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Introduction

Welcome to the LabVIEW Signal Processing Course. This course is
intended for practicing engineers and scientists who want to learn how
to use LabVIEW or BridgeVIEW to process and analyze digital signals
in real-world practical applications. The course focuses on the advanced
analysis library and the various signal processing toolkits that are
specifically devoted to designing digital filters, solving mathematics
problems, and analyzing nonstationary signals. In addition to teaching
you how to use the analysis VlIs and toolkits, the course also covers the
basic fundamentals necessary for understanding and interpreting the
analysis results.

This student guide describes the course contents and suggests ways in
which you can most effectively use the course materials. The guide
discusses the following topics:

A. Self-Paced Use
Course Description
Prerequisites
Course Goals
Course Non-Goals
Course Map

G Mmoo w

Course Conventions
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Student Guide

A. Self-Paced Use

Thank you for purchasing the LabVIEW Signal Processing Course kit. You
should be able to begin developing your application soon after you have
worked through this manual. This course manual and accompanying
software are used in the two-day, hands-on LabVIEW Signal Processing
Course. Several exercises in this manual use the following National
Instruments hardware products:

* AT-MIO-16E-2 data acquisition board
* DAQ Signal Accessory

To get started, read the information on the next page regarding the
accompanying disks and then follow the instructions on the subsequent
pages for the computer platform you are using. If you have comments,
suggestions for improving this course, or are not satisfied with the material,
please contact:

LabVIEW Signal Processing Technical Support
6504 Bridge Point Parkway

Austin, TX 78730-5039

(512) 795-8248

support@natinst.com

Attending the Course

You can apply the full purchase price of this course kit toward the
corresponding course registration fee if you register within 90 days of
purchasing the kit. To register for a course or for course information, please
contact National Instruments.

North America
Telephone: (512) 794-0100

E-mail: custedu.info@natinst.com (information requests only)

24-hour automated retrieval of course outlines/latest course schedule
Fax on Demand: (800) 329-7177 or (512) 418-1111
World Wide Web:http://www.natinst.com/custed

Other Countries

Please contact your local National Instruments branch office (the phone
numbers are on the back cover).

LabVIEW Signal Processing Course Manual SG-2 © National Instruments Corporation



Student Guide

Course Disk
The following table lists the contents of the LabVIEW Signal Processing
Course disk. The course disk contains a zip file containing two VI libraries.

Filename Description

Lvspc.zip A compressed file containing the VIs used in the
course exercisesyspcex.llb ) as well as the VI$
containing the solutiond.¢spcsol.llb ).

unzip.exe A utility to decompres$vspc.zip

Note:  The solution VIs have the word “Solution” at the end of the VI name.

You Will Need the Following Equipment:
 IBM PC AT or compatible.

e LabVIEW or BridgeVIEW for Windows Full Development System,
ver 4.0 or later.

* AT-MIO-16E-2 data acquisition board.
» DAQ Signal Accessory.
* Optional—A word processing application such as Write or Wordpad.

Installing the Course Software

1. Copy the filedvspc.zip andunzip.exe from the PC disk
accompanying this manual to thabview directory on your hard
disk.

2. Type inthe following at the DOS prompmnzip -d Lvspc.zip
<enter>. This extracts the VI libraries that contain the class Vls
(Lvspcex.llb ) and the solution Vislvspcsol.llb ). In
addition, it also extracts a DFD folder and a TOA folder to be used
for the lessons on the Digital Filter Design Toolkit and the
Third-Octave Analyzer Toolkit, respectively.

© National Instruments Corporation SG-3 LabVIEW Signal Processing Course Manual
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The course assumes the following directory structure:

Root Directory
C:
\Labview
Directory
| |

Lvspcex.lib

\DFD \TOA Lvspcsol.lb
Directory Directory LabVIEW libraries

B. Course Description

The LabVIEW Signal Processing course teaches you how to implement and
use the Vls in the advanced analysis library and the signal processing
toolkits, and also how to interpret and understand the results of your
analysis. The course is divided into lessons, each covering a topic or a set of
topics. Each lesson consists of:

* An introduction that describes the lesson’s purpose and what you
will learn.

» A discussion of the topics.
» A set of exercises to reinforce the topics presented in the discussion.
* A set of additional exercises to be done if time permits.

* A summary that outlines important concepts and skills taught in the
lesson.

* Review questions to check for understanding.

Some of the topics have been simplified considerably to make the basic
concepts and ideas easier to understand. The simplification has been
done at the expense of mathematical detail while striving to provide
clear and precise concepts. For a more detailed presentation of such
topics, see the list of references at the end of this manual.

C.Prerequisites

* Familiarity with the Windows operating system.
e Familiarity with basic LabVIEW programming techniques.

* Experience writing algorithms in the form of flowcharts or block
diagrams.

* Previous exposure to digital signal processing, through either an
introductory course or work experience.

LabVIEW Signal Processing Course Manual SG-4 © National Instruments Corporation
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This course teaches you to:

Become familiar with the analysis capabilities of LabVIEW and
BridgeVIEW.

Understand the basics of digital signal processing and analysis.

Choose intelligently between several options/methods that are
available for performing similar tasks (for example, choosing
between different types of windows, filter design methods, or
algorithms for curve fitting).

Implement the Vls from the analysis library in practical applications
for solving real-world problems.

Learn about the various specialized toolkits such as those available
for solving mathematical problems, analyzing nonstationary signals,
or designing digital filters.

E. Course Non-Goals

It is not the purpose of this course to do any of the following:

© National Instruments Corporation

Teach LabVIEW or BridgeVIEW basics.

Teach programming theory.

Discuss every built-in LabVIEW Analysis VI.

Discuss each and every analysis algorithm.

Develop a complete application for any student in the class.

SG-5 LabVIEW Signal Processing Course Manual
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F. Course Map

Day 1

Lesson 1
Background

v

Lesson 2
Signal Generation

v

Lesson 3
Signal Processing

v

Lesson 4
Windowing

v

Lesson 5
Measurement

)

n

Co )

N )
N N N N N
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Day 2

Lesson 6
Digital Filtering

v

Lesson 7
Curve Fitting

v

Lesson 8
Linear Algebra

v

Lesson 9

Probability and
Statistics

v

Lessons 10-14
Toolkits

N Y Y
N NN N AN
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Student Guide

The following conventions are used in this course manual:

bold

italic

Courier

Courier italic

Courier bold

<>

© National Instruments Corporation

Text in bold refers to LabVIEW menus, menu
items, palettes, subpalettes, functions, and
Vis. For exampleFile.

Text in italics is for emphasis, a
cross-reference, or an introduction to a key
concept.

Text in this font indicates drive names,
libraries, directories, pathnames, filenames,
and sections of programming code. Courier
also indicates information you must type. For
example, typ®igital Indicator at the
prompt.

Text in this font denotes that you must supply
the appropriate words or values in the place of
these items.

Text in this font denotes a computer prompt.

Angle brackets enclose the name of a key. For
example, <Enter>.

A hyphen between two or more key names
enclosed in angle brackets denotes that you
should simultaneously press the named keys.
For example, <Control-Alt-Delete>.

SG-7 LabVIEW Signal Processing Course Manual
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Lesson 1
Background
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Introduction

A digital signal is one that can assume only a finite set of values in both the
dependenandindependenvariables. The independent variable is usually
time or space, and the dependent variable is usually amplitude.

Digital signals are everywhere in the world around us. Telephone
companies use digital signals to represent the human voice. Radio, TV,
and hi-fi sound systems are all gradually converting to the digital
domain because of its superior fidelity, noise reduction, and its signal
processing flexibility. Data is transmitted from satellites to earth ground
stations in digital form. NASA'’s pictures of distant planets and outer
space are often processed digitally to remove noise and to extract useful
information. Economic data, census results, and stock market prices are
all available in digital form. Because of the many advantages of digital
signal processing, analog signals are also converted to digital form
before they are processed with a computer. This lesson provides a
background in basic digital signal processing and an introduction to the
LabVIEW/BridgeVIEW Analysis Library, which consists of hundreds

of VIs for signal processing and analysis.

You Will Learn:

About the digital (sampled) representation of an analog signal.
About aliasing and how to prevent it.

About the need for antialiasing filters.

About why we use the decibel scale to display amplitudes.

About the contents of the LabVIEW/BridgeVIEW Analysis Library.

moow»

© National Instruments Corporation 1-1 LabVIEW Signal Processing Course Manual



Lesson 1 Background

A. Sampling Signals

To use digital signal processing techniques, you must first convert an analog
signal into its digital representation. In practice, this is implemented by
using an analog-to-digital (A/D) converter. Consider an analog si¢hal

that is sampled evert seconds. The time intervat is known as the
sampling intervabr sampling period Its reciprocal, X, is known as the
sampling frequencyyith units of samples/second. Each of the discrete
values of x(t) at t = Qit, 2At, 3At, etc., is known as sampleThus, x(0),

X(At), x(2At), ...., are all samples. The sigré) can thus be represented by
the discrete set of samples

{x(0), x(At), x(2At), x(3At), ..., x(kAt), ... }.
Figure 1-1 below shows an analog signal and its corresponding sampled

version. The sampling interval 4. Observe that the samples are
defined at discrete points in time.

finabg 5 igral Sampled Signal
1.0- 1.0-
-
a.0-
- I
1.0-

0 15

0.5-

Figure 1-1. Analog Signal and Corresponding Sampled Version

In this course, the following notation represents the individual samples:
X[i] = x(iAt), fori=0,1, 2, ...

If N samples are obtained from the sigx@), thenx(t) can be
represented by the sequence

X = {x[0], x[1], x[2], x[3], ..., X[N-1] }

This is known as thdigital representatioror thesampled versioof

X(t). Note that the sequen&e= {X[i]} is indexed on the integer variable

I, and does not contain any information about the sampling rate. So by
knowing just the values of the samples containex, you will have no
idea of what the sample rate is.

LabVIEW Signal Processing Course Manual 1-2 © National Instruments Corporation



Lesson 1 Background

B. Sampling Considerations

A/D converters (ADCs) are an integral part of data acquisition (DAQ)
boards. One of the most important parameters of an analog input system is
the rate at which the DAQ board samples an incoming signal. The sampling
rate determines how often an analog-to-digital (A/D) conversion takes
place. A fast sampling rate acquires more points in a given time and can
form a better representation of the original signal than a slow sampling rate.
Sampling too slowly may result in a poor representation of your analog
signal. Figure 1-2 shows an adequately sampled signal, as well as the effects
of undersampling. The effect of undersampling is that the signal appears as
if it has a different frequency than it truly does. This misrepresentation of a
signal is called aalias.

Adequately Sampled

Aliased Due to Undersampling
i " [P 1 ] “'. 0 T, 0
III II:'-.‘I-I ' IT-"II II: [ 1 "
P TR Yo |'||'| | |:|||
*I|||||'||I“1'| I
|I|||||||I||1~
I L N
| [ [ | -1
T T T L
T T N IR B |
T I ST

- k v H

L
1
I
1
N

Figure 1-2. Aliasing Effects of an Improper Sampling Rate

According to theNyquist theoremto avoid aliasing you must sample at
a rate greater than twice the maximum frequency component in the
signal you are acquiring. For a given sampling rate, the maximum
frequency that can be represented accurately, without aliasing, is known
as theNyquist frequencyThe Nyquist frequency is one half the
sampling frequency. Signals with frequency components above the
Nyquist frequency will appear aliased between DC and the Nyquist
frequency. The alias frequency is the absolute value of the difference
between the frequency of the input signal and the closest integer
multiple of the sampling rate. Figures 1-3 and 1-4 illustrate this
phenomenon. For example, assuisiethe sampling frequency, is

100 Hz. Also, assume the input signal contains the following

© National Instruments Corporation 1-3 LabVIEW Signal Processing Course Manual



Lesson 1 Background

frequencies—25 Hz, 70 Hz, 160 Hz, and 510 Hz. These frequencies are
shown in the following figure.

A
[}
©
2
i=
=k F1 F2 F3 F4
= 25 Hz 70 Hz 160 Hz 510 Hz
T | T | T// // | T >
0 Frequency fs/2=50 fs=100 500
Nyquist Frequency Sampling Frequency
Figure 1-3. Actual Signal Frequency Components
In Figure 1-4, frequencies below the Nyquist frequeheA2€50 Hz) are
sampled correctly. Frequencies above the Nyquist frequency appear as
aliases. For example, F1 (25 Hz) appears at the correct frequency, but F2
(70 Hz), F3 (160 Hz), and F4 (510 Hz) have aliases at 30 Hz, 40 Hz, and
10 Hz, respectively. To calculate the alias frequency, use the following
equation:
Alias Freq. = ABS (Closest Integer Multiple of Sampling Freq. -
Input Freq.)
where ABS means “the absolute value.” For example,
Alias F2 = |100 - 70| = 30 Hz
Alias F3 = |(2)100 - 160| = 40 Hz
Alias F4 = |(5)100 - 510| = 10 Hz
A Solid Arrows — Actual Frequency
o . Dashed Arrows — Alias
S F2 alias
2 30 Hz
c .
2|F4 ali F1 F3 alias F2 F3 Fa4
CEG 10 3513 25 Hz 5 40Hz 70 Hz 160 Hz 510 Hz
* T B T T
s s | y
F
requency fsl2=50 fs=100 500
Nyquist Frequency Sampling Frequency

Figure 1-4. Signal Frequency Components and Aliases

LabVIEW Signal Processing Course Manual 1-4 © National Instruments Corporation



Lesson 1 Background

A question often asked is, “How fast should | sample?” Your first
thought may be to sample at the maximum rate available on your DAQ
board. However, if you sample very fast over long periods of time, you
may not have enough memory or hard disk space to hold the data. Figure
1-5 shows the effects of various sampling rates. In case A, the sine wave
of frequencyf is sampled at the same frequemcyhe reconstructed
waveform appears as an alias at DC. However, if you increase the
sampling rate tof2 the digitized waveform has the correct frequency
(same number of cycles), but appears as a triangle waveform. By
increasing the sampling rate to well abdyéor example § you can

more accurately reproduce the waveform. In case C, the sampling rate is
at 4/3. Because in this case the Nyquist frequency is b&élow

(4f/3 * 172 = 2/3), this sampling rate reproduces an alias waveform of
incorrect frequency and shape.

J i ."I Y ."I ! A
v L L Sampled at Es

a a A
S Y Y
o o Do B 5
/ I'. ! I'. ! "u -
’ ! : L ' L Sampled at 2Es
Il\. ‘! l,. In' 5 !
.'\. 1. .-. "
] L | o
i N i " ; ".Il
¢ !
T T A _¢Cc 5
X *' Lo F' . Sampled at 4Es/3
] : 1, ' ] !
L . 1 . 1
.'\. Ih. ." 1.
- ) -

Figure 1-5. Effects of Sampling at Different Rates

The Nyquist theorem gives you a starting point for the adequate
sampling rate—greater than two times the highest frequency component
in the signal. Unfortunately, this rate is often inadequate for practical
purposes. Real-world signals often contain frequency components that
lie above the Nyquist frequency. These frequencies are erroneously
aliased and added to the components of the signal that are sampled
accurately, producing distorted sampled data. Therefore, for practical
purposes, sampling is usually done at several times the maximum
frequency—five to 10 times is typical in industry.

Note: Sampling should be done at least at the Nyquist frequency, but usually
much higher.

© National Instruments Corporation 1-5 LabVIEW Signal Processing Course Manual



Lesson 1 Background

C. Why Do You Need Antialiasing Filters?

You have seen that the sampling rate should be at least twice the maximum
frequency of the signal that you are sampling. In other words, the maximum
frequency of the input signal should be less than or equal to half of the
sampling rate. But how do you ensure that this is definitely the case in
practice? Even if you are sure that the signal being measured has an upper
limit on its frequency, pickup from stray signals (such as the powerline
frequency or from local radio stations) could contain frequencies higher
than the Nyquist frequency. These frequencies may then alias into the
desired frequency range and thus give us erroneous results.

To be completely sure that the frequency content of the input signal is
limited, a lowpass filter (a filter that passes low frequencies but
attenuates the high frequencies) is added before the sampler and the
ADC. This filter is called amantialiasfilter because by attenuating the
higher frequencies (greater than Nyquist), it prevents the aliasing
components. Because at this stage (before the sampler and the ADC) you
are still in the analog world, the antialiasing filter is an analog filter.

An ideal antialias filter is as shown in figure (a) below.

- transition band

2 5 ' !

= g [

2 3

@ e | |

= 2 R

f frequency - : . frequency
f1 fo
(a) ideal anti-alias filter (b) practical anti-alias filter

An ideal anti-aliasing filter passes all the desired input frequencies
(belowf;) and cuts off all the undesired frequencies (aligvélowever,
such a filter is not physically realizable. In practice, filters look as shown
in figure (b) above. They pass all frequencids, @nd cut-off all
frequencies *,. The region betweel; andf, is known as thé&ansition
band,which contains a gradual attenuation of the input frequencies.
Although you want to pass only signals with frequenciés those

signals in the transition band could still cause aliasing. Therefore, in
practice, the sampling frequency should be greater than two times the
highest frequency in the transition band. So, this turns out to be more
than two times the maximum input frequen€y.(That is one reason

why you may see that the sampling rate is more than twice the maximum
input frequency. We will see in a later lesson how the transition band of
the filter depends on the filter type being designed.

LabVIEW Signal Processing Course Manual 1-6 © National Instruments Corporation



Lesson 1 Background

D. Why Use Decibels?

On some instruments, you will see the option of displaying the amplitude in
a linear or decibel (dB) scale. The linear scale shows the amplitudes as they
are, whereas the decibel scale is a transformation of the linear scale into a
logarithmic scale. You will now see why this transformation is necessary.

Suppose you want to display a signal with very large as well as very
small amplitudes. Assume you have a display of height 10 cm and will
use the entire height of the display for the largest amplitude. So, if the
largest amplitude in the signal is 100 V, a height of 1 cm of the display
corresponds to 10 V. If the smallest amplitude of the signal is

0.1V, this corresponds to a height of only 0.1 mm. This will barely be
visible on the display!

To see all the amplitudes, from the largest to the smallest, you need to
change the amplitude scale. Alexander Graham Bell invented a unit, the
Bell, which is logarithmic, compressing large amplitudes and expanding
the small amplitudes. However, the Bell was too large of a unit, so
commonly the decibel (1/10th of a Bell) is used. The decibel (dB) is
defined as

one dB = 10 log, (Power Ratio) = 20 log, (Voltage Ratio)

The following table shows the relationship between the decibel and the
power and voltage ratios.

daB Power Ratio Voltage Ratio
+40 10000 100
+20 100 10
+6 4 2
+3 2 1.4
0 1 1
-3 1/2 1/1.4
-6 1/4 1/2
-20 1/100 1/10
-40 1/10000 1/100

Thus, you see that the dB scale is useful in compressing a wide range of
amplitudes into a small set of numbers. The decibel scale is often used in
sound and vibration measurements and in displaying frequency domain
information. You will now do an exercise that shows a signal in linear and
logarithmic scales.
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Exercise 1-1

Objective: To build a VI that displays the signal amplitude in both linear and dB scales.

This VI will display the square of 100 data points on a waveform graph. The
fifth data point will create a spike. You will observe that the spike is visible
on the dB scale.

Front Panel

Linear M oq ecale

a0 0- Fol0 [
G o= etr A00-
* Logarihm [d8] BLLO-
*Erumersbed Tppe® 50.0-
Elemenks:
Limaar A, 01—
Lagaikhbm

U'[I_I 1 ] 1 1 ] 1 ]

O 10 20 30 40 K1 B0 71 =1 91 100
D =25 B2+ ~ufavafioim Graph®

1% w1yl

1. Build a VI with the front panel shown above.

The Selectorcontrol Controls » List and Ring » Enumerated
Type) has two optiond,inear scale and.ogarithm(dB) scale.
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Lesson 1 Background

[Faplace Amray Elarmant]
il

Linear/Log sn:ule|

[e=r]

2. Build the block diagram as shown above.

© National Instruments Corporation

TheFor Loop (Functions » Structuressubpalette)
generates the square of 100 data points to be displayed on
the Waveform Graph (Controls » Graph palette). (You

add +1 to the loop count to avoid taking the logarithm of
zero, which results in a value of -x.) Thus, the values of the
data points range fron? 1o 10@, giving a total range of 1

to 10,000. This corresponds to a ratio of 10,000 between
the largest (10,000) and the smallest (1) squared value.

TheReplace Array Elementfunction(Functions » Array
subpalette) replaces the 5th data point, which has a value of
52 = 25, by 150, to create a spike at the fifth element. You
will see how the spike is barely noticeable on the linear
scale, but is easily distinguishable on the dB scale.

Depending on the selector control, tBasestructure
(Functions » Structuressubpalette) either passes the data
directly (Linear scale) to th&vaveform Graph or
calculate0times thdogarithm to the base 1@ ogarithm
(dB) scale) of the data points and sends the result to the
Waveform Graph.

TheLogarithm Base 10function is found in the
Functions » Numeric » Logarithmicsubpalette.
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3. Select theinear option from theSelectorcontrol, and run the VI.
Note that the spike at element 5 is barely visible.

4. Select the.ogarithm (dB)option from theSelectorcontrol and run
the VI. Note that the spike at element 5 is very easily noticeable.

Observe the change in the y-axis scale as you switch between the “Linear

Note:
and “Logarithm (dB)” options.

5. After you have finished, save the VI@&B _linear.vi in the
Lvspcex.llb library.

End of Exercise 1-1
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E. Overview of the Advanced Analysis Library

Once the analog signal has been converted to digital form by the ADC and
is available in your computer as a digital signal (a set of samples), you will
usually want to process these samples in some way. The processing could
be to determine the characteristics of the system from which the samples
were obtained, to measure certain features of the signal, or to convert them
into a form suitable for human understanding, to name a few.

The LabVIEW/BridgeVIEWAnNalysis library contains Vs to perform
extensive numerical analysis, signal generation and signal processing,
curve fitting, measurement, and other analysis functions. The Analysis
Library, included in the LabVIEW/BridgeVIEW full development
system, is a key component in building a virtual instrumentation system.
Besides containing the analysis functionality found in many math
packages, it also features many unique signal processing and
measurement functions that are designed exclusively for the
instrumentation industry.

The analysis Vls are available in tAealysis subpalette of the
Functions palette in LabVIEW or BridgeVIEW.

!II- | mclimn= E

There are 10 analysis VI libraries. The main categories are:

H Signal Generation:Vls that generate digital patterns and
1m waveforms.
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7] Digital Signal Processing:Vis that perform frequency
h domain transformations, frequency domain analysis, time

domain analysis, and other transforms such as the Hartley and
Hilbert transforms.

=g F] Measurement:Vis that perform measurement-oriented
. functions such as single-sided spectrums, scaled windowing,
and peak power and frequency estimation.

zmnH Filters: Vis that perform IIR, FIR, and nonlinear digital
m,,. filtering functions.

wmH Windows: Vis that perform data windowing.

e /] Curve Fitting: VIs that perform curve fitting functions and
i | interpolations.

fl Probability and Statistics: Vs that perform descriptive
statistics functions, such as identifying the mean or the
standard deviation of a set of data, as well as inferential
statistics functions for probability and analysis of variance
(ANOVA).

Fl Linear Algebra: VIs that perform algebraic functions for real
=[] and complex vectors and matrices.

Array Operations: VIs that perform common, one- and
two-dimensional numerical array operations, such as linear
evaluation and scaling.

Additional Numerical Methods: VIs that use numerical
methods to perform root-finding, numerical integration, and
peak detection.

In this course, you will learn how to design and use the VIs from the
analysis library to build a function generator and a simple, yet practical,
spectrum analyzer. You will also learn how to design and use digital
filters, the purpose of windowing, and the advantages of different types
of windows, how to perform simple curve-fitting tasks, and much more.
The exercises in this course require the LabVIEW/BridgeVIEW full
development system. For the more adventurous, an extensive set of
examples that demonstrate how to use the analysis VIs can be found in
thelabview » examples » analysiflder.
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In addition to the Analysis library, National Instruments also offers
many analysis add-ons that make LabVIEW or BridgeVIEW one of the
most powerful analysis software packages available. These add-ons
include theloint Time-Frequency Analysis Toolkithich includes the
National Instruments award-winning Gabor Spectrogram algorithm that
analyzes time-frequency features not easily obtained by conventional
Fourier analysis; th& MathToolkit, which offers extended math
functionality like a formula parser, routines for optimization and solving
differential equations, numerous types of 2D and 3D plots, and more; the
Digital Filter Design Toolkit and many others. These specialized
add-ons will also be discussed later in this course.
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Summary

Review Questions

This lesson introduced the digital (sampled) representation of a
signal.

To convert an analog signal into a digital signal, the sampling
frequency {s) should be at least twice the highest frequency
contained in the signal. If this is not the case, the frequencies in the
signal that are greater than tNgquist frequencyfs/2) appear as
undesirable aliases.

You can use a lowpass filter before sampling the analog signal to
limit its frequency content to less th&si2 Such a filter used to
prevent the effect of aliasing is known asaantialias filter.

You saw how to use a logarithmic scale (the decibel) to display a
large range of values. It does this by compressing large values and
expanding small ones.

This lesson also gave an overview of the LabVIEW/BridgeVIEW
Analysis Library and its contents.

Give some examples of digital signals in everyday life.

Given a set of sample values x = {x[i]} where i is an integer variable,
what is the sampling rate?

. What is aliasing? How can it be avoided?

Given that the sampling frequency is 100 Hz, what is the alias

frequency (if any) for the following: 13 Hz, 25 Hz, 40 Hz, 75 Hz,

99 Hz, 101 Hz, 200 Hz, and 350 Hz?

. Why do we use the decibel scale? In what applications is it normally

used?

. Which of the following is possible using the analysis VIs?

a. Finding the mean or standard deviation of census data.
b. Designing a filter to remove noise from an electrocardiogram.

c. Detecting peaks in a blood pressure waveform to measure the
heart rate.

d. Interpolating between data points to plot the trajectory of an
object (for example, a comet or a cannonball).
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Notes
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Lesson 2
Signal Generation

]

Introduction
In this lesson, you will learn how to use the VIs in the analysis library to
generate many different types of signals. Some of the applications for signal
generation are:

» Simulating signals to test your algorithm when real-world signals are
not available (for example, when you do not have a DAQ board for
obtaining real-world signals).

» Generating signals to apply to a D/A converter (for example, in
control applications such as opening or closing a valve).

You Will Learn:

A. About the concept afiormalizedfrequency.

B. About the difference betweaiaveandPatternVis (for example,
the Sine WaveVI and theSine PatternVI).

C. About how to build a simple function generator using the VIs in the
Signal Generationsubpalette.
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A.Normalized Frequency

In the analog world, a signal frequency is measured in Hz or cycles per
second. But the digital system often uses a digital frequency, which is
the ratio between the analog frequency and the sampling frequency:

digital frequency = analog frequency / sampling frequency

This digital frequency is known as thermalizedfrequency. Its units
are cycles/sample.

Some of the Signal Generation VIs use an input frequency coftiat

is assumed to usermalized frequencynits ofcycles per samplf his
frequency ranges from 0.0 to 1.0, which corresponds to a real frequency
range of 0 to the sampling frequerfsy This frequency also wraps

around 1.0, so that a normalized frequency of 1.1 is equivalent to 0.1.
As an example, a signal that is sampled at the Nyquistfsd iheans

that it is sampled twice per cycle (that is, two samples/cycle). This

will correspond to a normalized frequency of 1/2 cycles/sample =

0.5 cycles/sample. The reciprocal of the normalized frequédrcgives

you the number of times that the signal is sampled in one cycle.

When you use a VI that requires the normalized frequency as an input,
you must convert your frequency units to the normalized units of
cycles/sample. You must use these normalized units with the

following VIs.

» Sine Wave

e Square Wave

» Sawtooth Wave
» Triangle Wave
* Arbitrary Wave
* Chirp Pattern

LabVIEW Signal Processing Course Manual 2-2 © National Instruments Corporation



Lesson 2 Signal Generation

If you are used to working in frequency units of cycles, you can convert
cycles to cycles/sample by dividing cycles by the number of samples
generated. The following illustration shows Biee WaveVI, which is
being used to generate two cycles of a sine wave.

liquancy F e

d2m | v |

mamber of camplac

A

tampling rate [Hz] nomokzed frequency
1mn.m ™

The following illustration shows the block diagram for converting
cycles to cycles/sample.

urnber of carmplea

[roimalzad frequarcy|

S 1 = cyoketsangl = 125

EamEIing rafa (H z!l

You need only divide the frequency (in cycles) by the number of
samples. In the above example, the frequency of 2 cycles is

divided by 50 samples, resulting in a normalized frequency of

f = 1/25 cycles/sample. This means that it takes 25 (the reciprofal of
samples to generate one cycle of the sine wave.

However, you may need to use frequency units of Hz (cycles/second). If
you need to convert from Hertz (or cycles/second) to cycles/sample,
divide your frequency in cycles/second by the sampling rate given in
samples/second.

cycles/second _ cycles
samples/second sample
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The following illustration shows th8ine WaveVI used to generate a
60 Hz sine signal.

Iquency | bpe

Shum | e |
maamber of xamples
=T
sampling ratz [Hz]  nomnakzed frequenc
5{'7 f
1000, 00 L '1-|]'| 1 1 (L i 1 o
0 5 1015 @ 25 301 F 40 45 =]

Below is a block diagram for generating a Hertz sine signal. You divide
the frequency of 60 Hz by the sampling rate of 1000 Hz to get the
normalizedfrequency of = 0.06 cycles/sample. Therefore, it takes
almost 17 (1/0.06) samples to generate one cycle of the sine wave.

|nurnl:uar ol sample 5|

Sihe Hews

noimAzed Fequency
|

= cpalasisampla = 005

The signal generation VIs create many common signals required for
network analysis and simulation. You can also use the signal generation
Vls in conjunction with National Instruments hardware to generate

analog output signals.
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Exercise 2-1

Objective: To understand the concept of normalized frequency.
1. Build the VI front panel and block diagram shown below.

Front Panel

‘DELDighal  frequency| fhpel Enumeided Tyea'  ging wavel
Cortroi® Yam | Yhe |E|Ifn'¢rta

132 Digld  number of samplec| Cycles
Conmal ilﬁl

f0BL Dgial samplng rate [Hz2]/

Corrol™ 4 /mn |

1.0-
0.5-
0.0-

11.5-

1.0+ 1 1 [ [ [ [ [ [
"CEL Digked  Mvormalized irequenc “wavalorm Graph® 0 25 G0 75 100 1256 150 175 200
Indicano 2000 00 |

Block Diagram

Eumhernf samgles|
i SinaWavaw] LS WEve
: P ! [mmn] |
Sy
£
ramalzad Ireguency|
==
—r=—=3  Sine WaveVI (Analysis » Signal Generatiorsubpalette).
F "ﬂ
-~
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2. Select a frequency of 2 cycldsequency = 2 andf type = cycles)

andnumber of samples= 100. Run the VI. Note that the plot will
show 2 cycles. (The normalized frequency indicator tells you the
normalized frequency.)

Increase theaumber of samplesto 150, 200, and 250. How many
cycles do you see?

Now keep th@mumber of samples= 100. Increase the number of
cycles to 3, 4, and 5. How many cycles do you see?

Thus, when you choose the frequency in terms of cycles, you will see
that many cycles of the input waveform on the plot. Note that the
sampling rate is irrelevant in this case.

5. Changd type to Hz andsampling rate (Hz)to 1000.
6. Keeping thesumber of samplesfixed at 100, change thHeequency

to 10, 20, 30, and 40. How many cycles of the waveform do you see
on the plot for each case? Explain your observations.

Repeat the above step by keepingftequency fixed at 10 and

change theumber of samplesto 100, 200, 300, and 400. How

many cycles of the waveform do you see on the plot for each case?
Explain your observations.

Keep thdrequency fixed at 20 and theumber of samplesfixed at

200. Change theampling rate (Hz)to 500, 1000, and 2000. Make

sure you understand the results.

. Save the VI abdlormalized Frequency.viin the library

Lvspcex.llb

End of Exercise 2-1
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B. Wave and Pattern Vis

Phase Control

Note:

You will notice that the names of most of the signal generation VIs have the
word waveor patternin them. There is a basic difference in the operation

of the two different types of VIs. It has to do with whether or not the VI can
keep track of the phase of the signal that it generates each time it is called.

ThewaveVIs have ghase incontrol where you can specify the initial
phase (in degrees) of the first sample of the generated waveform. They
also have @hase outndicator that specifies what the phase of the next
sample of the generated waveform is going to be. In additiFsed
phasecontrol decides whether or not the phase of the first sample
generated when theaveVI is called is the phase specified at fiease

in control, or whether it is the phase available atpghase outontrol

when the VI last executed. A TRUE valuereset phassets the initial
phase thase inwhereas a FALSE value sets it to the valuplase
outwhen the VI last executed.

ThewaveVls are all reentrant (can keep track of phase internally) and
accept frequency in normalized units (cycles/sample). Thepattern

VI that presently uses normalized units is @terp Pattern VI. Setting
thereset phas@oolean to FALSE allows for continuous sampling
simulation.

Wave Vs are reentrant and accept the frequency input in terms of
normalized units.

In the next exercise, you will generate a sine wave using bothitlee
Wave VI and theSine PatternVI. You will see how in thé&sine Wave
VI you have more control over the initial phase than inShe
Pattern VI.
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Exercise 2-2
OBJECTIVE: To generate a sine wave of a particular frequency and see the effect of aliasing.

Front Panel

Fot 0 RS

I rilial Phaze [dagrass]

STOr

1. Open theGenerate SineVI from the libraryLvspcex.llb

2. The front panel contains controls for the number of sample points to
be generated, the amplitude, analog frequency, and initial phase (in
degrees) of the sine wave to be generated, and the frequency at which
this waveform is sampled.

3. Do not change the front panel default values. Switch to the block
diagram.

Block Diagram

-
(Irkial Phasse [degieesJ[O0—

n

4. Examine the block diagram.

== Sine WaveVI (Analysis » Signal Generatiorsubpalette). In
P2l this exercise, this VI generates 100 points of a 10 Hz sine
= wave sampled at 100 Hz.
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5. Notice in the block diagram that the signal frequency is divided by
the sampling frequendyeforeit is connected to th8ine WaveVI.
This is because th®ine WaveVI requires the digital (normalized)
frequency of the signal.

6. Run the VI. With the default front panel values, a 10 Hz sine wave
should appear on the graph.

Sampling and Aliasing
7. Change the signal frequency on the front panel to 90 Hz and observe

the waveform. The resulting signal looks just like the 10 Hz
waveform.

As you saw in the previous lesson, this phenomenon is called
aliasing, which occurs only in the digital domain. The famous
Nyquist Sampling Theorem dictates that the highest representable
useful frequency is at most half of the sampling frequency. In our
case, the sampling frequency is 100 Hz, so the maximum
representable frequency is 50 Hz. If the input frequency is over
50 Hz, as in our case of 90 Hz, it will be aliased back to

((n*50) - 90) Hz > 0, which is (100-90) Hz, or 10 Hz. In other words,
this digital system with a sampling frequency of 100 Hz cannot
discriminate 10 Hz from 90 Hz, 20 Hz from 80 Hz, 51 Hz from

49 Hz, and so on.

The Importance of an Analog Antialiasing Filter

Therefore, in designing a digital system, you must make sure that any
frequencies over half of the sampling frequency do not enter the
systemOnce they are in, there is no way to remove thEorprevent
aliasing, you typically use an analog antialiasing lowpass filter. So,
in this example, you can use an analog antialiasing filter to remove
any frequencies over 50 Hz. After the signal is filtered, you are
assured that whenever you see a 10 Hz signal with a 100 Hz sampling
frequency, it is 10 Hz and not 90 Hz.

8. When you are done, stop the VI by clicking on the STOP button.
Close the VI. Do not save any changes.

End of Exercise 2-2
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Exercise 2-3

Objective: To generate a sinusoidal waveform using both the Sine Wave VI and the Sine Pattern
VI and to understand the differences.

1. Build the VI front panel and block diagram shown below.

Front Panel

Sina wavs
cychca of freq 1.0- Poll S
= 200 05-
*DEL Digital Conroi®
4 00-
) {5-
+ampling fraq
+ 10000 S e e e I E e
: 0 20 40 B0 B0 100 120 140
*DEL Digital Corroi®
|| ORI RS “w'avafoim Graph®
1 4-41
phaae in I =il
w00 Sime Patteimn
DBL Digid Conrd® 1.- Platd
05-
12261 phace 0o-
OFF -05-
*Boolean S Buthar” -1.0-
GEIEAI 3 CMEE B4 0 A 40 B A0 100 120 140
A - T DM B e
Aht, e g4 Ol erpeform G 1ok
IFT vl gy
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Sine PatternVI (Analysis » Signal Generatiompalette).

Sine WaveVI (Analysis » Signal Generatiorpalette).

La]
F.l
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1

2. Set the controls to the following values:

cycles or freq 2.00
sampling freq: 100
phase in 0.00
reset phase OFF
Run the VI several times.

Observe that th8ine Waveplot changes each time you run the VI.
Becauseeset phases set to OFF, the phase of the sine wave changes
with each call to the VI, being equal to the valug@lodse outduring

the previous call. However, the Sine Pattern plot always remains the
same, showing 2 cycles of the sinusoidal waveform. The initial phase
of the Sine Pattern plot is equal to the value set iphiase in

control.

Note: “Phase in” and “phase out” are specified in degrees.

3. Changehase into 90 and run the VI several times. Just as before,

© National Instruments Corporation

the Sine Wave plot changes each time you run the VI. However, the
Sine Pattern plot does not change, but the initial phase of the
sinusoidal pattern is 90 degrees—the same as that specified in the
phase incontrol.

With phase instill at 90, seteset phasdo ON and run the VI several
times. The sinusoidal waveforms shown in both the Sine Wave and

2-11 LabVIEW Signal Processing Course Manual



Lesson 2 Signal Generation

Sine Pattern plots start at 90 degrees, but do not change with
successive calls to the VI.

5. Keepingreset phaseas ON, run the VI several times for each of the
following values ofphase in 45, 180, 270, and 360. Note the initial
phase of the generated waveform each time that the VI is run.

6. When you have finished, save the VNdave and Pattern.viin the
library Lvspcex.llb

End of Exercise 2-3
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Exercise 2-4 (Optional)
Objective: To build a simple function generator.
In this exercise, you will build a very simple function generator than can
generate the following waveforms:
e Sine Wave
 Square Wave
» Triangle Wave
* Sawtooth Wave

1. Build the VI front panel and block diagram shown below.

© National Instruments Corporation

Front Panel
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The Signal Sourcecontrol selects the type of waveform that you

want to generate.

Thesquare duty cyclecontrol is used only for setting the duty cycle
of the square wave.

Thesamplescontrol determines the number of samples in the plot.

Note that these are all wave Vls, and therefore they require the
frequency input to be the normalized frequency. So, you divide
frequency by thesampling rate and the result is the normalized
frequency wired to théinput of the Vis.
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Block Diagram

[ Triangk 'wWave

Eihe W e

1 Sine WaveVI (Analysis » Signal Generatiorsubpalette)
= generates a sine wave of normalized frequdncy

4 Triangle Wave VI (Analysis » Signal Generatiorsubpalette)
=¥ generates a triangular wave of normalized frequéncy

=r=q Square WaveVI (Analysis » Signal Generatiorsubpalette)
*ntlm  generates a square wave of normalized frequémgth
specified duty cycle.

-4 Sawtooth WaveVI| (Analysis » Signal Generatiorsubpalette)
il generates a sawtooth wave of normalized frequéncy

2. Select aampling rate of 1000 Hz amplitude = 1, samples= 100,
frequency = 10,reset phase= ON, andsignal source= sine wave.
Note that becaussampling rate = 1000 andrequency = 10 Hz,
every 100 samples corresponds to one cycle.

3. Run the VI and observe the resulting plot.
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Changesamplesto 200, 300, and 400. How many cycles of the
waveform do you see? Explain why.

With samplesset to 100, changeset phaseéo OFF. Do you notice
any difference in the plot?

6. Changdrequencyto 10.01 Hz. What happens? Why?

Changeeset phaseto ON. Now what happens? Explain why.

Repeat steps 4 — 7 for different waveforms selected iBitjrel
Sourcecontrol.

When you finish, save the VI &sinction Generator.vi in the
Lvspcex.llb library.

End of Exercise 2-4
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Summary

In this lesson, you learned:
* About the normalized frequenct) that has units of cycles/sample.
* How to generate a sine wave of a particular frequency.

» That the wave VIs can keep track of the phase of the generated
waveform.

* How to build a simple function generator that can generate a sine,
square, triangular, and sawtooth wave.

Review Questions

1. Name two practical applications in which you would want to
generate signals.

2. What is the normalized signal frequency for the following?
a. sampling frequency = 100 Hz
number of samples = 200
signal frequency = 15 Hz
b. sampling frequency = 100 Hz
number of samples = 200
signal frequency = 15 cycles
3. What are two main differences between the Wave and Pattern VIs?
4. Which of the following VIs require a normalized frequency input?
a. Sine wave
b. Sine pattern
c. Chirp pattern
d. Square wave
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Notes
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Lesson 3
Signal Processing

]

Introduction

In this lesson, you will learn the basics of transforming a signal from the
time domain into the frequency domain.

You Will Learn:

A. About the discrete Fourier transform (DFT) and the fast Fourier
transform (FFT).

B. How to determine the frequency spacing between the samples of the
FFT (thatis, the relationship between the sampling frequsnoymber
of sampledN, and the frequency spaciid).

C. About the power spectrum and how it differs from both the DFT and
the FFT.

D. About how to interpret the information in the frequency domain for
the DFT/FFT and the power spectrum, for both even and\odd
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A.The Discrete Fourier Transform (DFT) and the Fast Fourier
Transform (FFT)

The samples of a signal obtained from a DAQ board constitutartae
domainrepresentation of the signal. This representation gives the
amplitudes of the signal at the instantsimfe during which it had been
sampled. However, in many cases you want to know the frequency content
of a signal rather than the amplitudes of the individual samples. The
representation of a signal in terms of its individual frequency components is
known as thérequency domairepresentation of the signal. The frequency
domain representation could give more insight about the signal and the
system from which it was generated.

The algorithm used to transform samples of the data from the time
domain into the frequency domain is known asdtserete Fourier
transformor DFT. The DFT establishes the relationship between the
samples of a signal in the time domain and their representation in the
frequency domain. The DFT is widely used in the fields of spectral
analysis, applied mechanics, acoustics, medical imaging, numerical
analysis, instrumentation, and telecommunications.

Fragquenci Danain
L]
04

— » DFT —> o

01

I:l'ul 1 1 [} [ [ (L)
g 5 10 1§ & H A

10-1 ,
g 5 1o £l

time domain representation of x[n] frequency domain representation

Suppose you have obtainBidlsamples of a signal from a DAQ board. If
you apply the DFT tdN samples of this time domain representation of
the signal, the result is also of lengilsamples, but the information it
contains is of the frequency domain representation. The relationship
between théN samples in the time domain and thsamples in the
frequency domain is explained below.
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If the signal is sampled at a sampling ratééfz, then the time interval
between the samples (that is, the sampling interval), ishere

1
At—fs

The sample signals are denoted by x[i], 0 &N-& (that is, you have a
total of N samples). When the discrete Fourier transform, given by

X, = zxie—iz"‘k/N fork=0,1,2,..N-1 (1)
is applied to thesH samples, the resulting outpk], 0 8 k d N-1) is the
frequency domain representation of x[i]. Note that both the time domain
and the frequency doma¥ihave a total oN samples. Analogous to the

time spacingf At between the samplesin the time domain, you have a
frequency spacing of

1

af = NAt

Zlo™

between the componentsXin the frequency domairidf is also known as
thefrequency resolutianTo increase the frequency resolution (smaifgr
you must either increase the number of saml@sith fs constant) or
decrease the sampling frequerfeywith N constant).

In the following example, you will go through the mathematics of
equation (1) to calculate the DFT for a DC signal.

DFT Calculation Example
In the next section, you will see the exact frequencies to whidk the
samples of the DFT correspond. For the present discussion, assume that
X[0] corresponds to DC, or the average value, of the signal. To see the result
of calculating the DFT of a waveform with the use of equation (1), consider
a DC signal having a constant amplitude of +1 V. Four samples of this signal
are taken, as shown in the figure below.

»
|

amplitude

+1V

time .
Ll
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Each of the samples has a value +1, giving the time sequence
X[0] = x[1] = x[2] = x[3] =

Using equation (1) to calculate the DFT of this sequence and making use
of Euler’s identity,

exp (—P) = cos@ ) - jsin@®)
you get:

X[0] = Z xe 12N = %[0] + x[1] + x[2] + X[3] =

X[1] = x[O] + x[l] %o%%—jsin%+ x[2] (cos(T) —j sin(m)) +

x[S]%:osD2D JstZm- (1-j—1+j)=0

X[2] = x[0] +x[1](cos(m) — Jsm(n))+x[2](cos(2r[) jsin(2m)) +
X[3](cos(3m) —jsin(3m)= (1-1+1- 1=

X[3] = x[0] +X[1] %osmig—jsin%n%+ X[2](cos(3T) —j sin(3m)) +

x[s]acos%‘g—jsin%% (1-j—1-j)= 0

Therefore, except for the DC componeXiQ], all the other values are
zero, which is as expected. However, the calculated valfpf
depends on the value bf (the number of samples). Because you had
N =4, X[0] = 4. IfN = 10, then you would have calculat§fd] = 10.
This dependency of[.] on N also occurs for the other frequency
components. Thus, you usually divide the DFT outpulpgo as to
obtain the correct magnitude of the frequency component.

Magnitude and Phase Information

You have seen that samples of the input signal resultNrsamples of the
DFT. That is, the number of samples in both the time and frequency
representations is the same. From equation (1), you see that regardless of
whether the input signa]i] is real or complexX[Kk] is always complex
(although the imaginary part may be zero). Thus, because the DFT is
complex, it contains two pieces of information—the amplitude and the
phase. It turns out that for real signadg feal) such as those obtained from
the output of one channel of a DAQ board, the DFT is symmetric about the
index N/2 with the following properties:

| X[K] | = | X[N-k] | and phaseX[k]) = - phase(X[N-k] )

The terms used to describe this symmetry are that the magnitude of X[k]
is even symmetriand phase(X[K]) i®dd symmetricAn even
symmetric signal is one that is symmetric about the y-axis, whereas an
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odd symmetric signal is symmetric about the origin. This is shown in the
following figures.

AY Ay
il _
X ‘ ‘ ‘ X
\/ \/
even symmetry odd symmetry

The net effect of this symmetry is that there is repetition of information
contained in thé&l samples of the DFT. Because of this repetition of
information, only half of the samples of the DFT actually need to be
computed or displayed, as the other half can be obtained from this
repetition.

Note: If the input signal is complex, the DFT will be nonsymmetric and you
cannot use this trick.
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B. Frequency Spacing and Symmetry of the DFT/FFT

Because the sampling intervalAtseconds, and if the firsk € 0) data
sample is assumed to be at 0 seconds,”ﬁ(k k 0,k integer) data sample
is atkAt seconds. Similarly, the frequency resolution beihg

(af = f[\-j ) means that the”ksample of the DFT occurs at a frequency of

kAf Hz. (Actually, as you will soon see, this is valid for only up to about
half the number of samples. The other half represent negative frequency
components.) Depending on whether the number of sanijleseven or

odd, you can have a different interpretation of the frequency corresponding
to thek!" sample of the DFT.

Even Number of Samples

N

For example, suppode¢is even and letp = 5 - The following table

shows the frequency to which each element of the complex output sequence

X corresponds.

Array Element

Corresponding Frequency

X[0]

DC component

X[1]

Af

X[2]

20 f

X[3]

3Af

X[p-2]

(p-2)Af

X[p-1]

(p-1)Af

X[p]

pAf (Nyquist frequency)

X[p+1]

- (p-1)Af

X[p+2]

- (p-2)Af

X[N-3]

- 3Af

X[N-2]

- 2/f

X[N-1]

- 1Af
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Note that the'" element, X[p], corresponds to the Nyquist frequency.
The negative entries in the second column beyond the Nyquist frequency
represenhegativefrequencies.

For example, iN = 8,p =N/2 = 4, then

X[0] DC

X[1] Af

X[2] 2Af

X[3] 3Af

X[4] 4Af (Nyquist freq)
X[5] -3Af

X[6] -2 Af

X[7] - Af

Here, X[1] and X[7] will have the same magnitude, X[2] and X[6] will
have the same magnitude, and X[3] and X[5] will have the same
magnitude. The difference is that whereas X[1], X[2], and X[3]
correspond to positive frequency components, X[5], X[6], and X[7]
correspond to negative frequency components. Note that X[4] is at the
Nyquist frequency.

The following illustration represents this complex sequencé&fer8.

Founer Tianzlorm [magribude||
4.0-
a0-
2.0-
1.0-

.- N—
o1 2 3 & 8§ B 7

HET

positive negative
DC  frequencies frequencies

Nyquist component

Such a representation, where you see both the positive and negative
frequencies, is known as thwo-sidedtransform.
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Odd Number of Samples

Now suppose that is odd. Letp = N=1

. The following table shows

the frequency to which each element of the complex output segdence

corresponds.
Array Element Corresponding Frequency
X[0] DC component
X[1] Af
X[2] 20 f
X[3] 3Af
X[p-1] (p-1)Af
X[p] pAf
X[p+1] -pAf
X[p+2] - (p-1)Af
X[N-3] - 3Af
X[N-2] - 2Af
X[N-1] - Af

Note that wherN is odd,N/2 is not an integer, and thus there is no
component at the Nyquist frequency.

For example, if N =7, p = (N-1)/2 = (7-1)/2 = 3, and you have

X[0] DC
X[1] Af

X[2] 2 Af
X[3] 3Af
X[4] -3f
X[5] -2
X[6] N
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Now X[1] and X[6] have the same magnitude, X[2] and X[5] have the
same magnitude, and X[3] and X[4] have the same magnitude. However,
whereas X[1], X[2], and X][3] correspond to positive frequencies, X[4],
X[5], and X[6] correspond to negative frequencies. Bec&useodd,

there is no component at the Nyquist frequency.

The following illustration represents the preceding tableNfer 7.

Fourier Translorm [magribude]|
4.0-

3.0-
2.0-
1.0-
0. EI—

positive negative
frequencies frequencies

This is also a two-sided transform, because you have both the positive
and negative frequencies.

Fast Fourier Transforms
Direct implementation of the DFT (equation (1) on page 3-3 data
samples requires approximat®ly complex operations and is a
time-consuming process. However, when the size of the sequence is a power
of 2,

N=2" form=1, 2, 3,...

you can implement the computation of the DFT with approximately
N log,(N) operations. This makes the calculation of the DFT much
faster, and DSP literature refers to these algorithms as fast Fourier
transforms (FFTs). The FFT is nothing but a fast algorithm for
calculating the DFT when the number of samphsi¢ a power of 2.

The advantages of the FFT include speed and memory efficiency,
because the VI performs the transform in place. The size of the input
sequence, however, must be a power of 2. The DFT can efficiently
process any size sequence, but the DFT is slower than the FFT and uses
more memory, because it must store intermediate results during
processing.
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Zero Padding

A technique employed to make the input sequence size equal to a power
of 2 is to add zeros to the end of the sequence so that the total number of
samples is equal to the next higher power of 2. For example, if you have
10 samples of a signal, you can add six zeros to make the total number of
samples equal to 16 (#-2a power of 2). This is shown below:

Origihz s'gnal
1.0-
0.5-
0.0~
4.5~

-], -
]

Zem pedded mignd

In addition to making the total number of samples a power of two so that
faster computation is made possible by using the FFT, zero padding also
helps in increasing the frequency resolution (recall tiat fs/N) by
increasing the number of samplés,

FFT Vis in the Analysis Library

The analysis library contains two VIs that compute the FFT of a signal.
They are thd&keal FFT andComplex FFT.

The difference between the two Vis is that Real FFT computes the
FFT of a real-valued signal, whereas @aemplex FFT computes the

FFT of a complex-valued signal. However, keep in mind that the outputs
of both Vis are complex.

Most real-world signals are real valued, and hence you can uBe#he
FFT for most applications. Of course, you could also use€maplex

FFT by setting the imaginary part of the signal to zero. An example of
an application where you could use @@mplex FFT is when the signal
consists of both a real and imaginary component. Such a type of signal
occurs frequently in the field of telecommunications, where you
modulate a waveform by a complex exponential. The process of
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modulation by a complex exponential results in a complex signal, as
shown below:

e—j wt

X(t) >é » V(1) = x(t)cosat) - jx(t) sin(t)

The block diagram below shows a simplified version of how you can
generate 10 cycles of a complex signal:

Far Loap

—

ik T e —— Eomgks FFTw] To next stage
e FiH

QuadiFLa [30 deg) idFomehip
balvean ein bk ooz
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Exercise 3-1

Objective: To display the two-sided and the one-sided Fourier transform of a signal using the
Real FFT VI, and to observe the effect of aliasing in the frequency spectrum.

1. Build the VI front panel and block diagram as shown below.

Front Panel

TimeDoman Sequernce

requancy |Hzl
Z10.0o0

TBL Digldl Carkidl®

samping req
=]

‘TEL Digild Carkiol®

“Wraralorm Graph®

# of camples
Shno 5 pocirim

432 Dighal Contraf 0.5-
04-

0.3-
n.:2-
01-
0.0- . . . . :

0.0 2000 40.0 E0LO 2.0 £a.0
“wy'awafoum Graph®
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Array Size function Functions » Array subpalette) scales
the output of the FFT by the number of samples so as to
obtain the correct amplitude of the frequency components.

Sine Wavefunction(Functions » Analysis » Signal
Generationsubpalette) generates a time domain sinusoidal
waveform.

Real FFT function(Functions » Analysis » Digital Signal
Processingsubpalette) computes the FFT of the input data
samples. The output of theal FFT function is divided by
the FFT size (number of data points) to obtain the correct
sample values.

Complex to Polarfunction Functions » Numeric »
Complex subpalette) separates the complex output of the
FFT into its magnitude and phase parts. The phase
information is in units of radians. Here you are displaying
only the magnitude of the FFT.

The frequency spacind\f, is given by dividing thesampling freq
by the# of samples

Selectfrequency (Hz) = 10,sampling freq = 100, and
# of samples= 100. Run the VI.

Notice the plots of the time waveform and the frequency spectrum.
Becausesampling freq = # of samples= 100, you are in effect
sampling for 1 second. Thus, the number of cycles of the sine wave
you see in the time waveform is equal to ftrezuency(Hz) you

select.

