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Abstract

The TAC 2003 supply-chain game presented automated trading agents with
a challenging strategic problem. Embedded within a high-dimensional stochastic
environment was a pivotal strategic decision about initial procurement of compo-
nents. Early evidence suggested that the entrant field was headed toward a self-
destructive, mutually unprofitable equilibrium. Our agent, Deep Maize, intro-
duced a preemptive strategy designed to neutralize aggressive procurement, per-
turbing the field to a more profitable equilibrium. It worked. Not only did preemp-
tion improve Deep Maize’s profitability, it improved profitability for the whole
field. Whereas it is perhaps counterintuitive that action designed to prevent oth-
ers from achieving their goals actually helps them, strategic analysis employing
an empirical game-theoretic methodology verifies and provides insight about this
outcome.

1 Introduction

Like classic computer games, multiagent research competitions [Stone, 2002] present
well-defined problems for testing and comparing Al techniques and systems. The an-
nual Trading Agent Competition (TAC) series provides a forum for research on strate-
gic market behavior, and has led to several promising concepts and methods for imple-
menting strategies in such domains [Wellman et al., 2003].

The TAC Supply Chain Management (TAC/SCM) scenario [Arunachalam and Sadeh,
to appear, Sadeh et al., 2003] defines a complex six-player game with severely incom-
plete and imperfect information, and high-dimensional strategy spaces. Like the real
supply-chain environments it is intended to model, the TAC/SCM game presents par-
ticipants with challenging decision problems in a context of great strategic uncertainty.



This paper is a case study of a strategic issue that arose in the first TAC/SCM tour-
nament. We present our reasoning about the issue, and our effort to perturb the envi-
ronment from an “equilibrium” we considered undesirable, to another more profitable
domain of operation. We recount the experience as it played out in the competition,
and analyze the outcome of this naturalistic experiment. We then perform a more con-
trolled experimental analysis of the issue, applying empirical game-theoretic methods
to produce compelling results, narrow in scope but arguably accounting well for strate-
gic interactions.

The direct result of this study is validation of the insight behind our particular
policy for strategic procurement in the TAC/SCM game. Our experimental analysis
verifies that the predominant patterns we observed among agents in the tournament
reflect strategically rational behavior for this issue. It also confirms the surprising phe-
nomenon in which a tactic designed to preempt the actions of others actually leads
to global welfare improvements. More broadly, we view this exercise as illustrating
a general approach by which agent designers can reason through pivotal strategic is-
sues in a principled way, despite computational and analytical intractability of their
environments.

2 Strategic Analysis for Complex Domains

Given the significant strategic interactions in the supply-chain game, we as agent de-
signers would naturally like to apply game-theoretic tools to predict the behavior of
other agents, individually and in aggregate. Unfortunately, direct solution of the full
game in the sense of finding equilibria (of any variety) seems out of the question on
tractability grounds. Therefore, we seek other ways to exploit the concepts and meth-
ods of game theory, short of comprehensive solutions.

The economic literature on game-theoretic applications is full of highly abstracted,
or stylized models,' designed to highlight some particular strategic issue of interest,
suppressing or holding constant—in extremely summarized form —the many other fac-
tors that would actually be present in any real instance of the modeled scenario. In gen-
eral, these unmodeled factors may well be relevant to strategic decisions of the players.
In suppressing them, the modeler is judging that the effect of these factors would not
interact so much as to invalidate the key strategic implications of the modeled factors.

We aim to employ a similarly reasoned use of abstraction, but in a situation where
a completely detailed description of the game is actually available. Whereas this avail-
ability does not obviate the need for abstraction or other simplifying approximations,
it does present opportunities for calibration and validation that may not exist when the
modeler is abstracting the real world directly. For instance, we can often summarize
the unmodeled features analytically or through statistical simulation, and can achieve
some validation through sensitivity analysis or comparison of alternative models based
on different simplifying assumptions.

TAC/SCM is an example of a very detailed model intended to capture aspects of
a real situation, offering the prospect that interesting phenomena may emerge from

IFor example, peruse any text on game theory [Fudenberg and Tirole, 1991, Gintis, 2000] for a wealth of
such enlightening examples.



interactions of the details, even if unanticipated by designers. Given a game in this
form, analysts may form hypotheses about identified features of interest based on rea-
soning (about the game specification) and observation (of actual game instances), and
then construct a more abstracted model focusing on these features. After using the
detailed model to quantify the abstracted model, one can solve the abstracted model
using standard techniques.

In this study, we construct such a model by estimation applied to data from simu-
lations. Its basis in a sampled experience renders this model an empirical game. Since
the empirical game considers only a limited repertoire of strategies, it also constitutes
what Walsh et al. [2003] term a heuristic strategy payoff matrix. The approach we take
to construction and analysis of this model builds on our previous application of empiri-
cal game-solving methodology [Reeves et al., to appear]. It shares much in motivation
and operation with the constrained-equilibrium approach advocated by Armantier et al.
[2000], as well as the approach to various strategic environments explored by Kephart
and colleagues [Kephart and Greenwald, 2002, Kephart et al., 1998, Walsh et al., 2002].

The present study contributes several elements to this emerging empirical game-
theoretic approach. First, we employ standard variance-reduction techniques, in par-
ticular the method of control variates, to reduce the amount of simulation required to
obtain statistically meaningful results. Second, from the empirical game we derive
both symmetric (mixed strategy) and non-symmetric (pure strategy) Nash equilibria.
We employ statistical hypothesis testing as well as analysis of the benefits from devia-
tion as means to assess the stability of candidate strategy profiles.

Our investigation of strategic procurement in TAC/SCM illustrates more generally
how the combination of gaming, simulation, experimental manipulation, and game-
theoretic analysis can provide insight into a complex strategic environment. We be-
lieve that these methods comprise a promising methodology for problems charac-
terized by significant dynamics and uncertainty, with fine-grained interaction among
agents. Real-world commerce environments (e.g., supply chains) very often exhibit
these features. For such problems, comprehensive direct analysis of detailed mod-
els is intractable, but ex ante stylization risks abstracting away pivotal features. Our
methodology does not completely avoid these risks, but increases confidence through
validation based on maintaining an explicit bridge between the detailed and stylized
models.

3 TAC/SCM Game

In the TAC/SCM scenario,? six agents representing PC (personal computer) assemblers
operate in a common market environment, over a simulated production horizon. The
environment constitutes a supply chain, in that agents trade simultaneously in markets
for supplies (PC components) and the market for finished PCs. Agents may assemble
for sale 16 different models of PCs, defined by the compatible combinations of the four

2For complete details of the game rules, see the specification document [Arunachalam et al., 2003]. This
is available athttp://www.sics.se/tac, as is much additional information about TAC/SCM and TAC
in general. Arunachalam and Sadeh [to appear] discuss the challenges posed by the game, and present an
account of the 2003 tournament.



component types: CPU, motherboard, memory, and hard disk.

Figure 1 diagrams the basic configuration of the supply chain. The six agents (ar-
rayed vertically in the middle of the figure) procure components from the eight suppli-
ers on the left, and sell PCs to the entity representing customers, on the right. Trades at
both levels are negotiated through a request-for-quote (RFQ) mechanism, which pro-
ceeds in three steps:

1. Buyer issues RFQs to one or more sellers.
2. Sellers respond to RFQs with offers.
3. Buyers accept or reject offers. An accepted offer becomes an order.

