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Introduction

Welcome to the LabVIEW Signal Processing Course. This course is
intended for practicing engineers and scientists who want to learn h
to use LabVIEW or BridgeVIEW to process and analyze digital sign
in real-world practical applications. The course focuses on the advan
analysis library and the various signal processing toolkits that are 
specifically devoted to designing digital filters, solving mathematics
problems, and analyzing nonstationary signals. In addition to teach
you how to use the analysis VIs and toolkits, the course also covers
basic fundamentals necessary for understanding and interpreting th
analysis results.

This student guide describes the course contents and suggests wa
which you can most effectively use the course materials. The guide
discusses the following topics:

A. Self-Paced Use

B. Course Description

C. Prerequisites

D. Course Goals 

E. Course Non-Goals

F. Course Map

G. Course Conventions
© National Instruments Corporation SG-1 LabVIEW Signal Processing Course Manual
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A.Self-Paced Use
Thank you for purchasing the LabVIEW Signal Processing Course kit. Y
should be able to begin developing your application soon after you hav
worked through this manual. This course manual and accompanying 
software are used in the two-day, hands-on LabVIEW Signal Processi
Course. Several exercises in this manual use the following National 
Instruments hardware products:

• AT-MIO-16E-2 data acquisition board

• DAQ Signal Accessory

To get started, read the information on the next page regarding the 
accompanying disks and then follow the instructions on the subsequen
pages for the computer platform you are using. If you have comments
suggestions for improving this course, or are not satisfied with the mate
please contact:

LabVIEW Signal Processing Technical Support
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 795-8248
support@natinst.com

Attending the Course
You can apply the full purchase price of this course kit toward the 
corresponding course registration fee if you register within 90 days of 
purchasing the kit. To register for a course or for course information, ple
contact National Instruments.

North America
Telephone: (512) 794-0100

E-mail: custedu.info@natinst.com  (information requests only)

24-hour automated retrieval of course outlines/latest course schedu

Fax on Demand: (800) 329-7177 or (512) 418-1111

World Wide Web: http://www.natinst.com/custed

Other Countries
Please contact your local National Instruments branch office (the phon
numbers are on the back cover).
LabVIEW Signal Processing Course Manual SG-2 © National Instruments Corporation
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Course Disk
The following table lists the contents of the LabVIEW Signal Processin
Course disk. The course disk contains a zip file containing two VI librar

Note: The solution VIs have the word “Solution” at the end of the VI name. 

You Will Need the Following Equipment:
• IBM PC AT or compatible.

• LabVIEW or BridgeVIEW for Windows Full Development System
ver 4.0 or later.

• AT-MIO-16E-2 data acquisition board.

• DAQ Signal Accessory.

• Optional—A word processing application such as Write or Wordp

Installing the Course Software
1. Copy the files Lvspc.zip  and unzip.exe  from the PC disk 

accompanying this manual to the Labview  directory on your hard 
disk.

2. Type in the following at the DOS prompt: unzip -d Lvspc.zip  
<enter>. This extracts the VI libraries that contain the class VIs 
(Lvspcex.llb ) and the solution VIs (Lvspcsol.llb ). In 
addition, it also extracts a DFD folder and a TOA folder to be us
for the lessons on the Digital Filter Design Toolkit and the 
Third-Octave Analyzer Toolkit, respectively.

Filename Description

Lvspc.zip A compressed file containing the VIs used in the 
course exercises (Lvspcex.llb ) as well as the VIs 
containing the solutions (Lvspcsol.llb ). 

unzip.exe A utility to decompress lvspc.zip .
© National Instruments Corporation SG-3 LabVIEW Signal Processing Course Manual
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The course assumes the following directory structure:

B.Course Description
The LabVIEW Signal Processing course teaches you how to implemen
use the VIs in the advanced analysis library and the signal processing
toolkits, and also how to interpret and understand the results of your 
analysis. The course is divided into lessons, each covering a topic or a 
topics. Each lesson consists of:

• An introduction that describes the lesson’s purpose and what yo
will learn.

• A discussion of the topics.

• A set of exercises to reinforce the topics presented in the discus

• A set of additional exercises to be done if time permits.

• A summary that outlines important concepts and skills taught in 
lesson.

• Review questions to check for understanding.

Some of the topics have been simplified considerably to make the b
concepts and ideas easier to understand. The simplification has be
done at the expense of mathematical detail while striving to provide
clear and precise concepts. For a more detailed presentation of suc
topics, see the list of references at the end of this manual.

C.Prerequisites

• Familiarity with the Windows operating system.

• Familiarity with basic LabVIEW programming techniques.

• Experience writing algorithms in the form of flowcharts or block 
diagrams.

• Previous exposure to digital signal processing, through either an
introductory course or work experience.

Root Directory
C:

\Labview
Directory

\DFD
Directory

Lvspcex.llb\TOA
Directory

Lvspcsol.llb
LabVIEW libraries
LabVIEW Signal Processing Course Manual SG-4 © National Instruments Corporation
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D.Course Goals
This course teaches you to:

• Become familiar with the analysis capabilities of LabVIEW and 
BridgeVIEW.

• Understand the basics of digital signal processing and analysis.

• Choose intelligently between several options/methods that are 
available for performing similar tasks (for example, choosing 
between different types of windows, filter design methods, or 
algorithms for curve fitting).

• Implement the VIs from the analysis library in practical applicatio
for solving real-world problems.

• Learn about the various specialized toolkits such as those availa
for solving mathematical problems, analyzing nonstationary sign
or designing digital filters.

E. Course Non-Goals
It is not the purpose of this course to do any of the following:

• Teach LabVIEW or BridgeVIEW basics.

• Teach programming theory.

• Discuss every built-in LabVIEW Analysis VI.

• Discuss each and every analysis algorithm.

• Develop a complete application for any student in the class.
© National Instruments Corporation SG-5 LabVIEW Signal Processing Course Manual
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F. Course Map

Lesson 1
Background

Lesson 2

Lesson 3

Lesson 4

Signal Generation

Signal Processing

Windowing

Lesson 5
Measurement

Lesson 6
Digital Filtering

Lesson 7

Lesson 8

Lesson 9

Curve Fitting

Linear Algebra

Probability and

Lessons 10-14
Toolkits

Statistics

Day 1 Day 2
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G.Course Conventions

The following conventions are used in this course manual:

bold Text in bold refers to LabVIEW menus, menu
items, palettes, subpalettes, functions, and 
VIs. For example, File.

italic Text in italics is for emphasis, a 
cross-reference, or an introduction to a key
concept.

Courier Text in this font indicates drive names, 
libraries, directories, pathnames, filenames
and sections of programming code. Courier
also indicates information you must type. Fo
example, type Digital Indicator  at the 
prompt.

Courier italic Text in this font denotes that you must supp
the appropriate words or values in the place 
these items.

Courier bold Text in this font denotes a computer promp

<> Angle brackets enclose the name of a key. F
example, <Enter>.

- A hyphen between two or more key names 
enclosed in angle brackets denotes that you
should simultaneously press the named key
For example, <Control-Alt-Delete>.
© National Instruments Corporation SG-7 LabVIEW Signal Processing Course Manual
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Introduction
A digital signal is one that can assume only a finite set of values in both
dependent and independent variables. The independent variable is usual
time or space, and the dependent variable is usually amplitude.

Digital signals are everywhere in the world around us. Telephone 
companies use digital signals to represent the human voice. Radio,
and hi-fi sound systems are all gradually converting to the digital 
domain because of its superior fidelity, noise reduction, and its sign
processing flexibility. Data is transmitted from satellites to earth grou
stations in digital form. NASA’s pictures of distant planets and oute
space are often processed digitally to remove noise and to extract u
information. Economic data, census results, and stock market price
all available in digital form. Because of the many advantages of dig
signal processing, analog signals are also converted to digital form
before they are processed with a computer. This lesson provides a
background in basic digital signal processing and an introduction to
LabVIEW/BridgeVIEW Analysis Library, which consists of hundreds
of VIs for signal processing and analysis.

You Will Learn:

A. About the digital (sampled) representation of an analog signal.

B. About aliasing and how to prevent it.

C. About the need for antialiasing filters.

D. About why we use the decibel scale to display amplitudes.

E. About the contents of the LabVIEW/BridgeVIEW Analysis Librar
© National Instruments Corporation 1-1 LabVIEW Signal Processing Course Manual
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A. Sampling Signals
To use digital signal processing techniques, you must first convert an an
signal into its digital representation. In practice, this is implemented by
using an analog-to-digital (A/D) converter. Consider an analog signal x(t) 
that is sampled every  ∆t seconds. The time interval ∆t is known as the 
sampling interval or sampling period. Its reciprocal, 1/∆t, is known as the 
sampling frequency, with units of samples/second. Each of the discrete 
values of x(t) at t = 0, ∆t, 2∆t, 3∆t, etc., is known as a sample. Thus, x(0), 
x(∆t), x(2∆t), ...., are all samples. The signal x(t) can thus be represented b
the discrete set of samples

{ x(0), x(∆t), x(2∆t), x(3∆t), …, x(k∆t), … }.

Figure 1-1 below shows an analog signal and its corresponding sam
version. The sampling interval is ∆t. Observe that the samples are 
defined at discrete points in time. 

Figure 1-1.  Analog Signal and Corresponding Sampled Version

In this course, the following notation represents the individual samp

x[i] = x( i∆t),           for i = 0, 1, 2, …

If N samples are obtained from the signal x(t), then x(t) can be 
represented by the sequence

X = {x[0], x[1], x[2], x[3], …, x[N-1] }

This is known as the digital representation or the sampled version of 
x(t). Note that the sequence X = {x[i]}  is indexed on the integer variable
i, and does not contain any information about the sampling rate. So
knowing just the values of the samples contained in X, you will have no 
idea of what the sample rate is.

∆t 4∆t 7∆t

10∆t
LabVIEW Signal Processing Course Manual 1-2 © National Instruments Corporation
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B. Sampling Considerations
A/D converters (ADCs) are an integral part of data acquisition (DAQ) 
boards. One of the most important parameters of an analog input syst
the rate at which the DAQ board samples an incoming signal. The sam
rate determines how often an analog-to-digital (A/D) conversion takes 
place. A fast sampling rate acquires more points in a given time and c
form a better representation of the original signal than a slow sampling 
Sampling too slowly may result in a poor representation of your analog
signal. Figure 1-2 shows an adequately sampled signal, as well as the e
of undersampling. The effect of undersampling is that the signal appea
if it has a different frequency than it truly does. This misrepresentation 
signal is called an alias.

Figure 1-2.   Aliasing Effects of an Improper Sampling Rate

According to the Nyquist theorem, to avoid aliasing you must sample a
a rate greater than twice the maximum frequency component in the
signal you are acquiring. For a given sampling rate, the maximum 
frequency that can be represented accurately, without aliasing, is kn
as the Nyquist frequency. The Nyquist frequency is one half the 
sampling frequency. Signals with frequency components above the
Nyquist frequency will appear aliased between DC and the Nyquist
frequency. The alias frequency is the absolute value of the differen
between the frequency of the input signal and the closest integer 
multiple of the sampling rate. Figures 1-3 and 1-4 illustrate this 
phenomenon. For example, assume fs, the sampling frequency, is 
100 Hz. Also, assume the input signal contains the following 

Adequately Sampled

Aliased Due to Undersampling
© National Instruments Corporation 1-3 LabVIEW Signal Processing Course Manual
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frequencies—25 Hz, 70 Hz, 160 Hz, and 510 Hz. These frequencies
shown in the following figure. 

Figure 1-3.  Actual Signal Frequency Components

In Figure 1-4, frequencies below the Nyquist frequency (fs/2=50 Hz) are 
sampled correctly. Frequencies above the Nyquist frequency appea
aliases. For example, F1 (25 Hz) appears at the correct frequency, b
(70 Hz), F3 (160 Hz), and F4 (510 Hz) have aliases at 30 Hz, 40 Hz,
10 Hz, respectively. To calculate the alias frequency, use the follow
equation:

Alias Freq. = ABS (Closest Integer Multiple of Sampling Freq. - 
Input Freq.)

where ABS means “the absolute value.” For example,

Alias F2 = |100 - 70| = 30 Hz

Alias F3 = |(2)100 - 160| = 40 Hz

Alias F4 = |(5)100 - 510| = 10 Hz

Figure 1-4.  Signal Frequency Components and Aliases
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Solid Arrows – Actual Frequency
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A question often asked is, “How fast should I sample?” Your first 
thought may be to sample at the maximum rate available on your D
board. However, if you sample very fast over long periods of time, y
may not have enough memory or hard disk space to hold the data. F
1-5 shows the effects of various sampling rates. In case A, the sine w
of frequency f is sampled at the same frequency f. The reconstructed 
waveform appears as an alias at DC. However, if you increase the 
sampling rate to 2f, the digitized waveform has the correct frequency
(same number of cycles), but appears as a triangle waveform. By 
increasing the sampling rate to well above f, for example 5f, you can 
more accurately reproduce the waveform. In case C, the sampling ra
at 4f/3. Because in this case the Nyquist frequency is below f 
(4f/3 *  = 2f/3), this sampling rate reproduces an alias waveform
incorrect frequency and shape.

Figure 1-5.  Effects of Sampling at Different Rates

The Nyquist theorem gives you a starting point for the adequate 
sampling rate—greater than two times the highest frequency compo
in the signal. Unfortunately, this rate is often inadequate for practic
purposes. Real-world signals often contain frequency components 
lie above the Nyquist frequency. These frequencies are erroneousl
aliased and added to the components of the signal that are sample
accurately, producing distorted sampled data. Therefore, for practic
purposes, sampling is usually done at several times the maximum 
frequency—five to 10 times is typical in industry.

Note: Sampling should be done at least at the Nyquist frequency, but usually
much higher.

1 2⁄

Sampled at És

Sampled at   4És/3

Sampled at  2És

A

B

C
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C. Why Do You Need Antialiasing Filters?
You have seen that the sampling rate should be at least twice the maxi
frequency of the signal that you are sampling. In other words, the maxim
frequency of the input signal should be less than or equal to half of the
sampling rate. But how do you ensure that this is definitely the case in
practice? Even if you are sure that the signal being measured has an u
limit on its frequency, pickup from stray signals (such as the powerline
frequency or from local radio stations) could contain frequencies highe
than the Nyquist frequency. These frequencies may then alias into the
desired frequency range and thus give us erroneous results. 

To be completely sure that the frequency content of the input signa
limited, a lowpass filter (a filter that passes low frequencies but 
attenuates the high frequencies) is added before the sampler and t
ADC. This filter is called an antialias filter because by attenuating the
higher frequencies (greater than Nyquist), it prevents the aliasing 
components. Because at this stage (before the sampler and the ADC
are still in the analog world, the antialiasing filter is an analog filter.

An ideal antialias filter is as shown in figure (a) below.

An ideal anti-aliasing filter passes all the desired input frequencies 
(below f1) and cuts off all the undesired frequencies (above f1). However, 
such a filter is not physically realizable. In practice, filters look as sho
in figure (b) above. They pass all frequencies < f1, and cut-off all 
frequencies > f2. The region between f1 and f2 is known as the transition 
band, which contains a gradual attenuation of the input frequencies
Although you want to pass only signals with frequencies < f1, those 
signals in the transition band could still cause aliasing. Therefore, i
practice, the sampling frequency should be greater than two times 
highest frequency in the transition band. So, this turns out to be mo
than two times the maximum input frequency (f1). That is one reason 
why you may see that the sampling rate is more than twice the maxim
input frequency. We will see in a later lesson how the transition ban
the filter depends on the filter type being designed.

transition band

f1 f1 f2
(a) ideal anti-alias filter (b) practical anti-alias filter

fil
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frequency frequency

fil
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tp
ut
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D. Why Use Decibels?
On some instruments, you will see the option of displaying the amplitud
a linear or decibel (dB) scale. The linear scale shows the amplitudes as
are, whereas the decibel scale is a transformation of the linear scale in
logarithmic scale. You will now see why this transformation is necessa

Suppose you want to display a signal with very large as well as ver
small amplitudes. Assume you have a display of height 10 cm and 
use the entire height of the display for the largest amplitude. So, if 
largest amplitude in the signal is 100 V, a height of 1 cm of the disp
corresponds to 10 V. If the smallest amplitude of the signal is 
0.1 V, this corresponds to a height of only 0.1 mm. This will barely 
visible on the display!

To see all the amplitudes, from the largest to the smallest, you nee
change the amplitude scale. Alexander Graham Bell invented a unit
Bell, which is logarithmic, compressing large amplitudes and expand
the small amplitudes. However, the Bell was too large of a unit, so 
commonly the decibel (1/10th of a Bell) is used. The decibel (dB) is
defined as

one dB = 10 log10 (Power Ratio) = 20 log10 (Voltage Ratio)

The following table shows the relationship between the decibel and
power and voltage ratios.

Thus, you see that the dB scale is useful in compressing a wide range
amplitudes into a small set of numbers. The decibel scale is often use
sound and vibration measurements and in displaying frequency doma
information. You will now do an exercise that shows a signal in linear a
logarithmic scales.

dB Power Ratio Voltage Ratio

+40 10000 100

+20 100 10

+6 4 2

+3 2 1.4

0 1 1

-3 1/2 1/1.4

-6 1/4 1/2

-20 1/100 1/10

-40 1/10000 1/100
© National Instruments Corporation 1-7 LabVIEW Signal Processing Course Manual
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Exercise 1-1
Objective: To build a VI that displays the signal amplitude in both linear and dB scales.

This VI will display the square of 100 data points on a waveform graph. 
fifth data point will create a spike. You will observe that the spike is visi
on the dB scale.

Front Panel

1.  Build a VI with the front panel shown above.

The Selector control (Controls » List and Ring » Enumerated 
Type) has two options, Linear scale and Logarithm (dB) scale.
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Block Diagram

2. Build the block diagram as shown above.

The For Loop (Functions » Structures subpalette) 
generates the square of 100 data points to be displayed
the Waveform Graph (Controls » Graph palette). (You 
add +1 to the loop count to avoid taking the logarithm o
zero, which results in a value of -×.) Thus, the values of t
data points range from 12 to 1002, giving a total range of 1 
to 10,000. This corresponds to a ratio of 10,000 betwee
the largest (10,000) and the smallest (1) squared value

The Replace Array Element function (Functions » Array 
subpalette) replaces the 5th data point, which has a valu
52 = 25, by 150, to create a spike at the fifth element. Y
will see how the spike is barely noticeable on the linear
scale, but is easily distinguishable on the dB scale.

Depending on the selector control, the Case structure 
(Functions » Structures subpalette) either passes the da
directly (Linear scale) to the Waveform Graph or 
calculates 20 times the logarithm to the base 10 (Logarithm 
(dB) scale) of the data points and sends the result to th
Waveform Graph. 

The Logarithm Base 10 function is found in the 
Functions » Numeric » Logarithmic subpalette.
© National Instruments Corporation 1-9 LabVIEW Signal Processing Course Manual
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3. Select the Linear option from the Selector control, and run the VI. 
Note that the spike at element 5 is barely visible.

4. Select the Logarithm (dB) option from the Selector control and run 
the VI. Note that the spike at element 5 is very easily noticeable

Note: Observe the change in the y-axis scale as you switch between the “Line
and “Logarithm (dB)” options.

5. After you have finished, save the VI as dB_linear.vi in the 
Lvspcex.llb  library.

End of Exercise 1-1
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E. Overview of the Advanced Analysis Library
Once the analog signal has been converted to digital form by the ADC
is available in your computer as a digital signal (a set of samples), you
usually want to process these samples in some way. The processing c
be to determine the characteristics of the system from which the samp
were obtained, to measure certain features of the signal, or to convert 
into a form suitable for human understanding, to name a few. 

The LabVIEW/BridgeVIEW Analysis library contains VIs to perform 
extensive numerical analysis, signal generation and signal process
curve fitting, measurement, and other analysis functions. The Analy
Library, included in the LabVIEW/BridgeVIEW full development 
system, is a key component in building a virtual instrumentation syst
Besides containing the analysis functionality found in many math 
packages, it also features many unique signal processing and 
measurement functions that are designed exclusively for the 
instrumentation industry.

The analysis VIs are available in the Analysis subpalette of the 
Functions palette in LabVIEW or BridgeVIEW. 

 There are 10 analysis VI libraries. The main categories are:

Signal Generation: VIs that generate digital patterns and 
waveforms.
© National Instruments Corporation 1-11 LabVIEW Signal Processing Course Manual
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Digital Signal Processing: VIs that perform frequency 
domain transformations, frequency domain analysis, time 
domain analysis, and other transforms such as the Hartley 
Hilbert transforms.

Measurement: VIs that perform measurement-oriented 
functions such as single-sided spectrums, scaled windowin
and peak power and frequency estimation.

Filters: VIs that perform IIR, FIR, and nonlinear digital 
filtering functions.

Windows: VIs that perform data windowing.

Curve Fitting:  VIs that perform curve fitting functions and 
interpolations.

Probability and Statistics: VIs that perform descriptive 
statistics functions, such as identifying the mean or the 
standard deviation of a set of data, as well as inferential 
statistics functions for probability and analysis of variance 
(ANOVA).

Linear Algebra:  VIs that perform algebraic functions for rea
and complex vectors and matrices.

Array Operations:  VIs that perform common, one- and 
two-dimensional numerical array operations, such as linear
evaluation and scaling.

Additional Numerical Methods: VIs that use numerical 
methods to perform root-finding, numerical integration, and
peak detection.

In this course, you will learn how to design and use the VIs from the
analysis library to build a function generator and a simple, yet practi
spectrum analyzer. You will also learn how to design and use digita
filters, the purpose of windowing, and the advantages of different ty
of windows, how to perform simple curve-fitting tasks, and much mo
The exercises in this course require the LabVIEW/BridgeVIEW full 
development system. For the more adventurous, an extensive set o
examples that demonstrate how to use the analysis VIs can be foun
the labview » examples » analysis folder. 
LabVIEW Signal Processing Course Manual 1-12 © National Instruments Corporation



Lesson 1 Background

he 
s 

hat 
al 

ng 
; the 
In addition to the Analysis library, National Instruments also offers 
many analysis add-ons that make LabVIEW or BridgeVIEW one of t
most powerful analysis software packages available. These add-on
include the Joint Time-Frequency Analysis Toolkit, which includes the 
National Instruments award-winning Gabor Spectrogram algorithm t
analyzes time-frequency features not easily obtained by convention
Fourier analysis; the G Math Toolkit, which offers extended math 
functionality like a formula parser, routines for optimization and solvi
differential equations, numerous types of 2D and 3D plots, and more
Digital Filter Design Toolkit; and many others. These specialized 
add-ons will also be discussed later in this course.
© National Instruments Corporation 1-13 LabVIEW Signal Processing Course Manual
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Summary

• This lesson introduced the digital (sampled) representation of a 
signal.

• To convert an analog signal into a digital signal, the sampling 
frequency (fs) should be at least twice the highest frequency 
contained in the signal. If this is not the case, the frequencies in
signal that are greater than the Nyquist frequency (fs/2) appear as 
undesirable aliases. 

• You can use a lowpass filter before sampling the analog signal t
limit its frequency content to less than fs/2. Such a filter used to 
prevent the effect of aliasing is known as an antialias filter. 

• You saw how to use a logarithmic scale (the decibel) to display 
large range of values. It does this by compressing large values a
expanding small ones. 

• This lesson also gave an overview of the LabVIEW/BridgeVIEW
Analysis Library and its contents.

Review Questions
1. Give some examples of digital signals in everyday life.

2. Given a set of sample values x = {x[i]} where i is an integer variab
what is the sampling rate?

3. What is aliasing? How can it be avoided?

4. Given that the sampling frequency is 100 Hz, what is the alias 
frequency (if any) for the following: 13 Hz, 25 Hz, 40 Hz, 75 Hz,
99 Hz, 101 Hz, 200 Hz, and 350 Hz?

5. Why do we use the decibel scale? In what applications is it norm
used?

6. Which of the following is possible using the analysis VIs?

a. Finding the mean or standard deviation of census data.

b. Designing a filter to remove noise from an electrocardiogram

c. Detecting peaks in a blood pressure waveform to measure th
heart rate.

d. Interpolating between data points to plot the trajectory of an 
object (for example, a comet or a cannonball).
LabVIEW Signal Processing Course Manual 1-14 © National Instruments Corporation
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Introduction
In this lesson, you will learn how to use the VIs in the analysis library t
generate many different types of signals. Some of the applications for s
generation are:

• Simulating signals to test your algorithm when real-world signals 
not available (for example, when you do not have a DAQ board 
obtaining real-world signals).

• Generating signals to apply to a D/A converter (for example, in 
control applications such as opening or closing a valve).

You Will Learn:

A. About the concept of normalized frequency.

B. About the difference between Wave and Pattern VIs (for example, 
the Sine Wave VI and the Sine Pattern VI).

C. About how to build a simple function generator using the VIs in t
Signal Generation subpalette.
© National Instruments Corporation 2-1 LabVIEW Signal Processing Course Manual
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A.Normalized Frequency

In the analog world, a signal frequency is measured in Hz or cycles
second. But the digital system often uses a digital frequency, which
the ratio between the analog frequency and the sampling frequency

digital frequency = analog frequency / sampling frequency

This digital frequency is known as the normalized frequency. Its units 
are cycles/sample.

Some of the Signal Generation VIs use an input frequency control, f, that 
is assumed to use normalized frequency units of cycles per sample. This 
frequency ranges from 0.0 to 1.0, which corresponds to a real freque
range of 0 to the sampling frequency fs. This frequency also wraps 
around 1.0, so that a normalized frequency of 1.1 is equivalent to 0
As an example, a signal that is sampled at the Nyquist rate (fs/2) means 
that it is sampled twice per cycle (that is, two samples/cycle). This 
will correspond to a normalized frequency of 1/2 cycles/sample = 
0.5 cycles/sample. The reciprocal of the normalized frequency, 1/f, gives 
you the number of times that the signal is sampled in one cycle.

When you use a VI that requires the normalized frequency as an in
you must convert your frequency units to the normalized units of 
cycles/sample. You must use these normalized units with the 
following VIs.

• Sine Wave

• Square Wave

• Sawtooth Wave

• Triangle Wave

• Arbitrary Wave

• Chirp Pattern
LabVIEW Signal Processing Course Manual 2-2 © National Instruments Corporation
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If you are used to working in frequency units of cycles, you can conv
cycles to cycles/sample by dividing cycles by the number of sample
generated. The following illustration shows the Sine Wave VI, which is 
being used to generate two cycles of a sine wave. 

The following illustration shows the block diagram for converting 
cycles to cycles/sample. 

You need only divide the frequency (in cycles) by the number of 
samples. In the above example, the frequency of 2 cycles is 
divided by 50 samples, resulting in a normalized frequency of 
f = 1/25 cycles/sample. This means that it takes 25 (the reciprocal of) 
samples to generate one cycle of the sine wave.

However, you may need to use frequency units of Hz (cycles/second
you need to convert from Hertz (or cycles/second) to cycles/sample
divide your frequency in cycles/second by the sampling rate given i
samples/second.

cycles/second
samples/second
-------------------------------------

cycles
sample
-----------------=
© National Instruments Corporation 2-3 LabVIEW Signal Processing Course Manual
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The following illustration shows the Sine Wave VI used to generate a 
60 Hz sine signal.

Below is a block diagram for generating a Hertz sine signal. You div
the frequency of 60 Hz by the sampling rate of 1000 Hz to get the 
normalized frequency of f = 0.06 cycles/sample. Therefore, it takes 
almost 17 (1/0.06) samples to generate one cycle of the sine wave.

The signal generation VIs create many common signals required fo
network analysis and simulation. You can also use the signal genera
VIs in conjunction with National Instruments hardware to generate 
analog output signals.
LabVIEW Signal Processing Course Manual 2-4 © National Instruments Corporation
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Exercise 2-1
Objective: To understand the concept of normalized frequency.

1. Build the VI front panel and block diagram shown below.

Front Panel

Block Diagram

 Sine Wave VI  (Analysis » Signal Generation subpalette).
© National Instruments Corporation 2-5 LabVIEW Signal Processing Course Manual
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2. Select a frequency of 2 cycles (frequency = 2 and f type = cycles) 
and number of samples = 100. Run the VI. Note that the plot will 
show 2 cycles. (The normalized frequency indicator tells you the
normalized frequency.)

3. Increase the number of samples to 150, 200, and 250. How many 
cycles do you see?

4. Now keep the number of samples = 100. Increase the number of 
cycles to 3, 4, and 5. How many cycles do you see?

Thus, when you choose the frequency in terms of cycles, you will s
that many cycles of the input waveform on the plot. Note that the 
sampling rate is irrelevant in this case.

5. Change f type to Hz and sampling rate (Hz) to 1000.

6. Keeping the number of samples fixed at 100, change the frequency 
to 10, 20, 30, and 40. How many cycles of the waveform do you 
on the plot for each case? Explain your observations.

7. Repeat the above step by keeping the frequency fixed at 10 and 
change the number of samples to 100, 200, 300, and 400. How 
many cycles of the waveform do you see on the plot for each ca
Explain your observations.

8. Keep the frequency fixed at 20 and the number of samples fixed at 
200. Change the sampling rate (Hz) to 500, 1000, and 2000. Make
sure you understand the results.

9. Save the VI as Normalized Frequency.vi in the library 
Lvspcex.llb .

End of Exercise 2-1
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B.Wave and Pattern VIs
You will notice that the names of most of the signal generation VIs have
word wave or pattern in them. There is a basic difference in the operatio
of the two different types of VIs. It has to do with whether or not the VI c
keep track of the phase of the signal that it generates each time it is ca

Phase Control

The wave VIs have a phase in control where you can specify the initia
phase (in degrees) of the first sample of the generated waveform. T
also have a phase out indicator that specifies what the phase of the ne
sample of the generated waveform is going to be. In addition, a reset 
phase control decides whether or not the phase of the first sample 
generated when the wave VI is called is the phase specified at the phase 
in control, or whether it is the phase available at the phase out control 
when the VI last executed. A TRUE value of reset phase sets the initial 
phase to phase in, whereas a FALSE value sets it to the value of phase 
out when the VI last executed.

The wave VIs are all reentrant (can keep track of phase internally) a
accept frequency in normalized units (cycles/sample). The only pattern 
VI that presently uses normalized units is the Chirp Pattern  VI. Setting 
the reset phase Boolean to FALSE allows for continuous sampling 
simulation.

Note: Wave VIs are reentrant and accept the frequency input in terms of 
normalized units.

In the next exercise, you will generate a sine wave using both the Sine 
Wave VI and the Sine Pattern VI. You will see how in the Sine Wave 
VI you have more control over the initial phase than in the Sine 
Pattern VI.
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Exercise 2-2
OBJECTIVE: To generate a sine wave of a particular frequency and see the effect of aliasing.

