SIViP
DOI 10.1007/s11760-015-0804-2

@ CrossMark

ORIGINAL PAPER

Land-use scene classification using multi-scale completed local

binary patterns

Chen Chen' . Baochang Zhang? - Hongjun Su® - Wei Li*

Received: 25 April 2015 / Revised: 8 June 2015 / Accepted: 15 July 2015
© Springer-Verlag London 2015

Abstract In this paper, we introduce the completed local
binary patterns (CLBP) operator for the first time on remote
sensing land-use scene classification. To further improve the
representation power of CLBP, we propose a multi-scale
CLBP (MS-CLBP) descriptor to characterize the domi-
nant texture features in multiple resolutions. Two different
kinds of implementations of MS-CLBP equipped with the
kernel-based extreme learning machine are investigated and
compared in terms of classification accuracy and compu-
tational complexity. The proposed approach is extensively
tested on the 21-class land-use dataset and the 19-class
satellite scene dataset showing a consistent increase on per-
formance when compared to the state of the arts.
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1 Introduction

Land-use scene classification aims to assign a semantic label,
e.g., urban and forest, to an image according to its content.
With the technological development of various satellite sen-
sors, the volume of high-resolution remote sensing image
data is increasing rapidly. It is necessary to develop effec-
tive and efficient classification methods to annotate the large
remote sensing images for building intelligent databases.

It is of great interest in exploiting computer vision tech-
niques for classifying aerial or satellite images. For example,
the bag-of-visual-words (BOVW) model [1] establishes a set
of visual words (i.e., a visual vocabulary) by clustering the
local features extracted from a collection of images. Then, an
image is represented by a histogram of the frequency of visual
words. The BOVW model has been successfully applied to
remote sensing land-use scene classification and achieved
good performance [2,3]. However, the model only considers
the occurrences of the visual words and ignores the spatial
information in the images. Since land-use remote sensing
images contain rich texture information, the performance of
the BOVW model can be improved by incorporating spatial
information. In [3], a spatial co-occurrence kernel was used to
explore spatial extensions to the BOVW model for land-use
scene classification. In [4], a 2D wavelet decomposition-
based BOVW model was proposed to exploit the texture
structures in land-use images. The spatial pyramid match-
ing (SPM) model [5] is another approach to address the lack
of spatial information in the BOVW representation. In the
SPM model, an image is partitioned into increasingly fine
subregions and histograms of local features computed from
each subregion are concatenated. In [6], multi-resolution
analysis and dual modalities for horizontal and vertical par-
titions were incorporated into the SPM model to further
improve the land-use scene classification performance. How-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-015-0804-2&domain=pdf

SIViP

ever, one limitation of the SPM model is that it captures
the absolute spatial information with ordered block parti-
tions of an image, which is sensitive to rotation variations
of the image scenes. To achieve rotation invariance, a con-
centric circle-based partition strategy [7] was proposed to
represent the spatial information in remote sensing images. A
pyramid-of-spatial-relatons (PSR) model [8] was developed
to capture both absolute and relative spatial relationships of
local features leading to a translation and rotation invariance
representation for land-use scene images.

Although the aforementioned variants of the original
BOVW model are able to capture the spatial layout infor-
mation of scene images, they mostly use the scale-invariant
feature transform (SIFT) descriptor [9] to extract local fea-
tures and have not exploited other effective local features
to capture the texture and structure information in remote
sensing images. There are some studies that put efforts on
evaluating various features and combinations of features for
land-use scene classification. For instance, local structural
texture similarity descriptor was applied to image blocks
to achieve structural texture representation for aerial image
classification [10]. An enhanced Gabor texture descriptor
(EGTD) [11] was a global image descriptor based on cross-
correlation between spatial frequency subbands of Gabor
image decomposition. The descriptor achieved good results
in classification of high-resolution remote sensing images.
In [12], three different feature extraction strategies including
raw pixel intensity values, oriented filter responses and dense
SIFT descriptors were investigated in the land-use scene clas-
sification framework. Combining multiple features such as
SIFT, GIST [13], DAISY [14] was also explored to enhance
the discriminative power of features, e.g., [15,16]. Although
classification performance can be improved by fusing differ-
ent features, parameter tuning for each feature is necessary.
Moreover, computational complexity and feature dimension-
ality may be increased significantly.