In this case, you will see 10 cycles. (If you change the

frequency (Hz)to 5, you will see five cycles.)
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Two-Sided FFT

3. Examine the frequency spectrum (the Fourier transform). You will

notice two peaks, one at 10 Hz and the other at 90 Hz. The peak at
90 Hz is actually the negative frequency of 10 Hz. The plot you see
is known as th&-sided FFTbecause it shows both the positive and
the negative frequencies.

Run the VI withfrequency (Hz) = 10 and then with

frequency (Hz) = 20. For each case, note the shift in both peaks of

the spectrum.

Note: Also observe the time domain plot for frequency (Hz) = 10 and 20. Which
one gives a better representation of the sine wave? Why?

One-Sided FFT

5. Because fs = 100 Hz, you can accurately sample only signals having

a frequency < 50 Hz (Nyquist frequency = fs/2). Chaingguency
(Hz) to 48 Hz. You should see the peaks at +- 48 Hz on the spectrum
plot.

Now changdrequency (Hz)to 52 Hz. Is there any difference

between the result of step 5 and what you see on the plots now?

Because 52 > Nyquist, the frequency of 52 is aliased to
|100 - 52| = 48 Hz.

. Changdrequency (Hz)to 30 Hz and 70 Hz and run the VI. Is there

any difference between the two cases? Explain why.

. Save this VI a&FT_2sided.viin the libraryLvspcex.llb

Modify the block diagram of the VI as shown in the following

diagram. You have seen that the FFT had repetition of information

because it contained information about both the positive and the
negative frequencies. This modification now shows only half the
FFT points (only the positive frequency components). This
representation is known as thesided FFT The 1-sided FFT shows
only the positive frequency components. Note that you need to
multiply the positive frequency components by two to obtain the
correct amplitude. The DC component, however, is left untouched.
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Equal To O?function (Functions » Comparisonsubpalette) tests
to see if the array index is equal zero. If so, it corresponds to the
D.C. component and should not be multiplied by two.

10. Run the VI with the following valuefrequency (Hz) = 30,
sampling freq = 100,# of samples= 100.

11. Change the value &fequency (Hz)to 70 and run the VI. Do you
notice any difference between this and the result of step 9?

12. Save the VI aBFT_1sided.viin the libraryLvspcex.llb

End of Exercise 3-1
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C.The Power Spectrum

You have seen that the DFT (or FFT) of a real signal is a complex number,
having a real and an imaginary part. loaverin each frequency
component represented by the DFT/FFT can be obtained by squaring the
magnitude of that frequency component. Thus, the power idthe
frequency component (trh@1 element of the DFT/FFT) is given B¥[K]|2.
The plot showing the power in each of the frequency components is known
as thepower spectrum Because the DFT/FFT of a real signal is
symmetric, the power at a positive frequencl/dfis the same as the power
at the corresponding negative frequencykdf {DC and Nyquist
components not included). The total power in the DC ayqluiét

N 2

components are|x[0]|? ankx[ﬂ‘ , respectively.

Loss of Phase Information

Because the power is obtained by squaring the magnitude of the DFT/FFT,
the power spectrum is always real and all the phase information is lost. If
you want phase information, you must use the DFT/FFT, which gives you a
complex output.

You can use the power spectrum in applications where phase information is
not necessary (for example, to calculate the harmonic power in a signal).
You can apply a sinusoidal input to a nonlinear system and see the power in
the harmonics at the system output.

Frequency Spacing Between Samples

You can use thBower SpectrumVI in the Analysis » Digital Signal
Processingsubpalette to calculate the power spectrum of the time domain
data samples. Just like the DFT/FFT, the number of samples from the
Power SpectrumVI output is the same as the number of data samples
applied at the input. Also, the frequency spacing between the output samples
is Af = fs/N.
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In the following table, the power spectrum of a signal x[n] is represented
by Sxx If N is even, letp = -2'\-' . The following table shows the format
of the output sequencxxcorresponding to the power spectrum.

Array Element Interpretation
Sx{0] Power in DC component
Sxf1] = SxAN-1] Power at frequencsf
Sxf2] = SxAN-2] Power at frequency/d
SxA3] = SxN-3] Power at frequency/S
SxAp-2]= SxAN-(p-2)] Power at frequencyp(2)Af
SxAfp-1] = SXAN-(p-1)] Power at frequencyp{1)Af
Sxfp] Power at Nyquist frequency

The following illustration represents the information in the preceding
table for a sine wave with amplitude = 2. (V,), andN = 8.

Powar 3 pacirum|
1.0

oA
05
o4
1

positive negative
DC frequencies frequencies

Nyquist component

The output units of thBower SpectrumVI are in Volts rms squared
(VZme- SO, if the peak amplitud&/(,) of the input signal is ¥, its

rms value iV, = %2 = 2, S0V? s = 2. This value is divided
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equally between the positive and negative frequency components,
resulting in the plot shown above.

If Nis odd, letp = NT_l . The following table shows the format of
the output sequenc®xxcorresponding to the power spectrum.

Array Element Interpretation
Sxx{0] Power in DC component

Sxf1] = SxfN-1] Power at frequencaf

Sxf2]= SxAN-2] Power at frequency/

Sxf3] = SxAN-3] Power at frequency/3
SxAp-2] = SxfN-(p-2)] Power at frequencyp{2)Af
SxAp-1] = SxfN-(p-1)] Power at frequencyp{1)Af

SxAp] = SxAp] Power at frequencyAf

The following illustration represents the information in the preceding
table forN = 7.

Poue SEu:h'um|
1.0-

0.2-
0.6-
0.4-
0.2-
0.0-

3 4 ] B

positive negative
DC frequencies frequencies

—_
M2

—_— O
—
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Objective: To observe the difference between the FFT and the power spectrum representations.

Front Panel

1. Open thé=FT_1sidedVI (from the libraryLvspcex.llb

) that

you built in the previous exercise. Modify the block diagram and
front panel as shown below.

Block Diagram

Pose
S paciTum

100 200 0 400 4490

0.0 Ao F0 400 440

'i;} fraquancy spacing

[Aeal FFT .+

-
™

i}

Subsat

e
B

Carmip e
[To Folar
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Sine Wavefunction Functions » Analysis » Signal
Generation palette) generates a time domain sinusoidal
waveform.
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Real FFT function (Functions » Analysis » Digital Signal
Fin} Processingsubpalette) computes the FFT of the input data
samples.

Array Subset (Functions » Array subpalette) returns a
E*% portion of the array. Here you are selecting half the array.

7] Complex to Polarfunction Functions » Numeric »

2l Complex subpalette) separates the complex output of the
FFT into its magnitude and phase parts. The phase
information is in radians. Here, you are displaying only the
magnitude of the FFT.

The power spectrum is obtained by squaring the magnitude of the FFT.
The division by.,2 (1.414) makes the conversion fropatd V..

Note:  You could also have wired the output of the Sine Wave VI directly to the
input of the Power Spectrum VI (Analysis » Digital Signal Processing
subpalette). The output of the Power Spectrum VI would directly be the
power spectrum of the signal. However, in that case, the phase information
would be lost.

2. Enter the following values in the controésnplitude = 1.414,
frequency = 20 Hz,sampling freq = 100, and# of samples= 100,
and run the VI. Do you notice any difference in the FFT and power
spectrum representations?

3. Change the amplitude to 1.00 and run the VI. What difference do you
notice in the FFT and power spectrum representations?

4. Save the VI aBFT and Power Spectrum.viin the library
Lvspcex.llb

End of Exercise 3-2
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The time domain representation (sample values) of a signal can be
converted into the frequency domain representation using the
discrete Fourier transform (DFT).

Fast calculation of the DFT is possible by using an algorithm known
as the fast Fourier transform (FFT). You can use this algorithm when
the number of signal samples is a power of two.

The output of the conventional DFT/FFT is two-sided because it
contains information about both the positive and the negative
frequencies. This output can be converted into a one-sided DFT/FFT
by using only half the number of output points.

The frequency spacing between the samples of the DFT/FFT is
Af = fsIN.

The power spectrum can be calculated from the DFT/FFT by
squaring the magnitude of the individual frequency components. The
Power SpectrumVI in the advanced analysis library does this
automatically for you. Th®ower SpectrumVI units of the output
areV?, However, the power spectrum does not provide any phase
information.

The DFT, FFT, and power spectrum are useful for measuring the
frequency content of stationary or transient signals. The FFT
provides the average frequency content of the signal over the entire
time that the signal was acquired. For this reason, you use the FFT
mostly for stationary signal analysis (when the signal is not
significantly changing in frequency content over the time that the
signal is acquired), or when you want only the average energy at each
frequency line.

For measuring frequency information that changes during the
acquisition, you should use the joint time-frequency analysis (JTFA)
toolkit or the wavelet and filter banks designer (WFBD) toolkit.
These toolkits are covered in later lessons.
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Review Questions

1. Which of the following provides you with both the magnitude and
phase information?

a. FFT
b. Power spectrum
c. DFT

d. Time domain waveform

2. Which of the following are true?
a. The magnitude spectrum is always even symmetric.
b. The DFT is a fast algorithm for computing the FFT.
c. The frequency spacing is given by

_ fs
number of samples

wherefs is the sampling frequency.

d. An even number of samples always results in a two-sided
transform.

3. If you have 1024 samples, how many times faster is the FFT as
compared to the DFT in calculating the Fourier transform?
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Notes
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Notes
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Introduction

In this lesson, you will learn about windows and how they affect the spectral
characteristics of a signal.

You Will Learn:

A. About spectral leakage and smoothing windows.

B. About the difference (both time and frequency domains) between a
windowed and a nonwindowed signal.

C. About the differences between the various types of windows in the
Analysis library and their applications.

D. How to separate two sine waves of large amplitude difference but
with frequencies very close to each other.
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A. About Spectral Leakage and Smoothing Windows

In practical applications, you can obtain only a finite number of samples of
the signal. When you use the DFT/FFT to find the frequency content of a
signal, it is inherently assumed that the data that you have is a single period
of a periodically repeating waveform. This is shown below in Figure 4-1.
The first period shown is the one sampled. The waveform corresponding to
this period is then repeated in time to produce the periodic waveform.

A
One period discontinuity

N W NNy

time =

4

Figure 4-1. Periodic Waveform Created from Sampled Period

As seen in the previous figure, because of the assumption of periodicity
of the waveform, discontinuities between successive periods will occur.
This happens when you sample a noninteger number of cycles. These
“artificial” discontinuities turn up as very high frequencies in the
spectrum of the signal, frequencies that were not present in the original
signal. These frequencies could be much higher than the Nyquist
frequency, and as you have seen before, will be aliased somewhere
between 0 and fs/2. The spectrum you get by using the DFT/FFT
therefore will not be the actual spectrum of the original signal, but will
be a smeared version. It appears as if the energy at one frequency has
“leaked out” into all the other frequencies. This phenomenon is known
asspectral leakage

Figure 4-2 shows a sine wave and its corresponding Fourier transform.
The sampled time domain waveform is shown in GrapBetause the
Fourier transform assumes periodicity, you repeat this waveform in
time, and the periodic time waveform of the sine wave of Graph 1 is
shown in Graph 2. The corresponding spectral representation is shown
in Graph 3. Because the time record in Graph 2 is periodic, with no
discontinuities, its spectrum is a single line showing the frequency of the
sine wave. The reason that the waveform in Graph 2 does not have any
discontinuities is because you have sampled an integer number of cycles
(in this case, 1) of the time waveform.
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Figure 4-2. Sine Wave and Corresponding Fourier Transform

In Figure 4-3, you see the spectral representation when you sample a
noninteger number of cycles of the time waveform (namely 1.25).
Graphl now consists of 1.25 cycles of the sine wave. When you repeat
this periodically, the resulting waveform, as shown in Graph 2, consists
of discontinuities. The corresponding spectrum is shown in Graph 3.
Notice how the energy is now spread over a wide range of frequencies.
This smearing of the energyspectral leakageThe energy has leaked

out of one of the FFT lines and smeared itself into all the other lines.

Erth 1. Time Dnmel'r‘ Gr@h 2. Tima D omein wih FFT F.B:Bi..lmm'l:ﬂl

F
0 3

Ore= Hock of dats (1024 monk) The FFT dpoithm assime he zame black ol data
iz impeated ove ard over Ivoughout bme
Lmpliude Graph 2 Frequency Dama

Figure 4-3. Spectral Representation When Sampling a Nonintegral Number of Samples
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Leakage exists because of the finite time record of the input signal. To
overcome leakage, one solution is to take an infinite time record, from
-x to +x. Then the FFT would calculate one single line at the correct
frequency. Waiting for infinite time is, however, not possible in practice.
So, because you are limited to having a finite time record, another
technique, known asindowing is used to reduce the spectral leakage.

The amount of spectral leakage depends on the amplitude of the
discontinuity. The larger the discontinuity, the more the leakage, and
vice versaYou can use windowing to reduce the amplitude of the
discontinuities at the boundaries of each period. It consists of
multiplying the time record by a finite length window whose amplitude
varies smoothly and gradually towards zero at the edges. This is shown
in Figure 4-4, where the original time signal is windowed using a
Hammingwindow. Notice that the time waveform of the windowed
signal gradually tapers to zero at the ends. Therefore, when performing
Fourier or spectral analysis on finite-length data, you can use windows
to minimize the transition edges of your sampled waveform. A
smoothing window function applied to the data before it is transformed
into the frequency domain minimizes spectral leakage.
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Note that if the time record contains an integral number of cycles, as
shown in Figure 4-2, the assumption of periodicity does not result in any
discontinuities, and thus there is no spectral leakage. The problem arises
only when you have a nonintegral number of cycles.

higmal zignal

1 1 1 . 1 1 ; 1 1
1] g0 100 120 1dd
Hamming ‘Window
1.0-

05+

D'I:I_I 1 [ [
0 20 40 B0 BO 1M 7120 14

Windowed 5ignal
1.0~

Figure 4-4. Time Signal Windowed Using a Hamming Window
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B. Windowing Applications

There are several reasons to use windowing. Some of these are:
» To define the duration of the observation.
* Reduction of spectral leakage.

» Separation of a small amplitude signal from a larger amplitude signal
with frequencies very close to each other.
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C. Characteristics of Different Types of Window Functions

Applying a window to (windowing) a signal in the time domain is
equivalent to multiplying the signal by the window function. Because
multiplication in the time domain is equivalent to convolution in the
frequency domain, the spectrum of the windowed signal is a convolution of
the spectrum of the original signal with the spectrum of the window. Thus,
windowing changes the shape of the signal in the time domain, as well as
affecting the spectrum that you see.

Many different types of windows are available in the LabVIEW/
BridgeVIEW analysis library. Depending on your application, one may
be more useful than the others. Some of these windows are:

1. Rectangular (None)rhe rectangular window has a value of one over
its time interval. Mathematically, it can be written as:

wn=1.0 forn=0,1,2....... N-1

whereN is the length of the window. Applying a rectangular window
is equivalent to not using any window. This is because the
rectangular function just truncates the signal to within a finite time
interval. The rectangular window has the highest amount of spectral
leakage. The rectangular window fér= 32 is shown below:

Aeclangular wind o
11

L e e L e |
o & 10 15 20 & J0 3§

The rectangular window is useful for analyzing transients that have
a duration shorter than that of the window. It is also usextder
tracking,where the sampling frequency is adjusted depending on the
speed of the shaft of a machine. In this application, it detects the
main mode of vibration of the machine and its harmonics.

2. Exponential:The shape of this window is that of a decaying
exponential. It can be mathematically expressed as:

winl= s xin(hH forn=0,1,2....N - 1

wheref is the final value. The initial value of the window is one, and
it gradually decays towards zero. The final value of the exponential
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can be adjusted to between 0 andie exponential window for
N = 32, with the final value specified as 0.1, is shown below:

E=porerkial S indos
1.0~
0E-
0B~
04~
0a-
0o-

final
value

This window is useful in analyzing transients (signals that exist only
for a short time duration) whose duration is longer than the length of
the window. This window can be applied to signals that decay
exponentially, such as the response of structures with light damping
that are excited by an impact (for example, a hammer).

3. Hanning: This window has a shape similar to that of half a cycle of
a cosine wave. Its defining equation is

w[n] = 0.5 - 0.5cos(&n/N) forn=0,1, 2, ..... N-1
A Hanning window with N = 32 is shown below:

Hemning W'ndow
1.0-

Y T e T I B
5 10 15 A 35 30 H

The Hanning window is useful for analyzing transients longer than
the time duration of the window, and also for general-purpose
applications.

4. Hamming:This window is a modified version of the Hanning
window. Its shape is also similar to that of a cosine wave. It can be
defined as

w[n] = 0.54 - 0.46cos(@/N) forn=0,1, 2, ..... N-1
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A Hamming window with N = 32 is shown below:

Harmmirg "ird o
1.0-
0.B-
nE-
04—
n2-

00— ===
a7 &

1 16 @ 25 0 =

You see that the Hanning and Hamming windows are somewhat
similar. However, note that in the time domain, the Hamming
window does not get as close to zero near the edges as does the
Hanning window.

Kaiser-BesselThis window is a “flexible” window whose shape the
user can modify by adjusting the paraméigta Thus, depending on

your application, you can change the shape of the window to control

the amount of spectral leakage. The Kaiser-Bessel window for
different values obetaare shown below:

Faieard esiE Windav [beta = 0.1]

1D_ “I|I|I||||I|I|“

152I]EEE|JEE

Fupizz-Heszal Window [beka =1]
1.0-

n.49-
n.8-

nr-; ! |
o 5 10

I T R N |
15 a0 25 30 2%

Faper-Besae wWindos [betn = 5|
1.0+

D5-
-}

L I I I |
ad & 10 15 20 2% = b
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Note that for small values of beta, the shape is close to that of a
rectangular window. Actually, for beta = 0 .0, you do get a
rectangular window. As you increase beta, the window tapers off
more to the sides.

This window is good for detecting two signals of almost the same
frequency, but significantly different amplitudes.

6. Triangle: The shape of this window is that of a triangle. It is given by
wn]=1-](2n-N)/N|forn=0,1, 2, ..., n-1
A triangle window for N = 32 is shown below:

Trianpe Windor
1.0+

05—

00—, 1 ] 1 ] 1 1 1
g &5 10 18 =0 23 30 35
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What Type of Window Do | Use?

Now that you have seen several of the many different types of windows that
are available, you may ask, “What type of window should | use?” The
answer depends on the type of signal you have and what you are looking for.
Choosing the correct window requires some prior knowledge of the signal
that you are analyzing. In summary, the following table shows the different
types of signals and the appropriate windows that you can use with them.

Type of signal Window

Transients whose duration is shorter than the length of the wing Rectangular

Transients whose duration is longer than the length of the wind| Exponential, Hanning

General-purpose applications Hanning

Order tracking Rectangular

System analysis (frequency response measurements) Hanning (for random excitation)),
rectangular (for pseudorandom
excitation)

Separation of two tones with frequencies very close to each othd Kaiser-Bessel
with widely differing amplitudes

Separation of two tones with frequencies very close to each oth¢ Rectangular
with almost equal amplitudes

In many cases, you may not have sufficient prior knowledge of the
signal, so you need to experiment with different windows to find the
best one.
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The following table summarizes the different windows.

Window

Equation

Shape

Applications

Rectangular
(None)

w[n] = 1.0

i
5

0 15 70 5 @ &

Detecting transients
whose duration is
shorter than the length
of the window; order
tracking; separating tw|
tones with frequencies
and amplitudes very
close to each other;
system response

Exponential

win] = NL_lln(f)

wheref = final value

Coo L
15 &0 & 30 35

Transients whose
duration is longer than
the length of the
window

Hanning

0.5— 0.5c0s20

w[n] 0N O

[ I |
15 20 33 30 B

General-purpose
applications; system
analysis; transients
whose duration is longg
than the length of the
window

Hamming

(2mng
0.54- 0.4(i:osD N O

w[n]

(=]

nY

==

Kaiser-Bessel

lo(BN1-2")
1o(B)

w[n] =

I 1 1 1 1 1
101 15 = 25 30 35

Separation of two tong
with frequencies very
close to each other, by
with almost equal
amplitudes

It

Triangle

w[n] = 1_’2n—N’

| T R
0 15 A 25 30 H
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Exercise 4-1

Lesson 4 Windowing

Objective: To see the effect of windowing on spectral leakage.

1.

Open theSpectral LeakageVI from the libraryLvspcex.llb
The Vlis running when it opens. Using this VI, you can see the effect
of windowing on spectral leakage.

Graph 2 Tme Domain

Graph 1: Time Domain 'Wavefom wilh peniedic repelition

1.0-
0.5-
.0~
05-
A.0-}

0.0 1.0

n.n an

EE{L\jﬂ.E ST

T

Harnihg \Windaw
Groph & Frequence [ e oo

Doenmn

Note: The Spectral Leakage VI searches for the Nyquist Shift VI. The Nyquist
Shift VI is in LabVIEW » Examples » Analysis » dspxmpl.lib.

© National Instruments Corporation

You can see three plots on the front panel:
Graph 1 shows the time record of the signal that has been sampled.
Graph 2 shows the repeated time record (assuming periodicity).

Graph 3 shows the frequency spectrum (in dB). The white line
shows the spectrum without windowing and the yellow line shows
the spectrum by windowing using a Hanning window.

You can use theyclesdial to control the number of time domain
waveform cycles that have been sampled. The display below the
Cyclesdial tells you the exact number of cycles (to two decimal
places). You can also type a specific value in this display.

First, you will see the effect of windowing when you sample an
integral number of cycles.

Set theCyclesdial to 1.0. (or type 1.0 in the display beneath it.)
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As you can see ibraph 1, you have exactly one cycle of the time
waveform.Graph 2 shows the repeated time record. Notice the
absence of any discontinuities, and the peak corresponding to the
sine wave in the frequency domafaréph 3). You see two peaks
because you have the two-sided spectrum.

Notice the spreading around the frequency components. This
spreading is the effect of using a window function. In this case, you
used the Hanning window. Different windows have different
amounts of spreading.

3. Now see what happens when you sample a nonintegral number of
cycles. Set th€yclesdial to 1.3 and observe the difference in the
plots inGraph 3. Experiment by changing the cycles dial and
observing the waveforms in graphs 2 and 3.

In the white plot corresponding tdo Window, the energy in the
frequency of interest spreads out across the spectrum. Hence the
frequency of interest is sometimes not clearly distinguishable. In the
yellow plot corresponding tdanning Window, the spectral leakage
across the spectrum is reduced and the energy is more concentrated
around the frequency of interest.

4. Stop the VI by pressing the STOP button.
5. Close the VI. Do not save any changes.

End of Exercise 4-1
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Objective:
nonwindowed signal.

Lesson 4 Windowing

To see the difference (both time and frequency domains) between a windowed and

1. Build the VI front panel and block diagram as shown below.

Front Panel

Origimal Signal “apafioim Graph?

8D 100 120 14D

[
ED

) efomm Gizph™

cycles
S10ES
“DHL Dighal Conlmof
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Block Diagram

findcsed Signal
[Dee]
S Bckium of Whioowed il

T (om]

)
|.l'-'|m|:ﬂu:||: ard Phese 5|:|:|:h'u1'|.'-.ll
nginal Signa

| Dt |

i
(mpilude and Phass Spectium A

1 The Sine PatternVI (Functions » Analysis » Signal
Generation subpalette) generates a sine wave with the
number of cycles specified in tlegclescontrol.

wrg The time waveform of the sine wave is windowed using the
ik | Hamming Window VI (Functions » Analysis »Windows
subpalette)and both the windowed and nonwindowed time
waveforms are displayed on the left two plots on the front
panel.

E The Amplitude and Phase SpectrumVI (Functions »
Wil Pl

Analysis » Measurementsubpalette) obtains the amplitude
spectrum of the windowed and nonwindowed time
waveforms. These waveforms are displayed on the two plots
on the right side of the front panel.

2. Setcyclesto 10 (an integral number) and run the VI. Note that the

spectrum of the windowed signal is broader (wider) than the
spectrum of the nonwindowed signal. But both the spectra are
concentrated near 10 on the x-axis.

Changeyclesto 10.25 (a nonintegral number) and run the VI. Note

that the spectrum of the nonwindowed signal is now more spread out

than it was before. This is because now you have a noninteger
number of cycles, and when you repeat the waveform to make it
periodic, you get discontinuities. The spectrum of the windowed
signal is still concentrated, but that of the nonwindowed signal has
now smeared all over the frequency domain. (This is spectral
leakage.)
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4. Changecyclesto 10.5 and observe the frequency domain plots.
Spectral leakage of the original signal is clearly apparent.

5. When you finish, save the VI &gindowed and Unwindowed
Signal.viin the libraryLvspcex.llb

6. Close the VI.

End of Exercise 4-2
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Exercise 4-3

Objective: To learn about the different windows in the Analysis library.

1. Open thaVindow Plots VI from the libraryLvxpcex.llb . Itis
running when it opens.

Wandow [ime dommn]

l.hl'indun SIEI-aﬂ:ur Frin Aactangular
=E#poncnlia Phl 1 Tiiangle

Final walie |exporeenlial| Plol 2 Hammng
»0.10 Flol 3 Hemming
E-B-ta [KaizEi-Barcal] Fli 4 Exponential
~10.00 Plal 5 [ —

STOF
Original Sine Wawe Windnw| Esporenid
1.0- 1.0-

nd-
i
K 04~
n2-

0.-}
d

0.5-
0.0-
15-
1.0-!

The topmost plot shows you the shapes (in the time domain) of six
different types of windows in the Analysis library. They are all
shown on the same plot for comparison purposes.

The bottom three plots show the effect of multiplying a time domain
signal (a sine wave) by the window. The left plot shows the original
time signal, the middle plot shows the shape of the window being
applied, and the right plot shows the resulting signal.

In theWindow Selectorcontrol, you can select one of the six
different types of windows.

Thefinal value (exponential)control specifies the value to which
the exponential window should decay. This value is normally
between 0 and 1.

The value in thdeta (Kaiser-Besselxontrol can be adjusted to
change the shape of the Kaiser-Bessel window. The higher the value
of beta the lower the spectral leakage, and vice versa.

2. Select different windows in th&indow Selectorcontrol and
observe their shapes.
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In particular, select thRectangular (None)window. What
difference do you see in the first and the third plots shown on the
bottom? Explain.

Select th&Exponential window. Observe the shape when you change
the value in thdinal value (exponential)control. What happens as
the final value increases? Decreases? Is equal to 1.0?

Select theKaiser-Besselwindow. Observe the shapes when you
change the value of beta between -10 and +10. What happens when
beta=0.0?

3. When you finish, stop the VI by pressing the STOP button.
4. Close the VI. Do not save any changes.

End of Exercise 4-3
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Exercise 4-4

Objective: To use windows to separate two sine waves of almost the same frequency, but
widely differing amplitudes.

In this exercise, two sine waves of different amplitudes are summed
together and then transformed into the frequency domain. Sine wave 1
has a much smaller amplitude than sine wave 2. Without windowing, it
is not possible to distinguish between the two sine waves in the
frequency domain. With an appropriate choice of a window, you can
clearly separate the peaks in the frequency domain corresponding to the
two sine waves. The frequency domain plot shows the results so that you
can compare the effect of different window functions.

1. Open and run th&/indow Comparison VI from the library

Lvspcex.llb
Line Wave 1 Line Wave 7 wirdow 1 wminvdow 2
Armplibude 1 5000 Amplitude 2 31,000 * Mone | !ﬂ-lamng
Frequency 1§|?3_52 Frequency |EEI.2-1 H .
40,0 BO.D 40,0 BOD S
KaimBazml e Frequescp Dioenan
.0 A0.0 1.0 aon
da
n.a 1000 1000 0
Sme W 1 +Sme ' Ware 2 Time Domom -Al-
1.0 An-
o 1 || “I ﬂ i
-
=l } \ | l | |
i I -
-05- A5~
-1.0-. d0-t . . . . =
a 'IEI El:l 3l:l d-l:l ED Eil:l T"I:I EI:I Ell:l 35 0 1] 100 160 A0 208

The sllects of different types of window function: ic shosn in the equency domain with
nd window fnclion used, S Wave 7 bunes the Iom amplude S5ne Wave 1. Uesmpg the
Hanning Window PWmndow J1 the amalier signal con be detected

Sap

* The frequency of each sine wave is adjustable with either the
knob or digital controls.

* The amplitude of each sine wave is adjustable with the digital
controls.

* You can select a different window function from thimdow 1
andwindow 2 controls.

2. Using the digital controls, set the amplitude of Sine Wave 1 as 0.001,
and that of Sine Wave 2 as 1.000. With the knob controls, set the
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frequency of Sine Wave 1 to near 70, and that of Sine Wave 2 to near
60. In effect, you are adjusting the frequency of Sine Wave 2 using
the knob control, so that the smaller amplitude is nearer the larger
amplitude in the frequency domain plot.

Notice in the graph that when the frequency of the smaller amplitude
signal (Sine Wave 1) is closer to that of the larger amplitude signal
(Sine Wave 2), the peak corresponding to the smaller signal is not
detected. Applying a window function is the only way to detect the
smaller signal. The discontinuity is what causes the spectrum to
spread out. Signals at smaller amplitudes are lost in the sidelobes of
the larger amplitude signal.

Compare different window functions by choosing another window
from thewindow 1 andwindow 2 controls. Which one(s) can
distinguish between the two frequency components?

When you are done, stop the VI by clicking on the STOP button.
Close the VI. Do not save any changes.

End of Exercise 4-4
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Summary

Review Questions

The DFT/FFT assumes that the finite time waveform that you obtain
is one period of a periodic signal that exists for all time. This
assumption of periodicity could result in discontinuities in the
periodic signal and gives rise to a phenomenon known as spectral
leakage, whereby the energy at a particular frequency leaks
throughout the spectrum.

To reduce the spectral leakage, the finite time waveform is
multiplied by a “window” function.

Windows can be used to separate two sine waves that have widely
different amplitudes, but are very close in frequency.

1. Why does spectral leakage occur?

Name four applications of using windows.

3. Which window(s) would you use for the following?

a. Separation of two tones with frequencies very close to each other.
b. System analysis.
c. Detecting the modes of vibration of a machine.
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Notes
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Notes
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Introduction

You will now learn about some of the VIs that are already available in the

analysis library to perform various signal processing tasks. These Vls are
collectively referred to as measurement VIs.

You Will Learn:

A. About the measurement VIs and how they can perform various signal
processing operations.

B. How to calculate the frequency (amplitude and phase) spectrum of a
time domain signal, with the appropriate units.

C. About the coherent gain (CG) and equivalent noise bandwidth
(ENBW) window constants.

D. How to determine the total harmonic distortion present in a signal.
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A.The Measurement Vs

The measurement VIs perform specific measurement tasks such as:
» Calculating the total harmonic distortion present in a signal.
» Determining the impulse response, or transfer function, of a system.

» Estimating pulse parameters such as the rise time, overshoot, and
So on.

» Computing the amplitude and phase spectrum of a signal.
* Calculating the AC and DC components of a signal.

In the past, these computations have traditionally been performed by
benchtop instruments. The measurement VIs make these measurements
possible in the G programming language on your desktop computer.
They are built on top of the digital signal processing VIs and have the
following characteristics:

* The input time-domain signal is assumed to be real valued.

» Outputs are in magnitude and phase, scaled, and in the appropriate
units, ready for immediate graphing.

» The spectrums calculated are single-sided and range from DC to
Nyquist (sampling frequency/2).

* Wherever appropriate, corrections are automatically applied for the
windows being used. The windows are scaled so that each window
gives the same peak spectrum amplitude result within its amplitude
accuracy constraints.

In general, you can directly connect the inputs of the measurement Vis
to the output of data acquisition VIs. The outputs of the measurement
Vls can be connected to graphs for an appropriate visual display.

—] Measurement Vls|—> Graphing and
DAQ Vis Plotting VIs

Several measurement VIs perform commonly used time
domain-to-frequency domain transformations such as calculation of the
amplitude and phase spectrum, the power spectrum, the network transfer
function, and so on. Other measurement VIs interact with VIs that
perform such functions as scaled time domain windowing and power and
frequency estimation.
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B. Calculating the Frequency Spectrum of a Signal

In many applications, knowing the frequency content of a signal provides
insight into the system that generated the signal. The information thus
obtained can be used in the design of bridges, for calibration purposes, for
estimating the amount of noise and vibration generated by parts of
machines, and so on. The next exercise demonstrates how to use the
Amplitude and Phase SpectrunVI to identify two frequency
components.
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Exercise 5-1
OBJECTIVE: To compute the frequency spectrum of a signal.

Front Panel
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1. Open theCompute Frequency SpectrumVI found in the
Lvspcex.llb library. Two sine waves of frequencies 2 Hz and
10 Hz are superimposed. The 10 Hz sine wave has an amplitude of
2 V, and the 2 Hz sine wave has an amplitude of 1 V.SEmepling
frequency is 100 Hz and 200 points of data are generated.

2. Switch to the block diagram.
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Block Diagram
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3. Examine the block diagram.

The Amplitude and Phase SpectrumVI (Analysis »
Measurementsubpalette) calculates the amplitude spectrum
and the phase spectrum of a time domain signal. The
connections to this VI are shown below.

Signal [1/] F fmp S pectrum blag [Wima)
urerap phasze [T] _I—J%:F_ &mp 3 pacirum Phass adiane]
dl i |

The input time domain signal is applied at $hgnal (V) control. The
magnitude and phase of the input signal spectrum are available at the
Amp Spectrum Mag (Vrms) andAmp Spectrum Phase (radians)
outputs, respectively.

Note:  The initial phase input to the Sine Wave VI is specified in degrees.

Note: If the units of the input time domain signal are in volts peakjVthe units
of the magnitude of the amplitude spectrum is in volts rmg (Y. The
relationship between the units isps = Vy//2 = 0.707*\,

4. Run the VI.

The graph should display two peaks, one at 2 Hz and the other at
10 Hz. The amplitude of the 2 Hz sine wave is 0.717 V, and that of
the 10 Hz waveform is 1.414 V, which are the rms values for sine
waveforms of amplitudes 1 and 2 V, respectively. (The RMS of a
sine waveform = 0.707*peak amplitude.)
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5. Change the phase of the sine waves by adjustiniitied Phase 1
andlInitial Phase 2 controls, and run the VI.

Do you notice any change in the time waveform? The spectrum?

6. Make the parameters of both the sine waves equal. That is, set
amplitude 1 = amplitude 2 = 2, frequency 1= frequency 2= 10,
Initial Phase 1= Initial Phase 2= 0, andsampling frequency= 200,
and run the VI.

Is the amplitude of the peak in the power spectrum the value that you
would expect?

7. When you are done, close the VI. Do not save any changes.

End of Exercise 5-1
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C.Coherent Gain (CG) and Equivalent Noise Bandwidth (ENBW)

Coherent Gain

You saw in Lesson 4 that many different types of windows can be applied
to a signal. These windows have different shapes, and they affect the signal
in different ways. It is important to have some method to compare the effect
that different windows have on the signal. Two parameters that are useful in
comparing various types of windows are tiserent gaifCG) and the
equivalent noise bandwid{iENBW).

The coherent gain of a window is thero frequencygain (or thedc gain

of the window. It is calculated by normalizing the maximum amplitude of
the window to one, and then summing the values of the window amplitudes
over the duration of the window. The result is then divided by the length of
the window (that is, the number of samples).

For example, consider the rectangular window shown below with
amplitude equal to A and nine samples:

A

You first normalize (divide) all the heights by A to get the maximum
height equal to one:

1

0

Then you add all the heights to get nine (nine lines each with a height

equal to one). This sum is then divided by the number of samples (nine)
to get a value of one. Thus, the CG of the rectangular window is equal
to one. Mathematically, the CG is given by

CG = %lzw[n]

whereN is the total number of samples over the duration of the window
andw[n] are the normalized amplitudes of the samples.
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For comparison purposes, the table below shows the CG of several
commonly used windows. Note that the rectangular (uniform) window
has the highest CG, whereas the CG of other windows is lower than that
of the rectangular window. Can you explain why this is so?

Window CG
Uniform (None) 1.00
Hamming 0.54
Hanning 0.5
Triangle 0.5
Exact Blackman 0.46
Blackman 0.42
Blackman-Harris 0.42
4 Term B-Harris 0.36
Flat Top 0.28
7 Term B-Harris 0.27

Equivalent Noise Bandwidth (ENBW)

You can use the ENBW to compare frequency responses of different shapes.
An ideal frequency response is supposed to be rectangular in shape (see the
lesson on digital filters). However, in practice, the frequency response
differs from the ideal. Because different windows have different shapes of
their frequency response, they will pass different amounts of noise power.
The ENBW for a particular window is equal to the width of a frequency
response having an ideal rectangular shape that will pass the same amount
of noise power as the frequency response of that window.

LabVIEW Signal Processing Course Manual 5-8
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Suppose that the solid line in the figure below shows the frequency
response of a window, and the dashed line shows the ideal rectangular
response. The responses are first adjusted to have a gain of unity at zero
frequency (DC).

A ideal
k) rectangular
2|l— / response
= ,
IS ]
] i frequency
response
of window
| -

frequency =

To calculate the ENBW, the width of the rectangular response is
adjusted so that it has the same area as that of the nonideal response of
the window. This width is then equal to the ENBW for that window. It

is found that the ENBW is the smallest for the uniform window, and
larger for the other windows. The table below shows the ENBW for
different windows, relative to the ENBW for the uniform window.

Window ENBW
Uniform (None) 1.00
Hamming 1.36
Hanning 15
Triangle 1.33
Exact Blackman 157
Blackman 1.73
Blackman-Harris 1.71
4 Term B-Harris 2.00
Flat Top 2.97
7 Term B-Harris 2.63
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Exercise 5-2
Objective: To Igadrn about the Coherent Gain and Equivalent Noise Bandwidth properties of
windows.

This exercise will familiarize you with different window shapes and their
CG and ENBW. The values of the CG and ENBW are used in other
measurement VIs such as thewer and Frequency Estimatevl and
Spectrum Unit ConversionVI.

1. Open thelime Domain Windows VI found in the library
Lvspcex.llb

2. Open and examine the block diagram.

[Mon windowed signel|

[ Do |
 zarmpleszag |
E caed Time [ omain wéird o, Dz ault of wincdoy 1|
rECJUER T [IBl]|
5 f | I'Eindclw'l l:!:ln51:|nt5|

[Salad Tima Diomain Window. v Fozull of window 2

L]

o) The VI that windows the input signal (a sine wave generated by the
% Sine WaveVI) and gives as the output the resulting windowed
waveform is thescaled Time Domain WindowVI. The

connections to this VI are shown below.

W avefam ol Windawed YWavelom
indo o mhOoM Coratarks

The input time waveform is applied at tW&aveform control, and the
window selection is done by tlendow control. The VI also outputs the
CG and the ENBW of the selected window atwiedow constants
terminal.

The resulting output waveform is automatically scaled so that when you

compute the amplitude or power spectrum of the windowed waveform,
all the windows will give the same value.
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You will pass the sine wave through two of these VIs and compare the
resulting windowed waveforms.

3. Switch to the front panel.

Hon vandowed xignal Plon 1
Wirdow 1
= Hammirg
Wirdow 2
: Hatrireg
Fz
=100
En:uump Rexuk of window 1 Flot 2 window 1 constaniz
- 1000
Bdq noige BYW
¥ znmples 1%
w100 colwran! gain
0.54

100

Aeaull of wimsdor 2 Mol 3
winvdowr 2 conalont:
ey maiz= B
1.50
cole=r=nt gain
.50

TheWindow 1 andWindow 2 controls select the two types of windows
that you want to apply to your signal (the sine wave).

The number of samples and the frequency of the sine wave are controlled
by the# samplesandfrequency controls, respectively. The sampling
frequency is adjusted by tligcontrol.

The topmost plot shows you the original time domain waveform
(without windowing). The lower two plots show you the signal after
application of the two windows specified in théndow 1 and

Window 2 controls.

4. SelecWindow 1 asNone (Uniform)andWindow 2 asHanningand
run the VI. Leave all the controls at their default values.

Compare the waveforms Plot 1 andPlot 2 and observe that using
the Uniform window is equivalent to not using any window.
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Observe fronPlot 2 andPlot 3 the difference in the windowed time
domain waveform due to the application of tneformandHanning
windows, respectively.

Note the differences in the CG and ENBW of the two windows.

5. The shapes of tHédammingandHanningwindows are very close to
each other. Choose these windows in\Wiadow 1 andWindow 2
controls. Run the VI and compare the waveformBlot 2 and
Plot 3.

Can you notice any difference? Which one is wider? In particular,
compare the values of the ENBW and the CG.

6. As mentioned before, the CG was the same as the DC gain. Choose
different windows and run the VI. Observe that multiplying the
maximum amplitude of the windowed signal by the CG of the
window gives unity.

7. When you finish, close the VI. Do not save any changes.

End of Exercise 5-2
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D.Harmonic Distortion

When a signalx(t), of a particular frequency (for examplg), i passed
through a nonlinear system, the output of the system consists of not only the
input frequency ¢f), but also its harmonics,(£ 2*f;, f; = 3*f;, f, = 4*f,,
and so on). The number of harmonics, and their corresponding amplitudes,
that are generated depends on the degree of nonlinearity of the system. In
general, the more the nonlinearity, the higher the harmonics, and vice versa.

fa

. £, 2f,, 3f, 4f,, ...
_ 1 g nonlinear system | =1 "V O

An example of a nonlinear system is a system where the gitpistthe
cube of the input signai(t).

costt) | (1) = f(x) = 30 cos ()

So, if the input is
X(t) = cos(ot),

the output is
x3(t) = 0.5*cos(ot) + 0.25*[ cost) + cos(3ot) ]

Therefore, the output contains not only the input fundamental frequency
of w, but also the third harmonic o3

Total Harmonic Distortion

To determine the amount of nonlinear distortion that a system introduces,
you need to measure the amplitudes of the harmonics that were introduced
by the system relative to the amplitude of the fundamental. Harmonic
distortion is a relative measure of the amplitudes of the harmonics as
compared to the amplitude of the fundamental. If the amplitude of the
fundamental is 4 and the amplitudes of the harmonics ajés&cond
harmonic), A (third harmonic), A (fourth harmonic), ...Q (Nth

harmonic), the total harmonic distortion (THD) is given by

2 2 2 2
HD - JAZ+AZ AT+ A
Al

and the percentage total harmonic distortion (% THD) is
100% A2 + A2 + A7+ A2
A1

%THD =
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In the next exercise, you will generate a sine wave and pass it through a
nonlinear system. The block diagram of the nonlinear system is shown
below:

nonkreer ddodion

uk Signa

Distoted Ouput Sigral

e

addbi+= noee dizlorlon

Verify from the block diagram that if the input is x(t) = c@y( the
output is

y(t) = cosfot) + 0.5cod(wt) + 0.1n(t)
= cosft) + [1 + cos(2ot)]/4 + 0.1n(t)
= 0.25 + cogt) + 0.25cos(@t) + 0.1n(t)

Therefore, this nonlinear system generates an additional DC component
as well as the second harmonic of the fundamental.

Using the Harmonic Analyzer VI

You can use thelarmonic Analyzer VI to calculate the %THD present in

the signal at the output of the nonlinear system. It finds the fundamental and
harmonic components (their amplitudes and corresponding frequencies)
present in the power spectrum applied at its input, and calculates the
percentage of total harmonic distortion (% THD) and the percentage of total
harmonic distortion plus noise (%THD + Noise). The connections to the
Harmonic Analyzer VI are shown below:

Frame see —

Lo Poveer Spechum Irm_-:. Hamone Amplludes
# hamonice: I TH[:?- - Harmohic Frequencies
e —||: % THD
aamaing rale ZTHD +Maie

hurdemental fiequency

To use this VI, you need to give it the power spectrum of the signal
whose THD you want it to calculate. Thus, in this example, you need to
make the following connections:
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:?Er?&li;ne Ecded Time Daman ‘Widor. ]  [fko Paver Specinamy]  Hamonic dhaler)
EAF Ikt 8

kandel TR

The Scaled Time Domain WindowVI applies a window to the output

y(t) of the nonlinear systenY our System). This is then passed on to the
Auto Power SpectrumVI, which sends the power spectrum of y(t) to
theHarmonic Analyzer VI, which then calculates the amplitudes and
frequencies of the harmonics, the THD, and the %THD.

You can specify the number of harmonics you want the VI to find in the
# harmonics control. Their amplitudes and corresponding frequencies
are returned in thelarmonic Amplitudes andHarmonic Frequencies
array indicators.

Note:  The number specified in the # harmonics control includes the
fundamental. So, if you enter a value of 2 in the # harmonics control, it
means to find the fundamental (say, of freg) fand the second harmonic
(of frequency § = 2*f,). If you enter a value of N, the VI will find the
fundamental and the corresponding (N-1) harmonics.

The following are explanations of some of the other controls:

fundamental frequencyis an estimate of the frequency of the
fundamental component. If left as zero (the default), the VI uses the
frequency of the non-DC component with the highest amplitude as the
fundamental frequency.

window is the type of window you applied to your original time signal.
It is the window that you select in tigcaled Time Domain Window

VI. For an accurate estimation of the THD, it is recommended that you
select a window function. The default is the uniform window.

sampling rateis the input sampling frequency in Hz.

The% THD + Noise output requires some further explanation. The
calculations fo6 THD + Noise are almost similar to that f@& THD,
except that the noise power is also added to that of the harmonics. It is
given by

9%THD + Noise= 100x —“SWX(APS)

1

wheresum(APS)s the sum of the Auto Power Spectrum elements minus
the elements near DC and near the index of the fundamental frequency.
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Exercise 5-3

Objective: To use the Harmonic Analyzer VI for harmonic distortion calculations.
1. Open theTHD Example VI from theLvspcex.llb library.

2. Switch to the block diagram.

ko Possl Spechun. |
La ki

=
| 12 |

—{ W= 0*] | [Harmonic Arpiludes]

THE _I [[om]|[Hamomic Frequences]
L— % THD

(L]

Some of this will already be familiar to yotiour Systemis the nonlinear
system that you saw previously. Its output is windowed, and the power
spectrum calculated and given to th@monic Analyzer VI.

TheSine WaveVI generates a fundamental of frequency specified in the
fundamental frequencycontrol.

The output of thédarmonic Analyzer VI is in V¢ (if the input from the

Auto Power Spectrum is in?,d. This output is then squared to convert

it to V2o

3. Switch to the front panel.
At the bottom, you see a plot of the power spectrum of the output of
the nonlinear system. On the top right side are the array indicators
for the frequencies and amplitudes of the fundamental and its

harmonics. The size of the array depends on the value entered in the
# harmonicscontrol.
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4. Change théundamental frequencyto 1000 # harmonicsto 2, and
run the VI several times. Each time, note the values in the output
indicators Harmonic Frequencies Harmonic Amplitudes, % THD ,
and% THD + Noise).

Why do you get different values each time you run the VI?

Which of the values, % THD or % THD + Noise, is larger? Can you
explain why?

5. Run the VI with different selections of the window control and
observe the peaks in the power spectrum.

Which window gives the narrowest peaks? The widest? Can you
explain why?

Hint: See the values of the ENBW for each window in the table on
page 9.

6. Change the fundamental frequency to 3000 and run the VI.
Why do you get an error?

Hint: Consider the relationship between the Nyquist frequency and
the frequency of the harmonic(s).

7. When you finish, close the VI.

End of Exercise 5-3
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Summary

* Theready-made VIs to perform common measurements are available
in the Analysis » Measurementsubpalette.

» Some of these measurement tasks include calculating the amplitude
and phase spectrum of a signal and the amount of harmonic
distortion. Other VIs calculate properties of a system such as its
transfer function, its impulse response, the cross power spectrum
between the input and output signals, and so on.

» Because a real-world signal is time-limited by a window function,
the study of certain properties of these window functions is an
important consideration in interpreting the results of your
measurements.

* The CG is a measure of the DC gain of the window, whereas the
ENBW is a measure of the amount of noise power that a window
introduces into a measurement.

Review Questions
Why is it important to know the coherent gain of a window?

Which Measurement Vls calculate both the amplitude and phase
spectrum of the input waveform?

3. Name some applications where you would use the Measurement ViIs.

4. When a Measurement VI calculates the spectrum of a signal, is it a
one-sided or a two-sided spectrum?

5. What is the peak value corresponding tq,2¥
Which window has the highest coherent gain? Why?

7. What is the difference between %THD and % THD + Noise? Which
is larger?
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Notes
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Notes
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Lesson 6
Digital Filtering

]

Introduction

In this lesson, you will learn about the characteristics of different types of
digital filters and how to use them in practical filtering applications.

You Will Learn:

A. What is filtering and why it is needed (applications).

B. About the frequency response characteristics of different types of
ideal filters—lowpass, highpass, bandpass, bandstop.

C. About the differences between practical (nonideal) filters and ideal
filters.

About the advantages of digital filters over analog filters.
About the differences between IIR and FIR filters.

About the characteristics of different types of IIR filters.

. About the transient response of IIR filters.

T ommo

About the characteristics of FIR filters.
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A.What Is Filtering?

Filtering is the process by which the frequency content of a signal is altered.
It is one of the most commonly used signal processing techniques. Common
everyday examples of filtering are the bass and treble controls on your
stereo system. The bass control alters the low-frequency content of a signal,
and the treble control alters the high-frequency content. By varying these
controls, you are actually filtering the audio signal. Some other applications
where filtering is useful are removing noise and performing decimation
(lowpass filtering the signal and reducing the sample rate).
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Filters alter or remove unwanted frequencies. Depending on the frequency
range that they either pass or attenuate, they can be classified into the
following types:

* A lowpass filtelpasses low frequencies, but attenuates high
frequencies.

* A highpass filterpasses high frequencies, but attenuates low
frequencies.

* A bandpass filtepasses a certain band of frequencies.
* A bandstop filterattenuates a certain band of frequencies.

The ideal frequency response of these filters is shown below:

»
|

amplitude

fe

Lowpass

P frequency ——p frequency

»
|

amplitude
amplitude
amplitude

P frequenc P frequenc
fc fcl fc2 a y fcl fcz a Y

Highpass Bandpass Bandstop

You see that the lowpass filter passes all frequencies liglaluereas the
highpass filtepasses all frequencies abdyerhe bandpass filter passes all
frequencies betwedp, andf.,, whereas the bandstop filter attenuates all
frequencies betwedp, andf;,. The frequency point, f.; andf,, are
known as the cutoff frequencies of the filter. When designing filters, you
need to specify these cut-off frequencies.

The frequency range that is passed through the filter is known as the
passbandPB) of the filter. An ideal filter has a gain of one (0 dB) in the
passband so that the amplitude of the signal neither increases nor
decreases. Th&topband SB) corresponds to that range of frequencies
that do not pass through the filter at all and are rejected (attenuated). The
passband and the stopband for the different types of filters are shown
below:

»

PB

amplitude

SB

fe
Lowpass

» freq

A A A
() ] (]
S SB PB S SB_ PB _SB S PB SB PB
= = =
£ IS £
< IS IS
» fre »fre P fre
fe a fa fe2 d fer fe2 a
Highpass Bandpass Bandstop
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Note that whereas the lowpass and highpass filters have one passband and
one stopband, the bandpass filter has one passband, but two stopbands, and
the bandstop filter has two passbands, but one stopband.

How Filters Affect Signal Frequency Content
Suppose you have a signal containing frequencies of 10 Hz, 30 Hz, and
50 Hz. This signal is passed through a lowpass, highpass, bandpass, and
bandstop filter. The lowpass and highpass filters have a cutoff frequency of
20 Hz, and the bandpass and bandstop filters have cutoff frequencies of
20 Hz and 40 Hz. The output of the filter in each case is shown below:

20
Lowpass

v
v

freq freq

10 30 50 10

20

freq Highpass

A
%¢ .

freq

10 30 50 30 50

»
'

20 40
Bandpass

A
J_¢ .

freq freq

10 30 50 30

>
20 40
Bandstop

-
3

freq freq

10 30 50 10 50
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C.Practical (Nonideal) Filters

The Transition Band
Ideally, a filter should have a unit gain (0 dB) in the passband, and a gain of
zero (-x dB) in the stopband. However, in a real implementation, not all of
these criteria can be fulfilled. In practice, there is always a finite transition
region between the passband and the stopband. In this region, the gain of the
filter changes gradually from 1 (0 dB) in the passband to O (-x) in the
stopband. The following diagrams show the passband, the stopband, and the
transition region (TR) for the different types of nonideal filters. Note that the
passband is now the frequency range within which the gain of the filter
varies from 0 dB to -3 dB. Although the -3 dB range is most commonly
used, depending on the application, other values (-0.5 dB, -1 dB, etc.) may
also be considered.

0dB
-3dB

0dB
-3dB

Highpass

SB TR PB TR SB
a4p> 4 pg4 P>a4a > a4 ' '
' ' PB_!TR SB TR' PB

-« >

fe1 feo fe1 fe2
Bandpass Bandstop

0dB
-3dB

\

\ /

Passband Ripple and Stopband Attenuation
In many applications, it is okay to allow the gain in the passband to vary
slightly from unity. This variation in the passband is calledohesband
ripple and is the difference between the actual gain and the desired gain of
unity. Thestopband attenuatignn practice, cannot be infinite, and you
must specify a value with which you are satisfied. Both the passband ripple
and the stopband attenuation are measured in decibels or dB, defined by:

dB = 20*l0g,o(A()/A ()

where log, denotes the logarithm to the base 10, ayff) And A,(f) are
the amplitudes of a particular frequerfdyefore and after the filtering,
respectively.
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For example, for -0.02 dB passband ripple, the formula gives:
-0.02 = 20*log o(A(H)/A;(f))
A (f)/A(f) = 100.001=0,9977
which shows that the ratio of input and output amplitudes is close to
unity.
If you have -60 dB attenuation in the stopband, you have
-60 = 20*log o(A,(H)/A ()
A (f)/A;(f) = 10%=0.001

which means the output amplitude is 1/1000 of the input amplitude. The
following figure, though not drawn to scale, illustrates this concept.

[}

ko)

2

gA

[

1.0 e 0dB

passband

0.9977 -0.02dB V ripple

stopband
attenuation

0.001 | N . -60dB

frequency =

Note:  Attenuation is usually expressed in decibels without the word “minus,” but
a negative dB value is normally assumed.
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D.Advantages of Digital Filters over Analog Filters

An analog filter has an analog signal at both its input and its output. Both
the inputx(t), and outputy(t), are functions of a continuous variabknd

can take on an infinite number of values. Analog filter design is about 50
years older than digital filter design. Thus, analog filter design books
featuring simple, well- tested filter designs exist and can be found
extensively in the literature. However, this type of filter design is often
reserved for specialists because it requires advanced mathematical
knowledge and understanding of the processes involved in the system
affecting the filter.

Modern sampling and digital signal processing tools have made it
possible to replace analog filters with digital filters in applications that
require flexibility and programmability. These applications include
audio, telecommunications, geophysics, and medical monitoring. The
advantages of digital filters over analog filters are:

* They are software programmable, and so are easy to “build” and test.