Front Panel

1. Open the Generate Sine VI from the library Lvspcex.llb .

2. The front panel contains controls for the number of sample point
be generated, the amplitude, analog frequency, and initial phase
degrees) of the sine wave to be generated, and the frequency at w
this waveform is sampled.

3. Do not change the front panel default values. Switch to the bloc
diagram. 

Block Diagram

4. Examine the block diagram.

Sine Wave VI (Analysis » Signal Generation subpalette). In 
this exercise, this VI generates 100 points of a 10 Hz sin
wave sampled at 100 Hz.
LabVIEW Signal Processing Course Manual 2-8 © National Instruments Corporation
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5. Notice in the block diagram that the signal frequency is divided 
the sampling frequency before it is connected to the Sine Wave VI. 
This is because the Sine Wave VI requires the digital (normalized) 
frequency of the signal.

6. Run the VI. With the default front panel values, a 10 Hz sine wa
should appear on the graph.

Sampling and Aliasing
7. Change the signal frequency on the front panel to 90 Hz and obs

the waveform. The resulting signal looks just like the 10 Hz 
waveform.

As you saw in the previous lesson, this phenomenon is called 
aliasing, which occurs only in the digital domain. The famous 
Nyquist Sampling Theorem dictates that the highest representab
useful frequency is at most half of the sampling frequency. In ou
case, the sampling frequency is 100 Hz, so the maximum 
representable frequency is 50 Hz. If the input frequency is over 
50 Hz, as in our case of 90 Hz, it will be aliased back to 
((n*50) - 90) Hz > 0, which is (100-90) Hz, or 10 Hz. In other word
this digital system with a sampling frequency of 100 Hz cannot 
discriminate 10 Hz from 90 Hz, 20 Hz from 80 Hz, 51 Hz from 
49 Hz, and so on.

The Importance of an Analog Antialiasing Filter

Therefore, in designing a digital system, you must make sure that
frequencies over half of the sampling frequency do not enter the
system. Once they are in, there is no way to remove them! To prevent 
aliasing, you typically use an analog antialiasing lowpass filter. S
in this example, you can use an analog antialiasing filter to remo
any frequencies over 50 Hz. After the signal is filtered, you are 
assured that whenever you see a 10 Hz signal with a 100 Hz sam
frequency, it is 10 Hz and not 90 Hz.

8. When you are done, stop the VI by clicking on the STOP button
Close the VI. Do not save any changes.

End of Exercise 2-2
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Exercise 2-3
Objective: To generate a sinusoidal waveform using both the Sine Wave VI and the Sine Pattern 

VI and to understand the differences.
1. Build the VI front panel and block diagram shown below.

Front Panel
LabVIEW Signal Processing Course Manual 2-10 © National Instruments Corporation
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Block Diagram

Sine Pattern VI  (Analysis » Signal Generation palette).

Sine Wave VI  (Analysis » Signal Generation palette).

2. Set the controls to the following values:

cycles or freq: 2.00

sampling freq: 100

phase in: 0.00

reset phase: OFF

Run the VI several times.

Observe that the Sine Wave plot changes each time you run the VI
Because reset phase is set to OFF, the phase of the sine wave chan
with each call to the VI, being equal to the value of phase out during 
the previous call. However, the Sine Pattern plot always remains
same, showing 2 cycles of the sinusoidal waveform. The initial ph
of the Sine Pattern plot is equal to the value set in the phase in 
control.

Note:  “Phase in” and “phase out” are specified in degrees.

3. Change phase in to 90 and run the VI several times. Just as befor
the Sine Wave plot changes each time you run the VI. However,
Sine Pattern plot does not change, but the initial phase of the 
sinusoidal pattern is 90 degrees—the same as that specified in 
phase in control.

4. With phase in still at 90, set reset phase to ON and run the VI several
times. The sinusoidal waveforms shown in both the Sine Wave a
© National Instruments Corporation 2-11 LabVIEW Signal Processing Course Manual
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Sine Pattern plots start at 90 degrees, but do not change with 
successive calls to the VI.

5. Keeping reset phase as ON, run the VI several times for each of th
following values of phase in: 45, 180, 270, and 360. Note the initia
phase of the generated waveform each time that the VI is run.

6. When you have finished, save the VI as Wave and Pattern.vi in the 
library Lvspcex.llb .

End of Exercise 2-3
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Exercise 2-4 (Optional)
Objective: To build a simple function generator.

In this exercise, you will build a very simple function generator than c
generate the following waveforms:

• Sine Wave

• Square Wave

• Triangle Wave

• Sawtooth Wave

1. Build the VI front panel and block diagram shown below.

Front Panel

The Signal Source control selects the type of waveform that you 
want to generate.

The square duty cycle control is used only for setting the duty cycl
of the square wave.

The samples control determines the number of samples in the plo

Note that these are all wave VIs, and therefore they require the 
frequency input to be the normalized frequency. So, you divide 
frequency by the sampling rate and the result is the normalized 
frequency wired to the f input of the VIs.
© National Instruments Corporation 2-13 LabVIEW Signal Processing Course Manual
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Block Diagram

 Sine Wave VI (Analysis » Signal Generation subpalette) 
generates a sine wave of normalized frequency f. 

 Triangle Wave VI  (Analysis » Signal Generation subpalette) 
generates a triangular wave of normalized frequency f.

 Square Wave VI  (Analysis » Signal Generation subpalette) 
generates a square wave of normalized frequency f with 
specified duty cycle.

 Sawtooth Wave VI  (Analysis » Signal Generation subpalette) 
generates a sawtooth wave of normalized frequency f.

2. Select a sampling rate of 1000 Hz, amplitude = 1, samples = 100, 
frequency = 10, reset phase = ON, and signal source = sine wave. 
Note that because sampling rate = 1000 and frequency = 10 Hz, 
every 100 samples corresponds to one cycle.

3. Run the VI and observe the resulting plot.
LabVIEW Signal Processing Course Manual 2-14 © National Instruments Corporation



Lesson 2 Signal Generation
4. Change samples to 200, 300, and 400. How many cycles of the 
waveform do you see? Explain why.

5. With samples set to 100, change reset phase to OFF. Do you notice 
any difference in the plot?

6. Change frequency to 10.01 Hz. What happens? Why?

7. Change reset phase to ON. Now what happens? Explain why.

8. Repeat steps 4 – 7 for different waveforms selected in the Signal 
Source control.

9. When you finish, save the VI as Function Generator.vi in the 
Lvspcex.llb  library.

End of Exercise 2-4
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Summary
In this lesson, you learned:

• About the normalized frequency (f) that has units of cycles/sample

• How to generate a sine wave of a particular frequency.

• That the wave VIs can keep track of the phase of the generated
waveform.

• How to build a simple function generator that can generate a sin
square, triangular, and sawtooth wave.

Review Questions
1. Name two practical applications in which you would want to 

generate signals.

2. What is the normalized signal frequency for the following?

a. sampling frequency = 100 Hz

number of samples = 200

signal frequency = 15 Hz

b. sampling frequency = 100 Hz

number of samples = 200

signal frequency = 15 cycles

3. What are two main differences between the Wave and Pattern V

4. Which of the following VIs require a normalized frequency input

a. Sine wave

b. Sine pattern

c. Chirp pattern

d. Square wave
LabVIEW Signal Processing Course Manual 2-16 © National Instruments Corporation
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Introduction 
In this lesson, you will learn the basics of transforming a signal from th
time domain into the frequency domain.

You Will Learn:

A. About the discrete Fourier transform (DFT) and the fast Fourier 
transform (FFT).

B. How to determine the frequency spacing between the samples of t
FFT (that is, the relationship between the sampling frequency fs, number 
of samples N, and the frequency spacing ∆f).

C. About the power spectrum and how it differs from both the DFT a
the FFT.

D. About how to interpret the information in the frequency domain f
the DFT/FFT and the power spectrum, for both even and odd N.
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A.The Discrete Fourier Transform (DFT) and the Fast Fourier 
Transform (FFT)

The samples of a signal obtained from a DAQ board constitute the time 
domain representation of the signal. This representation gives the 
amplitudes of the signal at the instants of time during which it had been 
sampled. However, in many cases you want to know the frequency con
of a signal rather than the amplitudes of the individual samples. The 
representation of a signal in terms of its individual frequency componen
known as the frequency domain representation of the signal. The frequenc
domain representation could give more insight about the signal and th
system from which it was generated. 

The algorithm used to transform samples of the data from the time 
domain into the frequency domain is known as the discrete Fourier 
transform or DFT. The DFT establishes the relationship between the
samples of a signal in the time domain and their representation in t
frequency domain. The DFT is widely used in the fields of spectral 
analysis, applied mechanics, acoustics, medical imaging, numerica
analysis, instrumentation, and telecommunications.

Suppose you have obtained N samples of a signal from a DAQ board. I
you apply the DFT to N samples of this time domain representation o
the signal, the result is also of length N samples, but the information it 
contains is of the frequency domain representation. The relationshi
between the N samples in the time domain and the N samples in the 
frequency domain is explained below.

DFT

time domain representation of x[n] frequency domain representation
LabVIEW Signal Processing Course Manual 3-2 © National Instruments Corporation
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If the signal is sampled at a sampling rate of fs Hz, then the time interval 
between the samples (that is, the sampling interval) is ∆t, where

The sample signals are denoted by x[i], 0 ð i ð N-1 (that is, you have a 
total of N samples). When the discrete Fourier transform, given by

 for k = 0, 1, 2, …, N-1    (1) 

is applied to these N samples, the resulting output (X[k], 0 ð k ð N-1) is the 
frequency domain representation of x[i]. Note that both the time domaix 
and the frequency domain X have a total of N samples. Analogous to the 
time spacing of ∆t between the samples of x in the time domain, you have a
frequency spacing of

between the components of X in the frequency domain.  ∆f is also known as 
the frequency resolution. To increase the frequency resolution (smaller ∆f) 
you must either increase the number of samples N (with fs constant) or 
decrease the sampling frequency fs (with N constant).

In the following example, you will go through the mathematics of 
equation (1) to calculate the DFT for a DC signal.

DFT Calculation Example
In the next section, you will see the exact frequencies to which the N 
samples of the DFT correspond. For the present discussion, assume t
X[0] corresponds to DC, or the average value, of the signal. To see the r
of calculating the DFT of a waveform with the use of equation (1), cons
a DC signal having a constant amplitude of +1 V. Four samples of this si
are taken, as shown in the figure below. 

t∆ 1
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Each of the samples has a value +1, giving the time sequence

x[0] = x[1] = x[2] = x[3] = 1

Using equation (1) to calculate the DFT of this sequence and making
of Euler’s identity,

exp (–jθ) = cos(θ ) - jsin(θ )

you get:

 = x[0] + x[1] + x[2] + x[3] = 4

Therefore, except for the DC component, X[0], all the other values are 
zero, which is as expected.   However, the calculated value of X[0] 
depends on the value of N (the number of samples). Because you had
N = 4, X[0] = 4. If N = 10, then you would have calculated X[0] = 10. 
This dependency of X[.] on N also occurs for the other frequency 
components. Thus, you usually divide the DFT output by N, so as to 
obtain the correct magnitude of the frequency component.

Magnitude and Phase Information
You have seen that N samples of the input signal result in N samples of the 
DFT. That is, the number of samples in both the time and frequency 
representations is the same. From equation (1), you see that regardles
whether the input signal x[i] is real or complex, X[k] is always complex 
(although the imaginary part may be zero). Thus, because the DFT is 
complex, it contains two pieces of information—the amplitude and the 
phase. It turns out that for real signals (x[i] real) such as those obtained from
the output of one channel of a DAQ board, the DFT is symmetric abou
index N/2 with the following properties:

| X[k] | = | X[N-k] |    and    phase ( X[k] ) = - phase( X[N-k] )

The terms used to describe this symmetry are that the magnitude of 
is even symmetric, and phase(X[k]) is odd symmetric. An even 
symmetric signal is one that is symmetric about the y-axis, whereas

X 0[ ] xie
j2π i 0 N⁄–

i 0=

N 1–

∑=

X 1[ ] x 0[ ] x 1[ ] π
2
--- 

 cos j
π
2
--- 

 sin– 
  x 2[ ] π( )cos j π( )sin–( )

x 3[ ] 3π
2

------ 
 cos j

3π
2

------ 
 sin– 

  1 j– 1– j+( ) 0==

+ + +=

X 2[ ] x 0[ ] x 1[ ] π( )cos j π( )sin–( ) x 2[ ] 2π( )cos j 2π( )sin–( )
x 3[ ] 3π( )cos j 3π( )sin–( ) 1 1– 1 1–+( ) 0==

+ + +=

X 3[ ] x 0[ ] x 1[ ] 3π
2

------ 
 cos j

3π
2

------ 
 sin– 

  x 2[ ] 3π( )cos j 3π( )sin–( )

x 3[ ] 9π
2

------ 
 cos j

9π
2

------ 
 sin– 

  1 j– 1– j–( ) 0==

+ + +=
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odd symmetric signal is symmetric about the origin. This is shown in 
following figures.

The net effect of this symmetry is that there is repetition of informati
contained in the N samples of the DFT. Because of this repetition of 
information, only half of the samples of the DFT actually need to be
computed or displayed, as the other half can be obtained from this 
repetition. 

Note: If the input signal is complex, the DFT will be nonsymmetric and you 
cannot use this trick. 

even symmetry odd symmetry

y

x x

y
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B.Frequency Spacing and Symmetry of the DFT/FFT
Because the sampling interval is ∆t seconds, and if the first (k = 0) data 
sample is assumed to be at 0 seconds, the kth (k > 0, k integer) data sample
is at k∆t seconds. Similarly, the frequency resolution being ∆f

( ) means that the kth sample of the DFT occurs at a frequency o

 k∆f Hz. (Actually, as you will soon see, this is valid for only up to abou
half the number of samples. The other half represent negative frequen
components.) Depending on whether the number of samples, N, is even or 
odd, you can have a different interpretation of the frequency correspon
to the kth sample of the DFT. 

Even Number of Samples
For example, suppose N is even and let . The following table

shows the frequency to which each element of the complex output sequ
X corresponds.

Array Element Corresponding Frequency

X[0] DC component

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

.

.

.

.

.

.

X[p-2] (p-2)∆f

X[p-1] (p-1)∆f

X[p] p∆f (Nyquist frequency)

X[p+1] - (p-1)∆f

X[p+2] - (p-2)∆f

.

.

.

.

.

.

X[N-3] - 3∆f

X[N-2] - 2∆f

X[N-1] - 1∆f

f∆
fs

N
----=

p
N
2
----=
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Note that the pth element, X[p], corresponds to the Nyquist frequency
The negative entries in the second column beyond the Nyquist freque
represent negative frequencies.

For example, if N = 8, p = N/2 = 4, then

X[0] DC

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

X[4] 4∆f (Nyquist freq)

X[5] -3∆f

X[6] -2∆f

X[7] -∆f

Here, X[1] and X[7] will have the same magnitude, X[2] and X[6] wi
have the same magnitude, and X[3] and X[5] will have the same 
magnitude. The difference is that whereas X[1], X[2], and X[3] 
correspond to positive frequency components, X[5], X[6], and X[7] 
correspond to negative frequency components. Note that X[4] is at 
Nyquist frequency.

The following illustration represents this complex sequence for N = 8. 

Such a representation, where you see both the positive and negativ
frequencies, is known as the two-sided transform.

Nyquist component

positive negative
frequencies frequenciesDC 
© National Instruments Corporation 3-7 LabVIEW Signal Processing Course Manual
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Odd Number of Samples
Now suppose that N is odd. Let . The following table shows

the frequency to which each element of the complex output sequenceX 
corresponds.

Note that when N is odd, N/2 is not an integer, and thus there is no 
component at the Nyquist frequency. 

For example, if N = 7, p = (N-1)/2 = (7-1)/2 = 3, and you have

X[0] DC

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

X[4] -3∆f

X[5] -2∆f

X[6] -∆f

Array Element Corresponding Frequency

X[0] DC component

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

.

.

.

.

.

.

X[p-1] (p-1)∆f

X[p] p∆f

X[p+1] -p∆f

X[p+2] - (p-1)∆f

.

.

.

.

.

.

X[N-3] - 3∆f

X[N-2] - 2∆f

X[N-1] - ∆f

p
N 1–

2
-------------=
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Now X[1] and X[6] have the same magnitude, X[2] and X[5] have th
same magnitude, and X[3] and X[4] have the same magnitude. Howe
whereas X[1], X[2], and X[3] correspond to positive frequencies, X[4
X[5], and X[6] correspond to negative frequencies. Because N is odd, 
there is no component at the Nyquist frequency.

The following illustration represents the preceding table for N = 7. 

This is also a two-sided transform, because you have both the posi
and negative frequencies.

Fast Fourier Transforms
Direct implementation of the DFT (equation (1) on page 3-3) on N data 
samples requires approximately N2 complex operations and is a 
time-consuming process. However, when the size of the sequence is a p
of 2,

N = 2m   for m = 1, 2, 3,…

you can implement the computation of the DFT with approximately 
N log

2
(N) operations. This makes the calculation of the DFT much 

faster, and DSP literature refers to these algorithms as fast Fourier
transforms (FFTs). The FFT is nothing but a fast algorithm for 
calculating the DFT when the number of samples (N) is a power of 2.

The advantages of the FFT include speed and memory efficiency, 
because the VI performs the transform in place. The size of the inp
sequence, however, must be a power of 2. The DFT can efficiently 
process any size sequence, but the DFT is slower than the FFT and
more memory, because it must store intermediate results during 
processing.

positive negative
frequencies frequencies

DC 
© National Instruments Corporation 3-9 LabVIEW Signal Processing Course Manual
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Zero Padding
A technique employed to make the input sequence size equal to a pow
of 2 is to add zeros to the end of the sequence so that the total numbe
samples is equal to the next higher power of 2. For example, if you ha
10 samples of a signal, you can add six zeros to make the total numbe
samples equal to 16 (= 24—a power of 2). This is shown below:

In addition to making the total number of samples a power of two so 
faster computation is made possible by using the FFT, zero padding
helps in increasing the frequency resolution (recall that  ∆f = fs/N) by 
increasing the number of samples, N. 

FFT VIs in the Analysis Library
The analysis library contains two VIs that compute the FFT of a signal
They are the Real FFT and Complex FFT.

The difference between the two VIs is that the Real FFT computes the 
FFT of a real-valued signal, whereas the Complex FFT computes the 
FFT of a complex-valued signal. However, keep in mind that the outp
of both VIs are complex.

Most real-world signals are real valued, and hence you can use the Real 
FFT for most applications. Of course, you could also use the Complex 
FFT by setting the imaginary part of the signal to zero. An example
an application where you could use the Complex FFT is when the signal 
consists of both a real and imaginary component. Such a type of si
occurs frequently in the field of telecommunications, where you 
modulate a waveform by a complex exponential. The process of 
LabVIEW Signal Processing Course Manual 3-10 © National Instruments Corporation
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modulation by a complex exponential results in a complex signal, a
shown below:

The block diagram below shows a simplified version of how you can
generate 10 cycles of a complex signal:

x(t) y(t) = x(t)cos(ωt) - jx(t) sin(ωt)x

e-jωt

To next stage
© National Instruments Corporation 3-11 LabVIEW Signal Processing Course Manual
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Exercise 3-1
Objective: To display the two-sided and the one-sided Fourier transform of a signal using the 

Real FFT VI, and to observe the effect of aliasing in the frequency spectrum.

1. Build the VI front panel and block diagram as shown below.

Front Panel
LabVIEW Signal Processing Course Manual 3-12 © National Instruments Corporation
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Block Diagram

Array Size function (Functions » Array subpalette) scales
the output of the FFT by the number of samples so as to
obtain the correct amplitude of the frequency componen

Sine Wave function (Functions » Analysis » Signal 
Generation subpalette) generates a time domain sinusoid
waveform.

Real FFT function (Functions » Analysis » Digital Signal 
Processing subpalette) computes the FFT of the input dat
samples. The output of the Real FFT function is divided by 
the FFT size (number of data points) to obtain the correc
sample values.

Complex to Polar function (Functions » Numeric » 
Complex subpalette) separates the complex output of th
FFT into its magnitude and phase parts. The phase 
information is in units of radians. Here you are displayin
only the magnitude of the FFT. 

The frequency spacing, ∆f, is given by dividing the sampling freq 
by the # of samples.

2. Select frequency (Hz) = 10, sampling freq = 100, and 
# of samples = 100. Run the VI. 

Notice the plots of the time waveform and the frequency spectru
Because sampling freq = # of samples = 100, you are in effect 
sampling for 1 second. Thus, the number of cycles of the sine w
you see in the time waveform is equal to the frequency(Hz) you 
select. In this case, you will see 10 cycles. (If you change the 
frequency (Hz) to 5, you will see five cycles.)
© National Instruments Corporation 3-13 LabVIEW Signal Processing Course Manual
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Two-Sided FFT
3. Examine the frequency spectrum (the Fourier transform). You w

notice two peaks, one at 10 Hz and the other at 90 Hz. The pea
90 Hz is actually the negative frequency of 10 Hz. The plot you s
is known as the 2-sided FFT because it shows both the positive an
the negative frequencies.

4. Run the VI with frequency (Hz) = 10 and then with 
frequency (Hz) = 20. For each case, note the shift in both peaks
the spectrum.

Note: Also observe the time domain plot for frequency (Hz) = 10 and 20. Whic
one gives a better representation of the sine wave? Why?

5. Because fs = 100 Hz, you can accurately sample only signals ha
a frequency < 50 Hz (Nyquist frequency = fs/2). Change frequency 
(Hz) to 48 Hz. You should see the peaks at +- 48 Hz on the spect
plot.

6. Now change frequency (Hz) to 52 Hz. Is there any difference 
between the result of step 5 and what you see on the plots now?
Because 52 > Nyquist, the frequency of 52 is aliased to 
|100 - 52| = 48 Hz.

7. Change frequency (Hz) to 30 Hz and 70 Hz and run the VI. Is ther
any difference between the two cases? Explain why.

8. Save this VI as FFT_2sided.vi in the library Lvspcex.llb .

One-Sided FFT
9. Modify the block diagram of the VI as shown in the following 

diagram. You have seen that the FFT had repetition of informati
because it contained information about both the positive and the
negative frequencies. This modification now shows only half the
FFT points (only the positive frequency components). This 
representation is known as the 1-sided FFT. The 1-sided FFT shows
only the positive frequency components. Note that you need to 
multiply the positive frequency components by two to obtain the
correct amplitude. The DC component, however, is left untouche
LabVIEW Signal Processing Course Manual 3-14 © National Instruments Corporation
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 the 

Equal To O? function (Functions » Comparison subpalette) tests 
to see if the array index is equal zero. If so, it corresponds to
D.C. component and should not be multiplied by two. 

10. Run the VI with the following values: frequency (Hz) = 30, 
sampling freq = 100, # of samples = 100. 

11. Change the value of frequency (Hz) to 70 and run the VI. Do you 
notice any difference between this and the result of step 9?

12. Save the VI as FFT_1sided.vi in the library Lvspcex.llb .

End of Exercise 3-1
© National Instruments Corporation 3-15 LabVIEW Signal Processing Course Manual
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C.The Power Spectrum
You have seen that the DFT (or FFT) of a real signal is a complex num
having a real and an imaginary part. The power in each frequency 
component represented by the DFT/FFT can be obtained by squaring 
magnitude of that frequency component. Thus, the power in the kth 
frequency component (the kth element of the DFT/FFT) is given by |X[k]|2. 
The plot showing the power in each of the frequency components is kn
as the power spectrum.   Because the DFT/FFT of a real signal is 
symmetric, the power at a positive frequency of k∆f is the same as the powe
at the corresponding negative frequency of -k∆f (DC and Nyquist 
components not included). The total power in the DC and Nyquist 

components are  and , respectively.

Loss of Phase Information
Because the power is obtained by squaring the magnitude of the DFT/
the power spectrum is always real and all the phase information is lost
you want phase information, you must use the DFT/FFT, which gives y
complex output.

You can use the power spectrum in applications where phase informati
not necessary (for example, to calculate the harmonic power in a signa
You can apply a sinusoidal input to a nonlinear system and see the pow
the harmonics at the system output. 

Frequency Spacing Between Samples
You can use the Power Spectrum VI in the Analysis » Digital Signal 
Processing subpalette to calculate the power spectrum of the time dom
data samples. Just like the DFT/FFT, the number of samples from the
Power Spectrum VI output is the same as the number of data samples
applied at the input. Also, the frequency spacing between the output sam
is ∆f = fs/N.

X 0[ ] 2 X
N
2
----

2

LabVIEW Signal Processing Course Manual 3-16 © National Instruments Corporation
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In the following table, the power spectrum of a signal x[n] is represen

by Sxx. If N is even, let . The following table shows the forma

of the output sequence Sxx corresponding to the power spectrum.

The following illustration represents the information in the precedin
table for a sine wave with amplitude = 2 Vpeak (Vpk), and N = 8. 

The output units of the Power Spectrum VI are in Volts rms squared 
(V2

rms). So, if the peak amplitude (Vpk) of the input signal is 2 Vpk, its

rms value is Vrms = , so V2
rms = 2. This value is divided

Array Element Interpretation

Sxx[0] Power in DC component

Sxx[1] = Sxx[N-1] Power at frequency ∆f

Sxx[2] = Sxx[N-2] Power at frequency 2∆f

Sxx[3] = Sxx[N-3] Power at frequency 3∆f

.

.

.

.

.

.

Sxx[p-2]= Sxx[N-(p-2)] Power at frequency (p-2)∆f

Sxx[p-1] = Sxx[N-(p-1)] Power at frequency (p-1)∆f

Sxx[p] Power at Nyquist frequency

p
N
2
----=

Nyquist component

positive negative
frequencies frequenciesDC 

2

2
------- 2=
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equally between the positive and negative frequency components, 
resulting in the plot shown above.

If N is odd, let . The following table shows the format of

the output sequence Sxx corresponding to the power spectrum.

The following illustration represents the information in the precedin
table for N = 7. 

Array Element Interpretation

Sxx[0] Power in DC component

Sxx[1] = Sxx[N-1] Power at frequency ∆f

Sxx[2]= Sxx[N-2] Power at frequency 2∆f

Sxx[3] = Sxx[N-3] Power at frequency 3∆f

.

.

.

.

.

.

Sxx[p-2] = Sxx[N-(p-2)] Power at frequency (p-2)∆f

Sxx[p-1] = Sxx[N-(p-1)] Power at frequency (p-1)∆f

Sxx[p] = Sxx[p] Power at frequency p∆f

p
N 1–

2
-------------=

positive negative
frequencies frequenciesDC 
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Exercise 3-2
Objective: To observe the difference between the FFT and the power spectrum representations.

1. Open the FFT_1sided VI (from the library Lvspcex.llb ) that 
you built in the previous exercise. Modify the block diagram and
front panel as shown below.

Front Panel

Block Diagram

Sine Wave function (Functions » Analysis » Signal 
Generation palette) generates a time domain sinusoidal 
waveform.
© National Instruments Corporation 3-19 LabVIEW Signal Processing Course Manual
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Real FFT function (Functions » Analysis » Digital Signal 
Processing subpalette) computes the FFT of the input da
samples.

Array Subset (Functions » Array subpalette) returns a 
portion of the array. Here you are selecting half the arra

Complex to Polar function (Functions » Numeric » 
Complex subpalette) separates the complex output of th
FFT into its magnitude and phase parts. The phase 
information is in radians. Here, you are displaying only th
magnitude of the FFT. 

The power spectrum is obtained by squaring the magnitude of the F
The division by  (1.414) makes the conversion from Vpk to Vrms.

Note: You could also have wired the output of the Sine Wave VI directly to th
input of the Power Spectrum VI (Analysis » Digital Signal Processing 
subpalette). The output of the Power Spectrum VI would directly be the
power spectrum of the signal. However, in that case, the phase informati
would be lost.

2. Enter the following values in the controls: amplitude = 1.414, 
frequency = 20 Hz, sampling freq = 100, and # of samples = 100, 
and run the VI. Do you notice any difference in the FFT and pow
spectrum representations?

3. Change the amplitude to 1.00 and run the VI. What difference do 
notice in the FFT and power spectrum representations?

4. Save the VI as FFT and Power Spectrum.vi in the library 
Lvspcex.llb .

End of Exercise 3-2

2

LabVIEW Signal Processing Course Manual 3-20 © National Instruments Corporation
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A) 
Summary 

• The time domain representation (sample values) of a signal can
converted into the frequency domain representation using the 
discrete Fourier transform (DFT). 

• Fast calculation of the DFT is possible by using an algorithm kno
as the fast Fourier transform (FFT). You can use this algorithm w
the number of signal samples is a power of two. 

• The output of the conventional DFT/FFT is two-sided because it
contains information about both the positive and the negative 
frequencies. This output can be converted into a one-sided DFT/
by using only half the number of output points. 

• The frequency spacing between the samples of the DFT/FFT is 
∆f = fs/N. 

• The power spectrum can be calculated from the DFT/FFT by 
squaring the magnitude of the individual frequency components. 
Power Spectrum VI in the advanced analysis library does this 
automatically for you. The Power Spectrum VI units of the output 
are V2

rms. However, the power spectrum does not provide any ph
information.

• The DFT, FFT, and power spectrum are useful for measuring th
frequency content of stationary or transient signals. The FFT 
provides the average frequency content of the signal over the en
time that the signal was acquired. For this reason, you use the F
mostly for stationary signal analysis (when the signal is not 
significantly changing in frequency content over the time that the
signal is acquired), or when you want only the average energy at e
frequency line. 

• For measuring frequency information that changes during the 
acquisition, you should use the joint time-frequency analysis (JTF
toolkit or the wavelet and filter banks designer (WFBD) toolkit. 
These toolkits are covered in later lessons.
© National Instruments Corporation 3-21 LabVIEW Signal Processing Course Manual
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Review Questions
1. Which of the following provides you with both the magnitude an

phase information?

a. FFT

b. Power spectrum

c. DFT

d. Time domain waveform

2. Which of the following are true?

a. The magnitude spectrum is always even symmetric.

b. The DFT is a fast algorithm for computing the FFT.

c. The frequency spacing is given by

where fs is the sampling frequency.

d. An even number of samples always results in a two-sided 
transform.

3. If you have 1024 samples, how many times faster is the FFT as
compared to the DFT in calculating the Fourier transform?

∆f
fs

number of samples
---------------------------------------------=
LabVIEW Signal Processing Course Manual 3-22 © National Instruments Corporation
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Introduction
In this lesson, you will learn about windows and how they affect the spe
characteristics of a signal.