In this study, we focus on the development of an effective
and efficient feature extraction method for land-use scene
classification. Local binary patterns (LBP) [17] descriptor, as
atexture descriptor, has been successfully applied to a variety
of image processing and machine vision applications [18,19].
Completed local binary patterns (CLBP) [20] descriptor is a
completed modeling of the LBP operator designed to achieve
significant improvement over the LBP for rotation invari-
ant texture classification. Due to the effectiveness of the
CLBP descriptor, we propose a texture-based classification
paradigm using a multi-scale CLBP (MS-CLBP) extraction
method. Two different implementations of the MS-CLBP
are investigated and compared in terms of classification
accuracy and computational complexity. For scene classifi-
cation, kernel-based extreme learning machine (KELM) [21]
is employed for its efficient computation and good classifi-
cation performance. We evaluate the proposed MS-CLBP
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feature extraction approach using two publicly available
land-use scene datasets to demonstrate its effectiveness for
land-use scene classification.

There are two main contributions of our work:

1. We introduce the CLBP operator for the first time on
remote sensing land-use scene classification. We propose
an effective texture feature extraction method using MS-
CLBP and carry out extensive experiments to demon-
strate its superior performance over the multi-resolution
LBP described in [17] and other state-of-the-art methods
for land-use scene classification.

2. We present two implementations of the proposed MS-
CLBP descriptor. The performance of the two implemen-
tations is compared in terms of classification accuracy
and computational complexity. Furthermore, the entire
classification framework is devised to be computation-
ally efficient.

This paper is organized as follows. Section 2 describes
details of the proposed feature extraction method. Section 3
presents land-use scene classification using KELM. Section 4
provides the experimental results with two land-use scene
datasets. Section 5 is the conclusion.

2 Feature extraction
2.1 Completed local binary patterns

LBP [17] is an effective measure of spatial structure infor-
mation of local image texture. Given a center pixel ., its
neighboring pixels are equally spaced on a circle of radius r
(r > 0) with the center at 7... If the coordinates of 7. are (0, 0)
and m neighbors {ti}T:_Ol are considered, the coordinates of
t; are (—rsin(2mwi/m), rcos(2mwi/m)). The LBP is computed
by thresholding the neighbors {t,'};”;()1 with the center pixel
1, to generate an m-bit binary number. The resulting LBP for
t. can be expressed in decimal form as follows:

m—1 m—1
LBP,, (1) = D s(ti —1)2' = > s(dy)2", o))
i=0 i=0

where d; = (t; — t.) is the difference between each neighbor
and the center pixel, s(d;) = 1ifd; > 0 and s(d;) = 0
if d; < 0. The LBP only uses the sign information of d;
while ignoring the magnitude information. However, the sign
and magnitude are complementary, and they can be used
to exactly reconstruct the difference d;. In the CLBP [20]
scheme, the image local differences are decomposed into
two complementary components: the signs and magnitudes
(absolute values of d;, i.e., |d;|). Figure 1 shows an example
of the sign and magnitude components of the CLBP extracted
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Fig. 1 a3 x 3 sample block. b The local differences. ¢ The sign com-
ponent of CLBP. d The magnitude component of CLBP
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Fig. 2 a Input image. b CLBP_S coded image. ¢ CLBP_M coded
image

from a sample block. Note that “0” is coded as “—1” in
CLBP (see Fig. 1¢). Two operators, CLBP-Sign (CLBP_S)
and CLBP-Magnitude (CLBP_M), are used to code these two
components. CLBP_S is equivalent to the traditional LBP
operator. The CLBP_M operator is defined as follows:

m—1
. 1 u>c
— : g - B
CLBPm,r_Z_ OP(ldzI»C)Z’ ”(”’C)_[O u<c’
1=

2

where c¢ is a threshold that is set to the mean value of |d;|
from the whole image. It should be noted that there is also the
CLBP-Center part which codes the values of the center pixels
in the original CLBP. Here, we only consider the CLBP_S
and CLBP_M operators for computational efficiency.

In Fig. 2, an example of the CLBP_S and CLBP_M coded
images corresponding to an input aerial scene (airport scene)
is illustrated. The pixel values of the CLBP-coded images
are CLBP codes in decimal form. It can be observed that
CLBP_S and CLBP_M operators both can capture the spatial
pattern and the contrast of local image texture, such as edges
and corners. The CLBP_S operator is able to provide more
detailed texture information than the CLBP_M operator.