The suppliers and customer implement fixed negotiation policies, defined in the game
specification, and discussed in detail below where applicable.
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Figure 1: TAC/SCM supply chain.

The game runs for 220 simulated days. On each day, the agent may receive of-
fers and component delivery notices from suppliers, and RFQs and offer acceptance
notifications from customers. It then must make several decisions:

1. What RFQs to issue to component suppliers.

2. Given offers from suppliers (based on the previous day’s RFQs), which to accept.
3. Given component inventory and factory capacity, what PCs to manufacture.

4. Given inventory of finished PCs, which customer orders to ship.

5. Given RFQs from customers, to which to respond and with what offers.

In the simulation, the agent has 15 seconds to compute and communicate its daily
decisions to the game server. At the end of the game, agents are evaluated by total
profit, with any outstanding component or PC inventory valued at zero.

As we describe below, a key stochastic feature of the game environment is level of
demand for PCs. The underlying demand level is defined by an integer parameter ()



(called RFQ ,, g in the specification document [Arunachalam et al., 2003, Section 6]).

Each day, the customer issues a set of Q RFQs, where Q is drawn from a Poisson
distribution with mean value defined by the parameter ) for that day. Since the order
quantity, PC model, and reserve price are set independently for each customer RFQ,
the number of RFQs serves as a sufficient statistic for the overall demand, which in
turn is a major determinant of the potential profits available to the agents.

The demand parameter () evolves according to a given stochastic process. In each
game instance, an initial value, (), is drawn uniformly from [80,320]. If @ 4 is the
value of () on day d, then its value on the next day is given by [Arunachalam et al.,
2003, Section 6]:

Qa+1 = min(320, max(80, 74Q4)), (1)

where T is a trend parameter that also evolves stochastically. The initial trend is neutral,
70 = 1, with subsequent trends updated by a perturbation ¢ ~ U[—0.01,0.01]:

Ta+1 = max(0.95, min(1/0.95, 74 + €)). 2)

In a given game, the demand may stay at predominantly high or low levels, or oscillate
back and forth. The probabilistic behavior of () figures importantly in our analysis, as
presented in Section 7 below.

Although it necessarily simplifies the PC market and manufacturing process to a
great extent, the TAC/SCM game does introduce several realistic elements not typically
incorporated in trading games. Specifically, it embeds trading in a concrete production
context, and incorporates stochastic (and partially observable) exogenous effects. Like
actors on real supply chains, TAC/SCM agents make decisions under uncertainty over
time, dealing with both suppliers and customers, in a competitive market environment.
Negotiation concerns several facets of a deal (price, quantity, delivery time, penalty),
and takes place simultaneously at multiple tiers.

4 Deep Maize

The University of Michigan’s entry in TAC-03/SCM is an agent called Deep Maize
[Kiekintveld et al., 2004a,b]. The agent is organized in modular functional units con-
trolling procurement, manufacturing, and sales. Its behavior is based on distributed
feedback control, in that it acts to maintain a reference zone of profitable operation.
To coordinate the distributed modules, Deep Maize employs aggregate price signals,
derived from a market equilibrium analysis and continual Bayesian demand projection.
The design of Deep Maize optimizes for performance in the steady state, with little
explicit attention to transient or end-game behaviors.

In the present study we focus on one pivotal feature of Deep Maize’s strategy,
described in full detail below. We thus defer specifics of the rest of our agent’s strategy
to our other reports (which in turn do not address the strategic analysis presented here).



S Day-0 Procurement Strategies

A close examination of the game rules suggests that procurement of components at
the very beginning of the game (day-0 procurement) may be a pivotal strategic is-
sue. This was indeed borne out by the behavior observed in preliminary rounds of the
tournament, as discussed below. In this section, we explain the reason for expecting
day-0 procurement to be so significant, and its ramifications for Deep Maize and other
agents.

5.1 Supplier Pricing

In the TAC/SCM market, suppliers set prices for components based on an analysis
of their available capacity. Conceptually, there exist separate prices for each type of
component, from each supplier. Moreover, these prices vary over time: both the time
that the deal is struck, and time that the component is promised for delivery.

The TAC/SCM component catalog [Arunachalam et al., 2003, Figure 3] associates
every component ¢ with a base price, b.. The correspondence between price and quan-
tity for component supplies is defined by the suppliers’ pricing formula [Arunachalam
et al., 2003, Section 5.5]. The price offered by a supplier at day d for an order to be
delivered on day d + 7 is

Ke(d =+ 1)

(d+12) =b. — 0.5b, —,
pe(d+1) 5007

(3)
where for any j, %.(j) denotes the cumulative capacity for ¢ the supplier projects to
have available from the current day through day j. The denominator, 500:, represents
the nominal capacity controlled by the supplier over ¢ days, not accounting for any
capacity committed to existing orders.

Supplier prices according to Eq. (3) are date-specific, depending on the particular
pattern of capacity commitments in place at the time the supplier evaluates the given
RFQ. A key observation is that component prices are never lower than at the start of the
game (d = 0), when (i) = 500: and therefore p. (i) = 0.5b,, for all c and i.> As the
supplier approaches fully committed capacity (k.(d + ¢) — 0), p.(d + ¢) approaches
be.

In general, one would expect that procuring components at half their base price
would be profitable, up to the limits of production capacity. Customer reserve prices
range between 0.75 and 1.25 the base price of PCs, defined as the sum of base prices of
components. Therefore, unless there is a significant oversupply, prices for PCs should
easily exceed the component cost, based on day-0 prices.

An agent’s procurement strategy must also take into account the specific TAC/SCM
RFQ process. Each day, agents may submit up to 10 RFQs, ordered by priority, to
each supplier. The suppliers then repeatedly execute the following, until all RFQs are

3As discussed below, this creates a powerful incentive for early procurement, with significant conse-
quences for game balance. In retrospect, the supplier pricing rule was generally considered a design flaw in
the game, and has been substantially revised for the 2004 TAC/SCM tournament.



exhausted: (1) randomly choose an agent,* (2) take the highest-priority RFQ remaining
on its list, (3) generate a corresponding offer, if possible. In responding to an RFQ, if
the supplier has sufficient available capacity to meet the requested quantity and due
date, it offers to do so according to its pricing function. If it does not, the supplier
instead offers a partial quantity at the requested date and/or the full quantity at a later
date, to the best of its ability given its existing commitments. In all cases, the supplier
quotes prices based on Eq. (3), and reserves sufficient capacity to meet the quantity and
date offered.

5.2 Implications of Aggressive Day-0 Procurement

From the discussion above, it would appear advantageous to any agent that it attempt to
procure a large number of components on day 0. We call this strategy aggressive day-
0 procurement, or simply aggressive. From each agent’s perspective, the main effect
of being aggressive is on its own component procurement profile. If every agent is
aggressive, however, it can significantly change the character of the game environment.