You Will Learn:

A. About spectral leakage and smoothing windows.

B. About the difference (both time and frequency domains) betwee
windowed and a nonwindowed signal.

C. About the differences between the various types of windows in 
Analysis library and their applications.

D. How to separate two sine waves of large amplitude difference b
with frequencies very close to each other.
© National Instruments Corporation 4-1 LabVIEW Signal Processing Course Manual
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A.About Spectral Leakage and Smoothing Windows
In practical applications, you can obtain only a finite number of sample
the signal. When you use the DFT/FFT to find the frequency content o
signal, it is inherently assumed that the data that you have is a single p
of a periodically repeating waveform. This is shown below in Figure 4-
The first period shown is the one sampled. The waveform correspondin
this period is then repeated in time to produce the periodic waveform.

Figure 4-1.  Periodic Waveform Created from Sampled Period

As seen in the previous figure, because of the assumption of period
of the waveform, discontinuities between successive periods will occ
This happens when you sample a noninteger number of cycles. The
“artificial” discontinuities turn up as very high frequencies in the 
spectrum of the signal, frequencies that were not present in the orig
signal. These frequencies could be much higher than the Nyquist 
frequency, and as you have seen before, will be aliased somewher
between 0 and fs/2. The spectrum you get by using the DFT/FFT 
therefore will not be the actual spectrum of the original signal, but w
be a smeared version. It appears as if the energy at one frequency
“leaked out” into all the other frequencies. This phenomenon is kno
as spectral leakage.

Figure 4-2 shows a sine wave and its corresponding Fourier transfo
The sampled time domain waveform is shown in Graph 1. Because the 
Fourier transform assumes periodicity, you repeat this waveform in
time, and the periodic time waveform of the sine wave of Graph 1 is
shown in Graph 2. The corresponding spectral representation is sh
in Graph 3. Because the time record in Graph 2 is periodic, with no
discontinuities, its spectrum is a single line showing the frequency of
sine wave. The reason that the waveform in Graph 2 does not have
discontinuities is because you have sampled an integer number of cy
(in this case, 1) of the time waveform.

time

One period discontinuity
LabVIEW Signal Processing Course Manual 4-2 © National Instruments Corporation
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Figure 4-2.  Sine Wave and Corresponding Fourier Transform

In Figure 4-3, you see the spectral representation when you sample
noninteger number of cycles of the time waveform (namely 1.25). 
Graph1 now consists of 1.25 cycles of the sine wave. When you rep
this periodically, the resulting waveform, as shown in Graph 2, cons
of discontinuities. The corresponding spectrum is shown in Graph 3
Notice how the energy is now spread over a wide range of frequenc
This smearing of the energy is spectral leakage. The energy has leaked
out of one of the FFT lines and smeared itself into all the other line

Figure 4-3.  Spectral Representation When Sampling a Nonintegral Number of Samples
© National Instruments Corporation 4-3 LabVIEW Signal Processing Course Manual
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Leakage exists because of the finite time record of the input signal.
overcome leakage, one solution is to take an infinite time record, fr
-× to +×. Then the FFT would calculate one single line at the correc
frequency. Waiting for infinite time is, however, not possible in practic
So, because you are limited to having a finite time record, another 
technique, known as windowing, is used to reduce the spectral leakag

The amount of spectral leakage depends on the amplitude of the 
discontinuity. The larger the discontinuity, the more the leakage, an
vice versa. You can use windowing to reduce the amplitude of the 
discontinuities at the boundaries of each period. It consists of 
multiplying the time record by a finite length window whose amplitud
varies smoothly and gradually towards zero at the edges. This is sh
in Figure 4-4, where the original time signal is windowed using a 
Hamming window. Notice that the time waveform of the windowed 
signal gradually tapers to zero at the ends. Therefore, when perform
Fourier or spectral analysis on finite-length data, you can use windo
to minimize the transition edges of your sampled waveform. A 
smoothing window function applied to the data before it is transform
into the frequency domain minimizes spectral leakage. 
LabVIEW Signal Processing Course Manual 4-4 © National Instruments Corporation
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Note that if the time record contains an integral number of cycles, a
shown in Figure 4-2, the assumption of periodicity does not result in 
discontinuities, and thus there is no spectral leakage. The problem a
only when you have a nonintegral number of cycles.

Figure 4-4.  Time Signal Windowed Using a Hamming Window
© National Instruments Corporation 4-5 LabVIEW Signal Processing Course Manual
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B.Windowing Applications

There are several reasons to use windowing. Some of these are:

• To define the duration of the observation.

• Reduction of spectral leakage.

• Separation of a small amplitude signal from a larger amplitude sig
with frequencies very close to each other.
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C.Characteristics of Different Types of Window Functions
Applying a window to (windowing) a signal in the time domain is 
equivalent to multiplying the signal by the window function. Because 
multiplication in the time domain is equivalent to convolution in the 
frequency domain, the spectrum of the windowed signal is a convolutio
the spectrum of the original signal with the spectrum of the window. Th
windowing changes the shape of the signal in the time domain, as wel
affecting the spectrum that you see. 

Many different types of windows are available in the LabVIEW/ 
BridgeVIEW analysis library. Depending on your application, one m
be more useful than the others. Some of these windows are:

1. Rectangular (None): The rectangular window has a value of one ov
its time interval. Mathematically, it can be written as:

w[n] = 1.0     for n = 0, 1, 2........N-1

where N is the length of the window. Applying a rectangular windo
is equivalent to not using any window. This is because the 
rectangular function just truncates the signal to within a finite tim
interval. The rectangular window has the highest amount of spec
leakage. The rectangular window for N = 32 is shown below:

The rectangular window is useful for analyzing transients that ha
a duration shorter than that of the window. It is also used in order 
tracking, where the sampling frequency is adjusted depending on
speed of the shaft of a machine. In this application, it detects the
main mode of vibration of the machine and its harmonics. 

2. Exponential: The shape of this window is that of a decaying 
exponential. It can be mathematically expressed as:

 for n = 0, 1, 2.......N - 1

where f is the final value. The initial value of the window is one, an
it gradually decays towards zero. The final value of the exponen

w[n]
n

N 1–
------------- f( )ln× 

 =
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can be adjusted to between 0 and 1. The exponential window for 
N = 32, with the final value specified as 0.1, is shown below:

This window is useful in analyzing transients (signals that exist o
for a short time duration) whose duration is longer than the length
the window. This window can be applied to signals that decay 
exponentially, such as the response of structures with light damp
that are excited by an impact (for example, a hammer).

3. Hanning: This window has a shape similar to that of half a cycle 
a cosine wave. Its defining equation is

w[n] = 0.5 - 0.5cos(2πn/N)    for n = 0, 1, 2, .....N-1

A Hanning window with N = 32 is shown below:

The Hanning window is useful for analyzing transients longer th
the time duration of the window, and also for general-purpose 
applications. 

4. Hamming: This window is a modified version of the Hanning 
window. Its shape is also similar to that of a cosine wave. It can
defined as

w[n] = 0.54 - 0.46cos(2πn/N)    for n = 0, 1, 2, .....N-1

final 
value
LabVIEW Signal Processing Course Manual 4-8 © National Instruments Corporation
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A Hamming window with N = 32 is shown below:

You see that the Hanning and Hamming windows are somewha
similar. However, note that in the time domain, the Hamming 
window does not get as close to zero near the edges as does th
Hanning window. 

5. Kaiser-Bessel: This window is a “flexible” window whose shape the
user can modify by adjusting the parameter beta. Thus, depending on
your application, you can change the shape of the window to con
the amount of spectral leakage. The Kaiser-Bessel window for 
different values of beta are shown below:
© National Instruments Corporation 4-9 LabVIEW Signal Processing Course Manual
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Note that for small values of beta, the shape is close to that of a
rectangular window. Actually, for beta = 0 .0, you do get a 
rectangular window. As you increase beta, the window tapers of
more to the sides.

This window is good for detecting two signals of almost the sam
frequency, but significantly different amplitudes. 

6. Triangle: The shape of this window is that of a triangle. It is given 

w[n] = 1 - | (2n-N) / N | for n = 0, 1, 2, ..., n–1

A triangle window for N = 32 is shown below:
LabVIEW Signal Processing Course Manual 4-10 © National Instruments Corporation
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What Type of Window Do I Use?
Now that you have seen several of the many different types of windows
are available, you may ask, “What type of window should I use?” The 
answer depends on the type of signal you have and what you are lookin
Choosing the correct window requires some prior knowledge of the sig
that you are analyzing. In summary, the following table shows the differ
types of signals and the appropriate windows that you can use with the

In many cases, you may not have sufficient prior knowledge of the 
signal, so you need to experiment with different windows to find the
best one.

Type of signal Window

Transients whose duration is shorter than the length of the windowRectangular

Transients whose duration is longer than the length of the windowExponential, Hanning

General-purpose applications Hanning

Order tracking Rectangular

System analysis (frequency response measurements) Hanning (for random excitation), 
rectangular (for pseudorandom 
excitation)

Separation of two tones with frequencies very close to each other, but 
with widely differing amplitudes

Kaiser-Bessel

Separation of two tones with frequencies very close to each other, but 
with almost equal amplitudes

Rectangular
© National Instruments Corporation 4-11 LabVIEW Signal Processing Course Manual
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The following table summarizes the different windows.

Window Equation Shape Applications

Rectangular 
(None)

Detecting transients 
whose duration is 
shorter than the length 
of the window; order 
tracking; separating two 
tones with frequencies 
and amplitudes very 
close to each other; 
system response

Exponential

where f = final value

Transients whose 
duration is longer than 
the length of the 
window

Hanning General-purpose 
applications; system 
analysis; transients 
whose duration is longer 
than the length of the 
window

Hamming

Kaiser-Bessel Separation of two tones 
with frequencies very 
close to each other, but 
with almost equal 
amplitudes

Triangle

w n[ ] 1.0=

w n[ ] n
N 1–
------------- f( )ln=

w n[ ] 0.5 0.5
2πn
N

---------- 
 cos–=

w n[ ] 0.54 0.46
2πn
N

---------- 
 cos–=

w n[ ]
I0 β 1 a2–( )

I0 β( )
-------------------------------=

w n[ ] 1 2n N–
N

----------------–=
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Exercise 4-1
Objective: To see the effect of windowing on spectral leakage.

1. Open the Spectral Leakage VI  from the library Lvspcex.llb . 
The VI is running when it opens. Using this VI, you can see the eff
of windowing on spectral leakage.

Note: The Spectral Leakage VI searches for the Nyquist Shift VI. The Nyquis
Shift VI is in LabVIEW » Examples » Analysis » dspxmpl.llb. 

You can see three plots on the front panel:

Graph 1 shows the time record of the signal that has been samp

Graph 2 shows the repeated time record (assuming periodicity).

Graph 3 shows the frequency spectrum (in dB). The white line 
shows the spectrum without windowing and the yellow line show
the spectrum by windowing using a Hanning window.

You can use the cycles dial to control the number of time domain 
waveform cycles that have been sampled. The display below the
Cycles dial tells you the exact number of cycles (to two decimal 
places). You can also type a specific value in this display.

2. First, you will see the effect of windowing when you sample an 
integral number of cycles. 

Set the Cycles dial to 1.0. (or type 1.0 in the display beneath it.)
© National Instruments Corporation 4-13 LabVIEW Signal Processing Course Manual
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As you can see in Graph 1, you have exactly one cycle of the time
waveform. Graph 2 shows the repeated time record. Notice the 
absence of any discontinuities, and the peak corresponding to th
sine wave in the frequency domain (Graph 3). You see two peaks 
because you have the two-sided spectrum.

Notice the spreading around the frequency components. This 
spreading is the effect of using a window function. In this case, y
used the Hanning window. Different windows have different 
amounts of spreading.

3. Now see what happens when you sample a nonintegral number
cycles. Set the Cycles dial to 1.3 and observe the difference in the
plots in Graph 3. Experiment by changing the cycles dial and 
observing the waveforms in graphs 2 and 3. 

In the white plot corresponding to No Window, the energy in the 
frequency of interest spreads out across the spectrum. Hence th
frequency of interest is sometimes not clearly distinguishable. In 
yellow plot corresponding to Hanning Window, the spectral leakage
across the spectrum is reduced and the energy is more concent
around the frequency of interest. 

4. Stop the VI by pressing the STOP button.

5. Close the VI. Do not save any changes.

End of Exercise 4-1
LabVIEW Signal Processing Course Manual 4-14 © National Instruments Corporation
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Exercise 4-2 (Optional)
Objective: To see the difference (both time and frequency domains) between a windowed and 

nonwindowed signal.
1. Build the VI front panel and block diagram as shown below. 

Front Panel
© National Instruments Corporation 4-15 LabVIEW Signal Processing Course Manual
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Block Diagram

The Sine Pattern VI (Functions » Analysis » Signal 
Generation subpalette) generates a sine wave with the 
number of cycles specified in the cycles control. 

The time waveform of the sine wave is windowed using t
Hamming Window VI (Functions » Analysis » Windows 
subpalette), and both the windowed and nonwindowed tim
waveforms are displayed on the left two plots on the fron
panel.

The Amplitude and Phase Spectrum VI (Functions » 
Analysis » Measurement subpalette) obtains the amplitude
spectrum of the windowed and nonwindowed time 
waveforms. These waveforms are displayed on the two pl
on the right side of the front panel.

2. Set cycles to 10 (an integral number) and run the VI. Note that th
spectrum of the windowed signal is broader (wider) than the 
spectrum of the nonwindowed signal. But both the spectra are 
concentrated near 10 on the x-axis.

3. Change cycles to 10.25 (a nonintegral number) and run the VI. No
that the spectrum of the nonwindowed signal is now more spread
than it was before. This is because now you have a noninteger 
number of cycles, and when you repeat the waveform to make i
periodic, you get discontinuities. The spectrum of the windowed
signal is still concentrated, but that of the nonwindowed signal h
now smeared all over the frequency domain. (This is spectral 
leakage.)
LabVIEW Signal Processing Course Manual 4-16 © National Instruments Corporation
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4. Change cycles to 10.5 and observe the frequency domain plots. 
Spectral leakage of the original signal is clearly apparent.

5. When you finish, save the VI as Windowed and Unwindowed 
Signal.vi in the library Lvspcex.llb .

6. Close the VI.

End of Exercise 4-2
© National Instruments Corporation 4-17 LabVIEW Signal Processing Course Manual
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Exercise 4-3
Objective: To learn about the different windows in the Analysis library.

1. Open the Window Plots VI from the library Lvxpcex.llb . It is 
running when it opens.

The topmost plot shows you the shapes (in the time domain) of 
different types of windows in the Analysis library. They are all 
shown on the same plot for comparison purposes.

The bottom three plots show the effect of multiplying a time doma
signal (a sine wave) by the window. The left plot shows the origin
time signal, the middle plot shows the shape of the window bein
applied, and the right plot shows the resulting signal.

In the Window Selector control, you can select one of the six 
different types of windows.

The final value (exponential) control specifies the value to which 
the exponential window should decay. This value is normally 
between 0 and 1.

The value in the beta (Kaiser-Bessel) control can be adjusted to 
change the shape of the Kaiser-Bessel window. The higher the v
of beta, the lower the spectral leakage, and vice versa.

2. Select different windows in the Window Selector control and 
observe their shapes.
LabVIEW Signal Processing Course Manual 4-18 © National Instruments Corporation
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In particular, select the Rectangular (None) window. What 
difference do you see in the first and the third plots shown on th
bottom? Explain.

Select the Exponential window. Observe the shape when you chan
the value in the final value (exponential) control. What happens as
the final value increases? Decreases? Is equal to 1.0?

Select the Kaiser-Bessel window. Observe the shapes when you 
change the value of beta between -10 and +10. What happens w
beta = 0.0?

3. When you finish, stop the VI by pressing the STOP button.

4. Close the VI. Do not save any changes.

End of Exercise 4-3
© National Instruments Corporation 4-19 LabVIEW Signal Processing Course Manual
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Exercise 4-4
Objective: To use windows to separate two sine waves of almost the same frequency, but 

widely differing amplitudes.

In this exercise, two sine waves of different amplitudes are summed
together and then transformed into the frequency domain. Sine wav
has a much smaller amplitude than sine wave 2. Without windowing
is not possible to distinguish between the two sine waves in the 
frequency domain. With an appropriate choice of a window, you can
clearly separate the peaks in the frequency domain corresponding t
two sine waves. The frequency domain plot shows the results so tha
can compare the effect of different window functions.

1. Open and run the Window Comparison VI  from the library 
Lvspcex.llb .

• The frequency of each sine wave is adjustable with either the
knob or digital controls.

• The amplitude of each sine wave is adjustable with the digita
controls.

• You can select a different window function from the window 1 
and window 2 controls.

2. Using the digital controls, set the amplitude of Sine Wave 1 as 0.0
and that of Sine Wave 2 as 1.000. With the knob controls, set th
LabVIEW Signal Processing Course Manual 4-20 © National Instruments Corporation
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frequency of Sine Wave 1 to near 70, and that of Sine Wave 2 to n
60. In effect, you are adjusting the frequency of Sine Wave 2 us
the knob control, so that the smaller amplitude is nearer the larg
amplitude in the frequency domain plot.

3. Notice in the graph that when the frequency of the smaller amplit
signal (Sine Wave 1) is closer to that of the larger amplitude sig
(Sine Wave 2), the peak corresponding to the smaller signal is n
detected. Applying a window function is the only way to detect th
smaller signal. The discontinuity is what causes the spectrum to
spread out. Signals at smaller amplitudes are lost in the sidelobe
the larger amplitude signal.

4. Compare different window functions by choosing another windo
from the window 1 and window 2 controls. Which one(s) can 
distinguish between the two frequency components?

5. When you are done, stop the VI by clicking on the STOP button
Close the VI. Do not save any changes.

End of Exercise 4-4
© National Instruments Corporation 4-21 LabVIEW Signal Processing Course Manual
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Summary

• The DFT/FFT assumes that the finite time waveform that you obt
is one period of a periodic signal that exists for all time. This 
assumption of periodicity could result in discontinuities in the 
periodic signal and gives rise to a phenomenon known as spect
leakage, whereby the energy at a particular frequency leaks 
throughout the spectrum.

• To reduce the spectral leakage, the finite time waveform is 
multiplied by a “window” function. 

• Windows can be used to separate two sine waves that have wid
different amplitudes, but are very close in frequency.

Review Questions
1. Why does spectral leakage occur?

2. Name four applications of using windows.

3. Which window(s) would you use for the following?

a. Separation of two tones with frequencies very close to each o

b. System analysis.

c. Detecting the modes of vibration of a machine.
LabVIEW Signal Processing Course Manual 4-22 © National Instruments Corporation
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Introduction
You will now learn about some of the VIs that are already available in 
analysis library to perform various signal processing tasks. These VIs 
collectively referred to as measurement VIs.

You Will Learn:

A. About the measurement VIs and how they can perform various sig
processing operations.

B. How to calculate the frequency (amplitude and phase) spectrum
time domain signal, with the appropriate units. 

C. About the coherent gain (CG) and equivalent noise bandwidth 
(ENBW) window constants.

D. How to determine the total harmonic distortion present in a sign
© National Instruments Corporation 5-1 LabVIEW Signal Processing Course Manual
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A.The Measurement VIs
The measurement VIs perform specific measurement tasks such as:

• Calculating the total harmonic distortion present in a signal.

• Determining the impulse response, or transfer function, of a sys

• Estimating pulse parameters such as the rise time, overshoot, a
so on.

• Computing the amplitude and phase spectrum of a signal.

• Calculating the AC and DC components of a signal.

In the past, these computations have traditionally been performed b
benchtop instruments. The measurement VIs make these measurem
possible in the G programming language on your desktop compute
They are built on top of the digital signal processing VIs and have t
following characteristics:

• The input time-domain signal is assumed to be real valued. 

• Outputs are in magnitude and phase, scaled, and in the appropr
units, ready for immediate graphing.

• The spectrums calculated are single-sided and range from DC t
Nyquist (sampling frequency/2).

• Wherever appropriate, corrections are automatically applied for 
windows being used. The windows are scaled so that each wind
gives the same peak spectrum amplitude result within its amplitu
accuracy constraints.

In general, you can directly connect the inputs of the measurement
to the output of data acquisition VIs. The outputs of the measureme
VIs can be connected to graphs for an appropriate visual display.

Several measurement VIs perform commonly used time 
domain-to-frequency domain transformations such as calculation of
amplitude and phase spectrum, the power spectrum, the network tra
function, and so on. Other measurement VIs interact with VIs that 
perform such functions as scaled time domain windowing and power
frequency estimation. 

DAQ VIs Measurement VIs Graphing and
Plotting VIs
LabVIEW Signal Processing Course Manual 5-2 © National Instruments Corporation
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B.Calculating the Frequency Spectrum of a Signal
In many applications, knowing the frequency content of a signal provi
insight into the system that generated the signal. The information thus
obtained can be used in the design of bridges, for calibration purposes
estimating the amount of noise and vibration generated by parts of 
machines, and so on. The next exercise demonstrates how to use th
Amplitude and Phase Spectrum VI to identify two frequency 
components.
© National Instruments Corporation 5-3 LabVIEW Signal Processing Course Manual
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Exercise 5-1
OBJECTIVE: To compute the frequency spectrum of a signal.

Front Panel

1. Open the Compute Frequency Spectrum VI found in the 
Lvspcex.llb  library. Two sine waves of frequencies 2 Hz and
10 Hz are superimposed. The 10 Hz sine wave has an amplitud
2 V, and the 2 Hz sine wave has an amplitude of 1 V. The sampling 
frequency is 100 Hz and 200 points of data are generated.

2. Switch to the block diagram. 
LabVIEW Signal Processing Course Manual 5-4 © National Instruments Corporation
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Block Diagram

3. Examine the block diagram.

The Amplitude and Phase Spectrum VI (Analysis » 
Measurement subpalette) calculates the amplitude spectru
and the phase spectrum of a time domain signal. The 
connections to this VI are shown below. 

The input time domain signal is applied at the Signal (V) control. The 
magnitude and phase of the input signal spectrum are available a
Amp Spectrum Mag (Vrms) and Amp Spectrum Phase (radians) 
outputs, respectively.

Note: The initial phase input to the Sine Wave VI is specified in degrees.

Note: If the units of the input time domain signal are in volts peak (Vp), the units 
of the magnitude of the amplitude spectrum is in volts rms (Vrms). The 
relationship between the units is Vrms = Vp/  = 0.707*Vp. 

4. Run the VI. 

The graph should display two peaks, one at 2 Hz and the other 
10 Hz. The amplitude of the 2 Hz sine wave is 0.717 V, and that
the 10 Hz waveform is 1.414 V, which are the rms values for sin
waveforms of amplitudes 1 and 2 V, respectively. (The RMS of a
sine waveform = 0.707*peak amplitude.)

2

© National Instruments Corporation 5-5 LabVIEW Signal Processing Course Manual
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5. Change the phase of the sine waves by adjusting the Initial Phase 1 
and Initial Phase 2 controls, and run the VI.

Do you notice any change in the time waveform? The spectrum?

6. Make the parameters of both the sine waves equal. That is, set 
amplitude 1 = amplitude 2 = 2, frequency 1 = frequency 2 = 10, 
Initial Phase 1 = Initial Phase 2 = 0, and sampling frequency = 200, 
and run the VI.

Is the amplitude of the peak in the power spectrum the value that
would expect?

7. When you are done, close the VI. Do not save any changes.

End of Exercise 5-1
LabVIEW Signal Processing Course Manual 5-6 © National Instruments Corporation
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C.Coherent Gain (CG) and Equivalent Noise Bandwidth (ENBW)
You saw in Lesson 4 that many different types of windows can be app
to a signal. These windows have different shapes, and they affect the s
in different ways. It is important to have some method to compare the e
that different windows have on the signal. Two parameters that are use
comparing various types of windows are the coherent gain (CG) and the 
equivalent noise bandwidth (ENBW).

Coherent Gain
The coherent gain of a window is the zero frequency gain (or the dc gain) 
of the window. It is calculated by normalizing the maximum amplitude 
the window to one, and then summing the values of the window amplitu
over the duration of the window. The result is then divided by the length
the window (that is, the number of samples).

For example, consider the rectangular window shown below with 
amplitude equal to A and nine samples:

You first normalize (divide) all the heights by A to get the maximum
height equal to one:

Then you add all the heights to get nine (nine lines each with a heig
equal to one). This sum is then divided by the number of samples (n
to get a value of one. Thus, the CG of the rectangular window is eq
to one. Mathematically, the CG is given by 

where N is the total number of samples over the duration of the wind
and w[n] are the normalized amplitudes of the samples.

A

0

1

0

CG
1
N
---- w n[ ]

n 0=

N 1–

∑=
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For comparison purposes, the table below shows the CG of severa
commonly used windows. Note that the rectangular (uniform) windo
has the highest CG, whereas the CG of other windows is lower than
of the rectangular window. Can you explain why this is so? 

Equivalent Noise Bandwidth (ENBW)
You can use the ENBW to compare frequency responses of different sh
An ideal frequency response is supposed to be rectangular in shape (s
lesson on digital filters). However, in practice, the frequency response
differs from the ideal. Because different windows have different shape
their frequency response, they will pass different amounts of noise pow
The ENBW for a particular window is equal to the width of a frequency
response having an ideal rectangular shape that will pass the same am
of noise power as the frequency response of that window.

Window CG

Uniform (None) 1.00

Hamming 0.54

Hanning 0.5

Triangle 0.5

Exact Blackman 0.46

Blackman 0.42

Blackman-Harris 0.42

4 Term B-Harris 0.36

Flat Top 0.28

7 Term B-Harris 0.27
LabVIEW Signal Processing Course Manual 5-8 © National Instruments Corporation



Lesson 5 Measurement

 
ular 
t zero 

se of 
It 
 

Suppose that the solid line in the figure below shows the frequency
response of a window, and the dashed line shows the ideal rectang
response. The responses are first adjusted to have a gain of unity a
frequency (DC).

To calculate the ENBW, the width of the rectangular response is 
adjusted so that it has the same area as that of the nonideal respon
the window. This width is then equal to the ENBW for that window. 
is found that the ENBW is the smallest for the uniform window, and
larger for the other windows. The table below shows the ENBW for 
different windows, relative to the ENBW for the uniform window.

Window ENBW

Uniform (None) 1.00

Hamming 1.36

Hanning 1.5

Triangle 1.33

Exact Blackman 1.57

Blackman 1.73

Blackman-Harris 1.71

4 Term B-Harris 2.00

Flat Top 2.97

7 Term B-Harris 2.63

am
pl

itu
de

ideal
rectangular
response

frequency
response
of window

frequency

ENBW
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Exercise 5-2
Objective: To learn about the Coherent Gain and Equivalent Noise Bandwidth properties of 

windows.
This exercise will familiarize you with different window shapes and the
CG and ENBW. The values of the CG and ENBW are used in other 
measurement VIs such as the Power and Frequency Estimate VI and 
Spectrum Unit Conversion VI.

1. Open the Time Domain Windows VI found in the library 
Lvspcex.llb .

2. Open and examine the block diagram.

The VI that windows the input signal (a sine wave generated by
Sine Wave VI) and gives as the output the resulting windowed 
waveform is the Scaled Time Domain Window VI. The 
connections to this VI are shown below.

The input time waveform is applied at the Waveform control, and the 
window selection is done by the window control. The VI also outputs the 
CG and the ENBW of the selected window at the window constants 
terminal.

The resulting output waveform is automatically scaled so that when 
compute the amplitude or power spectrum of the windowed wavefo
all the windows will give the same value.
LabVIEW Signal Processing Course Manual 5-10 © National Instruments Corporation
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You will pass the sine wave through two of these VIs and compare 
resulting windowed waveforms.

3. Switch to the front panel.

The Window 1 and Window 2 controls select the two types of window
that you want to apply to your signal (the sine wave).

The number of samples and the frequency of the sine wave are contr
by the # samples and frequency controls, respectively. The sampling 
frequency is adjusted by the fs control.

The topmost plot shows you the original time domain waveform 
(without windowing). The lower two plots show you the signal after 
application of the two windows specified in the Window 1 and 
Window 2 controls.

4. Select Window 1 as None (Uniform) and Window 2 as Hanning and 
run the VI. Leave all the controls at their default values.

Compare the waveforms in Plot 1 and Plot 2 and observe that using
the Uniform window is equivalent to not using any window.
© National Instruments Corporation 5-11 LabVIEW Signal Processing Course Manual
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Observe from Plot 2 and Plot 3 the difference in the windowed time
domain waveform due to the application of the uniform and Hanning 
windows, respectively.

Note the differences in the CG and ENBW of the two windows.

5. The shapes of the Hamming and Hanning windows are very close to
each other. Choose these windows in the Window 1 and Window 2 
controls. Run the VI and compare the waveforms in Plot 2 and 
Plot 3.

Can you notice any difference? Which one is wider? In particula
compare the values of the ENBW and the CG.

6. As mentioned before, the CG was the same as the DC gain. Ch
different windows and run the VI. Observe that multiplying the 
maximum amplitude of the windowed signal by the CG of the 
window gives unity.

7. When you finish, close the VI. Do not save any changes.

End of Exercise 5-2
LabVIEW Signal Processing Course Manual 5-12 © National Instruments Corporation



Lesson 5 Measurement

y the 

des, 
. In 

ersa. 

ncy 

es, 
uced 
D.Harmonic Distortion
When a signal, x(t), of a particular frequency (for example, f1) is passed 
through a nonlinear system, the output of the system consists of not onl
input frequency (f1), but also its harmonics (f2 = 2*f1, f3 = 3*f1, f4 = 4*f1, 
and so on). The number of harmonics, and their corresponding amplitu
that are generated depends on the degree of nonlinearity of the system
general, the more the nonlinearity, the higher the harmonics, and vice v

An example of a nonlinear system is a system where the output y(t) is the 
cube of the input signal x(t). 

So, if the input is

x(t) = cos(ωt),

the output is 

x3(t) = 0.5*cos(ωt) + 0.25*[ cos(ωt) + cos(3ωt) ]

Therefore, the output contains not only the input fundamental freque
of ω, but also the third harmonic of 3ω.

Total Harmonic Distortion
To determine the amount of nonlinear distortion that a system introduc
you need to measure the amplitudes of the harmonics that were introd
by the system relative to the amplitude of the fundamental. Harmonic 
distortion is a relative measure of the amplitudes of the harmonics as 
compared to the amplitude of the fundamental. If the amplitude of the 
fundamental is A1, and the amplitudes of the harmonics are A2 (second 
harmonic), A3 (third harmonic), A4 (fourth harmonic), ...AN (Nth 
harmonic), the total harmonic distortion (THD) is given by

and the percentage total harmonic distortion (% THD) is

f1, 2f1, 3f1, 4f1, ...f1 nonlinear system

 cos3(ωt)cos(ωt) y(t) = f(x) = x3(t)

THD
A1

2 A2
2 A3

2 ...AN
2+ + +

A1
--------------------------------------------------------------=

%THD
100 A1

2 A2
2 A3

2 ...AN
2+ + +×

A1
-----------------------------------------------------------------------------=
© National Instruments Corporation 5-13 LabVIEW Signal Processing Course Manual



Lesson 5 Measurement

gh a 
wn 

nent 

 
l and 
s) 

total 
e 

 
 to 
In the next exercise, you will generate a sine wave and pass it throu
nonlinear system. The block diagram of the nonlinear system is sho
below:

Verify from the block diagram that if the input is x(t) = cos(ωt), the 
output is

y(t) = cos(ωt) + 0.5cos2(ωt) + 0.1n(t)

= cos(ωt) + [1 + cos(2ωt)]/4 + 0.1n(t)

= 0.25 + cos(ωt) + 0.25cos(2ωt) + 0.1n(t)

Therefore, this nonlinear system generates an additional DC compo
as well as the second harmonic of the fundamental.