2.2 Two implementations of multi-scale completed local
binary patterns

In [17], a multi-resolution representation based on LBP was
developed to cope with the limitation that LBP features com-
puted from a single scale may not be able to detect the
dominant texture features since they characterize the image
texture only at a particular resolution. This motivates us to
use a multi-scale representation for CLBP as well. In this
paper, we develop two implementations for the MS-CLBP.

Fig. 3 Anexample of a3-scale CLBP operator (m = 10, r; =1, ro =
2,and r3 = 3)

In the first implementation, we follow the same approach
in [17] where the radius of a circle r is altered to change the
spatial resolution. The multi-scale analysis is accomplished
by combining the information provided by multiple opera-
tors of varying (m, r). For simplicity, we fix the number of
neighbors m and tune different values of r to achieve the
optimal combination. An example of a 3-scale (three r val-
ues) CLBP operator is illustrated in Fig. 3. The CLBP_S
and CLBP_M histogram features extracted from each scale
are concatenated to form an MS-CLBP representation. One
disadvantage of this multi-scale analysis implementation is
that the computational complexity increases due to multi-
ple resolutions. For an image with size of I, x I, pixels, a
total of I, x I, x m thresholding operations are required for
all the pixels in each scale. Moreover, the CLBP_S or the
CLBP_M histogram is calculated based on I, x I, binary
strings (CLBP_S codes or CLBP_M codes). Therefore, we
also develop a second multi-scale analysis implementation
to reduce the computational complexity.

In the second implementation, we down-sample the orig-
inal image using the bicubic interpolation to obtain multiple
images of different scales with respect to the original image.
Figure 4 shows a down-sampled image having half of the
size of the original image, i.e., scale = 1/2. The scale is
between 0 and 1 with 1 being the original image. Then, the

interpolated pixel

scale =1/2
= 5

(a) (b)

Fig. 4 a Original image. b Down-sampled image with 1/2 of the size
(scale = 1/2) of the original image
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Fig. 5 MS-CLBP feature extraction method (the second implementa-
tion). a Images of various scales. b The corresponding CLBP_S (leff)
and CLBP_M (right) coded images. ¢ Histograms calculated from the
CLBP_S and CLBP_M coded images. d The final composite feature
vector by stacking all the histograms

CLBP_S and CLBP_M operators of fixed radius and number
of neighbors are applied to the images of different scales. For
image of each scale, two CLBP-coded images are generated
and histogram features are computed from the two images.
Note that the rotation invariant pattern in CLBP is used to
achieve image rotation invariance. Finally, all the histograms
are concatenated to form a composite feature vector as the
MS-CLBP representation for the input image. The feature
extraction procedure is illustrated in Fig. 5.

Based on the two implementations, the second approach
is more computationally efficient than the first one. This is
because the images of different scales in the first approach
all have the same size as the original image, while the images
in the second approach have smaller sizes than the original
image leading to much fewer pixels for the CLBP operator.
This is also the reason for the scale chosen to be between
0 and 1 in the second implementation in order to facilitate
computational efficiency.

3 Scene classification using kernel-based extreme
learning machine

In our land-use scene classification framework, KELM is
employed due to its efficient computation and good clas-
sification performance. ELM [22] is an efficient learning
algorithm for single hidden layer feed-forward neural net-
works (SLFNs). The hidden layer weights and biases in ELM
are randomly generated leading to low computational cost.

Consider n distinct training samples {x;,y;}7_, from C
classes with x; € RM and y; € RC indicating the class
label of x;, the model of a single hidden layer neural network
having L hidden nodes can be written as

L
D Bih(wixite)=yi. i=1...n ©)
j=1
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where &(-) is a nonlinear activation function (e.g., sigmoid
function), B; € RC is the output weight vector connecting
the jth hidden node to the output nodes, w; € RM denotes
the weight vector connecting the jth hidden node to the input
nodes, and e; is the bias of the jth hidden node. The compact
form of model (3) can be rearranged using a matrix notation

HB =Y, “

where B = [B] - B[1" € REXC, Y = [yl ---y[]" €
R"*C and H is usually referred to as the hidden layer output
matrix:

h(xy) h(wy-x1 +e1) - h(wr -x1 +er)
H=| : |= : - :
h(x,) h(wi - X, +e1) -+ h(WL - X, +er)
(%)
B can be estimated by a least squares solution
B =H'Y, 6)

where H' denotes the pseudoinverse matrix of H. The output
function of the ELM is

—1
fL(x;)) = h(x;)8 = h(x))H” (% + HHT) Y, 7

where p is a regularization parameter. A kernel matrix
Qpm = HHT: ey, ; = h(x) - h(x;) = K(xi, x;)
satisfying Mercer’s conditions could be used if the feature
mapping h(x;) is unknown. Therefore, the output function
of KELM is given by

K (x;,x1)

. —1
f(xi) = (; + QELM) Y. (8

The label of a test sample is determined according to the
index of the output nodes with the largest value.