* They require only the arithmetic operations of multiplication and
addition/subtraction and so are easier to implement.

* They are stable (do not change with time nor temperature) and
predictable.

* They do not drift with temperature or humidity or require precision
components.

* They have a superior performance-to-cost ratio.
* They do not suffer from manufacturing variations or aging.
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E. IR and FIR Filters

Another method of classification of filters is based on their impulse
response. But what is an impulse response? Tipones of a filter to an
input that is an impulse0] = 1 andx[i] = 0 for all i | 0) is called the
impulse responsef the filter (see figure below). The Fourier transform

of the impulse response is known asftieguency respons# the filter.

The frequency response of a filter tells you what the output of the filter
IS going to be at different frequencies. In other words, it tells you the
gain of the filter at different frequencies. For an ideal filter, the gain
should be 1 in the passband and 0 in the stopband. So, all frequencies in
the passband are passed “as is” to the output, but there is no output for
frequencies in the stopband.

IMPULSE IMPULSE A FREQUENCY
9 9 RESPONSE Fourier K RESPONSE
s [10 — > Fiter —» 3 — > > 2
= = Transform =
Q. Q. Q.
§ § § 1

| . [~
time™ time™ frequency

If the impulse response of the filter falls to zero after a finite amount of time,
it is known as dinite impulse response (FIRjter. However, if the

impulse response exists indefinitely, it is known agéinite impulse
response (lIRjilter. Whether the impulse response is finite or not (that is,
whether the filter is FIR or IIR) depends on how the output is calculated.

The basic difference between FIR and IIR filters is that for FIR filters,
the output depends only on therrent and past input values, whereas for
lIR filters, the output depends not only on the current and past input
values, but also on thgast output values.

As an examﬁle, consider a cash register at a supermarkegfk] e¢ the
cost of thek!" item that a customer buys, where k 8N, andN is the
total number of items. The cash register adds the cost of each item to
produce a “running” total. This “running” totglk] , up to thekh item,

is given by

y[k] = x[k] + x[k-1] + x[k-2] + x[k-3] + .....+ x[1] (1a)
Thus, the total foN items isy[N]. Becausg/[K] is the total up to the'k

item, andy[k-1] is the total up to thé&-1)item, you can rewrite
equation (1a) as

y[k] = y[k-1] + x[K] (1b)
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If you add a sales tax of 8.25%, equations (1a) and (1b) can be
rewritten as

y[k] = 1.0825x[k] + 1.0825x[k-1] + 1.0825 x[k-2] + 1.0825x[k-3] +
... + 1.0825x[1] (2a)

y[k] = y[k-1] + 1.0825x[K] (2b)

Note that both equations (2a) and (2b) are identical in describing the
behavior of the cash register. The difference is that whereas (2a) is
implemented only in terms of the inputs, (2b) is implemented in
terms of both the input and the output. Equation (2a) is known as the
nonrecursiveor FIR, implementation. Equation (2b) is known as the
recursive or lIR, implementation.

In equation (2a), the multiplying constant for each term is 1.0825. In
equation (2b), the multiplying constants are 1 yfér1]) and 1.0825 (for
x[K]). These multiplying constants are known asdbefficientsof the

filter. For an IIR filter, the coefficients multiplying the inputs are known as
theforward coefficientsand those multiplying the outputs are known as
thereverse coefficients

Equations of the form 1a, 1b, 2a, or 2b that describe the operation of the
filter are known aslifferenceequations.

Advantages and Disadvantages of FIR and IIR Filters

Comparing IIR and FIR filters, the advantage of digital IR filters over finite
impulse response (FIR) filters is that IIR filters usually require fewer
coefficients to perform similar filtering operations. Thus, IIR filters execute
much faster and do not require extra memory, because they execute in place.

The disadvantage of IIR filters is that the phase response is nonlinear. If
the application does not require phase information, such as simple signal
monitoring, IIR filters may be appropriate. You should use FIR filters
for those applications requiring linear phase responses. The recursive
nature of IIR filters makes them more difficult to design and implement.
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F. Infinite Impulse Response Filters

Note:

You have seen that infinite impulse response filters (IIR) are digital filters
whose output is calculated by adding a weighted sum of past output values
with a weighted sum of past and current input values. Denoting the input
values byx[.] and the output values lyy.], the general difference equation
characterizing IIR filters is

agy[i] +ayyli—1] +ayy[i-2] +... +ay _y[i—-(N,—-1)]=
box[i] + byx[1—1] + bx[i1—-2] +... +bNx_lx[i —(N,—-1)]

aoyli] = —ayy[i—1]-ay[i-2] +—.—ay _;y[i-(N,—1)] +
Dox[i] + by x[1 —1] + bx[i—2] + ... +bNX_1x[i—(NX—1)]

-1 Ny =1

I R o
y[i] = ;OE— Z afjly[i—j] +

3 bIKIX[i-kI5 3)
0

le=n

whereN, is the number drward coefficients p[k]) andN, is the number
of reversecoefficients &[j]). The output sample at the present sample
indexi is the sum of scaled present and past inpdifsand x[i-k] when

j 1 0) and scaled past outpug$i{j]). Usually,N, is equal taNy and this
value is known as therder of the filter.

In all of the IIR filters implemented in LabVIEW/BridgeVIEW, the
coefficient g is 1.

Practical IIR Filters

A lower order reduces arithmetic operations and therefore reduces
computation error. A problem with higher order filtering is that you quickly
run into precision errors with orders much greater than 20-30. This is the
main reason for the “cascade” implementations over the “direct” form.
Refer to theAnalysis VI Reference Manufalr more details on cascade
form implementations. It is recommended that the orders of 1-20 are
reasonable, with 30 being an upper limit. A higher order also means more
filter coefficients and hence longer processing time.

The impulse response of the filter described by equation (3) is of infinite
length for nonzero coefficients. In practical filter applications, however,
the impulse response of stable IIR filters decays to near zero in a finite
number of samples.

In practice, the frequency response of filters differs from that of ideal
filters. Depending on the shape of the frequency response, the IIR filters
can be further classified into

* Butterworth filters
* Chebyshev filters
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» Chebyshev Il or inverse Chebyshev filters
» Elliptic or Cauer filters

The characteristics of each filter type are described below.

A Butterworth filter has no ripples in either the passband or the stopband.
Due to the lack of ripples, it is also known asnieximally flat filter.Its
frequency response is characterized by a smooth response at all frequencies.
The following illustration shows the response of a lowpass Butterworth

filter of different orders—the x-axis scaling is in termg bfyyquiss

whereas the y-axis is scaled so that the gain in the passband is unity.

1.0 =
0.9
0.8+
0.7
0.6
0.5+
0.4
0.3 Order=2
0.2 Order=5 [ . o o
01 Order=20[ .~ .~ -

0.0 ,
0.0 0.1

Butterworth
Response

normalized amplitude

f/ fNyquist

The region where the output of the filter is equal to 1 (or very close to 1)
is the passband of the filter. The region where the output is 0 (or very
close to 0) is the stopband. The region in between the passband and the
stopband where the output gradually changes from 1 to O is the transition
region.

The advantage of Butterworth filters is a smooth, monotonically
decreasing frequency response in the transition region. As seen from the
figure, the higher the filter order, the steeper the transition region.

The frequency response of Butterworth filters is not always a good
approximation of the ideal filter response because of the slow rolloff
between the passband (the portion of interest in the spectrum) and the
stopband (the unwanted portion of the spectrum). On the other hand,
Chebyshev filters have a smaller transition region than a Butterworth filter
of the same order. However, this is achieved at the expense of ripples in the
passband. Using LabVIEW or BridgeVIEW, you can specify the maximum
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amount of ripple (in dB) in the passband for a Chebyshev filter. The
frequency response characteristics of Chebyshev filters have an equiripple
(ripples all have the same magnitude) magnitude response in the passband,
monotonically decreasing magnitude response in the stopband, and a
sharper rolloff in the transition region as compared to Butterworth filters of
the same order.

The following graph shows the response of a lowpass Chebyshev filter
of different orders. In this case, the y-axis scaling is in decibels. Once
again, note that the steepness of the transition region increases with
increasing order. Also, the number of ripples in the passband increases
with increasing order.

0.0 —pre
Chebyshey
s Response
—_
m
) -1.0
)
°
2 | 15
g
© 20 order=2
og| Order=3 | o o
Order=5 |- -,
-3.0 : . L .
0.0 0.1 n.z 0.3 0.4 0.5
f/ fNyquist

The advantage of Chebyshev filters over Butterworth filters is the
sharper transition between the passband and the stopband with a
lower-order filter. As mentioned before, this produces smaller absolute
errors and higher execution speeds.

Chebyshev Il or Inverse Chebyshev Filters

Chebyshev I, also known as inverse Chebyshev or Type Il Chebyshev
filters, are similar to Chebyshev filters, except that Chebysheuv Il filters have
ripples in the stopband (as opposed to the passband), and are maximally flat
in the passband (as opposed to the stopband). For Chebyshev Il filters, you
can specify the amount of attenuation (in dB) in the stopband. The
frequency response characteristics of Chebyshev |l filters are equiripple
magnitude response in the stopband, monotonically decreasing magnitude
response in the passband, and a rolloff sharper than Butterworth filters of the
same order. The following graph plots the response of a lowpass Chebyshev
I filter of different orders.
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Chebyshevl
Response
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Order=2
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The advantage of Chebyshev Il filters over Butterworth filters is that
Chebysheuv Il filters give a sharper transition between the passband and the
stopband with a lower order filter. This difference corresponds to a smaller
absolute error and higher execution speed. One advantage of Chebyshev I
filters over regular Chebyshev filters is that Chebyshev Il filters have the
ripples in the stopband instead of the passband.

Elliptic Filters

You saw that Chebyshev (type | or ll) filters have a sharper transition region
than a Butterworth filter of the same order. This is because they allowed
ripples in the passband (type 1) or the stopband (type II). Elliptic filters
distribute the ripples over both the passband as well as the stopband.
Equiripples in the passband and the stopband characterize the magnitude
response of elliptic filters. Therefore, compared with the same order
Butterworth or Chebyshev filters, the elliptic design provides the sharpest
transition between the passband and the stopband. For this reason, elliptic
filters are quite popular in applications where short transition bands are
required and where ripples can be tolerated. The following graph plots the
response of a lowpass elliptic filter of different orders. The x-axis scaling is
in terms off / fyyquise Whereas the y-axis is scaled so that the gain in the
passband is unity.
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Elliptic
Response
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Notice the sharp transition edge for even low-order elliptic filters. For
elliptic filters, you can specify the amount of ripple (in dB) in the
passband as well as the attenuation (in dB) in the stopband.

lIR Filter Comparison
A comparison of the lowpass frequency responses for the four different IIR
filter designs, all having the same order (five), is shown in the figure below.
The Elliptic filter has the narrowest transition region, whereas the
Butterworth filter has the widest.

d 0.0 Eultaiwarth
00— Chebpshes
Inv. Chabyzhemy
L Elitic
£0.0-
e
.04 - _
0o ol oz 03 04 05 fANyquist
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The following table compares the filter types.

lIR Filter Response Width of Transition Region Order Required for
Design Characteristics for a Fixed Order Given Filter Specifications
Butterworth No ripples Widest Highest
Chebyshev Ripples in PB
Inverse Ripples in SB
Chebyshev
Elliptic Ripples in PB and SB| Narrowest Lowest

The LabVIEW and BridgeVIEW digital filter VIs handle all the design
issues, computations, memory management, and actual data filtering
internally, and are transparent to the user. You do not need to be an
expert in digital filters or digital filter theory to process the data. All you
need to do is to specify the control parameters such as the filter order,
cutoff frequencies, amount of ripple, and stopband attenuation.

How Do | Decide which Filter to Use?

Now that you have seen the different types of filters and their
characteristics, the question arises as to which filter design is best suited for
your application. In general, some of the factors affecting the choice of a
suitable filter are whether you require linear phase, whether you can tolerate
ripples, and whether a narrow transition band is required. The following
flowchart is expected to serve as a guideline for selecting the correct filter.
Keep in mind that in practice, you may need to experiment with several
different options before finally finding the best one.
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FIR Filter
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Exercise 6-1

Objective: To filtler data samples that consist of both high-frequency noise and a sinusoidal
signal.
In this exercise, you combine a sine wave generated b$itlee
Pattern VI with high-frequency noise. (The high-frequency noise is
obtained by highpass filtering uniform white noise with a
Butterworth filter.) The combined signal is then lowpass filtered by
another Butterworth filter to extract the sine wave.

Frequency
LA000 | Hz
“GEL Diigild Carkiod®

Cuk-0f

Fraguency A00-
Rl.on-— 100.0-
13211 . . . . . . . . . .

T Hz oo o1 02 D2 b4 05 06 dF d&8 03 10
; WSy efirm G mp
n.oo-,

-vartical dide” 1.05

Filer Oirder 0.5

10-= Y -

E_

c. 15~ |

a2- 1.0 : 'I 'I 'I I'I I"I I"I I" .

D-, ob o1 D2 D 04 05 06 aOF 02 09 10
“yarlicd zida” ‘o apafiaim Graph?

1. Open a new VI and build the front panel as shown above.

a. Select digital Control from theNumeric palette and label it
Frequency

b. Selectvertical Slide from theNumeric palette and label it
Cut-Off Frequency

c. Select anothéerertical Slide from theNumeric palette and label
it Filter Order.

d. Select aVaveform Graph from theGraph palette for
displaying the noisy signal, and anothéaveform Graph for
displaying the original signal.
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2. Build the block diagram as shown below.
aire Palbein v
|1E|IJ3I LTS
g &
Frequency wum the e ard — zal
LInif o wkite Moiz el bandimked raisa
— . . i opipaes] ik
I.-r"-r "0
Cul-0ff
o B
Flier Order [(EE———

Geherata highfreq roiea

unfom moEe s=quence.

Ewxdrasc| the crawave by lowpess

by Fichpazs fileriho 2 fikaring the noisp Bgna.

] Sine PatternVI (Functions » Analysis » Signal Generation
%9 subpalette) generates a sine wave of the desired frequency.

Uniform White Noise VI (Functions » Analysis » Signal

Generation subpalette) generates uniform white noise that is

o1

6.

added to the sinusoidal signal.

Butterworth Filter VI (Functions » Analysis » Filters
subpalette) highpass filters the noise.

Note that you are generating 10 cycles of the sine wave, and there are
1000 samples. Also, the sampling frequency toBhgerworth

Filter VI on the right side is specified as 1000 Hz. Thus, effectively
you are generating a 10 Hz signal.

Switch back to the front panel. Seledtraquencyof 10 Hz, a
Cut-Off Frequency of 25 Hz, and &:ilter Order of 5. Run the VI.

Reduce th&ilter Order to 4, 3, and 2, and observe the difference in
the filtered signal. Explain what happens as you lower the filter
order.

In particular, observe the filtered waveform. At the beginning, there
is a “flat” region. The length of this region depends on the order of
the filter. Section G discusses this further.

When you finish, save the VI &ktract the Sine Wave.viin the
Lvspcex.llb library.

Close the VI.

End of Exercise 6-1
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Objective: To compare the frequency response characteristics of various lIR filters.

Fiter Deson
2 |Butlermoth

Enumested Tyupe?
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Bultaiworik
Chebpsher

Itve Chebwsbey
Elighic

Fpde 10.00
Atanuation £ an.m
Order 54

Dicplap

Lagarilbmic

Lirar

pamgling rate 2[1omm | “DBL Digital Covdnat

Cut-01l Fraqe
Lomer :'IIII.IIIZI

Higher 3 [300.00

1. Open thdIR Filter Design VI from the Lvspcex.llb library.
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The front panel offers the choice of different types of filters.

TheFilter Design control selects one of the four different designs of
filters: Butterworth, Chebyshev, Chebyshev Type II, or Elliptic.

TheFilter Type control selects one of four different types of filters:
highpasslowpass bandpassor bandstop

TheDisplay control selects the display of the magnitude response
(magnitude of the frequency response) to be elthear or
logarithmic.
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2. The block diagram is shown below.

Filler Tupsa

zal aMs Ak
Ly
Eeel ||

As seen in the block diagram, note that the frequency response is
obtained by applying an impulse at the input of a filter and
calculating the Fourier transform of the output.

e

LabVIEW Signal Processing Course Manual

Thelmpulse Pattern VI (Functions » Analysis » Signal
Generation subpalette) generates an impulse that is given to
the selected filter. The number of sample points is equal to
1024.

TheReal FFT VI (Functions » Analysis » Digital Signal
Processingsubpalette) computes the Fourier transform of the
output of the filter.

TheArray Subset VI (Functions » Array subpalette) selects
513 FFT points out of 1024, so as to generate a one-sided
spectrum.

TheComplex to PolarVI (Functions » Numeric » Complex
subpalette) converts the complex output ofRleal FFT VI
to its polar (magnitude and phase) representation. The
magnitude can then be plotted in either the linear or dB
scales.
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'F% Normally, the phase shown is limited to betwer@and Ht

So, even if the phase lies outside the rangand #t1, it is
“wrapped” around to lie between these values. Uherap
Phase VI(Functions » Analysis » Digital Signal Processing
subpalette) is used to “unwrap” the phase to its true value,
even if its absolute value exceems

Select &ilter Design of Butterworth,Filter Type = Lowpass,
Ripple = 10, Attenuation = 40,0rder = 4, Display = Logarithmic,
sampling rate= 1000,Lower Cut-Off Frequency = 100, andHigher
Cut-Off Frequency = 300. Run the VI.

Increase the filte®rder to 5, 10, 15, and 20, and note the difference
in the magnitude and phase responses. In particular, what changes do
you notice in the transition region?

Keep the filtelOrder fixed at 5, and change tikdter Design to

select different IIR filters. Note the changes in the magnitude and
phase plots. For a given filter order, which of the four different filter
designs has the smallest transition region?

When you finish, stop the VI by clicking on tB& OP button in the
lower right corner.

Close the VI. Do not save any changes.

End of Exercise 6-2
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Exercise 6-3 (Optional)

OBJECTIVE: To use a digital filter to remove unwanted frequencies.

In this exercise, you will add two sine waves of different frequencies and
then filter the resulting waveform using a Butterworth lowpass filter to
obtain only one of the sine waves.

1. Openthd.ow Pass FilterVI from the libraryLvspcex.llb . This
VI shows how to design a lowpass Butterworth filter to remove a
10 Hz signal from a 2 Hz signal.

Front Panel
SII'E l'l'lllﬂ'FEFnllTl
iampkes sampling Irequenoy
/200 +100.00

‘wavefom 1 wWavgiom 2

arpliuds 1 ampliuda 2

=TI = 1.0
fragquecy fEequancp 2
fhom szm

liker parameters
catolffreq: - codar
={EA i =g

The number of samples to be generated and the sampling frequency
is controlled by thesamplesandsampling frequencycontrols,
respectively.

The amplitude and frequency of the two sine waves can be controlled
by theamplitude 1, amplitude 2, frequency 1, andfrequency 2
controls on the front panel.

The cutoff freq:fl control controls the cutoff frequency of the
lowpass filter, whose order is adjusted by ¢tinéer control.
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2. Examine the block diagram.

Block Diagram

= @EQ“E"
. \—[1\ Eutenanrt FRee v
=] [ e
Sime Wt

[emgiat= 1 =1 Sihe Woee.y ] ::]E--F—a
TETIETE| T e PO N Lowps :

_E;& o Gt
E— L AN
:E::,_Iw lezza] _@J

frrplhude erd Phass Spescinm vl

-1 Sine WaveVI generates the two sine waves.

Amplitude and Phase SpectrumVI determines the
amplitude and phase spectrum of the output of the filtered
signal. In this exercise, you are interested in only the
amplitude spectrum.

The reciprocal of the sampling frequency gives the time intefwal,
between samples.

Remember that the frequency spaciiigjs obtained by dividing the
sampling frequency by the number of samples.

The two sine waves being combined together have frequencies of
10 Hz and 2 Hz. To separate them, you should set the cut off
frequency of the lowpass filter to somewhere between these two
values.

3. Keeping thecutoff freq: fl controlat 7 Hz, run the VI. Observe that
the amplitude of the 2 Hz signal is much larger than that of the 10 Hz
signal.

4. Reduce the filter order to 5 and run the VI. Repeat with an order
of 3. What do you notice about the spectrum amplitudes?

5. Increase the order to 12 and run the VI. Observe the spectrum
amplitudes. Explain what happens.

6. When you finish, close the VI. Do not save any changes.

End of Exercise 6-3
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G.The Transient Response of lIR Filters

You have seen that the output of a general IIR filter is given by

ylil= —ayli—1]-ayli-2] —..—ay _1y[i—-(Ny,=1)] + box[i] (4)
+ by x[i—1] +b,[i —2] +... +bNx—1X[i_(Nx_1)]

whereN, is the number of forward coefficientdy is the number of
reverse coefficients, ang & assumed to be equal to 1. Consider a
second-order filter wherld, = Ny = 2. The corresponding difference
equation is:

ylil= —ayyli—1] —apy[i—2] + box[i] + byx[i - 1] + b,[i —2] (5)

To calculate the current output (at tmail'nstant) of the filter, you need
to know the past two outputs (at the (Rnd the (i-2'j"I time instants)
as well as the current input (at thdtime instant) and past two inputs
(at the (i-1§'and (i-2J'd time instants).

Now suppose that you have just started the filtering process by taking the
first sample of the input data. However, at this time instant you do not
yet have the previous inputgit1] and x[i-2]) or previous outputs

(y[i-1] andy][i-2]). So, by default, these values are assumed to be zero.
When you get the second data sample, you already have the previous
input (x[i-1]) and the previous outpuy[i-1]) that you calculated from

the first sample, but not y&fi-2] andy][i-2]. Again, by default, these are
assumed to be zero. It is only after we start processing the third input
data sample that all the terms on the right hand side of equation (5) above
now have the previously calculated values. Thus, there is a certain
amount of delay before which there are calculated values for all the
terms on the RHS of the difference equation describing the filter. The
output of the filter during this time interval is a transient and is known
as thetransient responsd-or lowpass and highpass filters implemented

in the LabVIEW/BridgeVIEW Analysis library, the duration of the
transient response, delay, is equal to the order of the filter. For
bandpass and bandstop filters, this delay is 2*order.

lIR filters in the analysis library contain the following properties.

» Negative indices resulting from equation (4) are assumed to be zero
the first time you call the VI.

* Because the initial filter state is assumed to be zero (negative
indices), a transient proportional to the filter order occurs before the
filter reaches a steady state. The duration of the transient response,
or delay, for lowpass and highpass filters is equal to the order of the
filter:

delay = order
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* The duration of the transient response for bandpass and bandstop
filters is twice the filter order:

delay = 2 * order

So, each time one of the filter Vis is called, this transient appears at the
output. You can eliminate this transient response on successive calls by
enabling the state memory of the VI. To enable state memory, set the
init/cont control of the VI to TRUE (continuous filtering). You will see
how to do this in a later exercise.

Transient Steady State

Original Signal
Filtered Signal |-«

 The number of elements in the filtered sequence equals the number
of elements in the input sequence.

* The filter retains the internal filter state values when the filtering
completes.
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Exercise 6-4

Objective: To see the difference in the filter response with and without enabling state memory.
1. Open thd.ow Pass FilterVI from Lvspcex.llb
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‘whavefom 1| wlavefom 2
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04-
mit/cont [initF] 02—
OFF

no-; [ 1 1 1 1 1 1 1 1 1
00 &0 10D 180 200 20 A0 #/HO 400 [0 B0

2. Run the VI with the values shown on the front panel above, but with
order = 7. (Do not worry about thiait/cont (init: F) control for
now.)

Observe the uppeine Waveformgraph, which shows two plots.
The white dashed plot is the combined signal, whereas the green full
line plot is the filtered signal.

3. Change the filter order to 10 and run the VI. Observe the first few
values of the plot corresponding to the filtered signal.

4. Change the filter order to 15, 20, and 25, and run the VI. Each time,
observe the transient that occurs at the beginning of the plot
corresponding to the filtered signal. This transient can be removed
after the first call to the VI by enabling its state memory. This is done
by setting thenit/cont control of the VI to TRUE. Setting this
control to TRUE is equivalent to continuous filtering, and except for
the first call to the VI, each successive call will not have the
transient.
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5. Now connect a Boolean control as shown in the diagram to the
init/cont input of theButterworth Filter VI.

farping ey [350]
oo [3]

heguerey 1] 0T —

Fequaray 3 5]

el

il

6. With theinit/cont(init:F) control set to OFF, amafder = 15, run the
VI several times. Note the presence of the transient at the beginning
of the filtered signal each time the VI runs.

7. Now set thenit/cont(init:F) control to ON, and run the VI several
times. Observe that the transient is present only the first time that the
Vlis run. On successive calls to the VI, the transient no longer exists.

8. When you finish, save the VI.

End of Exercise 6-4
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H.Finite Impulse Response Filters

You have seen that the output of an IIR filter depends on the previous
outputs as well as the current and previous inputs. Because of this
dependency on the previous outputs, the IIR filter has infinite memory,
resulting in an impulse response of infinite length.

On the other hand, the output of an FIR filter depends only on the current
and past inputs. Because it does not depend on the past outputs, its
impulse response decays to zero in a finite amount of time. The output
of a general FIR filter is given by

ylil = bx[i] + byx[i-1] + box[i-2] + ... + BxX[i-(M-1)]

whereM is the number of taps of the filter angl by, ... by.1, are its
coefficients. FIR filters have some important characteristics:

1. They can achieve linear phase response, and hence they can pass a
signal without phase distortion.

2. They are always stable. During filter design or development, you do
not need to worry about stability concerns.

3. FIR filters are simpler and easier to implement.

The following graphs plot a typical magnitude and phase response of
FIR filters versus normalized frequency. The discontinuities in the phase
response arise from the discontinuities introduced when you compute
the magnitude response using the absolute value. Notice that the
discontinuities in phase are on the ordertoThe phase, however, is
clearly linear.
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Exercise 6-5

Objective: To see the frequency response characteristics of FIR filters.

In this exercise, you will see the magnitude and phase response
characteristics of FIR filters. You will also see the effect of using different
windows on the filter response characteristics.

1. Open thérIR Windowed Filter Design VI from Lvspcex.llb
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& o . Mognitude
Lo -25.0-
ez -60.0-
-75.0-
vindon A00.0-
» Hone 1792 : : : : | Hz
oo 0.0 0 ;0 ann A00
Dizplay tprggrih R Phosc
:m'pirg Frzq.lml:_l,l: F=
=]
bw cubolf fieg: A
BT
kigh culalf fleq:
4/%.00 Hz

0o 0.0 an.o 300 401 500

TheFilter Type control specifies the type of FIR filter—Ilowpass,
highpass, bandpass, or bandstop.

Thetaps control specifies the number of filter coefficients. Note that
taps must be greater than 0. The higher the number of taps, the steeper
the transition between the passband and the stopband.

Thewindow control selects among nine different types of windows to be
applied to the input signal before it is filtered.

TheDisplay control selects the display units on Magnitude plot to be
linear or logarithmic.

The sampling frequency: fs low cutoff frequency: fl, andhigh cutoff
frequency: th controls specify the desired response characteristics of the
filter. The high cutoff frequency: fh is required only whekilter Type

is chosen as bandpass or bandstop.
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The Magnitude and Phase plots show you the magnitude and phase
response of the filter. Note that because the filter under consideration is
an FIR filter, it is expected to have a linear phase response.

2. Observe the block diagram.
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Impulse Pattern VI (Analysis » Signal Generatiorsubpalette)
generates an impulse to be applied to the input of the FIR filter.
The response of the filter to the impulse will give us its impulse
response. Finding the FFT of the impulse response gives the

magnitude and phase response.

FIR Windowed Filter VI (Analysis » Filterssubpalette) is an
FIR filter that filters the input data sequence (in this case an
impulse) using the set of windowed FIR filter coefficients
specified by thesampling frequency: fs low cutoff frequency:

fl, high cutoff frequency: fth, andtaps controls. This filter also
windows the input signal with the type of window selected in the
window control.

Zero Padder VI (Analysis » Digital Signal Processing

subpalette) resizes the input sequence to the next higher power
of two by adding zeros to the end of the sequence. By converting
the total number of samples to a power of two, the calculation of
the Fourier transform of the impulse response of the FIR filter
can be done faster by tikeal FFT VI.

The default values have been chosen so that you will see the response
characteristics of a lowpass FIR filter with cut-off frequency of 15 Hz.
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You are not using any window on the input signal (that is, you are using
arectangularwindow) that is sampled at 100 Hz.

3.

4.

Run the VI with the default values. Observe the linear phase
response in the passband.

Select different types of windows using thiedow control and

observe both the magnitude and phase responses. Notice how the
choice of a window affects both the responses. The phase in all cases
will be linear.

The taps control affects the width of the transition region.

5.

9.

Observe the Magnitude response plot withRifter Type control set
to lowpass filter, théow cutoff frequency: fl set to 15 Hzsampling
frequency: fsset to 100 Hzwindow set to Kaiser-Bessel, amajps
set to 33.

Changdapsto 55 and observe how the transition region becomes
narrower.

Changdapsto 10 and observe the increase in the width of the
transition region.

You can experiment with different values of the other controls.
When you are done, stop the VI by clicking on 8%OP button in
the lower right corner.

Close the VI without saving any changes.

End of Exercise 6-5

© National Instruments Corporation
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I. Digital Filter Design Toolkit

While it is quite easy and straightforward to design a digital filter in
LabVIEW or BridgeVIEW using the analysis VIs, it does require a basic
understanding of digital signal theory. For the best tool to learn more about
digital filter design, National Instruments offers an add-on toolkit called the
Digital Filter Design (DFD) Toolkit. This toolkit was developed using G
and has an excellent interactive graphical user interface. By drawing lines
in the frequency domain, all types of digital filters can be easily designed.
The designed filter coefficients can then be integrated into LabVIEW,
BridgeVIEW, LabWindows/CVI, and other programming environments.
You will learn more about the DFD Toolkit in Lesson 10.
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Summary

Lesson 6 Digital Filtering

Review Questions

© National Instruments Corporation

You have seen from the frequency response characteristics that
practical filters differ from ideal filters.

For practical filters, the gain in the passband may not always be
equal to 1, the attenuation in the stopband may not always be -x, and
there exists a transition region of finite width.

The width of the transition region depends on the filter order, and the
width decreases with increasing order.

The output of FIR filters depends only on the current and past input
values, whereas the output of IIR filters depends on the current and
past input values as well as the past output values.

lIR filters can be classified according to the presence of ripples in the
passband and/or the stopband.

Because of the dependence of its output on past outputs, a transient
appears at the output of an IIR filter each time the VI is called. This
transient can be eliminated after the first call to the VI by setting its
init/contcontrol to a TRUE value.

Name three practical examples where filtering is used.

If the stopband attenuation of a filter is -80 dB, what is the output of
the filter to an input signal of 5 V peak if the frequency of the signal
lies in the stopband of the filter?

. Which filter would you use for the following applications?

a. When you want the narrowest possible transition region with the
smallest order.

b. When you cannot tolerate any ripples in either the passband or
the stopband.

c. When linear phase is important.

. Why does a transient initially appear at the output of a filter? How

can it be eliminated on successive calls to a VI?
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Notes
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Introduction
In this lesson, you will learn about the Analysis VIs that are used to fit
curves to data points.

You Will Learn:

A. About curve fitting and its applications.

B. About theGeneral Least Squares Linear FitVI.

C. About theNonlinear Levenberg-Marquardt Fit VI.

D. About fitting a curve to Gaussian (Normal) data points.
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A. About Curve Fitting

In the digital domain, a data set can be represented by two input sequences,
Y ValuesandX Values A sample or point in the data set can be written as

(x[il, y[il)

where x][i] is thei'" element of the sequeneValues and yf[i] is thei"
element of the sequendeValues Each yJi] is related to the
corresponding X[i]. You are interested in finding the relationship
between the y[i] and the x[i] in the digital domain, and expressing it in
the form of an equation in the analog domain.

Curve fitting acts as a bridge between the digital and analog worlds.
Using curve fitting, digital data can be represented with a continuous
model having a certain set of parameters. The basic idea is to extract a
set of curve parameters or coefficients from the data set to obtain a
functional description of the data set. This functional description
consists of the set of parametegsa, ..., § that best matches the
experimental model from which the data samples x[i] and y[i] were
obtained. Once you obtain the functional model, you can use it to
estimate missing data points, interpolate data, or extrapolate data.

Note: Note that y[i] is a function of both the parameterg,aas well as the data
X[i]. The following discussion refers to the terms “linear” and “nonlinear”
often. These terms refer to the relationship between y and a, and noty
and x.

The Analysis library offers both linear and nonlinear curve fitting
algorithms. The different types of curve fitting in LabVIEW are outlined
below:

» Linear Fit—fits experimental data to a straight line of the form
y=mx+c
ylil=aota*x[i]
* Exponential Fit—fits data to an exponential curve of the form
y = aexp(bx)
y[i] = ag*exp(a*x[i])
* General Polynomial F#fits data to a polynomial function of the
formy=a+bx + ¢ + ...

ylil = agta*x[i]+a*x[i] 2.
but with selectable algorithms for better precision and accuracy.
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 General Linear Fit—fits data to

ylil = agtay*f o (x[i)+a T H(X[i]) + ...
where y[i] is a linear combination of the parametgraa &.... The
general linear fit also features selectable algorithms for better
precision and accuracy. For example, y= @&*sin(x) is a linear fit
because has a linear relationship with parametaggnda,.
Polynomial fits are always linear fits for the same reason. But special
algorithms can be designed for the polynomial fit to speed up the
fitting processing and improve accuracy.

* Nonlinear Levenberg-Marquardt Fitfits data to

ylil = f(x[i], ao, &, &...)
whereay, a;, &... are the parameters. This method is the most general
method and does not requiréo have a linear relationship witg,
a;, &.... It can be used to fit linear or nonlinear curves, but is almost
always used to fit a nonlinear curve, because the general linear fit
method is better suited to linear curve fitting. The Levenberg-
Marguardt method does not always guarantee a correct result, so it is
absolutely necessary to verify the results.

Mean Squared Error
The algorithm used to fit a curve to a particular data set is known as the
Least Squaremethod. Let the observed data set be denotgkjpyand let
f(x,a) be the functional description of the data set whesdhe set of curve
coefficients that best describes the curve. The efadibetween the
observed values, and its functional description, is defined as

e(a) = [f(x,a) - y(x)]

For example, lea be the vectoa = {a, a}. The functional description
of aline is o 1

f(x,a) =a + a x.
0 1

The least squares algorithm estimates the valuesffom the values of
y[i] and x[i]. After you have the values far you can obtain an estimate
of the observed data set for any valueoking the functional
descriptionf(x,a). The curve fitting VIs automatically set up and solve
the necessary equations and return the set of coefficients that best
describes your data set. You can thus concentrate on the functional
description of your data and not worry about the methods used for
solving fora.

For each of the observed data points x]i], the differences between the
polynomial value f(x[i],a) and the original data y(x[i]) are called the
residualsand are given by

&(a) = f(x[i,a) - yi(x[i])
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The mean square error (MSE) is a relative measure of these residuals
between the expected curve values calculated by the functional
description f(x[i],a), and the actual observed values of y[i], and is
given by

MSE = 5 (fi-y)? = = § (8(a)?
N Z | I N Z 1

i=n i=n

wheref is the sequence representing the fitted val¥es the sequence
representing the observed values, &hd the number of sample points
observed. The smaller the MSE, the better is the fit between the
functional description and the observed y(x).

In general, for each predefined type of curve fit, there are two types of
Vls, unless otherwise specified. One type returns only the coefficients.
The other type returns the coefficients, the corresponding expected or
fitted curve, and the MSE.

Applications of Curve Fitting

The practical applications of curve fitting are numerous. Some of them
are listed below.

« Removal of measurement noise.

* Filling in missing data points (for example, if one or more
measurements were missed or improperly recorded).

* Interpolation (estimation of data between data points) (for example,
if the time between measurements is not small enough).

» Extrapolation (estimation of data beyond data points) (for example,
if you are looking for data values before or after the measurements
were taken).

» Differentiation of digital data. (For example, if you need to find the
derivative of the data points. The discrete data can be modeled by a
polynomial, and the resulting polynomial equation can be
differentiated.)

* Integration of digital data (for example, to find the area under a curve
when you have only the discrete points of the curve).

» To obtain the trajectory of an object based on discrete measurements
of its velocity (first derivative) or acceleration (second derivative).
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Exercise 7-1

Lesson 7 Curve Fitting

OBJECTIVE: To perform a linear curve fit on experimental data.

Front Panel
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1. Open thd.inear Curve Fit VI from the libraryLvspcex.llb

This example assumes that you have collected 10 pairs of
experimental dataandy, and have reason to believe there may be a
linear relationship between each pair.

On the front panel, the input data control on the left shows the values
of the data points t[i] and y[i]. After calculating the equation for the
linear fit, the calculated values of y[i] for the measured values of t[i]
are shown on the fitted data indicator on the right. The VI also gives
the values of the parametexsanda; (a andb indicators on the front
panel) and the resultindSE

3. Switch to the block diagram.

© National Instruments Corporation
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Block Diagram

9.

Examine the block diagram.

T Linear Fit VI (Analysis » Curve Fitting subpalette). In this
x-},:ti: exercise, this VI fits the data to a line and finds the
coefficients a and b such that y[i] = a + b*t[i], as well as the
mean squared error between the data and the linear fit.

The input data is in a two-dimensional array, which is a common
format when the data is collected from DAQ hardware. You use the
Index Array VI to obtain two one-dimensional arrays, y[i] and t[i].

The MSE is the mean squared error. A smaller error indicates a
better fit.

Run the VI. The graph should display the original data, as well as the
linear fit.

Change the values of y[i] in the input datmtrol. Observe the
corresponding plots and the effect on the MSE and slope when there
are points that don’t fit well.

When you finish, stop the VI by clicking on the STOP button.

10. Close the VI. Do not save any changes.

End of Exercise 7-1
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Exercise 7-2
OBJECTIVE: To perform a polynomial curve fit on experimental data.

Front Panel
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1. Open thé?olynomial Fit VI from the libraryLvspcex.llb . This
example assumes that the experimental input data has a polynomial
relationship where

y[i] = ag + a*t[i] + a,*t[i] ...

2. When the polynomial order is 1, there are two coefficiegtar(d g)
and the result is a linear fit as in exercise 7-1. However, when the
order is 2, it is a second order polynomial fit with three coefficients.

The polynomial coefficients are stored in an array a[i]. You can use
the polynomial order control to choose the order of the polynomial.

3. Switch to the block diagram.
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Block Diagram
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4. Examine the block diagram.

I General Polynomial Fit VI (Analysis » Curve Fitting

%; subpalette). In this exercise, this VI fits the data to a
second-order polynomial curve and returns the fit data, the

coefficients, and the mean squared error between the data

and the polynomial fit.

5. You use the polynomial fit to obtain the fitting coefficieajsa,, a,,
etc. In general, you want to use the lowest order possible to fit the

polynomial.

6. Run the VI. The original as well as the fitted data should appear on
the graph.

7. Change the values of y[i] in the input data control and the order of
the polynomial in the polynomial order control, and observe the
changes in the plots and the MSE.

8. When you finish, stop the VI by clicking on tB&OP button.
9. Close the VI. Do not save any changes.

End of Exercise 7-2
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Exercise 7-3

OBJECTIVE: To use and compare the Linear, Exponential and Polynomial Curve Fit Vis to obtain
the set of least square coefficients that best represent a set of data points.

1. Open theRegressions Dem& /I from the libraryLvspcex.llb
The front panel and block diagram are already built for you.

Front Panel
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This VI generates “noisy” data samples that are approximately linear,
exponential, or polynomial. It then uses the corresponding analysis
curve fitting VIs to determine the parameters of the curve that best fits
those data points. (At this stage, you do not need to worry about how the
noisy data samples are generated.) You can control the noise amplitude
with the Noise Levelcontrol on the front panel.
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Block Diagram
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2. SelectLinearin theAlgorithm Selector control, and set thHoise
Level control to about 0.1. Run the VI. Note the spread of the data
points and the fitted curve (straight line).

3. Experiment with different values @frder andNoise Level What do
you notice? How does the mse change?

4. Change thélgorithm Selector to Exponentialand run the VI.
Experiment with different values @frder andNoise Level What do
you notice?

5. Change thélgorithm Selector to Polynomialand run the VI.
Experiment with different values @frder andNoise Level What do
you notice?
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In particular, with thélgorithm Selector control set td?olynomial
change th@rder to 0 and run the VI. Then change it to 1 and run
the VI. Explain your observations.

Depending on your observations in steps 2, 3, 4, and 5, for which of
the algorithms (Linear, Exponential, Polynomial) is @reler
control the most effective? Why?

Close the VI. Do not save any changes.

End of Exercise 7-3

© National Instruments Corporation
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B. General LS Linear Fit

TheLinear Fit VI calculates the coefficientg and a that best fits the
experimental data (x[i] and y[i]) to a straight line model given by

ylil = ao + a*x[i]

Here, yJ[i] is a linear combination of the coefficiengsaad a. You can
extend this concept further so that the multiplier for al is some function
of x. For example:

y[i] = a5 + a*sin(wx]i]) or

ylil = ao + a*x[i] # or

yli] = a, + a*cos(@x[i] 2
wherew is the angular frequency. In each of these cases, y[i] is a linear
combination of the coefficientg and a. This is the basic idea behind
the General LS Linear Fit VI, where the yJ[i] can be linear
combinations of several coefficients, each of which may be multiplied
by some function of the x[i]. Therefore, you can use it to calculate

coefficients of the functional models that can be represented as linear
combinations of the coefficients, such as

y =g + a*sin(wx) or
y = & + a*x? + a2*cos(ox?)
y = & + a*(3sin(wx)) + x>+ a /X + ...

In each case, note thats alinear function of the coefficients (although
it may be a nonlinear function &j.

You will now see how to use tieeneral LS Linear Fit VI to find the
best linear fit to a set of data points. The inputs and outputs of the
General LS Linear Fit VI are shown below.

stardard Daviation =—————
H =T 13 Coelficienls
"r"'q"ahﬂ-'_l AR CEEI:FE
couaAiance salachar Ll Mes
Eiu:uth'n—l_ —l—arr-:lr

Coweiance

The data that you collect (x[i] and y[i]) is to be given to the inpLnd

Y Values. TheCovarianceoutput is the matrix of covariances between
the coefficients g where ¢ is the covariance betweepaad g and g

is the variance of,a At this stage, you need not be concerned about the
inputsStandard Deviation, covariance selectorandalgorithm. For
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now, you will just use their default values. You can refer ta_di®VIEW
Analysis VI Reference Manugr more details on these inputs.

The matrixH is known as thebservation matrixand will be explained
in more detail laterY Valuesis the set of observed data points y[i]. For
example, suppose you have collected sampeégalues) from a
transducer and you want to solve for the coefficients of the model:

y = a,+a;sin(wx) +a,cos(wx) + a3x2

You see that the multiplier for eaep(0 8j 83) is a different function.
For examplegg is multiplied by 14, is multiplied by sin@x), a, is
multiplied by cos@x), and so on. To buildi, you set each column &f
to the independent functions evaluated at eachlue, X[i]. Assuming
there are 100X” values,H would be:

1 sin(wxy) cos(wxy) XO2

1 sin(wx;) cos(wx,) xl2

1 sin(wx,) cos(wx,) x22

1 sin(wXgg) COS(WXqgg) x992

If you haveN data points anll coefficients (g, &, ....&.1) for which to
solve,H will be anN-by-kmatrix withN rows andk columns. Thus, the
number of rows oH is equal to the number of elementsyiivalues,
whereas the number of columnshbis equal to the number of
coefficients for which you are trying to solve.

In practice H is not available and must be built. Given that you have the
N independenK Values and observed Values, the following block
diagram demonstrates how to buHdand use th&eneral LS Linear

Fit VI.
N . H Coeffizients
1.0
Fl=sinlw ¥3); 'I H I LG
- . =t
v f2=coslwx); |1 I
fE=x¥n; LL]|=
W 2
W Malues
[oBL] "
i Walues
[oBL]
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Exercise 7-4
OBJECTIVE: To learn how to set up the input parameters and use the General LS Linear Fit VI.
This exercise demonstrates how to use@kaeral LS Linear Fit VI to

obtain the set of least square coefficiemésd the fitted values, and also
how to set up the input parameters to the VI.

The purpose is to find the set of least square coefficeettiat best
represent the set of data points (X][i], y[i]). As an example, suppose you
have a physical process that generates data using the relationship

y = 2hg(x) + 3h; (x) + 4h,(x) + noise (1)
where

ho(x) = sin(xz),

h,(x) = cos(x),

_ 1

hZ(X) = XT]—_’ and
noiseis a random value. Also, assume you have some idea of the general
form of the relationship betweemandy, but are not quite sure of the

coefficient values. So, you may think that the relationship betwaad
y is of the form

Y = agfo(x) +ayf; () + afy(X) +agfa(x) +a,f,(x) (2)
where
f,(x) = 10,
(0 = sin(E),
f,(x) = 3cos(x),
50 = —=

x+1
4

f4(x) =X .
Equations (1) and (2) respectively correspond to the actual physical
process and to your guess of this process. The coefficients you choose in
your guess may be close to the actual values, or may be far away from
them. Your objective now is to accurately determine the coefficeents

Building the Observation Matrix

To obtain the coefficients, you must supply the set of (x[i], y[i]) points in
the array$d andY Valuegwhere the matrikl is a 2D array) to th€eneral
LS Linear Fit VI. The x[i] and y[i] points are the values observed in your
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experiment. A simple way to build the matHxs to use the Formula Node
as shown in the following block diagram.

N
ua=1;
% Observed y1 = sin(x"2); =3
[D61] ] 42 = S¥cosl); —1=+|[']
Fr U3 = 17010 PEE g
y4 =x"4; 2
4

You can easily edit the formula node to change, add, or delete functions.
At this point, you have all the necessary inputs to us&treeral LS

Linear Fit VI to solve fora. To obtain equation (1) from equation (2),
you need to multiplyy(x) by 0.0,f;(X) by 2.0,f5(x) by 1.0,f3(x) by 4.0
andf,(x) by 0.0. Thus, looking at equations (1) and (2), note that the
expected set of coefficients are

a ={0.0,2.0,1.0,4.0,0)0

The block diagram below demonstrates how to set utreeral LS
Linear Fit VI to obtain the coefficients and a new seyafalues.

Creat

y=f(4

Data

noise arplitude

|| Hl::”:_,'l:] ] G\E'l'ILF_ .............................
Ulingit [ ™ (0B ]
MSE
errar

maiz | The subVl labeledata Creategenerates th¥ andY arrays.

You can replace this icon with one that actually collects the data
in your experiments. The icon labeleldX,i) generates the 2D
matrix H.

The last portion of the block diagram overlays the original and the
estimated data points and produces a visual record of the General LS
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0 berved Drala and Filed Curva

Linear Fit. Executing th&eneral LS Linear Fit VI with the values of
X, Y, andH returns the following set of coefficients.

Coefficients

The resulting equation is thus

y = 0.0298(1) + 2.1670sinfx + 1.0301(3cos(x)) + 3.9226/(x+1) +
0.00(X)

= 0.0298 + 2.1670sinfx + 1.0301(3cos(x)) + 3.9226/(x+1)

The following graph displays the results.

obaerved deta
hted datm

16 OO0 05 1.0 15 20 25 30 35 40 45 50 55 EO ES 70 75 749

You will now see the VI in which this particular example has been
implemented.

1. Open th&General LS Fit Example VI from the library
Lvspcex.llb

2. Examine the block diagram and the front panel.

noise amplitude can change the amplitude of the noise added to the
data points. The larger this value, the more the spread of the data
points.

NumbData: the number of data points that you want to generate.

algorithm: provides a choice of six different algorithms to obtain the
set of coefficients and the fitted values. In this particular example,
there is no significant difference among different algorithms. You
can select different algorithms from the front panel to see the results.
In some cases, different algorithms may have significant differences,
depending on your observed data set.
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MSE: gives the mean squared error. The smaller the MSE, the better
the fit.

error: gives the error code in case of any errors. If error code = 0, it
indicates no error. For a list of error codes, see the appendix.

Coefficients the calculated values of the coefficients @, &, as,
and a) of the model.

Run the VI with progressively larger values of ttoése amplitude
What happens to the observed data plotted on the graph? What about
the MSE?

For a fixed value ofioise amplitude run the VI by choosing
different algorithms from thalgorithm control. Do you find that any
one algorithm is better than the other? Which one gives you the
lowest MSE?

When you finish, close the VI. Do not save any changes.

End of Exercise 7-4

© National Instruments Corporation
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Exercise 7-5

OBJECTIVE: To predict production costs using the General LS Linear Fit VI.

The VIs that you have seen so far have been used to fit a curve to a function
of only one variable. In this exercise, you will use @eneral LS Linear

Fit VI to fit a curve to a multivariable function. In particular, the function

will have two variablesX1 andX2 You can, however, generalize it to
functions of three or more variables.

Suppose you are the manager of a bakery and want to estimate the total
cost (in dollars) of a production of baked scones using the quantity
produced X1, and the price of one pound of flon¢2. To keep things
simple, the following five data points form this sample data table.

Cost (dollars) Quantity Flour Price
Y X1 X2
$150 295 3.00
$75 100 3.20
$120 200 3.10
$300 700 2.80
$50 60 2.50

You want to estimate the coefficients to the equation:
Y=a, + a,X1 + a,X2.

You can use th&eneral LS Linear Fit VI. It must have the inputs,
the observation matrix, an@Values, a vector of values of the LHS of the
above equation. Each columnldfis the observed data for each of the
independent variables associated with the coefficiagta;, anda,.
Note that the first column is one because the coefficigig mot
associated with any independent variable. Thushould be filled in as:

1 295 3.0
1100 3.2
H = 1120031
1 700 2.8
1 60 25

In LabVIEW (or BridgeVIEW), the observed data would normally
appear in three array¥,(X1, andX2). The following block diagram
demonstrates how to build.
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Open théPredicting CostVI from the libraryLvspcex.llb . The
values of Y, X1, and X2 have already been entered into the
corresponding controls on the front panel.

Examine the block diagram. Be sure you understand how to build the
matrix H. Most of the rest of the block diagram is used to build the
string that displays the equation of the functional model. You do not
need to worry about the rest of the diagram for now.

Switch to the front panel and run the VI. Check to see whether the
matrix H was created correctly.
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Front Panel

W »1 w3 Explanation
+0 |%H50m ¥] |2zE00 | %D >3m0 Predictng Coxt -
- 7500 T 10004 =|FEN Suppoze you wanl I calmole the tolal
: 121.m S| a00nan : a1 st [ dollers] of & prshection of bakeed
a A nnnn i $Conee; uiing the quaniity produced,
= 0.0 H = 280 1, and the price of one pound of flowr,
= 000 - B0 2500 e
“ou wanl lo ettimale te cosfficienta 1o
the Equalion —
 =h0 + bis1 « B3
Caefficiants
n Touze the Beneral LS Linem FRt Y1_ the
CU T T 1305 mnly peranebers that you meed 1o build
ara H [obsarvation matriz] and Y Valuee
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L 1.00 (10000 3.20
1.00 200000 31a
1.00 700000 2.
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After running thePredicting Cost VI, the following coefficients are
obtained.

Coefficients

and the resulting equation for the total cost of scone production is
therefore:

Y=-20.34 + 0.3&1 + 19.0%2
4. Experiment with different values && (flour price).
5. When you finish, close the VI. Do not save any changes.

End of Exercise 7-5
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C. Nonlinear Lev-Mar Fit

So far, you have seen VIs that are used when there is a linear relationship
betweery and the coefficientay, &, a, .... However, when a nonlinear
relationship exists, you can use Mhenlinear Lev-Mar Fit VI to determine

the coefficients. This VI uses the Levenberg-Marquardt method, which is
very robust, to find the coefficients = {ag, &, &, ..., &} of the nonlinear
relationship betweeA and y[i]. The VI assumes that you have prior
knowledge of the nonlinear relationship betweernxthady coordinates.

;ﬁ." As a preliminary step, you need to specify the nonlinear function

i | in theFormula Node on the block diagram of one of the subVis

of theNonlinear Lev-Mar Fit VI. This particular subVI is the
Target Fnc and Deriv NonLin VI. You can access thEarget
Fnc and Deriv NonLin VI by selecting it from the menu that
appears when you seldetoject » This VI's SubVis.

Note:  When using the Nonlinear Lev-Mar Fit VI, you also need to specify the
nonlinear function in the Formula Node on the block diagram of the
Target Fnc and Deriv NonLin VI.

The connections to thdonlinear Lev-Mar Fit VI are shown below:

© National Instruments Corporation

Stendaid D akion Crreisnce
H |

ForflaR BestFit Coefigeniz
' -'_I—"']-a@f"-—tﬂtht
I nilial Gues Coefficicnt = e
max ikEiaon —l_ —l—zn'nr
Dl ot iva

X andY are the input data points x[i] and y[i].

Initial Guess Coefficientsis your initial guess as to what the
coefficient values are. The coefficients are those used in the formula
that you entered in theormula Node of theTarget Fnc and Deriv
NonLin VI. Using theNonlinear Lev-Mar Fit VI successfully
sometimes depends on how close your initial guess coefficients are
to the actual solution. Therefore, it is always worth taking the time
and effort to obtain a good initial guess to the solution from any
available resource.

For now, you can leave the other inputs to their default values. For
more information on these inputs, see the LabVIEW (or
BridgeVIEW) Analysis VI Reference Manual

Best Fit Coefficients:the values of the coefficientsagy, ...) that
best fit the model of the experimental data.
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Exercise 7-6

OBJECTIVE: To create a general exponential signal a*exp(b*x) + ¢ + noise. Then, use the
Nonlinear Lev-Mar Fit VI to fit the data and get the best guess coefficients a, b,

and c of the general exponential signal.

In this exercise, you will see how to use Manlinear Lev-Mar Fit VI to
determine the coefficients b, andc, of a nonlinear function given by

a*exp(b*x) + c.

1. Open theNonlinear Lev-Mar Exponential Fit VI from the library

Lvspcex.llb

Front Panel

. The front panel is shown below.