Using the Harmonic Analyzer VI
You can use the Harmonic Analyzer VI to calculate the %THD present in
the signal at the output of the nonlinear system. It finds the fundamenta
harmonic components (their amplitudes and corresponding frequencie
present in the power spectrum applied at its input, and calculates the 
percentage of total harmonic distortion (%THD) and the percentage of 
harmonic distortion plus noise (%THD + Noise). The connections to th
Harmonic Analyzer VI are shown below:

To use this VI, you need to give it the power spectrum of the signal
whose THD you want it to calculate. Thus, in this example, you need
make the following connections:
LabVIEW Signal Processing Course Manual 5-14 © National Instruments Corporation
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The Scaled Time Domain Window VI applies a window to the output
y(t) of the nonlinear system (Your System). This is then passed on to the
Auto Power Spectrum VI, which sends the power spectrum of y(t) to
the Harmonic Analyzer VI, which then calculates the amplitudes and
frequencies of the harmonics, the THD, and the %THD. 

You can specify the number of harmonics you want the VI to find in 
# harmonics control. Their amplitudes and corresponding frequenci
are returned in the Harmonic Amplitudes and Harmonic Frequencies 
array indicators.

Note: The number specified in the # harmonics control includes the 
fundamental. So, if you enter a value of 2 in the # harmonics control, it 
means to find the fundamental (say, of freq f1) and the second harmonic 
(of frequency f2 = 2*f1). If you enter a value of N, the VI will find the 
fundamental and the corresponding (N-1) harmonics.

The following are explanations of some of the other controls:

fundamental frequency is an estimate of the frequency of the 
fundamental component. If left as zero (the default), the VI uses the
frequency of the non-DC component with the highest amplitude as 
fundamental frequency.

window is the type of window you applied to your original time signa
It is the window that you select in the Scaled Time Domain Window 
VI. For an accurate estimation of the THD, it is recommended that y
select a window function. The default is the uniform window.

sampling rate is the input sampling frequency in Hz.

The % THD + Noise output requires some further explanation. The 
calculations for % THD + Noise are almost similar to that for % THD , 
except that the noise power is also added to that of the harmonics. 
given by

where sum(APS) is the sum of the Auto Power Spectrum elements min
the elements near DC and near the index of the fundamental freque

%THD Noise 100
sum(APS)

A1
----------------------------×=+
© National Instruments Corporation 5-15 LabVIEW Signal Processing Course Manual
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Exercise 5-3
Objective: To use the Harmonic Analyzer VI for harmonic distortion calculations.

1. Open the THD Example VI from the Lvspcex.llb  library.

2. Switch to the block diagram.

Some of this will already be familiar to you. Your System is the nonlinear 
system that you saw previously. Its output is windowed, and the powe
spectrum calculated and given to the Harmonic Analyzer VI. 

The Sine Wave VI generates a fundamental of frequency specified in t
fundamental frequency control.

The output of the Harmonic Analyzer VI is in Vrms (if the input from the 
Auto Power Spectrum is in V2rms). This output is then squared to conve
it to V2

rms.

3. Switch to the front panel.

At the bottom, you see a plot of the power spectrum of the outpu
the nonlinear system. On the top right side are the array indicato
for the frequencies and amplitudes of the fundamental and its 
harmonics. The size of the array depends on the value entered in
# harmonics control. 
LabVIEW Signal Processing Course Manual 5-16 © National Instruments Corporation
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4. Change the fundamental frequency to 1000, # harmonics to 2, and 
run the VI several times. Each time, note the values in the outpu
indicators (Harmonic Frequencies, Harmonic Amplitudes, % THD , 
and % THD + Noise).

Why do you get different values each time you run the VI?

Which of the values, % THD or % THD + Noise, is larger? Can y
explain why?

5. Run the VI with different selections of the window control and 
observe the peaks in the power spectrum. 

Which window gives the narrowest peaks? The widest? Can you
explain why?

Hint:  See the values of the ENBW for each window in the table 
page 9.

6. Change the fundamental frequency to 3000 and run the VI.

Why do you get an error?

Hint:  Consider the relationship between the Nyquist frequency a
the frequency of the harmonic(s).

7. When you finish, close the VI.

End of Exercise 5-3
© National Instruments Corporation 5-17 LabVIEW Signal Processing Course Manual
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Summary

• The ready-made VIs to perform common measurements are avail
in the Analysis » Measurements subpalette.

• Some of these measurement tasks include calculating the ampli
and phase spectrum of a signal and the amount of harmonic 
distortion. Other VIs calculate properties of a system such as its
transfer function, its impulse response, the cross power spectru
between the input and output signals, and so on.

• Because a real-world signal is time-limited by a window function
the study of certain properties of these window functions is an 
important consideration in interpreting the results of your 
measurements. 

• The CG is a measure of the DC gain of the window, whereas the
ENBW is a measure of the amount of noise power that a window
introduces into a measurement.

Review Questions
1. Why is it important to know the coherent gain of a window?

2. Which Measurement VIs calculate both the amplitude and phas
spectrum of the input waveform?

3. Name some applications where you would use the Measurement

4. When a Measurement VI calculates the spectrum of a signal, is 
one-sided or a two-sided spectrum?

5. What is the peak value corresponding to 2Vrms?

6. Which window has the highest coherent gain? Why?

7. What is the difference between %THD and %THD + Noise? Wh
is larger?
LabVIEW Signal Processing Course Manual 5-18 © National Instruments Corporation
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Introduction 
In this lesson, you will learn about the characteristics of different types
digital filters and how to use them in practical filtering applications.

You Will Learn:

A. What is filtering and why it is needed (applications).

B. About the frequency response characteristics of different types 
ideal filters—lowpass, highpass, bandpass, bandstop.

C. About the differences between practical (nonideal) filters and id
filters.

D. About the advantages of digital filters over analog filters.

E. About the differences between IIR and FIR filters.

F. About the characteristics of different types of IIR filters.

G. About the transient response of IIR filters. 

H. About the characteristics of FIR filters.
© National Instruments Corporation 6-1 LabVIEW Signal Processing Course Manual
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A.What Is Filtering?
Filtering is the process by which the frequency content of a signal is alte
It is one of the most commonly used signal processing techniques. Com
everyday examples of filtering are the bass and treble controls on you
stereo system. The bass control alters the low-frequency content of a s
and the treble control alters the high-frequency content. By varying the
controls, you are actually filtering the audio signal. Some other applicat
where filtering is useful are removing noise and performing decimation
(lowpass filtering the signal and reducing the sample rate).
LabVIEW Signal Processing Course Manual 6-2 © National Instruments Corporation
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B. Ideal Filters
Filters alter or remove unwanted frequencies. Depending on the frequ
range that they either pass or attenuate, they can be classified into the
following types:

• A lowpass filter passes low frequencies, but attenuates high 
frequencies.

• A highpass filter passes high frequencies, but attenuates low 
frequencies.

• A bandpass filter passes a certain band of frequencies.

• A bandstop filter attenuates a certain band of frequencies.

The ideal frequency response of these filters is shown below: 

You see that the lowpass filter passes all frequencies below fc, whereas the 
highpass filter passes all frequencies above fc. The bandpass filter passes a
frequencies between fc1 and fc2, whereas the bandstop filter attenuates a
frequencies between fc1 and fc2. The frequency points fc, fc1 and fc2 are 
known as the cutoff frequencies of the filter. When designing filters, yo
need to specify these cut-off frequencies.

The frequency range that is passed through the filter is known as th
passband (PB) of the filter. An ideal filter has a gain of one (0 dB) in th
passband so that the amplitude of the signal neither increases nor 
decreases. The stopband (SB) corresponds to that range of frequencie
that do not pass through the filter at all and are rejected (attenuated)
passband and the stopband for the different types of filters are sho
below: 
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Note that whereas the lowpass and highpass filters have one passban
one stopband, the bandpass filter has one passband, but two stopband
the bandstop filter has two passbands, but one stopband.

How Filters Affect Signal Frequency Content
Suppose you have a signal containing frequencies of 10 Hz, 30 Hz, an
50 Hz. This signal is passed through a lowpass, highpass, bandpass, 
bandstop filter. The lowpass and highpass filters have a cutoff frequenc
20 Hz, and the bandpass and bandstop filters have cutoff frequencies 
20 Hz and 40 Hz. The output of the filter in each case is shown below:

freq
10 30 50

freq
30 50

freq
10 30 50 freq

10 50

freq
10 30 50

freq
10

20
Lowpass

20
Highpass

freq
10 30 50

freq
30

20     40

Bandpass

20     40

Bandstop
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C.Practical (Nonideal) Filters

The Transition Band
Ideally, a filter should have a unit gain (0 dB) in the passband, and a ga
zero (-× dB) in the stopband. However, in a real implementation, not a
these criteria can be fulfilled. In practice, there is always a finite transit
region between the passband and the stopband. In this region, the gain
filter changes gradually from 1 (0 dB) in the passband to 0 (-×) in the 
stopband. The following diagrams show the passband, the stopband, an
transition region (TR) for the different types of nonideal filters. Note that 
passband is now the frequency range within which the gain of the filter
varies from 0 dB to -3 dB. Although the -3 dB range is most commonly
used, depending on the application, other values (-0.5 dB, -1 dB, etc.) 
also be considered.

Passband Ripple and Stopband Attenuation
In many applications, it is okay to allow the gain in the passband to va
slightly from unity. This variation in the passband is called the passband 
ripple and is the difference between the actual gain and the desired ga
unity. The stopband attenuation, in practice, cannot be infinite, and you 
must specify a value with which you are satisfied. Both the passband ri
and the stopband attenuation are measured in decibels or dB, defined

dB = 20*log10(Ao(f)/A i(f))

where log10 denotes the logarithm to the base 10, and Ai(f) and Ao(f) are 
the amplitudes of a particular frequency f before and after the filtering,
respectively.

fc fc

fc1              fc2 fc1                       fc2

0dB
-3dB

PB TR SB

Lowpass Highpass

0dB
-3dB

SB TR PB

SB TR PB TR SB

Bandpass

0dB
-3dB

PB TR SB TR PB

Bandstop

0dB
-3dB
© National Instruments Corporation 6-5 LabVIEW Signal Processing Course Manual



Lesson 6 Digital Filtering

 

The 
 

t 
For example, for -0.02 dB passband ripple, the formula gives:

-0.02 = 20*log10(Ao(f)/A i(f))

Ao(f)/A i(f) = 10-0.001 = 0.9977

which shows that the ratio of input and output amplitudes is close to
unity.

If you have -60 dB attenuation in the stopband, you have

-60 = 20*log10(Ao(f)/A i(f))

Ao(f)/A i(f) = 10-3 = 0.001

which means the output amplitude is 1/1000 of the input amplitude. 
following figure, though not drawn to scale, illustrates this concept.

Note: Attenuation is usually expressed in decibels without the word “minus,” bu
a negative dB value is normally assumed.

1.0

0.9977

0.001

0 dB

-0.02 dB

-60 dB

frequency
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pl
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passband
ripple

stopband
attenuation
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D.Advantages of Digital Filters over Analog Filters
An analog filter has an analog signal at both its input and its output. Bo
the input, x(t), and output, y(t), are functions of a continuous variable t and 
can take on an infinite number of values. Analog filter design is about 
years older than digital filter design. Thus, analog filter design books 
featuring simple, well- tested filter designs exist and can be found 
extensively in the literature. However, this type of filter design is often 
reserved for specialists because it requires advanced mathematical 
knowledge and understanding of the processes involved in the system
affecting the filter.

Modern sampling and digital signal processing tools have made it 
possible to replace analog filters with digital filters in applications th
require flexibility and programmability. These applications include 
audio, telecommunications, geophysics, and medical monitoring. Th
advantages of digital filters over analog filters are:

• They are software programmable, and so are easy to “build” and

• They require only the arithmetic operations of multiplication and
addition/subtraction and so are easier to implement.

• They are stable (do not change with time nor temperature) and 
predictable.

• They do not drift with temperature or humidity or require precisio
components.

• They have a superior performance-to-cost ratio.

• They do not suffer from manufacturing variations or aging.
© National Instruments Corporation 6-7 LabVIEW Signal Processing Course Manual
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E. IIR and FIR Filters
Another method of classification of filters is based on their impulse 
response. But what is an impulse response? The response of a filter to an 
input that is an impulse (x[0] = 1 and x[i] = 0 for all i ¦ 0) is called the 
impulse response of the filter (see figure below). The Fourier transform
of the impulse response is known as the frequency response of the filter. 
The frequency response of a filter tells you what the output of the fi
is going to be at different frequencies. In other words, it tells you th
gain of the filter at different frequencies. For an ideal filter, the gain
should be 1 in the passband and 0 in the stopband. So, all frequenc
the passband are passed “as is” to the output, but there is no outpu
frequencies in the stopband. 

If the impulse response of the filter falls to zero after a finite amount of tim
it is known as a finite impulse response (FIR) filter. However, if the 
impulse response exists indefinitely, it is known as an infinite impulse 
response (IIR) filter. Whether the impulse response is finite or not (that 
whether the filter is FIR or IIR) depends on how the output is calculate

The basic difference between FIR and IIR filters is that for FIR filter
the output depends only on the current and past input values, whereas f
IIR filters, the output depends not only on the current and past inpu
values, but also on the past output values.

As an example, consider a cash register at a supermarket. Let x[k] be the 
cost of the kth item that a customer buys, where 1 ð k ð N, and N is the 
total number of items. The cash register adds the cost of each item
produce a “running” total. This “running” total y[k] , up to the kth item, 
is given by

y[k] = x[k] + x[k-1] + x[k-2] + x[k-3] + .....+ x[1] (1a)

Thus, the total for N items is y[N] . Because y[k]  is the total up to the kth 
item, and y[k-1] is the total up to the (k-1)st item, you can rewrite 
equation (1a) as 

y[k] = y[k-1] + x[k] (1b)
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If you add a sales tax of 8.25%, equations (1a) and (1b) can be 
rewritten as

y[k] = 1.0825x[k] + 1.0825x[k-1] + 1.0825 x[k-2] + 1.0825x[k-3] +
... + 1.0825x[1] (2a)

y[k] = y[k-1] + 1.0825x[k] (2b)

Note that both equations (2a) and (2b) are identical in describing th
behavior of the cash register. The difference is that whereas (2a) is
implemented only in terms of the inputs, (2b) is implemented in 
terms of both the input and the output. Equation (2a) is known as th
nonrecursive, or FIR, implementation. Equation (2b) is known as the
recursive, or IIR, implementation.

Filter Coefficients
In equation (2a), the multiplying constant for each term is 1.0825. In 
equation (2b), the multiplying constants are 1 (for y[k-1]) and 1.0825 (for 
x[k]). These multiplying constants are known as the coefficients of the 
filter. For an IIR filter, the coefficients multiplying the inputs are known 
the forward coefficients, and those multiplying the outputs are known a
the reverse coefficients.

Equations of the form 1a, 1b, 2a, or 2b that describe the operation o
filter are known as difference equations.

Advantages and Disadvantages of FIR and IIR Filters
Comparing IIR and FIR filters, the advantage of digital IIR filters over fin
impulse response (FIR) filters is that IIR filters usually require fewer 
coefficients to perform similar filtering operations. Thus, IIR filters execu
much faster and do not require extra memory, because they execute in

The disadvantage of IIR filters is that the phase response is nonlinea
the application does not require phase information, such as simple s
monitoring, IIR filters may be appropriate. You should use FIR filter
for those applications requiring linear phase responses. The recurs
nature of IIR filters makes them more difficult to design and impleme
© National Instruments Corporation 6-9 LabVIEW Signal Processing Course Manual
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F. Infinite Impulse Response Filters
You have seen that infinite impulse response filters (IIR) are digital filte
whose output is calculated by adding a weighted sum of past output va
with a weighted sum of past and current input values. Denoting the inp
values by x[.] and the output values by y[.], the general difference equation
characterizing IIR filters is

(3)

where Nx is the number of forward coefficients (b[k]) and Ny is the number 
of reverse coefficients (a[j]). The output sample at the present sample
index i is the sum of scaled present and past inputs (x[i] and x[i-k]  when 
j ¦ 0) and scaled past outputs (y[i-j ]). Usually, Nx is equal to Ny and this 
value is known as the order of the filter.

Note: In all of the IIR filters implemented in LabVIEW/BridgeVIEW, the 
coefficient a0 is 1. 

Practical IIR Filters
A lower order reduces arithmetic operations and therefore reduces 
computation error. A problem with higher order filtering is that you quick
run into precision errors with orders much greater than 20-30. This is t
main reason for the “cascade” implementations over the “direct” form. 
Refer to the Analysis VI Reference Manual for more details on cascade 
form implementations. It is recommended that the orders of 1-20 are 
reasonable, with 30 being an upper limit. A higher order also means m
filter coefficients and hence longer processing time.

The impulse response of the filter described by equation (3) is of infin
length for nonzero coefficients. In practical filter applications, howev
the impulse response of stable IIR filters decays to near zero in a fi
number of samples.

In practice, the frequency response of filters differs from that of ide
filters. Depending on the shape of the frequency response, the IIR fi
can be further classified into 

• Butterworth filters

• Chebyshev filters

a0y i[ ] a1y i 1–[ ] a2y i 2–[ ] ... aNy 1– y i Ny 1–( )–[ ]
b0x i[ ] b1x i 1–[ ] b2x i 2–[ ] ... bNx 1– x i Nx 1–( )–[ ]+ + + +

=+ + + +

a0y i[ ] a1– y i 1–[ ]= a2– y i 2–[ ] ...– aNy 1–– y i Ny 1–( )–[ ]
b0x i[ ] b1x i 1–[ ] b2x i 2–[ ] ... bNx 1– x i Nx 1–( )–[ ]

+ +
+ + + +

y i[ ] 1
a0
----- a j[ ]y i j–[ ]

j 1=

Ny 1–

∑– b k[ ]x i k–[ ]

k 0=

Nx 1–

∑+
 
 
 
 

=

LabVIEW Signal Processing Course Manual 6-10 © National Instruments Corporation



Lesson 6 Digital Filtering

nd. 

ncies. 
 

 1) 
ry 
d the 
ition 

 the 

 

ilter 
n the 
um 
• Chebyshev II or inverse Chebyshev filters

• Elliptic or Cauer filters

The characteristics of each filter type are described below.

Butterworth Filters
A Butterworth filter has no ripples in either the passband or the stopba
Due to the lack of ripples, it is also known as the maximally flat filter. Its 
frequency response is characterized by a smooth response at all freque
The following illustration shows the response of a lowpass Butterworth
filter of different orders—the x-axis scaling is in terms of f / fNyquist, 
whereas the y-axis is scaled so that the gain in the passband is unity.

The region where the output of the filter is equal to 1 (or very close to
is the passband of the filter. The region where the output is 0 (or ve
close to 0) is the stopband. The region in between the passband an
stopband where the output gradually changes from 1 to 0 is the trans
region.

The advantage of Butterworth filters is a smooth, monotonically 
decreasing frequency response in the transition region. As seen from
figure, the higher the filter order, the steeper the transition region.

Chebyshev Filters
The frequency response of Butterworth filters is not always a good 
approximation of the ideal filter response because of the slow rolloff 
between the passband (the portion of interest in the spectrum) and the
stopband (the unwanted portion of the spectrum). On the other hand, 
Chebyshev filters have a smaller transition region than a Butterworth f
of the same order. However, this is achieved at the expense of ripples i
passband. Using LabVIEW or BridgeVIEW, you can specify the maxim
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amount of ripple (in dB) in the passband for a Chebyshev filter. The 
frequency response characteristics of Chebyshev filters have an equir
(ripples all have the same magnitude) magnitude response in the pass
monotonically decreasing magnitude response in the stopband, and a
sharper rolloff in the transition region as compared to Butterworth filters
the same order. 

The following graph shows the response of a lowpass Chebyshev f
of different orders. In this case, the y-axis scaling is in decibels. On
again, note that the steepness of the transition region increases wit
increasing order. Also, the number of ripples in the passband increa
with increasing order.

The advantage of Chebyshev filters over Butterworth filters is the 
sharper transition between the passband and the stopband with a 
lower-order filter. As mentioned before, this produces smaller absol
errors and higher execution speeds.

Chebyshev II or Inverse Chebyshev Filters
Chebyshev II, also known as inverse Chebyshev or Type II Chebyshe
filters, are similar to Chebyshev filters, except that Chebyshev II filters h
ripples in the stopband (as opposed to the passband), and are maxima
in the passband (as opposed to the stopband). For Chebyshev II filters
can specify the amount of attenuation (in dB) in the stopband. The 
frequency response characteristics of Chebyshev II filters are equiripp
magnitude response in the stopband, monotonically decreasing magn
response in the passband, and a rolloff sharper than Butterworth filters o
same order. The following graph plots the response of a lowpass Cheby
II filter of different orders. 

f / fNyquist
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The advantage of Chebyshev II filters over Butterworth filters is that 
Chebyshev II filters give a sharper transition between the passband an
stopband with a lower order filter. This difference corresponds to a sma
absolute error and higher execution speed. One advantage of Chebys
filters over regular Chebyshev filters is that Chebyshev II filters have th
ripples in the stopband instead of the passband.

Elliptic Filters
You saw that Chebyshev (type I or II) filters have a sharper transition re
than a Butterworth filter of the same order. This is because they allowe
ripples in the passband (type I) or the stopband (type II). Elliptic filters 
distribute the ripples over both the passband as well as the stopband. 
Equiripples in the passband and the stopband characterize the magnit
response of elliptic filters. Therefore, compared with the same order 
Butterworth or Chebyshev filters, the elliptic design provides the sharp
transition between the passband and the stopband. For this reason, el
filters are quite popular in applications where short transition bands ar
required and where ripples can be tolerated. The following graph plots
response of a lowpass elliptic filter of different orders. The x-axis scalin
in terms of f / fNyquist, whereas the y-axis is scaled so that the gain in th
passband is unity.

f / fNyquist
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Notice the sharp transition edge for even low-order elliptic filters. Fo
elliptic filters, you can specify the amount of ripple (in dB) in the 
passband as well as the attenuation (in dB) in the stopband. 

IIR Filter Comparison
A comparison of the lowpass frequency responses for the four differen
filter designs, all having the same order (five), is shown in the figure bel
The Elliptic filter has the narrowest transition region, whereas the 
Butterworth filter has the widest.
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The following table compares the filter types.

The LabVIEW and BridgeVIEW digital filter VIs handle all the desig
issues, computations, memory management, and actual data filterin
internally, and are transparent to the user. You do not need to be a
expert in digital filters or digital filter theory to process the data. All yo
need to do is to specify the control parameters such as the filter ord
cutoff frequencies, amount of ripple, and stopband attenuation.

How Do I Decide which Filter to Use?
Now that you have seen the different types of filters and their 
characteristics, the question arises as to which filter design is best suite
your application. In general, some of the factors affecting the choice o
suitable filter are whether you require linear phase, whether you can tol
ripples, and whether a narrow transition band is required. The followin
flowchart is expected to serve as a guideline for selecting the correct f
Keep in mind that in practice, you may need to experiment with severa
different options before finally finding the best one.

IIR Filter 
Design

Response 
Characteristics

Width of Transition Region 
for a Fixed Order

Order Required for 
Given Filter Specifications

Butterworth

Chebyshev

Inverse 
Chebyshev

Elliptic

No ripples

Ripples in PB

Ripples in SB

Ripples in PB and SB

Widest

Narrowest

Highest

Lowest
© National Instruments Corporation 6-15 LabVIEW Signal Processing Course Manual
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FIR Filter

high order
Butterworth

Elliptic low order
Butterworth

Inv. Chebyshev

Chebyshev

Elliptic

FIR

narrowest possible transition region?

linear phase?

ripple OK?
narrow

transition band?

ripple
in PB?

ripple
in SB?

arbitrary
filter specs?

Y

N

N Y

NY

Y

N

N

Y

N

Y

N

Y
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Exercise 6-1
Objective: To filter data samples that consist of both high-frequency noise and a sinusoidal 

signal.
In this exercise, you combine a sine wave generated by the Sine 
Pattern VI with high-frequency noise. (The high-frequency noise 
obtained by highpass filtering uniform white noise with a 
Butterworth filter.) The combined signal is then lowpass filtered 
another Butterworth filter to extract the sine wave.

1. Open a new VI and build the front panel as shown above.

a. Select a Digital Control  from the Numeric palette and label it 
Frequency.

b. Select Vertical Slide from the Numeric palette and label it 
Cut-Off Frequency.

c. Select another Vertical Slide from the Numeric palette and label 
it Filter Order.

d. Select a Waveform Graph from the Graph palette for 
displaying the noisy signal, and another Waveform Graph for 
displaying the original signal.
© National Instruments Corporation 6-17 LabVIEW Signal Processing Course Manual
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2. Build the block diagram as shown below.

Sine Pattern VI (Functions » Analysis » Signal Generation 
subpalette) generates a sine wave of the desired frequency

Uniform White Noise VI (Functions » Analysis » Signal 
Generation subpalette) generates uniform white noise that is
added to the sinusoidal signal.

Butterworth Filter  VI (Functions » Analysis » Filters 
subpalette) highpass filters the noise.

Note that you are generating 10 cycles of the sine wave, and ther
1000 samples. Also, the sampling frequency to the Butterworth 
Filter  VI on the right side is specified as 1000 Hz. Thus, effective
you are generating a 10 Hz signal.

3. Switch back to the front panel. Select a Frequency of 10 Hz, a 
Cut-Off Frequency of 25 Hz, and a Filter Order  of 5. Run the VI.

4. Reduce the Filter Order  to 4, 3, and 2, and observe the difference 
the filtered signal. Explain what happens as you lower the filter 
order.

In particular, observe the filtered waveform. At the beginning, the
is a “flat” region. The length of this region depends on the order
the filter. Section G discusses this further.

5. When you finish, save the VI as Extract the Sine Wave.vi in the 
Lvspcex.llb  library.

6. Close the VI.

End of Exercise 6-1
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Exercise 6-2
Objective: To compare the frequency response characteristics of various IIR filters.

1. Open the IIR Filter Design  VI from the Lvspcex.llb  library.

The front panel offers the choice of different types of filters.

The Filter Design control selects one of the four different designs 
filters: Butterworth, Chebyshev, Chebyshev Type II, or Elliptic.

The Filter Type control selects one of four different types of filters
highpass, lowpass, bandpass, or bandstop.

The Display control selects the display of the magnitude respons
(magnitude of the frequency response) to be either linear or 
logarithmic. 
© National Instruments Corporation 6-19 LabVIEW Signal Processing Course Manual
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2. The block diagram is shown below.

As seen in the block diagram, note that the frequency response
obtained by applying an impulse at the input of a filter and 
calculating the Fourier transform of the output.

The Impulse Pattern VI (Functions » Analysis » Signal 
Generation subpalette) generates an impulse that is given
the selected filter. The number of sample points is equal
1024. 

The Real FFT VI (Functions » Analysis » Digital Signal 
Processing subpalette) computes the Fourier transform of t
output of the filter.

The Array Subset VI (Functions » Array subpalette) selects
513 FFT points out of 1024, so as to generate a one-side
spectrum.

The Complex to Polar VI  (Functions » Numeric » Complex 
subpalette) converts the complex output of the Real FFT VI 
to its polar (magnitude and phase) representation. The 
magnitude can then be plotted in either the linear or dB 
scales.
LabVIEW Signal Processing Course Manual 6-20 © National Instruments Corporation
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Normally, the phase shown is limited to between -π and +π. 
So, even if the phase lies outside the range -π and +π , it is 
“wrapped” around to lie between these values. The Unwrap 
Phase VI (Functions » Analysis » Digital Signal Processing 
subpalette) is used to “unwrap” the phase to its true valu
even if its absolute value exceeds π.

3. Select a Filter Design of Butterworth, Filter Type = Lowpass, 
Ripple = 10, Attenuation = 40, Order  = 4, Display = Logarithmic, 
sampling rate = 1000, Lower Cut-Off Frequency = 100, and Higher 
Cut-Off Frequency = 300. Run the VI.

4. Increase the filter Order  to 5, 10, 15, and 20, and note the differenc
in the magnitude and phase responses. In particular, what chang
you notice in the transition region?

5. Keep the filter Order  fixed at 5, and change the Filter Design to 
select different IIR filters. Note the changes in the magnitude an
phase plots. For a given filter order, which of the four different filt
designs has the smallest transition region?

6. When you finish, stop the VI by clicking on the STOP button in the 
lower right corner.

7. Close the VI. Do not save any changes.

End of Exercise 6-2
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Exercise 6-3 (Optional)
OBJECTIVE: To use a digital filter to remove unwanted frequencies.

In this exercise, you will add two sine waves of different frequencies 
then filter the resulting waveform using a Butterworth lowpass filter
obtain only one of the sine waves. 

1. Open the Low Pass Filter VI from the library Lvspcex.llb . This 
VI shows how to design a lowpass Butterworth filter to remove a
10 Hz signal from a 2 Hz signal.

Front Panel

The number of samples to be generated and the sampling frequ
is controlled by the samples and sampling frequency controls, 
respectively.

The amplitude and frequency of the two sine waves can be contro
by the amplitude 1, amplitude 2, frequency 1, and frequency 2 
controls on the front panel.

The cutoff freq:fl  control controls the cutoff frequency of the 
lowpass filter, whose order is adjusted by the order control.
LabVIEW Signal Processing Course Manual 6-22 © National Instruments Corporation
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2. Examine the block diagram. 

Block Diagram

Sine Wave VI generates the two sine waves.

Amplitude and Phase Spectrum VI determines the 
amplitude and phase spectrum of the output of the filtere
signal. In this exercise, you are interested in only the 
amplitude spectrum.

The reciprocal of the sampling frequency gives the time interval, ∆t, 
between samples.

Remember that the frequency spacing, ∆f, is obtained by dividing the 
sampling frequency by the number of samples.

The two sine waves being combined together have frequencies 
10 Hz and 2 Hz. To separate them, you should set the cut off 
frequency of the lowpass filter to somewhere between these two
values.

3. Keeping the cutoff freq: fl  control at 7 Hz, run the VI. Observe that
the amplitude of the 2 Hz signal is much larger than that of the 10
signal.