4 Experiments

We now demonstrate the effectiveness of the proposed fea-
ture extraction method for remote sensing land-use scene
classification using two standard public domain datasets. In
our experiments, the radial basis function (RBF) kernel is
employed in KELM. The classifier parameters (RBF kernel
parameter and ELM regularization parameter) are obtained
via cross-validation using the training data. The classifica-
tion performance of the proposed method is compared with
the state-of-the-art performance reported in the literature.
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4.1 Experimental data and setup

The first dataset is the 21-class land-use dataset with ground
truth labeling [3]. The dataset consists of images of 21 land-
use classes, and each class contains 100 images with sizes
of 256 x 256 pixels. This is a challenging dataset due to a
variety of spatial patterns in those 21 classes. Sample images
of each land-use class are shown in Fig. 6. To facilitate a fair
comparison, the same experimental setting reported in [3]
is followed. Fivefold cross-validation is performed in which
the dataset is randomly partitioned into five equal subsets.
There are 20 images from each land-use class in a subset.
Four subsets are used for training, and the remaining subset
is used for testing. The classification accuracy is the average
over the five cross-validation evaluations.

The second dataset used in our experiments is the 19-class
satellite scene dataset [23]. It consists of 19 classes of high-
resolution satellite scenes. There are 50 images with sizes of
600 x 600 pixels for each class. An example of each class
is shown in Fig. 7. The same experimental setup in [24] is
used. We randomly select 30 images per class as training data
and the remaining images as testing data. The experiment
is repeated 10 times with different realizations of randomly
selected training and testing images, and the classification
accuracy is averaged over the 10 repeated trails.

agricultural )

forest

parking lot river

overpass

Fig. 6 Example images from the 21-class land-use dataset

viaduct

port railway station ential river

Fig. 7 Example images from the 19-class satellite scene dataset

4.2 Parameters selection

In the proposed feature extraction method, the number of
scales and (m, r) of the CLBP operator are important parame-
ters. First of all, we estimate the optimal parameter set (1, r)
for the CLBP operator. For the 21-class land-use dataset, we
randomly select four subsets for training and the remaining
subset for testing. For the 19-class satellite scene dataset, 30
images per class are randomly selected for training and the
remaining images for testing. Since the images in the two
datasets are color images, we convert the images from the
RGB color space to the YCbCr color space and use the Y
component (luminance) to obtain the grayscale images as
the original images. In this parameter tuning experiment, we
apply the CLBP operator only to the original images to extract
features. The classification results with various CLBP para-
meter sets are listed in Tables 1 and 2 for the two datasets,
respectively.

Since the dimensionality of the CLBP histogram fea-
tures is dependent on the number of neighbors (m), larger
m will increase the feature dimensionality and computa-
tional complexity. Based on the results in Tables 1 and 2,
we choose (m, r) = (10, 3) for the 21-class land-use dataset
and (m, r) = (12, 4) for the 19-class satellite scene dataset
in terms of classification accuracy and computational com-
plexity, making the dimensionalities of the CLBP features
(CLBP_S and CLBP_M histograms combined) for the 21-
class land-use dataset and the 19-class satellite scene dataset
216 and 704, respectively.

Table1 Classification accuracy (%) of CLBP with different parameters
(m, r) on the 21-class land-use dataset

21-Class land-use dataset

r 1 2 3 4 5 6

m = 69.05 70.71 72.38 69.52 68.33 65.24
m = 77.62 78.57 78.10 77.86 75.71 72.38
m =38 80.24 82.62 83.57 83.10 80.95 78.33
m =10 81.19 85.24 85.37 84.05 81.67 79.05
m=12 81.43 85.24 84.52 85.48 83.10 82.62

Table2 Classification accuracy (%) of CLBP with different parameters
(m, r) on the 19-class satellite scene dataset