Th: ekampe ceaes a gereral =xporerba zgnal a*exp[b*x] + © + maoe, |ben westhe
Moninaar Lav-MarFie' 1o Ik the dsta and ged Iha bect quase cosfficientz 3. b, and ¢, ol te

rumbei ol ponz  Inbd Cosffeens 5 |andard Dieviabon
25 ] 4 Elﬂﬂ e
b 3 0.100 roie kyval [0 D0
& 5200 d01mn | am
rem data o
Exporertid EIEH Fited data |
10-¢
2B et
‘x
25 B
o
a4 —x
s
P
22 Mooun oK Y@ ]
ot i Mx_h: ﬂ\—u. p:x:d ¥ w X
19- R

00 50 100 150 =00 250 300 350 400 450 SO0

Covaliance

g E=

Bart Guast Coaf
E
[0 |

[1.82

| |

Thea, b, andc controls determine the actual values of the
coefficientsa, bandc. Thelnitial Coefficients control is your
educated guess as to the actual values bfandc. Finally, theBest
Guess Coefndicator gives you the valuesafbandc calculated by
the Nonlinear Lev-Mar Fit VI. To simulate a more practical
example, you also add noise to this equation, thus making it of the

form:
a*exp(b*x) + ¢ + noise

Thenoise levelcontrol adjusts the noise level. Note that the actual
values ofa, b, andc being chosen are +1.0, -0.1 and 2.0. Inititel
Coefficientscontrol, the default guess for thesars 2.0,b = 0, and

c=4.0.
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2. Examine the block diagram.

Block Diagram

number of poinl: .
=] [ & Bardla Clhustor Ay Lo drest

o B uilu:l Cluster Amay|

L) [#81] | |Standard Desvialiar)

[#EL]]| Best Bues: Coel

n*E

[E%=]| zirn

;,;f The data samples of the exponential function are simulated
2222 using theExponential VI (Numeric » Logarithmic subpalette)

— and uniform white noise is added to the samples with the help of
]‘f‘.ﬂ'ﬁ the Uniform White Noise VI (Analysis » Signal Generation

S0 subpalette).

3. From theProject menu, selectynopened SubVls » Target Fnc and

Deriv NonLin VI. The front panel of th&arget Fnc and Deriv
NonLin VI opens, as shown below.

Thic:'Wl caculatar Ika ouput 't as a lanction af the nput
amay & a: wWell e he daitatived ol he lunction at al vauee
af H. The waer specilies e ' Tanget Funclar' and il:
derwebivez n the locmule node= of this W, The ichon
degibes tha relaliarehip of T'toK and Ika cosliciesl: wead
ans updated in sach keration Al & nar Ques al teir waug
i baken Heros "t Dedvatives. and Cosficieats ae
conbruoudy changmg.

ki
Daod

|Credrineal s
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4. Switch to the block diagram.

[ ]
Partial Danvalives af fl4] wilk
reapact o hecoafficients a.

10 el kv ER

o

* Fumction fx] rars the above pailid danvalie

‘Fha&a i

lormude if wou sskect mumerice caculalion
|lor onbid denwabve inthe Honlres

v Law-kar Fit 1.

Observe the formula node at the bottom. It has the form of the
function whose parameters (a0, al, and a2) you are trying to
evaluate.

5. Close the front panel and the block diagram ofTiaiget Fnc and
Deriv NonLin VI.

6. Run theNonLinear Lev-Mar Exponential Fit VI. Note that the
values of the coefficients returnedBest Guess Coeére very close
to the actual values entered in théial Coefficients control. Also
note the value of these

7. Increase thaoise levelfrom 0.1 to 0.5. What happens to theeand
the coefficient values iBest Guess Coéf Why?

8. Change thaoise levelback to 0.1 and thiaitial Coefficients to 5.0,
-2.0, and 10.0, and run the VI. Note the values returned iBdke
Guess Coefind themseindicators.

9. With thenoise levelstill at 0.1, change your guess of théial
Coefficientsto 5.0, 8.0, and 10.0, and run the VI. This time, your
guess is further away than the one you chose in step 4. Note the error!
This goes to show how important it is to have a reasonably educated
guess for the coefficients.

10. When you finish, close the VI. Do not save any changes.

End of Exercise 7-6
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D.Fitting a Curve to Gaussian (Normal) Data Points

Real-world data is very often Gaussian distributed. That means that many of
the data points lie close to a particular value, known as the mean, and the
number of data points is smaller as you get further away from the mean. The
mathematical description of a Gaussian (also known as a Normal)
distribution is:

-1 Apx—prf
f(x) = omexp[ 200 D} (3)

wherep is themeanando is thestandard deviationThe following
figure shows the Gaussian distribution wit= 0 and o = 0.5, 1.0,
and 2.0.

Gavazian Dizlribuliora
0.2-

As seen from the figure, the curve is bell shaped and is symmetric about the
mean . The peak of the curve occurgatlhe standard deviatioa,
determines the “spread” of the curve around the mean. The smaller the value
of g, the more concentrated the curve around the mean, the higher the peak
at the mean, and the steeper the descents on both sides.

If you have data that is Normally distributed, you will find that the
standard deviation is an important parameter in determining the limits
within which a certain percentage of your data values are expected to
occur. For example,

1. About two-thirds of the values will lie betwepro andu+o.
2. About 95% of the values will lie betwe@r20 andu+20.
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3. About 99.75% of the values will lie betwep+8o andpu+30. Thus,
you see that almost all the data values lie betywegm andu+3o. This
is illustrated in the figures below:

68%

Gaugzian Dickibution for doma = 1.0)

i
=
|
|

A0 40 2D 20 40 00 10 20 30 40 50
p-o H H+o
95.5%

Gauzzian Dictibukion For doma = 1.0|

B0 40 30 20 40 00 10 20 40 40 &0
p-20 H M+ 20
99.76%

Gatgzian Dictibukion For doma = 1.0)

B0 40 30 20 40 00 10 20 20 40 &0
M -30 ¥ u+30

Notice that the two parameters that completely describe Gaussian data

are themeanand thestandard deviatiomf the data. If you believe your
data has a Gaussian distribution, you could determine its mean and

standard deviation. This has numerous applications, such as determining

whether:

* The dimensions of products being manufactured (for example,
thickness of plates) are to within specified limits.

» The values of components (for example, resistance of resistors) are

to within a specified tolerance.

LabVIEW Signal Processing Course Manual 7-26 © National Instruments Corporation



Lesson 7 Curve Fitting

Exercise 7-7

Objective: To fit a curve to noisy Gaussian data.

1. Open theNormal (Gaussian) FitVI from the library
Lvspcex.llb

Thiz exampk: creales aMamalp dzibuted signal with added moibe. hen dess e Maorlaear
Les-M e Fil*s1 o bl he data and gel the bed gues ol he meffcens mean ard zgma, of the
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. |
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0=
00-
a1l [11F1:] =110 )

A0 -40 -B0 &0 40 00 10 20 30 40 &g | BOHET | B |
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2. Switch to the block diagram.

Block Diagram

[ 3] |Gatasian granh

noiea level L

Observe that the parameterandb in theNonlinear Lev-Mar

Exponential Fit VI of the previous exercise have been replacechégn
andsigma Note that the controls for the paramet@nd thenumber of

points have been removed. The For Loop generates the range of the data to
lie between -5.0 and +5.0. Most of the additions on the block diagram have
to do with implementing equation (3 ) on page 7-24. Uniform white noise is
then added to the Gaussian data generated.

3. SelectProject » Unopened SubVis » Target Fnc & Deriv
Nonlin VI.
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4. Modify the block diagram of th€arget Fnc & Deriv Nonlin VI as
shown below.
Block Diagram
................................................................................................................
.. Partial D edvative of 1[4 with
E'ﬁ?“ds I reapacl b the cosficiants a.

dl = eaplel k]

di =alfmplal@): Darivalfies

H |
f-{a0]4z = 1;
.jm

Fleaea ignoma the sboyve paltid danvalie
fomnda F pau seleck umericel caculation
foi conimol derwebiee inthe Noninea

Leew-M r Fil™1.

temp] = agrll2°pil* sigme:
temp =[[x - mean)'agmal2;

Go back to th&lormal (Gaussian) FitVI and enter the following
values in the controls on the front panel:

sigma 1.0
mean 0.0
noise level 0.1

Clear thenitial Coefficients array by popping up on it with the right
mouse button and selectiata Operations » Empty Array. Set

the values irnitial Coefficients to 2.0 and 2.0. These are your
guesses of sigma and mean, the actual values of which you chose as
1.0 and 0.0 in the corresponding controls.

Run the VI several times and observe the values of sigma and mean
in theBest Guess Coefindicator. In the plot, you can also see the
spread of the data and the fitted Gaussian curve.

Change the value of sigma to 1.0 and run the VI several times. Each
time observe the fitted curve, the mse, and the values &dste
Guess Coeff

Change Initial Coefficients [0] (the guess for sigma) to 50.0 and run
the VI several times. Does the VI obtain a good estimate of sigma in
the arrayBest Guess Coef

10. Change Initial Coefficients [0] (the guess for sigma) to 500.0 and
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again run the VI several times. Now how accurate is the estimate?
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11. When you finish, save and close the VI.

In this exercise and the previous one, you had to opehatyet Fnc

and Deriv NonLin VI and enter equations in the formula node. This
requires a certain amount of work, as well as an understanding of the
formula node, on your part. A much simpler and easier method is to have
the flexibility of entering the formulas directly on the front panel,
without accessing the block diagram. As you will see in a later lesson,
this is possible by using the G Math Toolkit, which is a mathematics
package (written entirely in G) that is extremely useful for solving
differential equations, optimization, and a wide variety of other common
math problems.

End of Exercise 7-7
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Review Questions

Curve fitting is useful in fitting an equation to a set of data points.
Some of the practical applications of curve fitting are to remove
measurement noise, to fill in missing data points, interpolation,
extrapolation, and integration and differentiation of digital data.

In particular, you have learned how to useltheear, Exponential,
Polynomial, General Linear LS Fit, andNonlinear Lev-Mar Fit
Vis to perform several different types of linear and nonlinear fits.

The MSE is a useful criterion in determining the fit accuracy.

Name five applications of curve fitting.

2. Which curve fitting VI would you use to determine the parameters

© National Instruments Corporation

(denoted by tha,...i integer) of the following models?
a. y = aexp(ax)

y = aexp(ax) + &

y = ax + ax?

y = gsin(x) + gcos(x) :XaT:"l

t = gy + ax? where x and y are different variables

®© oo o
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Notes
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Lesson 8
Linear Algebra

]

Introduction

In this lesson, you will learn the basic theory behind the Linear Algebra Vls
in the Analysis library and how these VIs can be used in different
applications. Matrix computations, such as matrix-matrix multiplication

and many others discussed throughout this lesson, form a significant
component of linear algebra and are very important in analysis. The VIs
discussed in this lesson form the basis of different algorithms used in many
DSP, control, and measurement applications. Therefore, it is important that
you completely understand the theory and different VlIs discussed in this
lesson.

You Will Learn:

A. About linear systems and matrix analysis.

B. About basic matrix operations and eigenvalue-eigenvector
problems.

C. About the inverse of a matrix and solving systems of linear
equations.

D. About matrix factorization.
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A.Linear Systems and Matrix Analysis

Types of Matrices

Systems of linear algebraic equations arise in many applications that
involve scientific computations such as signal processing, computational
fluid dynamics, and others. Such systems may occur naturally or may be the
result of approximating differential equations by algebraic equations.

Whatever the application, it is always necessary to find an accurate solution
for the system of equations in a very efficient way. In matrix-vector
notation, such a system of linear algebraic equations has thé\fo#arb,
whereA is annx n matrixb is a given vector consisting nlements, and

x is the unknown solution vector to be determined. A matrix is represented
by a 2D array of elements. These elements may be real numbers, complex
numbers, functions, or operators. The matrshown below is an array of
mrows and columns withmx n elements.

8,0 8,1 - 8on-1
A= | 8o @1 - 81

8m_1,08m-1,1 -+ 8m_1,n-1

Here,a;; denotes thi,j)™ element located in th&" row and thg'"

column. In general, such a matrix is calleceatangular matrix When

m = n, so that the number of rows is equal to the number of columns, it
is called asquare matrixAn mx 1 matrix fn rows and one column) is
called acolumn vectorA row vectoris a1xn matrix (1 row and
columns). If all the elements other than the diagonal elements are zero
(thatis,q; = 0,i#j ), such a matrix is calleddgagonal matrix For
example,

40
A=105
00

is a diagonal matrix. A diagonal matrix with all the diagonal elements
equal to one is called adentity matrix also known aanit matrix If all

the elements below the main diagonal are zero, then the matrix is known
as anupper triangular matrix On the other hand, if all the elements
above the main diagonal are zero, then the matrix is knowroagea
triangular matrix When all the elements are real numbers, the matrix is
referred to as aeal matrix On the other hand, when at least one of the
elements of the matrix is a complex number, the matrix is referred to as
acomplex matrixTo make things simpler to understand, you will work
mainly with real matrices in this lesson. However, for the adventurous,
there are also some exercises involving complex matrices.
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Determinant of a Matrix
One of the most important attributes of a matrix isiéserminantin

the simplest case, the determinant of a 2 x 2 matrix{a j is given
C

by ad— bc. The determinant of a square matrix is formed by taking the
determinant of its elements. For example, if

25
A=1617
16
the determinant of\, denoted byal , is

A =25 0 0=2(-33) -5(47) + 3(39
o el
o6 9 19 1 6||0
16
=-196

The determinant tells many important properties of the matrix. For
example, if the determinant of the matrix is zero, then the matrix is
singular. In other words, the above matrix (with nonzero determinant) is
nonsingular You will revisit the concept of singularity later in section

C, when the lesson discusses the solution of linear equations and matrix
inverses.

Transpose of a Matrix
Thetransposeof a real matrix is formed by interchanging its rows and
columns. If the matri® represents the transposeAgpfdenoted bAT, then
bi=a;; . For the matriXA defined above,

261
B:AT: 51

37

In case of complex matrices, complex conjugate transposition is defined.
If the matrixD represents theomplex conjugate transposef a
complex matrixC, then

D =c"0d;= cl;
That is, the matridD is obtained by replacing every elemenGiby its

complex conjugate and then interchanging the rows and columns of the
resulting matrix.

1. Complex Conjugate: # = x + iy, complex conjugate” = x - iy
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A real matrix is called aymmetric matrixf the transpose of the matrix
is equal to the matrix itself. The example matkixs not a symmetric
matrix. If a complex matrixC satisfies the relatio@ = C", thenC is
called aHermitian matrix

Obtaining One Vector as a Linear Combination of Other Vectors
(Linear Independence)

A set of vectorgy, X, ...., % is said to béinearly dependenif and only if
there exist scalars,, a,, ...,a,, not all zero, such that

O X +0,X+... +a.X, =0

In simpler terms, if one of the vectors can be written in terms of a linear
combination of the others, then the vectors are said to be linearly
dependent.

If the only set ofo; for which the above equation holdsdis=0

a, =0, ...,a, = 0, the set of vectors, X,, ....,X, iS said to bdinearly
independentSo, in this case, none of the vectors can be written in terms
of a linear combination of the others. Given any set of vectors, the above

equation always holds far, =0 @,=0 ,..0,=0 . Therefore, to
show the linear independence of the set, you must showathato ,
a,=0, ..., a, = 0 isthe only set af; for which the above equation
holds.

For example, first consider the vectors

-

Notice thata, = 0 ancy, = 0 are the only values for which the relation
a,x+a,y = 0 holds true. Hence, these two vectors are linearly
independent of each other. Now, consider vectors

<l

Notice that, ifa, = -2 and, =1 , them,x+a,y = 0 . Therefore, these
two vectors are linearly dependent on each other. You must completely
understand this definition of linear independence of vectors to fully
appreciate the concept of thenk of the matrix as discussed next.

How Can You Determine Linear Independence? (Matrix Rank)
Therankof a matrixA, denoted bp(A), is the maximum number of linearly
independent columns A If you look at the example matix you will find

that all the columns oA are linearly independent of each other. That is,
none of the columns can be obtained by forming a linear combination of the
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other columns. Hence, the rank of the matrix is 3. Consider one more
example matrixB, where

01
B=112
20

This matrix has only two linearly independent columns, because the
third column ofB is linearly dependent on the first two columns. Hence,
the rank of this matrix is 2. It can be shown that the number of linearly
independent columns of a matrix is equal to the number of independent
rows. So, the rank can never be greater than the smaller dimension of the
matrix. Consequently, i\ is annx m matrix, then

P(A) <min(n m

wheremin denotes the minimum of the two numbers. In matrix theory,
the rank of a square matrix pertains to the highest order nonsingular
matrix that can be formed from it. Remember from the earlier discussion
that a matrix is singular if its determinant is zero. So, the rank pertains
to the highest order matrix that you can obtain whose determinant is not
zero. For example, consider a 4 x 4 matrix

12 3
01-10
101
110

B =

For this matrix,det B) = 0 , but

12 3
01-1| =-1
101

Hence, the rank d is 3. A square matrix has full rank if and only if its
determinant is different from zero. Matris not a full-rank matrix.

“Magnitude” (Norms) of Matrices
You must develop a notion of the “magnitude” of vectors and matrices to
measure errors and sensitivity in solving a linear system of equations. As an
example, these linear systems can be obtained from applications in control
systems and computational fluid dynamics. In two dimensions, for example,
you cannot compare two vectors= [x1 x2| and [y1 yo| , because you
might havex1>y1 buk2<y2 . A vector norm is a way to assign a scalar
guantity to these vectors so that they can be compared with each other. It is
similar to the concept of magnitude, modulus, or absolute value for scalar
numbers.
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There are several ways to compute the norm of a matrix. These include
the2-norm(Euclidean norjy thel-norm theFrobenius norn{F-norm),

and thelnfinity norm(inf-norm). Each norm has its own physical
interpretation. Consider a unit ball containing the origin. The Euclidean
norm of a vector is simply the factor by which the ball must be expanded
or shrunk to encompass the given vector exactly. This is shown in the
figures below:

Figure la Figure 1b Figure 1c

i
NI

Figure 1a shows a unit ball of radius = 1 unit. Figure 1b shows a vector
of lengthJ2*+2° =./8 =22 . As shown in figure 1c, the unit ball must
be expanded by a factor ef/2  before it can exactly encompass the
given vector. Hence, the Euclidean norm of the vectar/is

The norm of a matrix is defined in terms of an underlying vector norm.
It is the maximum relative stretching that the matrix does to any vector.
With the vector2-norm the unit ball expands by a factor equal to the
norm. On the other hand, with the mat2bnorm the unit ball may
become an ellipsoidal (ellipse in 3D), with some axes longer than others.
The longest axis determines the norm of the matrix.
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Some matrix norms are much easier to compute than other&-idren
is obtained by finding the sum of the absolute value of all the elements
in each column of the matrix. The largest of these sums is called the
1-norm. In mathematical terms, the 1-norm is simply the maximum
absolute column sum of the matrix.

IAl, = ma>§2|ai,j|

For exampleA = {1 ?1
24

then|lAl, = max3,7) = 7 . Thenf-normof a matrix is the maximum
absolute row sum of the matrix

IAl, = maXZIai,jl
In this case, you add the magnitudes of all elements in each row of the
matrix. The maximum value that you get is called the inf-norm. For the
above example matrijA|,, = max4, 6) = 6

The 2-normis the most difficult to compute because it is given by the
largest singular value of the matrix. Singular values are discussed in
Section D, and Exercise 8-9 verifies the validity of the above statement.

Determining Singularity (Condition Number)
Whereas the norm of the matrix provides a way to measure the magnitude
of the matrix, theeondition numbepf a matrix is a measure of how close
the matrix is to being singular. The condition number of a square
nonsingular matrix is defined as

condA) = Al dA™,

wherep can be one of the four norm types discussed above. For example,
to find the condition number of a matix you can find the 2-norm of

A, the 2-norm of the inverdef the matrixA, denoted byA'l, and then
multiply them together. As mentioned earlier, the 2-norm is difficult to
calculate on paper. You can use Matrix Norm VI from the Analysis
library to compute the 2-norm. For example,

A=[123 at=]72 1| al, =5.4650]|a", = 2.7325cond A = 14.9331
34 1.5-0.

1. The inverse of a square matrix A is a square matrix B sucABwf where | is the identity matrix.
Matrix inverses and their applications are described in more detail later in section C.
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The condition number can vary between 1 and infinity. A matrix with a
large condition number is nearly singular, while a matrix with a
condition number close to 1 is far from being singular. The matrix

above is nonsingular. However, consider the madrix ngg O-ﬁ

The condition number of this matrix is 47168, and hence the matrix is
close to being singular. As you might recall, a matrix is singular if its
determinant is equal to zero. However, the determinant is not a good
indicator for assessing how close a matrix is to being singular. For the
matrix B above, the determinant (0.0299) is nonzero; however, the large
condition number indicates that the matrix is close to being singular.
Remember that the condition number of a matrix is always greater than
or equal to one; the latter being true for identity and permutation
matrices. The condition number is a very useful quantity in assessing
the accuracy of solutions to linear systems.

In this section, you have become familiar with some basic notation and
fundamental matrix concepts such as determinant of a matrix and its
rank. The following exercise should help you further understand these
terms, which will be used frequently throughout the rest of the lesson.

1. Apermutation matrixs an identity matrix with some rows and columns exchanged.
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Exercise 8-1

Objective: To construct matrices, compute condition number, rank, and determinant, and
observe how the condition number affects the accuracy of the solution.
In this exercise, you will complete a VI that constructs four different
matrices of siz@x 9 . You will determine the condition number, rank, and
determinant of these matrices. You will then solve a curve fitting problem
and observe how the condition number of these matrices affects the
accuracy of the final solution.

1. Open theConstruct Matrices VI from Lvspcex.llb

popuaion Qiaphi
; |ﬁll — IROE+E
1910.00 £E3E 5
1920.00 2MIE+h
popukalian 1/RE+5
20 |[FEazAm 150E+5
e
' 1[0E+8 .
Pakramial luaction =
FRE+S
T‘# 14 1920 134D 1931
|
Werdeimondes Meirs| cordiion number detemminart rark/|
£| DmME+D | nomEAD | 0 |

2. The arraypopulation (nine elements) contains the population data
for the United States for the years 1900 to 1980, at intervals of 10
years. This data has been plotted for you in the graph labeled
population graph. To find the population in any one of the
intermediate years, you need to interpolate between these nine data
points. This interpolation can be achieved by first fitting a curve to
these data points and then using the curve to obtain the intermediate
values. This curve is represented by a unique polynomial of degree
eight that interpolates these nine data points, but that polynomial can
be represented in many different ways. Consider the following four
ways to represent the individual terms in the polynomial:

(i) by(t) = ¢

(i) by(t) = (t—1900

(i) by(t) = (t-1940)

(iv) by(t) = ((t—1940/40)
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For example, the actual polynomial in case (i) is given by
Yy =ag+ agt +at? + ...

where theg; are the curve parameters to be determined.

To determine these parameters, it is necessary to solve a linear system
of equationya =y, wherev is a matrix,a = [a,, a;, ...], andy is the
population vector.

For each of these four representations, you can generate the Yhatrix
where theg(i,j)™ element of this matrix is given by

vij = b(t[i])

Such a matri¥ is referred to as théandermonde matridor example,
if you are using the polynomial representation (i) above, the
Vandermonde matrix will look like
1t t ..t
2 -1
v |1t tp ..t
2 -1
1ty ot .t ]

wheret; (0 8i 8 n-1) is thei" element of the vector “year.”
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Lesson 8 Linear Algebra

alrie Covdilian Humbar.y

ordiion numbe
[mpal

LEA F!arh.'r'i|

— roch[ Jrark
ki

3. Open the block diagram for this VI and complete it as shown above.

]|
=|=:|='5|

a A
als!

Fanh]

by

Bias

© National Instruments Corporation

Matrix Condition Number VI (Analysis » Linear Algebra »
Advanced Linear Algebrasubpalette). In this exercise, this
function computes the matrix condition number.

Determinant VI (Analysis » Linear Algebrasubpalette). In this
exercise, this function computes the matrix determinant.

Matrix Rank VI (Analysis » Linear Algebra » Advanced
Linear Algebra subpalette). In this exercise, this function
computes the matrix rank.

Bundle function Cluster subpalette) In this exercise, this

function assembles the population array and the year array to
plot the population array against the year array.
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4. The subdiagrams in Cagg, (t-1900)"j (t-1940)"j,and
((t-1940)/40)"jconstruct the matrices corresponding to the
polynomial functiongi), (ii), (iii), and(iv), respectively. The
subdiagrams in the first three cases, as shown above, are already
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built for you. You need only complete the subdiagram in Case
((t-1940)/40)n

Input Malnk r:H condton number
il

ram kppm

Hatrigk Condition Humbes_wi

aimi

5. TheMatrix Condition Number VI has an input calledorm type.
Earlier in the section, you looked at different types of norms. This VI
can compute the condition number using four different norm types.
In this exercise, you will setorm type = 0, which is the 2-norm.

A dataiminznl
=3l 100

I rput bl alig
Mk I tpne

Dataemmant_vi

6. TheDeterminant VI has an input callechatrix type. In this
exercise, you will sematrix type = 0 (general matrix).

Input M et Fark: rank
e
L] T ] -4 mior
Matrd Rankw

7. TheMatrix Rank VI has an input calletblerance. Leave this
terminal unconnected, using the default value for this exercise.

8. Return to the front panel and run the VI. Choose different
polynomial functions using th@lynomial function selectorcontrol.

9. Look at the condition numbers of the four matrices. Which is very
close to being singular?

10. Save and close this VI.
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11. You will now use the matrices (computed in@mnstruct Matrices
V1) to calculate the population for any year between 1900 and 1980.

To do so, open thEompute PopulationVI from Lvspcex.llb
This VI computes a polynomial to interpolate the data values to the
population data. It then computes the population for a specified year
using the Horner'’s nested evaluation scheme

12. Return to the front panel for the VI opened in step 10. Set the
“choose year” control to 1950. Using each of the four polynomial
functions, run the VI to compute the population for this year. The red
dot on thepopulation graph shows the population value for the year
chosen. Which of these values is closest to the true value of
151,325,798, according to the 1950 census?

13. Save the VI and close it.

End of Exercise 8-1

1. For more information on this method, refeBtentific Computing, An Introduction SurvayM.T.
Heath, McGraw-Hill, 1997.
© MNational Instruments Corporation
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Exercise 8-2
Objective: To study special matrices.

In this exercise, you will learn to use tGeeate Special Matrix VI in

the Analysis library. Examine the different types of special matrices that
this VI creates. Note that this VI also generates the Vandermonde matrix
used in the previous exercise.

Front Panel
. . D iaganal E lermart

indizanr 4 : Tl (I <100

El] 200

3 - /z00

I-[;EE;L ?E;Em Dieteminant of 0 =T
nOCS E.I:II:I | iw

U poer Trianguiar Melriz U | - 00
‘0L Digital 2 5
Irdicaor 2

E
DEL Diakal oy eminar o 28

0.00 | OHL Digld  Deaminant afL|

Indicanr pog |

1. Build the front panel as shown above. You can resize the
two-dimensional matrices D, U, and L to see all the elements in the
matrix.
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Block Diagram

Diaganal Ehlnfnt:al Diagond Watik D Crateminaal ol O
I T A T AR
~lel

E | mer—  HEper Tiarguler Matnx: L

Cieteminark cof U
[Lrva
B—— e (—{ve]] -"flsTLm

frUpner Tnanguls|

ppe Lo Sommetic Maerd

m T - il:l'.'-.'ElI Trianguiar Malit U Farermiars of
Lonx Iﬂl =
E_ll_

A |a
T |:L|:l.ua| Trienggla[l- =el

2. Build the block diagram as shown above.

Create Special Matrix VI (Analysis » Linear

Algebra » Advanced Linear Algebrasubpalette). In this
exercise, this function creates special matrices. You will
complete it in steps 4, 5, and 6.

=[]

Ihpul *achard =————
malfik [yps —
motre a4 |

Inpul *edorl

——— Special Mamiy
airal

Cieate Spacial Hatrie v

3. ConstrucDiagonal Matrix D using theCreate Special Matrix VI
from theAnalysis » Linear Algebra » Advanced Linear Algebra
subpalette. Thenatrix size input determines the dimension size of
the outputSpecial Matrix. Choosematrix size = 6.

4. Thematrix type input determines the type of matrix that is generated
at the outpuSpecial Matrix. Chooseamatrix type = Diagonal.

5. Enter the diagonal elements 1, 2, 3, 4, 5, and 6 iDthgonal
Elementscontrol on the front panel. Connect this control toltipeit
Vectorl terminal. The mput Vectorl terminal is the input to
construct a special matrix depending on ritegrix type chosen.

Return to the front panel and run the VI.

7. Compute the determinant of this matrix as you did in the earlier
exercise. Do you find anything interesting about this determinant
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value? If yes, what is it? If no, take a close look at the diagonal
elements of the matri®.

8. Select thaJpper Lower Symmetric Matrix VI from
Lvspcex.llb . SetSelect Matrix Type = 0 (upper triangular
matrix). Setmatrix Size = 6. Wire the matriD to theinput matrix
terminal. Theoutput matrix U is an upper triangular matrix.

Gl st Tppe ;E‘: _
makies Size — gl oulput malnk
ol mikie

Upper Lower Spmmeetric Matriz i

9. Compute the determinant of this matrix. Do you find anything
interesting about this determinant value? If yes, what is it?

10. Chooseamatrix type = 1 (lower triangular matrix). Setatrix Size
equal to 6. Wire the matri® to theinput matrix terminal. The
output matrix L is a lower triangular matrix. Repeat step 6.

11. Save the VI aSpecial Matrix.vi and close it.

Note:  The determinant for all the three matrices is equal to the product of the
diagonal elements of the matrices.

End of Exercise 8-2
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B. Basic Matrix Operations and Eigenvalues-Eigenvector
Problems

In this section, consider some very basic matrix operations. Two
matrices A andB, are said to be equal if they have the same number of
rows and columns and their corresponding elements are all equal.
Multiplication of a matrixA by a scalax is equal to multiplication of

all its elements by the scalar. That is,

C=oaAl ¢ = ag;

For example,

2l le g

Two (or more) matrices can be added or subtracted if and only if they
have the same number of rows and columns. If both mathices B
havem rows andn columns, then their su@ is anm-by-n matrix

defined asCc = A+ B , where;; = a;+b;; . For example,

R

For multiplication of two matrices, the number of columns of the first
matrix must be equal to the number of rows of the second matrix. If
matrix A hasm rows and columns and matri8 hasn rows andp
columns, then their produ€is anm-by-p matrix defined ax = AB ,
where

G = z 3 by ;
k=n

For example,

R
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So, you multiply the elements of the first rowfoby the corresponding
elements of the first column & and add all the results to get the
elements in the first row and first column@©f Similarly, to calculate
the element in thdirow and thet]1 column ofC, multiply the elements
in the 1 row of A by the corresponding elements in tWe:pIumn ofC,
and then add them all. This is shown pictorially as:

R1-C1 R1+«Cm

R o ﬁ

Matrix multiplication, in general, is not commutative. ThatAgsz BA
Also, remember that multiplication of a matrix by an identity matrix
results in the original matrix.

Dot Product and OQuter Product
If X represents a vector aNdepresents another vector, thendo¢
productof these two vectors is obtained by multiplying the corresponding
elements of each vector and adding the results. This is denoted by

XeY = inyi
i=n

wheren is the number of elements ¥randY. Note that both vectors
must have the same number of elements. The dot product is a scalar
guantity, and has many practical applications.
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For example, consider the vectars: 2i + 4 and 2i +] ina
two-dimensional rectangular coordinate system.

a=2i+4j

o = 36.86°
b=2i+j

v

The dot product of these two vectors is given by

d= H-H =(2x2)+(4x1) =8
4 |1

The anglen between these two vectors is given by
a = invcosaaﬁg = invcos%l%g = 36.88,

where §| denotes the magnitude af

Force a

As a second application, consider a body on which a constantgorce
acts. The work W done byin displacing the body is defined as the
product of ¢l] and the component afin the direction of displacemedt
That is,

W = |d|dcosa = a-d

On the other hand, tlouter producof these two vectors is a matrix. The
(i,j)™ element of this matrix is obtained using the formula

& = X XY

For example,H x ﬁ = {3 ﬂ
2| |4 68
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Eigenvalues and Eigenvectors
To understand eigenvalues and eigenvectors, start with the classical
definition. Given amx n matriA, the problem is to find a scalkrand a
nonzero vectox such that

AX = AX

Such a scalax is called areigenvalueandx is a corresponding
eigenvector

Calculating the eigenvalues and eigenvectors are fundamental principles
of linear algebra and allow you to solve many problems such as systems
of differential equations when you understand what they represent.
Consider an eigenvectriof a matrixA as a nonzero vector that does not
rotate wherx is multiplied byA (except perhaps to point in precisely the
opposite direction)x may change length or reverse its direction, but it
will not turn sideways. In other words, there is some scalar comstant
such that the above equation holds true. The valiseaneigenvalue

of A.

Consider the following example. One of the eigenvectors of the
matrix A, wherea = E j isx = E-gi . Multiplying the matrik and

the vectorx simply causes the vectarto be expanded by a factor of
6.85. Hence, the value 6.85 is one of the eigenvalues of the rAakox

any constantt , the vectax is also an eigenvector with eigenxalue ,
because

A(ax) = aAx= Aax
In other words, an eigenvector of a matrix determines a direction in
which the matrix expands or shrinks any vector lying in that direction by
a scalar multiple, and the expansion or contraction factor is given by the

corresponding eigenvalue. generalizeceigenvalue problem is to find
a scalamn and a nonzero veckasuch that

AX = ABX

whereB is anothemxn matrix.

The following are some important properties of eigenvalues and
eigenvectors:

* The eigenvalues of a matrix are not necessarily all distinct. In other
words, a matrix can have multiple eigenvalues.

» All the eigenvalues of a real matrix need not be real. However,
complex eigenvalues of a real matrix must occur in complex
conjugate pairs.
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* The eigenvalues of a diagonal matrix are its diagonal entries, and the
eigenvectors are the corresponding columns of an identity matrix of
the same dimension.

* Areal symmetric matrix always has real eigenvalues and
eigenvectors.

» As discussed earlier, eigenvectors can be scaled arbitrarily.

There are many practical applications in the field of science and
engineering for an eigenvalue problem. For example, the stability of a
structure and its natural modes and frequencies of vibration are
determined by the eigenvalues and eigenvectors of an appropriate
matrix. Eigenvalues are also very useful in analyzing numerical
methods, such as convergence analysis of iterative methods for solving
systems of algebraic equations, and the stability analysis of methods for
solving systems of differential equations.

The LabVIEW/BridgeVIEWEigenValues and VectorsVl is shown
below. Thelnput Matrix is an N-by-N real square matrikatrix type
determines the type of the input matriatrix type could beO,
indicating ageneral matri%, or 1, indicating asymmetric matrixA
symmetric matrix always has real eigenvalues and eigenvectors.

Inpul bl o A) Egenvabe:
METH hpE i Eigeivarion
olput apkion —' — amar

EqgenValues and Verbhoas. w

Output option determines what needs to be computed. Output

option= 0 indicates that only the eigenvalues need to be computed.
Output option = 1 indicates that both the eigenvalues and the
eigenvectors should be computed. It is computationally very expensive
to compute both the eigenvalues and the eigenvectors. So, it is important
that you use the output opti@ontrol in theEigenValues and Vectors

VI very carefully. Depending on your particular application, you might
just want to compute the eigenvalues or both the eigenvalues and the
eigenvectors. Also, a symmetric matrix needs less computation than an
unsymmetric matrix. So, choose the matrix type control carefully.

In this section, you learned about some basic matrix operations and the
eigenvalues-eigenvectors problem. The next example introduces some
Vis in the Analysis library that perform these operations.

1. General Matrix: A matrix with no special property such as symmetry or triangular structure.
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Exercise 8-3

Objective: To learn basic matrix manipulations

You will build a VI that will help you further understand the basic matrix
manipulations discussed in the first part of the previous section. You will
also learn some very interesting matrix properties.

Dimgond Elemenks A

Malrik & Sizgl
|

Dimaced Elemests B)

5

Malnk B Ei:d Lt

1. Build the front panel as shown above. You can resize the
two-dimensional matrice8, B, andC to see all the elements in the
matrix.

2. In this exercise, you will experiment with three different types of
matrices, namely upper triangular, lower triangular, and symmetric
matrix. You will use théJpper Lower Symmetric Matrix VI that
you used in the previous exercise.
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el
I v L
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3. Build the block diagram as shown above.

Create Special Matrix VI (Analysis » Linear Algebra »
Advanced Linear Algebrasubpalette). In this exercise, this
function creates special matrices.

=[]

A=m| AXB VI (Analysis » Linear Algebrasubpalette) In this exercise,
b3k-H:{ this function multiplies two matrices).

4. Create a diagonal matrix using fbeeate Special Matrix VI. Select
the Upper Lower Symmetric Matrix VI from the library
Lvspcex.llb . This VI will create the appropriate type of matrix
depending on th#atrix Type control.

5. Select thé x B VI from theAnalysis » Linear Algebrasubpalette.
You will use this VI to multiply matriXA and matrixB and the result
of this multiplication is stored in matri.

6. Return to the front panel. Choodatrix A Size = 6 andMatrix B
Size= 6. Set thdiagonal Elements AandDiagonal Elements B
controls for both the matrices to some value (similar to what you did
in the previous exercise). The size of this array is equal to the matrix
size.

7. ChooseMatrix Type = 0 (Upper Triangular Matrix). Run the VI.
Observe the structure of the upper triangular mat#casdB.
Matrix Cis the product of these two matrices. Do you find anything
interesting about the structure of this matrix?

8. Now chooséMatrix Type = 1 (Lower Triangular Matrix). Run the
V1. Observe the structure of the two lower triangular matrikces
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andB. Matrix C is the product of these two matrices. Do you find
anything interesting about the structure of this matrix?

9. Now chooséMatrix Type = 2 (Symmetric Matrix). Run the VI.
Observe the structure of the two symmetric matrasndB.

Matrix C is the product of these two matrices. Do you find anything
interesting about the structure of this matrix?

10. Change th#latrix A Size to 5. Keep théatrix B Size at 6. Run the
V1. Why did you get an errd®

11. Save the VI aBlatrix Multiplication.vi and close it.

End of Exercise 8-3

1. Description of Error Code -20039: The number of columns in the first matrix is not equal to the number
of rows in the second matrix or vector.
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Exercise 8-4
Objective: To study positive definite matrices.

In many applications, it is advantageous to determine if your matrix is
positive definiteThis is because if your matrix is indeed positive
definite, you can save a significant amount of computation time when
using VIs to compute determinants, solve linear systems of equations, or
compute the inverse of a matrix. All these Vls let you choose the matrix
type, and properly identifying the matrix can significantly improve
performance.

In this exercise, you will learn about complex positive definite matrices.
A complex matrix is positive definite if and only if it is Hermitian; that
is, A= A", and the quadratic forx"Ax>0  for all nonzero vecirs

Front Panel

COE Digha Al

Conlrof %I {2900 40001 |SE130 70EI | LETE4 G255
351.30 47T0BI SNEZH 4000 59432 47520
¢ TEL EL35I L9432 47511 |3 262004000 |

0B Digkl A <
co e 0 |7 23448800 31.22 <450 Eladﬁ-ﬁai || “COB Digkal 00D -+0.001 |

Indicalore

"COE Digkal
Conlnd®

| poetive dalnke?)|
T

*Boolemn Indicalor® | FALSE

1. Build the matrixA and the rest of the front panel as shown in the front
panel above.

2. Switch to the block diagram and use Trest Complex Positive
Definite VI to check if this matrix is positive definite.

gp==1 Test Complex Positive DefiniteVl (Analysis » Linear

El | Algebra » Complex Linear Algebra » Advanced Complex
Linear Algebra subpalette). Use this function to check if the
input matrixA is positive definite.

3. Enter the vectoX shown below in the array of controds

2.34+ 9.8
X =11.23+ 45
3.45—- 4.56
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4. Enter the complex conjuga@X of X in the array of controlsx.
(This part has not been completed in the front panel above.)

Hint: Complex Conjugate cd+ib is a-ib

A=p] Complex A x Vector VI (Analysis » Linear

[.Eigpﬂ Algebra » Complex Linear Algebrasubpalette). This
function multiplies a complex input matrix and a complex
input vector.

5. Switch to the block diagram. Compute the complex matrix vector
multiplication Y = AX.

Hint: Use theComplex A x Vector VI

a.d Complex Dot ProductVI (Analysis » Linear
Algebra » Complex Linear Algebrasubpalette) Use this
function to compute the dot product of two complex vectors.

6. Compute the complex dot product of the vectoXsandY. That is,
Z = CXe Y.

Hint: Use theComplex Dot Product VI.

7. You have now computed the prodact X'AX . What is the value of
Z? Does this result verify the above definition of complex positive
definite matrices?

8. Compare your block diagram with the diagram shown below.

g

|
Edt Compler P oakie Dafirile.

17 [posive delrked
L oTE]

ﬁi Comples & 4 anharvd

Ax
=E!Er="H Compk: Ut Product u]

[ . . E
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9. Save the VI aPositive Definite Matrix.vi and close it.

End of Exercise 8-4
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Exercise 8-5
Objective: To compute the eigenvalues and eigenvectors of a real matrix.

As explained earlier, the eigenvalues-eigenvector problem is widely
used in a number of different practical applications. For example, in the
design of control systems, the eigenvalues help determine whether the
system is stable or unstable. If all the eigenvalues have nonpositive real
parts, the system is stable. However, if any of the eigenvalues have a
positive real part, it means that the system is unstable. If the system is
unstable, you can design a feedback system to obtain the desired
eigenvalues and ensure stability of the overall system.

In this exercise, you will use tlieigenValues and Vectors/I to

compute all the eigenvalues and eigenvectors of a real matrix. You will
also learn an alternative definition of eigenvalues and numerically verify
this definition.

‘COB DigilA

i mtar® Ifa Defmiion True E|
o
Baolean | ndicatar
*CLE DigilA
Imdic atar®
*LOB Digla
Idc aor®

1. Build the front panel as shown above. You can resize the controls to
view all the elements in the matricAsandEigenVectorsand the
arrayEigenValuesThe size of the matriR is 10x 10.

Eigenvaluess a one-dimensional complex array of size 10
containing all the computed eigenvalues of the input matrix.

Eigenvectorss a 10x 10 complex matrix containing all the
computed eigenvectors of the input matrix. THeolumn of
Eigenvectorss the eigenvector corresponding to tWe:d)mponent
of theEigenvalues/ector.
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2. Build the block diagram as shown below.

11 EigenValues and VectorsV/Il (Analysis » Linear Algebra
F=lH  sybpalette) In this exercise, you will use this VI to compute the
eigenvalues and the eigenvectors of the input matrix.

il g 1
1l
Figerivabies ard YWedne. v
LELTEY ot Eigerivabies || |Eha-:if Dialikion. i
ke | ﬁ:' [cma] _;'iMI
- ﬂ .— _ID
Eigaiacton: i ;
H k=] z Delnton Troe
L ]|
EET: C
'ﬁ

3. Matrix Ais a real matrix consisting of randomly generated numbers.
Use theEigenValues and VectorsVl from the Analysis » Linear
Algebra subpalette to compute both the eigenvalues and the
eigenvectors of this matrix. Remember to set the output option
control to 1. Choose matrix typeGeneral

Imput Mamnx A Egenvdie:
matik lypa A et E BtV IO
aqutpul oplioe — — amar

EigenVakues and Yactora_ v

4. Earlier in this section, you looked at the classical definition of
eigenvalues and eigenvectors. A different and widely used definition
of eigenvalues is as follows. The eigenvalue# afe the values
such thatdet{ A-Al) = 0 , wherdetstands for the determinant of
the matrix. In this exercise, you will numerically verify the
validity of this definition. Select th€heck Definition VI from
Lvspcex.llb . The round LED on the front panel will glow green
if the definition is true and turn to red if the definition fails.
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5. Runthe VI several times. You will notice that the eigenvalues can be
real or complex numbers although the matrix is purely real. The same
holds true for the eigenvectors also. Furthermore, you will notice
that complex eigenvalues of a real matrix always occur in complex
conjugate pairs (that is, tf+ig  is an eigenvalue of a real matrix, so

iISa-iB).
6. Did the definition stated above in step 3 always hold true?
7. Save the VI aMy EigenValues and Vectors.viand close it.

End of Exercise 8-5
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C. Matrix Inverse and Solving Systems of Linear Equations

Theinverse denoted bya™ |, of a square mathixs a square matrix such
that

A7A = AR = |

wherel is the identity matrix. The inverse of a matrix exists if and only
if the determinant of the matrix is not zero (that is, it is nonsingular). In
general, you can find the inverse of only a square matrix. You can,
however, compute theseudoinversef a rectangular matrix, as
discussed later in section D.

Solutions of Systems of Linear Equations
In matrix-vector notation, a system of linear equations has theAermb ,
whereAis anx n matrix andb is a givem-vector. The aim is to determine
X, the unknown solution-vector. There are two important questions to be
asked about the existence of such a solution. Does such a solution exist, and
if it does is it unique? The answer to both of these questions lies in
determining the singularity or nonsingularity of the madix

As discussed earlier, a matrix is said to be singular if it has any one of
the following equivalent properties:

* The inverse of the matrix does not exist.

* The determinant of the matrix is zero.

* The rows (or columns) ok are linearly dependent.
* Az= 0for some vectoe#0

Otherwise, the matrix is nonsingular. If the matrix is nonsingular, its
inverseA™ exists, and the systam= b has a unique solutiers™b
regardless of the value fbr On the other hand, if the matrix is singular,
then the number of solutions is determined by the right-side viector

Ais singular andix = b , thea(x+Yz) = b for any scalar , where the
vector z is as in the last definition above. Thus, if a singular system has
a solution, then the solution cannot be unique.

It is not a good idea to explicitly compute the inverse of a matrix,
because such a computation is prone to numerical inaccuracies.
Therefore, it is not a good strategy to solve a linear system of equations
by multiplying the inverse of the matri by the known right-side

vector. The general strategy to solve such a system of equations is to
transform the original system into one whose solution is the same as that
of the original system, but is easier to compute. One way to do so is to
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use the Gaussian Eliminatibtechnique. The three basic steps involved
in the Gaussian Elimination technique are as follows. First, express the
matrix A as a produch = LU wheilleis a unit lower triangular matrix
andU is an upper triangular matrix. Such a factorization is known as LU
factorization. Given this, the linear system= b can be expressed as
LUx = b. Such a system can then be solved by first solving the lower
triangular systemy = b foy by forward-substitution This is the

second step in the Gaussian Elimination technique. For example, if

=bd g el

thenp = g,q = w . The first element gfcan be easily determined

due to the lower triangular nature of the matrixrhen you can use this
value to compute the remaining elements of the unknown vector
sequentially. Hence, the name forward-substitution. The final step
involves solving the upper triangular system =y by
back-substitutionFor example, if

U = ab X = m y = p
Oc n q
thenn = g, m = (p‘—ab”) . In this case, this last elemenkafan be easily

determined and then used to determine the other elements sequentially.
Hence, the name back-substitution. So far, this lesson has discussed the
case of square matrices. Because a nonsquare matrix is necessarily
singular, the system of equations must have either no solution or a
nonunique solution. In such a situation, you usually find a unique
solutionx that satisfies the linear system in an approximate sense.

The Analysis library includes Vs for computing the inverse of a matrix,
computing LU decomposition of a matrix, and solving a system of linear
equations. It is important to identify the input matrix properly, as it helps
avoid unnecessary computations, which in turn helps to minimize
numerical inaccuracies. The four possible matrix types are general
matrices, positive definite matricesand lower and upper triangular
matrices. If the input matrix is square, but does not have a full rank (a
rank-deficient matrix then the VI finds théeast squaresolutionx. The
least square solution is the one that minimizes the norax-ob . The
same holds true also for nonsquare matrices.

1. For more information on Gaussian Elimination, ide¢rix Computationdy G.H. Golub and C.F. Van
Loan. The John Hopkins University Press, Baltimore, 1989.

2. Areal matrix is positive definite if and only if it is symmetric and the quadratic FOTAX > 0 for all
nonzero vectors X.
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Exercise 8-6

Objective: To compute the inverse of a matrix.
You will build a VI that computes the inverse of a ma&ixurther, you
will compute a matrixB, which issimilar to matrixA. A matrixB is similar
to a matrixA if there is a nonsingular matrixsuch thats = T'AT so that
A andB have the same eigenvalues. You will verify this definition of similar

matrices.
Front Panel
[ E Invmizmaf T
‘DBLDigtsl 30 |¥3am  Sho0 | ‘| *DEL Digital
Conlnal =T : | Irddi
e 0 s m  *am | | Indiz o
Matiis T
“DEL Digtal %ﬁh-m L1.00 ;E.j%agu?tal
Conlral ihm E"'”I' | f
Iruere= ol 4] ‘LB Digild
‘DBLDigtsl S0 g g Irelicater
Indicatar o : .
e — *CD Digild
Irdicao

1. Build the front panel as shown above. Makiis a2 x 2 real matrix.
Matrix T is a 2x 2 nonsingular matrix that will be used to construct
the similar matrixB.
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Block Diagram

Fgenl elues of 1y
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2. Construct the block diagram as shown above.

Inverse Matrix VI (Analysis » Linear Algebra subpalette). In

this exercise, this function computes the inverse of the input
matrix A.

n oo
=]

A=m| AXB VI (Analysis » Linear Algebrasubpalette). In this

pii-H:{ exercise, this function multiplies two two-dimensional input
matrices.

EigenValues and VectorsV/I (Analysis » Linear Algebra
subpalette). In this exercise, this VI computes the eigenvalues
and eigenvectors of the input matrix.

3. Return to the front panel and run the VI. Check if the eigenvalues of
A and the similar matriB are the same.

n)
=]
H]

4. Save the VI aMatrix Inverse.vi and close it.

End of Exercise 8-6
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Exercise 8-7

Objective: To solve a system of linear equations.

Many practical applications require you to solve a system of linear
equations. A very important area of application is related to military
defense. This includes analysis of electromagnetic scattering and radiation
from large targets, performance analysis of large radomes, and design of
aerospace vehicles having low radar cross sections (the stealth technology).
A second area of application is in the design and modeling of wireless
communication systems such as hand-held cellular phones. This list of
applications goes on and on, and therefore it is very important for you to
properly understand how to use the Vls in the Analysis library to solve a
linear system of equations.

Irguk Mair === A e bl S dlufion Yeckor
Friowin Vot = 253" amar

makx bype

1. Use theSolve Linear EquationsVI in the Analysis » Linear
Algebra subpalette to solve the system of equatiaxs b where
the Input Matrix A and theKnown Vector b are

2 4 -2 2
A=14 9-3,b=1|38
—2-17 10

Choose matrix type equal to general.

2. UseA x Vector.vi to multiply the matrixA and the vectox (output
of the above operation) and check if the result is equal to the vector
b above.

3. Save the VI akinear System.viand close it.

End of Exercise 8-7
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D.Matrix Factorization

Pseudoinverse

The previous section discussed how a linear system of equations can be
transformed into a system whose solution is simpler to compute. The basic
idea was to factorize the input matrix into the multiplication of several,
simpler matrices. You looked at one such techniqué,théecomposition
technique, in which you factorized the input matrix as a product of upper
and lower triangular matrices. Other commonly used factorization methods
areCholeskyQR, and thesingular Value Decomposition (SV..Y)ou can

use these factorization methods to solve many matrix problems, such as
solving linear system of equations, inverting a matrix, and finding the
determinant of a matrix.

If the input matrixA is symmetric and positive definite, then an LU
factorization can be computed such that U'U , Wheie an upper
triangular matrix. This is calle@holesky factorizationThis method
requires only about half the work and half the storage compared to LU
factorization of a general matrix by Gaussian elimination. As you saw
earlier in Exercise 1-4, it is easy to determine if a matrix is positive
definite by using thdest Positive DefiniteVI in the Analysis library.

A matrix Q is orthogonalif its columns arerthonormal That is, if

Q'Q = I, the identity matrixQR factorizatiortechnique factors a matrix
as the product of an orthogonal mat@and an upper triangular matrix
R. That is,A = QR . QR factorization is useful for both square and
rectangular matrices. A number of algorithms are possible for QR
factorization, such as th#ouseholder transformatigrihe Givens
transformationand thefast Givens transformation

The singular value decomposition (SVD) method decomposes a matrix
into the product of three matrices:= usV U.andV are orthogonal
matrices.Sis a diagonal matrix whose diagonal values are called the
singular value®f A. The singular values @fare the nonnegative square
roots of the eigenvalues &f A, and the columni ehdV, which are
called left and right singular vectors, are orthonormal eigenvectors of
AAT andA'A |, respectively. SVD is useful for solving analysis problems
such as computing the rank, norm, condition number, and pseudoinverse
of matrices. The following section discusses this last application.

The pseudoinverdef a scalaw is defined ags  dft0 , and zero
otherwise. You can now define the pseudoinverse of a diagonal matrix by
transposing the matrix and then taking the scalar pseudoinverse of each

1. In case of scalars, pseudoinverse is the same as the inverse.
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entry. Then the pseudoinverse of a generalmeat mAatdenoted by
At is given by
AT = vSUT
Note that the pseudoinverse exists regardless of whether the matrix is
square or rectangular. Ais square and nonsingular, the pseudoinverse

is the same as the usual matrix inverse. The Analysis library includes a
VI for computing the pseudoinverse of real and complex matrices.
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Exercise 8-8
Objective: To compute Cholesky decomposition and QR decomposition.

Exercise 1-4 discussed complex positive definite matrices. You verified that
the matrixA

139 91.30+ 47.06—67.64+ 62.35
91.30- 47.06 152.41 94.32 47.52
—67.64—62.35 94.32— 47.5P 262.00

A =

is a positive definite matrix. In this exercise, compute the Cholesky
decomposition of this matrix. Also, compute the QR decomposition of a
matrix B.

Front Panel
£08 Digkal i |E|_EU]EI 000 | 2151 I0+470E] |5 467 B4 +B235 | 0BL Dicial
EiE AT |152 41 1000|5942 L4752 |,d:,,,ﬂ
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1. Build the front panel as shown above. You can resize the array of
controls to see all the elements of the matrix.

2. The matrixU is an upper triangular matrix that is the result of the
Cholesky Decomposition of the matx

3. The matrixB is a rectangular matrix. That is, the number of rows
is different from the number of columns The result of the QR
factorization is amx m orthogonal matixand an upper triangular
matrix R of sizemxn .

4. In this exercise, you will also verify the definition of orthogonal

matrices,Q'Q = | . Th&esult matrix contains the product of the
transpose of the orthogonal matrix and the orthogonal matrix itself.
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5. Build the block diagram as shown above

Complex Cholesky FactorizationVI (Analysis » Linear

A=
F._—:;H:.'E;q Algebra » Complex Linear Algebra » Advanced Complex

Linear Algebra subpalette). In this exercise, this function
computes the Cholesky decomposition of the positive definite
input complex matrix.

a=of QR Factorization VI (Analysis » Linear Algebra » Advanced
p:gI:{ Linear Algebra subpalette). In this exercise, this function

computes the QR factorization of the input real matrix.