4. Reduce the filter order to 5 and run the VI. Repeat with an orde
of 3. What do you notice about the spectrum amplitudes?

5. Increase the order to 12 and run the VI. Observe the spectrum 
amplitudes. Explain what happens.

6. When you finish, close the VI. Do not save any changes.

End of Exercise 6-3
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G.The Transient Response of IIR Filters
You have seen that the output of a general IIR filter is given by

(4)

where Nx is the number of forward coefficients, Ny is the number of 
reverse coefficients, and a0 is assumed to be equal to 1. Consider a 
second-order filter where Nx = Ny = 2. The corresponding difference 
equation is:

(5)

To calculate the current output (at the ith instant) of the filter, you need
to know the past two outputs (at the (i-1)st and the (i-2)nd time instants) 
as well as the current input (at the ith time instant) and past two inputs
(at the (i-1)st and (i-2)nd time instants). 

Now suppose that you have just started the filtering process by taking
first sample of the input data. However, at this time instant you do n
yet have the previous inputs (x[i-1] and x[i-2]) or previous outputs 
(y[i-1] and y[i-2]). So, by default, these values are assumed to be ze
When you get the second data sample, you already have the previo
input (x[i-1]) and the previous output (y[i-1]) that you calculated from 
the first sample, but not yet x[i-2] and y[i-2]. Again, by default, these are
assumed to be zero. It is only after we start processing the third inp
data sample that all the terms on the right hand side of equation (5) a
now have the previously calculated values. Thus, there is a certain 
amount of delay before which there are calculated values for all the
terms on the RHS of the difference equation describing the filter. Th
output of the filter during this time interval is a transient and is know
as the transient response. For lowpass and highpass filters implemente
in the LabVIEW/BridgeVIEW Analysis library, the duration of the 
transient response, or delay, is equal to the order of the filter. For 
bandpass and bandstop filters, this delay is 2*order.

IIR filters in the analysis library contain the following properties.

• Negative indices resulting from equation (4) are assumed to be z
the first time you call the VI.

• Because the initial filter state is assumed to be zero (negative 
indices), a transient proportional to the filter order occurs before 
filter reaches a steady state. The duration of the transient respo
or delay, for lowpass and highpass filters is equal to the order of
filter:

delay = order

y i[ ] a1y i 1–[ ]– a2y i 2–[ ]– ...– aNy 1– y i Ny 1–( )–[ ]– b0x i[ ]
b1x i 1–[ ] b2 i 2–[ ] ... bNx 1– x i Nx 1–( )–[ ]

+
+ + + +

=

y i[ ] a1y i 1–[ ]– a2y i 2–[ ]– b0x i[ ] b1x i 1–[ ] b2 i 2–[ ]+ + +=
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• The duration of the transient response for bandpass and bandst
filters is twice the filter order:

delay = 2 * order

So, each time one of the filter VIs is called, this transient appears a
output. You can eliminate this transient response on successive cal
enabling the state memory of the VI. To enable state memory, set t
init/cont  control of the VI to TRUE (continuous filtering). You will see
how to do this in a later exercise. 

• The number of elements in the filtered sequence equals the num
of elements in the input sequence.

• The filter retains the internal filter state values when the filtering
completes.

Original Signal 
Filtered  Signal
© National Instruments Corporation 6-25 LabVIEW Signal Processing Course Manual
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Exercise 6-4
Objective: To see the difference in the filter response with and without enabling state memory.

1. Open the Low Pass Filter VI from Lvspcex.llb . 

2. Run the VI with the values shown on the front panel above, but w
order = 7. (Do not worry about the init/cont (init: F)  control for 
now.)

Observe the upper Sine Waveform graph, which shows two plots. 
The white dashed plot is the combined signal, whereas the green
line plot is the filtered signal. 

3. Change the filter order to 10 and run the VI. Observe the first fe
values of the plot corresponding to the filtered signal.

4. Change the filter order to 15, 20, and 25, and run the VI. Each ti
observe the transient that occurs at the beginning of the plot 
corresponding to the filtered signal. This transient can be remov
after the first call to the VI by enabling its state memory. This is do
by setting the init/cont  control of the VI to TRUE. Setting this 
control to TRUE is equivalent to continuous filtering, and except f
the first call to the VI, each successive call will not have the 
transient.
LabVIEW Signal Processing Course Manual 6-26 © National Instruments Corporation
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5. Now connect a Boolean control as shown in the diagram to the 
init/cont  input of the Butterworth Filter  VI.

6. With the init/cont(init:F)  control set to OFF, and order = 15, run the 
VI several times. Note the presence of the transient at the begin
of the filtered signal each time the VI runs.

7. Now set the init/cont(init:F)  control to ON, and run the VI several 
times. Observe that the transient is present only the first time tha
VI is run. On successive calls to the VI, the transient no longer ex

8. When you finish, save the VI.

End of Exercise 6-4
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H.Finite Impulse Response Filters
You have seen that the output of an IIR filter depends on the previous
outputs as well as the current and previous inputs. Because of this 
dependency on the previous outputs, the IIR filter has infinite memory,
resulting in an impulse response of infinite length.

On the other hand, the output of an FIR filter depends only on the cur
and past inputs. Because it does not depend on the past outputs, it
impulse response decays to zero in a finite amount of time. The ou
of a general FIR filter is given by

y[i] = b0x[i] + b1x[i-1] + b2x[i-2] + ... + bNx[i-(M-1)]

where M is the number of taps of the filter and b0, b1, ... bM-1, are its 
coefficients. FIR filters have some important characteristics:

1. They can achieve linear phase response, and hence they can p
signal without phase distortion.

2. They are always stable. During filter design or development, you
not need to worry about stability concerns.

3. FIR filters are simpler and easier to implement.

The following graphs plot a typical magnitude and phase response 
FIR filters versus normalized frequency. The discontinuities in the ph
response arise from the discontinuities introduced when you compu
the magnitude response using the absolute value. Notice that the 
discontinuities in phase are on the order of π. The phase, however, is 
clearly linear. 
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Exercise 6-5
Objective: To see the frequency response characteristics of FIR filters.

In this exercise, you will see the magnitude and phase response 
characteristics of FIR filters. You will also see the effect of using differe
windows on the filter response characteristics.

1. Open the FIR Windowed Filter Design VI from Lvspcex.llb . 

The Filter Type  control specifies the type of FIR filter—lowpass, 
highpass, bandpass, or bandstop.

The taps control specifies the number of filter coefficients. Note that
taps must be greater than 0. The higher the number of taps, the ste
the transition between the passband and the stopband.

The window control selects among nine different types of windows to 
applied to the input signal before it is filtered.

The Display control selects the display units on the Magnitude plot to be 
linear or logarithmic.

The sampling frequency: fs, low cutoff frequency: fl, and high cutoff 
frequency: fh controls specify the desired response characteristics of
filter. The high cutoff frequency: fh is required only when Filter Type 
is chosen as bandpass or bandstop.
© National Instruments Corporation 6-29 LabVIEW Signal Processing Course Manual
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The Magnitude and Phase plots show you the magnitude and phas
response of the filter. Note that because the filter under consideratio
an FIR filter, it is expected to have a linear phase response.

2. Observe the block diagram.

Impulse Pattern VI (Analysis » Signal Generation subpalette) 
generates an impulse to be applied to the input of the FIR filt
The response of the filter to the impulse will give us its impul
response. Finding the FFT of the impulse response gives th

magnitude and phase response.

FIR Windowed Filter VI (Analysis » Filters subpalette) is an 
FIR filter that filters the input data sequence (in this case an
impulse) using the set of windowed FIR filter coefficients 
specified by the sampling frequency: fs, low cutoff frequency: 
fl , high cutoff frequency: fh, and taps controls. This filter also 
windows the input signal with the type of window selected in t
window control.

Zero Padder VI (Analysis » Digital Signal Processing 
subpalette) resizes the input sequence to the next higher po
of two by adding zeros to the end of the sequence. By conver
the total number of samples to a power of two, the calculation
the Fourier transform of the impulse response of the FIR filt
can be done faster by the Real FFT VI.  

The default values have been chosen so that you will see the respo
characteristics of a lowpass FIR filter with cut-off frequency of 15 H
LabVIEW Signal Processing Course Manual 6-30 © National Instruments Corporation
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You are not using any window on the input signal (that is, you are us
a rectangular window) that is sampled at 100 Hz.

3. Run the VI with the default values. Observe the linear phase 
response in the passband. 

4. Select different types of windows using the window control and 
observe both the magnitude and phase responses. Notice how t
choice of a window affects both the responses. The phase in all c
will be linear.

The taps control affects the width of the transition region.

5. Observe the Magnitude response plot with the Filter Type  control set 
to lowpass filter, the low cutoff frequency: fl set to 15 Hz, sampling 
frequency: fs set to 100 Hz, window set to Kaiser-Bessel, and taps 
set to 33.

6. Change taps to 55 and observe how the transition region become
narrower.

7. Change taps to 10 and observe the increase in the width of the 
transition region.

8. You can experiment with different values of the other controls. 
When you are done, stop the VI by clicking on the STOP button in 
the lower right corner. 

9. Close the VI without saving any changes.

End of Exercise 6-5
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I. Digital Filter Design Toolkit
While it is quite easy and straightforward to design a digital filter in 
LabVIEW or BridgeVIEW using the analysis VIs, it does require a basi
understanding of digital signal theory. For the best tool to learn more a
digital filter design, National Instruments offers an add-on toolkit called 
Digital Filter Design (DFD) Toolkit. This toolkit was developed using G
and has an excellent interactive graphical user interface. By drawing li
in the frequency domain, all types of digital filters can be easily design
The designed filter coefficients can then be integrated into LabVIEW, 
BridgeVIEW, LabWindows/CVI, and other programming environments
You will learn more about the DFD Toolkit in Lesson 10.
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Summary

• You have seen from the frequency response characteristics that
practical filters differ from ideal filters.

• For practical filters, the gain in the passband may not always be
equal to 1, the attenuation in the stopband may not always be -×,
there exists a transition region of finite width.

• The width of the transition region depends on the filter order, and
width decreases with increasing order.

• The output of FIR filters depends only on the current and past in
values, whereas the output of IIR filters depends on the current 
past input values as well as the past output values.

• IIR filters can be classified according to the presence of ripples in
passband and/or the stopband.

• Because of the dependence of its output on past outputs, a tran
appears at the output of an IIR filter each time the VI is called. T
transient can be eliminated after the first call to the VI by setting
init/cont control to a TRUE value.

Review Questions
1. Name three practical examples where filtering is used.

2. If the stopband attenuation of a filter is -80 dB, what is the outpu
the filter to an input signal of 5 V peak if the frequency of the sign
lies in the stopband of the filter?

3. Which filter would you use for the following applications?

a. When you want the narrowest possible transition region with 
smallest order.

b. When you cannot tolerate any ripples in either the passband
the stopband.

c. When linear phase is important.

4. Why does a transient initially appear at the output of a filter? Ho
can it be eliminated on successive calls to a VI?
© National Instruments Corporation 6-33 LabVIEW Signal Processing Course Manual
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Lesson 7
Curve Fitting 
Introduction
In this lesson, you will learn about the Analysis VIs that are used to fit 
curves to data points.

You Will Learn:

A. About curve fitting and its applications.

B. About the General Least Squares Linear Fit VI.

C. About the Nonlinear Levenberg-Marquardt Fit  VI.

D.  About fitting a curve to Gaussian (Normal) data points.
© National Instruments Corporation 7-1 LabVIEW Signal Processing Course Manual
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A.About Curve Fitting
In the digital domain, a data set can be represented by two input seque
Y Values and X Values. A sample or point in the data set can be written

(x[i], y[i])

where x[i] is the ith element of the sequence X Values, and y[i] is the ith 
element of the sequence Y Values. Each y[i] is related to the 
corresponding x[i]. You are interested in finding the relationship 
between the y[i] and the x[i] in the digital domain, and expressing it
the form of an equation in the analog domain.

Curve fitting acts as a bridge between the digital and analog worlds
Using curve fitting, digital data can be represented with a continuou
model having a certain set of parameters. The basic idea is to extra
set of curve parameters or coefficients from the data set to obtain a
functional description of the data set. This functional description 
consists of the set of parameters a0, a1, ..., ak that best matches the 
experimental model from which the data samples x[i] and y[i] were 
obtained. Once you obtain the functional model, you can use it to 
estimate missing data points, interpolate data, or extrapolate data. 

Note: Note that y[i] is a function of both the parameters ak, as well as the data 
x[i]. The following discussion refers to the terms “linear” and “nonlinear” 
often. These terms refer to the relationship between y and a, and not y
and x.

The Analysis library offers both linear and nonlinear curve fitting 
algorithms. The different types of curve fitting in LabVIEW are outline
below:

• Linear Fit—fits experimental data to a straight line of the form 
y = mx + c.

 y[i]=a0+a1*x[i]

• Exponential Fit—fits data to an exponential curve of the form 
y = aexp(bx)

y[i] = a0*exp(a1*x[i])

• General Polynomial Fit—fits data to a polynomial function of the 
form y = a + bx + cx2 + ...

 y[i] = a0+a1*x[i]+a 2*x[i] 2...

but with selectable algorithms for better precision and accuracy.
LabVIEW Signal Processing Course Manual 7-2 © National Instruments Corporation
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• General Linear Fit—fits data to 

y[i] = a0+a1*f 1(x[i])+a2*f 2(x[i]) + ...

where y[i] is a linear combination of the parameters a0, a1, a2.... The 
general linear fit also features selectable algorithms for better 
precision and accuracy. For example, y = a0 + a1*sin(x) is a linear fit 
because y has a linear relationship with parameters a0 and a1. 
Polynomial fits are always linear fits for the same reason. But spe
algorithms can be designed for the polynomial fit to speed up th
fitting processing and improve accuracy.

• Nonlinear Levenberg-Marquardt Fit—fits data to 

y[i] = f(x[i], a 0, a1, a2...)

where a0, a1, a2... are the parameters. This method is the most gen
method and does not require y to have a linear relationship with a0, 
a1, a2.... It can be used to fit linear or nonlinear curves, but is alm
always used to fit a nonlinear curve, because the general linear 
method is better suited to linear curve fitting. The Levenberg- 
Marquardt method does not always guarantee a correct result, so
absolutely necessary to verify the results. 

Mean Squared Error
The algorithm used to fit a curve to a particular data set is known as th
Least Squares method. Let the observed data set be denoted by y(x), and let 
f(x,a) be the functional description of the data set where a is the set of curve 
coefficients that best describes the curve. The error e(a) between the 
observed values, and its functional description, is defined as

e(a) = [f(x,a) - y(x)]

For example, let a be the vector a = {a
0
, a

1
}. The functional description 

of a line is

f(x,a) = a
0
 + a

1 
x.

The least squares algorithm estimates the values for a from the values of 
y[i] and x[i]. After you have the values for a, you can obtain an estimate
of the observed data set for any value of x using the functional 
description f(x,a). The curve fitting VIs automatically set up and solve
the necessary equations and return the set of coefficients that best
describes your data set. You can thus concentrate on the functiona
description of your data and not worry about the methods used for 
solving for a. 

For each of the observed data points x[i], the differences between t
polynomial value f(x[i],a) and the original data y(x[i]) are called the 
residuals and are given by

ei(a) = fi(x[i],a) - yi(x[i])
© National Instruments Corporation 7-3 LabVIEW Signal Processing Course Manual
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The mean square error (MSE) is a relative measure of these residu
between the expected curve values calculated by the functional 
description f(x[i],a), and the actual observed values of y[i], and is 
given by

where f is the sequence representing the fitted values, Y is the sequence 
representing the observed values, and N is the number of sample points
observed. The smaller the MSE, the better is the fit between the 
functional description and the observed y(x).

In general, for each predefined type of curve fit, there are two types
VIs, unless otherwise specified. One type returns only the coefficie
The other type returns the coefficients, the corresponding expected
fitted curve, and the MSE. 

Applications of Curve Fitting

The practical applications of curve fitting are numerous. Some of th
are listed below.

• Removal of measurement noise.

• Filling in missing data points (for example, if one or more 
measurements were missed or improperly recorded).

• Interpolation (estimation of data between data points) (for examp
if the time between measurements is not small enough).

• Extrapolation (estimation of data beyond data points) (for examp
if you are looking for data values before or after the measureme
were taken).

• Differentiation of digital data. (For example, if you need to find th
derivative of the data points. The discrete data can be modeled 
polynomial, and the resulting polynomial equation can be 
differentiated.)

• Integration of digital data (for example, to find the area under a cu
when you have only the discrete points of the curve).

• To obtain the trajectory of an object based on discrete measurem
of its velocity (first derivative) or acceleration (second derivative

MSE
1
N
---- fi yi–( )2

i 0=

N 1–

∑ 1
N
---- ei a( )( )2

i 0=

N 1–

∑= =
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Exercise 7-1
OBJECTIVE: To perform a linear curve fit on experimental data.

Front Panel

1. Open the Linear Curve Fit  VI from the library Lvspcex.llb . 
This example assumes that you have collected 10 pairs of 
experimental data t and y, and have reason to believe there may be
linear relationship between each pair. 

2. On the front panel, the input data control on the left shows the va
of the data points t[i] and y[i]. After calculating the equation for th
linear fit, the calculated values of y[i] for the measured values of 
are shown on the fitted data indicator on the right. The VI also giv
the values of the parameters a0 and a1 (a and b indicators on the front 
panel) and the resulting MSE.

3. Switch to the block diagram.
© National Instruments Corporation 7-5 LabVIEW Signal Processing Course Manual
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Block Diagram

4. Examine the block diagram.

Linear Fit  VI (Analysis » Curve Fitting subpalette). In this 
exercise, this VI fits the data to a line and finds the 
coefficients a and b such that y[i] = a + b*t[i], as well as th
mean squared error between the data and the linear fit.

5. The input data is in a two-dimensional array, which is a common
format when the data is collected from DAQ hardware. You use 
Index Array  VI to obtain two one-dimensional arrays, y[i] and t[i

6. The MSE is the mean squared error. A smaller error indicates a
better fit.

7. Run the VI. The graph should display the original data, as well as
linear fit.

8. Change the values of y[i] in the input data control. Observe the 
corresponding plots and the effect on the MSE and slope when t
are points that don’t fit well.

9. When you finish, stop the VI by clicking on the STOP button.

10. Close the VI. Do not save any changes.

End of Exercise 7-1
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Exercise 7-2
OBJECTIVE: To perform a polynomial curve fit on experimental data.

Front Panel

1. Open the Polynomial Fit VI from the library Lvspcex.llb . This 
example assumes that the experimental input data has a polyno
relationship where

y[i] = a0 + a1*t[i] + a2*t[i] 2 ...

2. When the polynomial order is 1, there are two coefficients (a0 and a1) 
and the result is a linear fit as in exercise 7-1. However, when th
order is 2, it is a second order polynomial fit with three coefficien
The polynomial coefficients are stored in an array a[i]. You can u
the polynomial order control to choose the order of the polynomia

3. Switch to the block diagram.
© National Instruments Corporation 7-7 LabVIEW Signal Processing Course Manual
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Block Diagram

4. Examine the block diagram.

General Polynomial Fit VI (Analysis » Curve Fitting 
subpalette). In this exercise, this VI fits the data to a 
second-order polynomial curve and returns the fit data, t
coefficients, and the mean squared error between the da
and the polynomial fit.

5. You use the polynomial fit to obtain the fitting coefficients a0, a1, a2, 
etc. In general, you want to use the lowest order possible to fit t
polynomial.

6. Run the VI. The original as well as the fitted data should appear
the graph.

7. Change the values of y[i] in the input data control and the order
the polynomial in the polynomial order control, and observe the 
changes in the plots and the MSE.

8. When you finish, stop the VI by clicking on the STOP button.

9. Close the VI. Do not save any changes.

End of Exercise 7-2
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Exercise 7-3
OBJECTIVE: To use and compare the Linear, Exponential and Polynomial Curve Fit VIs to obtain 

the set of least square coefficients that best represent a set of data points.
1. Open the Regressions Demo VI  from the library Lvspcex.llb . 

The front panel and block diagram are already built for you.

Front Panel

This VI generates “noisy” data samples that are approximately linea
exponential, or polynomial. It then uses the corresponding analysis
curve fitting VIs to determine the parameters of the curve that best 
those data points. (At this stage, you do not need to worry about how
noisy data samples are generated.) You can control the noise ampl
with the Noise Level control on the front panel.
© National Instruments Corporation 7-9 LabVIEW Signal Processing Course Manual
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2. Select Linear in the Algorithm Selector control, and set the Noise 
Level control to about 0.1. Run the VI. Note the spread of the da
points and the fitted curve (straight line).

3. Experiment with different values of Order  and Noise Level. What do 
you notice? How does the mse change?

4. Change the Algorithm Selector to Exponential and run the VI. 
Experiment with different values of Order  and Noise Level. What do 
you notice?

5. Change the Algorithm Selector to Polynomial and run the VI. 
Experiment with different values of Order  and Noise Level. What do 
you notice?
LabVIEW Signal Processing Course Manual 7-10 © National Instruments Corporation
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6. In particular, with the Algorithm Selector control set to Polynomial, 
change the Order  to 0 and run the VI. Then change it to 1 and run
the VI. Explain your observations.

7. Depending on your observations in steps 2, 3, 4, and 5, for whic
the algorithms (Linear, Exponential, Polynomial) is the Order  
control the most effective? Why?

8. Close the VI. Do not save any changes.

End of Exercise 7-3
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B.General LS Linear Fit
The Linear Fit VI calculates the coefficients a0 and a1 that best fits the 
experimental data (x[i] and y[i]) to a straight line model given by 

y[i] = a0 + a1*x[i]

Here, y[i] is a linear combination of the coefficients a0 and a1. You can 
extend this concept further so that the multiplier for a1 is some funct
of x. For example:

y[i] = a0 + a1*sin(ωx[i]) or

y[i] = a0 + a1*x[i] 2 or

y[i] = a0 + a1*cos(ωx[i] 2)

where ω is the angular frequency. In each of these cases, y[i] is a lin
combination of the coefficients a0 and a1. This is the basic idea behind
the General LS Linear Fit VI, where the y[i] can be linear 
combinations of several coefficients, each of which may be multiplie
by some function of the x[i]. Therefore, you can use it to calculate 
coefficients of the functional models that can be represented as line
combinations of the coefficients, such as

y = a0 + a1*sin(ωx)   or

y = a0 + a1*x
2 + a2*cos(ωx2)

y = a0 + a1*(3sin(ωx)) + a2*x
3 + a3 / x + ...

In each case, note that y is a linear function of the coefficients (although
it may be a nonlinear function of x).

You will now see how to use the General LS Linear Fit VI to find the 
best linear fit to a set of data points. The inputs and outputs of the 
General LS Linear Fit VI are shown below.

The data that you collect (x[i] and y[i]) is to be given to the inputs H and 
Y Values. The Covariance output is the matrix of covariances betwee
the coefficients ak, where cij  is the covariance between ai and aj, and ckk 
is the variance of ak. At this stage, you need not be concerned about 
inputs Standard Deviation, covariance selector, and algorithm . For 
LabVIEW Signal Processing Course Manual 7-12 © National Instruments Corporation
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now, you will just use their default values. You can refer to the LabVIEW 
Analysis VI Reference Manual for more details on these inputs.

The matrix H is known as the observation matrix and will be explained 
in more detail later. Y Values is the set of observed data points y[i]. Fo
example, suppose you have collected samples (Y Values) from a 
transducer and you want to solve for the coefficients of the model:

You see that the multiplier for each aj (0 ð j ð3) is a different function. 
For example, a0 is multiplied by 1, a1 is multiplied by sin(ωx), a2 is 
multiplied by cos(ωx), and so on. To build H, you set each column of H 
to the independent functions evaluated at each x value, x[i]. Assuming 
there are 100 “x”  values, H would be:

If you have N data points and k coefficients (a0, a1, ....ak-1) for which to 
solve, H will be an N-by-k matrix with N rows and k columns. Thus, the 
number of rows of H is equal to the number of elements in Y Values, 
whereas the number of columns of H is equal to the number of 
coefficients for which you are trying to solve.

In practice, H is not available and must be built. Given that you have t
N independent X Values and observed Y Values, the following block 
diagram demonstrates how to build H and use the General LS Linear 
Fit  VI.

y ao a1 ωx( )sin a2 ωx( )cos a3x
2

+ + +=

H

1 ωx0( )sin ωx0( )cos x0
2

1 ωx1( )sin ωx1( )cos x1
2

1 ωx2( )sin ωx2( )cos x2
2

… … … …

1 ωx99( )sin ωx99( )cos x99
2

=
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Exercise 7-4
OBJECTIVE: To learn how to set up the input parameters and use the General LS Linear Fit VI.

This exercise demonstrates how to use the General LS Linear Fit VI to 
obtain the set of least square coefficients a and the fitted values, and also
how to set up the input parameters to the VI.

The purpose is to find the set of least square coefficients a that best 
represent the set of data points (x[i], y[i]). As an example, suppose 
have a physical process that generates data using the relationship

         (1)

where

noise is a random value. Also, assume you have some idea of the ge
form of the relationship between x and y, but are not quite sure of the 
coefficient values. So, you may think that the relationship between x and 
y is of the form

         (2)

where

.

Equations (1) and (2) respectively correspond to the actual physica
process and to your guess of this process. The coefficients you choo
your guess may be close to the actual values, or may be far away f
them. Your objective now is to accurately determine the coefficientsa. 

Building the Observation Matrix
To obtain the coefficients a, you must supply the set of (x[i], y[i]) points in
the arrays H and Y Values (where the matrix H is a 2D array) to the General 
LS Linear Fit  VI. The x[i] and y[i] points are the values observed in you

y 2h0 x( ) 3h1 x( ) 4h2 x( ) noise+ + +=

h0 x( ) x
2( ),sin=

h1 x( ) x( ),cos=

h2 x( ) 1
x 1+
------------= , and

y a0f0 x( ) a1f1 x( ) a2f2 x( ) a3f3 x( ) a4f4 x( )+ + + +=

fo x( ) 1.0,=

f1 x( ) x
2( ),sin=

f2 x( ) 3 x( ),cos=

f3 x( ) 1
x 1+
------------,=

f4 x( ) x
4

=
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experiment. A simple way to build the matrix H is to use the Formula Node
as shown in the following block diagram.

You can easily edit the formula node to change, add, or delete functi
At this point, you have all the necessary inputs to use the General LS 
Linear Fit  VI to solve for a. To obtain equation (1) from equation (2)
you need to multiply f0(x) by 0.0, f1(x) by 2.0, f2(x) by 1.0, f3(x) by 4.0 
and f4(x) by 0.0. Thus, looking at equations (1) and (2), note that the
expected set of coefficients are 

.

The block diagram below demonstrates how to set up the General LS 
Linear Fit  VI to obtain the coefficients and a new set of y values.

The subVI labeled Data Create generates the X and Y arrays. 
You can replace this icon with one that actually collects the d
in your experiments. The icon labeled H(X,i)  generates the 2D 
matrix H.

The last portion of the block diagram overlays the original and the 
estimated data points and produces a visual record of the General 

a 0.0, 2.0, 1.0, 4.0, 0.0{ }=
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Linear Fit. Executing the General LS Linear Fit VI with the values of 
X, Y, and H returns the following set of coefficients.

The resulting equation is thus

y = 0.0298(1) + 2.1670sin(x2) + 1.0301(3cos(x)) + 3.9226/(x+1) + 
0.00(x4)

 = 0.0298 + 2.1670sin(x2) + 1.0301(3cos(x)) + 3.9226/(x+1) 

The following graph displays the results.

You will now see the VI in which this particular example has been 
implemented.

1. Open the General LS Fit Example VI  from the library 
Lvspcex.llb .

2. Examine the block diagram and the front panel.

noise amplitude: can change the amplitude of the noise added to 
data points. The larger this value, the more the spread of the da
points.

NumData: the number of data points that you want to generate.

algorithm : provides a choice of six different algorithms to obtain th
set of coefficients and the fitted values. In this particular exampl
there is no significant difference among different algorithms. Yo
can select different algorithms from the front panel to see the resu
In some cases, different algorithms may have significant differenc
depending on your observed data set.
LabVIEW Signal Processing Course Manual 7-16 © National Instruments Corporation
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MSE: gives the mean squared error. The smaller the MSE, the be
the fit.

error : gives the error code in case of any errors. If error code = 0
indicates no error. For a list of error codes, see the appendix.

Coefficients: the calculated values of the coefficients (a0, a1, a2, a3, 
and a4) of the model.

3. Run the VI with progressively larger values of the noise amplitude. 
What happens to the observed data plotted on the graph? What a
the MSE? 

4. For a fixed value of noise amplitude, run the VI by choosing 
different algorithms from the algorithm  control. Do you find that any 
one algorithm is better than the other? Which one gives you the
lowest MSE?

5. When you finish, close the VI. Do not save any changes. 

End of Exercise 7-4
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Exercise 7-5
OBJECTIVE: To predict production costs using the General LS Linear Fit VI.

The VIs that you have seen so far have been used to fit a curve to a fun
of only one variable. In this exercise, you will use the General LS Linear 
Fit  VI to fit a curve to a multivariable function. In particular, the function
will have two variables, X1 and X2. You can, however, generalize it to 
functions of three or more variables.

Suppose you are the manager of a bakery and want to estimate the
cost (in dollars) of a production of baked scones using the quantity 
produced, X1, and the price of one pound of flour, X2. To keep things 
simple, the following five data points form this sample data table.

You want to estimate the coefficients to the equation:

Y=a0 + a1X1 + a2X2.

You can use the General LS Linear Fit VI. It must have the inputs H, 
the observation matrix, and Y Values, a vector of values of the LHS of the
above equation. Each column of H is the observed data for each of the
independent variables associated with the coefficients a0, a1, and a2. 
Note that the first column is one because the coefficient a0 is not 
associated with any independent variable. Thus, H should be filled in as:

In LabVIEW (or BridgeVIEW), the observed data would normally 
appear in three arrays (Y, X1, and X2). The following block diagram 
demonstrates how to build H.

Cost (dollars)

Y

Quantity

X1

Flour Price 

X2

$150 295 3.00

$75 100 3.20

$120 200 3.10

$300 700 2.80

$50 60 2.50

H

1 295 3.00

1 100 3.20

1 200 3.10

1 700 2.80

1 60 2.50

=
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Block Diagram

1. Open the Predicting Cost VI  from the library Lvspcex.llb . The 
values of Y, X1, and X2 have already been entered into the 
corresponding controls on the front panel.

2. Examine the block diagram. Be sure you understand how to build
matrix H. Most of the rest of the block diagram is used to build th
string that displays the equation of the functional model. You do 
need to worry about the rest of the diagram for now.