An aggressive day-0 procurement commits to large component orders before over-
all demand over the game horizon is known. This leaves agents with little flexibility
to respond to cases of low demand, except by lowering PC prices to customers. Since
component costs are sunk at the beginning, there is little to keep prices from dropping
below (ex ante) profitable levels. Ketter et al. [2004] confirm the importance of day-0
procurement in determining overall performance, finding a strong positive correlation
between components obtained on day 0 and profitability for high-demand games, and
a negative correlation for games characterized by low demand.

As more agents procure aggressively, several factors make aggressiveness even
more compelling. The aggressive agents reserve significant fractions of supplier capac-
ity, thus reducing subsequent availability and raising prices, according to their pricing
function (3). A natural response might induce a “race” dynamic, where agents issue
day-0 RFQs in increasingly large chunks, ultimately requesting all components they
expect to be able to use over the entire game horizon. Not only does this exacerbate
the risk of locking in aggregate oversupply, it also produces a less interleaved and more
unbalanced distribution of components, especially at the beginning of the game. This
in turn can prevent many agents from being able to acquire key components needed for
particular PC models until relatively far into the production year.

For all these reasons, the aggressive strategy is appealing to individual agents, yet
potentially quite damaging for the agent pool overall. We considered this situation
particularly bad for our agent, given that it was designed for high performance in the
steady state [Kiekintveld et al., 2004a]. Deep Maize devotes a considerable effort
toward developing accurate demand projections, and thus is quite responsive to actual
demand conditions. If most of the game’s component procurement is up front, we
never reach a steady state, and the ability to respond to demand conditions is much less
relevant.

4At the start of the game, suppliers select among agents with equal probability. Thereafter, suppliers
employ a reputation mechanism whereby the probability of agent choice depends on its record of accepting
previous offers. We discuss the operation and effectiveness of this mechanism in Section 6.2.



Agent Affiliation Average Profit ($M)
Qualifying | Seeding 1 | Seeding 2
TacTex U Texas 33.65 32.66 32.97
RedAgent McGill U 15.09 24.57 29.52
Botticelli Brown U 13.88 17.29 28.03
Jackaroo U Western Sydney 14.89 35.55 19.23
WhiteBear Cornell U -3.17 13.57 16.50
PSUTAC Pennsylvania State U -120.0 15.52 15.25
HarTAC Harvard U 12.41 4.19 10.72
UMBCTAC U Maryland Baltimore Cty -13.94 30.16 10.23
Sirish -109.4 -0.17 8.27
Deep Maize U Michigan 1.85 0.45 7.49
TAC-o-matic Uppsala U 0.22 1.79 7.07
RonaX Xonar GmbH -0.92 9.24 4.29
MinneTAC U Minnesota 10.88 6.56 -0.32
Mertacor Aristotle U Thessaloniki 9.29 -0.38 -3.53
zepp Poli Bucharest —24.83 —7.80 -5.46
PackaTAC N Carolina State U -5.11 -25.67 -5.71
Socrates U Essex —48.94 -3.31 -6.84
Argos Bogazici U 3.65 —4.24 -8.43
DummerAgent -8.08 -20.56 —
DAI_hard U Tulsa -11.36 -39.05 —

Table 1: TAC-03/SCM tournament participants, and their performance in prelimi-
nary rounds. Results from the qualifying rounds are weighted, seeding rounds are
unweighted.

The Deep Maize development team therefore decided not to employ aggressive
day-0 procurement in the preliminary rounds, instead treating it just like any other day.
We did not really expect that others would miss the opportunity, but did not want to
encourage or accelerate it.

6 TAC-03 Tournament

The twenty agents who participated in the TAC-03/SCM tournament are listed in Ta-
ble 1. The table presents average scores from each of three preliminary rounds, mea-
sured in millions of dollars of profit. Results from the semifinal and final rounds are
presented in Section 6.3 below.

Two seeding rounds were held during the periods 7—11 and 14—18 July, > with each
agent playing 60 and 66 games, respectively. Two agents were eliminated based on
scores and/or inactivity after Seeding Round 1. The remaining 18 agents advanced to

3 An earlier “qualifying” round spanned 16-27 June, but this was mainly for debugging and no agents
were eliminated.



the semifinals, with assignment to heats based on standing in Seeding Round 2. The
semifinals and finals were held live at IICAI-03, 11-13 August in Acapulco, Mexico,
each round consisting of nine games in one day. Semifinal 1 heat 1 (SIH1) comprised
agents seeded 1-6 and 16-18, and the 715 seeds played in STH2. The top six teams
from each S1 heat (9 games) proceeded to the second semifinal round. S2H1 comprised
teams ranked 1-3 in S1H1, and those ranked 4-6 in SIH2. The top three in SIH2
played, along with the second three in S1HI1, in S2H2. The top three from each of
S2H1 and S2H2 then entered the finals on 13 August. Further details about the TAC-
03 tournament are available at http://www.sics.se/tac.

6.1 Evolution of Day-0 Policies in Preliminary Rounds

As we expected, competition entrants noticed the individual advantages of aggressive
day-0 procurement. Early in the qualifying rounds we noticed Jackaroo’s distinct saw-
toothed profit timeline, indicating a steady increase in wealth with large periodic drops
corresponding to bulk deliveries of supplies. This pattern was the result of large supply
orders placed early in the game (over the first seven days, not just day 0) for delivery
at regular intervals [Zhang et al., 2004].

Based on our subsequent analysis of early game logs,® we can identify TacTex [Par-
doe and Stone, 2004] as the first to employ an aggressive day-0 strategy in competition.
In their very first qualifying round game, TacTex requested 8000 of each component
from each supplier. Although we have found many agents performed mild day-0 pro-
curement during the qualifying rounds, TacTex was more aggressive, earlier—likely a
factor in their supremacy this first round.

Throughout the first seeding round, more agents began using increasingly aggres-
sive day-0 procurement strategies. In particular we noticed the successful agents Tac-
Tex, Botticelli, RedAgent, UMBCTAC, and Jackaroo ordering very large quantities
on day O and very little later in the game. Interestingly, there was no discussion of
the issue on the TAC/SCM message boards, possibly because entrants recognized its
strategic sensitivity. By the second seeding round it was obvious that the majority of
agents were using aggressive strategies. In particular, we verified that all the agents that
placed higher than Deep Maize in the second seeding round (see Table 1) employed
aggressive day-0 procurement.

While observing the increase in aggressiveness, we compiled detailed dossiers de-
scribing the day-0 strategies of other agents. We hoped to use this data to understand
how widespread the use of day-O procurement had become, and to understand how it
was affecting the dynamics of the game.

6.2 Deep Maize Preemptive Strategy

After much deliberation, we decided that the only way to prevent the disastrous rush
toward all-aggressive equilibrium was to preempt the other agents’ day-0 RFQs. By
requesting an extremely large quantity of a particular component, we would prevent

%The TAC/SCM game server records all agent actions (e.g., RFQs, manufacturing, bids) along with
supplier and customer behavior, and releases the log files after each game instance is complete.



the supplier from making reasonable offers to subsequent agents, at least in response to
their requests on that day. Our premise was that it would be sufficient to preempt only
day-0 RFQs, since after day O prices are not so especially attractive.