6. Select th&€Complex Cholesky FactorizationVI from the

© National Instruments Corporation

Analysis » Linear Algebra » Complex Linear Algebra »
Advanced Complex Linear Algebrasubpalette. The output
terminal of this VI is connected to mattik

Generate a random matix Select theQR Factorization VI from
the Analysis » Linear Algebra » Advanced Linear Algebra
subpalette. Connect the matBxas the input matrix for QR
factorization. Connect th@ andR outputs of this VI to matriQ and
matrix R, respectively.

Compute the transpose of the ma@and then multiply this
transpose with the original matr@d. The result of this operation is
connected to the result matrix.
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9. Choose a value for the number of rows and the number of columns.
Run the VI. Notice the upper triangular structure of the output of the
Cholesky decomposition and tReoutput of the QR factorization.
Notice the structure of the orthogonal ma@xYou can run the VI
a number of times to generate different matrices and check if this

definition is true.
10. Save the VI a®R Factor.vi and close it.

End of Exercise 8-8
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Exercise 8-9 (Optional)

Objective: To compute singular value decomposition.
In this exercise, you will compute the singular value decomposition of the
following matrix.

~ b e
© o N

3
6
9
10111

Use theSVD Factorization VI from the Analysis » Linear Algebra »
Advanced Linear Algebra subpaletteCompute the rank of the matrix

A using theMatrix Rank VI (Analysis » Linear Algebra » Advanced
Linear Algebra subpalette). Do you see an interesting relation between
the rank of this matrix and the number of nonzero singular values? (The
singular values are stored in the one-dimensional &jdyow compute

the 2-norm of this matrix using tiMatrix Norm VI (Analysis » Linear
Algebra » Advanced Linear Algebrasubpalette). Do you see an
interesting relation between this number and the largest singular value
of the matrix?

Note:  The rank of a matrix is equal to the number of nonzero singular values,

which in this example is equal to 2. Also, as discussed at the beginning of
this lesson, the 2-norm of a matrix is equal to its largest singular value.

End of Exercise 8-9
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Summary

A matrix can be considered as a two-dimensional arraw riws
andn columns. Determinant, rank, and condition number are some
important attributes of a matrix.

» The condition number of a matrix affects the accuracy of the final
solution.

* The determinant of a diagonal matrix, an upper triangular matrix, or
a lower triangular matrix is the product of its diagonal elements.

* Two matrices can be multiplied only if the number of columns of the
first matrix is equal to the number of rows in the second matrix.

* An eigenvector of a matrix is a nonzero vector that does not rotate
when the matrix is applied to it. Similar matrices have the same
eigenvalues.

* The existence of a unique solution for a system of equations depends
on whether the matrix is singular or nonsingular.

Review Questions

011
1. For the matrix given by = (1 2 , calculate its rank, determinant,
1-norm, and inf-norm. 201

Which LabVIEW/BridgeVIEW VI(s) could you use to check your
answer?

2. The condition number of a matiixis 15.3, and that of a matrixis
30,532. Which of these matricéspr C, is closer to being singular?

3. Which of the following is true, and which is false?
a. The eigenvalues of a real matrix are always real.

b. The rank of am x n matrix could at most be equal to the larger
of morn (mjn).

4. For the two vectors given by=[1,2] andy = [3,4], calculate:
a. Their dot product
b. Their outer product
c. The angle between the two vectors

Which LabVIEW/BridgeVIEW VI(s) could you choose to check
your answer?

5. Which VI could you use to check if a matrix is positive definite?
Why might you want to make such a check?

6. Why is matrix factorization important? Which are the matrix
factorization VIs available in LabVIEW/BridgeVIEW?
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Notes
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Notes
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Lesson 9
Probability and Statistics

]

Introduction

In this lesson, you will learn some of the fundamental concepts in
probability and statistics such as mean or average, variance, histogram, and
others. The lesson describes different LabVIEW/BridgeVIEW VIs that
compute these quantities and show how they can be used in different
applications.

You Will Learn:

A. What the termgprobability andstatisticsmean, and how are they
relevant in different areas of applications.

B. About the most commonly used concepts in statistics and how to use
the Statistics VIs.

C. About the most commonly used concepts in probability and how to
use the Probability VIs.
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A. Probability and Statistics

We live in an information age in which facts and figures form an important
part of life. Statements such as “There is a 60% chance of thunderstorms,”
“Joe was ranked among the top five in the class,” “Michael Jordan has an
average of 30 points this season,” and so on are common. These statements
give a lot of information, but we seldom think about how this information
was obtained. Was there a lot of data involved in obtaining this information?

If there was, how did someone condense it to single numbers s6@%oas
chanceandaverage of 30 pointsr terms such asp five The answer to

all these questions brings up the very interesting field of statistics.

First, consider how information (data) is generated. Consider the
statistics of part of the 1997 basketball season. Michael Jordan of the
Chicago Bulls played 51 games, scoring a total of 1568 points. This
includes the 45 points he posted, including the game-winning buzzer
three-pointer, in a 103-100 victory over the Charlotte Hornets; his 36
points in an 88-84 victory over the Portland Trail Blazers; a season high
of 51 points in an 88-87 victory over the New York Nicks; 45 points,
seven rebounds, five assists, and three steals in a 102-97 victory over the
Cleveland Cavaliers; and his 40 points, six rebounds, and six assists in a
107-104 victory over the Milwaukee Bucks. The point is not that Jordan
is a great player, but that a single player can generate lots of data in a
single season. The question is, how do you condense all this data so that
it brings out all the essential information and is yet easy to remember?
This is where the termtatisticscomes into the picture.

To condense all the data, single numbers must make it more intelligible
and help draw useful inferences. For example, consider the number of
points that Jordan scored in different games. It is difficult to remember
how many points he scored in each game. But if you divide the total
number of points that Jordan scored (1568) by the number of games he
has played (51), you have a single number of 30.7 and can call it points
per gameaverage

Suppose you want to rate Jordan’s free throw shooting skills. It might be
difficult to do so by looking at his performance in each game. However,
you can divide the number of free throws he has scored in all the games
by the total number of free throws he was awarded. This shows he has a
free throwpercentageof 84.4%. You can obtain this number for all the
NBA players and then rank them. Thus, you can condense the
information for all the players into single numbers representing free
throw percentage, points per game, and three-point average. Based on
this information, you can rank players in different categories. You can
further weight these different numbers and come up with a single
number for each player. These single numbers can then help in judging
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the Most Valuable Player (MVP) for the season. Thus, in a broad sense,
the term statistics implies different ways to summarize data to derive
useful and important information from it.

The next question is, what is probability? You have looked at ways to
summarize lots of data into single numbers. These numbers then help
draw conclusions for the present. For example, looking at Jordan’s
statistics for the 1996 season helped the NBA officials elect him the
MVP for that season. It also helped people to infer that he is one of the
best players in the game. But can you say anything about the future? Can
you measure the degree of accuracy in the inference and use it for
making future decisions? The answer lies in the theory of probability.
Whereas, in laymen’s terms, one would say thatprabablethat

Jordan will continue to be the best in the years to come, you can use
different concepts in the field of probability, as discussed later in this
lesson, to make more quantitative statements.

In a completely different scenario, there may be certain experiments
whose outcomes cannot be predetermined, but certain outcomes may be
more probable. This once again leads to the notion of probability. For
example, if you flip an unbiased coin in the air, what is the chance that
it will land heads up? The chance or probability is 50 %. That means, if
you repeatedly flip the coin, half the time it will land heads up. Does this
mean that 10 tosses will result in exactly five heads? Will 100 tosses
result in exactly 50 heads? Probably not. But in the long run, the
probability will work out to be 0.5.

To summarize, whereas statistics allows you to summarize data and
draw conclusions for the present, probability allows you to measure the
degree of accuracy in those conclusions and use them for the future.
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B. Statistics

Mean

Median

In this section, you will look at different concepts and terms commonly used
in statistics and see how to use the Analysis Vls in different applications.

Consider a data s&tconsisting oh samples, x; ¥, X5 ». %,., . The
mean value (a.k.a. average) is denoted by and is defined by the formula

- _1
X = r—1(x0+x1+x2+x3+... +X,_1)

In other words, it is the sum of all the sample values divided by the
number of samples. As you saw in the Michael Jordan example above,
the data set consisted of 51 samples. Each sample was equal to the
number of points that Jordan scored in each game. The total of all these
points was 1568, divided by the number of samples (51) to get a mean
or average value of 30.7.

The input-output connections for tMean VI are shown below.

[ a1
Haon [ BTl

Meanw

Lets={gs.s,....S,_} representthe sorted sequence of the daté set
The sequence can be sorted either in the ascending order or in
descending order. The median of the sequence is denoted hy and
is obtained by the formula

0s nis odd
¥median = Ep.S(sk_l +5,) n is even

. n-1 n
wherei = — anck = 5
In words, the median of a data sequence isttitpointvalue in the
sorted version of that sequence. For example, consider the sequence
{54,321 consisting of five (odd number) samples. This sequence is
already sorted in the descending order. In this case, the median is the
midpoint value, 3. Consider a different sequefce, 3 4 consisting of
four (even number) samples. This sequence is already sorted in the
ascending order. In this case, there are two midpoint values, 2 and 3. As
per the formula above, the median is equal.bx (2+ 3 = 2.5 fa
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student X scored 4.5 points on a test and another student Y scored 1 point
on the same test, the median is a very useful quantity for making
gualitative statements such as “X lies in the top half of the class” or “Y
lies in the bottom half of the class.”

The input-output connections for tMedian VI are shown below.

» ?— madian
- amar

Meadian. vi

Sample Variance

The sample variance of the dataXebnsisting oh samples is denoted by
s* and is defined by the formula

& = i[(xl—)_()2+ (xz—)_()2 + ... +(xn—)_()2]
n-1
wherex denotes the mean of the data set. Hence, the sample variance is

equal to the sum of the squares of the deviations of the sample values
from the mean divided by-1.

Note: The above formula does not apply for n = 1. However, it does not mean
anything to compute the sample variance if there is only one sample in the
data set.

The input-output connections for ti@ample VarianceVI are shown
below.

TF——men
b Lt zampe vmance
1 —amr

Sample ¥Ymiance. v

In other words, the sample variance measures the spread or dispersion of
the sample values. If the data set consists of the scores of a player from
different games, the sample variance can be used as a measure of the
consistency of the player. It is always positive, except when all the
sample values are equal to each other and in turn equal to the mean.

There is one more type of variance called population variance. The
formula to compute population variance is similar to the one above to
compute sample variance, except for thel) in the denominator
replaced byn.
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The input-output connections for tMariance VI are shown below.

IE==N

rarn=nce
T v

b4 o,

Variamce. wi

The Sample VarianceVI computes sample variance, whereas the
Variance VI computes the population variance. Whereas statisticians
and mathematicians prefer to use the latter, engineers prefer to use the
former. It really does not matter for large valuesiof , sago

Note: Use the proper type of VI suited for your application.

Standard Deviation

The positive square root of the sample variasice  is denoted by and is
called the standard deviation of the sample.

The input-output connections for te¢andard Deviation VI are shown
below.

3 eardaid devighion
# W — fgan

T — mror

Standard Deviathon. vi

Mode

The mode of a sample is a sample value that occurs most frequently in the
sample. For example, if the input sequeXas

X={0,1,33444557F

then the mode oX is 4, because that is the value that most often occurs
in X.

The input-output connections for tMode VI are shown below.

- @ mods

inhzivals Bmar

Mode_wi
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Moment About Mean

Histogram

If X represents the input sequence wittumber of elements in it, and  is
the mean of this sequence, thenri¥&order moment can be calculated
using the formula

1 -\m
me = HZ(Xi_X)
i=0n

In other words, the moment about mean is a measure of the deviation of
the elements in the sequence from the mean. Note that oz , the
moment about mean is equal to the population variance.

The input-output connections for toment About Mean VI are
shown below.

oy U momert

=

oder —

Mome=nl st Mean_n

So far, this lesson has discussed different ways to extract important features
of a data set. The data is usually stored in a table format, which many people
find difficult to grasp. It is generally useful to display the data in some form.
The visual display of data helps us gain insights into the data. Histogram is
one such graphical method for displaying data and summarizing key
information. Consider a data sequenxce {0,1, 3344455 3 . Divide
the total range of values into 8 intervals. These intervals are 0-1, 1-2,

2-3, ..., 7-8. The histogram for the sequexitieen plots the number of data
samples that lie in that interval, not including the upper boundary.

\

OA01A12 3 4 5 6 7A78

The figure above shows that one data sample lies in the range 0-1 and 1-2,
respectively. However, there is no sample in the interval 2-3. Similarly, two
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samples lie in the interval 3-4, and three samples lie in the range 4-5.
Examine the data sequen€@bove and be sure you understand this
concept.

There are different ways to compute data for a histogram. Next you will
see how it is done in thdistogram VI using the sequenck.

L Hizlogram: F{k]
"&‘- =M Yale

QUEIEE L ;-

emar

Hirtogram i

As shown above, the inputs to this VI are itygut sequenceX and the
number of intervals m. The VI obtaingHistogram:h(x) as follows. It
scansX to determine the range of values in it. Then the VI establishes
the interval widthax , according to the specified valuenof

max— min
m

AX =

wheremaxis the maximum value found X, minis the minimum value
found inX, andm is the specified number of intervals.

Letm:8.ThenAx:8—50:1

Let x represent the output sequetc¥alues. The histogram is a
function of X. This VI evaluates the elementsyof using

Xi = min+ 0.5Ax + iAx for i=01212..m-1
For this examplex, = 0.5 x; = 1.5 ...,X; = 7.5
The VI then defines thid" interval to be in the range of values from
X;—0.5ax up to but not including; + 0.5ax

A; = [(X; —0.5Ax), (x; + 0.5Ax)), for i=01212.. m-1
and defines the functioy(x) = 1  farbelonging tos, and zero
elsewhere. The function has unity value if the valuefalls within the
specified interval, not including the boundary. Otherwise, it is zero.
Notice that the interval is centered abgut anditswidtyis .Ifavalue
is equal to max, it is counted as belonging to the last interval.

For our example), = [0, 1),4, =[L1,2),....,4, = [7,8) and as an example
Yo(0) = 1 andyy(1) = yo(3) = yo(4) = yo(5) = ys(8) =0 .

Finally, the VI evaluates the histogram sequedagsing

hy = Zyi(xj) for i=012.. m-1
i=n
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whereh;, represents the elements of the output seqiistogram: h(X)
andn is the number of elements in the input sequefideor this
example,h, = 1,h, =3,...,h, =1 .

The Analysis library also has@eneral Histogram VI that is more
advanced than thidistogram VI. Please refer to theabVIEW Analysis
VI Reference Manudbr detailed information.

Mean Square Error (MSE)

If X and Y represent two input sequences, the mean square error is the
average of the sum of the square of the difference between the
corresponding elements of the two input sequences. The following formula
is used to find the mse.

n—a

1 2
mse = ﬁz (X —¥1)
i=n

wheren is the number of data points.

NN
S2

S y2

Consider a digital signal x fed to a system, S1. The output of this system
is y1. Now you acquire a new system, S2, which is theoretically known

to generate the same result as S1 but has two times faster response time.
Before replacing the old system, you want to be absolutely sure that the
output response of both the systems is the same. If the sequences y1 and
y2 are very large, it is difficult to compare each element in the
sequences. In such a scenario, you can uskl8te VI to calculate the

mean square error (mse) of the two sequences yl1 and y2. If the mse is
smaller than an acceptable tolerance, the system S1 can be reliably
replaced by the new system S2.

The input-output connections for tMSE VI are shown below.

iakbies - s me=
# Wakleas Hie BTOF
MSE. vi
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Root Mean Square (RMS)

The root mean square,  of a sequence X is the positive square root of the
mean of the square of the input sequence. In other words, you can square the
input sequence, take the mean of this new squared sequence, and then take
the square root of this quantity. The formula used to compute the rms

value is

n-1
= Iy 2
pr - anxl
i=n
wheren is the number of elements

RMS is a widely used quantity in the case of analog signals. For a sine
voltage waveform, i¥ is the peak amplitude of the signal, then the root

o % L
mean square voltagé g is given byJ—g . The following figure shows a

voltage waveform of peak amplitude = 2 V and the RMS value of
J2=1.41V computed using thRMS VI from the Analysis library.

Wolbage 14 s ef
FZ00 |Val
1.0-
0.0-
AM5 1|-ﬁ:|l.||:|

4.0- | .41 Vol
|

0 250 500 750 1000 1250

The input-output connections for tRMS VI are shown below.

» T, ez waug
| G | airal
RH5.
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Exercise 9-1

Objective: To use different Statistics VIs in an example using Michael Jordan’s basketball
scores.

In this exercise, you will learn how to use different Statistics VIs in an
interesting example. The data set consists of the number of points scored by
Michael Jordan of the Chicago Bulls in each of the 51 games he played
during part of the 1997 NBA season. You will use some of the concepts
discussed in the previous section to decipher this information and create
single numbers that are easy to remember and yet reveal all the information
that the entire data set provides.

Front Panel

*OAL Digld Cortig? “CHL Digtall rdizater®  “DEL Digild Indicate® "0EL Digikal Irdizstoe
- Pank: TatalMumbsar af Paintz|  Poinls Pel Game  Sapale Warnence
G T 1GEA.00 075 71
TEL Digld Carkiol® "DEL Digital Indicahor THL Digral | rdicatar
Humber of nlervak HMedan Mode=
=[E] 3000 .00
.".!:'r' Giapkt _ Ye'avelorm Graph*

Histagrem af Poinkz Puirke i Each Gama

a0-
25—
20—

15—
10~

8- 1 1 1 1 1
0.0 A0 300 400 500 EdO

1. Open theStatistics VI from Lvspcex.llb

2. Open the front panel as shown above. Pomts control is the data
set consisting of the number of points scored by Jordan in each game
this season. The number of games he has played this season to date
is 51.

The Total Number of Pointsdigital indicator is the sum of all the
elements in the given data set.

The Points Per Gamedigital indicator is the average of Jordan’s
scores this season.

The Sample Variance Median, andMode digital indicators are the
sample variance, median, and mode of the data set.
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Histogram of Pointsis an XY graph that shows the distribution of
points in different intervals. The number of intervals is set using the
Number of intervals digital controPoints in Each Gameis a

waveform graph that plots the number of points scored in each game.

Block Diagram

Poirkzin EachiGam

Carplk Yalanceyi

Eampe 'YV enance|

T
"52 II“
Total Humber of Foi

Poirky] | [Indes firay
[mpd] E’] [m] T_[E)? H:.:ﬂ_'-ri Faiilz Pal Gansa
T =1

= lEJ' o

e

S -
[Fumter of ikeresld H“Ehj ﬂc PI Eﬁmmrﬂiggnda
Ly b I uu
Hi#ogiam of Poi
Hb:im.'q'i m' =]
Il:ln.l

iod e W
i (L1

3. Build the diagram shown above:

=1 Sample VarianceVI (Analysis » Probability and Statistics
-E| subpalette). In this exercise, this function computes the sample
variance of the data sBoints.

Mean VI (Analysis » Probability and Statisticssubpalette). In
this exercise, this function computes the mean value (average)
of the data seRoints.

A Histogram VI (Analysis » Probability and Statistics
E subpalette). In this exercise, this function computes the
histogram of the data sEbints.

LabVIEW Signal Processing Course Manual 9-12 © National Instruments Corporation



Lesson 9 Probability and Statistics

Median VI (Analysis » Probability and Statisticssubpalette).
In this exercise, this function computes the median of the data

setPoints.

Mode VI (Analysis » Probability and Statisticssubpalette). In
LB this exercise, this function computes the mode of the data set

Points.

EE Bundle function Cluster subpalette) In this exercise, this
function assembles the outputs of Bast Processing/|
(explained later) to plot on the XY graphstogram of Points.

4. Follow the instructions in steps 4 through 9 and build the block
diagram as shown above.

5. You will compute the Points Per Game (Jordan’s average) by using
the Mean VI in the Analysis library. Connect tHoints control to
the input terminak and the output mean to tR®ints Per Game
indicator.

Hr
medn
x—
arior

Mean vi

6. You will compute the Sample Variance using 8ample Variance
VI in the Analysis library. Once again, connect Bants control to
the input terminaK and the output sample variance to Sample
Variance indicator.

TF——men
b B zample vaianoa
1 —amr

Sampls Valance.wvi

Note:  This VI also computes the mean of the data set.
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7.

You will compute the Median using tivedian VI in the Analysis
library. Connect th&oints control to the input termina{ and the
output median to th®ledian indicator.

i
aindl

Modian vi

You will compute the Mode using tiMode VI in the Analysis

library. Connect th&oints control to the input termina{. Choose

the number of intervals equal to 3. Connect the output mode to the
Mode indicator.

;-: > W miads
irker Al aiml
Mode_vi

You first will compute the data for the histogram using the
Histogram VI. Connect the contrdPoints to the input terminaX

and set the number of intervals equal to 3. This VI generates
histogram values and X values, which are the midpoints of the
different intervals as discussed above. You can plot the histogram by
using the X values for the X axis and the histogram values for the Y
axis. If you are interested, try doing this and observe the histogram.

W ] P Hizlogiam Hi]
. j-_"H"-"aLEﬁ:

Hiztogiam.w

10. Generally, you may want to view the histogram in a different way.

Select thePostProcessing/I from Lvspcex.llb . Connect the

Points control to thePoints input terminal, the histogram output of
the Histogram VI to theHistogram input terminal, and set the
number of intervals equal to 3 (same value you chose earlier for the
Histogram VI). This VI generates the data for plotting the histogram
in a better way. The X axis values are stored inBbndaries

output terminal, and the Y axis values are stored irPtb®/alues
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histogram on thélistogram of Points XY graph.

Hiatogram HT1 =B oundaries
R o e Pyl
PosProcaicmg vi

11. Return to the front panel. Set the number of intervals equal to 3 and
run the VI. Study the different output values. See how the histogram
(on the left) provides more information than just plotting the points

in each game (on the right).

12. Save the VI and close it.

End of Exercise 9-1
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C. Probability

Random Variables

In any random experiment, there is always a chance that a particular event
will or will not occur. A number between 0 and 1 is assigned to measure this
chance, or probability, that a particular event occurs. If you are absolutely
sure that the event will occur, its probability is 100% or 1.0, but if you are
sure that the event will not occur, its probability is O.

Consider a simple example. If you roll a single unbiased die, there are
six possible events that can occur—either a 1, 2, 3, 4, 5, or 6 can result.
What is the probability that a 2 will result? This probability is one in six,
or 0.16666. You can define probability in simple terms as: The
probability that an event A will occur is the ratio of the number of
outcomes favorable to A to the total number of equally likely outcomes.

Many experiments generate outcomes that you can interpret in terms of real
numbers. Some examples are the number of cars passing a stop sign during
a day, number of voters favoring candidate A, and number of accidents at a
particular intersection. The values of the numerical outcomes of this
experiment can change from experiment to experiment and are called
random variables. Random variables can be discrete (if they can take on
only a finite number of possible values) or continuous. As an example of the
latter, weights of patients coming into a clinic may be anywhere from, say,
80 to 300 pounds. Such random variables can take on any value in an
interval of real numbers. Given such a situation, suppose you want to find
the probability of encountering a patient weighing exactly 172.39 pounds.
You will see how to calculate this probability next using an example.

Consider an experiment to measure the life lengthfs50 batteries of a
certain type. These batteries are selected from a larger population of
such batteries. The histogram for observed data is shown below.

histogram

A
\

»
| ot

6 life length in hundreds of hours
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This figure shows that most of the life lengths are between zero and 100
hours, and the histogram values drop off smoothly as you look at larger
life lengths.

You can approximate the histogram shown above by an exponentially
decaying curve. You could take this function as a mathematical model
for the behavior of the data sample. If you want to know the probability
that a randomly selected battery will last longer than 400 hours, this
value can be approximated by the area under the curve to the right of the
value 4. Such a function that models the histogram of the random
variable is called thprobability density function

To summarize all the information above in terms of a definition, a
random variable&X is said to beontinuousf it can take on the infinite
number of possible values associated with intervals of real numbers, and
there is a functiof(x), called theprobability density functionsuch that

1. fx)=0 for all x

2. J'f(x)dx =1

3. P(asX<b = J'f(x)dx

a

Notice from equation (3) above that for a specific value of the

continuous random variable, that is ¥xa, P(X=a) = J’f(x)dx =0.lt

a
should not be surprising that you assign a probability of zero to any
specific value, because there are an infinite number of possible values
that the random variable can take. Therefore, the chance that it will take
on a specific valu« = a is extremely small.

The previous example used the exponential function model for the
probability density function. There are a number of different choices for
this function. One of these is the Normal Distribution, discussed below.
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Normal Distribution

The normal distribution is one of the most widely used continuous
probability distributions. This distribution function has a symmetric bell

&, Homal Densly Funclion|
0.2-

01-

0.0==5 ] ] ] 11
-E0 25 00 25 EO0
shape, as shown above. The curve is centered at the mear vatue , and
its spread is measured by the variasfce 1 . These two parameters

completely determine the shape and location of the normal density function,
whose functional form is given by

I R )
f(x) = ——=e¢
9 SA/2TT
Suppose a random variable Z has a normal distribution with mean equal

to zero and variance equal to one. This random variable is said to have
standard normal distribution

TheNormal Distribution VI computes the one-sided probabilipy,of
the normally distributed random varial{e

p = Prob( X< %

whereX is a standard normal distribution with the mean value equal to
zero and variance equal to omes the probability and is the value.

K izl I:lll:tll:tlit]-'

Normad Dialidaution i

Suppose you conduct an experiment in which you measure the heights
of adult males. You conduct this experiment on 1000 randomly chosen
men and obtain a data set S. The histogram distribution has many
measurements clumped closely about a mean height, with relatively few
very short and very tall males in the population. Therefore, the
histogram can be closely approximated by a normal distribution. Now
suppose that, among a different set of 1000 randomly chosen males, you
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want to find the probability that the height of a male is greater than or
equal to 170 cm. You can use tRermal Distribution VI to find this
probability. Set the input = 170 . Thus, the choice of the probability
density function is fundamental to obtaining a correct probability value.

behi FOTHAL #
A ' et — afor
Inr HNomnal Diztribution v

Thelnverse Normal Distribution VI performs exactly the opposite
function as théNormal Distribution VI. Given a probabilityp, it finds

the valuex that have the chance of lying in a normally distributed
sample. For example, you might want to find the heights that have a 60%
chance of lying in a randomly chosen data set.

As mentioned earlier, there are different choices for the probability
density function. The well-known and widely used ones are the
Chi-Square distribution, the F distribution, and the T-distribdtidime
Analysis library includes VIs that compute the one-sided probability for
these different types of distributions. In addition, it also has VIs that
perform the inverse operation.

1. Interested readers should refer to the latest edition of the Schaum’s Outline Series on Theory and Prob-
lems of Probability and Statistics by Murray Spiegel, McGraw-Hill, Inc., 1975, for detailed discussion on
these three types of distributions.
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Exercise 9-2

Objective: To understand key probability concepts.

In this exercise, you will first generate a data sample with standard normal
distribution and then use tiNormal Distribution VI to check the
probability of a random variabbe

Front Panel

"W arvefamn G ik
DAL Dighd Control® Huize Plal
Murmbei of 5 amples %.0- S - -
=248 504
*DEL Digka Conirol® 00—
lEtl:nl:l-:m:l O evialiar [
+1.00
“DEL Digta Conrol* A P =,
Casd g 0 & 10 1500 2000 2500
= [ 5 Graph®
HNuoixe Hizlogram
*DEL Digid Conmol® B0 —
Riandom Y ariahia —
< (noo a00-
DAL Digtd Cortrol®
Rlumbsai ol inkarsat 00—
sio

D_ [

40 20 op 20 40
DL Digilal Indicaton \DBL Dicile It

Eamsian Maiza Palkain prabakiligs
=0 |n=: 05

1. Build the front panel as shown aboXaisePlotis a waveform
graph, whereabhloiseHistogramis an XY graph.
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Block Diagram

aLazian White Maise, il

Emni'm H o= Patt=m| Fidooian FrefPracaseng.y
[woal} E .

Moize Flok| 1

Doma]

Humbsar af irkareal
IXT

p———— hloimal Disrbuion. T

pr— Hamial
11 Disd

2. Build the block diagram as shown above. Gaeissian White Noise
VI generates a Gaussian-distributed pattern with mean value equal
to 0 and standard deviation set by the user using the input standard
deviation.Samplesis the number of samples of the Gaussian noise
pattern.Seedis the seed value used to generate the random noise.

=F=3 (Gaussian White NoiseVl (Analysis » Signal Generation
L @& | subpalette). In this exercise, this function generates a Gaussian
white noise pattern.

subpalette). In this exercise, this function computes the

Eﬂ Histogram VI (Analysis » Probability and Statistics
histogram of the Gaussian noise pattern.

Normal Distribution VI (Analysis » Probability and

niat | Statisticssubpalette). In this exercise, this function computes
the one-sided probability of the normally distributed random
variableRandom Variable.

Connect the Gaussian noise pattern to the waveform ¢naise

Plot.
23Ty E— T Gawszoan Moce Patem
Bandard devigtion | 4, -
sepd — |

Gavuzzian While Hoige vi

3. You will compute the histogram of the Gaussian noise pattern using
the Histogram VI used in the previous exercise.
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As discussed earlier, do some postprocessing to plot the histogram in
a different way. Select tHeostProcessing/I from Lvspcex.llb

Bundle the output of this VI and connect it to Nase Histogram

Select theNormal Distribution VI. Connect theRandom Variable
control to the input terminal and connect the output to the probability
indicator.

Return to the front panel. Set tReamber of Samplescontrol to
2048,Standard Deviationto 1,Seedto 2 andNumber of intervals to
10. Run the VI.

You will see the Gaussian white noise onwése Plotgraph. It is
difficult to tell much from this plot. However, the histogram plot for
the same noise pattern provides a lot of information. It shows that
most of the samples are centered around the mean value of zero.
From this histogram, you can approximate this noise pattern by a
Normal Distribution function (Gaussian distribution). Because the
mean value is zero and you set the standard deviation equal to one,
the probability density function is actually a standard normal
distribution.

Note: It is very important that you carefully choose the proper type of distribution
function to approximate your data. In this example, you actually plotted
the histogram to make this decision. Many times, you can make an
intelligent decision based solely on prior knowledge of the behavior and
characteristics of the data sample.

9.

Return to the front panel and enter a valueRandom Variable.

This VI will compute the one-sided probability of this normally
distributed random variable. Remember, you have assumed that the
variable is normally distributed by looking at the histogram.

10. Save the VI aBrobability.vi and close it.

End of Exercise 9-2
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Review Questions

© National Instruments Corporation

Different concepts in statistics and probability help decipher
information and data to make intelligent decisions.

Mean, median, sample variance, and mode are some of the statistics
techniques to help in making inferences from a sample to a
population.

Histograms are widely used as a simple but informative method of
data display.

Using the theory of probability, you can make inferences from a
sample to a population and then measure the degree of accuracy in
those inferences.

What is the difference between probability and statistics? Which
VI(s) would you use in each case?

. What is the difference between:

a. Mode and median?

b. Sample variance and population variance?

Which VI(s) would you use in each case?

Name some real-world practical applications of using:
a. Histograms

b. The Gaussian probability density function

What is the difference between tdermal Distribution VI and the
Inv Normal Distribution VI?
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Notes
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Lesson 10
Digital Filter Design Toolkit

]

Introduction

In this lesson, you will learn how to use the Digital Filter Design (DFD)
Toolkit to design FIR and IIR filters to meet required specifications. You
will also see how to use the DFD toolkit to analyze your filter design in
terms of its frequency response, impulse and step responses, and its
pole-zero plot.

You Will Learn:

About digital filters.

About the Digital Filter Design ToolkKit.
About designing IIR filters.

About designing FIR filters.

moow>

How to use the Digital Filter Design Toolkit to analyze your filter
design.
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A.Review of Digital Filters

Filtering

In a previous lesson, you learned about the basic theory behind the operation
of digital filters. Below is a brief review of some of the important

information you need to know to use the Digital Filter Design (DFD)

Toolkit.

Filtering is one of the most common signal processing techniques and is the
process by which the frequency content of a signal is altered. Some of the
practical applications of filtering are in the bass and treble controls of your
stereo to adjust the frequency response, in the tuning circuits of your radio
and television receivers to select a particular channel, in telephone handsets
to limit the frequency content of the sound signals to 3 KHz, and many
others in the audio, telecommunications, geophysics, and medical fields.

Why Digital Filters?

Until the advent of the computer age, filtering was in analog form using
resistors, inductors, and capacitors. Both the input and the output of the filter
were analog signals. Designing analog filters is a specialized task requiring
a good mathematical background and proper understanding of the filtering
process. However, with the widespread use of computers, digital
representation and processing of signals gained immense popularity due to
the numerous advantages that digital signals have over their analog
counterparts. Because of this, analog filters have gradually been replaced by
digital filters. The advantages of digital filters over analog filters are:

» They are software programmable, and so are easy to “build” and test.

* They require only the arithmetic operations of multiplication and
addition/subtraction and so are easier to implement.

* They are stable (do not change with time nor temperature) and
predictable.

* They do not drift with temperature or humidity or require precision
components.

* They have a superior performance-to-cost ratio.
* They do not suffer from manufacturing variations or aging.

Filter Response Characteristics

The range of frequencies that a filter passes through it is known as the
passbangdwhereas the range of frequencies that are attenuated is known as
thestopbandBetween the passband and the stopbanttamsitionregion

where the gain falls from one (that is, 0 dB in the passband) to zero or a very
small value (in the stopband). The passband, stopband, and the transition
region for a lowpass filter are shown below.
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Lpassband transition stopband
region
passband ripple

o
T

stopband
attenuation

cutoff frequency

The figure above also shows thassband ripplethe stopband

attenuation and thecut-off frequencythree specifications that are needed

in designing digital filters. The passband ripple (in dB) is the maximum
deviation in the passband from 0 dB, whereas the stopband attenuation
is the minimum attenuation (in dB) in the stopband. In the DFD toolkit,
the passband ripple is also referred to agptssband response
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B. The Digital Filter Design Toolkit

Lesson 6 introduced the Digital Filter VIs available in the
LabVIEW/BridgeVIEW Advanced Analysis library. Using these VIs is one
way to design your digital filters. However, National Instruments also
provides the Digital Filter Design (DFD) toolkit, which is a complete filter
design and analysis tool you can use to design digital filters to meet your
precise filter specifications. You can graphically design your IIR and FIR
filters, interactively review filter responses, save your filter design work,
and load your design work from previous sessions. If you have a National
Instruments data acquisition (DAQ) device, you can perform real-world
filter testing from within the DFD application. You can view the time
waveforms or the spectra of both the input signal and the filtered output
signal while simultaneously redesigning your digital filters.

After you design your digital filter, you can save the filter coefficients
to a file on your drive. The filter coefficient files can then be loaded for
later implementation by LabVIEW, BridgeVIEW, LabWindows/CVI, or
any other application. The following diagram shows you the conceptual
overview of the DFD Toolkit.

Digital Filter
Design
Application
\4
Save ( Load ) ( Save ) Data Acquisition
/ l and Filtering
Filter
Specification Filter Coefficient Files
Files
LabVIEW HiQ
LabWindows/CVI Windows DLL
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Main Menu
When you launch the DFD application, you get the following panel, which
is referred to as the Main Menu:

p. kain Mrnn
File Edit Operate Windows Help

@ Digital Filter Design

Classical IIA Desian
Clozsical FIH Desgn
Pole-Fero Plac=me=nl
Arbitrary FIA Decign

Liovzed Fiker Spsac

Design Options
From the Main Menu, you can choose any of the following four methods of
designing digital filters:
» Classical IR Desigr-for designing IIR filters by specifying the
frequency response characteristics.

» Classical FIR Design-for designing FIR filters by specifying the
frequency response characteristics.

» Pole-Zero Placementfor designing either IIR or FIR filters by
adjusting the location of the poles and zeros (in the z-plane) of the
filter transfer function.

» Arbitrary FIR Desigr—for designing FIR filters by specifying the
gain of the filter at selected (two or more) frequencies.

If you double-click on one of the four design selections (or single-click
on a selection and then click on Bpen button) in the Main Menu, the
DFD application loads and runs the selected design panel, in which you
can design your filter.

Loading Previously Saved Specifications
You can also load a previously designed filter specification file directly
from the Main Menu by clicking on tHenad Filter Specbutton. You will
then be prompted to select the filter specification file that you saved during
a previous design work.
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Customizing the DFD Application
By clicking on thePreferences..button in the Main Menu, you can edit
your DFD application preferences for future design sessions.

Ldil Hrelergrnoe -

preload
[Clascical IIF; Dacign | ]
[Chsdical AR Design | []
[FdeZemoPhcmen | []
Btien FIRDadn | [
[srabaiz af Fite: Desion | [

The selections in the window above tell the DFD application to preload
one or more of the filter design panels into memory when it is started.
Preloading filter designs increases the time taken for the Main Menu to
open. However, when you select a particular design panel from the Main
Menu, the corresponding design panel opens almost immediately. If you
have limited amount of memory on your computer, you may want to
reconsider how many (if any) of the design panels you preload into
memory.

Quitting the DFD Application
Choose th&uit button to exit the DFD application.

Manipulating the Graphical Display
Each design panel has a graphical display showing you the frequency
response of the filter that you are designing. The graphical displays provide
you with considerable flexibility in adjusting the magnitude response that
you are seeing. Before you move on to the next section (Designing IIR
Filters), you should become familiar with the display options.

Panning and Zooming Options

The graph palette has controls for panning (scrolling the display area of a
graph) and for zooming in and out of sections of the graph. The graph palette
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is included with many DFD graphs. A graph with its accompanying graph
palette is shown below.

100- Ptd
Graph
an-
\ & n-
+0-
zo-
Palette an
-1 1
A (%] F-"Y
mrEg

If you press the x autoscale button, shown at left, the DFD application
autoscales the X data of the graph. If you press the y autoscale button,
shown at left, the DFD application autoscales the Y data of the graph. If
you want the graph to autoscale either of the scales continuously, click
on the lock switch, shown at the left, to lock autoscaling on.

The scale format buttons, shown left, give you run-time control over the
format of the X and Y scale markers, respectively.

You use the remaining three buttons to control the operation mode for
the graph.

Normally, you are in standard operate mode, indicated by the plus or
crosshatch. In operate mode, you can click in the graph to move cursors
around.

The panning tool switches to a mode in which you can scroll the visible
data by clicking and dragging sections of the graph.

The zoom tool zooms in on a section of the graph by dragging a selection
rectangle around that section. If you click on the zoom tool, you get a
pop-up menu you can use to choose some other methods of zooming.
This menu is shown below.

Unda ! R
Zoar + +

© National Instruments Corporation 10-7 LabVIEW Signal Processing Course Manual



Lesson 10  Digital Filter Design Toolkit

A description of each of these options follows.
Zoom by rectangle.

remains unchanged.

Zoom by rectangle, with zooming restricted to x data (the y scale
AV

Zoom by rectangle, with zooming restricted to y data (the x scale
remains unchanged).

Undo Undo last zoom. Resets the graph to its previous setting.

Zoom in about a point. If you hold down the mouse on a specific point,
the graph continuously zooms in until you release the mouse button.

o Zoom out about a point. If you hold down the mouse on a specific point,
+ the graph continuously zooms out until you release the mouse button.

Note:  For the last two modes, you can zoom in and zoom out about a point.
Shift-clicking zooms in the other direction.

Graph Cursors
Below are illustrations of a waveform graph showing two cursors and the
cursor movement control.

10.0

=2.0-

S.0— cursor movement
40— control
—
Z.0-
o.a T T 1 -
0 2 el [ g 10

You can move a cursor on a graph or chart by dragging it with the
Operating tool, or by using the cursor movement control. Clicking the
arrows on the cursor movement control causes all cursors selected to
move in the specified direction. You select cursors by moving them on
the graph with the Operating tool.
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C.Designing IIR Filters

Implementation of

You have seen that IIR filters are digital filters whose impulse response is
infinitely long. In practice, the impulse response decays to a very small
value in a finite amount of time. The output of an IIR filter depends on both
the previous and past inputs and the past outputs. For calculating the current
output of the IIR filter, let (- 1) be the number of past outputs and let

(N, - 1) be the number of past inputs. Denoting the inputs to the filter as x[.]
and the outputs as y|[.], the equation for the output of an IIR filter can be
written as:

aoy[i] = —ayy[i—1]-ay[i-2] + —.—ay _;y[i-(N,—-1)] +
box[i] + by x[i—1] + bx[i—-2] +... +bNX—1X[i_(Nx_1)]

D wNy—a+ INATL D
=10 vl i_ K0
yli] = == afjlyli-jl+ b[KIx[i-Kl5 (1)

of 2 2

In the above equation, the b[k] are known adtineard coefficients and
the a[j] are known as threversecoefficients. The output sample at the
present sample indaxs the sum of scaled present and past inpdits (
andx[i-k] whenk | 0) and scaled past outpugE]). Usually N, is equal
to Ny, and this value is known as tbeder of the filter.

IR filters

lIR filters implemented in the form given by equation (1) are known as
direct formlIR filters. Direct form implementations are usually sensitive to
errors due to the number of bits used to represent the values of the
coefficients (quantization error) and to the precision used in performing the
computations. In addition, a filter designed to be stable can become unstable
when the number of coefficients (that is, tnder of the filter) is increased.

A less sensitive implementation is obtained by breaking up the higher
order direct form implementation into an implementation that has
several cascaded filter stages, but where each filter in the cascade is of
a lower order, as shown in the figure below:

X[i[] — stagel | — Y[i]

(a) Direct Form (of higher order)

X[ —

stage 1—» stage 2 ----—»| stage Ngs— V][]

(b) Cascaded Direct Form Filter Stages (each filter is of lower order than the filter in (a))
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lIR Filter Designs

Typically, each lower order filter stage in the cascade form is a
second-order stage. Each second-order stage can be implemented in the
direct form where you must maintain two past inputs (x[i-1] and x[i-2])

and two past outputs (y[i-1] and y[i-2]). The output of the filter is
calculated using the equation

y[il = box[i] + byx[i-1] + bx[i-2] - a1y[i-1] - apy[i-2] ~ (2)

The implementation can also be done in the more efficieadtt form 11,
where you maintain two internal states (s[i-1] and s[i-2]). The output of
the filter is then calculated as follows:

s[i] = X[i] - ays[i-1] - &s]i-2] (3)
y[i] = bsli] + bys[i-1] + b,s]i-2]

Thedirect form Ilis a more efficient structure because it uses less
memory. It needs to store only two past internal states (s[i-1] and s][i-2]),
whereas thelirect formstructure needs to store four past values (x[i-1],
x[i-2], y[i-1] and y[i-2]).

Depending on whether the ripple in the filter’'s frequency response lies
in the passband and/or the stopband, IIR filters are classified as follows:

* Butterworth: no ripple in either the passband nor the stopband.
* Chebyshev: ripples only in the passband

* Inverse Chebyshev: ripples only in the stopband.

» Elliptic: ripples in both the passband and the stopband.

The advantage of using Butterworth filters is for applications where you
want a smooth filter response and no ripples. However, a higher order
Butterworth filter (as compared to Chebyshev, Inverse Chebyshev, or
Elliptic) is generally required for the same filter specifications. This
increases the processing time for Butterworth filters.

The advantage of Chebyshev and Inverse Chebyshev filters over
Butterworth filters is their sharper transition band for the same order
filter. On deciding which of these two types of filters to use, the
advantage of Inverse Chebyshev filters over Chebyshev filters is that
they distribute the ripples in the stopband instead of in the passband.

Because elliptic filters distribute the ripples in both the passband and the
stopband, they can usually be implemented with the smallest order for
the same filter specifications. Hence, they have faster execution speeds
than either of the other filters.
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Applications of IIR Filters

The advantage of IIR filters over FIR filters is that IR filters usually require
fewer filter coefficients to perform similar filtering operations. Thus, they
execute much faster and do not require extra memory, because they execute
in place.

The disadvantage of IIR filters is that they have nonlinear phase
characteristics. Hence, if your application requires a linear phase
response, then you should use an FIR filter instead. However, for
applications where phase information is not necessary, such as in simple
signal monitoring, then IIR filters can be used. Thus, the bandpass filters
in real time octave analyzers are commonly IIR filters, because of their
faster speed and also because it is necessary to determine the distribution
of sound power over several frequency bands, but there is no need to
determine the phase of the signal. The applications of such octave
analyzers where phase information is not important are vibration tests of
aircraft and submarines, testing of appliances, etc.
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Exercise 10-1

Objective: To design an IIR bandpass filter for use in an octave analyzer.

1. Launch theDigital Filter Design Toolkit application. The Main
Menu panel opens as shown.

p. kMain bArnu
File Edit Dperate Yindows Help

1@ Digitad Filter Dasign

Clazyical IR Devign
Clasaical FIR Deeign m
Pole-Fern Placement
Arbivary FIA Decign
Load Fikar 3 pec | Ouit

2. IntheMain Menu, select Classical IIR Design and click on@pen
button. The design panel of the Classical IIR Design opens as shown.

DFD Henu "r|

k4]l
g =
-(I1E
=

ERT RN E Y

JPEREE Iy
IR N E‘E |

meI=age _ Hler orde -

On the left, a plot shows the Magnitude vs. Frequency response
characteristic of the filter you design. The specifications for your
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filter can be entered in the text entry portion at the upper right side
of the design panel.

The passband responsé the minimum gain allowed in the

passband. This is represented by the horizontal blue cursor line in the
Magnitude vs. Frequencyplot. With the reference at 0 dB, it is also
the same as theassband ripple

Thepassband frequenciesletermine the frequency edges of the
passband. For lowpass and highpass filters, you have only one
frequency edge. For bandpass and bandstop filters, you will have
two. These frequencies are represented by the vertical blue lines in
the Magnitude vs. Frequency plot.

The stopband attenuationis the minimum attenuation in the
stopband. The horizontal red cursor line represents this attenuation
in the Magnitude vs. Frequencyplot.

The stopband frequenciesdetermine the frequency edges of the
stopband. For lowpass and highpass filters, you have only one
frequency edge. For bandpass and bandstop filters, you will have
two. These frequencies are represented by the vertical red lines in the
Magnitude vs. Frequencyplot.

Thesampling rate control specifies the sampling rate in samples per
second (Hz).

Thetype control specifies one of the four classical filter types:
* Lowpass

* Highpass

* Bandpass

* Bandstop

Thedesigncontrol specifies one of the four classical filter design
algorithms:

* Butterworth
* Chebyshev
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* Inverse Chebyshev

* Elliptic

Below the text entry portion is an indicator showing the order of the
lIR filter.

Filer order 00

The DFD application automatically estimates the filter order to be
the lowest possible order that meets or exceeds the desired filter
specifications.

At the bottom left of the Classical IIR Design panel isniessage
window where error messages are displayed.

mESagE

You will use the Classical IIR Design panel to design an IIR bandpass
filter that can be used in an octave analyzer. Octave analyzers (see the
lesson on the Third-Octave Analyzer Toolkit) are used in applications
where you need to determine how the signal power is distributed over a
particular frequency range. These applications include the fields of
architectural acoustics, noise and vibration tests in aircraft and
submarines, testing of household appliances, etc.

An octave analyzer uses bandpass filters to separate the signal power
into several frequency bands. The American National Standards Institute
requires that these filters adhere to certain specifications. Some
specifications for one of these filters are:

fpl = 890.90 Hz

fp2 = 1122.46 Hz

maximum passband ripple 8 50 millibels
fs1 =120.48

fs2 = 8300

stopband attenuation S 65 dB

Because the purpose of the bandpass filter is to determine the level of
sound power in a particular frequency band, and the phase information
in the signal is not being used, it is not necessary for the filter to be linear
phase. Hence, you can choose an IIR filter for this application. You will

use the DFD toolkit to design the IIR filter to meet these specifications.
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3. Change the type control in the text entry bokaodpass
fpl

The explanation of the controls in the text entry box is the same as

before, except note that because you have selected a bandpass filter,

there are two controls for thgassband frequenciesand thestopband

frequencies They are denoted by fpl, fp2, fs1, and fs2, as shown in the

following figure, and bear the following relationship:
fsl < fpl < fp2 < fs2

fsl fpl fp2 fs2

passband and stopband frequencies for a bandpass filter

4. Looking at the specifications in step 2, enter the following values in

the controls in the text entry box

passband response -0.5

passband frequencies 890.90 and 1122.46

stopband attenuation -65

stopband frequencies 120.48 and 8300

sampling rate 25600

type bandpass

design elliptic

Note that 50 millibels :1_56%?) Bels =1%% deciBels = 0.5 dB. That is

why you entered the passband response as -0.5 dB.
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DFD Henu ﬂ
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\ tracking square cursor

5. On theMagnitude Vs. Frequencygraph is a tracking square cursor
that you can move around. The frequency and the corresponding
magnitude of the point where the cursor is placed, is displayed on the
frequency and magnitude indicators below the graph. Move the
square cursor to the passband region and verify that the attenuation
in the passband is never below -0.5 dB, as was specified in the
passband response control.

6. The default filter design is Elliptic. Change the filter design one by
one to Butterworth, Chebyshev, and Inverse Chebyshev. Note the
order of the filter. For the same filter order, which of the four filter
designs has the sharpest transition region?

7. You can save the specifications of the filter in a file for later use.
From theDFD menu, selecBave Spec..When asked for the name
of the file in which to save the filter specifications, type in
bandpass.iir . In Exercise 10-3, you will load this file and
analyze the characteristics of the filter that you have just designed.
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|-.-|' ODFD Monu |

Lood SpEC....
Smve Co=fF. ..

Zfe Chlateical FIR
Hfen Pole fero

You can also save the designed filter coefficients in a file for later
use with the DFD toolkit, or with other programs. From EHeD
menu, selecBave Coeff... When asked for the name of the file in
which to save the filter coefficients, typeiir.txt . Save the file
as atextfile. The appendix gives the format of the text file in which

the coefficients are stored.

4 OF0 Menu
Sawve Spec...

L el EEI:::.--

Zfe Chlateical FIR
Hfen Pole fero

Now that you have saved the filter specifications, and the filter
coefficients, you can close the application. Seldlet » Closeto
close theClassical IR Design panel. Then sel@xtit in the Main
Menu to exit the DFD Toolkit.

Printer Setup...

Prind Documentadon...
Prim Window... Cirl+P
Data Logging »
Ged Indo.._. Cirl

End of Exercise 10-1
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D.Designing FIR Filters

As opposed to IIR filters, whose output depends on both its inputs and
outputs, the output of an FIR filter depends only on its inputs. Because the
current output is independent of past outputs, its impulse response is of
finite length. The output of a general FIR filter is given by

y[i] = bx[i] + byx[i-1] + byx[i-2] + ........ + Iyx[i-N] (4)
whereN is the order of the filter andybby, .... Iy, are its coefficients.

FIR filters have certain advantages as compared to IIR filters.

* They can achieve linear phase response, and hence they can pass a
signal without phase distortion.

* They are always stable. During filter design or development, you do
not need to worry about stability concerns.

* FIR filters are simpler and easier to implement.

Applications of FIR filters

Many applications require the filters to be linear phase. In this case, you
should use FIR filters. However, FIR filters generally need to be of a

higher order than IIR filters, to achieve the same magnitude response
characteristics. So, if linear phase is not necessary, but speed is an important
consideration, you can use IIR filters instead.

In applications where a signal needs to be reconstructed after it has been
split up into several frequency bands, it is important that the filter is
linear phase. In the reconstruction process, the loss of phase could result
in the reconstructed signal being quite different from the original one.
An example of such an application is in the Wavelet and Filter Banks
Design toolkit, where you reconstruct the original signal (either a 1D
waveform or a 2D image) from the wavelet coefficients. The filters

used are FIR filters. The applications are in areas where phase
information is an important consideration, such as noise removal, data
compression, etc.
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Classical FIR Design and Arbitrary FIR Design
Using the DFD Toolkit, you can design FIR filters in the Classical FIR
Design panel (shown below) which is very similar to the Classical [IR
Design panel that you have seen.

D— Classical FIR Ducign EE'

Elle Edh QOperate Windows Help

DFD Menu 'q_rl

E Nl

Wl rn) B+ 4

ﬁ Hier ordes -
mirimize (i adar

03 2ap]

M=t sane

The panel includes a graphical interface with Megnitude vs.
Frequencygraph and cursors on the left side, and a text-based interface
with digital controls on the right side. The differences are the absence of
thedesigncontrol in the text entry box and the addition of the minimize
filter order control below the text entry box.

minime lfler order

This button controls whether the DFD application minimizes the
estimated filter order. If this button is OFF, the DFD application uses a
fast formula to estimate the filter order to meet or exceed the desired
filter specifications. If this button is ON, the DFD application iteratively
adjusts the filter order until it finds the minimum order that meets or
exceeds the filter specifications.

The FIR filters that are designed use the Parks-McClellan equiripple FIR
filter design algorithm and include the lowpass, highpass, bandpass, and
bandstop types. The Parks-McClellan algorithm minimizes the
difference between the desired and actual filter response across the
entire frequency range.
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You can also design FIR filters with an arbitrary frequency response by
selecting Arbitrary FIR Design in the Main Menu.

p- kain Hrnm E
File Edit Operatr Windowsz Help

@ Digital Filter Design

Classical IIA Deegn

Clexscol FIA Dedgn
Polke-Frro Placemenl

Sibiteanp FIR Design

Lo Fiker Spac

“Arbitrary” means that you can specify exactly what the magnitude of the
filter response should be at specific frequencies. In the next exercise, you
will design an FIR filter by specifying an arbitrary frequency response.
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Exercise 10-2

Objective: To design an FIR filter which filters the data according to A-weighting.
The human sense of hearing responds differently to different frequencies
and does not perceive sound equally. Certain filters are used to filter the
sound applied at their input such that they mimic the human hearing
response to audio signals. An application of this is in third-octave analyzers,
where, to mimic the response of the human ear, the analyzer output is
weighted according to the table shown below:

Frequency (Hz) Weighting (dB) Frequency (Hz) Weighting (dB)
10 -70.4 500 -3.2
12.5 -63.4 630 -1.9
16 -56.7 800 -0.8
20 -50.5 1000 0
25 -44.7 1250 +0.6
31.5 -39.4 1600 +1.0
40 -34.6 2000 +1.2
50 -30.3 2500 +1.3
63 -26.2 3150 +1.2
80 -22.5 4000 +1.0
100 -19.1 5000 +0.5
125 -16.1 6300 -0.1
160 -13.4 8000 -1.1
200 -10.9 10000 -2.5
250 -8.6 12500 -4.3
315 -6.6
400 -4.8

This type of weighting is known asweighting
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1. Launch the DFD Toolkit.