3. Switch to the front panel and run the VI. Check to see whether t
matrix H was created correctly.
© National Instruments Corporation 7-19 LabVIEW Signal Processing Course Manual
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After running the Predicting Cost VI, the following coefficients are 
obtained.

and the resulting equation for the total cost of scone production is 
therefore:

Y=-20.34 + 0.38X1 + 19.05X2

4. Experiment with different values of X2 (flour price).

5. When you finish, close the VI. Do not save any changes.

End of Exercise 7-5
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C.Nonlinear Lev-Mar Fit
So far, you have seen VIs that are used when there is a linear relation
between y and the coefficients a0, a1, a2, .... However, when a nonlinear 
relationship exists, you can use the Nonlinear Lev-Mar Fit  VI to determine 
the coefficients. This VI uses the Levenberg-Marquardt method, which
very robust, to find the coefficients A = {a0, a1, a2, ..., ak} of the nonlinear 
relationship between A and y[i]. The VI assumes that you have prior 
knowledge of the nonlinear relationship between the x and y coordinates. 

As a preliminary step, you need to specify the nonlinear funct
in the Formula Node on the block diagram of one of the subVI
of the Nonlinear Lev-Mar Fit  VI. This particular subVI is the 
Target Fnc and Deriv NonLin VI. You can access the Target 
Fnc and Deriv NonLin VI by selecting it from the menu that 
appears when you select Project » This VI’s SubVIs. 

Note: When using the Nonlinear Lev-Mar Fit VI, you also need to specify the 
nonlinear function in the Formula Node on the block diagram of the 
Target Fnc and Deriv NonLin VI.

The connections to the Nonlinear Lev-Mar Fit  VI  are shown below:

X and Y are the input data points x[i] and y[i]. 

Initial Guess Coefficients is your initial guess as to what the 
coefficient values are. The coefficients are those used in the form
that you entered in the Formula Node of the Target Fnc and Deriv 
NonLin  VI. Using the Nonlinear Lev-Mar Fit  VI successfully 
sometimes depends on how close your initial guess coefficients
to the actual solution. Therefore, it is always worth taking the tim
and effort to obtain a good initial guess to the solution from any 
available resource.

For now, you can leave the other inputs to their default values. F
more information on these inputs, see the LabVIEW (or 
BridgeVIEW) Analysis VI Reference Manual.

Best Fit Coefficients: the values of the coefficients (a0, a1, ...) that 
best fit the model of the experimental data.
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Exercise 7-6
OBJECTIVE: To create a general exponential signal a*exp(b*x) + c + noise. Then, use the 

Nonlinear Lev-Mar Fit VI to fit the data and get the best guess coefficients a, b, 
and c of the general exponential signal.

In this exercise, you will see how to use the Nonlinear Lev-Mar Fit  VI to 
determine the coefficients a, b, and c, of a nonlinear function given by 
a*exp(b*x) + c. 

1. Open the Nonlinear Lev-Mar Exponential Fit  VI from the library 
Lvspcex.llb . The front panel is shown below.

Front Panel

The a, b, and c controls determine the actual values of the 
coefficients a, b and c. The Initial Coefficients control is your 
educated guess as to the actual values of a, b and c. Finally, the Best 
Guess Coef indicator gives you the values of a, b and c calculated by 
the Nonlinear Lev-Mar Fit  VI. To simulate a more practical 
example, you also add noise to this equation, thus making it of t
form:

a*exp(b*x) + c + noise

The noise level control adjusts the noise level. Note that the actua
values of a, b, and c being chosen are +1.0, -0.1 and 2.0. In the Initial 
Coefficients control, the default guess for these is a = 2.0, b = 0, and 
c = 4.0. 
LabVIEW Signal Processing Course Manual 7-22 © National Instruments Corporation
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2. Examine the block diagram.

Block Diagram

The data samples of the exponential function are simulated 
using the Exponential VI (Numeric » Logarithmic subpalette) 
and uniform white noise is added to the samples with the help
the Uniform White Noise VI  (Analysis » Signal Generation 
subpalette). 

3. From the Project menu, select Unopened SubVIs » Target Fnc and 
Deriv NonLin VI. The front panel of the Target Fnc and Deriv 
NonLin  VI opens, as shown below.
© National Instruments Corporation 7-23 LabVIEW Signal Processing Course Manual
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4. Switch to the block diagram.

Observe the formula node at the bottom. It has the form of the 
function whose parameters (a0, a1, and a2) you are trying to 
evaluate.

5. Close the front panel and the block diagram of the Target Fnc and 
Deriv NonLin  VI.

6. Run the NonLinear Lev-Mar Exponential Fit  VI. Note that the 
values of the coefficients returned in Best Guess Coef are very close 
to the actual values entered in the Initial Coefficients control. Also 
note the value of the mse.

7. Increase the noise level from 0.1 to 0.5. What happens to the mse and 
the coefficient values in Best Guess Coef? Why?

8. Change the noise level back to 0.1 and the Initial Coefficients to 5.0, 
-2.0, and 10.0, and run the VI. Note the values returned in the Best 
Guess Coef and the mse indicators.

9. With the noise level still at 0.1, change your guess of the Initial 
Coefficients to 5.0, 8.0, and 10.0, and run the VI. This time, your
guess is further away than the one you chose in step 4. Note the e
This goes to show how important it is to have a reasonably educ
guess for the coefficients.

10. When you finish, close the VI. Do not save any changes.

End of Exercise 7-6
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D.Fitting a Curve to Gaussian (Normal) Data Points
Real-world data is very often Gaussian distributed. That means that ma
the data points lie close to a particular value, known as the mean, and
number of data points is smaller as you get further away from the mean
mathematical description of a Gaussian (also known as a Normal) 
distribution is:

(3)

where µ is the mean and σ is the standard deviation. The following 
figure shows the Gaussian distribution with µ = 0 and  σ = 0.5, 1.0, 
and 2.0.

As seen from the figure, the curve is bell shaped and is symmetric abou
mean, µ. The peak of the curve occurs at µ. The standard deviation, σ, 
determines the “spread” of the curve around the mean. The smaller the 
of σ, the more concentrated the curve around the mean, the higher the
at the mean, and the steeper the descents on both sides.

If you have data that is Normally distributed, you will find that the 
standard deviation is an important parameter in determining the lim
within which a certain percentage of your data values are expected
occur. For example,

1. About two-thirds of the values will lie between µ-σ and µ+σ.
2. About 95% of the values will lie between µ-2σ and µ+2σ.

f x( ) 1

σ 2π
--------------

1
2
---

x µ–
σ

------------ 
  2

–exp=
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3. About 99.75% of the values will lie between µ-3σ and µ+3σ. Thus, 
you see that almost all the data values lie between µ-3σ and µ+3σ. This 
is illustrated in the figures below:

Notice that the two parameters that completely describe Gaussian 
are the mean and the standard deviation of the data. If you believe your
data has a Gaussian distribution, you could determine its mean and
standard deviation. This has numerous applications, such as determ
whether:

• The dimensions of products being manufactured (for example, 
thickness of plates) are to within specified limits.

• The values of components (for example, resistance of resistors)
to within a specified tolerance.

68%

16% 16%

µ µ + σµ − σ
95.5%

2.25%

µ µ + 2σµ − 2σ
99.76%

0.12%

µ µ + 3σµ − 3σ

2.25%

0.12%
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Exercise 7-7
Objective: To fit a curve to noisy Gaussian data.

1. Open the Normal (Gaussian) Fit VI from the library 
Lvspcex.llb .
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2. Switch to the block diagram.

Block Diagram

Observe that the parameters a and b in the Nonlinear Lev-Mar 
Exponential Fit VI of the previous exercise have been replaced by mean 
and sigma. Note that the controls for the parameter c and the number of 
points have been removed. The For Loop generates the range of the d
lie between -5.0 and +5.0. Most of the additions on the block diagram h
to do with implementing equation (3 ) on page 7-24. Uniform white nois
then added to the Gaussian data generated.

3. Select Project » Unopened SubVIs » Target Fnc & Deriv 
Nonlin VI.
LabVIEW Signal Processing Course Manual 7-28 © National Instruments Corporation
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4. Modify the block diagram of the Target Fnc & Deriv Nonlin  VI as 
shown below.

Block Diagram

5. Go back to the Normal (Gaussian) Fit VI and enter the following 
values in the controls on the front panel:

sigma 1.0

mean 0.0

noise level 0.1

6. Clear the Initial Coefficients  array by popping up on it with the right
mouse button and selecting Data Operations » Empty Array. Set 
the values in Initial Coefficients  to 2.0 and 2.0. These are your 
guesses of sigma and mean, the actual values of which you cho
1.0 and 0.0 in the corresponding controls.

7. Run the VI several times and observe the values of sigma and m
in the Best Guess Coeff indicator. In the plot, you can also see the
spread of the data and the fitted Gaussian curve.

8. Change the value of sigma to 1.0 and run the VI several times. E
time observe the fitted curve, the mse, and the values of the Best 
Guess Coeff.

9. Change Initial Coefficients [0] (the guess for sigma) to 50.0 and 
the VI several times. Does the VI obtain a good estimate of sigm
the array Best Guess Coeff?

10.  Change Initial Coefficients [0] (the guess for sigma) to 500.0 an
again run the VI several times. Now how accurate is the estimat
© National Instruments Corporation 7-29 LabVIEW Signal Processing Course Manual
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11. When you finish, save and close the VI.

In this exercise and the previous one, you had to open the Target Fnc 
and Deriv NonLin VI and enter equations in the formula node. This 
requires a certain amount of work, as well as an understanding of t
formula node, on your part. A much simpler and easier method is to h
the flexibility of entering the formulas directly on the front panel, 
without accessing the block diagram. As you will see in a later less
this is possible by using the G Math Toolkit, which is a mathematics
package (written entirely in G) that is extremely useful for solving 
differential equations, optimization, and a wide variety of other comm
math problems.

End of Exercise 7-7
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Summary

• Curve fitting is useful in fitting an equation to a set of data points
Some of the practical applications of curve fitting are to remove 
measurement noise, to fill in missing data points, interpolation, 
extrapolation, and integration and differentiation of digital data.

• In particular, you have learned how to use the Linear, Exponential, 
Polynomial, General Linear LS Fit, and Nonlinear Lev-Mar Fit  
VIs to perform several different types of linear and nonlinear fits

• The MSE is a useful criterion in determining the fit accuracy.

Review Questions
1. Name five applications of curve fitting.

2. Which curve fitting VI would you use to determine the paramete
(denoted by the ai...i integer) of the following models?

a. y = a0exp(a1x)

b. y = a0exp(a1x) + a2

c. y = a1x + a2x2

d. y = a1sin(x) + a2cos(x) = 

e. t = a1y + a2x2 where x and y are different variables

a3

x 1+
------------
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Introduction
In this lesson, you will learn the basic theory behind the Linear Algebra 
in the Analysis library and how these VIs can be used in different 
applications. Matrix computations, such as matrix-matrix multiplication
and many others discussed throughout this lesson, form a significant 
component of linear algebra and are very important in analysis. The V
discussed in this lesson form the basis of different algorithms used in m
DSP, control, and measurement applications. Therefore, it is important
you completely understand the theory and different VIs discussed in th
lesson.

You Will Learn:

A. About linear systems and matrix analysis.

B. About basic matrix operations and eigenvalue-eigenvector 
problems.

C. About the inverse of a matrix and solving systems of linear 
equations.

D. About matrix factorization.
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A.Linear Systems and Matrix Analysis
Systems of linear algebraic equations arise in many applications that 
involve scientific computations such as signal processing, computation
fluid dynamics, and others. Such systems may occur naturally or may b
result of approximating differential equations by algebraic equations.

Types of Matrices
Whatever the application, it is always necessary to find an accurate sol
for the system of equations in a very efficient way. In matrix-vector 
notation, such a system of linear algebraic equations has the form Ax = b, 
where A is an  matrix, b is a given vector consisting of n elements, and 
x is the unknown solution vector to be determined. A matrix is represen
by a 2D array of elements. These elements may be real numbers, com
numbers, functions, or operators. The matrix A shown below is an array of
m rows and n columns with  elements.

Here, ai,j  denotes the (i,j) th element located in the ith row and the j th 
column. In general, such a matrix is called a rectangular matrix. When 

, so that the number of rows is equal to the number of columns
is called a square matrix. An  matrix (m rows and one column) is 
called a column vector. A row vector is a  matrix (1 row and n 
columns). If all the elements other than the diagonal elements are z
(that is, ai,j = 0, ), such a matrix is called a diagonal matrix. For 
example,

is a diagonal matrix. A diagonal matrix with all the diagonal elemen
equal to one is called an identity matrix, also known as unit matrix. If all 
the elements below the main diagonal are zero, then the matrix is kn
as an upper triangular matrix. On the other hand, if all the elements 
above the main diagonal are zero, then the matrix is known as a lower 
triangular matrix. When all the elements are real numbers, the matrix
referred to as a real matrix. On the other hand, when at least one of th
elements of the matrix is a complex number, the matrix is referred to
a complex matrix. To make things simpler to understand, you will wor
mainly with real matrices in this lesson. However, for the adventuro
there are also some exercises involving complex matrices. 

n n×

m n×

A

a0 0, a0 1, … a0 n 1–,

a1 0, a1 1, … a1 n 1–,

… … … …
am 1– 0, am 1– 1, … am 1– n 1–,

=

m n=

m 1×
1 n×

i j≠

A
4 0 0

0 5 0

0 0 9

=
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Determinant of a Matrix
One of the most important attributes of a matrix is its determinant. In

 the simplest case, the determinant of a 2 x 2 matrix  is giv

by . The determinant of a square matrix is formed by taking th
determinant of its elements. For example, if

the determinant of A, denoted by , is

 = =

=-196

The determinant tells many important properties of the matrix. For 
example, if the determinant of the matrix is zero, then the matrix is 
singular. In other words, the above matrix (with nonzero determinant
nonsingular. You will revisit the concept of singularity later in section
C, when the lesson discusses the solution of linear equations and m
inverses.

Transpose of a Matrix
The transpose of a real matrix is formed by interchanging its rows and 
columns. If the matrix B represents the transpose of A, denoted by AT, then 
bj,i=ai,j . For the matrix A defined above,

In case of complex matrices, complex conjugate transposition is defin
If the matrix D represents the complex conjugate transpose1 of a 
complex matrix C, then

That is, the matrix D is obtained by replacing every element in C by its 
complex conjugate and then interchanging the rows and columns of
resulting matrix.

1.  Complex Conjugate: if a = x + iy, complex conjugate a* = x - iy

A a b

c d
=

ad bc–

A
2 5 3

6 1 7

1 6 9

=

A

A 2 5 3

6 1 7

1 6 9

2 1 7

6 9
5 6 7

1 9
– 3 6 1

1 6
+

 
 
 

=
2 33–( ) 5 47( )– 3 35( )+

B AT
2 6 1

5 1 6

3 7 9

==

D CH di j, c∗j i,=⇒=
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A real matrix is called a symmetric matrix if  the transpose of the matrix
is equal to the matrix itself. The example matrix A is not a symmetric 
matrix. If a complex matrix C satisfies the relation C = CH, then C is 
called a Hermitian matrix.

Obtaining One Vector as a Linear Combination of Other Vectors 
(Linear Independence)
A set of vectors x1, x2, ...., xn is said to be linearly dependent if and only if 
there exist scalars α1, α2, ..., αn, not all zero, such that

 

In simpler terms, if one of the vectors can be written in terms of a lin
combination of the others, then the vectors are said to be linearly 
dependent.

If the only set of αi for which the above equation holds is , 
, ..., , the set of vectors x1, x2, ...., xn is said to be linearly 

independent. So, in this case, none of the vectors can be written in te
of a linear combination of the others. Given any set of vectors, the ab
equation always holds for , , ..., . Therefore, to
show the linear independence of the set, you must show that 

, ...,  is the only set of αi for which the above equation 
holds. 

For example, first consider the vectors

Notice that  and  are the only values for which the relati
 holds true. Hence, these two vectors are linearly 

independent of each other. Now, consider vectors

Notice that, if  and , then . Therefore, thes
two vectors are linearly dependent on each other. You must comple
understand this definition of linear independence of vectors to fully 
appreciate the concept of the rank of the matrix as discussed next.

How Can You Determine Linear Independence? (Matrix Rank)
The rank of a matrix A, denoted by ρ(A), is the maximum number of linearly
independent columns in A. If you look at the example matrix A, you will find 
that all the columns of A are linearly independent of each other. That is, 
none of the columns can be obtained by forming a linear combination o

α1x1 α2x2 … αnxn+ + + 0=

α1 0=

α2 0= αn 0=

α1 0= α2 0= αn 0=

α1 0=

α2 0= αn 0=

x 1

2
= y 3

4
=

α1 0= α2 0=

α1x α2y+ 0=

x 1

2
= y 2

4
=

α1 2–= α2 1= α1x α2y+ 0=
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other columns. Hence, the rank of the matrix is 3. Consider one more 
example matrix, B, where

This matrix has only two linearly independent columns, because the
third column of B is linearly dependent on the first two columns. Henc
the rank of this matrix is 2. It can be shown that the number of linea
independent columns of a matrix is equal to the number of independ
rows. So, the rank can never be greater than the smaller dimension o
matrix. Consequently, if A is an  matrix, then

 

where min denotes the minimum of the two numbers. In matrix theor
the rank of a square matrix pertains to the highest order nonsingula
matrix that can be formed from it. Remember from the earlier discuss
that a matrix is singular if its determinant is zero. So, the rank perta
to the highest order matrix that you can obtain whose determinant is
zero. For example, consider a 4 x 4 matrix

 

For this matrix, , but

 

Hence, the rank of B is 3. A square matrix has full rank if and only if its
determinant is different from zero. Matrix B is not a full-rank matrix.

“Magnitude” (Norms) of Matrices 
You must develop a notion of the “magnitude” of vectors and matrices
measure errors and sensitivity in solving a linear system of equations. A
example, these linear systems can be obtained from applications in co
systems and computational fluid dynamics. In two dimensions, for exam
you cannot compare two vectors  and , because y
might have  but . A vector norm is a way to assign a scala
quantity to these vectors so that they can be compared with each othe
similar to the concept of magnitude, modulus, or absolute value for sca
numbers.

B
0 1 1

1 2 3

2 0 2

=

n m×

ρ A( ) min n m,( )≤

B

1 2 3 4

0 1 1– 0

1 0 1 2

1 1 0 2

=

det B( ) 0=

1 2 3

0 1 1–

1 0 1

1–=

x x1 x2= y y1 y2=

x1 y1> x2 y2<
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There are several ways to compute the norm of a matrix. These inc
the 2-norm (Euclidean norm), the 1-norm, the Frobenius norm (F-norm), 
and the Infinity norm (inf-norm). Each norm has its own physical 
interpretation. Consider a unit ball containing the origin. The Euclide
norm of a vector is simply the factor by which the ball must be expan
or shrunk to encompass the given vector exactly. This is shown in t
figures below:

Figure 1a shows a unit ball of radius = 1 unit. Figure 1b shows a ve
of length  =  = . As shown in figure 1c, the unit ball mu
be expanded by a factor of  before it can exactly encompass th
given vector. Hence, the Euclidean norm of the vector is .

The norm of a matrix is defined in terms of an underlying vector nor
It is the maximum relative stretching that the matrix does to any vec
With the vector 2-norm, the unit ball expands by a factor equal to the
norm. On the other hand, with the matrix 2-norm, the unit ball may 
become an ellipsoidal (ellipse in 3D), with some axes longer than oth
The longest axis determines the norm of the matrix.

1

1

2

2

2√2

Figure 1bFigure 1a

2

2

Figure 1c

2√2

22 22+ 8 2 2

2 2

2 2
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Some matrix norms are much easier to compute than others. The 1-norm 
is obtained by finding the sum of the absolute value of all the eleme
in each column of the matrix. The largest of these sums is called th
1-norm. In mathematical terms, the 1-norm is simply the maximum 
absolute column sum of the matrix.

 

For example, 

then . The inf-norm of a matrix is the maximum 
absolute row sum of the matrix

In this case, you add the magnitudes of all elements in each row of
matrix. The maximum value that you get is called the inf-norm. For t
above example matrix, . 

The 2-norm is the most difficult to compute because it is given by th
largest singular value of the matrix. Singular values are discussed i
Section D, and Exercise 8-9 verifies the validity of the above statem

Determining Singularity (Condition Number)
Whereas the norm of the matrix provides a way to measure the magni
of the matrix, the condition number of a matrix is a measure of how clos
the matrix is to being singular. The condition number of a square 
nonsingular matrix is defined as

 

where p can be one of the four norm types discussed above. For exam
to find the condition number of a matrix A, you can find the 2-norm of 
A, the 2-norm of the inverse1 of the matrix A, denoted by A-1, and then 
multiply them together. As mentioned earlier, the 2-norm is difficult 
calculate on paper. You can use the Matrix Norm  VI from the Analysis 
library to compute the 2-norm. For example, 

1.  The inverse of a square matrix A is a square matrix B such that AB=I, where I is the identity matrix. 
Matrix inverses and their applications are described in more detail later in section C. 

A 1 maxj ai j,

i 0=

n 1–

∑=

A 1 3

2 4
=

A 1 max 3 7,( ) 7= =

A ∞ maxi ai j,

j 0=

n 1–

∑=

A ∞ max 4 6,( ) 6= =

cond A( ) A p A 1–
p⋅=

A 1 2

3 4
A 1–, 2– 1

1.5 0.5–
A 2, 5.4650 A 1–

2, 2.7325 cond A( ), 14.9331= = = = =
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The condition number can vary between 1 and infinity. A matrix with
large condition number is nearly singular, while a matrix with a 
condition number close to 1 is far from being singular. The matrix A 

above is nonsingular. However, consider the matrix . 

The condition number of this matrix is 47168, and hence the matrix
close to being singular. As you might recall, a matrix is singular if it
determinant is equal to zero. However, the determinant is not a goo
indicator for assessing how close a matrix is to being singular. For 
matrix B above, the determinant (0.0299) is nonzero; however, the la
condition number indicates that the matrix is close to being singula
Remember that the condition number of a matrix is always greater t
or equal to one; the latter being true for identity and permutation 
matrices1. The condition number is a very useful quantity in assessi
the accuracy of solutions to linear systems. 

In this section, you have become familiar with some basic notation 
fundamental matrix concepts such as determinant of a matrix and i
rank. The following exercise should help you further understand the
terms, which will be used frequently throughout the rest of the lesso

1.  A permutation matrix is an identity matrix with some rows and columns exchanged.

B 1 0.99

1.99 2
=
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Exercise 8-1
Objective: To construct matrices, compute condition number, rank, and determinant, and 

observe how the condition number affects the accuracy of the solution.
In this exercise, you will complete a VI that constructs four different 
matrices of size . You will determine the condition number, rank, a
determinant of these matrices. You will then solve a curve fitting proble
and observe how the condition number of these matrices affects the 
accuracy of the final solution.

1. Open the Construct Matrices VI from Lvspcex.llb .

2. The array population (nine elements) contains the population dat
for the United States for the years 1900 to 1980, at intervals of 1
years. This data has been plotted for you in the graph labeled 
population graph. To find the population in any one of the 
intermediate years, you need to interpolate between these nine 
points. This interpolation can be achieved by first fitting a curve 
these data points and then using the curve to obtain the intermed
values. This curve is represented by a unique polynomial of deg
eight that interpolates these nine data points, but that polynomial
be represented in many different ways. Consider the following fo
ways to represent the individual terms in the polynomial:

(i)  

(ii) 

(iii) 

(iv) 

9 9×

bj t( ) tj=

bj t( ) t 1900–( )j=

bj t( ) t 1940–( )j=

bj t( ) t 1940–( ) 40⁄( )j=
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For example, the actual polynomial in case (i) is given by

y = a0 + a1t + a2t2 + ...

where the ai are the curve parameters to be determined.

To determine these parameters, it is necessary to solve a linear sys
of equations va = y, where v is a matrix, a = [a0, a1, ...], and y is the 
population vector.

For each of these four representations, you can generate the matrixV, 
where the (i,j) th element of this matrix is given by

Such a matrix V is referred to as the Vandermonde matrix. For example, 
if you are using the polynomial representation (i) above, the 
Vandermonde matrix will look like

where ti (0 ð i ð n-1) is the i th element of the vector “year.”

vi j, bj t i[ ]( )=

V

1 t0 t0
2 … t0

n 1–

1 t1 t1
2 … t1

n 1–

… … … … …

1 tn 1– tn 1–
2 … tn 1–

n 1–

=
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Block Diagram

3. Open the block diagram for this VI and complete it as shown abo

Matrix Condition Number  VI (Analysis » Linear Algebra » 
Advanced Linear Algebra subpalette). In this exercise, this 
function computes the matrix condition number.

Determinant VI (Analysis » Linear Algebra subpalette). In this 
exercise, this function computes the matrix determinant.

Matrix Rank  VI (Analysis » Linear Algebra » Advanced 
Linear Algebra  subpalette). In this exercise, this function 
computes the matrix rank. 

Bundle function (Cluster subpalette) In this exercise, this 
function assembles the population array and the year array 
plot the population array against the year array.
© National Instruments Corporation 8-11 LabVIEW Signal Processing Course Manual
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4. The subdiagrams in Case t^j, (t-1900)^j, (t-1940)^j, and 
((t-1940)/40)^j construct the matrices corresponding to the 
polynomial functions (i), (ii) , (iii),  and (iv), respectively. The 
subdiagrams in the first three cases, as shown above, are alrea
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built for you. You need only complete the subdiagram in Case 
((t-1940)/40)^j.

5. The Matrix Condition Number  VI has an input called norm type. 
Earlier in the section, you looked at different types of norms. This
can compute the condition number using four different norm typ
In this exercise, you will set norm type = 0, which is the 2-norm.

6. The Determinant VI has an input called matrix type . In this 
exercise, you will set matrix type  = 0 (general matrix). 

7. The Matrix Rank  VI has an input called tolerance. Leave this 
terminal unconnected, using the default value for this exercise.

8. Return to the front panel and run the VI. Choose different 
polynomial functions using the polynomial function selector control. 

9. Look at the condition numbers of the four matrices. Which is ver
close to being singular?

10. Save and close this VI.
© National Instruments Corporation 8-13 LabVIEW Signal Processing Course Manual
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11. You will now use the matrices (computed in the Construct Matrices 
VI) to calculate the population for any year between 1900 and 19
To do so, open the Compute Population VI from Lvspcex.llb . 
This VI computes a polynomial to interpolate the data values to 
population data. It then computes the population for a specified y
using the Horner’s nested evaluation scheme1. 

12.  Return to the front panel for the VI opened in step 10. Set the 
“choose year” control to 1950. Using each of the four polynomia
functions, run the VI to compute the population for this year. The 
dot on the population graph shows the population value for the yea
chosen. Which of these values is closest to the true value of 
151,325,798, according to the 1950 census?

13. Save the VI and close it.

End of Exercise 8-1

1.  For more information on this method, refer to Scientific Computing, An Introduction Survey by M.T. 
Heath, McGraw-Hill, 1997.
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Exercise 8-2
Objective: To study special matrices.

In this exercise, you will learn to use the Create Special Matrix VI in 
the Analysis library. Examine the different types of special matrices t
this VI creates. Note that this VI also generates the Vandermonde m
used in the previous exercise.

Front Panel

1. Build the front panel as shown above. You can resize the 
two-dimensional matrices D, U, and L to see all the elements in 
matrix. 
© National Instruments Corporation 8-15 LabVIEW Signal Processing Course Manual
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Block Diagram 

2. Build the block diagram as shown above. 

Create Special Matrix VI (Analysis » Linear 
Algebra » Advanced Linear Algebra subpalette). In this 
exercise, this function creates special matrices. You will 
complete it in steps 4, 5, and 6.

3. Construct Diagonal Matrix  D using the Create Special Matrix VI  
from the Analysis » Linear Algebra » Advanced Linear Algebra 
subpalette. The matrix size input determines the dimension size of
the output Special Matrix. Choose matrix size = 6.

4. The matrix type input determines the type of matrix that is generat
at the output Special Matrix. Choose matrix type = Diagonal. 

5. Enter the diagonal elements 1, 2, 3, 4, 5, and 6 in the Diagonal 
Elements control on the front panel. Connect this control to the Input 
Vector1 terminal. The Input Vector1 terminal is the input to 
construct a special matrix depending on the matrix type  chosen.

6. Return to the front panel and run the VI.

7. Compute the determinant of this matrix as you did in the earlier 
exercise. Do you find anything interesting about this determinan
LabVIEW Signal Processing Course Manual 8-16 © National Instruments Corporation
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value? If yes, what is it? If no, take a close look at the diagonal 
elements of the matrix D.

8. Select the Upper Lower Symmetric Matrix  VI  from 
Lvspcex.llb . Set Select Matrix Type = 0 (upper triangular 
matrix). Set matrix Size = 6. Wire the matrix D to the input matrix  
terminal. The output matrix  U is an upper triangular matrix. 

9. Compute the determinant of this matrix. Do you find anything 
interesting about this determinant value? If yes, what is it? 

10. Choose matrix type = 1 (lower triangular matrix). Set matrix Size 
equal to 6. Wire the matrix D to the input matrix  terminal. The 
output matrix  L is a lower triangular matrix. Repeat step 6.

11. Save the VI as Special Matrix.vi and close it.

Note: The determinant for all the three matrices is equal to the product of the
diagonal elements of the matrices. 

End of Exercise 8-2
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B.Basic Matrix Operations and Eigenvalues-Eigenvector 
Problems

In this section, consider some very basic matrix operations. Two 
matrices, A and B, are said to be equal if they have the same number
rows and columns and their corresponding elements are all equal. 
Multiplication of a matrix A by a scalar  is equal to multiplication of
all its elements by the scalar. That is,

 

For example,

Two (or more) matrices can be added or subtracted if and only if th
have the same number of rows and columns. If both matrices A and B 
have m rows and n columns, then their sum C is an m-by-n matrix 
defined as , where . For example,

 

For multiplication of two matrices, the number of columns of the firs
matrix must be equal to the number of rows of the second matrix. If
matrix A has m rows and n columns and matrix B has n rows and p 
columns, then their product C is an m-by-p matrix defined as , 
where

 

For example,

α

C αA ci j,⇒ αai j,= =

2 1 2

3 4

2 4

6 8
=

C A B±= ci j, ai j, bi j,±=

1 2

3 4

2 4

5 1
+ 3 6

8 5
=

C AB=

ci j, ai k, bk j,

k 0=

n 1–

∑=

1 2

3 4

2 4

5 1
× 12 6

26 16
=
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So, you multiply the elements of the first row of A by the corresponding 
elements of the first column of B and add all the results to get the 
elements in the first row and first column of C. Similarly, to calculate 
the element in the ith row and the jth column of C, multiply the elements 
in the ith row of A by the corresponding elements in the jth column of C, 
and then add them all. This is shown pictorially as:

Matrix multiplication, in general, is not commutative. That is, 
Also, remember that multiplication of a matrix by an identity matrix 
results in the original matrix.