The Deep Maize preemptive strategy operates by submitting a large RFQ to each
supplier for each component produced. The preemptive RFQ requests 85000 units—
representing 170 days’ worth of supplier capacity—to be delivered by day 30. See
Figure 2. It is of course impossible for the supplier to actually fulfill this request. In-
stead, the supplier will offer us both a partial delivery on day 30 of the components they
can offer by that date (if any), and an earliest-complete offer fulfilling the entire quan-
tity (unless the supplier has already committed 50 days of capacity). With these offers,
the supplier reserves necessary capacity. This has the effect of preempting subsequent
RFQs, since we can be sure that the supplier will have committed capacity at least
through day 172. (The extra two days account for negotiation and shipment time.) We
will accept the partial-delivery offer, if any (and thereby reject the earliest-complete),
giving us at most 14000 component units to be delivered on day 30, a large but feasible
number of components to use up by the end of the game.

| P-------------4 I

0 30 172 219

Figure 2: Deep Maize’s preemptive RFQ.

In the situation that our preemptive RFQ gets considered after the supplier has
committed 50 days of production to other agents, we will not receive an offer, and our
preemption is unsuccessful. For this reason, we also submit backup RFQs of 35000 to
be delivered on day 50, and 15000 to be delivered on day 70.

The effect of a preemptive RFQ clearly depends on the random order by which
its target supplier selects agents to consider. On each selection, Deep Maize will be
picked with probability 1/6, which means that with probability 1 — %k it is selected
within the first & RFQs. For example, the preemptive RFQ appears among the first
four 51.8% of the time. Given these orderings are also generated independently for
each supplier-component combination, with high probability Deep Maize is expected
to successfully preempt a significant number of the other agents’ day-0 RFQs.

The TAC/SCM designers anticipated the possibility of preemptive RFQ generation,
(there was much discussion about it in the original design correspondence), and took
steps to inhibit it. The designers instated a reputation mechanism, in which refusing
offers from suppliers reduces the priority of an agent’s RFQs being considered in the
future. This is accomplished by adjusting agent ¢’s selection probability 7; as follows
[Arunachalam et al., 2003, Section 5.1]:

uantityPurchased,
weight; = max | 0.5, Q .y -1,
QuantityRequested;
weight,
mw, = Q.
! > . weight,,
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Agent Average Profit ($M)
Semifinal 1 | Semifinal 2 | Final
RedAgent 12.75 (H1) 25.09 (H1) | 11.61
Deep Maize 10.51 (H2) 15.28 (H1) 9.47
TacTex 1.85(H1) | -15.54 (H2) | 5.02
Botticelli 5.69 (H1) | —4.83(H2) | 3.33
PackaTAC 18.31 (H1) 8.70 (H1) | —-1.68
WhiteBear 526 (H1) | -9.58 (H2) | -3.45
PSUTAC 17.81 (HI) | —1.56 (HI) —
TAC-o-matic || —-1.24 (H2) | —-13.50 (H1) —
Sirish 15.86 (H2) | —20.21 (H2) —
MinneTAC 13.92 (H2) | —24.98 (H2) —
UMBCTAC 10.78 (H2) | -29.91 (H2) —
HarTACY 2.59 (H2) | —32.95 (HI) —

Table 2: Results for twelve agents participating in the second semifinal and final
rounds.

Even with this deterrent, we felt our preemptive strategy would be worthwhile.
Since most agents were focusing strongly on day 0, priority for RFQ selection on sub-
sequent days might not turn out to be crucial.

6.3 Tournament Story

Having developed the preemptive strategy, we still faced the question of when to de-
ploy it. Based on our performance in preliminaries, we were reasonably confident that
we could make the top six out of nine in SIH2 without resorting to preemption, and
instead chose to implement a moderate form of aggressive day-O procurement. As
expected, other agents actually scaled up their day-O procurement, and consequently,
Deep Maize did not put on a very strong showing in this round. Fortunately, fourth
place was sufficient to advance to the next round.

Table 2 presents results for the top twelve agents after Semifinal 1. Network prob-
lems at the competition venue caused difficulties for agents running locally —Jackaroo
and HarTAC, in particular.”

After the first semifinal closed, the next few hours were filled with a great deal
of hustle as the team activated the preemptive strategy that would be played the next
day. These hours were also filled with anxiety. We had intuition about the effect of
preemptive strategy on Deep Maize and other agents, but had never had a chance to
test it against other competitors. On the other hand, we could hardly wait to see the
“unexpected” dramatic change in Deep Maize behavior in the arena with presumably

"The problems did not affect the majority of agents communicating over the Internet from entrants’ home
institutions to the servers in Sweden.

8The score of HarTAC in Semifinal 2 was adversely affected by one game in which it experienced con-
nectivity problems and lost $364M. Omitting this game would boost their average profit to $8.46M.
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S1H1 S1H2 S2H1 S2H2 Finals
(DOM2, P, N) || -—9 | DM,-9 | DM,P8 | ——9 | DM,P16
components 59390 | 46989 27377 | 70744 27172
avg profits 297 -3.05 7.02 -17.51 4.05

Table 3: Effect of preemption on day 1 component orders and average profits.

the three best agents (since we did not place very highly in the first round, we would
play the top three placing agents from the other heat).

In the morning of 12 August, the Deep Maize team stood waiting by the computer
screen as the second round of semifinals began. As day 29 rolled around, everyone held
their breath, releasing it when the first large delivery of components dropped in. Once
we saw distinct manifestations of the preemptive strategy, we began to wonder how
other agents would react. Our suspense did not last long: soon after the game’s mid-
point, a comment emerged in the TAC game chatroom: “why we can’t get hard disks?
How server handle purchase RFQs? is the administrator around!!!?” Apparently, one
agent at least was taking for granted that its day-0 requests would be fulfilled.

At the end of S2H1, Deep Maize came in second behind the eventual tournament
winner, Red Agent [Keller et al., 2004], followed closely by PackaTAC [Dahlgren,
2003]. These agents, it turned out, were relatively resilient to the preemptive strat-
egy, as they did not excessively rely on day-0 procurement, but adaptively purchased
components throughout the game.

Although none had anticipated it explicitly, it turned out that most agents playing
in the finals were individually flexible enough to recover from day-0 preemption. By
preempting, it seemed that Deep Maize had leveled the playing field, but RedAgent’s
apparent adaptivity in procurement and sales [Keller et al., 2004] earned it the top spot
in the competition rankings.

6.4 Analysis

Did Deep Maize’s preemption strategy work? We can first examine whether it had
its intended direct effect, namely, to reduce the number of components ordered at the
very beginning of the game. Table 3 presents, for each tournament round, the number
of components ordered on day 1 (based on day-0 RFQs). Each value represents a
total over delivery dates and agents, averaged over the 16 supplier-component pairs.
Above the component numbers we indicate whether Deep Maize played in that round
(DM), whether it employed preemption (P), and the number of games. Note that this
data includes one game in S2H1 and two in the finals in which Deep Maize failed
to preempt due to network problems. It does exclude one anomalous S2H1 game, in
which HarTac experienced connectivity problems, to wildly distorting effect.