2. SelectArbitrary FIR Design in theMain Menu. You will access
the following design panel:

::r- Mrbilrary FIR Dusign !E E |

Elle Edh Qperate Windows Help

DFD Menu 'r| hequercy  magniuds

D 200000 | ZADOM | (T
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7 4000000 307745 | (O
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The panel includes a graphical interface with Megnitude vs.
Frequencygraph on the left side and a text-based interface with digital
controls on the right side. In the array on the right hand side, you can
enter or modify the array magnitude response points (frequency and
magnitude). From these points, the DFD application forms a desired
magnitude response that covers the entire frequency range from 0.0 to
half the sampling rate. The DFD application then takes this desired
response, along with the filter order, and uses the Parks-McClellan
algorithm to design an optimal equiripple FIR filter.
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The graph below plots the desired and actual magnitude response of the
designed FIR filter.

arbitrary Magnitude Response actual ]

desired [~ _

1.20-
1.00-
0.20-
0.&0-
0.40-

0.20-

0.00- : : : Hz
0.000 1000000 2000000 3000000 4000000

[I] # points riuttiple selection | OFFS ins
[[l ﬁlm—| th’near interpolation| ®

Figure 10-1. Desired and Actual Magnitude Response

The y-axis is in linear or decibel units, depending on how you set the
button in the upper left corner of the graph. The x-axis is in Hertz. The
full scale ranges from 0.0 to Nyquist (sampling rate/2).

ThedB button controls the display units (linear or decibel) of all the
magnitude controls and displays. These controls and displays include the
Magnitude vs. Frequencygraph (y-axis) and the magnitudes in the array
of frequency-magnitude points.

The following array is the array of frequency-magnitude points the DFD
application uses to construct the desired filter magnitude response. The
DFD application forms the desired filter response by interpolating
between these points.
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The frequency of each point is in Hertz and the magnitude is in linear or
decibel units of gain, depending on the setting of the button in the upper
left corner of théArbitrary Magnitude Response graph.

You can select points in this array by clicking in the circle to the right of
each point. You can then delete the selected points by clicking on the
delete button, or move them by clicking on the desired direction
diamond in the lower right corner of tAebitrary Magnitude Response
graph.

The# points control specifies the total number of frequency-magnitude
points the DFD application uses to create the desired filter magnitude
response.

# points

o

Reducing this number deletes points from the end of the
frequency-magnitude array, while increasing this number, inserts the
additional number of points to the right of the selected point.

If you want to select more than one frequency-magnitude point on the
response graph, you should set the multiple selection button to ON.
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Clicking on a point you already selected removes that point from the
selection list.

The interpolation control selects the type of interpolation the DFD
application uses to generate the desired response from the array of
frequency-magnitude points.

& . . .
l|linear interpolation ||

Choose linear interpolation to create “flat” filters (lowpass, highpass,
bandpass, and bandstop). Choose spline interpolation to create
smoothly-varying filters.

, To insert a frequency-magnitude point between the selected point and
msl . : i
the next point, click on thms button.

If the selected point is the last point in the frequency-magnitude array,
the DFD application inserts the new point between the last two points of
the array.

The DFD application inserts new points at halfway along the line
connecting the two outer points.

dell To delete the selected frequency-magnitude points, click on the del
button. The DFD application deletes all selected points.

These points are the selected frequency-magnitude points. You can
select points on therbitrary Magnitude Responsegraph by clicking on

the point, or directly from the frequency-magnitude array shown at the
right by clicking on the circle to the right of each point.

selected
points

]

..............
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The filter order control specifies the total number of coefficients in the

digital FIR filter.
filter uruerH|55

The ripple indicator displays the largest absolute error (linear) between
the desired and actual filter responses.

ripple [|1.3709E-2 |

The message window displays errors that occurred during the FIR design
procedure.

message

The locked frequencies box allows you to lock the present frequency
values of the frequency-magnitude points. If you click in this box, you
can alter only the magnitude or y-value of the frequency-magnitude
points.

|:| lacked frequencies |:| sart by frequency
|:| unifarm spacing |:| irnport from file

The uniform spacing box is used to space the frequency values of the
frequency-magnitude points. If you click in this box, the DFD
application spaces the frequency-magnitude points uniformly from 0.0
to sampling rate/2, inclusive.

Clicking in the sort by frequency box tells the DFD application to sort
the frequency-magnitude points in both the response graph and the array
according to ascending frequency. The value of each frequency-
magnitude point remains unchanged; however, the point order may
change.

Clicking on import from file enables you to import frequency-magnitude
points from a text file.
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The sampling rate control specifies the sampling rate in samples per
second (Hertz).

3.

. &
sampling rate |= 8000.00

The filter specifications shown in the table on page 10-21 have been
saved in thé®©fd\Aweight.fir file. Load these specifications by
selectingDFD Menu » Load Spec..and choosing the

Aweight.fir file.

You could also have entered these values directly on the front panel
and then saved them by selectBaye Specs.from theDFD Menu.

| J DFD Menu |

Lood SpecC.....
EHHE I:IEH:.-.

When prompted for a file name, typaveight.fir

5.

© National Instruments Corporation

With the multiple selection control set to OFF, move some of the
points on théArbitrary Magnitude Response graph. To do this,

move your cursor close to a point till the cursor changes shape, as
shown below:

Hold down the left mouse button and move the point. Observe how
the response of the filter changes as the point is moved.

Choosdocked frequencieand try to do the same as in the previous
step. Now you should be able to change the magnitude of the selected
point, but not its frequency.

[ boked frequenoes [] sorl by Fiequency
O urifmm zpaging [ impeoe from fie
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7. Change the methods of interpolation betwleerar interpolationand
spline interpolation Observe the difference in the shape of the filter
response. Linear interpolation is used to create “flat” filters, such as
lowpass, highpass, bandpass, and bandstop filters. Spline
interpolation is used to create smoothly-varying filters.

8. Close the Arbitrary FIR Design panel by seleciigsefrom the
File menu.

9. Quit the application by selectiri@uit from the Main Menu.

End of Exercise 10-2
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E. Analyzing your Filter Design

Impulse Response

Step Response

© National Instruments Corporation 10-29

After designing your IIR or FIR filter, you can analyze your design in
several ways. For example, you can see the effect that the filter has on the
amplitude and phase of input signals at different frequencies by observing
its magnitude and phase responses. Several types of analysis methods are
available in the Digital Filter Design Toolkit. These are explained below.
You will first look at the response of the filter to special kinds of input
signals.

The output of the filter when the input is an impulse is known asngse
responsef the filter. An impulse in the digital world has an amplitude of 1
at index 0 and an amplitude of O for all other indices. An impulse and the
impulse response are shown in the figures below.

A | mpuze
1.0-

0.3~
M.5-
0.4~
0.2-
a.0-

The impulse response has a very special meaning in the case of FIR
filters. The impulse response of an FIR filter gives the coefficients of
that filter. Thus, the impulse response is a useful method for determining
the coefficients of an FIR filter. Furthermore, the number of nonzero
terms in the impulse response gives the number of coefficients in the
filter. (For an IIR filter, the relationship is much more complicated, and
the above discussion does not apply.)

Another use of the impulse response is that, for both FIR and IIR filters,
the output of the filter is given by the convolution of the input signal and
the impulse response of the filter.

The output of the filter when the input is a unit step is known astéipe
responsef the filter. A unit step in the digital world has an amplitude of 0
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for all negative indices, and an amplitude of 1 at index zero and for all
positive indices. A unit step and the step response are shown in the figures
below.

& Uril Step|
1.0-

The step response is important if you will use the filter in a control
system. You can then see how the parameters of the control system (such
as the rise time, overshoot, etc.) are affected by the filter. The step
response also shows you how long the filter will take to respond to a
sudden change in the input.

Frequency Response (Magnitude Response and Phase Response)

The frequency response in useful in that it shows the effect that the filter has
on the amplitude and phase of input signals at different frequencies.
Because the filter can affect both the magnitude and the phase of the input
signal, the frequency response consists of two parts—the magnitude
response and the phase response. An example of these responses is shown
below. The x-axis units are normalized in terms of the sampling frequency.

1.20 i Magnitude (dB) |_
1.00 ~— <

0.80 \
0.60 \

0.40 \
0.20 \ t (H2)

0.00 =7
0.00 0.10 0.20 0.30 0.40 0.50
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0.0 | Phase (radians) I_
-2.0
\\
-4.0 \
-6.0 "~
]
-8.0 \\ \\ b\\
-10.0 T
f (Hz

-12.0 Ti H2)

0.00 0.10 0.20 0.30 0.40 0.50

Not only does the frequency response enlighten you as to the effect that
the filter has on signals of specific frequencies, it also allows you to
determine what happens to arbitrary signals as they pass through the
filter. Because most signals can be expressed as a sum of exponentials
(sines and cosines), you can break a signal down into its individual
components and determine the effect of the filter on those components.

The Z-Domain: Transfer Function H(z) and the Pole-Zero Plot
Thetransfer functionH(z), of a digital filter can be expressed as a ratio of

polynomials,
- N(2
RTE)

where N(z) is a numerator polynomial, and D(z) is the denominator
polynomial. (For an FIR filter, D(z) = 1.) H(z) is also known as the
z-transformof the filter.

The values ot at which N(z) is equal to zero are known aszémsof

the filter, because for these values, H(z) is also equal to zero. The values
of z at which D(z) is equal to zero are known aspbkesof the filter,
because at these values, H(z) is equal to infinity. A plot of the poles and
zeros of the filter is known as tipele-zero platBecause is a complex
number, the pole-zero plot is shown in terms of the real parbnfthe
x-axis and the imaginary part oon they-axis.

The pole-zero plot is useful in determining the stability of the filter. As
long as all the poles of the filter have a magnitude less than one, the filter
is stable. If any of the poles of the filter have a magnitude greater than
one, the filter will be unstable. That means that the output of the filter
will continue to grow indefinitely even if the input is no longer applied.
The values ot for which its magnitude is equal to one is drawn on the
pole-zero plot as a circle having its center at the origin and having radius
equal to one. Thus, so long as the poles of the filter lie inside the circle,
the filter will be stable. If even one of the poles lie outside the circle, the
filter will be unstable.

© National Instruments Corporation 10-31 LabVIEW Signal Processing Course Manual



Lesson 10  Digital Filter Design Toolkit

The Digital Filter Design Toolkit gives you both the transfer function of
the filter and its corresponding pole-zero plot. The figures below show
the pole-zero plots for both a stable and an unstable filter. &cdepicts

a zero and eachdepicts a pole.

1.0 T
|
| X
|
0 |
oO0|-—— — — + - -
0 |
|
| X
|
'1.0 |
-1.0 0.0 1.0
stable filter
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1.0

00|- ——

-1.0

-1.0

0.0 1.0

unstable filter
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Exercise 10-3

Objective: To analyze the design of an IIR filter.
You will load the filter specifications you saved in Exercise 10-1 in the file
bandpass.iir and see its impulse and step responses, and the pole-zero
plot of its transfer function.

1. Open the DFD application.
2. Choose the Classical IIR Design panel.

3. When the Classical IR Design panel opens, seleatd Spec..from
the DFD Menu.

4 OF0 Menu
Save Spec...

Smwve Coe=ff. ..

Zfen Chlateical FIR
Hfen Pole fero

When prompted for the filename, seléendpass.iir
4. From theDFD menu, selecAnalysis.

< OFD Menu
Sawve Spec...

Zfe Chlateical FIR
Hfen Pole fero

The Analysis of Filter Desigwindow opens, as shown below.
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D— Aralvsis ol Filles Design

Elle Edh Qperate Windows Help

DFD Henu II

Daeign Analeed

s 0==rd A |

Hiz|

TR |

OF0 Menu =~

In this panel, you can view the filter magnitude response, phase
response, impulse response, step response, and pole-zero plot of the
filter you designed in the first exercise. You can also view and print
full-screen plots of each response. From the full-screen views, you can
save the analysis results to text files.

If you selectDFD Menu » Analysis from a filter design panel, the
Analysis of Filter Design panel uses that particular filter design to
compute the various filter responses. You can also analyze any of the
four filter designs from th®esign Analyzedring selector; the Analysis

of Filter Design panel uses the filter parameters from the selected filter
design.

The DFD Menu can be used to load filter designs from previous work,
open the DAQ and Filter panel, go to the selected filter design panel, or
return to the Filter Design Main Menu.
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The Design Analyzedcontrol selects which filter control to analyze. If
you continue to modify the same filter design that is presently being
analyzed, the DFD will recompute all filter responses.

Cesign Analyzed
Hlctsssical IR |

Analysis Displays

] Each of the five filter plots has a zoom box in the upper right corner.
Clicking in this box brings up a full-screen version of that plot. In the
full-screen versions of these plots, you can change the units from linear
to decibel (magnitude response), from radians to degrees (phase
response) or from seconds to samples (impulse and step responses).
From each full-screen view, you can save the response data to text files.

zoom
box

Magnitude Response

5. The magnitude response is the magnitude of the filter’s response
H(f) as frequency varies from zero to half the sampling rate. Look at
the magnitude response of the designed filter. You can see that it is
indeed a bandpass filter.

Phase Response

6. The phase response is the phase of the filter’'s response H(f) as
frequency varies from zero to the sampling rate. The following figure
illustrates the phase response of the selected filter design. Note that
the phase is displayed in radians. You can obtain a display in degrees
by clicking on the zoom box of the Phase Response plot. A new
window will appear, which will give you the option of choosing
between the appropriate display units.
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Impulse Response
7.

Step Response

Z-Plane Plot

The impulse response of a digital filter is the filter’s output when the
input is a unit sample sequence (1, 0, 0, ...). The input before the
unity sample is also zero. The following figure shows the impulse
response of the selected filter design.

Observe that although it is an IIR filter, the impulse response decays
toward zero after a finite amount of time.

The step response of a digital filter is the filter's output when the
input is a unit step sequence (1, 1, 1, ...). The input samples before
the step sequence are defined as zero. The following figure shows the
step response of the designed filter.

The following figure illustrates the z-plane plot of the filter poles and
zeros.

Each pole is represented by a kedEach zero is represented by a
blueo. Compare this with th®lagnitude Responsef the filter and
observe that the zeros are at 0 anghich correspond to frequencies
0 and Nyquist (fs/2). The location of the poles is about 1000 Hz,
which is why there is a peak in the magnitude response around
1000 Hz.
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H(z) for IR Filters
10. H(z) is the z-transform of the designed digital filter.

HIz]
E‘ ‘

Previously, you saw that the IIR filters are implemented as cascaded
second-order stages. For an IIR filter, H(z) can be represented by a
product of fractions of second-order z polynomials.

] Ng Nk(z)
H@) = T D,
k=1

N.(2) = numerator for stage

D.(z) = denominator for stage
N = number of second-order stages

You can view the N(z) and D(z) polynomials for other stages by
incrementing the index shown in the upper left corner of the H(z)
display.

11. Close the panel by selecti@¢psefrom theFile menu. Quit the DFD
application.

End of Exercise 10-3
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F. Format of Filter Coefficient Text Files

When you save your filter coefficients to a text file, the DFD application
generates a readable text file containing all the information you need to
implement the designed FIR or IIR digital filter. This section details the

format for both FIR and IIR filter coefficient files.

FIR Coefficient File Format

The following table gives an example FIR coefficient text file and
description:

coefficient file example description

FIR Filter Coefficients type of file

Sampling Rate sampling rate label

8.000000E+3 sampling rate in Hz

N filter order label

22 filter order

h[0..21] coefficients label

6.350871E-3 1st coefficient, h[0]

-8.833535E-3 2nd coefficient, h[1]

-2.847674E-2

4.626607E-2

4.103986E-2

-1.114579E-1

-1.412791E-2

1.810791E-1

-5.984635E-2

-2.002337E-1

1.516199E-1

1.516199E-1

-2.002337E-1

-5.984635E-2

1.810791E-1
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coefficient file example

description

-1.412791E-2

-1.114579E-1

4.103986E-2

4.626607E-2

-2.847674E-2

-8.833535E-3

6.350871E-3

last coefficient, h[N-1]

You can implement the FIR filter using equation (4) directly.

lIR Coefficient File Format
lIR coefficient files are slightly more complex than FIR coefficient files. IR

filters are usually described by two sets of coefficiem&s)db coefficients.
There are a total of M * § coefficients and (M+1)*® coefficients, where

M is the stage order (usually 2) and S is the number of stages. An IIR filter
with three second-order stages hasawoefficients per stage for a total of

six a coefficients, and threle coefficients per stage for a total of nime

coefficients.

The following table gives an example IIR coefficient text file and

description:

© National Instruments Corporation

coefficient file example

description

IIR Filter Coefficients

coefficient type

Sampling Rate

sampling rate label

8.000000E+3

sampling rate in Hz

Stage Order

stage order label

2

order of each stage

Number of Stages

number of stages label

3

number of stages

a Coefficients

a coefficients label

6

number of a coefficients

3.801467E-1

al for stage 1

10-39
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coefficient file example

description

8.754090E-1 a2 for stage 1
-1.021050E-1 al for stage 2
9.492741E-1 a2 for stage 2
8.460304E-1 al for stage 3
9.540986E-1 a2 for stage 3

b Coefficients

b coefficients label

9

number of b coefficients

1.514603E-2

b0 for stage 1

0.000000E+0

b1l for stage 1

1.514603E-2

b2 for stage 1

1.000000E+0

b0 for stage 2

6.618322E-1

b1l for stage 2

1.000000E+0

b2 for stage 2

1.000000E+0

b0 for stage 3

1.276187E+0

b1l for stage 3

1.000000E+0

b2 for stage 3

You can implement the IIR filter in cascade stages by using equation (2)
(maintaining two past inputs and two past outputs for each stage), or by
using the direct form Il equations (maintaining two past internal states),
as in equation (3).
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Summary

You have learned that FIR filters are used for applications where you need
a linear phase response, such as for applications that require reconstructing
the original waveform after filtering, noise removal, and data compression.
For applications where phase is not an important consideration (such as for
simple signal monitoring) and where faster speeds are necessary, you can
use IIR filters.

You saw that the DFD toolkit allows you to interactively design both
FIR and IIR filters. The design could be done either by specifying the
filter parameters (classical IIR design and classical FIR design),
deciding the location of the poles and zeros in the z-plane (pole-zero
placement), or arbitrarily specifying the magnitude response
characteristics (arbitrary FIR design) of the filter.

After the filter has been designed, you can analyze your filter in terms

of its magnitude and phase responses, impulse and step responses, and
the pole-zero plot. You can also save the filter coefficients for use in
other applications.
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Notes
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Lesson 11
G Math Toolkit

]

Introduction

The G Math Toolkit offers a new paradigm for mathematiasyerical
recipes in Gwith hundreds of math VIs for solving differential equations,
optimization, root finding, and so on. All Vis in the G Math Toolkit are
written in G, so you can quickly modify them for your custom applications.
A main feature of the G Math Toolkit is that it adds to LabVIEW and
BridgeVIEW the ability to enter complex formulas directly onto the front
panel of a VI.

This toolkit is intended for use by scientists, engineers, and
mathematicians, and by anyone needing to solve mathematical problems
in a simple, quick, and efficient manner. It can also be used as an
educational aid by those interested in expanding their knowledge of
mathematics.

You Will Learn:

A. About the organization of the G Math Toolkit.

B. About the different types of parser ViIs and how to use them to parse
formulas entered directly on the front panel.

C. About solving differential equations using the differential
equation VlIs.
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A. Organization of the G Math Toolkit

The G Math Toolkit consists of nine libraries, each specifically suited to
solve problems in a particular area of mathematics. These libraries are:

ﬁ Parser.llb : Consists of the Vs that act as an interface
5

between the end user and the programming system. These VIs
parse the user-given formula and convert it to a form that can be
used for evaluating the results.

f Visualiz.llb : These are the Data Visualization VIs for
4= | plotting and visualizing data in both 2D and 3D. They include
advanced methods such as animation, contour plots, and
surface cuts.

il Ode.llb : The Visin this library solve ordinary differential

= equationsVls, both numerically and symbolically.
H

Zero.llb  : Used for finding the zeros of 1D ob, linear or
nonlinear functions (or system of functions).

JE

Opti.llo  : The optimization Vls that determine local minima
;3;;& anq maxi_ma of reql 1D D functions. _Yog can choose be_tween

optimization algorithms based on derivatives of the function and
others working without these derivatives.

Hl 1Dexplo.llb  : Contains Vls that allow the study of real-valued
a=IM1} 1D functions, with and without additional parameters, given in
symbolic form.

2Dexplo.llb  : A collection of VIs that deliver information

=IMgll  about 2D functions given in symbolic form, where
parameterization is allowed. Extrema (minima and maxima) and
partial derivatives can be numerically calculated.

H

Function.llb : These VIs evaluate some common
mathematical functions.

Trans.llb  : A group of VIs that implement some transforms
commonly used in mathematics and signal processing.

gah | g
815

The G Math libraries consist of more than 100 VIs you can use for
solving your mathematics problems. In the next section, you will
concentrate on learning more about the parser VIs and use some of them
to build a simple arbitrary waveform generator. The importance of the
Vis in the parser library is in enabling users to enter formulas directly
on the front panel. Thus, the user can enter a formula on the front

panel and the arbitrary waveform generator will generate and plot the
corresponding signal.

LabVIEW Signal Processing Course Manual 11-2 © National Instruments Corporation



Lesson 11 G Math Toolkit

B. Parser Vis

The Vis in the Parser library act as the interface between the user and the
Vis in the other libraries. The formulas entered on the front panel can have
any number of variables. The formulas are first parsed to determine the
variables and the values to be assigned to them. They are then evaluated to
a number by substituting numeric values for the variables.

Direct and Indirect Forms

Because there are basically two steps involved in this process (parsing and
then evaluation), there are two forms of parser Vis-ditextform and the
indirect form. In the direct form, both the parsing and evaluation are done
in the same VI. In the indirect form, the parsing and evaluation are done in
separate VIs.

As an example, the direct version of tieal Formula Node VI can be
represented as in the following block diagram.

Yeviabbas Input [Tooe]] Irput Vdies

= _- Culput Veuee
Variables Dulput] [25<] oo P

ol

BITDE 1 [0 BdTon] &m0l ok

On the other hand, the indirect forms split the VI in two subViIs, as
shown in the following illustration. You can use the indirect form in
larger applications, where a two-step process (parsing and then
evaluating) is more efficient.

Input Yalues][ D611 |
|'-.-'ariah195 Input” [1b ] jeacacag
i [06L] |[Dutput Yalues
|'-.-'ariables Dutput" [ab c] fooas {

|-

-—.__ & = errar out

------ —
- calculation process,
[ parsing process | sometimes later

or even in another ¥i
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The following table summarizes the different types of parser Vis.

Direct Form (Parsing and evaluation done in one VI) Example

No Variables Eval Formula String Evaluates RHS of a formula sin(1.2) +5
without variables.

Single Variable Eval Single-Variable Evaluates RHS of a formula of, cos(x) at x = 3.142

Scalar

one variable at one specified
point.

Eval Single-Variable
Array

Evaluates RHS of a formula of]
one variable at several specifie
points.

cos(x) at
x=0,0.1,0.2, ..

Many Variables

Eval Formula Node

Evaluates both sides of
formula(s) with several variablg

x=a+bata=1,b=

Eval Multi-Variable
Scalar

Evaluates RHS of a formula wi
several variables at one specif
point.

sin(x) + cos(y) + z
atx=1.0,y=2.5,
z=3.1

Eval Multi-Variable
Array

Evaluates RHS of a formula wi
several variables at several
specified points.

sin(x) + cos(y) + z
atx=1,y=2,z=3an
x=3,y=10,z=1 ang
x=0.1,y=-2,2=0.0

=0

Indirect Form (Parsing and evaluation in separ

ate VIs)

Many Variables (The
combination evaluatesg
the RHS of aformula g

Parse Formula String

Parses the RHS of a formula t
determine input variables and t
operations performed on them

Xx=sin(z)+7*y

several variables at th
specified point.)

Eval Parsed Formula
String

Evaluates the parsed formula
with the specified values for th
input variables.

Many Variables (The
combination evaluateg
both sides of formula(s
of several variables at
the specified point.)

Parse Formula Node

Parses both sides of the
formula(s) to determine the inp
and output variables and the
operations to be performed on
them.

Xx=a+b
y=a*b

Eval Parsed Formula
Node

Evaluates the parsed formula(
with the specified values for th
input variables.

Others
Substitute Variables Substitutes specified formulas f
variables in the main formula.
Note:  The front panel of each parser VI has an example that shows how to enter

values in the control inputs.
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The direct form of parser VIs are more widely used than the indirect
form. The following flowchart guides you through the selection of a
specific parser VI of the direct form.

Select one of
the indirect form
Parser Vis

Parsing and Evaluation
in the same VI?

How many
variables?

single Evaluation
at single or

multiple points?

multiple

Evaluate both

sides of formula? Eval

Formula Node

Eval Single-Variable Scalar Eval Single-Variable Array

Evaluation
at single or
multiple points?

single multiple

Eval Multi-Variable Scalar Eval Multi-Variable Array

Comparison with Formula Node

A parser VI scans an input string and interprets this string as a collection of
formulas. Then, the parser VI replaces the formulas with numeric
calculations and outputs the results.The parser VI routines deal only with
real numbers. There are some differences between the parser in the G Math
Toolkit and the Formula Node found in the original LabVIEW (or
BridgeVIEW) package. The following table outlines these differences.

Meaning Formula Node Parser VI Routines
(G Math Toolkit)

Variables No restrictions Only a, a0, ...,a9, ...

z, 20, ...,79, are valid
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Meaning Formula Node Parser VI Routines
(G Math Toolkit)
Binary functions Max, min, mod, rem Not available
More complex math Not available Gamma, ci, si, spike, step,
functions square
Assignment = Not available
Logical, conditional, ?, 1], &&, '=, ==, <, >, <=| Not available
inequality, equality >=
T pi pi(1)= mpi(2)= 21

The precedence of operators is the same for the G Math Toolkit parser
Vis as those of the formula nodes in LabVIEW and BridgeVIEW.

Error Structure

The parser Vis use the following error handling structure. This structure
consists of a Booleastatusbutton, a signed 32-bit integer numerade
indicator, and a stringpurceindicator. These error handler components are
explained below:

statusis TRUE if an error occurred. #tatusis TRUE, this VI does not
perform any operations.

codeis the error code number identifying the error.
sourceexplains the error in more detail.

The default status of therror in structure is FALSE (no error),
indicated by an error code of 0.

arron i o e emor out

il cOde Ratus code

no &M §|D7| no S lﬂ'ﬂ7|
HMICE ADANCE

With this structure, an application can programmatically decide the
accuracy of formulas and control the data flow in case of errors. The
application uses theourcefield of the error handling structure as a
storage for a wrong formula input. This field displays limited error
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descriptions if an error is detected in your program. SeErioe Codes
appendix for the error codes and the messages of the parser VI routines.

Functions Available for Use with Parser Vis
Most of the functions that you can use in the formula node can also be used
in the parser VlIs. However, there are some differences. For a complete list
of functions that you can use with the parser VIs, refer to the appendix.

The parser Vis are extremely powerful and can be used in a wide variety
of applications. The first few exercises in this lesson cover building an
arbitrary waveform generator that uses several of the parser routines and
to understand their functionality.
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Exercise 11-1

Objective: To build an arbitrary waveform generator using the Eval Single-Variable Array VI.
In this exercise, you will build an arbitrary waveform generator using the
parser VIs. You will enter the formula for the waveform on the front panel
and see the output waveform on a graph indicator.

Selection of Direct or Indirect Form Parser VI
First, you must decide whether to use the direct or the indirect form of the
parser VIs. Because you are interested only in displaying the result of the
evaluation on a graph, and are not concerned about the results of parsing,
you will use the direct form of the parser ViIs.

Selection of Parser VI
Looking at the table on page 11-4, depending on the number of variables in
your formula, you need to choose the appropriate VI from several available
choices of VIs of the direct form. Because you will plot a 1D function, you
need a VI that can handle functions of at least one variable. And because you
want to evaluate that function at more than one point, choo&evéthe
Single-Variable Array VI (G Math » Parsersubpalette). The inputs and
outputs of this VI are shown below.

Fommidha == R 1 e ' 1 b Ecy
o ' allpg =—
amarinna H,.;.—|=-E“‘“I‘I£ emar auk

Eval SmoleYanabke Aurap. v

formula: a control for specifying your mathematical formula consisting
of one variable.

X Values: values of the variable at which the formula is evaluated.

Y Values: numeric results of the evaluation of the formulbbrmula at the
values specified iX Values.

You need to specify at least the inptdsmula andX Values. For the
formula input, you will enter a control on the front panel. On this
control, you can type in your input formula. For té&alues, you will

build a For Loop on the block diagram that will generate 1000 points at
which to evaluate the equation you will type in the formula control. The
corresponding front panel and block diagram are shown below. Note that
the For Loop generateé Values from 0 to 10 in increments of 0.01.
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1. Build the VI front panel and block diagram shown below.

Front Panel

formulal
lsirf] |
“Shing ConlnoM

T Valuee
0 Jooa |

ey Digld Indcaloe

Wawfull|

1.0 .

oo 20 10 RO B0 1Ei.|]
ke, :ﬂlﬂﬁ‘ L = Efaim Graph®
it el

The formula string control is where you enter your formula.

The Y Values indicator shows the result of the calculation of the formula
at specified discrete points.

The Waveform graph shows you a plot of the function you typed in the
formula control.

Block Diagram

Eﬂﬂlﬂ%l E-val Single-Vannhls Arayui] [r¥alues
! (o]

B

-IJEﬂ III vy muefom
0TS
(ol ] ==

Tzl
]

Eval Single-Variable Array VI (G Math » Parsersubpalette)
evaluates a function of a single variable at multiple points.

The For Loop generates the discrete set of points at which the formula
in the formula control will be evaluated. These points range from 0O to
9.99 in increments of 0.01.

2. After building the above VI, return to the front panel.

3. Type in the equatiosin(x)in the formula control and run the VI. See
the result displayed on the graph indicator.

© National Instruments Corporation
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Note thatsin(x) has only one variable, called You could also call
the variabley or z or anything else. The appendix lists the rules for
variable names.

4. Change the equation $in(x) + cos(x/2)and run the VI.

5. Change the equation$tep(y-1) + sinc(y-2) + sin(y*10and run the
V1. Note that now you have changed the variablg.to

6. Type in any other equation in the formula control and run the VI. The
appendix contains a list of available functions you can use in the
equation.

Note: If you get an error, refer to the appendix for a list of error codes.

7. Save the VI akvalSVA.vi in the libraryLvspcex.llb

8. Close the VI.

You have now seen how easy it is to build the waveform generator where
the user can specify the formula for an arbitrary waveform on the front
panel. In the next exercise, you will modify this waveform generator to

have the functionality of easily specifying even more complex
waveforms.

End of Exercise 11-1
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Exercise 11-2

Objective: To generate even more complex waveforms by incorporating the Substitute
Variables VI in the function generator.
Another useful VI in the parser library is tBebstitute VariablesVI (G
Math » Parser subpalette). The connections to this VI are shown in the
figure below. It is used to substitute formulas for parameters that are already
defined in formulas.

EmﬂE&E‘ f':'él'l'l'-;a Formuls alt= subzliubon
slkution Fulee _
eroe i hoemarl = =mr ot

Subalitute Yoniablex. vi

original formula : the main formula you type in.

Substitution Rules specify the substitutions to be made for the parameters
in original formula .

formula after substitution: the resulting formula after the parameter
substitutions specified iBubstitution Rules

You will now modify the waveform generator you built in the previous
exercise to use theubstitute VariablesVI. Suppose you want to
generate a “generic” waveform that is of the f@im(A) + cos(B)where

A andB can themselves be functions like sin(x), cos(x), square(x),
sinc(x), In(x), etc. But you want to use different functionsAandB
each time you run the VI. This is accomplished as shown in the front
panel and block diagrams below.

ariginal fomaula

B ubstilute Yariakl e s

Eval Single-variakle Arrayvil

LY
L
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Substitute VariablesVI (G Math » Parsersubpalette)
substitutes for parameters defined in formulas. The substitution
is done according to the rules specified in Sudbstitution
Rulescluster array.

AL FHR
=11

w=| Eval Single-Variable Array VI (G Math » Parsersubpalette)
~+#]| evaluates a function of one variable at specified multiple points.

The For Loop generates a thousand points, ranging from 0 to 9.99 in
steps of 0.01, at which to evaluate the user-specified formula.

orignal fomula "H"a'.lnfum|
sinl] + cas/H] Fio: [
“Sting Cohlrol
. e oul
Subatitution Aubes| : . . . | o ol
E— a.n 20 4.0 B.0 2.0 0.0 aiamﬂ
arameter neme
H—l E ﬂlﬂﬁ‘ "Wy efomn Greph® OFF
A wsal] code
amelar conternl T "."all.lana| |EI7|
E‘
rix] | E 0.54 | HMIICE
“riay ol Clushar af Sking Conlnals? “&may Digkal Indicator® |

Theoriginal formula string control is where you enter your formula of
one variable. The formula may have one or more parameters.

Each element (cluster) in ti8ubstitution Rulesarray specifies a
parameter and its corresponding substitution.

Y Values is an array digital indicator that shows the result of calculating
the formula at specified points.

1. Build the VI as shown in the figures above. Thenula after
substitution output of theSubstitute VariablesVI goes to the
formula input of theEval Single-Variable Array VI.

Hint: Build the block diagram first, pop up to create the controls and
indicators, and then add the waveform graph.

2. In theoriginal formula control, type in the formulsin(A) + cos(B)
This will be the “generic” formula. In theubstitution Rulescontrol,
you will provide the user with the capability of specifying the
functions to be substituted fé&randB.
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3. In element 0 of th&ubstitution Rulescontrol, type in
parameter name: A
parameter content: sin(x)
In element 1, type in
parameter name: B
parameter content: cos(x)

Note that this is the same as if you had typiadsin(x)) + cos(cos(x))
in the formula control in Exercise 11-1.

4. Run the VI and see the waveform on the graph display.
5. Change the values in tlsibstitution Rulescontrol to

element O parameter name: A
parameter content: sin(x)

element 1 parameter name: B
parameter content: square(x)

Run the VI. The resulting equation is the same as if you had typed
sin(sin(x)) + cos(square(xjh the formula control in Exercise 1-1.

6. Now change the control to

element 0 parameter name: A
parameter content: step(x-5)
element 1 parameter name: B
parameter content: square(x)
Run the VI.

With this simple VI that you have built, you now can generate any
type of waveform that you so desire, with the functions given in the
appendix.

7. Save the VI aESVA_SV.viin the libraryLvspcex.llb
8. Close the VI.

End of Exercise 11-2
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C. Solving Differential Equations

You can use G Math to solve both ordinary or partial, linear or nonlinear,
and either first or higher order differential equations. G Math has seven Vis
for solving various types of differential equations. These VIs are listed
below, classified according to the order of the differential equation they can
solve.

Note:  The order of a differential equation is the order of the highest derivative in
the differential equation.

The first five VIs can solve a set (one or more) of first-order differential
equations. The next two VIs are for solving higher order differential
equations. Note that you can convert a higher order differential equation
into a set of first-order differential equations (later in this lesson, you will
see an example of how to do this).

VIs for solving a set (one or more) of first-order differential equations:

> ODE Cash Karp 5th order for solving differential equations

:#:k) using the Cash Karp method.
pa L4 e[t

7| ODE Euler Method for solving differential equations using the

: Euler method.
[0 1

o ODE Runge Kutta 4th order for solving differential equations

Wk using the Runge Kutta method.

7] ODE Linear System Numericfor numerical solution of a linear

=21y system of differential equations.
:llll:ll

- ODE Linear System Symbolicfor symbolic solution of a linear

e system of differential equations.

Out of these, the first three are for solvimghnhomogeneous
(right side | 0) differential equations, whereas the last two are for
homogeneougight side = 0) differential equations.

VIls for solving higher order differential equations:

=771 ODE Linear nth order Numeric for numeric solution of a linear
=3, system of nth order differential equations.

=15 ODE Linear nth order Symbolic for symbolic solution of a
=25 linear system of nth order differential equations.

Both these VIs are for solvingpmogeneoudifferential equations.
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Solving Nonhomogeneous Differential Equations
From the previous discussion, you see that there are three VIs available for
solving nonhomogeneous differential equations. They are

* ODE Cash Karp 5th order VI
* ODE Euler Method VI
* ODE Runge Kutta 4th order VI

Each VI employs a different method for solving the differential
equations. Each method uses a parameter known ateihsize

(denoted byh) that determines the spacing between points at which the
solution is evaluated. This step size is a constant for the last two VIs
(which employ the Euler and Runge-Kutta methods), whereas it is
variable (it automatically adapts itself to the solution) for the first VI
(which employs the Cash Karp method). The Euler method is the
simplest method, but the Runge-Kutta method gives a more accurate
solution.

The question arises as to which of these three VIs you should choose for
your application. The general guidelines are:

» Select theODE Euler Method VI for very simple ODEs.

* For all other cases, choose thBE Runge-Kutta 4th Order VI or
the ODE Cash Karp 5th Order VI.

— If you need equidistant points (that is, constartfor example,
for robot control applications), choose tB®E Runge-Kutta
4th Order VI.

— If you are interested in a global solution and fast computation,
choose th®©DE Cash Karp 5th Order VI.

A General Class of Second-Order Differential Equations
As an example, a general class of second-order differential equations is
described by the following initial value problem

d’y . dy, .
agt " bHE tey= oY @)
; _ dy(0)_ dyo
with y(0)=y, and 9t Gt

wherey(0) is the value oy att = 0,dy(0)/dtis the value ofly/dtaty=0,

and g(t) is known as tHercing functiony(0) anddy(0)/d are known as
theinitial conditions(ICs). Note that because the right side of equation
(1) is not equal to zero, it isrmnhomogeneouwdifferential equation. In
the absence of a forcing functiog({) = 0), it would be &omogeneous
differential equation.

© National Instruments Corporation 11-15 LabVIEW Signal Processing Course Manual



Lesson 11 G Math Toolkit

Some of the practical applications of this class of differential equations
are for modeling:

1. The motion of a mass on a vibrating spring

mdzy cdy

" I +ky= F(1)

wherem is the massg is the damping coefficienk; is the spring
constant, andF(t) is the applied force.

2. Flow of an electrical current in a series circuit

d’Q dQ., Q dE(1)

dr? +Rdt dt
whereR, L andC are the resistance, inductance, and capacitance,
respectively, in the circuif is the charge flowing in the series
circuit, and E(t) is the applied voltage.

3. The motion of an oscillating pendulum

2
de+cd9

F Idt+ sin(B)= 0

wherem is the mass of the penduluins the length of the rod is

the acceleration due to gravity, ai the angle between the rod and
a vertical line passing through the point where the rod is fixed (that
is, the equilibrium position).

To solve equations of the type of eqn (1) usingQIRE Euler Method
VI, the ODE Runge-Kutta 4th Order VI, or theODE Cash Karp 5th
Order VI, you first need to convert them into a set of first-order
differential equations. This is achieved by making the substitution
X, =y andx, = dy/dt. Substituting these in equation (1), you get

X
a— +bx, +cx;= g(t)

dx
dx, g(t)—cx —bx,
dt a

Thus, now you have converted the second-order differential equation
given by (1) to the following equivalent set of first order differential

equations
dx;
Tt e (2)
dx, g(t)—cx —bx,
il (3)

You will use G Math to solve this set of equations in the next exercise.
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Exercise 11-3
Objective: To build a general G Math VI for applications whose solutions are second-order
differential equations.

In this exercise, you will build a VI that will solve the general second-order
differential equation of the type given in equation (1). This equation is also
given below:

A0, bdy
d +dt+cy— a(t

i - dy(0)_ 9o
with y(0)=y, and =%+~ T dt

You will see how incorporation of tHeubstitute VariablesVI enables
you to solve problems related to a wide variety of applications.

Because you want to solve the above equation, which is a
nonhomogeneous equation, you are faced with three choices of Vls:

* ODE Cash Karp 5th Order

* ODE Euler Method

* ODE Runge Kutta 4th Order

Because this is a simple second-order differential equation, you can

actually select any of these VIs. Choose @i2E Euler Method VI,
which has the following inputs and outputs:

H
Ime zlal — T
time ard Lz e
h——] I-::Ebﬁr L3 Yuas
=0 T bicka
|'|-|-,:u----—j —l—un'ur
Fpe] _
ODE Eubsy Mettuwd. wi

X: an array of strings listing the dependent variables

time start: the point in time at which to start the calculations
time end the point in time at which to end the calculations

h: time increment (step rate) at which to perform the calculations

XO0: the initial conditions (I.C.). There is a one-to-one relationship
between the componentsXfand that oX0. That is, the first value
in X0 is the I.C. of the first variable listed ¥, the second value in
X0 is the I.C. of the second variable listeddnand so on.

time: a string that defines what the independent variable is, usually
time (t).
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F(X,t): the right sides of the set of first-order differential equations.
There is a one-to-one relationship between the elememtsxot)
andX. This will be explained in more detail later.

Note: F(X,t) requires its input as a set of first-order differential equations.
Therefore, to solve equation (1) with this VI, you need to use the equivalent
form given by equations (2) and (3).

ticks: is the time in milliseconds required for the calculations

Times: the time instants at which the solution of the differential
equations are evaluated. For @®E Euler Method VI and the
ODE Runge Kutta 4th Order VI, these instants begin &tne start
with increments oh, until time end.

XValues:. contains the solution for each of the dependent variables
of the differential equations at each time instantimes. The first
column is the solution for the first variableXn the second column

is the solution for the second variablednand so on.

error: contains an error code in case of any error. Refer to the
appendix for the list of errors and the corresponding error codes.

1. Build the VI whose front panel and block diagram are shown below.

Hint: An easy way to build the VI is to build the block diagram first, pop
up on the terminals of theDE Euler Method VI, and selecCreate
Control for the inputs anreate Indicator for the outputs. The

controls and indicators automatically appear in the correct form on the
front panel. Finally, you can add the Waveform graph.
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Thetime start and thetime end controls contain the starting and

end

ing time instants.

The differential equations are typed in fhg,t) control.
The dependent variables are entered intokleentrol.

The independent variable is entered intottime control.

X0 contains the initial values (initial conditions) of the dependent

vari

ables.

h contains the step size.

Substitution Rulescontains the parameters and the corresponding
substitution.

There is a one-to-one correspondence between the elements of X, X0, and

F(x,t). The first element in X0 corresponds to the initial value of the first
element in X, the second element in X0 corresponds to the initial value of
the second element in X, and so on. Also, the first element in F(x,t)
corresponds to the derivative of the first element in X, the second element
in F(x,t) corresponds to the derivative of the first element in X, and so on.

© National Instruments Corporation
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Block Diagram
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ODE Euler Method VI (G Math » Ordinary Differential
Equations) solves a set of differential equations using the Euler
method.

Substitute Variables VI (G Math » Parser) substitutes the
specified values for the corresponding parameters.

2. Enter the right side of equations (2) and (3), respectively, in the first
two elements o (X,t). Thus, you will entex, and(g - b*x, -c*x,)/a.

Equation (2) in the second elementHgX,t) contains the variables
a, b, c,andg. The values of these variables will change depending
on the application. Hence, in the block diagram, you use the
Substitute VariablesVI to assign different values to these variables.
You can enter these values in thabstitution Rulescontrol on the
front panel.

3. X contains the names of the dependent variables, which in this case
are entered ag andx..

4. time contains the name of the independent variable, which in this
case id.

X0 will contain the initial conditions fox; andx,. The first value
entered inX0 will correspond to the first variable enteredXnThe
second value entered X0 will correspond to the second variable
entered inX. The values of the ICs will vary depending on the
application.

LabVIEW Signal Processing Course Manual
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Save the VI a®DE_2nd.viin the libraryLvspcex.llb

Now you have a VI ready for solving any second-order
nonhomogeneous differential equation. All that remains is to enter
the corresponding values af b, ¢ andg in the Substitution Rules
control, and the initial conditions of the variabd® control. Then
you can specify the time interval (betweaéne start andtime end,

in increments oh) for which you want the solution and run the VI.
Out pops the answer. You will continue this procedure in the next
exercise.

End of Exercise 11-3
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Exercise 11-4

Objective: To design the suspension system of an automobile.

You will now use the VI you built in the previous exercise to solve a
typical mechanical modeling problem. In particular, you will design the
suspension system of an automobile to have a suitable response when the
automobile goes over a pothole, a speed bump, and so on.

You can model the suspension system by the nonhomogeneous
differential equation given in equation (1) (reproduced below),

dy, bdy,
aﬁ+m+cy— a(v

. dy(o)y d
with y(0)= y, and %z d—io
where

y(t) is the position of the automobilg(t) = 0 indicates that the
vehicle is in a balanced or a stable position.

dy/dtis the up and down speed of the automobile.

c is the coil constant of the spring used in the suspension system. It
is proportional to the displacement of the spring from its equilibrium
position. A larger value of indicates a strong spring coil and thus a
tough suspension systemis known as thepring constant

b is a resistance coefficient that is proportional to the up and down
speed of the automobile. A larger valuebahdicates a stronger
resistance to the up and down movement of the automobile, and thus
a smoother suspension systdnis known as thehock constant

a is the weight of the vehicle.

g(t) is the external force that causes the suspension system of the
automobile to deviate from its equilibrium position. Some possible
causes may include a speed bump, a pothole, or a stone in the middle
of the road.

1. Using the VI developed in the previous exercise, enter the following
values in the controls on the front panel:

time start: O

time end 100

h: 0.1

Substitution Rules

parameter name a b c g
parameter content 1000 125 1000 0
XO0: 0 0
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The initial conditions of O specified in X0 indicate that the vehicle is
initially in a stable equilibrium positiomy = 0, means that there is no
disturbing force.

Run the VI and note the waveforms on the XY graph. What do you
see? Explain the results.

Now assume that after driving for 10 seconds, the driver of the
automobile drove on to the sidewalk. This action can be modeled by
substituting a step function fgr In theSubstitution Rulescontrol,
change the value af from 0 to 100*step(t-10)and run the VI.

Notice that until t = 10, the values »finddx/dtare equal to zero
because no force) has been applied until then. At 0, a step
function of magnitude 100 is applied and both the position and the
up and down speed of the automobile change. However, as time
passes, the oscillations subside and both values tend to settle down
to an equilibrium position. You can verify this by entering 400 in the
time end control and running the VI.

A speed bump can be approximately modeled by the following value
for g:

10*sin(t)*(step(t) - step(t-3.142))

The multiplying constant (in this case 10) controls the height of the
speed bump, while the remaining term models one “bump.”

How the above formula corresponds to a speed bump is shown in the
figure below. The upper plot is a plot of one cycle of sin(t). The
middle plot is a plot of step(t) - step(t-3.142), whereas the lower plot
is the multiplication of the top two plots resulting in sin(t)*(step(t) -
step((t-3.142)).
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Enter the above value gfand run the VI.
What do you see? Explain the results.

. A pothole can be modeled in a similar fashion, but with the opposite

sign:-10*sin(t)*(step(t) - step(t-3.142))

Enter the above value of g and run the VI. What change do you notice
as compared with the results of step (4)?

Experiment with the value afso that the oscillations reduce to zero
in less than 80 seconds.

Hint: reduce the value afto a lower value (for example, 250)

Keeping the value af at 1000, change the valuelm§o that the
oscillations reduce to zero in less than 80 seconds.

Hint: increase the value @fto a higher value (for example, 175)

Thus, you see that by proper selectiotb @nd/orc, you can design the
suspension system of an automobile to behave in a certain way (that is,
to have a certain response). The selectidnasfd/orc could correspond

to a particular choice of material to be used in building the suspension
system.

8. Close the VI when you are finished.

End of Exercise 11-4
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Objective: To see some of the capabilities of the G Math Toolkit for 1D functions.
1. Launch thelD Explorer Example VI from the

Formula

#incfchem([2=cls+in{3"chem[3"cC] I 1.3 Differcntiation Graph

Integrabion Giaph

Curve Len Graph
MN.28"573EH] 8. 184 T30E-E] Roote oh Grap

Mmnima
orvd [EREELI: Maximn
A0 MERE P . @
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Labview/Examples/Gmath/Math.llb folder. This VI shows
a good overview of some of the mathematical functionalities of G
Math.

Bk Function Giag
p— il W ificd Funetion Graph

FIJI'I:EDI'I

Moddified Function
Differantiation
Integration

Curve Length
Zeroex

Mnima

Mazima

[Cuse |O0F |06 ||!|-

St bl

The default formula in the formula control is
sinc(c)+sin(2*c)+sin(3*c)+sin(2*c*c) Choose the following

options by holding down <Shift> and clicking the left mouse button
on the following selections

Modified Function Graph

Integration Graph

Roots
« Maxima

Run the VI and click th&tart button on the bottom right of the

panel. Plots of the above selections are displayed. Note that you can
enter the start and end points directly on the front panel through the

start and end controls. Also, note that LabVIEW returned the graphs

quickly because LabVIEW runs compiled. (Other math packages are

not compiled.)
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4. Line up the cursor on a maxima and see its value.

5. Enter a new formulain(exp(x))in the formula control and click on
the Start button.

Zoom in on a maxima using the graph zoom option.
7. Experiment by typing in other formulas in the formula control.

8. When you finish, you can stop the VI by clicking on 81l€OP
button at the bottom right of the panel.

End of Exercise 11-5
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Exercise 11-6 (Optional)

Objective:

To simulate the tank flow problem.

This exercise is a practical application that combines entering formulas on
the front panel, solving an ordinary differential equation, and visualizing a
process to simulate a tank inflow and outflow process.

Consider a cylindrical tank of constant cross secfiam?. Water is
pumped into the tank from the top at a constantfiéyecm®/s. Water
flows out of the bottom of the tank by a valve of aaég cn?. Note that
both the input and output flow rates are functions of time. You will
observe how the height of the watkf(t), in the tank varies with time.

The solution to this problem is a first-order differential equation
given by

dh(t) _ a(t) , fi(t)
RGOy vty

whereg is the acceleration due to gravity, equal to 980 ¢m/s
The input flow rate to the tank, as well as the area of the outflow valve,

can be modeled as equations on the front panel. Select the following
equations for these values:

Input flow, fj(t): 340*square(t)
Area of valvea(t), for the outflow:  sin(t) + 1
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1. Open theéProcess Control Explorer ExampleVl, in the
Labview/Examples/Gmath/Misc.llb folder. The
explanation of the front panel is as already described above.
Note: In this example, all variables in the differential equation can be controlled

from the front panel.

2. Run the VI and select ti@alculation button. This button will flash
while the calculation is in progress.

3. Once the calculation is over, select 8imulation button. The
simulated system is then graphed.

4. Change the input flow rate and area of tank to:
fi(t), input flow rate: 340*sin(t)
a(t), area of valve: 0.01

5. Select th&€alculation button and then th&imulation button. Notice
that the tank is now gradually emptying.

6. Select thesTOP button.

End of Exercise 11-6
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Exercise 11-7 (Optional)

Objective: To see an example of the G Math Toolkit for data visualization.

Reprezentation Funclion Graph 200

Srant End Wariableg
= T T Z0 “[1.o0 -0 |z
* oo 21.m ¥
Fumrec: Lo
2inlFPxFcoal5r]

¥ of pot:  kind of represantation crror
=10 =i 1] a

ezl |Fozd (<45 |01 ERE
J_I‘_:-e_’ LR .E +
£ sud| @

1. In theLabview/Examples/Gmath/Graphics.llb
open and run thRepresentation Function Graph 2DVI.

folder,

Note: The default function value is sin(3*x)*cos(5*y). This is a function of two

variables, x and y. The range of values to be plotted is indicated on the Start

and End controls on the front panel. The default values are 0.0 and 1.0 for
both the x and y variables.

When the interactive subVI comes up, you can look at the plot from
different viewpoints by controlling the valuespsi, phi, andr with

the help of the slider controlBsi andphi control the angles with
respect to th&z andxy planes, respectively, wherecontrols the

© National Instruments Corporation 11-29 LabVIEW Signal Processing Course Manual



Lesson 11 G Math Toolkit

distance from the origin. How these controls correspond to different
viewpoints is shown in the figure below:

A
i{ observer

psi

Change thesivalue on the slider control. Note what happens.
Change thehi value on the slider control. Note what happens.
To return to the main VI, select the stop button on the front panel.

a bk~ N

When you are done, close the VI.

End of Exercise 11-7
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Summary

In this lesson, you saw the basic components of the G Math Toolkit and how
to use it for solving problems in engineering, math, and education. In
particular, you built a simple arbitrary waveform generator using the Vs in
the parser library, and you also designed the suspension system of an
automobile by making use of the differential equation VIs. Finally, you
experimented with other VIs that showed some of the more advanced

capabilities of G Math.
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Notes
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Third-Octave Analyzers U
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N

Introduction

A third-octave analyzer measures the spectral energy contained in a
specific set of third-octave bands and provides a standardized
narrowband spectral analysis. It consists of a set of bandpass filters
connected in parallel. It is widely used in the field of acoustics and audio
signal processing to measure sound or acoustic intensity in various
frequency bands. Its applications lie in the fields of vibration tests of
machines, architectural acoustics, power measurements, etc. In this
lesson, you will learn about the specifics of the bandpass filters used in
third-octave analyzers, their applications, and how to use the
Third-Octave Analyzer Toolkit.

You Will Learn:

About filter banks.

About how an octave analyzer is a special type of filter bank.
About third-octave analyzers.

About the applications of octave and third-octave analyzers.

moow?>

About the features of the Third-Octave Analyzer Toolkit.
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A.Filter Banks

A filter bank is a group of bandpass filters connected in parallel. Each filter
is tuned to a different frequency range. A simple filter bank consisting of
five filters is shown in the figure below. The center frequencies of each
bandpass filter are denoted Qyfb, f3, f4, and £, whereas their bandwidths
are denoted by B B,, B3, B4, and B;, respectively. There is a special name
given to the center frequencies. For tHBfitter, let the center frequency be
fm- Then f, is known as theenter frequencgythemidband frequencgyor
thegeometric mean frequenéyNote that in the figure, the bandwidths of
all the filters are the same. That is,BB, = B; = B, = B:.

.

frequency =

One of the properties of bandpass filters is thjamlity factor Q. The
guality factor is a measure of how selective the filter is in passing
frequencies around the center frequency and attenuating unwanted
frequencies. It is defined as the ratio of the center frequency of the filter
to its bandwidth.

Q = /B
Thus, for a fixed center frequency, the larger the bandwidth, the smaller
the quality factor, and vice versa. In the figure above, because the
bandwidths of all the filters are the same, but the center frequencies are
different, the quality factor is different for each filter.