Dot Product and Outer Product
If X represents a vector and Y represents another vector, then the dot 
product of these two vectors is obtained by multiplying the correspond
elements of each vector and adding the results. This is denoted by

where n is the number of elements in X and Y. Note that both vectors 
must have the same number of elements. The dot product is a scal
quantity, and has many practical applications.

Rn • C1 Rn • Cm

R1 • C1 R1 • Cm

R1

Rn

X
Cm C1

=

AB BA≠

X Y• xiyi

i 0=

n 1–

∑=
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For example, consider the vectors  and  in a 
two-dimensional rectangular coordinate system. 

The dot product of these two vectors is given by

The angle α between these two vectors is given by

,

where |a| denotes the magnitude of a. 

As a second application, consider a body on which a constant forcea 
acts. The work W done by a in displacing the body is defined as the 
product of |d| and the component of a in the direction of displacement d. 
That is,

On the other hand, the outer product of these two vectors is a matrix. The
(i,j) th element of this matrix is obtained using the formula

For example, 

a 2i 4j+= b 2i j+=

a=2i+4j

b=2i+j

α = 36.86°

d 2

4

2

1
• 2 2×( ) 4 1×( )+ 8= = =

α inv
a b•
a b
------------ 

 cos inv
8
10
------ 

 cos 36.86o= = =

d

Force a

α
α

Body

W a d αcos a d•= =

ai j, xi yj×=

1

2

3

4
× 3 4

6 8
=
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Eigenvalues and Eigenvectors
To understand eigenvalues and eigenvectors, start with the classical 
definition. Given an  matrix A, the problem is to find a scalar λ and a 
nonzero vector x such that

 

Such a scalar λ is called an eigenvalue, and x is a corresponding 
eigenvector.

Calculating the eigenvalues and eigenvectors are fundamental princ
of linear algebra and allow you to solve many problems such as syst
of differential equations when you understand what they represent.
Consider an eigenvector x of a matrix A as a nonzero vector that does no
rotate when x is multiplied by A (except perhaps to point in precisely th
opposite direction). x may change length or reverse its direction, but 
will not turn sideways. In other words, there is some scalar constanλ 
such that the above equation holds true. The value λ is an eigenvalue 
of A. 

Consider the following example. One of the eigenvectors of the

matrix A, where , is . Multiplying the matrix A and

the vector x simply causes the vector x to be expanded by a factor of 
6.85. Hence, the value 6.85 is one of the eigenvalues of the matrix A. For 
any constant , the vector  is also an eigenvector with eigenvalu
because

 

In other words, an eigenvector of a matrix determines a direction in
which the matrix expands or shrinks any vector lying in that direction
a scalar multiple, and the expansion or contraction factor is given by
corresponding eigenvalue. A generalized eigenvalue problem is to find
a scalar  and a nonzero vector x such that

where B is another  matrix.

The following are some important properties of eigenvalues and 
eigenvectors:

• The eigenvalues of a matrix are not necessarily all distinct. In ot
words, a matrix can have multiple eigenvalues. 

• All the eigenvalues of a real matrix need not be real. However, 
complex eigenvalues of a real matrix must occur in complex 
conjugate pairs. 

n n×

Ax λx=

A 2 3

3 5
= x 0.62

1.00
=

α αx λ

A αx( ) αAx λαx==

λ

Ax λBx=

n n×
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• The eigenvalues of a diagonal matrix are its diagonal entries, and
eigenvectors are the corresponding columns of an identity matrix
the same dimension. 

• A real symmetric matrix always has real eigenvalues and 
eigenvectors.

• As discussed earlier, eigenvectors can be scaled arbitrarily.

There are many practical applications in the field of science and 
engineering for an eigenvalue problem. For example, the stability o
structure and its natural modes and frequencies of vibration are 
determined by the eigenvalues and eigenvectors of an appropriate 
matrix. Eigenvalues are also very useful in analyzing numerical 
methods, such as convergence analysis of iterative methods for sol
systems of algebraic equations, and the stability analysis of method
solving systems of differential equations.

The LabVIEW/BridgeVIEW EigenValues and Vectors VI is shown 
below. The Input Matrix  is an N-by-N real square matrix. Matrix type  
determines the type of the input matrix. Matrix type  could be 0, 
indicating a general matrix1, or 1, indicating a symmetric matrix. A 
symmetric matrix always has real eigenvalues and eigenvectors.

Output option determines what needs to be computed. Output 
option = 0 indicates that only the eigenvalues need to be computed
Output option = 1 indicates that both the eigenvalues and the 
eigenvectors should be computed. It is computationally very expens
to compute both the eigenvalues and the eigenvectors. So, it is impo
that you use the output option control in the EigenValues and Vectors 
VI very carefully. Depending on your particular application, you mig
just want to compute the eigenvalues or both the eigenvalues and t
eigenvectors. Also, a symmetric matrix needs less computation tha
unsymmetric matrix. So, choose the matrix type control carefully. 

In this section, you learned about some basic matrix operations and
eigenvalues-eigenvectors problem. The next example introduces so
VIs in the Analysis library that perform these operations.

1.  General Matrix: A matrix with no special property such as symmetry or triangular structure.
LabVIEW Signal Processing Course Manual 8-22 © National Instruments Corporation
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Exercise 8-3
Objective: To learn basic matrix manipulations

You will build a VI that will help you further understand the basic matri
manipulations discussed in the first part of the previous section. You w
also learn some very interesting matrix properties.

1. Build the front panel as shown above. You can resize the 
two-dimensional matrices A, B, and C to see all the elements in the
matrix.

2. In this exercise, you will experiment with three different types of
matrices, namely upper triangular, lower triangular, and symmet
matrix. You will use the Upper Lower Symmetric Matrix  VI that 
you used in the previous exercise.
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3. Build the block diagram as shown above. 

Create Special Matrix VI (Analysis » Linear Algebra » 
Advanced Linear Algebra subpalette). In this exercise, this 
function creates special matrices.

AxB VI (Analysis » Linear Algebra subpalette) In this exercise
this function multiplies two matrices).

4. Create a diagonal matrix using the Create Special Matrix VI. Select 
the Upper Lower Symmetric Matrix  VI from the library 
Lvspcex.llb . This VI will create the appropriate type of matrix
depending on the Matrix Type  control. 

5. Select the A x B VI from the Analysis » Linear Algebra subpalette. 
You will use this VI to multiply matrix A and matrix B and the result 
of this multiplication is stored in matrix C.

6. Return to the front panel. Choose Matrix A Size = 6 and Matrix B 
Size = 6. Set the Diagonal Elements A and Diagonal Elements B 
controls for both the matrices to some value (similar to what you 
in the previous exercise). The size of this array is equal to the ma
size.

7. Choose Matrix Type  = 0 (Upper Triangular Matrix). Run the VI. 
Observe the structure of the upper triangular matrices A and B. 
Matrix C is the product of these two matrices. Do you find anythi
interesting about the structure of this matrix?

8. Now choose Matrix Type  = 1 (Lower Triangular Matrix). Run the 
VI. Observe the structure of the two lower triangular matrices A 
LabVIEW Signal Processing Course Manual 8-24 © National Instruments Corporation
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and B. Matrix C is the product of these two matrices. Do you find
anything interesting about the structure of this matrix?

9. Now choose Matrix Type  = 2 (Symmetric Matrix). Run the VI. 
Observe the structure of the two symmetric matrices A and B. 
Matrix C is the product of these two matrices. Do you find anythin
interesting about the structure of this matrix?

10. Change the Matrix A Size to 5. Keep the Matrix B Size at 6. Run the 
VI. Why did you get an error1?

11. Save the VI as Matrix Multiplication.vi  and close it.

End of Exercise 8-3

1.  Description of Error Code -20039: The number of columns in the first matrix is not equal to the numbe
of rows in the second matrix or vector.
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Exercise 8-4
Objective: To study positive definite matrices.

In many applications, it is advantageous to determine if your matrix
positive definite. This is because if your matrix is indeed positive 
definite, you can save a significant amount of computation time whe
using VIs to compute determinants, solve linear systems of equation
compute the inverse of a matrix. All these VIs let you choose the ma
type, and properly identifying the matrix can significantly improve 
performance.

In this exercise, you will learn about complex positive definite matric
A complex matrix is positive definite if and only if it is Hermitian; tha
is, , and the quadratic form  for all nonzero vectors X.

Front Panel 

1. Build the matrix A and the rest of the front panel as shown in the fro
panel above.

2. Switch to the block diagram and use the Test Complex Positive 
Definite VI to check if this matrix is positive definite. 

Test Complex Positive Definite VI (Analysis » Linear 
Algebra » Complex Linear Algebra » Advanced Complex 
Linear Algebra  subpalette). Use this function to check if the
input matrix A is positive definite.

3. Enter the vector X shown below in the array of controls x.

 

A AH= XHAX 0>

x
2.34 9.8i+

1.23 4.5i+

3.45 4.56i–

=
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4. Enter the complex conjugate CX of X in the array of controls cx. 
(This part has not been completed in the front panel above.) 

Hint : Complex Conjugate of a+ib is a-ib

Complex A x Vector VI (Analysis » Linear 
Algebra » Complex Linear Algebra subpalette). This 
function multiplies a complex input matrix and a complex
input vector.

5. Switch to the block diagram. Compute the complex matrix vecto
multiplication . 

Hint : Use the Complex A x Vector VI

Complex Dot Product VI (Analysis » Linear 
Algebra » Complex Linear Algebra subpalette) Use this 
function to compute the dot product of two complex vecto

6. Compute the complex dot product of the vectors CX and Y. That is, 
. 

Hint : Use the Complex Dot Product VI.

7. You have now computed the product . What is the value
Z? Does this result verify the above definition of complex positiv
definite matrices?

8. Compare your block diagram with the diagram shown below.

9. Save the VI as Positive Definite Matrix.vi  and close it.

End of Exercise 8-4

Y AX=

Z CX Y•=

Z XHAX=
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Exercise 8-5
Objective: To compute the eigenvalues and eigenvectors of a real matrix.

As explained earlier, the eigenvalues-eigenvector problem is widely
used in a number of different practical applications. For example, in
design of control systems, the eigenvalues help determine whether
system is stable or unstable. If all the eigenvalues have nonpositive
parts, the system is stable. However, if any of the eigenvalues have
positive real part, it means that the system is unstable. If the system
unstable, you can design a feedback system to obtain the desired 
eigenvalues and ensure stability of the overall system.

In this exercise, you will use the EigenValues and Vectors VI to 
compute all the eigenvalues and eigenvectors of a real matrix. You 
also learn an alternative definition of eigenvalues and numerically ve
this definition.

1. Build the front panel as shown above. You can resize the contro
view all the elements in the matrices A and EigenVectors and the 
array EigenValues. The size of the matrix A is . 

Eigenvalues is a one-dimensional complex array of size 10 
containing all the computed eigenvalues of the input matrix.

Eigenvectors is a  complex matrix containing all the 
computed eigenvectors of the input matrix. The ith column of 
Eigenvectors is the eigenvector corresponding to the ith component 
of the Eigenvalues vector.

10 10×

10 10×
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2. Build the block diagram as shown below.

EigenValues and Vectors VI (Analysis » Linear Algebra 
subpalette) In this exercise, you will use this VI to compute t
eigenvalues and the eigenvectors of the input matrix.

3. Matrix A is a real matrix consisting of randomly generated numbe
Use the EigenValues and Vectors VI from the Analysis » Linear 
Algebra subpalette to compute both the eigenvalues and the 
eigenvectors of this matrix. Remember to set the output option 
control to 1. Choose matrix type = General.

4. Earlier in this section, you looked at the classical definition of 
eigenvalues and eigenvectors. A different and widely used definit
of eigenvalues is as follows. The eigenvalues of A are the values  
such that , where det stands for the determinant of 
the matrix. In this exercise, you will numerically verify the 
validity of this definition. Select the Check Definition VI from 
Lvspcex.llb . The round LED on the front panel will glow green
if the definition is true and turn to red if the definition fails. 

λ
det A λI–( ) 0=
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5. Run the VI several times. You will notice that the eigenvalues can
real or complex numbers although the matrix is purely real. The sa
holds true for the eigenvectors also. Furthermore, you will notice
that complex eigenvalues of a real matrix always occur in compl
conjugate pairs (that is, if  is an eigenvalue of a real matrix,
is ).

6. Did the definition stated above in step 3 always hold true?

7. Save the VI as My EigenValues and Vectors.vi and close it. 

End of Exercise 8-5

α iβ+

α iβ–
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C.Matrix Inverse and Solving Systems of Linear Equations
The inverse, denoted by , of a square matrix A is a square matrix such 
that

where I is the identity matrix. The inverse of a matrix exists if and on
if the determinant of the matrix is not zero (that is, it is nonsingular).
general, you can find the inverse of only a square matrix. You can, 
however, compute the pseudoinverse of a rectangular matrix, as 
discussed later in section D.

Solutions of Systems of Linear Equations
In matrix-vector notation, a system of linear equations has the form 
where A is a  matrix and b is a given n-vector. The aim is to determine
x, the unknown solution n-vector. There are two important questions to b
asked about the existence of such a solution. Does such a solution exis
if it does is it unique? The answer to both of these questions lies in 
determining the singularity or nonsingularity of the matrix A. 

As discussed earlier, a matrix is said to be singular if it has any one
the following equivalent properties:

• The inverse of the matrix does not exist.

• The determinant of the matrix is zero.

• The rows (or columns) of A are linearly dependent.

•  for some vector .

Otherwise, the matrix is nonsingular. If the matrix is nonsingular, its
inverse  exists, and the system  has a unique solution: 
regardless of the value for b. On the other hand, if the matrix is singular
then the number of solutions is determined by the right-side vector b. If 
A is singular and , then  for any scalar , where th
vector z is as in the last definition above. Thus, if a singular system
a solution, then the solution cannot be unique.

It is not a good idea to explicitly compute the inverse of a matrix, 
because such a computation is prone to numerical inaccuracies. 
Therefore, it is not a good strategy to solve a linear system of equat
by multiplying the inverse of the matrix A by the known right-side 
vector. The general strategy to solve such a system of equations is
transform the original system into one whose solution is the same as
of the original system, but is easier to compute. One way to do so i

A 1–

A 1– A AA 1– I= =

Ax b=

n n×

Az 0= z 0≠

A 1– Ax b= x A 1– b=

Ax b= A x ϒz+( ) b= ϒ
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use the Gaussian Elimination1 technique. The three basic steps involve
in the Gaussian Elimination technique are as follows. First, express
matrix A as a product  where L is a unit lower triangular matrix 
and U is an upper triangular matrix. Such a factorization is known as 
factorization. Given this, the linear system  can be expressed

. Such a system can then be solved by first solving the lowe
triangular system  for y by forward-substitution. This is the 
second step in the Gaussian Elimination technique. For example, if

 

then . The first element of y can be easily determined

due to the lower triangular nature of the matrix L. Then you can use this
value to compute the remaining elements of the unknown vector 
sequentially. Hence, the name forward-substitution. The final step 
involves solving the upper triangular system  by 
back-substitution. For example, if

then . In this case, this last element of x can be easily

determined and then used to determine the other elements sequent
Hence, the name back-substitution. So far, this lesson has discusse
case of square matrices. Because a nonsquare matrix is necessaril
singular, the system of equations must have either no solution or a 
nonunique solution. In such a situation, you usually find a unique 
solution x that satisfies the linear system in an approximate sense.

The Analysis library includes VIs for computing the inverse of a matr
computing LU decomposition of a matrix, and solving a system of lin
equations. It is important to identify the input matrix properly, as it he
avoid unnecessary computations, which in turn helps to minimize 
numerical inaccuracies. The four possible matrix types are general 
matrices, positive definite matrices2, and lower and upper triangular 
matrices. If the input matrix is square, but does not have a full rank
rank-deficient matrix), then the VI finds the least square solution x. The 
least square solution is the one that minimizes the norm of . T
same holds true also for nonsquare matrices.

1.  For more information on Gaussian Elimination, see Matrix Computations by G.H. Golub and C.F. Van 
Loan. The John Hopkins University Press, Baltimore, 1989.

2.  A real matrix is positive definite if and only if it is symmetric and the quadratic form  for all 
nonzero vectors X.

A LU=

Ax b=

LUx b=

Ly b=

L a 0

b c
= y p

q
= b r

s
=

p
r
a
--- q,

s bp–( )
c

-------------------= =

Ux y=

U a b

0 c
= x m

n
= y p

q
=

n
q
c
--- m, p bn–( )

a
--------------------= =

XTAX 0>

Ax b–
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Exercise 8-6
Objective: To compute the inverse of a matrix.

You will build a VI that computes the inverse of a matrix A. Further, you 
will compute a matrix B, which is similar to matrix A. A matrix B is similar 
to a matrix A if there is a nonsingular matrix T such that  so that 
A and B have the same eigenvalues. You will verify this definition of simi
matrices.

Front Panel

1. Build the front panel as shown above. Matrix A is a  real matrix. 
Matrix T is a  nonsingular matrix that will be used to constru
the similar matrix B.

B T 1– AT=

2 2×
2 2×
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Block Diagram 

2. Construct the block diagram as shown above.

Inverse Matrix  VI (Analysis » Linear Algebra subpalette). In 
this exercise, this function computes the inverse of the input 
matrix A.

AxB VI (Analysis » Linear Algebra subpalette). In this 
exercise, this function multiplies two two-dimensional input 
matrices. 

EigenValues and Vectors VI (Analysis » Linear Algebra 
subpalette). In this exercise, this VI computes the eigenvalu
and eigenvectors of the input matrix.

3. Return to the front panel and run the VI. Check if the eigenvalue
A and the similar matrix B are the same.

4. Save the VI as Matrix Inverse.vi  and close it.

End of Exercise 8-6
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Exercise 8-7 
Objective: To solve a system of linear equations.

Many practical applications require you to solve a system of linear 
equations. A very important area of application is related to military 
defense. This includes analysis of electromagnetic scattering and radi
from large targets, performance analysis of large radomes, and design
aerospace vehicles having low radar cross sections (the stealth techno
A second area of application is in the design and modeling of wireless
communication systems such as hand-held cellular phones. This list o
applications goes on and on, and therefore it is very important for you 
properly understand how to use the VIs in the Analysis library to solve
linear system of equations.

1. Use the Solve Linear Equations VI in the Analysis » Linear 
Algebra subpalette to solve the system of equations  whe
the Input Matrix  A and the Known Vector b are

Choose matrix type equal to general.

2. Use A x Vector.vi to multiply the matrix A and the vector x (output 
of the above operation) and check if the result is equal to the ve
b above.

3. Save the VI as Linear System.vi and close it.

End of Exercise 8-7

Ax b=

A
2 4 2–

4 9 3–

2– 1– 7

b,
2

8

10

= =
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D.Matrix Factorization
The previous section discussed how a linear system of equations can 
transformed into a system whose solution is simpler to compute. The b
idea was to factorize the input matrix into the multiplication of several, 
simpler matrices. You looked at one such technique, the LU decomposition 
technique, in which you factorized the input matrix as a product of upp
and lower triangular matrices. Other commonly used factorization meth
are Cholesky, QR, and the Singular Value Decomposition (SVD). You can 
use these factorization methods to solve many matrix problems, such 
solving linear system of equations, inverting a matrix, and finding the 
determinant of a matrix.

If the input matrix A is symmetric and positive definite, then an LU 
factorization can be computed such that , where U is an upper 
triangular matrix. This is called Cholesky factorization. This method 
requires only about half the work and half the storage compared to 
factorization of a general matrix by Gaussian elimination. As you sa
earlier in Exercise 1-4, it is easy to determine if a matrix is positive 
definite by using the Test Positive Definite VI in the Analysis library.

A matrix Q is orthogonal if its columns are orthonormal. That is, if 
, the identity matrix. QR factorization technique factors a matrix

as the product of an orthogonal matrix Q and an upper triangular matrix
R. That is, . QR factorization is useful for both square and 
rectangular matrices. A number of algorithms are possible for QR 
factorization, such as the Householder transformation, the Givens 
transformation and the fast Givens transformation. 

The singular value decomposition (SVD) method decomposes a ma
into the product of three matrices: . U and V are orthogonal 
matrices. S is a diagonal matrix whose diagonal values are called th
singular values of A. The singular values of A are the nonnegative squar
roots of the eigenvalues of , and the columns of U and V, which are 
called left and right singular vectors, are orthonormal eigenvectors 

 and , respectively. SVD is useful for solving analysis problem
such as computing the rank, norm, condition number, and pseudoinv
of matrices. The following section discusses this last application.

Pseudoinverse
The pseudoinverse1 of a scalar  is defined as  if , and zero 
otherwise. You can now define the pseudoinverse of a diagonal matrix
transposing the matrix and then taking the scalar pseudoinverse of ea

1.  In case of scalars, pseudoinverse is the same as the inverse.

A UTU=

QTQ I=

A QR=

A USVT=

ATA

AAT ATA

σ 1 σ⁄ σ 0≠
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entry. Then the pseudoinverse of a general real  matrix A, denoted by 
, is given by

Note that the pseudoinverse exists regardless of whether the matrix
square or rectangular. If A is square and nonsingular, the pseudoinver
is the same as the usual matrix inverse. The Analysis library includ
VI for computing the pseudoinverse of real and complex matrices. 

m n×
A†

A† VS†UT=
© National Instruments Corporation 8-37 LabVIEW Signal Processing Course Manual
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Exercise 8-8
Objective: To compute Cholesky decomposition and QR decomposition.

Exercise 1-4 discussed complex positive definite matrices. You verified
the matrix A

 

is a positive definite matrix. In this exercise, compute the Cholesky
decomposition of this matrix. Also, compute the QR decomposition o
matrix B.

Front Panel

1. Build the front panel as shown above. You can resize the array 
controls to see all the elements of the matrix.

2. The matrix U is an upper triangular matrix that is the result of the
Cholesky Decomposition of the matrix A.

3. The matrix B is a rectangular matrix. That is, the number of rows m 
is different from the number of columns n. The result of the QR 
factorization is an  orthogonal matrix Q and an upper triangular
matrix R of size . 

4. In this exercise, you will also verify the definition of orthogonal 
matrices, . The Result matrix contains the product of the 
transpose of the orthogonal matrix and the orthogonal matrix its

A
139 91.30 47.06i+ 67.64– 62.35i+

91.30 47.06i– 152.41 94.32 47.52i+

67.64– 62.35i– 94.32 47.52i– 262.00

=

m m×
m n×

QTQ I=
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Block Diagram

5. Build the block diagram as shown above

Complex Cholesky Factorization VI (Analysis » Linear 
Algebra » Complex Linear Algebra » Advanced Complex 
Linear Algebra  subpalette). In this exercise, this function 
computes the Cholesky decomposition of the positive definit
input complex matrix.

QR Factorization VI (Analysis » Linear Algebra » Advanced 
Linear Algebra  subpalette). In this exercise, this function 
computes the QR factorization of the input real matrix.

6. Select the Complex Cholesky Factorization VI from the 
Analysis » Linear Algebra » Complex Linear Algebra » 
Advanced Complex Linear Algebra subpalette. The output 
terminal of this VI is connected to matrix U.

7. Generate a random matrix B. Select the QR Factorization VI from 
the Analysis » Linear Algebra » Advanced Linear Algebra 
subpalette. Connect the matrix B as the input matrix for QR 
factorization. Connect the Q and R outputs of this VI to matrix Q and 
matrix R, respectively. 

8. Compute the transpose of the matrix Q and then multiply this 
transpose with the original matrix Q. The result of this operation is 
connected to the result matrix.
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9. Choose a value for the number of rows and the number of colum
Run the VI. Notice the upper triangular structure of the output of 
Cholesky decomposition and the R output of the QR factorization. 
Notice the structure of the orthogonal matrix Q. You can run the VI 
a number of times to generate different matrices and check if th
definition is true. 

10. Save the VI as QR Factor.vi and close it.

End of Exercise 8-8
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Exercise 8-9 (Optional)
Objective: To compute singular value decomposition.

In this exercise, you will compute the singular value decomposition of 
following matrix.

Use the SVD Factorization VI from the Analysis » Linear Algebra » 
Advanced Linear Algebra subpalette. Compute the rank of the matrix
A using the Matrix Rank  VI (Analysis » Linear Algebra » Advanced 
Linear Algebra  subpalette). Do you see an interesting relation betwe
the rank of this matrix and the number of nonzero singular values? (
singular values are stored in the one-dimensional array S.) Now compute 
the 2-norm of this matrix using the Matrix Norm  VI (Analysis » Linear 
Algebra » Advanced Linear Algebra subpalette). Do you see an 
interesting relation between this number and the largest singular va
of the matrix?

Note: The rank of a matrix is equal to the number of nonzero singular values,
which in this example is equal to 2. Also, as discussed at the beginning
this lesson, the 2-norm of a matrix is equal to its largest singular value.

End of Exercise 8-9

A

1 2 3

4 5 6

7 8 9

10 11 12

=
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Summary

• A matrix can be considered as a two-dimensional array of m rows 
and n columns. Determinant, rank, and condition number are som
important attributes of a matrix.

• The condition number of a matrix affects the accuracy of the fina
solution.

• The determinant of a diagonal matrix, an upper triangular matrix,
a lower triangular matrix is the product of its diagonal elements.

• Two matrices can be multiplied only if the number of columns of t
first matrix is equal to the number of rows in the second matrix.

• An eigenvector of a matrix is a nonzero vector that does not rota
when the matrix is applied to it. Similar matrices have the same 
eigenvalues.

• The existence of a unique solution for a system of equations depe
on whether the matrix is singular or nonsingular.

Review Questions
1. For the matrix given by , calculate its rank, determinan

1-norm, and inf-norm.

Which LabVIEW/BridgeVIEW VI(s) could you use to check your 
answer?

2. The condition number of a matrix B is 15.3, and that of a matrix C is 
30,532. Which of these matrices, B or C, is closer to being singular?

3. Which of the following is true, and which is false?

a. The eigenvalues of a real matrix are always real.

b. The rank of an m x n matrix could at most be equal to the large
of m or n (m ¦ n).

4. For the two vectors given by x = [1,2] and y = [3,4], calculate:

a. Their dot product

b. Their outer product

c. The angle between the two vectors

Which LabVIEW/BridgeVIEW VI(s) could you choose to check 
your answer?

5. Which VI could you use to check if a matrix is positive definite? 
Why might you want to make such a check?

6. Why is matrix factorization important? Which are the matrix 
factorization VIs available in LabVIEW/BridgeVIEW?

A
0 1 1

1 2 3

2 0 1

=
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Introduction
In this lesson, you will learn some of the fundamental concepts in 
probability and statistics such as mean or average, variance, histogram
others. The lesson describes different LabVIEW/BridgeVIEW VIs that 
compute these quantities and show how they can be used in different 
applications. 

You Will Learn:

A. What the terms probability and statistics mean, and how are they 
relevant in different areas of applications.

B. About the most commonly used concepts in statistics and how to
the Statistics VIs.

C. About the most commonly used concepts in probability and how
use the Probability VIs.
© National Instruments Corporation 9-1 LabVIEW Signal Processing Course Manual
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A.Probability and Statistics
We live in an information age in which facts and figures form an import
part of life. Statements such as “There is a 60% chance of thunderstor
“Joe was ranked among the top five in the class,” “Michael Jordan has
average of 30 points this season,” and so on are common. These state
give a lot of information, but we seldom think about how this informatio
was obtained. Was there a lot of data involved in obtaining this informati
If there was, how did someone condense it to single numbers such as60% 
chance and average of 30 points or terms such as top five. The answer to 
all these questions brings up the very interesting field of statistics.

First, consider how information (data) is generated. Consider the 
statistics of part of the 1997 basketball season. Michael Jordan of t
Chicago Bulls played 51 games, scoring a total of 1568 points. This
includes the 45 points he posted, including the game-winning buzze
three-pointer, in a 103-100 victory over the Charlotte Hornets; his 3
points in an 88-84 victory over the Portland Trail Blazers; a season h
of 51 points in an 88-87 victory over the New York Nicks; 45 points
seven rebounds, five assists, and three steals in a 102-97 victory ove
Cleveland Cavaliers; and his 40 points, six rebounds, and six assists
107-104 victory over the Milwaukee Bucks. The point is not that Jord
is a great player, but that a single player can generate lots of data i
single season. The question is, how do you condense all this data so
it brings out all the essential information and is yet easy to rememb
This is where the term statistics comes into the picture. 

To condense all the data, single numbers must make it more intellig
and help draw useful inferences. For example, consider the numbe
points that Jordan scored in different games. It is difficult to remem
how many points he scored in each game. But if you divide the tota
number of points that Jordan scored (1568) by the number of game
has played (51), you have a single number of 30.7 and can call it po
per game average.

Suppose you want to rate Jordan’s free throw shooting skills. It migh
difficult to do so by looking at his performance in each game. Howev
you can divide the number of free throws he has scored in all the ga
by the total number of free throws he was awarded. This shows he h
free throw percentage of 84.4%. You can obtain this number for all th
NBA players and then rank them. Thus, you can condense the 
information for all the players into single numbers representing free
throw percentage, points per game, and three-point average. Based
this information, you can rank players in different categories. You c
further weight these different numbers and come up with a single 
number for each player. These single numbers can then help in jud
LabVIEW Signal Processing Course Manual 9-2 © National Instruments Corporation
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the Most Valuable Player (MVP) for the season. Thus, in a broad se
the term statistics implies different ways to summarize data to deriv
useful and important information from it.

The next question is, what is probability? You have looked at ways 
summarize lots of data into single numbers. These numbers then h
draw conclusions for the present. For example, looking at Jordan’s 
statistics for the 1996 season helped the NBA officials elect him the
MVP for that season. It also helped people to infer that he is one of
best players in the game. But can you say anything about the future?
you measure the degree of accuracy in the inference and use it for 
making future decisions? The answer lies in the theory of probabilit
Whereas, in laymen’s terms, one would say that it is probable that 
Jordan will continue to be the best in the years to come, you can us
different concepts in the field of probability, as discussed later in th
lesson, to make more quantitative statements. 

In a completely different scenario, there may be certain experiment
whose outcomes cannot be predetermined, but certain outcomes m
more probable. This once again leads to the notion of probability. F
example, if you flip an unbiased coin in the air, what is the chance t
it will land heads up? The chance or probability is 50 %. That mean
you repeatedly flip the coin, half the time it will land heads up. Does t
mean that 10 tosses will result in exactly five heads? Will 100 tosse
result in exactly 50 heads? Probably not. But in the long run, the 
probability will work out to be 0.5.