From the table, it is clear that the preemptive day-0 strategy had a large effect. The
difference is most dramatic in Semifinal 2, where the heat with Deep Maize preempt-
ing saw an average of 27377 components committed on day 1, as compared to 70744
in the heat without Deep Maize.
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The tournament results also indicate that preemption was successful. The fact that
Deep Maize performed well overall is suggestive, though of course there are many
other elements of Deep Maize contributing to its behavior. Evidence that the pre-
emptive strategy in particular was helpful can be found in the results from Semifinal 1,
where Deep Maize did not preempt and ended up in fourth place. This was suffi-
cient for advancing in the tournament, but clearly not as creditable as its second place
showing in the finals, among the (presumably) top agents in the field.

We can conclude, then, that preemption helped Deep Maize. How did it affect
the rest of the field? Table 3 also suggests a positive relation between preemption and
profits averaged over all agents. Again, the contrast is greatest between S2H1 and
S2H2. In the heat without Deep Maize, it appears that competition among aggressive
agents led to an average loss of $17.51M. With Deep Maize preempting in S2H1,
profits are a healthy $7.02M per agent. Preemption was also operative in the finals, and
profits there were also positive. That it is preemption and not Deep Maize per se is
supported by examination of Semifinal 1, in which the heat without our agent appears
to be substantially more profitable on average.

Pooling all of these semifinal and final games, we compared average profits for
games with and without preemption. Games with preemption averaged $3.97M in
profits, compared to a loss of $4.02M in games without preemption. Given the small
dataset and large variance, this difference is only marginally statistically significant
(p = .09).

Drawing inferences from tournament results is complicated by the presence of
many varying and interacting factors. These include details of participating agents,
and random features of environment, in particular the level of demand. To test the in-
fluence of demand, we measured the overall demand level for each game, Q, defined
as the average number of customer RFQs per day. Figure 3 presents a scatterplot of
the tournament games, showing @ and per-agent profits for each. We distinguish the
games with and without preemption, and for each class, fit a line to the points. The lin-
ear fit was quite good for the games with preemption (R? = 0.84), capturing somewhat
less of the variance for the games without (R? = 0.66).

As seen in the figure, with or without preemption, demand clearly exhibits a sig-
nificant (p < 10~°) relation to profits. The relation is attenuated by preemption, and
indeed the revealed trend indicates that preemption is beneficial when demand is low,
and detrimental in the highest-demand games. This is what we would expect, given
that the primary effect of preemption is to inhibit early commitment to large supplies.
Given the apparently important influence of demand, we developed a more elaborate
mechanism (described in Section 7) to control for demand in our analysis of tourna-
ment games as well as our post-competition experiments.

6.5 ICEC Exhibition Tournament

From 1-3 October 2003, organizers of the Fifth International Conference on Elec-
tronic Commerce (ICEC) conducted a TAC/SCM exhibition event. Twelve agents par-
ticipated, including all six finalists from the TAC-03 tournament. Deep Maize ran
unchanged since August, and we suspect that most others (with one exception noted
below) were also the same as their competition versions. The exhibition tournament
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Figure 3: Profits versus () in TAC-03 tournament games. The lines represent best fits
to data from games with and without preemption.

was organized as a series of randomly-matched agent profiles, with each participant
playing 26 games.

It is important not to draw firm conclusions from the results of any exhibition event,
and indeed the ICEC results are particularly noisy due to the high absentee rate (15%)
of participating agents. We examined the data fairly closely, in part to understand
why Deep Maize had the highest average profits (despite being “absent” from five
games), and of course to examine the effect of preemption. At first the results seemed
quite anomalous to us, until we discovered that another agent— Botticelli—had been
modified to play a preemptive strategy as well!

We plot average profit versus demand for the ICEC games in Figure 4. We par-
tition the 52 games into three classes, based on whether there were zero, one, or two
agents playing a preemptive day-0 strategy. The fitted lines for these cases suggest that
preemption ameliorated the effect of demand here as well. However the data is quite
noisy, and none of the comparisons of average profits are even remotely statistically
significant.

7 Demand Adjustment

Given a sufficient number of random instances, the problem of variance due to stochas-
tic demand would subside, as the sample means for outcomes of interest would con-
verge to their true expectations. However, for TAC/SCM, sample data is quite ex-
pensive, as each game instance takes approximately one hour. (55 minutes of game
simulation time, plus a few minutes for pre- and post-game processing) Therefore,
datasets from tournaments and even offline experiments will necessarily reflect only
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limited sampling from the distribution of demand environments.

7.1 Demand-Adjusted Profit

To address this issue, we can calibrate a given sample with respect to the known under-
lying distribution of demand (). Our approach is an instance of the standard method
of variance reduction by control variates [L’Ecuyer, 1994, Ross, 2002]. Given a spec-
ification for the expectation of some game statistic y as a function of @, its overall
expectation accounting for demand is given by

Ely] = /Q Ely|Q) Pr(@)dQ. )

Although we do not have a closed-form characterization of the density function Pr( (),
we do have a specification of the underlying stochastic demand process. From this, we
can generate Monte-Carlo samples of demand trajectories over a simulated game.” We
then employ a kernel-based density estimation method using Parzen windows [Duda
et al., 2000] to approximate the probability density function for (. This distribution
is shown in Figure 5. Its mean is 196, with a standard deviation of 77.4. Note that
much of the probability is massed at the extremes of demand, with a skew toward the
low end. The tendency toward the extremes comes from the combination of trend (7)
momentum and bounding of @). The skew toward the low end comes from the fact that
the trend is multiplicative, so the process tends to transition more rapidly while at the
higher levels of demand.

9We could also use historical game data, but simulating Eqs. (1) and (2) is much faster. The 200,000 data
points we generated for our density estimate would take 22.8 years of game simulation time to produce.
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Given this distribution, we define demand-adjusted profit (DAP) as the expected
profit, adjusted for demand. We calculate this by substituting the per-agent profit for
y in Eq. (4). Using this formula requires an estimate for profits as a function of Q,
which we obtain by linear regression from the sample data. The two lines in Figure 3
thus represent our estimates for profits given @ for the two sets of TAC-03 tournament
games. Although the actual relationship is not linear, the fitted line provides an estimate
of the mean equivalent to that of the control variates method [L’Ecuyer, 1994]. As
we see below, for limited samples, adjusting for () in this manner indeed produces a
substantial reduction in variance, introducing only a small additional bias.

7.2 Variance Reduction

To evaluate the effectiveness of demand adjustment as a means to increase the statis-
tical power of our limited sample, we performed a simple experiment comparing the
accuracy of DAP estimates to that of unadjusted mean profit. For one (arbitrarily)
selected profile, we collected a particularly large number of samples, ) (in our exper-
iment, |D| = 439). For each value 1 < m < |D|, we then measured the bias and
variance of N = 1000 independent subsamples of size m of D, employing both raw
and demand-adjusted profits for one of the agents. To define a gold standard, we treat
the sample mean of raw profits over D as the true mean, z. We can then define the bias,
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variance, and mean squared error (MSE) of a particular estimate v as follows:
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Figure 6: (A.) Mean squard error (MSE) of DAP estimator. (B.) Bias® of DAP estimator.

