. (It would be
possible to instead use propositions of the form Parked; the car is parked
at time ¢ which would allow REV1 to be maintained; for simplicity, I con-
sider here only the case where there are two primitive propositions.) There
are three environment states: spg, Spe, and sps. In sps, Parked A —Empty is
true; in spe, Parked A Empty is true; and in sgs, ~Parked A —~Empty is true.
For simplicity, assume that in all runs in the system, Parked A —Empty is
true at time 0 and Parked A Empty is true at times 2 and 3. Further assume
that in all runs the agent correctly observes Parked at time 2, and Empty
at time 3, and makes no observations (i.e., observes true) at time 1.

I model this system using a Markovian prior. The story suggests that
the most likely transitions are the ones where no change occurs, which
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is why the agent believes at time 2—before he observes that the tank is
empty—that the car has not moved and the tank is still not empty. Once
he discovers that the tank is empty, the explanation he considers most likely
will depend on his ranking of the transitions. This can be captured easily
using ranking functions (which are algebraic plausibility measures). For
example, the agent’s belief that the most likely transitions are ones where
no change occurs can be modeled by taking ¢t s = 0 and t5 & > 0 if s # &/,
for s, 5" € {sps, Spes spe }. This is already enough to make [spz, sps, sps| the
most plausible 2-prefix. (Since for each time m € {0,...,3}, the agent’s
local state is the same at time m in all runs, I do not mention it in the
global state.) Thus, when the agent returns at time 2 to find his car parked,
he believes that it was parked all along and the tank is not empty.

How do the agent’s beliefs change when he observes that the tank is
empty at time 37 As I said earlier, I restrict attention to two explanations:
his wife borrowed the car to do some errands, which corresponds to the runs
with 2-prefix is [sps. Spe, Spe|, OF the gas tanked leaked, which corresponds
to the runs with 2-prefix [sps, Spe, Spe] and [sps, Sps. Spe| (depending on when
the leak started). The relative likelihood of the explanations depends on the
relative likelihood of the transitions. He considers it more likely that his wife
borrowed the car if the transition from sps to spe less likely than the sum of
the transitions from syz to spe and from sgg to spe, for example, if tsp6
3’tsp€7sp_e =1, and tSp—e,Spe
the fact that ® is + for rankings, these choices make k([sps, Spe, Spe]) = 2
and K([Spa; Spa; Spe)) = K([Spe, Spes Spe]) = 3. By changing the likelihood of
the transitions, it is clearly possible to make the two explanations equally
likely or to make the gas leak the more likely explanation. i

;Spe T

= 1. Applying the Markovian assumption and

This example was simple because the agent’s local state (i.e., the obser-
vations made by the agents) did not affect the likelihood of transition. In
general, the observations the agent makes do affect the transitions. Using
the Markovian assumption, it is possible to model the fact that an agent’s
observations are correlated with the state of the world (for example, the
agent being more likely to observe p if both p and ¢ are true than if p A =g
is true) and to model unreliable observations that are still usually correct
(for example, the agent being more likely to observe p if p is true than if p
is false or p being more likely to be true if the agent observes p than if the
agent observes —p—mnote that these are two quite different assumptions).

These examples show the flexibility of the Markovian assumption. While
it can be difficult to decide how beliefs should change, this approach seems
to localize the effort in what appears to be the right place: deciding the rel-
ative likelihood of various transitions. An obvious question now is whether
making the Markovian assumption puts any constraints on BCSs. As the
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following result shows, the answer is no, at least as far as belief sets go.

Theorem 10.5.2 Given a BCS Z, there is a Markovian BCS I’ such that
the agent’s local states are the same in both T and I’ and for all local states
Sa, Bel(Z, 54) = Bel(Z', s4).

Proof Suppose that Z = (R, PL, 7). Let Pl be the prior on runs that
determines Pl. Although the agent’s local state must be the same in 7
and 7', there is no such requirement on the environment state. The idea
is to define a set R’ of runs where the environment states have the form
(g0, -+, gm), for all possible initial sequences go, ..., gm of global states
that arise in runs of R. Then I’ = (R',PL’,n"), where 7' ({go, ..., gm)) =
7(gm) and PL’ is generated by a Markovian prior P’ that simulates Pl in
that P1'([{g0), (90,91)s -+ -5 {90y - - - gm)]) “acts the same as” P1([go, .. . , gm])-
“Acts the same as” essentially means “is equal to” here; however, since Pl
must be algebraic, equality cannot necessarily be assumed. It suffices that
Pl/([<go>7 <907gl>7 Tt <907 s 7gm>]) > P]l([<g(l]>, <g(l)7.g/1>7 Tt <g(l)7 s ;g;—m)])
iff P1([gos-..59m]) > PU[ghs- .., gh]). I leave the technical details to the
reader (Exercise 10.15). Il

Exercises

10.1 (a) Show that Ply is the plausibility measure obtained from the
probability sequence (1, pi2, 43, - - .) defined in Section 10.1, using the
construction preceding Theorem 7.2.11.