1. Note that the actual term used depends on the relationship bejywesth the upper and lower passband
frequency (f; and f , respectively). This will be discussed in more detail later.
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A practical application of a bandpass filter is in a radio or television
receiver. Radio and television channels all occupy different frequency
ranges. The antenna picks up signals of all the frequencies of all the
channels. However, inside the radio or television receiver, the signal is
passed through a bandpass filter used to select a particular channel (the
one that you want to hear or see) and reject the other channels. When you
change the tuning knob on your radio, or the channel selector knob on
your TV, you are actually changing the center frequency of this
bandpass filter. It is desirable for the bandpass filter to pass the selected
channel and reject the unwanted channels. Hence, the bandpass filter
needs to have a high Q so that you do not hear (or see) two or more
channels at the same time.
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B. Octave Analyzers

Now consider the filter bank shown in the figure below. It consists of four
bandpass filters each with a different center frequanchdifferent
bandwidths. The center frequencies are denoted by, and §, whereas

the bandwidths are denoted by, B,, B;, and B. The filters with higher
center frequencies have larger bandwidths, and filters with lower center
frequencies have lower bandwidths.

The special feature of this filter bank is that the center frequency of any
of the filters is exactly twice (one octave higher) that of the center
frequency of the filter just below it and exactly 1/2 (one octave lower)
that of the center frequency of the filter just above it.

fm

. f
Thatis, -/ =2 and
1:m—l

NI

f

m+1

»

fi

f2

f L
f, f, requency

This same relationship holds true for the bandwidths of any two adjacent
filters—the bandwidth of any filter is exactly twice that of the bandwidth
of the filter just below it and exactly 1/2 that of the bandwidth of the
filter just above it.

Bn _ 1

T2

That is,BB—m =2 and

m-1

B

m+1

Note that the quality factor = Q 7/B, is now the same for all filters,
because both,fand the bandwidth of adjacent filters increase (or
decrease) by the same amount. Therefore, these bandpass filters are
known asconstant Qbandpass filters.

Such a filter bank, where the ratios of center frequencies and bandwidths
of adjacent filters are powers of 21(2 one octave), is known as an
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octave analyzerBoth the center frequencies and bandwidths increase
logarithmically, and all the bandpass filters have the same value of Q.
The bandwidth of each filter covers a frequency range of one octave.

For each bandpass filter, lgf dlenote the center frequency, agdhd
f_ denote the upper and lower passband frequencies, respectively. This
is shown in the figure below.

v

The relationship between them is thats the geometric mean §f and
fu

1:m = fqu

and hencé,, is also known as the geometric mean frequency.
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C.1/3-0ctave Analyzer or Third-Octave Analyzer

Now you can probably make a good guess as to what is a 1/3-octave
analyzer, also known as a third-octave analyzer (TOA). It is very similar to
an octave analyzer but with a different ratio of center frequencies and
bandwidths of adjacent filters. It consists of a set of bandpass filters
connected in parallel, where the ratio of center frequencies and bandwidths
of adjacent filters is &2,

f f

mo_ 21/3 and m_ _ 2—1/3
fm—l fm+1

B B _

m _ 21/3 and m  _ 2 1/3
Bm—l Bm+l

Because the ratio is now'3 (approximately = 1.26) it requires three of
these filters to cover a frequency range of one octave. The net effect of
this is that three filters of a 1/3-octave analyzer cover the same
frequency range as one filter of an octave analyzer. This is shown in the
figure below for one filter of the octave analyzer.

A
Three filters of a 1/3 octave analyzer (dotted lines)
One filter of an octave analyzer
WY /(solidline)

) >

f »2f freq
one octave
Note: In general, you can have a 1/n-octave analyzer where the ratio of center

frequencies and bandwidths of adjacent bandpass filters{8.an
practice, the most popular ones aré, 213, and 212 These correspond to
ratios with numeric values of 2, 1.26, and 1.06, respectively.

For 1/3-octave analyzers also, therefis= /f f, wligre called the
geometric mean frequency.

The filters in both octave and third-octave analyzers are also known as
constant percentage bandwiditters. That is, the bandwidth of the

filters are a constant percentage of the center frequency. For an octave
filter, the ratio of §/f, = 2, and its bandwidth is 2 = 71% of the center
frequency. For a 1/3-octave filter, the ratf f=3/2, and its bandwidth

is 26 - 216 = 239 of the center frequency.
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D.Applications

The applications of b/octave analyzers are mainly in the fields of acoustics
and audio signal processing. Basically, you want to measure the sound or
acoustic intensity in various frequency bands. A specific example is in the
aviation industry, where measurement of noise emissions from an aircraft
are necessary for it to get airworthiness certification. Federal aviation
regulations require the use of real-time 1/3-octave analyzers for data
analysis. Manufacturers of appliances and office equipment also tend to
specify sound power levels in their product documentation so that
customers can compare their products and choose the quieter one. By
measuring sound power levels in a room or other enclosure such as a concert
hall, acoustic engineers determine the proper material and design for the
enclosure.

Other applications are in

» Vibration tests in aircraft and submarines

e Sound power determination

* Acoustic intensity measurement

* Audio equalization

» Architectural acoustics

» Appliance testing

The information obtained from a TOA can be used to reduce vibrations
in aircraft and submarines, to reduce noise in aircraft, submarines, and

household appliances, and to make sound (for example, music) more
pleasant to hear (for example, equalizers and architectural acoustics).
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E. The Third-Octave Analyzer Toolkit

You saw that the applications of 1/n-octave analyzers are in those fields
where there is a need to measure sound power in different frequency bands.
To compare different measurements with each other, measurements are
performed according to certain standards. The American National
Standards Institute (ANSI) has specified the standards for the design of
octave and third-octave filters. This information is found in the ANSI S1.11
(1986)specifications for octave-band and fractional-octave-band

analog and digital filtersThe National Instruments Third-Octave

Analyzer Toolkit conforms to these specifications. The center frequencies
of the BPFs of the third-octave analyzer, as given in the ANSI S1.11 (1986)
specifications, are shown in the following table. Also shown is the
frequency range corresponding to the passband of the filters. There

are a total of 30 specified center frequencies spanning a range from 25 Hz —
20 KHz. However, in the National Instruments 1/3-octave analyzer, an
additional BPF with a center frequency of 10 Hz has been added to the lower

frequency range, giving a total of 31 BPFs.

Center freq. (Hz)| Passband (Hz) | Center freq. (Hz)| Passband (Hz) |Center freq. (Hz)| Passband (Hz)
25 22.4 -28.2 400 355 - 447 6300 5620 - 7080
315 28.2 - 35.5 500 447 - 562 8000 7080 - 8910
40 33.5-447 630 562 - 708 10000 8910 - 11200
50 44.7 - 56.2 800 708 - 891 12500 11200 - 14100
63 56.2-70.8 1000 891 - 1120 16000 14100 - 17800
80 70.8-89.1 1250 1120 - 1410 20000 17800 - 22400
100 89.1-112 1600 1410-1780
125 112 - 141 2000 1780 - 2240
160 141 - 178 2500 2240 - 2820
200 178 - 224 3150 2820 - 3550
250 224 - 282 4000 3550 - 4470
315 282 - 355 5000 4470 - 5620
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The Third-Octave Analyzer Toolkit can be used as a stand-alone
application, an add-on toolkit for LabVIEW or BridgeVIEW, or with
LabWindows/CVI. It can analyze the frequency of the signal in 31
frequency bands.

The figure below shows the front panel of the TOA stand-alone
application. It can analyze up to four channels of data. Depending on the
number of channels you choose, you could get either one, two, three, or
four graphs on the front panel. In this particular figure, you see four
graphs. The x-axis of each graph is the frequency scale and the y-axis of
each graph is the power amplitude (in decibel) scale. Each graph also has
a cursor that you can move to see the power value in each frequency
band. This cursor is shown by the vertical line with an “x” through it.
The value of the center frequency (in hertz) in the frequency band and
the corresponding power value (in decibel) is displayed at the top of each
graph.

Ilear ickeaenne

Sclup | Singlc I Arcguine Amphtudr: 1ahle I Yo Ih:r..'.ll

On the front panel abovAgcquire retrieves and analyzes a block of data.
The analyzer does not start acquiring data until you click on this button.

The data can be acquiredsimgleor continuousnode. The mode can be
chosen by clicking on the up or down arrows on the control to the left of
theAcquire button. When you selesingle every time that you click the
Acquire button, the analyzer acquires and analyzes a new block of data
and displays the result on the corresponding graph. When you choose
continuous the analyzer starts to acquire and analyze data when you
click the Acquire button. After it has displayed the data on the
corresponding graph, it acquires the next block of data and analyzes and
displays it. This continues until you click on t8&op Acquire button.
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(The Acquire button becomes th®top Acquire button during an
acquisition.)

Amplitude Table shows a table with all 31 bands of output power values
for each channel.

Savesaves the 31 bands of power values in a spreadsheet format where
each column represents 31 bands of the power value for each channel.

This button saves the power amplitude as well as some status
information, such as channel numbers, window type, average type, and
weighting value. We will discuss this status information later.

Quit stops the analyzer.

Setup opens the&etup panel shown below. The setup panel selects the
parameters that you want to customize for your application. It appears
when you first run the TOA. However, you can always access it at any
time by clicking on thé&etup button.

Setup

device gamgling rate datn blocks: bo overage
| 3 [ ZEEHz =1l |
Channel # “Wndow Tipe Average TWpe Weighling
[<] chaz0 | SHanrg | Jles | %poweighing
B CHBZ1 | HHaming | ¥ lies | %no weighling
] chC iz | sHaming | ¥ lraar | = o weighing
[<] Chi» 33_| ﬂ Hanrirg | ‘;‘" iroar | % ho weighing

FFT aize Inkamel Date A ereann
& iz | = rm -EI'.-'Ellm."u | | Viem wI:-EE-I'IE I

devicespecifies the identification number for your DAQ board.

In Windows, you can assign this number to your device through
software. For the Macintosh, the device parameter indicates the physical
slot number into which you insert your device. You can find this number
by opening NI-DAQ in theontrol panelsfolder.
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sampling rate determines the rate at which the signal is sampled, and
thus the frequency range being analyzed (this is because as you have
already seen, the sampling frequency must be at least twice the
maximum frequency of the signal). Three choices of sampling rates are
available: 12.8 KHz, 25.6 KHz, and 51.2 KHz. The corresponding
frequency ranges being analyzed are: 5 Hz - 5 KHz, 10 Hz - 10 KHz, and
20 Hz - 20 KHz. These sampling rates were chosen because they are
software selectable with the National Instruments dynamic signal
acquisition boards (AT-A2150, NB-A2150F, and AT-DSP2200), which
you can use with the TOA. The sample rate of 51.2 KHz conforms to the
“Extended” range ANSI specifications.

Channel #indicates the channels from which to acquire the data and
display it. Up to four channels can be chosen (and the channel number
can also be the same in every control). Each channel has a box with a
cross in it. If you do not need to use a channel, click inside the box until
the cross disappears. This will disable all the parameters associated with
that particular channel.

Window Type selects one of four commonly used windows
(Rectangular, Hamming, Hanning, and Blackman) for each channel. The
Window Type parameter defaults to the Hanning window.

Next, you will complete an exercise which uses the third-octave analyzer
and highlights more of its features.
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Exercise 12-1

Objective: To analyze a signal consisting of a sine wave with harmonics and added white
noise.

Note:  This exercise requires a modified library of the actual third-octave
analyzer toolkit. If the file TOA\Octave.llb does not exist on your hard
drive, you cannot do this exercise. In that case, you may read this exercise
to become familiar with the front panel controls and indicators, and then
move on to the next section.

1. Open theThird-Octave Analyzer VI from the folder
Toa\Octave.llb . You will see the following front panel:

Front Panel

Rcforonce Clcar Rcforonee

'!F*:l'll|- H tongle I A .“'LIII|.I|i|.IJIII:' T alile I Bare Hl-_'l.'d" m

You see four graphs on the screen. This is because you can analyze
signals coming from up to four channels. The number of graphs
displayed on the screen depends on the number of channels you are
analyzing.

The two controlskrequencyandAmplitude) on the right side of the
front panel have been added only for the purpose of this exercise.
They do not exist in the actual Third-Octave Analyzer Toolkit. They
adjust the amplitude and frequency of a sine wave (with harmonics)
that has been corrupted by white noise. On the front panel of the
TOA, use therrequencydial to control the frequency of the
fundamental component of the sine wave between 0 - 10 KHz. Use
the Amplitude slider control to adjust the amplitude of the
fundamental between 0 - 20.
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Although you do not need to be concerned about this for now, for
those who are interested, the block diagram of th&\gin@al.vi) used
to generate this simulated signal is shown below:

- aine YWma. i

iy oo n D=t valuss

[BE St Arthmetic (o] ’nde:-: ] utput
i % Arak| [af=
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IInifarmn ¥ihite Mo se i)

The above VI also adds to the fundamental its 3rd and 7th harmonics
of amplitudes 1/% and 1/18", respectively. The addition of
harmonics is simulated by the lower t@8me WaveVIs.

Setup Window

2. With theAmplitude andFrequency controls both set to 0.00, run
the VI.
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A new window calledSetup appears.

Selup
device campling 13te data bloche to avelage
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TheSetupwindow gives you control over the number of channels to
sample, the sampling rate, FFT size, and much more. For now, you
will leave the following controls at their default values:

device 1

sampling rate 25.6 K Hz
data blocks to average 1

FFT size 512

Internal Data Averaging no averaging

3. IntheSetupwindow, click on the white box to the left of the labels
ChB, ChC, andChD. When you click on the white boxes, the
crosses in them disappear, and the selections for those channels are
grayed out.

LabVIEW Signal Processing Course Manual 12-14 © National Instruments Corporation



Lesson 12 Third-Octave Analyzers

Setup
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4. Now, because only the white box to the lefCbfA has a cross in it,
you will use onlyChA to acquire the signal.

The device control corresponds to the number of the DAQ board in
your computer. You can obtain the correct device number for your
DAQ board by using the NI-DAQ Configuration Utility. For the
purpose of this exercise, leave device set to 1.

TheChannel #control determines the particular channel on the DAQ
board from which you will acquire the sampled signal. (A DAQ
board usually has more than one channel—typically 8 or 16.) Leave
this set to 0.

TheWindow Type control determines the type of window you want
to apply to the data samples.

5. Click on theDonebutton. Thesetupwindow will disappear, and you
will return to the main panel of the TOA. You can bring upSkeé&up
window at any time to change the configuration parameters by
clicking on theSetup button on the bottom left of the main panel of
the TOA. Note that only one graph is displayed, because you had
selected only 1 channel in tiS&tup window.

Single and Continuous Acquisition

6. TheSinglebutton (just next to th8etup button) is a menu ring
control that determines how the samples of the data are collected.
When set to Single mode, only one block of data is acquired when
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the Acquire button is pressed. However, when set to Continuous
mode, blocks of data are acquired one after the other when the
Acquire button is pressed. While in the continuous mode of
operation, théAcquire button changes to tHgtop Acquire button.
To stop the continuous data acquisition, you must presSttpe
Acquire button.

7. With the menu ring control on Single, click thequire button.

After a short time interval during which the data is obtained and the
calculations for the power output are being done, a histogram
appears on the graph. This is the histogram of white noise only (there
is no signal because the amplitude of the sine wave has been set to
0.0 on the slider control). Each rectangle of the histogram gives the
power in the frequency band of the corresponding BPF. Note that the
power increases as you go toward higher frequencies. Why do you
think that is so?

Hint: White noise has a flat frequency spectrum (that is, the same
average power at all frequencies). The filters used in the TOA have
increasing bandwidths as the center frequency increases.

8. Click on theAcquire button again. Once again, after the data is
obtained and the calculations are over, the display changes. The data
is obtained, the calculations done, and the display updated each time
you click on the Acquire button. However, if you do not click the
Acquire button, nothing happens. This is the operation of the Single
acquisition mode.

9. Click on the arrows of th&inglebutton and change it to Continuous
mode. Click on thé\cquire button to start the acquisition.

Now the operation of obtaining data, calculating the power outputs
of the BPFs, and updating the data is done continuously. Note that
the Acquire button has changed to tB&op Acquire button. You

must click on theStop Acquire button if you want to stop the
continuous data acquisition.

Changing the FFT Size

10. You will notice a time delay between successive updating of the
display. This is because the default size of the FFT has been set to
512 data points. It takes a certain amount of time to acquire the data
points, perform the necessary calculations, and display the results.
To decrease this time, you can choose a smaller FFT size.

Click on theSetup button. TheSetupwindow comes up. Set FFT
size to 256 and click on th2onebutton. Now notice that the display
is much faster.
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Adding a Signal to the White Noise

11.

Cursor Control

12.

The Amplitude Table

13.

Set thd=requency control to 100 Hz and th&mplitude control to

10. The display will show you three peaks. The highest peak is from
the output of the BPF that covers the frequency range in which the
fundamental sine wave of frequency 100 Hz falls. The other two
peaks are from the outputs of the BPFs whose frequency bands
include the 3rd and 7th harmonics (that is, 300 Hz and 700 Hz).

Move the cursor around the display. On the top left, you can see the
power output (in dB) and the corresponding center frequency (in Hz)
of the BPF corresponding to the rectangle on which you place the
cursor.

Another way to see the power in each of the different frequency
bands is to click on thamplitude Table button. A new window
comes up with a table showing the center frequencies and the
corresponding power output (in dB) of each of the BPFs. To close
this window, click on th&®k button.

Multiple Channels and Weighting

14.

© National Instruments Corporation

You will now acquire and display data from more than one channel.

Click on theSetup button to bring up th&8etupwindow. In the
Setupwindow, click on the white box to the left of the lal@HB and
change it<Channel #to 0 (the same as f@hA). Change the
Weighting of ChB to A-weighting.

You have just sampled the same signal on both channels A and B.
However, the signal obtained @hA is displayed with no

weighting, whereas the signal obtained@mB is displayed with
A-weighting. Weighting is done because the human ear responds
differently to different frequencies. By using A-weighting, the
analyzer mimics the human hearing response to audio signals.
Internally, the analyzer accomplishes this by adding a specified
weighting value (in dB) to the calculated power before displaying it.
Other weighting selections that are available are none (no weighting)
and custom (user defined).
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15. In theSetupwindow, click on the/iew Weighting bar to see a table
showing the weighting values for each frequency band for each
channel. Click on th©K button to close the window showing the

table.
Waighting Hz [chida) CHI|E| "

N 70,400 —
126 |o.ooo “E3.400
160|000 .70
A0 |nom 5,500
=0 |nmn -34 70
76 |o.od0 53,400
M T T
M0 |ooo 30300
810 [o.000 25,20
210 11 1n -5 HN
1000 |0.000 19,100
1250 [0.000 16100
1605 [0.000 13,400
A00 |00 10,500
00 |00 “BEm]
750 [0.000 BRI
W00 |0.000 4,200
R0 [0.000 2200
B0 |o.000 1.9
MO0 |00 -0Am

@ 10000 [0.000 0,000
12500 [0.000 0.600 j

16. In theSetup window, click on the Done button.

17. Now you are back to the main front panel of the TOA. The top graph
shows the display fror@hA (with no weighting) and the bottom
graph shows the display fro@hB (with A-weighting). You can thus
compare the outputs from different channels.

18. Click on theStop Acquire button to stop the data acquisition.

19. Click on theQuit button to stop the VI.
20. Close the VI. Do not save any changes.

End of Exercise 12-1

LabVIEW Signal Processing Course Manual
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F. Calibration Using the Third-Octave Analyzer

You can also use the TOA in applications involving calibration. For this
purpose, the first step is to apply to the TOA a reference signal from a highly
accurate source. The result obtained is then saved (by clicking Saviee
button) as a reference for future use. This previously recorded signal can be
loaded later for use as a reference by clicking oR#ferencebutton. You

can compare this reference signal with the current signal you are obtaining,
because the analyzer plots both signals on the same graph.

The following three exercises outline the steps on how to use the TOA for
calibration. In the next exercise, you will generate a reference signal. In the
exercise following that, you will save the results of third-octave analysis on
this reference signal. In the final exercise, you will compare these results
with those obtained from another source.

The reference signal is obtained from the function generator on a DAQ
Signal Accessory. Some of the connections on the box are as shown below.

DAQ Signal Accessory

m O )

Frequency  Frequency
Range Adjust
Analog Analog Function
Out In Generator

DAQ
Signal Accessory

ONCIIONCINONONG
0 1 1 2

You will use this box to generate a sinusoidal signal of frequency 200 Hz
and peak amplitude of 1 V. This will be your reference signal.
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Exercise 12-2

Objective: To generate a sinusoidal reference signal of frequency 200 Hz and peak amplitude
of 1.0 V.

1. Make the following connections between the DAQ Signal Accessory
and data acquisition board on your computer.

Connect the sine wave output of the Function Generator to Analog In
channel 1. Thus the sine wave will be available at channel # 1 of the
DAQ board.

Set the Frequency Range slider control to 100Hz-10kHz.

Connect the DAQ Signal Accessory cable connection through a
ribbon cable to the DAQ board on your computer.

ribbon cable

[ O 1

Frequency  Frequency
Range Adjust

13 kHz — 1 MHz O
1 kHz — 100 kHz

100 Hz — 10 kHz

Analog Analog Function
Out In Generator

0 0lp 0|00
0 1

DAQ .
1 2 €—— connection

Signal Accessory

2. Bring up LabVIEW (or BridgeVIEW) and load tlxamples »
Analysis » measure » dagmeas.llb » Simple Spectrum Analyz¥t.
You will use this VI to measure the exact amplitude and frequency
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of the sinusoidal signal from the Function Generator output of the
DAQ Signal Accessory.

B pactiam L ril Ext Poves peak Exl Frqy peak ) =y B+
Y 0B Yoe™2 2000024 |Hz | REAEEH] P

Hz

00 5100 10000 15000 2000.0 25100 F00.0 350000 4000.0 4500.0 S00.0

3. Make the following changes to the default settings orSthmle
Spectrum Analyzer VI:

Enter a value of 1 in thehannel(0)string control.
Change number of samples to 1000.

Select None (Uniform) window in th&indow control.
Leave all the other settings at their default values.

Note: With a sampling rate of 20000 and number of samples selected as 1000, the
frequency spacing is 20000/1000 = 20 Hz. The FFT lines will thus fall on
frequency values of 0, 20, 40, 60, and so on. The signal of 200 Hz will
therefore fall exactly on the eleventh FFT line.

4. Run the VI. In thest Power Peakand theEst Frequency Peak
indicators on the top, you will see the estimate of the power and
frequency of the highest peak in the spectrum.

5. Adjust theFrequency Adjust control on the DAQ Signal Accessory
to get arEst Frequency Pealof 200 Hz (or as close to it as possible).
(You will need to run the VI each time after you change the
Frequency Adjust control.)

6. Once you obtain a frequency of 200 Hz, note the value iBghe
Power Peakindicator. This value is in units of%{ns. You can
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convert this to a peak voltage (¥ reading by using the following
formula:

Vpeak: A/éAlVrzms
You should obtain a value near 1.0 V.

7. Make a note of the frequency and the corresponding voltage Be
sure not to change the settings on the DAQ Signal Accessory.

8. When you are done, close the VI. Do not save any changes.

End of Exercise 12-2

You will use the sinusoidal signal of the frequency and amplitude that
you have noted in the previous exercise, as the reference signal against
which we can compare other signals. This reference signal has a
frequency of 200 Hz and a peak amplitude of 1.0 V.

Note:  The method you have used in the previous exercise to generate the
reference signal is just to illustrate the principles involved in calibration of
the TOA. In practice, the reference signal should be obtained from a more
accurate and reliable source.
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Exercise 12-3

Objective: To save the results obtained from the TOA for a standard reference signal.
In this exercise, you will use the same connections (between the DAQ
Signal Accessory box and your computer) as those you had before in the
previous exercise.

1. Run theThird-Octave Analyzer from theStart » Programs menu.

2. In theSetuppanel, make sure onyhA is selected. This is done by
clicking in the white box to the left &hB, ChC, andChD, so that
the white box does not have a cross in it, and also that the selections
for these channels are grayed out.

3. Change th€hannel #setting to 1. Leave the other settings at their
default values as shown:

device 1 sampling rate: 51.2KHz
data blocks to averagel Window Type: Hanning
Average Type linear Weighting: no weighting
FFT size 512 Internal Data no
Averaging: averaging
Setup
device tampling 1ate dota blocks bo overage

| ¥/51.3Hz | S

Channel H  ‘Window Typae Average Typs  Waighting

Cha * : _ deseseseses oesrsssraris
=] =1 | %Haming | e | » hiowaighting | it S TG TR
- I q 5 1 .
[ e 200 gy e TP T
(] escys :‘:'“1 _______ - Fin RGNS
iy M H e =
L1625 0 Srarews  © S Bl

FFT ze= Intema Diala .l'-'|'|-1=rag'rg .
-.51 e | a M areraging | | View WEiE'nE I

4. When you are finished, click on tB®nebutton at the bottom right.

5. On the TOA front panel, press tAequire button. The VI has now
obtained samples of the sinusoidal signal of frequency 200 Hz and
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peak amplitude of 1 V and is showing the results of third-octave
analysis on this signal.

e

wat = 20.0Hz | Heleierice Clear Feleesrnee zop =210 kHz

5-l'=“1|'II Yanglr: I Arquare: .|:I.||||-I|Iu-l-e |l il I Ve | lire Al m

Move the cursor so that it aligns with the band corresponding to the
largest peak in the display. The frequency reading on the top of the
display should read 200 Hz. The amplitude reading should be near
-3.0 dB (which corresponds to a peak amplitude of 1.0 V).

You will now save these results as a reference that can be compared
with other signals.

6. Click on theSavebutton. When prompted for the filename, type in
standard.ref . You could use any filename, but it is
recommended that you use one withed  extension if you plan to
use it as a reference file.

The file standard.ref now contains the results of third-octave
analysis on the reference signal.

7. Exit the VI by clicking on th&uit button at the bottom right.

End of Exercise 12-3
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Exercise 12-4

Objective: To compare the results of third-octave analysis on a given signal with that obtained
from a standard reference signal.

In the previous exercise, you had saved the results of third-octave
analysis on our standard reference signal. In this exercise, you will
compare these results with those obtained from another source.

Exchange your DAQ Signal Accessory with someone else in the class
and make the connections as you had done in the previous two exercises.
Assume that your previous DAQ Signal Accessory was well calibrated
and of high enough quality to generate the standard reference signal.
You will now compare those results with those obtained using the other
DAQ Signal Accessory.

Note: Do not change the settings on the other DAQ Signal Accessory.

Open thé hird-Octave Analyzer from theStart » Programsmenu.

In theSetup panel, make the selection as you had done in the
previous exercise. That is, select of@lgA, with a corresponding
Channel #of 1. The other controls have the following values:

device 1 sampling rate: 51.2KHz

data blocks to averagel Window Type: Hanning

Average Type linear Weighting: no weighting

FFT size 512 Internal Data  no averaging
Averaging:

3. After verifying the above settings, click on thene button.

4. On the front panel, click on theferencebutton. A new window
comes up from which you can select the standard.ref that
you had saved in the previous exercise.

This file contains the results of third-octave analysis on a reference
signal of 200 Hz having a peak amplitude of 1 V. The results stored
in the file will be plotted in white.

5. Click on theAcquire button to obtain a single block of data. The
results will be overlaid on the same plot as that of the reference
signal.
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6. Move the cursor around the plot. For the band on which the cursor is
placed, the top left of the display shows you the center frequency, the
dB levels of the two plots, and the difference in dB levels of the two
plots. The figure below shows the display for the band with the

200 Hz center frequency.

center frequency

current power value
reference power value difference of current power value

with reference power value

staib = 200H= | Lirleiem - | [ EPR | 2 PR S tlop =20.0kHz
S-ctup F Simolz Aoquirs .!;mpllrutlr: 1 ahl- Have I Heeall m

7. To calibrate the new DAQ Signal Accessory that you obtained, you
need to adjust the amplitude and frequency on the new box so that
the difference in power reading in the band with a center frequency
of 200 Hz is zero. That will mean that both the DAQ Signal
Accessory boxes are producing signals with exactly the same
frequency and amplitude.

8. When you finish, exit the VI by clicking on tiqauit button.

End of Exercise 12-4
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Lesson 12 Third-Octave Analyzers

In this lesson, you learned the basic theory behind the operation of octave
analyzers. You have seen that they consist of a set of bandpass filters. The
ratio of the center frequencies and bandwidths of adjacent bandpass filters
is equal to 2 for an octave analyzer a%d @pproximately 1.26) for a TOA.

That means that as you go higher in frequency, the center frequency and
bandwidth of one BPF is twice that of the adjacent lower frequency BPF for
the octave analyzer (or 1.26 times that of the adjacent lower frequency BPF
for a third-octave analyzer).

You used the TOA on a signal consisting of a sine wave (and its
harmonics) with added white noise. Specifically, you learned:

* How to select the number of channels.

» The difference between single and continuous modes of operation.
 How to change the FFT size.

* About weighting the power output of the BPFs.

* How to see the power output and center frequency values by using
the cursor or the Amplitude Table control.

Finally, you saw how to use the TOA to compare the power levels
between two signals, one of which is a reference signal.
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Notes

LabVIEW Signal Processing Course Manual 12-28 © National Instruments Corporation



5

ik
H\A”)

Lesson 13
Joint Time-Frequency
Analysis

e

]

Introduction
In this lesson, you will learn the basic theory behind joint time-frequency
analysis (JTFA) and how to use the JTFA Toolkit in a variety of
applications.

You Will Learn:

A. Why you need joint time-frequency analysis.
B. About joint time-frequency analysis.
C. About the JTFA Toolkit and its applications.
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A.Why Do You Need Joint Time-Frequency Analysis?

A signal can be represented in a number of different ways. You want the
representation that most accentuates the qualities of the signal in which you
are interested. You may be very familiar with the representation of a signal
as a function of time. This representation shows how the signal magnitude
changes over time. Alternately, you can also represent the signal as a
function of frequency by performing a Fourier transform. The figure below
shows the time representation of a sine wave and its Fourier transform.

SMEYWare Signe Fourier Traraform of be sgnal
n.ae-

0.e=

a.0-4 i i
n.mo J1.000 4000

Traditionally, signals are studied as a function of time or frequency, but
not both. However, a number of signals encountered in real-world
applications have time-dependent frequency representations. One such
example is signals representing the tones of music that vary with time.
Therefore, in many practical applications, it is very useful to
characterize the signal in time and frequency domains simultaneously.
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The figure above shows the time-frequency plot of a bird sound. The plot
on the right is the standard Fourier spectrum. From this spectrum alone,
you cannot tell how the frequencies have changed over time. Beneath the
time-frequency plot is a plot of the time waveform of the bird sound.
This shows you only how the sound level changes as a function of time.
The advantage of having a time frequency plot is that not only can you
tell what the range of frequencies were, but also how these frequencies
changed as a function of time. For this bird sound, you can see that at the
beginning, the bird was making a sound at higher frequency, which then
changed as a function of time, as indicated on the graph. Furthermore, in
the time-frequency plot, not only can you see how the frequency
changed in time, but you can see the intensity of the frequency, indicated
by the relative brightness levels of the plot.
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The figure above shows graphs of a speech signal. The plot at the bottom
of the figure is the time waveform of such a signal. This plot shows how
the magnitude of this signal changes as a function of time. The plot in
the upper right corner is the frequency representation of the same signal.
This representation reveals four prominent frequency tones in the
spectrum. However, from the spectrum alone, you cannot tell how these
frequencies evolve over time. This is where joint time-frequency
analysis comes into the picture. The 2-D contour plot in the figure above
is the result of such an analysis. This plot is the time-dependent
spectrum, a function of both time and frequency, and reveals how
different frequency tones evolved as a function of time. From this, not
only can you see how the frequency changed, but you can also see the
intensity of the frequencies, as shown by the relative brightness levels of
the plot. Consequently, by using JTFA, you can better understand the
mechanism of human speech.

From these two examples, you have seen that time-frequency analysis
offers a better understanding of the nature of the signal. Several other
applications in this lesson illustrate this point.
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B. Joint Time-Frequency Analysis

This section briefly introduces different techniques for joint time-frequency
analysis and outlines the algorithms associated with each technique. Refer
to Joint Time-Frequency Analysis: Methods and ApplicationShie

Qian and Dapang Chen, Prentice Hall, 1996 for a detailed discussion of
these algorithms.

There are two types of joint time-frequency representations, namely the
linear and the bilinear (quadratic). All linear transformations are
achieved by comparing the signal to be analyzed with a set of prudently
selected elementary functions, known as the analysis function. As an
example, consider the Fourier transfoftw) of a sig(tal

F(w) DIf(t)e'j‘”t

In this case e’ is the analysis function. The elementary functions
selected in the inverse transformation are called synthesis functions. For
example, in the inverse Fourier transform,

(1) DIF(w)eJ““

d“ is the synthesis function. The short-time Fourier transform (STFT)
and the wavelet transform are two widely used methods to obtain a linear
representation. Wavelets are discussed in detail in the next lesson.

Short-Time Fourier Transform (STFT)

Similar to the example seen above, for the continuous-time STFT, the
analysis function and the synthesis function have the same form. In this
case, the inverse problem—that is, recovering the original time functions—
is very simple.

For digital signal processing applications, it is necessary to extend the
STFT framework to discrete-time signals. For a given discrete

signal ¢[i] , the following equation defines the STFT d)@ks%
LIE_1 L
. 0
STFTiK =0y sli-mglmw™g
O 0
=4 g

whereg[m] is an analysis signal.
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The STFT is also called a sliding-window fast Fourier transform (FFT)
because a window function breaks the signal into several time slices.
The FFT computes the frequency spectrum for each slice of windowed
data, and then you take the square magnitude of each FFT. The result of
this operation for each time slice is associated with the time index in the
middle of that particular slice of windowed data. For example, the result
of the operation for time-slicel is associated with the time index t4, and
that for time-slice3 is associated with the index t18. To establish a
complete three-dimensional spectrogram, you can slide the window to
the right one or more points at a time and compute a new spectrogram.

Consider one classical example. A signal known as the frequency hopper
signal is widely used in digital communication:

—» b0
Digital

input stream ——p»| Transmitter

——» bl

Assume that two bits are being transmitted simultaneously over two
transmission lines. Let the frequency corresponding to the combination
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00 be f1, the frequency corresponding to 01 be 2, to 10 be f3, and to 11
be f3. Then, depending on which combination is being transmitted, the
signal hops between these four frequencies, hence the name frequency
hopper.

The figure below shows the time waveform of a frequency hopper
signal, the corresponding spectrum as calculated by FFT, and the STFT
distribution of this signal. From the time waveform, you cannot see any
frequency information. From the spectrum, you can see that there are
four distinct frequency components but cannot tell when those
components occurred in time. The STFT representation provides both
the time and frequency information in the same plot. From this
spectrogram, not only can you distinctly see the four frequency levels,
but you can also see when these frequencies changed in time.

cureatfler  HOPLOG

tctaldamlengh O.E =c

y |J||| ||||'|'|'||\

n.0m 0.0 noain L] 0 0.035 [3ec]

CLIrsor
dh| liheal oey | colon cLIRar carkiol E

Wigner-Ville Distribution
There are different ways to obtain bilinegint time-frequency
representations. The first is the Wigner-Ville distribution. This technique is
very simple and it better characterizes the signal’s time-dependent spectra
than the STFT spectrogram. Also, this distribution possesses many
properties useful for signal analysis.

1. Called hilinear because the sigr@) appears twice in the equations for each representation. For more information,
refer toJoint Time-Frequency Analysis: Methods and ApplicatipnShie Qian and Dapang Chen, Prentice Hall,
NJ, 1996.
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The figure above shows the time waveform of a frequency hopper signal,
the corresponding spectrum as calculated by FFT, and the Wigner-Ville
distribution of this signal. From the time waveform, you cannot see the
frequency information. From the spectrum, you can see four distinct
frequency components but cannot tell when those components occurred
in time. The Wigner-Ville distribution provides both the time and
frequency information in the same plot. However, as you can see from
the plot, the main deficiency of this distribution is the cross-term
interference. This cross-term interference occurs at frequencies midway
between the two main frequencies. If there are four main frequencies (as
in the example above), there are six terms due to cross interference.
However, a good characteristic of these cross-term interferences is that
they highly oscillate between positive and negative values. These
positive and negative parts cancel out each other on averaging. To do so,
you can apply a low-pass filter to retain the low frequency components
and remove the high frequency parts. Because the discarded
high-frequency parts have small averages, the lowpass filtered
Wigner-Ville distribution presumably preserves the useful properties
with reduced cross-term interference.

There are two types of lowpass filters, namely the linear type and the
nonlinear type. There are different types of linear filters. It is interesting to
note that all these linear representations can be written in a general form that
was introduced by L. Cohen

1. Interested readers should refer to “Generalized Phase-Space Distribution Functions,” L. Cohen, in the
Journal of Mathematical Physicsol. 7, pp. 781-806, 1966.
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Cohen’s Class
Linear filters fall into a general category known as Cohen’s class of filters.
With no filtering, the Cohen’s class distribution is the same as the
Wigner-Ville Distribution. In the JTFA Toolkit, two of the most commonly
used linear filters are implemented below. They are the cone-shaped
distribution and the Choi-Williams distribution.

Cone-Shaped Distribution

frequency

time

When the lowpass filter has a cone shape as shown above, the Cohen’s
class distribution is known as the cone-shaped distribution. The figure
below shows the cone-shaped distribution of the frequency hopper
signal.
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Choi-Williams Distribution

frequency

A
e

When the lowpass filter has an exponential shape, as shown above, the
Cohen’s class distribution is known as the Choi-Williams distribution

(CWD). The figure below shows the Choi-Williams distribution of the
frequency hopper signal.

curenl he: HOFP.LOG Adjust parameters and then press Process
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Both these linear filters give reduced cross-term interference at the
expense of poor resolution. When you select one of these two algorithms
using the JTFA selector control on the toolkit front panel (discussed in
detail in the next section), you are asked to set the value of a parameter.
This parameter allows you to balance the cross-term interference and
resolution. The bigger this parameter is, the less the interference;
however , the lower interference is at the cost of smeared resolution.
Start with a value of 0.5 for the parameter. The desired value for this
parameter is application dependent; however, it is always desirable to
choose this value so that less interference occurs.

Gabor Spectrogram
This section discusses the nonlinear type of low-pass filters described by the
time-frequency distribution series, also known as the Gabor Spectrfogram
The advantage of the nonlinear type of filters is that it gives both good
resolution and small cross-term interference. The Gabor spectrogram
decomposes the Wigner-Ville distribution as DC plus a group of oscillated
time-frequency functions.

1. The Gabor spectrogram was invented by researchers at National Instruments and is a National
Instruments patent. It has won several technological awards. For more information on how to construct
such a filter, refer to S.Qian and D.Chen, “Discrete Gabor Transfé&RE Transactions on Signal
Processingvol. 41, no. 7, July 1993, pp. 2429-2439

© National Instruments Corporation 13-11 LabVIEW Signal Processing Course Manual



Lesson 13 Joint Time-Frequency Analysis

dTFA aedachol

- G

Fen
Gabol basi

* [Mnedhambard

order =-

When you select the Gabor spectrogram using the JTFA selector on the
toolkit front panel, you are asked to choose the order of the filter. The
lower order Gabor spectrogram has less cross-term interference but
lower resolution. The higher order Gabor spectrogram has better
resolution but more cross-term interference. For order = 0, the Gabor
spectrogram is similar to the STFT when using Gaussian window
function. As the order gets larger, the Gabor spectrogram converges to
the Wigner-Ville distribution. However, it is computationally more
expensive. The best choice is usually order three to four. In this case, the
Gabor spectrogram not only has better resolution than the STFT, but also
possesses much less cross-term interference than the Choi-Williams and
Wigner-Ville distributions. You can choose the Gabor basis to be
wideband, mediumband or narrowband. The matching indicator tells
you how closely the basis function approximates your input signal. The
larger the value, the closer the match. The figure on the following page
shows the third-order Gabor Spectrogram of the Frequency Hopper
signal.

LabVIEW Signal Processing Course Manual 13-12 © National Instruments Corporation



Lesson 13  Joint Time-Frequency Analysis

lobad dala kgl 0.08%  sBc

0.006 |
1406  |kHz
im 006 OM0  OMS  O0UED 0115 e
CLursmi
dh| liear g | aolor Ll ol E

To summarize, you have examined different algorithms commonly used
for obtaining a joint time-frequency representation. There has been
minimal mathematical description of these algorithms. However, if you
have understood the discussion above, you are ready to use the JTFA
toolkit for different practical applications, as you will see in the next
section.
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C.The JTFA Toolkit and Its Applications

With the JTFA Toolkit, you can use any of the aforementioned algorithms
to analyze stored data files and view the resulting spectrogram on an
intensity plot. It is a stand-alone application that you can use in real-world
applications such as radar and economic data analysis, where you need to
analyze a signal in the time and frequency domain simultaneously. The list
of such applications is endless. This section discusses simple applications.
These applications may seem rather specific, but the ideas and
methodologies behind them are of general interest to all JTFA users. The
figure below shows the front panel of the JTFA analyzer.
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Acquiring Data

LabVIEW Signal Processing Course Manual

When you start the JTFA application, it prompts you to adjust the
parameters and then préa®cess You first read in the signal to be
analyzed. This signal can be stored in an existing file, which must be either
a datalog format file (an internal file format used by LabVIEW) or an ASCII
text file. If your file is text, JTFA converts it to datalog format when you
click on theRead file button. You must convert the file to datalog, but you
can save the converted file under a new name to preserve your original file.
After conversion, the JTFA analyzer opens your file as a datalog file. On the
front panel, you see two more buttons labeled Set DAQ and Read DAQ. If
your computer is equipped with a National Instruments DAQ board, click
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on theRead DAQ button; the JTFA analyzer starts collecting data from the
DAQ board and stores it a specified data file. When you first click on the
Read DAQ button, it prompts you to set the DAQ parameters. The
application then uses these parameters until you exit. You can Betthe
DAQ button to change the DAQ parameters. After you select the file to
analyze, the toolkit reads a block of data or frame of samples from the file.

You can select one of the different algorithms discussed in the previous
section to analyze your data using Jié-A selector control. Each control

has a different set of parameters. The default is set to the short-time Fourier
transform (STFT) algorithm. In this case, the parameters to be selected are
the window selector control and the window length control. The other five
choices are the Gabor Spectrogram, the Choi-Williams distribution, the
cone-shaped distribution, the Wigner-Ville distribution, and the Adaptive
Spectrograrh The application then analyzes the samples and displays the
resultant spectrogram using an intensity plot. It also displays the traditional
spectrum to the right and the time-waveform below the two-dimensional
spectrogram.

The parameterstart at andblock length control the time range of the
analyzed signal. While the former determines the start time, the latter
determines the length of one frame of the analyzed signal. If the length
of the signal is less thastart at + block length, the JTFA analyzer
processes whatever is available. Because of memory limitations, if the
length of the signal is too long, JTFA displays the longest time duration
allowed in a status indicator dialog box and stops processing.

The parameterstart freq. andbandwidth control the frequency range

of the analyzed signadtart freq determines the lower boundary of the
frequency. The selection of the bandwidth is limite@to* Nyquist
frequency, 0<ks<5 . Ifstart freq. + bandwidth is greater than the
Nyquist frequency, the JTFA ignores the settingtaft freq. and
automatically sets the lower boundary of the frequency to zero (default
value).

By clicking on thesubband button, you can select the preemphasis
control. You can use the preemphasis filter to reduce the influence of the
DC component and enhance the high-frequency component. The degree
of preemphasis is controlled by the preemphasis parameter. When this
value is equal to zero (default), there is no preemphasis. When this value
is equal to one, JTFA completely removes the DC component, and the

1. For a detailed discussion on the Adaptive Spectrogram, refembTime-Frequency Analysis: Meth-
ods and Applicationdy Shie Qian and Dapang Chen, Prentice Hall, NJ, 1996.
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frequency components in the vicinity of the Nyquist frequency are
approximately doubled.

On a final note, if you change tlB@FA selector, subband, or any of

the parameters, you must recompute the spectrogram to see the effect of
the changes. To recompute the spectrogram, click oRrgeessoutton.

The JTFA computes the spectrogram using the values in the controls at
the time you click on th@rocessbutton.

Post Analysis of Data
After you have analyzed the data using the JTFA toolkit, you might want to
save the data plots to a file for later use. You can save the time waveform,
spectrum, and spectrogram as spreadsheet files. Select the plots that you
want to save (using the selector to the right of the Save button) and then
click on theSavebutton. You can then process the next frame of samples by
clicking on theNext button. After you finish analyzing one file, you may
close the current file and open a new one. To open a new file, click on the
Readfile button and indicate the file that you want to open. The program
closes the original file automatically.

The following exercises will help you further understand how to use the
JTFA Toolkit.
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Exercise 13-1

Objective: To use the JTFA Toolkit to analyze a doppler signal

In this exercise, you will familiarize yourself with different controls in the JTFA
Toolkit. You will analyze a doppler signal and see the advantages of a JTFA
spectrogram over a normal frequency spectrum.
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1. Open the front panel of the JTFA Toolkit as shown above.

2. Youwill analyze data in the file\jtfa\data\doppler.log
Click on theRead file button and choose this data file. The name of
the data file can now be seen in the current file box.

3. Adjust some of the parameters. Changebtredwidth to 1/4 band.
You will experiment with all the different algorithms that can be
selected using th&TFA selector. First, select the STFT algorithm.
You will use the Hamming window and window length = 64. Use the
default values for all the other parameters.

4. After setting all parameters, click on tReocessbutton.

Note: Remember that the application will not start computing until you click on
the Process button.

5. After the computation is complete, three waveforms will appear on
the JTFA window. You will now analyze these waveforms. The time
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waveform of the doppler signal can be seen in the bottom left part of
the figure. The standard Fourier spectrum can be seen on the top right
part. From this plot, you can see the range of frequencies present in
the spectrum. But the plot does not tell how these frequencies
evolved as a function of time. The larger plot in the upper left corner
is the time-dependent spectrum, a function of both time and
frequency. From it, not only can you see how the frequency changed
with time, but you also can see the intensity of the frequencies as
shown by the relative brightness levels of the plot.

6. You can now select different algorithms in i¢A selectorcontrol
and see how the time-frequency spectrogram looks in each case.

End of Exercise 13-1
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Exercise 13-2

Objective: To study the application of detecting impulse signals in low-orbit satellites
using JTFA.
In this exercise, you will examine a very interesting application for joint
time-frequency analysis. This application involves the detection of impulse
signals by low-orbit satellites.

ionosphere

satellite

A

non-linear
chirp

Consider an impulse signal generated at some location on Earth. Such an
impulse may be caused by nuclear weapons testing, and hence the
detection and estimation of this signal is an important national security
issue. But the detection of this signal is not very easy. As this signal
passes through the dispersive media surrounding the Earth (for example,
the ionosphere), the signal becomes a nonlinear chirp signal.
Furthermore, it is severely corrupted by random noise from the
ionosphere, and hence the detection of this signal via standard Fourier
transform techniques is not possible. However, as you will see in this
example, JTFA helps to detect this signal properly.
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1.

Open the front panel of the JTFA Toolkit as shown above, if it is not
already open from the previous exercise.

You will analyze data in the file\jtfa\data\impulse.log
Click on theRead file button and choose this data file. The name of
the data file can now be seen in therent file box.

Adjust some of the parameters. Change the panel color to gray using
the front panel switch. You will experiment with all the available
algorithms using thdTFA selector. First, select th&abor
spectrogramUse the default values for all the other parameters.

After setting all parameters, click on tReocessbutton. Remember
that the application will not start computing until you have done this.

After the computation is complete, three waveforms will appear on
the JTFA front panel. The time waveform of the ionized impulse
signal can be seen in the bottom left part of the figure. As explained
earlier, after passing through dispersive media, such as the
ionosphere, the impulse signal becomes a nonlinear chirp signal with
added random noise. Because of the low signal-to-noise ratio, you
can hardly see this chirp signal in the time waveform. It is
completely hidden by the noise signal. The standard Fourier
spectrum can be seen on the top right part. From this plot, you can
see the range of frequencies that are present in the spectrum. The
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larger plot in the upper left corner is the time-dependent spectrum, a
function of both time and frequency. From this plot, you can
immediately identify the presence of the chirp-type signal arching
across the joint time-frequency domain. Using such a representation,
you can do extensive postprocessing using the Analysis Library Vis
and mask the desired signal, as shown in figure below. You can then
apply the inverse transformation to recover the original time
waveform. The figure below compares the noisy signhal and the
reconstructed signal.
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6. You can now select different algorithms and see how the
time-frequency spectrogram looks in each case.

7. Exit the JTFA analyzer by pressing fQait button.

End of Exercise 13-2
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Summary:

* The need to analyze a signal in time and frequency domains
simultaneously has led to the popularity of joint time-frequency
analysis.

 The JTFA toolkit is an excellent tool to learn this technique and use
it in many real-world applications.

» Short time-frequency transform, Gabor spectrogram, Wigner-Ville
distribution, Choi-Williams distribution, Cone-Shaped distribution,
and adaptive spectrogram are some of the algorithms used for joint
time-frequency analysis. The choice of algorithm depends on your
application.

» Some of the interesting applications for JTFA are in radar, medical
imaging, and economic data analysis. In Exercise 13-2, you and
scientists at the Los Alamos National Laboratory made substantial
progress in detecting a radio frequency (RF) nonlinear chirp-type
signal in a noisy environment.

LabVIEW Signal Processing Course Manual 13-22 © National Instruments Corporation



Lesson 13  Joint Time-Frequency Analysis

Notes
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Notes
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Introduction

Wavelets are being applied in a diverse range of applications for the analysis
of nonstationary signals. These applications include removing noise from
signals, detecting abrupt discontinuities, and compressing large amounts of
data. The design of wavelets is closely related to the design of filters. The
Wavelet and Filter Banks Designer provides you with the flexibility to
interactively design the filters, and hence wavelets, for your specific
application.

You Will Learn:

A. About signal representation through transforms: the Fourier
transform and the short-time Fourier transform (STFT).

About the wavelet transform.
About the applications where wavelet analysis is useful.
About the relationship between wavelets and filter banks.

How to use the Wavelet and Filter Banks Designer (WFBD) Toolkit
on both a 1D signal (an electrocardiogram) and a 2D signal (an
image of a fingerprint).

mo o w
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A.Signal Representation

Inner Product

Before learning about the wavelet transform and its applications, you first
need to understand some basic concepts from linear algebra. In particular,
you need to be familiar with inner products and basis vectors.

The inner product of two vectors is a mathematical operation that
determines the similarity of these vectors with respect to each other. For
example, given the vectoxs= (x, X,), andy = (y;, ¥»), their inner

product is

<X,Y> = X*Y g+ XY

The inner product determines the similarity by calculatingptiogection
(or componentof one vector in the direction of the other. For example,
if you have two vectors, sayandx, the projection (denoted Ip) of v
onx s given by
_ <V, x>
X

where [f|| is the magnitude of the vectarlf x is a unit vector,
|IX|]| = 1, and the projection @fonx is simply

p = <v, x>
The magnitude of the projectiop| js the length of the orthogonal

projection ofv on a straight line having the same direction as the unit
vectorx. The projectiorp itself could be either positive, negative, or

\")

zero. This is illustrated in the figure below:
-V"\

X

X
«-—>

p>0

© xy

<>
p<0

Basis Vectors

The larger the value op|| the more similar the vectors are to one
another, and vice versa. When the inner product is equal to zero, the two
vectors are perpendicular to each other. Another way to say this is that
the two vectors arerthogonalwhen their inner product is equal to zero.

Consider a vector in 2D. Any such vector can be written as the weighted
sum of two other unit vectorsz (1,0) and = (0,1). For example, the vector

LabVIEW Signal Processing Course Manual 14-2 © National Instruments Corporation



Lesson 14 Wavelet and Filter Banks Designer

vV = (4,1) can be written as= 4* + 1*. This is shown graphically in the
figure below:

v

The vectors andj are known as thkasis vectorsn 2D. Every other
vector in 2D can be written as a combination of these two basis vectors.
An important property of basis vectors is that they are perpendicular
(orthogonal) to each other. That corresponds to their inner product being
equal to zero. Also, their magnitudes are equal to one. For the basis
vectorsi andj in 2D,

<i,j>=<(1,0),(0,1)>=1*0+0*1 =0

In other words, this means that they are linearly independent (see Lesson
8, Linear Algebra and you cannot express one of them in terms of the
other.

For the vectow = (4,1), you can take its inner product with respect to the
unit vectors and;:

<v,i>=4*1 + 1*0 = 4 and

v, j>=4*0+1*1 =1

This gives the projection ofon the unit vectors. Becausg,k is
greater than %j>, you can say that the vectois more similar to than
toj. This is readily apparent from the figure above, wheisemore
horizontal than vertical. (Note that becausadj are unit vectors, their
magnitude is equal to 1.0. Thus, in the above equations, we did not
specifically normalize by the magnitude.)

If you know the values of the inner productwfiith the basis vectoris

andj, you can obtaiw from the basis vectors by multiplying them with

the values of the corresponding inner products and adding up the results.
For the example given,

4% + 1% = 4%(1,0) + 1%(0,1) = (4,0) + (0,1) = (4,1) ¥

The important points to remember from the above discussion are:
» Basis vectors are chosen to be orthogonal to each other.
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* Any vectorv can be broken down as the sum of weighted basis
vectors. This is achieved by taking the inner product of the vector
with each of the basis vectors.

* The larger the value of the inner product, the greater the similarity of
the given vector with respect to that particular basis vector.

* You can reconstruct the vecteby knowing the values of its inner
product with each of the basis vectors. The reconstruction is
achieved by multiplying the inner product with the corresponding
basis vector and adding the results.

Fourier Transform

Just as you can break up any vector in 2D in terms of a set of basis
vectorsi andj, you can also break up a time sigag) in terms of a set

of basis functions. A well known popular example of basis functions in
signal analysis are the sines and cosines of the Fourier transform. These
sines and cosines anarmonicallyrelated to each other, which means
that their frequencies are all integer multiples of a fundamental
frequency. In addition, the sines and cosinesditegonal(if you take

their inner product, the result is zero).

When you take the Fourier transform of a time sigg) you are

actually taking the inner product of the signal with each of the basis
functions. So you actually are seeing the similarity of the signal to each
of the sines and cosines of different frequencies. If you get a large value
of the inner product with a basis function at a particular frequency, it
means that quite a bit of that frequency is present in the signal. If the
inner product happens to be zero, it means that frequency is not present
in s(t).