Figure 6 compares the MSE and bias of estimates using DAP and unadjusted
means. Note that MSE is dominated by variance, as bias” is several orders of mag-
nitude smaller, for either estimator. Only as m approaches |D|, where variance ap-
proaches zero by construction,'? do we see bias become a significant component of
MSE. We also observe in Figure 6(B) that the bzas of the DAP estimator does not
change as we increase m. It becomes less noisy (due to the reduced variance), but the
bias itself remains consistent.

Another way to evaluate the benefit of demand adjustment is to determine the num-
ber of samples required for the DAP estimate to achieve the same MSE as the mean
estimator with m samples. Figure 7 shows this relationship in our experimental data,
demonstrating that we always need strictly fewer samples using DAP to achieve a given
level of MSE. As shown here, DAP can reduce the number of required samples by up
to 50%.

7.3 DAP Analysis of Preemption in TAC-03

From the linear model of profits given (), we can obtain a summary comparison of over-
all profits with and without preemption. For the TAC-03 games without preemption,

10This is an artifact of our assumption that the sample mean from our fixed dataset D is the true mean.
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DAP was —$1.41M. Preemption increased DAP to $5.20M. Thus, we find that on av-
erage, Deep Maize’s preemptive strategy improved not only its own profits, but those
of the other agents as well. These results are corroborated by controlled experiments
described below.

8 Game-Theoretic Model

Although the tournament results presented above are illuminating, it is difficult to sup-
port general conclusions due to the many contributing factors and differences among
agents. To isolate the effect of preemption on the key strategic variable (aggressiveness
of day-0 procurement), we developed a stylized game-theoretic model, then calibrated
it using simulation experiments. Game-theoretic analysis supports conclusions about
equilibrium behavior of rational agents, providing further evidence that the phenomena
observed are not merely transient outcomes produced by a particular set of irrational
agents.

We proceed by defining a normal-form game, restricting attention to characteristic
strategies, and estimating payoffs through simulation experiments. We then identify a
series of equilibria, pure and mixed, with respect to various restrictions of the game.
Examination of these equilibria and their payoffs confirms that the strategic dynamic
observed in the 2003 TAC/SCM tournament obtains in our more controlled setting as
well.

8.1 Normal-Form Model Structure

As noted at the outset, TAC/SCM defines a six-player game of incomplete and imper-
fect information, with an enormous space of available strategies. The game is symmet-
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ric [Cheng et al., 2004], in that agents have identical action possibilities, and face the
same environmental conditions. In our stylized model, we restrict the agents to three
strategies, differing only in their approach to day-0 procurement. Each strategy is im-
plemented as a variant of Deep Maize. By basing the strategies on a particular agent,
we clearly cannot capture the diversity of approaches to all aspects of TAC/SCM. Fix-
ing much of the behavior, however, enables our focus on the particular issue of strategic
procurement.

In strategy A (aggressive), the agent requests large quantities of components from
every supplier on day 0. The specific day-0 RFQs issued correspond to aggressive day-
0 policies we observed for actual TAC-03/SCM participants. We encoded four of these
as RFQ quantity lists:

1. (4250,5000,5000,2500,1250), based on TacTex [Pardoe and Stone, 2004].
2. (3000,3000,3000,3000,3000), based on UMBCTAC.
3. (4000,3000,8000), based on HarTac [Dong et al., 2004].

4. (1672,1672,1672,1672,1672), and double this for CPU components, based on
Botticelli [Benisch et al., 2004].

Strategy A randomly selects among these at the beginning of each game instance.

In strategy B (baseline), the agent treats day O just like any other day, issuing re-
quests according to its standard policy of serving anticipated demand and maintaining
a buffer inventory [Kiekintveld et al., 2004a]. Strategy P (preemptive) is actually Deep
Maize as we ran it in the tournament, with preemptive day-0 procurement as described
above. Each of these strategies follows the standard Deep Maize procurement policy
after day 0.

We consider three versions of this game in our analysis. The first is an unpreempted
six-player game, where agents are restricted to playing A or B. The second is a five-
player game, with the sixth place taken up by a fixed agent playing strategy P. We
refer to this as the single-preemptor game. The third is the full six-player game where
agents are allowed to play any of the three strategies A, B, or P.

Since the three strategies incorporate specified policies for conditioning on private
information, we represent the game in normal form. By symmetry there are only seven
distinct profiles for the unpreempted game, corresponding to the number j of agents
playing A, 0 < j < 6. There are six distinct profiles for the single-preemptor game,
and a total of twenty-eight for the full game (including the thirteen from the more
restricted games). Payoffs for each profile represent the expected profits for playing A,
B, or P, respectively, given the other agents, with expectation taken over all stochastic
elements of the game environment.

8.2 Simulation Results

To estimate our game’s expected payoff function, we sampled an average of around 30
game instances for each strategy profile— 834 in total. For each sample, we collected

the average profits for the As, Bs, and Ps, as well as the demand level, (). We then
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used the demand-adjustment method described above to derive DAP for each strategy,
which we take as its payoff in that profile.

From this data, we verify that increasing the prevalence of aggressiveness degrades
aggregate profits. We show that inserting a single preemptive agent neutralizes the
effect of aggressiveness, diminishing the incentive to implement an aggressive strat-
egy, and also ameliorating its negative effects. Moreover, the presence of a preemptor
tends to improve performance for all agents in profiles containing a preponderance of
agents playing A. We then study the equilibrium behavior of each of the three versions
of the game. From the empirical game models, we derive asymmetric pure-strategy
equilibria, as well as symmetric mixed-strategy equilibria, for each of the games.!'!
Comparison of the features of equilibrium behavior in the respective games confirms
our findings about the effects of strategic preemption.

To test our hypothesis that aggressive strategy has a negative effect on total profits,
we regressed total DAP for each profile on the number of aggressive agents in the
profile. For profiles without preemption, the linear relationship was quite strong (p =
0.0018, R? = 0.88), with each A in the profile subtracting $20.9M from total profits,
on average.

In the single-preemptor game, the effect of number of aggressive agents on average
total profits was statistically insignificant, explaining little variance (p = 0.54, R? =
0.10). For unpreempted profiles with four or more aggressive players, agents playing
either strategy would benefit substantially (at least $6.5M in average profits) from one
of the others (either type) switching to play P. Thus, preemption appears to eliminate
the detrimental effect that aggressive agents exert on total profits, and for individual
profits as well compared to profiles with a predominance of strategy A.

We also confirmed that preemption levels the playing field, as the difference in av-
erage profits between aggressive and baseline agents was on the order of $10M for the
unpreempted profiles, as compared to $1M for the single-preemptor case. Examining
the variance across agents in each particular game, we observe that average variance
for unpreempted profiles was an order of magnitude larger than that for profiles with
preemption. The variances are tabulated in Table 4.

8.3 Pure Strategy Equilibria

A pure-strategy Nash equilibriumis a strategy profile such that no agent can improve its
payoff by changing strategies, assuming all other agents play according to the profile.
We identify pure strategy Nash equilibria for both of the two-strategy games, as well
as the full three-strategy game.