19-Class satellite scene dataset

r 1 2 3 4 5 6

m=4 75.79 75.79 75.79 75.53 73.68 70.79
m==6 78.68 82.11 82.63 83.95 81.84 81.58
m =38 81.84 87.11 87.11 88.42 88.68 86.05
m =10 81.58 84.74 87.89 89.21 87.37 85.26
m=12 82.37 88.68 89.47 92.37 90.00 87.63
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Then, we study the number of scales for the MS-CLBP
feature extraction method. In the first implementation of
MS-CLBP, the number of neighbors m is fixed based on pre-
viously obtained tuning results, and different choices of mul-
tiple radii are examined. Specifically, 10 choices of multiple
radii for MS-CLBP are {[1], [1:2], [1:3], ..., [1:10]}, where
[a:b] indicates {a,a+1,a+2, ..., b}. In the second imple-
mentation, parameter set (m, r) is fixed, 10 choices of multi-
ple scales including {[1], 1/[1:2], 1/[1:3], ..., 1/[1:10]} are
considered. For example, 1/[1:2] indicates that scale = 1
(original image) and scale = 1/2 (down-sampled image with
half of the size of the original image) are used in MS-CLBP.
Figure 8 presents the classification results of two implemen-
tations of MS-CLBP using different numbers of scales (or
radii) for the two datasets. It can be seen that the accuracy
tends to be stable when 8 or more radii are used in the first
implementation of MS-CLBP and 6 or more scales are used in
the second implementation for the 21-class land-use dataset.
More radii or scales will improve the accuracy but will also
increase the dimensionality of MS-CLBP features and com-
putational complexity. Therefore, for the 21-class land-use
dataset, we choose 8 radii (i.e., r = [1:8]) for the first imple-
mentation of MS-CLBP and 6 scales (i.e., scale = 1/[1:6])
for the second implementation. Similarly, 8 radii and 4 scales,
respectively, corresponding to the first and second imple-
mentations of MS-CLBP are chosen for the 19-class satellite
scene dataset.

The dimensionality of the MS-CLBP features can be fairly
high, e.g.,itis 1728 for the 21-class land-use dataset using the
second implementation with 8 scales, if the number of scales
used for MS-CLBP is large. To gain computational efficiency,

©
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o
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lassification accuracy (%)

—¥— Implementation 1
3 —©6— Implementation 2
80 I I I

Oyt [1:2] [:3] [1:4] [1:5] [1:6] [1:7] [1:8] [1:9] [1:10]

(scale)1  1/[1:2] 1/[1:3] 1/[1:4] 1/[1:5] 1/[1:6] 1/[1:7] 1/[1:8] 1/[1:9] 1/[1:10]
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Fig. 8 Classification performance of two implementations of MS-
CLBP using different numbers of scales (or radii) for a the 21-class
land-use dataset and b the 19-class satellite scene dataset
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principal component analysis (PCA) [25] is employed to
reduce the dimensionality of MS-CLBP features. The PCA
projection matrix was calculated using the features of the
training data, and the principal components that accounted
for 90 % of the total variation of the training features are
considered in our experiments.

4.3 Comparison with the state-of-the-art methods

To evaluate the effectiveness of the proposed MS-CLBP fea-
ture extraction method, a comparison of its performance with
previously reported performance in the literature is carried
out on the 21-class land-use dataset under the same experi-
mental setup (i.e., 80 % of the images from each class are used
for training and the remaining images are used for testing in
a fivefold cross-validation test). The first and second imple-
mentations of MS-CLBP are denoted as MS-CLBP1 and MS-
CLBP2. The method applying CLBP operator to the original
images (single scale) is denoted as CLBP. In addition, to
demonstrate the enhanced discriminative power of fusion of
the sign and magnitude components of CLBP, four methods
involve only the CLBP_S operator or the CLBP_M opera-
tor (i.e., MS-CLBP_S1, MS-CLBP_S2, MS-CLBP_M1 and
MS-CLBP_M2) are employed for comparison.

The comparison results reported in Table 3 show that our
methods (MS-CLBP1 and MS-CLBP2) outperform the other
methods. Especially, our methods achieve better performance
than the popular BOVW classification framework, which
demonstrates the effectiveness of the MS-CLBP approach for
remote sensing land-use scene classification. The proposed
methods have more than 4 % improvement over the CLBP
method since the multi-scale analysis is able to capture tex-
ture and structure features of images at various resolutions.
Furthermore, fusion of the sign and magnitude components
of CLBP leads to a considerable classification improvement
over the situation when the sign component (MS-CLBP_S) or
the magnitude component (MS-CLBP_M) is used alone. It is
also found that MS-CLBP1 performs a little better than MS-
CLBP2 in terms of classification accuracy. This is probably
because the down-sampling procedure in the second MS-
CLBP implementation may smooth the images and lose some
detailed texture and structure information. We also present
the per-class classification accuracies for MS-CLBP1 and
MS-CLBP2 in Fig. 9. We can see that the classification accu-
racies of the two MS-CLBP implementations are similar for
most of the classes.