Although the Fourier transform is a useful tool in obtaining information
about the frequency content of a signal, its disadvantage is that it is
unable to tell us when in time a particular frequency occurs. For
example, consider the two chirp signals shown in the top two plots of the
figure on the next page. The frequency of the top signal is increasing,
whereas that of the bottom signal is decreasing. However, both have
exactly the same magnitude of the Fourier transform, as shown in the
lowermost figure.
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Looking at the Fourier transform of a signal, you cannot tell how its
frequency changes with time. All that you observe is the frequency
content of the sampled signal in the given time interval. The drawback
of this form of traditional Fourier transform analysis is that it is only
useful for the analysis aftationarysignals (that is, signals whose
frequency content does not vary with time).
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Windowed Fourier Transform or Short-Time Fourier Transform (STFT)
One method of obtaining time information (in addition to the frequency

information) with the Fourier transform is to break up the signal into small
time intervals before taking the Fourier transform. For example, suppose
you have 1000 samples of a signal collected over a period of 10 seconds (so
the sampling frequency is 100 Hz). You could take the Fourier transform of
the entire 1000 samples, as shown below:

1000 samples of a signal
|

0 200 400 600 800

1000 _

0 1 2 3 4 5 6 7 8

'

Fourier
Transform

l signal spectrum
s g p

|||||||||||;

—»|Afla— frequency

amplitude

9

10 time
(secs)

The result is a two-dimensional spectrum wherexthgis is the
frequency and thg-axis is the amplitude. The frequency resolution in
this case id\f = /1000, where fs is the sampling frequency. For the

same sampling rate, to increase the frequency resolution (that is, reduce
Af), you need to increase the number of samples to more than 1000.
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However, you can also divide the signal into five equal time intervals of
two seconds each, and analyze the frequency content of each interval
separately. In each of these time intervals, you will have 200 samples of
the signal. You can then take the Fourier transform of successive
2-second time intervals, as shown below.

1000 samples of a signal

I

0 200 400 600 800 1000 g
0 1 2 3 4 5 6 7 8 9 10 time =

(secs)
200 samples 200 samples 200 samples 200 samples 200 samples
\ 4 \ 4 \ 4 \ 4 Y
Fourier Fourier Fourier Fourier Fourier
Transform Transform Transform Transform Transform

color or grayscale
corresponds to
amplitude

|

L P time

Aﬁi
freq
1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

spectra centered at 1, 3, 5, 7, and 9 seconds

The result is a 3D spectrum, where axis represents time, tlyeaxis
represents frequency, and thaxis (out of the page) represents the
amplitude of the frequencies during the time for which the transform was
taken. Thez-axis can be in color or gray scale to represent the amplitude
values. This method of dividing the signal into smaller time intervals and
then taking the Fourier transform of successive intervals is known as the
short-time Fourier transform (STFT).

Note that each spectrum is obtained over a time interval of 2 seconds.
So, you know that any frequency component indicated in the spectrum
occurred somewhere within those 2 seconds. Thus this method provides
you with better time resolution than the first case, where you had an
interval of 10 seconds, somewhere during which a frequency shown in
the spectrum could have occurred. However, note that the frequency
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resolution is nowf = /200, and is now five times larger than in the first
case.

Good time resolution is necessary for the rapidly changing
(high-frequency) parts of a signal, whereas good frequency resolution is
necessary for the smoothly varying (low frequency) parts of a signal. To
improve the frequency resolution, you can (for a given sampling
frequency) increase the size of the time interval during which you obtain
the samples, but then the time resolution is affected. If you improve the
time resolution by decreasing the time interval, the frequency resolution
is affected, because now you have fewer sample¥,isdarger. Hence,
there is a trade-off between the time resolution and the frequency
resolution when using the STFT.
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B. The Wavelet Transform

The wavelet transform is another form of analysis where you can measure
the similarity of a signal to a set of basis functions. For the Fourier
transform, these basis functions were limited to being sines and cosines of
different frequencies. Also, they existed for all time. However, for the
wavelet transform, there are many possibilities of different shapes of basis
functions. In addition, the functions are time limited (they are nonzero only
within a finite time interval) and are usually irregular, with an average value
of zero. These basis functions used in the wavelet transform are called
wavelets An example of a basis function for the Fourier transform and the
wavelet transform are as shown:

Basisfunction
for

Fourier
transform

Basis function
for

wavelet
transform

Using the wavelet basis functions, you can obtain both good time
resolution and good frequency resolution. You first select (or design) a
prototype wavelet known asmaother waveletThis wavelet is then

either “stretched” or “compressed” in time to obtain other wavelets for
the basis. The wavelet obtained by “stretching” has a longer time
duration than the mother wavelet and is good for extracting the
low-frequency information of the signal. The wavelet obtained by
“compressing” has a shorter time duration than the mother wavelet and
is good for extracting the high-frequency information of the signal.
Thus, it is useful for temporal analysis. The scale change (compressing
or stretching) is done in powers of two. The figure below shows a mother
wavelet and two other wavelets obtained from it:
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W mother wavelet
compress to '1/2/ stretch by 2

An important step in wavelet analysis is the choice of wavelets for the
basis functions. As discussed, you want to see the similarity of the signal
under consideration to the basis functions. So depending on the signal
(that is, application), a particular shape of a wavelet may be a better
representation for the signal than another shape. Unlike the Fourier
transform, where the shapes of the basis functions are restricted to being
sines and cosines, in the wavelet transform you can have a large number
of possibilities. However, some restrictions do apply (such as the basis
functions being orthogonal to each other), but these are handled
automatically by the Wavelet and Filter Banks Designer (WFBD)

toolkit, and you, as the user, need not worry about them. The figure
below shows examples of some other wavelets.
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There are several wavelet packages available on the market today.
Whereas other wavelet packages have a fixed selection of wavelets from
which you can choose, the National instruments WFBD lets you design
your own wavelets to best suit your particular application. By
experimenting with the parameters on the Design Panble WFBD,

you can design different wavelets. Unlike the Fourier transform,
wavelets are specifically suited for the analysisaistationarysignals
(signals whose frequency contents vary with time).

The National Instruments WFBD is an interactive design package. It
enables you to design wavelets for both 1D signals and 2D images. The
signal or image can be loaded from a file or acquired by using DAQ or
IMAQ hardware.

Comparison of the Wavelet Transform and Fourier Transform

There are several important differences between the wavelet and Fourier
transforms. The following table summarizes these differences.

Fourier Transform Wavelet Transform
Basis functions Sines and cosines Wavelets
Assumption Basis functions exist for all tim{ Basis functions are time
limited
Type of signal Stationary Nonstationary
Analysis Same resolution at all Multiresolution
frequencies
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C.Applications of Wavelets

The wavelet transform is useful for the analysis of nonstationary signals,
whose frequency contents vary with time. Examples of nonstationary
signals are biomedical (for example, electrocardiogram), music, turbulence,
seismic, sound, and vibration data that change slowly or abruptly. For
signals like these, information about when the changes occur can often be
very important.

You have seen that you can use the wavelet transform to have both good
time and good frequency resolution simultaneously. Wavelets with a
short time duration are good for extracting high-frequency information
(such as discontinuities and abrupt changes) from a signal, whereas
wavelets with a longer time duration are useful for low-frequency
analysis. Thus, it is possible to see bothftirestand thetrees

Wavelets have been used in diverse fields covering a wide variety of
applications. Some of the practical uses of wavelets are:

* Removing noise from a signal.
» Feature extraction for use in pattern recognition and classification.
» Detection of discontinuities.

» Data compression (for example, images) that can be used to speed
image processing, implement faster modems, speed transfers on the
Internet, video conferencing, satellite image transmission, and
telecommunications.

Wavelets vs. Joint Time-Frequency Analysis
Both the WFBD and the JTFA toolkit are useful in analyzing nonstationary
signals. But when would you choose one over the other? The answer lies in
what you hope to achieve. The general rule is that if you are interested in
applications that require reconstruction, you should use wavelet analysis.
Examples of such applications are noise removal and data compression. In
noise removal, you want to reconstruct the original signal from a signal
containing both additive noise and the original signal. In data compression,
you want to reconstruct the original signal from a compressed version of the
signal. However, if you are more interested in obtaining insight into the
frequency contents of a signal, or in understanding the physical nature of the
process that generated the signal, the JTFA toolkit may be better for such
cases.
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D.Wavelets and Filter Banks

It turns out that the design of wavelets is closely related to the design of filter
banks. But what is a filter bank? It consists of a set of filters that breaks a

signal into different frequency ranges. Consider two filters: a lowpass filter,

GO, and a highpass filter, G1. You will use these filters to split a signal into

different frequency bands, as shown in the figure below:

s[n]

> syn]

A4

10 kHz GO l 5 kHz
2

A4

\

A4

o l i o1 lz ——— s,ln]
2 4

A4

20 kHz

L\

lz L s3]

G 10 kHz

The input signals[n], consists of frequencies in the range of 0 - 20 KHz.
It is first lowpass filtered by GO and highpass filtered by G1 around the
frequency of 10 KHz. The output of the highpass filtes;jg] and
occupies a frequency range of 10 KHz - 20 KHz. The output of the
lowpass filter is in the range 0 - 10 kHz and is once again filtered, this
time around 5 KHz, by both a highpass filter and a lowpass filter, to
give the signals,[n] ands;[n]. S;[n] occupies a frequency range of

5 KHz - 10 KHz, and;[n] occupies a range of 0 - 5 KHz. In the figure,
the downward pointing arrow with a 2 next to it shows the process of
downsampling (decimation) by a factor of two. Because the frequency
span of the filtered signal has been reduced by half, you can safely
decimate and use only half the number of samples.

So, now the original signa]n] has been broken down into three signals,
each occupying different frequency ranges shown below:
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s(t) 0-20 kHz

\4 \4 \4
sq[n] 0—-5kHz s,[n] 5— 10 kHz s3[n] 10 — 20 kHz

In practice, you do not need to stop after only two stages of filtering. You
could continue to split the lowpass filtered signal into even more
frequency bands, as shown below:

S[H]E Gl —»
GO > G1

'

‘

»| G1
LGO

Note:  Although the process of decimation has not been explicitly shown, it is
assumed.

'

The design of the filters is such that the outputs of each highpass filter are
approximations of the wavelet transform. The wavelet obtained from the
highpass filter corresponding to the lowest frequency band has the longest
time duration and could be theother waveletlt is thus able to extract
low-frequency information from the signal. As you go toward the higher
frequencies, the impulse response (that is, wavelets) from the highpass
filters are the compressed versions of the mother wavelet and have
correspondingly shorter time durations. Thus, they are more suitable for
extracting the high-frequency information (for example, discontinuities)
from the signal. All these wavelets together form the set of basis functions
to represent a signal.

The process of highpass filtering is equivalent to taking the inner
product of the signal with respect to the wavelet basis functions. The
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output of each highpass filter is the value of the inner product of the
signal with one of the wavelets. This value is the wavelet coefficient and

indicates the similarity of the signal with respect to the corresponding
wavelet.

s[n] G1 —» wavelet coefficient

GO » G1 —» wavelet coefficient

GO » G1 —» wavelet coefficient

(impulse response
could be
Go » Mother wavelet)

GO »| G1 —» wavelet coefficient

If the filters that make up the filter bank satisfy certain conditions, it is

possible to reconstruct the original signal s[n] frapm]s s,[n],
and g[n].

sq[n] 0-5KHz sy[n] 5-10 KHz s3[n] 10 - 20 KHz

¢ ¢

Y
s[n] 0-20KHz

This can be achieved by using another set of lowpass filters, HO, and
highpass filter, H1, and adding their outputs together, as shown below:
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10 kHz

20 kHz

\ 4

Ol

J - s[n]

/

H

&
=)
N
N
\ 4

3

This process of filtering is now equivalent to reconstructing the original
signal from the wavelet basis functions. (The upward pointing arrow
with a 2 next to it shows the process of upsampling by a factor of two.)

A special characteristic about these filter banks as compared to the
traditional filter banks is that the outputs of these filter banks can be used
to reconstruct the original signal s(t). The filter banks are said to have
perfect reconstructionFrom the traditional filter banks, it is not always
possible to reconstruct the original signal. For reconstruction, the filters
being used need to satisfy certain conditions, and thus a special
relationship exists between the filters GO, G1, HO, and H1. Because of
this relationship, it becomes necessary only to design the lowpass filters,
GO0 and HO. Knowing GO and HO, the highpass filters G1 and H1 are
automatically designed by the software.

In the next section, you will see how designing wavelets with the help of
the WFBD involves designing the lowpass filters GO and HO.
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E. Using the Wavelet and Filter Banks Designer

Using the WFBD package, there are three important steps involved in the
design of wavelets. Because of the relationship between wavelets and filter
banks, these steps basically boil down to selecting and designing the filters
for the filter banks.

Selecting the Type of Filter Bank

The first step consists of selecting a particular type of filter bank. There are
two types of filter banks that you can choose fronhhogonaland
biorthogonal The orthogonal filter bank is a special case of a biorthogonal
filter bank. The main difference between the orthogonal and biorthogonal
filter banks is that the biorthogonal filters can be linear phase, but the
orthogonal filters cannot. So, if your application requires linear phase, then
you should not use the orthogonal filter banks. (Linear phase is important
for images, because the eye is very sensitive to changes in phase.)

Selecting the Type of Filter
The next step deals with designing the lowpass filters GO and HO, and has
to do with designing a filter PO which is the cascade of the two filters GO
and HO. The filter PO is illustrated as shown:

—» PO —» —> —» GO » HO —>

The final step involves splitting the filter PO into GO and HO. These three
steps are outlined below:

Step 1:Select the type of filter bank. The available choices are:
* Orthogonal
* Biorthogonal

Step 2:Select the type of filter for PO. The available choices are:

* Maxflat

» Positive equiripple

* General equiripple

Any of the three types of filters mentioned in step 2 can be used with
biorthogonal filter banks. However, with orthogonal filter banks, you

can have only maxflat or positive equiripple filters, but not general
equiripple.
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There is no hard and fast rule, or even general guidelines, as to which
type of filter you should choose for any specific application. You will
need to experiment with the different choices to select a suitable one.

Step 3:Select the type of lowpass filter GO and separate PO into GO and
HO. This step consists of assigning the zeros of PO to the lowpass filters
GO and HO. The user decides which zeros to assign to GO and which to
assign to HO.

Which Type of Filter or Filter Bank Is a Good Choice?

Different selections in steps 1, 2, and 3 will result in different wavelets.
Although some guidelines have been given as to which choice is preferable
over the other, in general there is no hard and fast rule for a particular choice
of filter or filter bank. The choice of a suitable wavelet for a particular
application is usually done by a trial and error process. Thus, you will need
to experiment with the different combinations of available choices to obtain
the best wavelet for your particular application.
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The Design Panel
When you bring up the WFEBD application from th®grams menu, you
get the following front panel.

Ly w Othogonal
il Step 1:
select type of
Bl filter banks
A00-
A0d-, ! . . . . — frequency
Wg 00 02 04 0 0B 10w response of
zem prilt et lowpass filter GO
Step Z/’wl A2 and highpass
select type - s MM pnmm filter G1
of filter PO
PO is é Lo
ascade of
200~
the lowpass
filters GO and HO) 1.m-fﬁ\?\
£, [5=4
405 obo 1o abo sl sk | T—
| Dasbackies ﬁ . & _':I £|— distribution of zeros
Step3:— gl = Minmum Phaz= of lowpass filters
select type of S‘OG%nd HO
lowpass filter GO > 1o

An explanation of the plots and controls is provided in the above figure.
The figure also shows you the sequence of steps that you need to follow
while designing your wavelet.

In the following exercises, you will see how this panel is used for
analyzing an ECG signal (a 1D signal) and for data compression of
fingerprints (a 2D image).
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Exercise 14-1
Objective:

less than half the number of data points.
1. Launch the WFBD from thBrograms menu.
2. The Design Panel appears. It gives you the power of designing

arbitrary wavelets for your particular application. The Design Panel
is shown below:

To design a wavelet that captures the important features of an ECG signal, but with

Meriu w Ofhoponal W
0a
-A00-
A00-
'ED'I:I_I 1 1 1 1 1
B0 pHIE B
= Mar | = |
#0.0m  p0mm
A2 EE-
Jm-
200-

1 1
-1.0%  4.00

1.m-m
41 [f=- '

| Daubachiec

+| Mirimum Phaz=

100 200 300 sde

u_nanll,-jju:l B+
2oam | ) 13| 110 \

You have seen that the wavelet transform can be implemented as a
bank of filters that decompose a signal into multiple frequency
bands. It separates and retains the signal features in one or a few of
these subbands. Thus, one of the biggest advantages of using the
wavelet transform is that signal features can be easily extracted.
Because of their ability to effectively extract signal features, wavelet
transforms find many applications in the fields of data compression,
pattern recognition, edge detection, echo detection, speech
recognition, and texture analysis.
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The key to creating a successful wavelet application is to select an
appropriate wavelet, which is equivalent to selecting a good set of
filters in the filter bank. You saw that there are three major steps
involved in the design of the filters and filter banks. These steps are
repeated below.

Step 1:Select the type of filter bank. The available choices are
orthogonal or biorthogonal.

Step 2:Select the type of filter for PO. The available choices are
maxflat, positive equiripple, or general equiripple. Remember that
the general equiripple option is not available with orthogonal filter
banks.

Step 3:Select the type of lowpass filter GO and separate PO into GO
and HO. The separation is achieved by deciding which zeros to assign
to GO and which to assign to HO.

The wavelet that you design will depend on the choices that you
select in steps 1, 2, and 3. Thus, you can experiment with the
different combinations to obtain the best wavelet for your particular
application.

In the Design Panel, selddenu » 1D Data Test A new window
(1D_Test) will appear. In this window, you will load a 1D signal (for
this example, you will use an ECG signal) having 3600 data points
(samples) and see how it can be represented with a smaller number
of samples.

In the new window, seleEtata » Read from File » txt file Choose
the file Ecg.txt

You will now see four plots on the screen. In the topmost plot, you
see the original ECG signal. It consists of 3600 data points
(samples). You want to preserve the main features of this signal by
using a minimum number of data points.

Note that the original ECG signal has been decomposed into three
parts by several stages of lowpass and highpass filtering. This is
shown in the plots labelguhthl, path 2, andpath 3. A O indicates a
stage of lowpass filtering, and a 1 indicates a stage of highpass
filtering. Referring back to the explanation in section D, the figures
in the plots labelegathl, path 2, andpath 3 correspond t@;[n],

s,[n], ands,[n], respectively. The lowermost plot, obtained after two
stages of lowpass filtering, contains the main features of the original
ECG, but has only about 900 data points. Its size is therefore about
one-fourth of that of the original data. The other two plots basically
consist of only higher frequency noise and can be ignored.
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Therefore, the plot ipath 3 can be used to represent the original
ECG, but with fewer data points.
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6. Switch to the Design Panel. Experiment with the controls on the
design panel so as to change the wavelet being used, and note the
corresponding changes in the plots on the 1D_Test window.

7. In particular, change the type of filter from maxflat to positive
equiripple. Note that some features of the original signal appear in
the “noise” channels also. Now the plot labebath 2 also contains
some feature of the original ECG. Thus, this is not a good design for
the wavelet, because now to represent the original signal, you cannot
use only the 900 sample points of the lowermost plot, because it does
not contain all the “information” of the original ECG signal. Some
of this information is also present in the plot labghath 2.

8. To see the wavelet, selédenu » Wavelet and Filtersin the Design
Panel. For more details, refer to the WFBD reference manual.

End of Exercise 14-1

LabVIEW Signal Processing Course Manual 14-22 © National Instruments Corporation



Exercise 14-2

Lesson 14 Wavelet and Filter Banks Designer

Objective: To design a wavelet for reconstructing a fingerprint.
1. Openthe WFBD Toolkit from therograms menu, if it is not already

© National Instruments Corporation

open from the previous exercise.

In the Design Panel, selddENU » 2D Data Test A new window

will appear with the title 2D_TesIn this window, you can load
two-dimensional signals (for example, images) on which to perform
wavelet analysis.

From the control in the lower right corner of the 2D_Test window,
selectData » textand choose the filEinger.txt

You will see two fingerprints on the upper half of the 2D_Test
window. On the top left figure, you will see an original fingerprint
consisting of 150x150 pixels. Law enforcement agencies have a need
to keep millions of fingerprints on file. This can obviously occupy a
lot of disk space. In addition, it would take an extremely long time to
transmit so much data over the network. So, wavelets can be used to
reduce the amount of data to represent the fingerprint. By an
appropriate choice of wavelets, you can reduce the number of data
points by over 50 percent.

The figure on the top right shows the image that has been
reconstructed by using the wavelet transform. The ratio of the
number of data points used for reconstruction to the number of data
points of the original image is shown in the Remaining Data control.
In the example shown, only 50 percent of the total number of points
(150x150) are used to reconstruct the original fingerprint. Note that
there is hardly any difference between the original image and the
reconstructed image.
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The lowermost figures show the images obtained after the process of
lowpass and highpass filtering (refer to section D). To recapitulate,
if the input image is[n], then the resulting images after filtering are
s1[n], so[n], s3[n], andsy[n], as shown below.

— G1 P s4n]

Gl —

| GO —P s3[n]

s[n]

—»| G1 —» s,[n]

GO —

| GO —» sq[n]

Thus,sy[n] is obtained after two stages of lowpass filteriggn] is
obtained after two stages of highpass filtering, and so on. If H
denotes the result of highpass filtering, and L denotes a result of
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End of Exercise 14-2
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lowpass filtering, then their relationship with the images on the
figure of the bottom half of the 2D_Test window is shown below:

LL LH
si[n] Sl
HL HH

S3[N] sy[Nn]

Increasdata Usedfrom 50 percent to 75 percent. Note that there is
not much improvement in the reconstructed image.

Decreas®ata Usedto 25 percent. Is there a difference between the
original and the reconstructed image? Experiment on the design
panel to get a good reconstructed image Widla Usedset at

25 percent.

When you are done, exit the WFBD by selechManu » Quit in the

Design Panel.
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Summary

You have seen that the basis functions for the wavelet transform are known
aswaveletsaand are compressed and stretched versions of one another, with
a finite time duration. Wavelets with a short time duration are good for
high-frequency analysis, whereas those with a longer time duration are good
for low-frequency analysis. Using wavelets, it is possible to simultaneously
get good time as well as frequency resolution. Depending on your
application, a particular wavelet may be more suitable than another wavelet.
Hence, designing an appropriate wavelet is an important part of wavelet
analysis. The design of wavelets is closely related to the design of filter
banks. Using the Wavelet and Filter Banks Designer, you can interactively
design the filters in the filter bank and simultaneously monitor the effect
they have on the signal. Because of their ability for effective feature
extraction, wavelets are widely used for data compression.
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Notes
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Notes

LabVIEW Signal Processing Course Manual 14-28 © National Instruments Corporation



Appendix A
Error Codes

~
AR

L

e

B

(-

(

5J
<
>
<
~NO

)
Analysis Error Codes
Table A-1. Analysis Error Codes
Code Name Description

0 NoErr No error; the call was successful.

—20001 OutOfMemErr There is not enough memory left to perform
the specified routine.

-20002 EgSamplesErr The input sequences must be the same size.

—20003 SamplesGTZeroErr The number of samples must be greater than
zero.

—20004 SamplesGEZeroErr The number of samples must be greater than
or equal to zero.

—20005 SamplesGEOneErr The number of samples must be greater than
or equal to one.

—20006 SamplesGETwoErr The number of samples must be greater than
or equal to two.

-20007 SamplesGEThreeErr The number of samples must be greater than
or equal to three.

—-20008 ArraySizeErr The input arrays do not contain the correct
number of data values for this VI.

—20009 PowerOfTwoErr The size of the input array must be a power
of two:
size =%, 0<m< 23.

—20010 MaxXformSizeErr The maximum transform size has been
exceeded.

-20011 DutyCycleErr The duty cycle must meet the condition:
0 < duty cycle< 100.
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Table A-1. Analysis Error Codes (Continued)

>

Code Name Description
-20012 CyclesErr The number of cycles must be greater than
zero and less than or equal to the number of
samples.
-20013 WidthLTSamplesErr The width must meet the condition:
0 < width < samples.
-20014 DelayWidthErr The delay must meet the condition:
0 < (delay + width) < samples.
-20015 DtGEZeroErr dt must be greater than or equal to zero.
-20016 DtGTZeroErr dt must be greater than zero.
-20017 IndexLTSamplesErr The index must meet the condition:
0 <index < samples.
-20018 IndexLengthErr The index must meet the condition:
0 < (index + length) < samples.
-20019 UpperGELowerErr The upper value must be greater than or
equal to the lower value.
-20020 NyquistErr The cutoff frequencyf;, must meet the
condition:
f
Osf<3
-20021 OrderGTZeroErr The order must be greater than zero.
-20022 DecFactErr The decimating factor must meet the
condition: 0 < decimating samples.
—20023 BandSpecErr The band specifications must meet the
condition:
OSfrowahighSES
-20024 RippleGTZeroErr The ripple amplitude must be greater tha
zero.
-20025 AttenGTZeroErr The attenuation must be greater than zefo.
—20026 WidthGTZeroErr The width must be greater than zero.
-20027 FinalGTZeroErr The final value must be greater than zerg.
-20028 AttenGTRippleErr The attenuation must be greater than the
ripple amplitude.
-20029 StepSizeErr The step-size, Y, must meet the condition:
O0<pu<0.1.
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Table A-1. Analysis Error Codes (Continued)

Code Name Description

—-20030 LeakErr The leakage coefficient must meet the
condition:
0<leaks .

-20031 EqRplDesignErr The filter cannot be designed with the
specified input values.

—20032 RankErr The rank of the filter must meet the
condition:
1< (2 rank+ 1) < size.

-20033 EvenSizeErr The number of coefficients must be odd for
this filter.

—-20034 OddSizeErr The number of coefficients must be even|for
this filter.

-20035 StdDevErr The standard deviation must be greater than
zero for normalization.

-20036 MixedSignErr The elements of the Valuesarray must be
nonzero and either all positive or all
negative.

-20037 SizeGTOrderErr The number of data points in theValues
array must be greater than two.

-20038 IntervalsErr The number of intervals must be greater than
zero.

—20039 MatrixMulErr The number of columns in the first matrix is
not equal to the number of rows in the
second matrix or vector.

-20040 SquareMatrixErr The input matrix must be a square matrix.

-20041 SingularMatrixErr The system of equations cannot be solved
because the input matrix is singular.

-20042 LevelsErr The number of levels is out of range.

-20043 FactorErr The level of factors is out of range for some
data.

—-20044 ObservationsErr Zero observations were made at some lgvel
of a factor.

—20045 DataErr The total number of data points must be
equal to the product of the levels for each
factor and the observations per cell.
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Table A-1. Analysis Error Codes (Continued)

o
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ore.

Code Name Description

—-20046 OverflowErr There is an overflow in the calculated
F-value.

-20047 BalanceErr The data is unbalanced. All cells must
contain the same number of observation

-20048 ModelErr The Random Effect model was requeste
when the Fixed Effect model was require

-20049 DistinctErr The x values must be distinct.

—20050 PoleErr The interpolating function has a pole at t
requested value.

—20051 ColumnErr All values in the first column in the X matr
must be one.

—-20052 FreedomErr The degrees of freedom must be one or m

—-20053 ProbabilityErr The probability must be between zero an
one.

—20054 InvProbErr The probability must be greater than or eg
to zero and less than one.

—20055 CategoryErr The number of categories or samples mus
greater than one.

—20056 TableErr The contingency table must not contain &
negative number.

-20061 InvSelectionErr One of the input selections is invalid.

-20062 MaxlterErr The maximum iterations have been
exceeded.

-20063 PolyErr The polynomial coefficients are invalid.

-20064 InitStateErr This VI has not been initialized correctly.

—-20065 ZeroVectorErr The vector cannot be zero.
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Appendix A Error Codes

Table A-2. G Math Toolkit Error Codes
Error Code Error Code Description
Number
0 No error
—23001 | Syntax error of parser
—23002 | Discrepancy between function, variables and
coordinates
—23003 | Number of contours out of range
—23004 | Number of color palettes out of range
—23005 | Negative distance
—23006 | Not a valid path
—23007 | Not a graphs file
—23008 | Wrong input, Euler method
—23009 | Wrong input, Runge Kutta method
—23010 | Wrong input, Cash Karp method
—23011 | Nonpositive step rate
—23012 | Nonpositive accuracy
—23013 | Matrix vector conflict
—23014 | A and X0 have different dimensions
—23015 | Empty X0
—23016 | Singular eigenvector matrix
—23017 | Multiple roots
—23018 | Left point is a root
—23019 | Right point is a root
—23020 | Left point greater than right point
—23021 | Both function values have the same sign
—23022 | Nonpositive accuracy or nonpositive delta x(h)
—23023 | Wrong dimension of start
—23024 | No root found
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Table A-2. G Math Toolkit Error Codes (Continued)

Error Code Error Code Description
Number

—23025 | Nonvalid triplet (a,b,c)

—23026 | No optimum found

—23027 | Not exactly one variable

—23028 | Wrong model equation

—23029 | Levenberg Marquardt has failed

—23030 | m>=n>=0 s violated or the matrix of derivatives has
the wrong dimension

—23031 | No valid point

—-23032 | Maximum does not exist

—23033 | Vectors have different dimensions or empty vectors

—23034 | Il conditioned system

—23035 | Nonpositive number

—23036 | Different parameters

—23037 | Not exactly two functions

—23038 | No variables in expression

—23039 | Parameter problem

—23040 | Derivative out of range

—23041 | Not exactly two variables

—23042 | Negative argument

—23043 | Argument out of range (0,1]

—23044 | Argument out of range [0,1]

—23045 | n<k

—23046 | Empty array

—23047 | Argument out of range [0,100]

—23048 | Invalid time increment

—23049 | Invalid window length

—23050 | Signal length not a multiple of number
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Table A-2. G Math Toolkit Error Codes (Continued)
Error Code Error Code Description
Number
—23051 | Signal length not a power of two
—23052 | Signal length not a prime anel5
—23053 | Signal length not a power of two ant
—23054 | Non-unique variables

Functions for Use with G Math Toolkit Parser Vis

Table A-3. Functions for Use with G Math Toolkit Parser VIs

Function Corresponding G Math Description
Function name

abs(x) Absolute Value Returns the absolute valueof

acos(x) Inverse Cosine Computes the inverse cosinexof

acosh(x) Inverse Hyperbolic Cosing Computes the inverse hyperbolic
cosine ofx in radians.

asin(x) Inverse Sine Computes the inverse sinexin
radians.

asinh(x) Inverse Hyperbolic Sine computes the inverse hyperbolic
sine ofx in radians.

atan(x) Inverse Tangent Computes the inverse tangent of
xin radians.

atanh(x) Inverse Hyperbolic Tange| Computes the inverse hyperbolic
tangent of in radians.

ci(x) Cosine Integral Computes the cosine integral of
x wherex is any real number.

ceil(x) Round to +Infinity Roundsx to the next higher
integer (smallest integer x.)

cos(x) Cosine Computes the cosine gfin
radians.

cosh(x) Hyperbolic Cosine Computes the hyperbolic cosine
of xin radians.

cot(x) Cotangent Computes the cotangentxin
radians (1/tan(x)).

csc(x) Cosecant Computes the cosecantin
radians (1/sin(x)).
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Table A-3. Functions for Use with G Math Toolkit Parser Vis (Continued)

Function Corresponding G Math Description
Function name
exp(x) Exponential Computes the value efraised to
the powerx.
expml(x) Exponential(Arg)-1 Computes the value efraised to
the power ok — 1 (€°=1)
floor(x) Round to —Infinity Truncates x to the next lower
integer (Largest integet Xx)
gamma(x) Gamma Function F(n+1) = n! for all natural
numbersn.
getexp(x) Mantissa and exponent Returns the exponent gf
getman(x) Mantissa and exponent Returns the mantissa xf
int(x) Round to nearest integer | Rounds its argument to the nearest
even integer.
intrz Round toward zero Roundsx to the nearest integer
betweernx and zero.
In(x) Natural Logarithm Computes the natural logarithm
of x (to the base).
Inpl(x) Natural Logarithm Computes the natural logarithm
(Arg + 1) of (x+ 1).
log(x) Logarithm Base 10 Computes the logarithm af
(to the base 10).
log2(x) Logarithm Base 2 Computes the logarithm af
(to the base 2).
pi(x) Represents the value pi(x) =x*TT
= 3.141509... pi(l)=T1
pi(2.4) = 2.4
rand() Random Number (0-1) Produces a floating-point number
between 0 and 1.
sec(X) Secant Computes the secant f
(1/cosk)).
Si(x) Sine Integral Computes the sine integralf
wherex is any real number.
sign(x) Sign Returns 1 ifx is greater than 0.
Returns 0 ifx is equal to 0.
Returns -1 ik is less than 0.
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Table A-3. Functions for Use with G Math Toolkit Parser Vis (Continued)

Function Corresponding G Math Description
Function name
sin(x) Sine Computes the sine afin radians
sinc(x) Sinc Computes the sine afdivided
by x in radians (si(x)/x).
sinh(x) Hyperbolic Sine Computes the hyperbolic sine
of xin radians.
spike(x) Spike function spikef) returns:
lifosx<1
0 for any other value of
sqrt(x) Square Root Computes the square rootyof
square(x) Square function square X) returns:
lif 2nsx<(2n+1)
Oif 2n+1<x<(2n+2)
wherex is any real number and
nis any integer.
step(X) Step function stepk) returns:
0ifx<0
1 if any other condition obtains.
tan(x) Tangent Computes the tangent »in
radians.
tanh(x) Hyperbolic Tangent Computes the hyperbolic tange|
of xin radians.

G Math Toolkit Parser Error Codes

© National Instruments Corporation

Table A-4. G Math Toolkit Parser Error Codes
Error Error Code Description Error Example
Code
Number
0 No error sin(x)
1 Bracket problem at the 1+X)
beginning
2 Incomplete function sin(x)+
expression
3 Bracket problem 0
4 Bracket problem at the end (1+x
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Table A-4. G Math Toolkit Parser Error Codes (Continued)

5 Wrong decimal point 1,2 (US)

6 Wrong number format le-3instead of 1E-3

7 Wrong function call sin()

8 Not a valid function sins(x)

9 Incomplete expression X+

10 Wrong variable name all

11 Wrong letter sin(X)

12 Too many decimal points 1.23.45

21 Contains more than one 1+x+y4
variable

22 Inconsistency in variables | Depends on application
or numbers

23 Contains variables Depends on application

24 Variables output problem Depends on application

A-10
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Can the antialias filter be a hybrid filter?

When going from the analog to the digital domain, the antialias
filter must be an analog filter. In general, when going from a domain
P to a domain Q, the filter should be in domain P to avoid the
problem of aliasing in the domain Q. Thus, when sampling to go
from an analog to a digital signal, the filter should be an analog filter.
However, when performing decimation to reduce the sampling rate,
you are going from the digital domain (with a higher sampling rate)
to the digital domain (with a lower sampling rate). In this case, the
filter before the decimation is performed will be a digital filter.

Why are there Pattern VIs, when the Wave VIs will do all that the
pattern VIs can and more?

The historical reason is that Pattern VIs were created first. Also, the
Pattern VIs are meant to be used to generate a block of data at a time,
whereas the Wave Vls can be called iteratively in a loop.

Why do | need normalized frequency? Why not just use the
common frequency unit of Hertz in the input controls and have the
VI automatically convert it internally into normalized frequency if
necessary?

Because some people think in terms of Hertz (cycles per second) and
some think in terms of cycles. Normalized frequency handles both.

What does it mean that the Wave VIs are “reentrant’?

You can have several of them on the same block diagram, and each
one will have its own code. They will all work independently of each
other.
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Signal Processing

Windows

Digital Filters

What are the limits/problems of zero padding? Does it introduce
harmonics? Does it affect the frequency content of a signal in any
way?

Zero padding performs interpolation in the frequency domain. No, it
does not introduce harmonics. In addition to improving (that is,
lowering) the frequency resolution, faster algorithms (using the FFT
instead of the DFT) are possible.

What is the physical meaning of the cross power spectrum?

It is a measure of the similarity of two signals in the frequency
domain. It is the frequency-domain equivalent of the
cross-covariance function. It shows the joint presence of energy in
the two signals.

Why do different toolkits provide only some specific window
choices? Why not all window choices?

One reason is that the windows chosen are the most common
windows for that particular application. The other is that several of
the windows give very similar results, so there is no point in
including all of them.

What is meant by linear phase?

Linear phase in digital filters means that the phase distortion is
nothing more than a digital delay. All input samples will be shifted
by some constant number of samples, so this phase change can be
easily “fixed” and/or modeled.

Nonlinear phase means that the individual sine waves that make up
the input signal get shifted in time by different amounts. This sort of

phase change is very difficult to work around. Some signals (like the
square wave) are very sensitive to this sort of phase distortion.

What does it mean when the IIR filters “execute in place™?

In place means that the input array space (memory locations) are
being reused as the output array space. In place usually implies lower
demands on memory.

Do the FIR filters have only zeros?

FIR filters do have zeros, but they also have poles at the origin. If you
take the Z-transform of an FIR filter, and rewrite it as the product of
factored terms, you will find that in addition to zeros, they also have
poles at the origin.
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Curve Fitting

1. What is the limit in LabVIEW and BridgeVIEW on the number of
parameters used for curve fitting?

There is no limit. However, keep in mind that the memory
requirements, as well as the time required to find the solution, will
increase with increasing number of parameters.

2. Some curve fitting algorithms allow you to give weight to certain
data points. Can | do that in the VIs from the advanced analysis
library of LabVIEW and BridgeVIEW?

No, it is not possible.

3. In performing a fit, is there any rule of thumb as to how many data
points to use?

Normally, you need at least one more than the number of parameters
for which you are trying to solve. But there is no such rule as to
whether you should use at least five times more, 10 times more, etc.
As an example, in performing a polynomial fit, the number of data
points to be used to obtain a “good” fit may be correlated to how
close the data is to the underlying polynomial (that is, how much
noise). It depends.

4. Inthe Levenberg-Marquardt VI, why is the derivative information
needed?

The information is needed to calculate the Jacobian, which is needed
in the algorithm to solve for the coefficients that you are trying to
determine. See th&nalysis VI Reference Manufr details.

Digital Filter Design Toolkit
1. Is a demo version of the toolkit available?

Yes. In addition to being a separate toolkit, the DFD also ships with
the Signal Processing Suite (SPS). The entire SPS is available in
demo form also.

2. Is there a UNIX version of the DFD Toolkit?
No, it has not been released on UNIX.

3. Inthe Arbitrary FIR Design panel, if | select “import from file” and
then “cancel” the operation, I get an error, “Error 43 occurred...”.
Why is that?

This is due to a bug that will be fixed in the next release.

Wavelets

1. When | do the decimation (by 2), what options do | have? Can |
throw away every even sample, every odd sample, the first half, the
second half, etc?
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As long as you filter the data before performing the decimation, it
does not matter whether you throw away every odd sample or every
even sample. However, you must be consistent. You cannot throw
away the odd samples at the beginning and then the even samples
later, or vice versa. Similarly, you cannot throw away every seventh
sample in the beginning, and then every fourth sample later. It is not
proper to remove the first half samples, or the next half samples.
Normally, just the odd or even samples are removed.

2. When | do the upsampling (by 2), what options do | have?

In upsampling by 2, you need to insert zeros so as to double the
number of samples. The zeros to be inserted could be in either the
odd samples position or the even samples position. Depending on the
manner in which downsampling was done, you would insert zeros in
the same place. So, if you removed the odd-numbered samples
during downsampling, you would insert them in the odd-numbered
places during upsampling. However, if you removed the
even-numbered samples during downsampling, you would insert
them in the even-numbered places.

3. In Wavelets » 1D Data Test » ekg.txt » save the 2nd plot, if | see the
text file, all the numbers are zero because they were very small and
were not saved with a sufficiently high precision. So, how can |
change the format of saving the text file?

If you are using the wavelets executable, you cannot change the
format in which the text file is being saved. However, if you are
using the LabVIEW wavelet VI libraries, you can go into the block
diagram to change the format.

LabVIEW Signal Processing Course Manual B-4 © National Instruments Corporation



Appendix C
References

[
ﬁ\ AP

]

The following documents contain more detailed information about the
topics discussed in this course.
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Digital Filter Design Toolkit Reference Manual
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JTFA Reference Manual

LabVIEW Analysis VI Reference Manual
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Glossary

—
Prefix Meaning Value
M- mega- 16
K- kilo- 103
m- milli- 10’3
- micro- 10°
n- nano- 10°
Numbers/Symbols
1D One-dimensional.
2D Two-dimensional.
X Infinity.
Ya Pi.
y Delta. Difference. ¥ denotes the value by whietchanges from
one index to the next.
A
AC Alternating current.
ADC Analog to digital convertor, the hardware that converts an analog
signal into a digital signal.
analog signal A signal whose values are continuous and are defined at each and

every instant of time.
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ANSI

antialias filter

array

bandpass filter
bandstop filter
BPF
BSF

Butterworth filter

C

Chebysheuv filter

Chebyshev Il filter

coherent gain (CG)

complex conjugate
transpose

complex matrix

condition number

LabVIEW Signal Processing Course Manual D-2

American National Standards Institute.

An analog lowpass filter used to limit the frequency of the analog
signal, before sampling, to less than the Nyquist frequency. This
prevents aliasing in the digital domain.

Ordered, indexed set of data elements of the same type.

A filter that passes signals within a certain band of frequencies.

A filter that attenuates signals within a certain band of frequencies.
Bandpass filter.
Bandstop filter.

A filter characterized by a smooth response at all frequencies, and
the absence of ripples in both the passband and the stopband. Due
to the absence of ripples, it is also known as a maximally flat filter.

A filter characterized by ripples in the passband, but a smooth
response in the stopband.

Seelnverse Chebyshev Filter.

The coherent gain is the zero frequency gain (or DC gain) of a
window. The rectangular (or uniform) window has the highest CG.

A matrix operation consisting of taking the complex conjugate of
each element of the matrix and then transposing the resulting
matrix.

A matrix with at least one element that is a complex number.

A measure of how close the matrix is to bemgu&ar. The
condition number of a square nonsingular matrix is defined as

condA) = IIAIIPENA_lnp

wherep corresponds to th|a>th norm of the matrix. The condition
number can vary between 1 and infinity. A matrix with a large
condition number is nearly singular, while a matrix with a
condition number close to 1 is far from being singular.

© MNational Instruments Corporation



curve fitting

D
DAQ

data acquisition

dB
DC

decibel

DFT

difference equations

digital signal

discrete-time signal

DSP

E

elliptic filter

equivalent noise
bandwidth (ENBW)
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Technique for extracting a set of curve parameters or coefficients
from a data set to obtain a functional description of the data set.

Data acquisition.

Process of acquiring data, typically from A/D or digital input
plug-in boards.

Decibels.
Direct current.

A logarithmic scale used to compress large amplitudes and expand
small amplitudes. It is given by

one dB = 10 log, (Power Ratio) = 20 log, (Voltage Ratio)
Discrete Fourier transform, the algorithm used to transform

samples of the data from the time domain into the frequency
domain.

Equations that describe the operation of a system (for example, a
filter) in the discrete time domain.

A signal that can take on only specific amplitude values that are
defined at discrete points in time.

A signal whose values are continuous in amplitude, but which is
defined only at discrete points in time.

Digital signal processing.

A filter characterized by ripples in both the passband and the
stopband.

The equivalent noise bandwidth of a window is the width of an
ideal rectangular response that will pass the same amount of noise
power as the frequency response of the window. The rectangular
(or uniform) window has the smallest ENBW.
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FFT

filter bank

FIR filter

forward coefficients

frequency response

G

Gaussian probability
density function

H

harmonic distortion

Hermitian matrix

highpass filter

LabVIEW Signal Processing Course Manual D-4

Fast Fourier transform. A fast method for calculating the discrete
Fourier transform. It is used when the number of samples is a power
of two.

A set of filters connected in parallel. Each filter may be tuned to a
different frequency range. The filters in the filter bank may or may
not have the same bandwidth.

Finite impulse response filter. A type of filter whose output
depends only on the current and past inputs. It is also known as a
nonrecursive filter.

Forward coefficients are those that multiply inputs.

The Fourier transform of the impulse response. It consists of two
parts, the magnitude response and the phase response. The
magnitude response is a plot of the magnitude of the frequency
response at different frequencies, whereas the phase response is a
plot of the phase of the frequency response at different frequencies.
(see Impulse Response)

A density function that is completely characterized by its mean and
standard deviation and is given by

_ 1 1x—prf
f(x) = GA/ETeXp[_EDTDJ

wherep is the mean and is the standard deviation. It is also
known as the normal probability density function.

The distortion inherent in a nonlinear system that results in
generation of frequencies at its output that are harmonics of the
input frequency. The more the degree of nonlinearity of the system,
the higher the frequencies of the harmonics.

A complex matrix whose complex conjugate transpose is equal to
the matrix itself.See alsacomplex conjugate transpose.

A filter that passes frequencies above a certain cut-off frequency.
It passes high frequencies, but attenuates low frequencies.
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HPF

Hz

IEEE

IR filter

IMAQ

impulse
impulse response
inf

in place
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Highpass filter.

Hertz, or cycles per second.

Institute of Electrical and Electronics Engineers.

Infinite impulse response filter. A type of filter whose output
depends not only on the current and past inputs, but also on past
outputs. It is also known as a recursive filter.

Image acquisition.

A signal that has a value of one at a particular time instant and zero
everywhere else.

The response of a system to an input that is an impulse.
Digital display value for a floating-point representation of infinity.

In place means that the input array space (memory locations) are
being reused as the output array space. In place usually implies
lower demands on memory.

inverse Chebyshev filter A filter characterized by a smooth response in the passband, but

I/0

J

joint time-frequency
analysis (JTFA)

K

Levenberg-Marquardt

© National Instruments Corporation

with ripples in the stopband.

Input/output. The transfer of data to or from a computer system
involving communications channels, operator input devices, and/or
data acquisition and control interfaces.

A method of analysis that simultaneously provides both time and
frequency information. It shows how the frequency spectrum of a
signal varies with time.

A general curve fitting algorithm used to estimate the coefficients
of a curve to fit a set of samples. It can be used for both linear and
nonlinear relationships, but is almost always used to fit a nonlinear
curve. This is because the general linear fit method is better suited
to linear curve fitting. The Levenberg-Marquardt method does not
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L

linear phase

lower triangular matrix

lowpass filter

LPF

LU decomposition

matrix
MB

mother wavelet

MSE

NaN

norm

always guarantee a correct result, so it is absolutely necessary to
verify the results.

Linear phase in digital filters means that the phase distortion is
nothing more than a digital delay. All input samples will be shifted
by some constant number of samples, so this phase change can be
easily “fixed” and/or modeled\Nonlinear phase means that the
individual sine waves that make up the input signal get shifted in
time by different amounts. This sort of phase change is very
difficult to work around. Some signals (like the square wave) are
very sensitive to this sort of phase distortion.

A matrix whose elements above the main diagonal are all zero.

A filter that passes frequencies below a certain cut-off frequency.
It passes low frequencies, but attenuates high frequencies.

Lowpass filter.

A method that factors a matrix as a product of an upper and a lower
triangular matrix.

Two-dimensional array.
Megabytes of memory.

A prototype wavelet, which is compressed or expanded in time to
derive other wavelets.

Mean squared error. The MSE is a relative measure of the residuals
between the expected curve values and the actual observed values.

Digital display value for a floating-point representatiomof a
number typically the result of an undefined operation, such as

log(-1).

The norm of a vector or matrix is a measure of the magnitude of the
vector or matrix. There are different ways to compute the norm of
a matrix. These include ttienorm(Euclidean norrjy thel-norm

the Frobenius norm(F-norm), and thénfinity norm (inf-norm).
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normal probability
density function

nonlinear phase
nonrecursive filter

nonsingular matrix

normalized frequency

Nyquist frequency f)

Nyquist theorem

0

observation matrix (H)

octave

one-sided transform

P

passband
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Each norm has its own physical interpretation. The
LabVIEW/BridgeVIEW Matrix Norm VI can be used to compute
the norm of a matrix.

SeeGaussian probability density function.

Seelinear phase.
SeeFIR filter.

Matrix in which no row or column is a linear combination of any
other row or column, respectively.

A frequency (in Hertz) that is specified as a ratio with respect to the
sampling frequency (in samples/second). Its units are in
cycles/sample. However, if the frequency is given in terms of
cycles, then it is divided by the number of samples to convert it to
the normalized frequency.

Half the sampling frequencyy £ f4/2, where §is the sampling
frequency.

A theorem stating that to recover an analog signal from its samples,
the sampling frequency should be at least twice the highest
frequency in the signal.

A matrix used as an input to@Gemeral LS Linear Fit VI. If there
areN data points, anll coefficients (g, &, ...&.1) for which to
solve, H will be alN-by-kmatrix withN rows andck columns. Thus,
the number of rows of H is equal to the number of data points,
whereas the number of columns of H is equal to the number of
coefficients for which we are trying to solve.

A doubling in frequency.

A representation consisting of only the positive frequency (and
DC) components.

The range of frequencies that are passed by a filter with a gain of
almost one (0 dB).
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passband ripple

pattern Vls

pole-zero plot

power spectrum

Q

quality factor (Q)

rank

The amount of variation of the passband gain from unity (0O dB). It
is usually specified in dB. It is given by

: Aq(f)
ripple (dB) = 20|Oglorm

whereA(f) andAy(f) are the amplitudes of a particular frequency
before and after the filtering, respectively.

These are signal generation VIs that do not keep track of the phase
of the signal that they generate each time they are calleCHihe
Pattern VI is the only pattern VI that requires its frequency input

in terms of normalized frequency.

A plot showing the positions of the poles and zeros of a system. The
pole-zero plot is useful in determining the stability of the system.

The power spectrum of a signal gives you the power in each of its
frequency components. It can be calculated by squaring the
magnitude of the Fourier transform (DFT or FFT) of the signal.

A measure of how selective a bandpass filter is in passing frequencies
around the center frequency and attenuating unwanted frequencies. It
is defined as the ratio of the center frequency of the filter to its
bandwidth.

Q =1f/B,

where f,, is the center frequency, ang,Bs the bandwidth of the
filter. Thus, for a fixed center frequency, the larger the bandwidth
the smaller the quality factor, and vice versa.

Therank of a matrix A, denoted bg(A), is the maximum number
of linearly independent columns in A. The number of linearly
independent columns of a matrix is equal to the number of
independent rows. So, the rank can never be greater than the
smaller dimension of the matrix. Consequently, if A isnam
matrix, then

p(A) <min(n m)

wheremin denotes the minimum of the two numbers. The rank of a
square matrix pertains to the highest order nonsingular matrix that
can be formed from it. So, the rank pertains to the highest order
matrix that we can obtain whose determinant is not zero. A square
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recursive filter
regression analysis
reverse coefficients

RHS

ripple

RMS

S

sampling frequency

short-time Fourier
transform (STFT)

singular value
decomposition (SVD)

spectral leakage

step response

stopband
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matrix is said to have full rank if and only if its determinant is
different from zero.

SeellR filter.
Seecurve fitting.

The reverse coefficients are those that multiply the outputs.
Right hand side.

A measure of the deviation of a filter from the ideal filter
specifications.

Root mean square.

The number of samples acquired per second. Its units are
samples/second.

The term for taking a Fourier transform of shorter time intervals
of samples of a signal, rather on of the entire set of samples. Also
known as the windowed Fourier transform.

A method that decomposes a matrix into the product of three
matricesA = USV , whddeandV are orthogonal matrices, and
Sis a diagonal matrix. SVD is useful for solving analysis problems
such as computing the rank, norm, condition number, and

pseudoinverse of matrices.

A phenomenon where it appears as if energy has leaked out from
one frequency into another. It occurs because of the discontinuities
introduced when the sampled waveform is repeated periodically in
time. The larger the discontinuity, the more the leakage. Leakage
can be reduced by reducing the amplitude of the discontinuities.
The reduction is achieved by use of multiplying the time domain
waveform by a window function. Note that if there are an integer
number of cycles in the sampled waveform, there is no leakage.

The response of a system to a step input.

The range of frequencies that are attenuated by the filter.
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stopband attenuation

SVvD

symmetric matrix

T

total harmonic distortion

transient response

transition region

transpose

two-sided transform

u

upper triangular matrix

The amount of attenuation in the stopband of a filter, usually
specified in dB. It is given by
Aq(f)
A(dB) = 20|0&orm

whereA(f) andAy(f) are the amplitudes of a particular frequency
before and after the filtering, respectively.

Singular value decomposition.

A matrix whose transpose is equal to the matrix itself.

A relative measure of the amplitudes of the fundamental to the
amplitudes of the harmonics. If the amplitude of the fundamental is
A4, and the amplitudes of the harmonics agdZnd harmonic), A
(3rd harmonic), A (4th harmonic), ...{ (Nth harmonic), then the
total harmonic distortion (THD) is given by

NIENCRUNCN
Al

THD =

When the THD is expressed as a percentage, it is known as the
percentage total harmonic distortion (% THD) and is given by
100% JA 2+ A2+ A2+ + A

Al

% THD =

The transient that initially appears at the output of a filter when the
V1 is run. The time duration of the transient depends on the order
of the filter. It can be eliminated by setting the init/cont control of
the VI to TRUE.

The region between the passband and the stopband where the gain
of the filter varies from one (0 dB) or almost one (in the passband)
to a very small value (in the stopband).

A matrix operation that consists of interchanging the rows and
columns of a matrix.

A representation consisting of both the positive and negative (and
DC) frequency components.

A matrix whose elements below the main diagonal are all zero.
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v

vector

W

wavelets

wavelet transform

wave VIs
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One-dimensional array.

The time-limited basis functions of the wavelet transform.

The transform whose basis functions are time limited and are
known aswaveletsUsing the wavelet transform, it is possible to
have both good time and good frequency resolution
simultaneously. The selection of a suitable wavelet is an important
consideration in the use of the wavelet transform.

Signal generation Vls that keep track of the phase of the signal that
they generate each time they are called. They require their
frequency input to be in terms of normalized frequency.

Wigner-Ville distribution A method of joint time-frequency analysis. A drawback of this

window

windowed Fourier
transform

Z

zero padding
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method is the presence of unwanted cross-terms between actual
signal frequency components. These cross-terms can be removed
by averaging.

A smoothing function applied to a time domain waveform, before
it is transformed into the frequency domain, so as to minimize
spectral leakage.

Seeshort-time Fourier transform (STFT).

Addition of zeros to the end of a sequence so that the total number
of samples is equal to the next higher power of two. When zero
padding is applied to a set of samples in the time domain, faster
computation is possible by using the FFT instead of the DFT. In
addition, the frequency resolutioff] is improved (made smaller)
becaus&\f = f/N, where { is the sampling frequency and N is the
total number of samples.
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