8.3.1 Two-Strategy Games

In a two-strategy ({A,B}) symmetric game, a profile is defined by the number of As.
Profile 0 < ¢ < N is a Nash equilibrium if and only if:

U1t can be shown that for any IV -player two-strategy symmetric game, there must exist at least one equilib-
rium in pure strategies, and there also must exist at least one symmetric equilibrium (pure or mixed) [Cheng
et al., 2004].
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Profile Variance Baseline | Aggressive | Preemptive | Average

DAP ($M) | DAP ($M) | DAP ($M) | DAP ($M)

AAAAAA || 8.37E+15 n/a -12.26 n/a -12.26
AAAAAB || 8.29E+15 -9.03 —13.58 n/a -12.83
AAAABB || 1.14E+16 —-10.78 -1.47 n/a —4.57
AAABBB || 9.70E+15 -10.36 9.73 n/a -0.31
AABBBB || 6.79E+15 —2.47 19.16 n/a 4.74
ABBBBB || 2.61E+15 —-1.83 13.28 n/a 0.69
BBBBBB || 1.84E+13 8.17 n/a n/a 8.17
PAAAAA || 6.38E+14 n/a 6.86 9.98 7.38
PAAAAB || 6.36E+14 7.23 8.84 10.29 8.82
PAAABB || 6.50E+14 3.62 5.15 9.04 5.29
PAABBB || 7.53E+14 6.06 7.34 10.96 7.30
PABBBB || 1.18E+15 4.19 5.75 11.41 5.65
PBBBBB || 1.03E+15 6.06 n/a 13.64 7.32
PPAAAA || 5.90E+14 n/a 3.67 5.45 4.26
PPAAAB || 4.24E+14 5.11 4.71 6.69 5.44
PPAABB || 4.28E+14 4.55 4.70 6.71 5.32
PPABBB || 4.95E+14 1.74 2.57 4.46 2.79
PPBBBB || 9.03E+14 4.78 n/a 7.31 5.63
PPPAAA || 2.49E+14 n/a 7.41 7.30 7.35
PPPAAB 1.75E+14 5.76 5.84 6.32 6.07
PPPABB 1.99E+14 10.10 10.14 10.08 10.10
PPPBBB || 3.51E+14 3.76 n/a 4.30 4.03
PPPPAA 2.33E+14 n/a 2.26 1.50 1.75
PPPPAB 2.13E+14 6.98 7.24 6.16 6.48
PPPPBB 2.87E+14 5.77 n/a 5.69 5.72
PPPPPA 1.43E+14 n/a 7.74 6.64 6.82
PPPPPB 2.04E+14 5.46 n/a 4.39 4.56

[ PPPPPA || 1.19E+14 || n/a | n/a | 4.14 4.14

Table 4: Payoffs by strategy profile. “Variance” refers to the mean variance across
agents for games with the corresponding profile.

1. the payoff to A in ¢ exceeds the payoffto Bin: — 1 (or ¢ = 0), and
2. the payoff to B in ¢ exceeds thatto Ain? + 1 (orz = N).

We consider the games defined by DAP payoffs, as well as raw average profits. The
full set of DAP payoffs are provided in Table 4. As we ran our simulations, we observed
that DAP results anticipated those we would obtain from raw averages after collecting
more samples. This is consistent with the experiment described in Section 7.2, in which
we found that DAP estimates exhibit lower mean-squared-error compared to sample
means, for a range of subsample sizes going well beyond what we could collect for each
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profile. Given our relatively small datasets, therefore, we have greatest confidence in
the DAP results. An advantage of the raw averages is that we have associated variance
measures, enabling statistical hypothesis testing.

Let ¢A denote the profile with no preemption, and ¢ agents playing A (the rest
playing B). Whether we define payoffs by DAP or raw averages, the unique pure-
strategy Nash equilibrium is 4A. That this is an equilibrium for DAP payoffs can be
seen by comparing adjacent columns in the bar chart of Figure 8. Arrows indicate for
each column, whether an agent in that profile would prefer to stay with that strategy
(arrow head), or switch (arrow tail). Solid black arrows denote statistically significant
comparisons, as discussed below. Profile 4A is the only one with only in-pointing
arrows.
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Figure 8: DAP payoffs for unpreempted strategy profiles.

Let P:A denote the profile with a preemptive agent, and ¢ As. In the game with
preemption, we find several pure-strategy Nash equilibria. P4A and P2A are equilibria
under either payoff measure, and POA is an equilibrium in the game defined by DAP,
but not raw averages. The DAP comparisons are illustrated by Figure 9.

To assess the robustness of these equilibria, we conducted statistical tests. For each
relevant comparison we performed two-sample t-tests, using average profits, assuming
unequal variance. The p-values are presented in Table 5. Whereas some of the com-
parisons in the unpreempted game indicate significant differences, for the preemptive
profiles none of the comparisons are particularly significant. Thus, the equilibria we
found should be considered suspect, or weak equilibria at best. Since payoffs in the
preemptive games have much lower variance, if anything we would expect significant
differences to show up earlier. This is consistent with our finding above that the pre-
emptive agent neutralizes the difference between strategies A and B. In that respect,
identifying an equilibrium is less important in this context.

22



10
ODAP Baseline

g B DAP Aggressive
7

N 4 J—
. i

4

3 ]

5

1

0 T r

PAAAAA PAAAAB PAAABB PAABBB PABBBB PBBBBB

Millions
(o)
.

Figure 9: DAP payoffs, with preemption.

Regardless of which equilibrium is played, both A and B agents are clearly better
off in the single-preemptor game. In all its equilibria, all agents earn over $6M profit.
In the unpreempted game equilibrium (4A), in contrast, all profits are negative, with
the B agents losing over $10M each.

8.3.2 Full Three-Strategy Game

Our analysis of the two-strategy games confirms our hypothesis that introducing a sin-
gle preemptive agent neutralizes the effect of aggressiveness and moves equilibrium
play toward a more profitable space. The success of preemption, however, raises the
question about whether an incentive to preempt will create a similar mutually destruc-
tive competition among preemptors. To check this, we can perform the same kind
of equilibrium analysis in the three-player game, where agents are allowed to choose
strategy P. The twenty-eight profiles are arrayed in Figure 10, with arrows indicating
the transitions between profiles induced by agents switching strategies.

The four pure-strategy Nash equilibria of this game are indicated in bold: PAAAAB,
PPBBBB, PPPAAA, and PPPABB. Although the average scores vary across equilibria,
in every case the A and B players earn substantial profit, unlike the unpreempted case.
Indeed, there exists only one unpreempted profile (2A) from which an A would not
deviate, and no unpreempted profiles where playing B is stable.

We also note that as more agents adopt a preemptive strategy, the difference in per-
formance among strategies diminishes. Almost all the comparisons between profiles
with preemptive agents are statistically insignificant, as can be seen by the thin arrows
in Figure 10. One way to quantify the indifference between strategies given preemp-
tion is to consider the ¢-Nash equilibria. A profile is e-Nash if no agent can improve
its payoff by more than € by deviating from its assigned strategy. In Figure 10, we
display for each profile the minimum ¢ that would render it an e-Nash equilibrium. For
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| Comparison | P-value ]
AAAAAA — AAAAAB | 0.6595
AAAAAB — AAAABB | 0.0020
AAAABB +— AAABBB | 0.0246
AAABBB + AABBBB 0.5123
AABBBB < ABBBBB 0.0001
ABBBBB < BBBBBB 0.2879
PAAAAA — PAAAAB 0.7678
PAAAAB +— PAAABB 0.2294
PAAABB — PAABBB 0.4413
PAABBB < PABBBB 0.3436
PABBBB +— PBBBBB 0.3845

Table 5: Statistical significance of profile comparisons.

example, although PPPPPA is not an equilibrium, agents can gain at most $0.34M by
deviating from their assigned strategies. Among the 21 preemptive profiles, 17 of them
are ¢-Nash equilibria at an € of $5.38M or less. In contrast, none of the unpreempted
profiles are e-equilibria at that level.