The comparison results for the 19-class satellite scene
dataset are listed in Table 4. Although the multiple features
fusion method described in [24] achieved slightly higher clas-
sification accuracy than our methods, three different sets
of features including SIFT features, local ternary pattern
histogram Fourier (LTP-HF) features and color histogram
features were used in their approach. This multiple features
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Table 3 Comparison of classification accuracy (mean + SD) on the
21-class land-use dataset

Table 4 Comparison of classification accuracy (mean + SD) on the
19-class satellite scene dataset

Method Accuracy (%) Method Accuracy (%)
BOVW [3] 76.8 Bag of colors [27] 70.6 + 1.5
SPM [3] 75.3 Tree of c-shapes [27] 80.4 £ 1.8
BOVW + spatial co-occurrence kernel [3] 77.7 Bag of SIFT [27] 855+ 1.2
Color Gabor [3] 80.5 Multifeature concatenation [27] 90.8 £ 0.7
Color histogram [3] 81.2 LTP-HF [24] 77.6
Structural texture similarity [10] 86.0 SIFT + LTP-HF + color histogram [24] 93.6
Wavelet BOVW [4] 874+ 1.3 CLBP 90.0 + 1.3
Unsupervised feature learning [12] 81.7£12 MS-CLBP_S1 883 £2.0
Saliency-guided feature learning [26] 82.7+£12 MS-CLBP_S2 84.8£19
Concentric circle-structured BOVW [7] 86.6 = 0.8 MS-CLBP_M1 894+ 1.6
Multifeature concatenation [27] 89.5+£0.8 MS-CLBP_M2 89.1 £2.0
Pyramid-of-spatial-relatons [8] 89.1 MS-CLBP1 934 +1.1
CLBP 855+£19 MS-CLBP2 93.3 +£0.8
MS-CLBP_S1 874 £ 1.7 Bold values indicate the highest classification accuracy
MS-CLBP_S2 833 +£22
MS-CLBP_M1 85.7£2.0
(%) ® MS-CLBP1 = MS-CLBP2
MS-CLBP_M2 83.0+£24 100
MS-CLBP1 90.6 = 1.4 95
MS-CLBP2 89.9 + 2.1 90
85
Bold values indicate the highest classification accuracy 80
75
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Fig. 9 Per-class accuracies for the 21-class dataset

fusion strategy not only requires parameter tuning for each
feature but also increases the computational complexity of
feature extraction. On the other hand, our proposed feature
extraction method relies on a single feature descriptor (CLBP
descriptor) to achieve discriminative feature representation
of remote sensing land-use scene images. The per-class clas-
sification accuracies for MS-CLBP1 and MS-CLBP2 are
shown in Fig. 10.

4.4 Computational complexity

Finally, we compare the computational complexity of two
implementations of the proposed MS-CLBP feature extrac-

Fig. 10 Per-class accuracies for the 19-class dataset

Table5 Processing time (ms) of the two implementations of MS-CLBP

Method Time (mean & SD)
MS-CLBPI 96.1 £6.3
MS-CLBP2 32.7+52

tion method. We use the 21-class land-use dataset to obtain
the processing time for both implementations. To be a fair
comparison, the same number of scales (6 scales) is used
for MS-CLBP1 and MS-CLBP2. We run the two implemen-
tations on 2100 images (size of 256 x 256 pixels), and the
processing time is the average over all the images. Our code
is written in MATLAB, and the time reported in Table 5
is for an Intel i7 Quadcore 3.4 GHz desktop computer with
8 GB of RAM. As we can see that the second implementa-
tion of MS-CLBP is almost three times faster than the first
implementation. It is worth mentioning that the proposed
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MS-CLBP descriptor can be done in parallel to achieve high
computational efficiency.

5 Conclusion

In this paper, we proposed an effective feature extraction
method based on multi-scale completed local binary pat-
terns (MS-CLBP) for land-use scene classification. Two
implementations of the proposed MS-CLBP were presented
and compared in terms of classification accuracy and com-
putational complexity. We validated the proposed feature
extraction method on two standard land-use scene datasets
and quantitatively showed the excellence of the proposed
method over some state-of-the-art land-use scene classifica-
tion methods.
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