(b) Define a probability sequence (), ph, pih, .. .) from which Ply is ob-
tained using the construction preceding Theorem 7.2.11.

10.2 Prove Proposition 10.1.1.
10.3 Prove Proposition 10.1.2.
10.4 Prove Proposition 10.1.3.

10.5 Show that a BCS is a synchronous stem where the agent has perfect
recall that satisfies CONS.

10.6 Construct a BCS satisfying REV1 and REV2 that satisfies the ad-
ditional requirement of Example 10.3.1. Show that R8 is violated in this
system.
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10.7 Show that Z}, | € REV.

* 10.8 Prove Theorem 10.3.2. (The hard part of the proof is coming up with
a definition of Bel(Z, s,) os, ¢ for formulas ¢ that cannot be observed in
state s,. Note also that K o, ¢ must be defined even for K # Bel(Z, s,).)

10.9 Show that the BCS Z constructed in Example 10.3.3 is in REY and
that ps € Bel(Z, (—p2)) and —p3 € Bel(Z, (p1; —p2))-

* 10.10 Prove Theorem 10.3.4. Further show that it
10.11 Prove Theorem 10.3.5.

10.12 (a) Show that (10.5) follows from R4’, R5, R7’/, and R&'.
(b) Show that if BS satisfies R1” and —) ¢ BS(E o), then /-, —(p A).
(c) Describe a system Z that satisfies (10.5) and not R9'.

(d) Show that R& follows from R9” and R4’

* 10.13 Complete the proof of Theorem 10.4.1. Moreover, show that (o, BS7)
satisfies R1” RY’, thus proving Theorem 10.4.2.

* 10.14 Complete the proof of Theorem 10.4.3.

* 10.15 Complete the proof of Theorem 10.5.2. (The difficulty here, as
suggested in the text, is making P1" algebraic.)

Notes

Belief change has been an active area of study in philosophy and, more
recently, artificial intelligence. Probabilistic conditioning can be viewed as
one approach to belief change, but the study of the type of belief change
considered in this chapter, where an agent must revise her beliefs after
learning or observing something inconsistent with them, was mainly initi-
ated by Alchourrén, Gardenfors, and Makinson, in a sequence of individual
and joint papers. A good introduction to the topic, with an extensive bibli-
ography of the earlier work, is Gardenfors’ book Knowledge in Fluxz [1988].
AGM-style belief revision was introduced by Alchourrén, Géardenfors, and
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Makinson [1985]. Interestingly, the topic of belief change was studied inde-
pendently in the database community—the problem here was how to update
a database when the update is inconsistent with information already stored
in the database. The original paper on the topic was by Fagin, Ullman,
and Vardi [1983]. One of the more influential axiomatic characterizations of
belief change—Katsuno and Mendelzon’s notion belief update [1991a]—was
inspired by database concerns.

The presentation in this chapter is largely taken from a sequence of pa-
pers Nir Friedman and I wrote. Section 10.1 is largely taken from [Friedman
and Halpern 1997]; the discussion of belief change and the AGM axioms as
well as iterated belief revision is largely taken from [Friedman and Halpern
1999] (although there are a number of minor differences between the pre-
sentation here and that in [Friedman and Halpern 1999)); the discussion of
Markovian belief change is from [Friedman and Halpern 1996]. In particu-
lar, Propositions 10.1.1, 10.1.2, and 10.1.3 are taken from [Friedman and
Halpern 1997], Theorems 10.3.2, 10.3.4, 10.3.5, 10.4.1, 10.4.2, and 10.4.3
are taken (with minor modifications in some cases) from [Friedman and
Halpern 1999], and Theorem 10.5.2 is taken from [Friedman and Halpern
1996].

These papers have references to more current research in belief change,
which is still an active topic. Here I just give bibliographic references to
the specific topics discussed in this chapter.

The circuit diagnosis problem discussed has been well studied in the arti-
ficial intelligence literature (see [Davis and Hamscher 1988] for an overview).
The discussion here loosely follows the examples of Reiter [1987]. Repre-
sentation theorems for the AGM postulates are well known. The earliest is
due to Grove [1988]; others can be found in [Boutilier 1994; Katsuno and
Mendelzon 1991b; Géardenfors and Makinson 1988]. Iterated belief change
has been the subject of much research; see, for example, [Boutilier 1996;
Darwiche and Pearl 1997; Freund and Lehmann 1994; Lehmann 1995; Levi
1988; Nayak 1994; Williams 1994]). Markovian belief change is also con-
sidered in [?; Boutilier, Halpern, and Friedman 1998|.