8.4 Mixed Strategy Equilibria

Although the pure-strategy equilibria are interesting, we might consider symmetric
equilibria more natural, given the symmetry of the game and its lack of identifying
roles [Kreps, 1990]. In order to identify a symmetric equilibrium, we need in general
to consider mixed strategies.

8.4.1 Two-Strategy Games

Let NV be the total number of strategies in the profile (in our context, N = 6 without
preemption, and N = 5 when we include a single fixed preemptive agent). Define
DAP(X, j) as the DAP of strategy X (A or B) when j agents out of N play strat-
egy A. If k agents each independently choose whether to play A with probability «
(henceforth, “play «”), then the probability that exactly ¢ will choose A is given by

k) a'(l—a)*.

?

Pr(a, i, k) = (

Let V (A, «) denote the DAP of an agent playing A when the remaining agents

play a:
N-1

V(A,@) =Y Pr(a,i, N — 1)DAP(A,i+1).
i=0

Similarly, we define DAP values for playing B or a, respectively, in the setting where
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Figure 10: Profiles for the full three-strategy game, with arrows indicating a desire
by the associated agent to change its strategy. Statistically significant comparisons are
indicated by bold arrows. Values specified for each profile represent the minimum e
such that the profile constitutes an ¢-Nash equilibrium.

others play a:

V(B,a) = Nz_:lPr(a,i,N—l)DAP(B,i),
Vi) = a}/(A,oz)—i—(l—oz)V(B,a).

We plot these values of playing A, B, or « in response to «, for the two games,
in Figure 11. A necessary and sufficient condition for a symmetric mixed-strategy
equilibrium is

V(A o) = V(B,«).
Therefore, we can identify such equilibria by the points in these figures where the
curves intersect. For the game without preemption, we have a single symmetric mixed-

strategy equilibrium, at & = 0.82. When the preemptive agent is present, we find two
symmetric mixed-strategy equilibria: & = 0.03 and o = 0.99.

25



0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0:8 1

Figure 11: Response to mixed strategy «, for the unpreempted (left) and single-
preemptor (right) games. Note that the payoff scale is an order of magnitude wider
in the left graph.

The expected payoff for the equilibrium strategy (equal for A and B, by definition)
of the game without preemption is a loss of $9.59M. With a single preemptor, the two
equilibria have expected payoffs of $5.92M and $7.01M, respectively. The preemptive
agent itself also does well, earning profits of $13.3M and $9.99M in the respective
equilibria.

Although we have no direct way to perform a statistical hypothesis test using
demand-adjusted values, a conservative option is to compare the mean DAP scores
using the variance of the raw averages. In this instance, DAP for the two preemptive
equilibria exceed that of the non-preemptive equilibrium at p-values less than 0.0001.

Inspection of Figure 11 confirms our prior finding that preemption reduces the dif-
ference between A and B strategies. One way to quantify this is to identify an € * for
each game such that any mixed strategy is a symmetric e-Nash equilibrium at ¢ = ¢*.
In our context, ¢* is therefore the maximum payoff difference between playing the
best-response strategy, and playing «:

€ = max ( max  V(X, o) — V(a, a)) .
e X€{A B}

For games without preemption, ¢* is $10.6M. With preemption, ¢* is only $0.97M.

This provides a bound on how much it can matter to make the right choice about ag-

gressiveness, given a symmetric set of other agents.

8.4.2 Full Three-Strategy Game

We were also able to derive a symmetric mixed-strategy equilibrium for the full three-
strategy game, using replicator dynamics [Schuster and Sigmund, 1983]. In equilib-
rium, agents play A with probability 0.23, B with probability 0.19, and P with 0.58.
The expected payoff for this mixed strategy is $5.78M. This is not quite as good as
the environment allowing only a single preemptor, but of course much better than the
unpreempted situation.
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9 Procurement Strategy in TAC-04 and Beyond

Based on the 2003 experience, the TAC/SCM game designers revised the game rules
for TAC-04, with the primary intent of reducing the attraction of aggressive day-0
procurement. The modified supplier pricing rule imposed premiums for large orders,
and the new storage fee added a proportional cost for holding component inventory.
Although these may have had some deterrent effect, they were apparently not sufficient
to prevent aggressive day-0 procurement in the 2004 tournament. They did, however,
effectively rule out preemptive remedies of the sort that Deep Maize provided in TAC-
03. In consequence, the tournament games exhibited major procurement imbalances,
and surprisingly volatile profits given the much steadier demand process introduced for
2004. Further analysis will be required to characterize agents’ procurement strategies
in TAC-04, and explain the full strategic implication of the rule changes.

In order to remove day-0 procurement as an overriding issue once and for all, the
designers for TAC-05 [Collins et al., 2004] are completely overhauling the method by
which suppliers allocate offers. We look forward to investigating the other strategic
trading issues that will inevitably come to the fore in the 2005 TAC/SCM game.

10 Conclusion

The TAC supply-chain game presented automated trading agents (and their design-
ers) with a challenging strategic problem. Embedded within a highly-dimensional
stochastic environment was a pivotal strategic decision about initial procurement of
components. Our reading of the game rules and observation of the preliminary rounds
suggested to us that the entrant field was headed toward a self-destructive, mutually
unprofitable equilibrium of chronic oversupply. Our agent, Deep Maize, introduced
a preemptive strategy designed to neutralize aggressive procurement. It worked. Not
only did preemption improve Deep Maize’s profitability, it improved profitability for
the whole field. Whereas it is perhaps counterintuitive that actions designed to prevent
others from achieving their goals actually helps them, strategic analysis explains how
that can be the case.

Investigating strategic behavior in the context of a research competition has several
distinct advantages. First, the game is designed by someone other than the investigator,
avoiding the kinds of bias that often doom research projects to success. Second, the
entry pool is uncontrolled, and so we may encounter unanticipated behavior of individ-
ual agents and aggregates. Third, the games are complex, avoiding many of the biases
following from the need to preserve analytical or computational tractability. Fourth,
the environment model is precisely specified and repeatable, thus subject to controlled
experimentation. We have exploited all of these features in our study, in the process
developing a repertoire of methods for empirical game-theoretic analysis, which we
expect to prove useful for a range of problems.

There is no doubt that this form of study also has several limitations, for example
in justifying generalizations beyond the particular environment studied. Nevertheless,
we believe that the methods developed here provide a useful complement to the kinds
of (a priori) stylized modeling most often pursued in game-theoretic analysis, and to
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the non-strategic analyses typically applied to simulation environments.
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