To summarize, whereas statistics allows you to summarize data an
draw conclusions for the present, probability allows you to measure
degree of accuracy in those conclusions and use them for the futur
© National Instruments Corporation 9-3 LabVIEW Signal Processing Course Manual
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B.Statistics
In this section, you will look at different concepts and terms commonly u
in statistics and see how to use the Analysis VIs in different application

Mean
Consider a data set X consisting of n samples , , , , , . The 
mean value (a.k.a. average) is denoted by  and is defined by the form

In other words, it is the sum of all the sample values divided by the
number of samples. As you saw in the Michael Jordan example abo
the data set consisted of 51 samples. Each sample was equal to th
number of points that Jordan scored in each game. The total of all t
points was 1568, divided by the number of samples (51) to get a m
or average value of 30.7.

The input-output connections for the Mean VI are shown below.

Median

Let  represent the sorted sequence of the data seX. 
The sequence can be sorted either in the ascending order or in 
descending order. The median of the sequence is denoted by 
is obtained by the formula

where  and .

In words, the median of a data sequence is the midpoint value in the 
sorted version of that sequence. For example, consider the sequen

 consisting of five (odd number) samples. This sequence 
already sorted in the descending order. In this case, the median is 
midpoint value, 3. Consider a different sequence  consisting
four (even number) samples. This sequence is already sorted in the
ascending order. In this case, there are two midpoint values, 2 and 3
per the formula above, the median is equal to . If a 

x0 x1 x2 x3 … xn 1–

x

x
1
n
--- x0 x1 x2 x3 … xn 1–+ + + + +( )=

S s0 s1 s2 … sn 1–, , ,{ , }=

xmedian

xmedian

si                    n is odd

0.5 sk 1– sk+( ) n is even



=

i
n 1–

2
------------= k

n
2
---=

5 4 3 2 1, , ,{ , }

1 2 3 4, , ,{ }

0.5 2 3+( )× 2.5=
LabVIEW Signal Processing Course Manual 9-4 © National Instruments Corporation



Lesson 9 Probability and Statistics

 point 

 “Y 

 

nce is 
es 

 
he 

ion of 
from 
 the 

n. 

 
to 
student X scored 4.5 points on a test and another student Y scored 1
on the same test, the median is a very useful quantity for making 
qualitative statements such as “X lies in the top half of the class” or
lies in the bottom half of the class.” 

The input-output connections for the Median VI are shown below.

Sample Variance
The sample variance of the data set X consisting of n samples is denoted by

 and is defined by the formula

where  denotes the mean of the data set. Hence, the sample varia
equal to the sum of the squares of the deviations of the sample valu
from the mean divided by n-1. 

Note: The above formula does not apply for n = 1. However, it does not mean
anything to compute the sample variance if there is only one sample in t
data set.

The input-output connections for the Sample Variance VI are shown 
below.

In other words, the sample variance measures the spread or dispers
the sample values. If the data set consists of the scores of a player 
different games, the sample variance can be used as a measure of
consistency of the player. It is always positive, except when all the 
sample values are equal to each other and in turn equal to the mea

There is one more type of variance called population variance. The
formula to compute population variance is similar to the one above 
compute sample variance, except for the (n-1) in the denominator 
replaced by n. 

s2

s2 1
n 1–
------------ x1 x–( )

2
x2 x–( )

2
… xn x–( )

2
+ + +[ ]=

x
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The input-output connections for the Variance VI are shown below.

The Sample Variance VI computes sample variance, whereas the 
Variance VI computes the population variance. Whereas statistician
and mathematicians prefer to use the latter, engineers prefer to use
former. It really does not matter for large values of , say .

Note: Use the proper type of VI suited for your application.

Standard Deviation
The positive square root of the sample variance  is denoted by  and
called the standard deviation of the sample. 

The input-output connections for the Standard Deviation VI are shown 
below. 

Mode
The mode of a sample is a sample value that occurs most frequently in
sample. For example, if the input sequence X is

then the mode of X is 4, because that is the value that most often occ
in X. 

The input-output connections for the Mode VI are shown below.

n n 30≥

s2 s

X 0 1 3 3 4 4 4 5 5 7, , , , , , , , ,{ }=
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Moment About Mean
If X represents the input sequence with n number of elements in it, and  is
the mean of this sequence, then the mth-order moment can be calculated 
using the formula

In other words, the moment about mean is a measure of the deviatio
the elements in the sequence from the mean. Note that for , t
moment about mean is equal to the population variance.

The input-output connections for the Moment About Mean VI are 
shown below.

Histogram
So far, this lesson has discussed different ways to extract important fea
of a data set. The data is usually stored in a table format, which many pe
find difficult to grasp. It is generally useful to display the data in some fo
The visual display of data helps us gain insights into the data. Histogra
one such graphical method for displaying data and summarizing key 
information. Consider a data sequence . Divid
the total range of values into 8 intervals. These intervals are 0-1, 1-2, 
2-3, ..., 7-8. The histogram for the sequence X then plots the number of data
samples that lie in that interval, not including the upper boundary. 

The figure above shows that one data sample lies in the range 0-1 and
respectively. However, there is no sample in the interval 2-3. Similarly, 

x

σx
m 1

n
--- xi x–( )

m

i 0=

n 1–

∑=

m 2=

X 0 1 3 3 4 4 4 5 5 8, , , , , , , , ,{ }=

0 ∆0 ∆1 ∆7
1

1

2

3

2 3 4 5 6 7 8
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samples lie in the interval 3-4, and three samples lie in the range 4-5. 
Examine the data sequence X above and be sure you understand this 
concept. 

There are different ways to compute data for a histogram. Next you 
see how it is done in the Histogram VI using the sequence X. 

As shown above, the inputs to this VI are the input sequence X and the 
number of intervals m. The VI obtains Histogram:h(x) as follows. It 
scans X to determine the range of values in it. Then the VI establish
the interval width, , according to the specified value of m

where max is the maximum value found in X, min is the minimum value 
found in X, and m is the specified number of intervals. 

Let . Then 

Let  represent the output sequence X Values. The histogram is a 
function of X. This VI evaluates the elements of  using

 

For this example, . 

The VI then defines the i th interval to be in the range of values from 
 up to but not including ,

and defines the function  for x belonging to  and zero 
elsewhere. The function has unity value if the value of x falls within the 
specified interval, not including the boundary. Otherwise, it is zero. 
Notice that the interval is centered about  and its width is . If a va
is equal to max, it is counted as belonging to the last interval.
For our example,  and as an exampl

 and . 

Finally, the VI evaluates the histogram sequence H using

∆x

∆x
max min–

m
--------------------------=

m 8= ∆x
8 0–

8
------------ 1= =

χ
χ

χi min 0.5∆x i∆x+ += for i 0 1 2 … m 1–, , , ,=

χ0 0.5 χ1, 1.5 … χ7, , 7.5= = =

χi 0.5∆x– χi 0.5∆x+

∆i χi 0.5∆x–( ) χi 0.5∆x+( ) ) for, ,[= i 0 1 2 … m 1–, , , ,=

yi x( ) 1= ∆i

χi ∆x

∆0 0 1) ∆1, ,[ 1 2) … ∆7, , ,[ 7 8),[= = =

y0 0( ) 1= y0 1( ) y0 3( ) y0 4( ) y0 5( ) y0 8( ) 0= = = = =

hi yi xj( )

n 1–

∑= for i 0 1 2 … m 1–, , , ,=
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where  represents the elements of the output sequence Histogram: h(X) 
and n is the number of elements in the input sequence X. For this 
example, .

The Analysis library also has a General Histogram VI that is more 
advanced than the Histogram VI. Please refer to the LabVIEW Analysis 
VI Reference Manual for detailed information.

Mean Square Error (MSE)
If X and Y represent two input sequences, the mean square error is th
average of the sum of the square of the difference between the 
corresponding elements of the two input sequences. The following form
is used to find the mse.

where n is the number of data points. 

Consider a digital signal x fed to a system, S1. The output of this sys
is y1. Now you acquire a new system, S2, which is theoretically kno
to generate the same result as S1 but has two times faster response
Before replacing the old system, you want to be absolutely sure tha
output response of both the systems is the same. If the sequences y
y2 are very large, it is difficult to compare each element in the 
sequences. In such a scenario, you can use the MSE VI to calculate the 
mean square error (mse) of the two sequences y1 and y2. If the ms
smaller than an acceptable tolerance, the system S1 can be reliabl
replaced by the new system S2.

The input-output connections for the MSE VI are shown below.

hi

h0 1 h4, 3 … h7, , 1= = =

mse
1
n
--- xi yi–( )2

i 0=

n 1–

∑=

x

S1

S2

y1

y2
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Root Mean Square (RMS)
The root mean square  of a sequence X is the positive square root o
mean of the square of the input sequence. In other words, you can squa
input sequence, take the mean of this new squared sequence, and the
the square root of this quantity. The formula used to compute the rms 
value is

where n is the number of elements in X.

RMS is a widely used quantity in the case of analog signals. For a s
voltage waveform, if Vp is the peak amplitude of the signal, then the ro

mean square voltage Vrms is given by . The following figure shows a

 voltage waveform of peak amplitude = 2 V and the RMS value of 
V computed using the RMS VI from the Analysis library.

The input-output connections for the RMS VI are shown below.

Ψx

Ψx
1
n
--- xi

2

i 0=

n 1–

∑=

Vp

2
-------

2 1.41≈
LabVIEW Signal Processing Course Manual 9-10 © National Instruments Corporation



Lesson 9 Probability and Statistics

ed by 
d 
ts 
te 
ation 

ame 
 date 
Exercise 9-1
Objective: To use different Statistics VIs in an example using Michael Jordan’s basketball 

scores.
In this exercise, you will learn how to use different Statistics VIs in an 
interesting example. The data set consists of the number of points scor
Michael Jordan of the Chicago Bulls in each of the 51 games he playe
during part of the 1997 NBA season. You will use some of the concep
discussed in the previous section to decipher this information and crea
single numbers that are easy to remember and yet reveal all the inform
that the entire data set provides.

Front Panel

1. Open the Statistics VI from Lvspcex.llb . 

2. Open the front panel as shown above. The Points control is the data 
set consisting of the number of points scored by Jordan in each g
this season. The number of games he has played this season to
is 51.

The Total Number of Points digital indicator is the sum of all the 
elements in the given data set. 

The Points Per Game digital indicator is the average of Jordan’s 
scores this season.

The Sample Variance, Median, and Mode digital indicators are the 
sample variance, median, and mode of the data set.
© National Instruments Corporation 9-11 LabVIEW Signal Processing Course Manual
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Histogram of Points is an XY graph that shows the distribution of
points in different intervals. The number of intervals is set using 
Number of intervals digital control. Points in Each Game is a 
waveform graph that plots the number of points scored in each ga

Block Diagram

3. Build the diagram shown above:

Sample Variance VI (Analysis » Probability and Statistics 
subpalette). In this exercise, this function computes the sam
variance of the data set Points. 

Mean VI (Analysis » Probability and Statistics subpalette). In 
this exercise, this function computes the mean value (avera
of the data set Points. 

Histogram VI (Analysis » Probability and Statistics 
subpalette). In this exercise, this function computes the 
histogram of the data set Points.
LabVIEW Signal Processing Course Manual 9-12 © National Instruments Corporation
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Median VI (Analysis » Probability and Statistics subpalette). 
In this exercise, this function computes the median of the da
set Points.

Mode VI (Analysis » Probability and Statistics subpalette). In 
this exercise, this function computes the mode of the data s
Points. 

Bundle function (Cluster subpalette) In this exercise, this 
function assembles the outputs of the Post Processing VI 
(explained later) to plot on the XY graph Histogram of Points.

4. Follow the instructions in steps 4 through 9 and build the block 
diagram as shown above.

5. You will compute the Points Per Game (Jordan’s average) by us
the Mean VI in the Analysis library. Connect the Points control to 
the input terminal X and the output mean to the Points Per Game 
indicator.

6. You will compute the Sample Variance using the Sample Variance 
VI in the Analysis library. Once again, connect the Points control to 
the input terminal X and the output sample variance to the Sample 
Variance indicator. 

Note: This VI also computes the mean of the data set.
© National Instruments Corporation 9-13 LabVIEW Signal Processing Course Manual
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7. You will compute the Median using the Median VI in the Analysis 
library. Connect the Points control to the input terminal X and the 
output median to the Median indicator.

8. You will compute the Mode using the Mode VI in the Analysis 
library. Connect the Points control to the input terminal X. Choose 
the number of intervals equal to 3. Connect the output mode to 
Mode indicator.

9. You first will compute the data for the histogram using the 
Histogram VI. Connect the control Points to the input terminal X 
and set the number of intervals equal to 3. This VI generates 
histogram values and X values, which are the midpoints of the 
different intervals as discussed above. You can plot the histogram
using the X values for the X axis and the histogram values for th
axis. If you are interested, try doing this and observe the histogr

10. Generally, you may want to view the histogram in a different wa
Select the PostProcessing VI from Lvspcex.llb . Connect the 
Points control to the Points input terminal, the histogram output of
the Histogram VI to the Histogram input terminal, and set the 
number of intervals equal to 3 (same value you chose earlier for
Histogram VI). This VI generates the data for plotting the histogra
in a better way. The X axis values are stored in the Boundaries 
output terminal, and the Y axis values are stored in the PlotValues 
LabVIEW Signal Processing Course Manual 9-14 © National Instruments Corporation
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output terminal. You can use the output of this VI for plotting the
histogram on the Histogram of Points XY graph. 

11.  Return to the front panel. Set the number of intervals equal to 3
run the VI. Study the different output values. See how the histogr
(on the left) provides more information than just plotting the poin
in each game (on the right).

12. Save the VI and close it.

End of Exercise 9-1
© National Instruments Corporation 9-15 LabVIEW Signal Processing Course Manual
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C.Probability
In any random experiment, there is always a chance that a particular e
will or will not occur. A number between 0 and 1 is assigned to measure
chance, or probability, that a particular event occurs. If you are absolu
sure that the event will occur, its probability is 100% or 1.0, but if you a
sure that the event will not occur, its probability is 0. 

Consider a simple example. If you roll a single unbiased die, there 
six possible events that can occur—either a 1, 2, 3, 4, 5, or 6 can re
What is the probability that a 2 will result? This probability is one in s
or 0.16666. You can define probability in simple terms as: The 
probability that an event A will occur is the ratio of the number of 
outcomes favorable to A to the total number of equally likely outcom

Random Variables
Many experiments generate outcomes that you can interpret in terms o
numbers. Some examples are the number of cars passing a stop sign 
a day, number of voters favoring candidate A, and number of accidents
particular intersection. The values of the numerical outcomes of this 
experiment can change from experiment to experiment and are called
random variables. Random variables can be discrete (if they can take 
only a finite number of possible values) or continuous. As an example o
latter, weights of patients coming into a clinic may be anywhere from, s
80 to 300 pounds. Such random variables can take on any value in an
interval of real numbers. Given such a situation, suppose you want to 
the probability of encountering a patient weighing exactly 172.39 poun
You will see how to calculate this probability next using an example.

Consider an experiment to measure the life lengths x of 50 batteries of a 
certain type. These batteries are selected from a larger population 
such batteries. The histogram for observed data is shown below.

histogram

0 1 2 3 4 5 6 life length in hundreds of hours
LabVIEW Signal Processing Course Manual 9-16 © National Instruments Corporation
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This figure shows that most of the life lengths are between zero and
hours, and the histogram values drop off smoothly as you look at la
life lengths. 

You can approximate the histogram shown above by an exponentia
decaying curve. You could take this function as a mathematical mo
for the behavior of the data sample. If you want to know the probabi
that a randomly selected battery will last longer than 400 hours, this
value can be approximated by the area under the curve to the right o
value 4. Such a function that models the histogram of the random 
variable is called the probability density function.

To summarize all the information above in terms of a definition, a 
random variable X is said to be continuous if it can take on the infinite 
number of possible values associated with intervals of real numbers,
there is a function f(x), called the probability density function, such that

1.

2.

3.

Notice from equation (3) above that for a specific value of the 

continuous random variable, that is for X=a, . It

should not be surprising that you assign a probability of zero to any
specific value, because there are an infinite number of possible val
that the random variable can take. Therefore, the chance that it will 
on a specific value  is extremely small.

The previous example used the exponential function model for the 
probability density function. There are a number of different choices
this function. One of these is the Normal Distribution, discussed bel

f x( ) 0≥ for all x

f x( ) xd

∞–

∞

∫ 1=

P a X b≤ ≤( ) f x( ) xd

a

b

∫=

P X a=( ) f x( ) xd

a

a

∫ 0= =

X a=
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Normal Distribution
The normal distribution is one of the most widely used continuous 
probability distributions. This distribution function has a symmetric bell

shape, as shown above. The curve is centered at the mean value 
its spread is measured by the variance . These two parameters 
completely determine the shape and location of the normal density func
whose functional form is given by

Suppose a random variable Z has a normal distribution with mean e
to zero and variance equal to one. This random variable is said to h
standard normal distribution.

The Normal Distribution  VI computes the one-sided probability, p, of 
the normally distributed random variable x.

where X is a standard normal distribution with the mean value equal
zero and variance equal to one, p is the probability and x is the value. 

Suppose you conduct an experiment in which you measure the heig
of adult males. You conduct this experiment on 1000 randomly cho
men and obtain a data set S. The histogram distribution has many 
measurements clumped closely about a mean height, with relatively
very short and very tall males in the population. Therefore, the 
histogram can be closely approximated by a normal distribution. No
suppose that, among a different set of 1000 randomly chosen males

x 0=

s2 1=

f x( ) 1

s 2π
-------------e x x–( )

2
2s

2( )⁄–=

p Prob X x≤( )=
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want to find the probability that the height of a male is greater than 
equal to 170 cm. You can use the Normal Distribution  VI to find this 
probability. Set the input . Thus, the choice of the probability
density function is fundamental to obtaining a correct probability val

The Inverse Normal Distribution  VI performs exactly the opposite 
function as the Normal Distribution  VI. Given a probability p, it finds 
the values x that have the chance of lying in a normally distributed 
sample. For example, you might want to find the heights that have a 6
chance of lying in a randomly chosen data set. 

As mentioned earlier, there are different choices for the probability 
density function. The well-known and widely used ones are the 
Chi-Square distribution, the F distribution, and the T-distribution1. The 
Analysis library includes VIs that compute the one-sided probability 
these different types of distributions. In addition, it also has VIs tha
perform the inverse operation. 

1.  Interested readers should refer to the latest edition of the Schaum’s Outline Series on Theory and Pro
lems of Probability and Statistics by Murray Spiegel, McGraw-Hill, Inc., 1975, for detailed discussion on
these three types of distributions.

x 170=
© National Instruments Corporation 9-19 LabVIEW Signal Processing Course Manual
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Exercise 9-2
Objective: To understand key probability concepts.

In this exercise, you will first generate a data sample with standard no
distribution and then use the Normal Distribution  VI to check the 
probability of a random variable x.

Front Panel

1. Build the front panel as shown above. NoisePlot is a waveform 
graph, whereas NoiseHistogram is an XY graph.
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Block Diagram

2. Build the block diagram as shown above. The Gaussian White Noise 
VI generates a Gaussian-distributed pattern with mean value eq
to 0 and standard deviation set by the user using the input stand
deviation. Samples is the number of samples of the Gaussian nois
pattern. Seed is the seed value used to generate the random nois

Gaussian White Noise VI (Analysis » Signal Generation 
subpalette). In this exercise, this function generates a Gaus
white noise pattern.

Histogram VI (Analysis » Probability and Statistics 
subpalette). In this exercise, this function computes the 
histogram of the Gaussian noise pattern.

Normal Distribution  VI (Analysis » Probability and 
Statistics subpalette). In this exercise, this function compute
the one-sided probability of the normally distributed random
variable Random Variable.

Connect the Gaussian noise pattern to the waveform graph Noise 
Plot.

3. You will compute the histogram of the Gaussian noise pattern us
the Histogram VI used in the previous exercise. 
© National Instruments Corporation 9-21 LabVIEW Signal Processing Course Manual
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4. As discussed earlier, do some postprocessing to plot the histogra
a different way. Select the PostProcessing VI from Lvspcex.llb . 

5. Bundle the output of this VI and connect it to the Noise Histogram.

6. Select the Normal Distribution  VI. Connect the Random Variable 
control to the input terminal and connect the output to the probabi
indicator.

7. Return to the front panel. Set the Number of Samples control to 
2048, Standard Deviation to 1, Seed to 2 and Number of intervals to 
10. Run the VI.

8. You will see the Gaussian white noise on the Noise Plot graph. It is 
difficult to tell much from this plot. However, the histogram plot fo
the same noise pattern provides a lot of information. It shows th
most of the samples are centered around the mean value of zer
From this histogram, you can approximate this noise pattern by 
Normal Distribution  function (Gaussian distribution). Because th
mean value is zero and you set the standard deviation equal to 
the probability density function is actually a standard normal 
distribution. 

Note: It is very important that you carefully choose the proper type of distributio
function to approximate your data. In this example, you actually plotted
the histogram to make this decision. Many times, you can make an 
intelligent decision based solely on prior knowledge of the behavior and
characteristics of the data sample.

9. Return to the front panel and enter a value for Random Variable. 
This VI will compute the one-sided probability of this normally 
distributed random variable. Remember, you have assumed tha
variable is normally distributed by looking at the histogram.

10.  Save the VI as Probability.vi  and close it.

End of Exercise 9-2
LabVIEW Signal Processing Course Manual 9-22 © National Instruments Corporation



Lesson 9 Probability and Statistics

istics 

 of 

 
y in 

 

Summary

• Different concepts in statistics and probability help decipher 
information and data to make intelligent decisions.

• Mean, median, sample variance, and mode are some of the stat
techniques to help in making inferences from a sample to a 
population.

• Histograms are widely used as a simple but informative method
data display.

• Using the theory of probability, you can make inferences from a
sample to a population and then measure the degree of accurac
those inferences.

Review Questions
1. What is the difference between probability and statistics? Which

VI(s) would you use in each case?

2. What is the difference between:

a. Mode and median?

b. Sample variance and population variance?

Which VI(s) would you use in each case?

3. Name some real-world practical applications of using:

a. Histograms

b. The Gaussian probability density function

4. What is the difference between the Normal Distribution  VI and the 
Inv Normal Distribution  VI?
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Introduction
In this lesson, you will learn how to use the Digital Filter Design (DFD)
Toolkit to design FIR and IIR filters to meet required specifications. Yo
will also see how to use the DFD toolkit to analyze your filter design in
terms of its frequency response, impulse and step responses, and its 
pole-zero plot.

You Will Learn:

A. About digital filters.

B. About the Digital Filter Design Toolkit.

C. About designing IIR filters.

D. About designing FIR filters.

E. How to use the Digital Filter Design Toolkit to analyze your filter
design.
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A.Review of Digital Filters
In a previous lesson, you learned about the basic theory behind the ope
of digital filters. Below is a brief review of some of the important 
information you need to know to use the Digital Filter Design (DFD) 
Toolkit. 

Filtering
Filtering is one of the most common signal processing techniques and i
process by which the frequency content of a signal is altered. Some of
practical applications of filtering are in the bass and treble controls of y
stereo to adjust the frequency response, in the tuning circuits of your r
and television receivers to select a particular channel, in telephone han
to limit the frequency content of the sound signals to 3 KHz, and many
others in the audio, telecommunications, geophysics, and medical field

Why Digital Filters?
Until the advent of the computer age, filtering was in analog form using
resistors, inductors, and capacitors. Both the input and the output of the
were analog signals. Designing analog filters is a specialized task requ
a good mathematical background and proper understanding of the filte
process. However, with the widespread use of computers, digital 
representation and processing of signals gained immense popularity d
the numerous advantages that digital signals have over their analog 
counterparts. Because of this, analog filters have gradually been replac
digital filters. The advantages of digital filters over analog filters are:

• They are software programmable, and so are easy to “build” and

• They require only the arithmetic operations of multiplication and
addition/subtraction and so are easier to implement.

• They are stable (do not change with time nor temperature) and 
predictable.

• They do not drift with temperature or humidity or require precisio
components.

• They have a superior performance-to-cost ratio.

• They do not suffer from manufacturing variations or aging.

 Filter Response Characteristics
The range of frequencies that a filter passes through it is known as the
passband, whereas the range of frequencies that are attenuated is know
the stopband. Between the passband and the stopband is a transition region 
where the gain falls from one (that is, 0 dB in the passband) to zero or a
small value (in the stopband). The passband, stopband, and the transi
region for a lowpass filter are shown below. 
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The figure above also shows the passband ripple, the stopband 
attenuation, and the cut-off frequency, three specifications that are neede
in designing digital filters. The passband ripple (in dB) is the maximu
deviation in the passband from 0 dB, whereas the stopband attenua
is the minimum attenuation (in dB) in the stopband. In the DFD toolk
the passband ripple is also referred to as the passband response.

passband stopbandtransition
region

passband ripple

stopband
attenuation

cutoff frequency
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B.The Digital Filter Design Toolkit
Lesson 6 introduced the Digital Filter VIs available in the 
LabVIEW/BridgeVIEW Advanced Analysis library. Using these VIs is on
way to design your digital filters. However, National Instruments also 
provides the Digital Filter Design (DFD) toolkit, which is a complete filte
design and analysis tool you can use to design digital filters to meet yo
precise filter specifications. You can graphically design your IIR and F
filters, interactively review filter responses, save your filter design work
and load your design work from previous sessions. If you have a Natio
Instruments data acquisition (DAQ) device, you can perform real-world
filter testing from within the DFD application. You can view the time 
waveforms or the spectra of both the input signal and the filtered outpu
signal while simultaneously redesigning your digital filters.

After you design your digital filter, you can save the filter coefficient
to a file on your drive. The filter coefficient files can then be loaded f
later implementation by LabVIEW, BridgeVIEW, LabWindows/CVI, o
any other application. The following diagram shows you the concept
overview of the DFD Toolkit.

Filter Coefficient Files

LabVIEW

LabWindows/CVI Windows DLL

HiQ

Digital Filter
Design

Application

Save Data Acquisition
and Filtering

Filter
Specification

Files

Save Load
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Main Menu
When you launch the DFD application, you get the following panel, wh
is referred to as the Main Menu:

Design Options
From the Main Menu, you can choose any of the following four method
designing digital filters:

• Classical IIR Design—for designing IIR filters by specifying the 
frequency response characteristics.

• Classical FIR Design—for designing FIR filters by specifying the 
frequency response characteristics.

• Pole-Zero Placement—for designing either IIR or FIR filters by 
adjusting the location of the poles and zeros (in the z-plane) of t
filter transfer function.

• Arbitrary FIR Design—for designing FIR filters by specifying the 
gain of the filter at selected (two or more) frequencies.

If you double-click on one of the four design selections (or single-cli
on a selection and then click on the Open button) in the Main Menu, the 
DFD application loads and runs the selected design panel, in which
can design your filter.

Loading Previously Saved Specifications
You can also load a previously designed filter specification file directly
from the Main Menu by clicking on the Load Filter Spec button. You will 
then be prompted to select the filter specification file that you saved du
a previous design work. 
© National Instruments Corporation 10-5 LabVIEW Signal Processing Course Manual
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Customizing the DFD Application
By clicking on the Preferences... button in the Main Menu, you can edit 
your DFD application preferences for future design sessions.

The selections in the window above tell the DFD application to prelo
one or more of the filter design panels into memory when it is starte
Preloading filter designs increases the time taken for the Main Men
open. However, when you select a particular design panel from the M
Menu, the corresponding design panel opens almost immediately. If
have limited amount of memory on your computer, you may want to
reconsider how many (if any) of the design panels you preload into
memory.

Quitting the DFD Application
Choose the Quit  button to exit the DFD application. 

Manipulating the Graphical Display
Each design panel has a graphical display showing you the frequency
response of the filter that you are designing. The graphical displays pro
you with considerable flexibility in adjusting the magnitude response th
you are seeing. Before you move on to the next section (Designing IIR
Filters), you should become familiar with the display options.

Panning and Zooming Options
The graph palette has controls for panning (scrolling the display area o
graph) and for zooming in and out of sections of the graph. The graph pa
LabVIEW Signal Processing Course Manual 10-6 © National Instruments Corporation
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is included with many DFD graphs. A graph with its accompanying gra
palette is shown below.

If you press the x autoscale button, shown at left, the DFD applicat
autoscales the X data of the graph. If you press the y autoscale but
shown at left, the DFD application autoscales the Y data of the grap
you want the graph to autoscale either of the scales continuously, c
on the lock switch, shown at the left, to lock autoscaling on.

The scale format buttons, shown left, give you run-time control over 
format of the X and Y scale markers, respectively.

You use the remaining three buttons to control the operation mode 
the graph.

Normally, you are in standard operate mode, indicated by the plus 
crosshatch. In operate mode, you can click in the graph to move cur
around. 

The panning tool switches to a mode in which you can scroll the visi
data by clicking and dragging sections of the graph.

The zoom tool zooms in on a section of the graph by dragging a selec
rectangle around that section. If you click on the zoom tool, you get
pop-up menu you can use to choose some other methods of zoomi
This menu is shown below.

Graph

Palette
© National Instruments Corporation 10-7 LabVIEW Signal Processing Course Manual
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A description of each of these options follows.

Zoom by rectangle.

Zoom by rectangle, with zooming restricted to x data (the y scale 
remains unchanged.

Zoom by rectangle, with zooming restricted to y data (the x scale 
remains unchanged).

Undo last zoom. Resets the graph to its previous setting.

Zoom in about a point. If you hold down the mouse on a specific po
the graph continuously zooms in until you release the mouse button

Zoom out about a point. If you hold down the mouse on a specific po
the graph continuously zooms out until you release the mouse butto

Note: For the last two modes, you can zoom in and zoom out about a point. 
Shift-clicking zooms in the other direction.

Graph Cursors
Below are illustrations of a waveform graph showing two cursors and t
cursor movement control.

You can move a cursor on a graph or chart by dragging it with the 
Operating tool, or by using the cursor movement control. Clicking th
arrows on the cursor movement control causes all cursors selected
move in the specified direction. You select cursors by moving them
the graph with the Operating tool.

cursor movement
control
LabVIEW Signal Processing Course Manual 10-8 © National Instruments Corporation
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C.Designing IIR Filters
You have seen that IIR filters are digital filters whose impulse respons
infinitely long. In practice, the impulse response decays to a very smal
value in a finite amount of time. The output of an IIR filter depends on b
the previous and past inputs and the past outputs. For calculating the cu
output of the IIR filter, let (Ny - 1) be the number of past outputs and let 
(Nx - 1) be the number of past inputs. Denoting the inputs to the filter as
and the outputs as y[.], the equation for the output of an IIR filter can b
written as:

 (1)

In the above equation, the b[k] are known as the forward coefficients and 
the a[j] are known as the reverse coefficients. The output sample at th
present sample index i is the sum of scaled present and past inputs (x[i] 
and x[i-k]  when k ¦ 0) and scaled past outputs (y[i-j]). Usually Nx is equal 
to Ny, and this value is known as the order of the filter.

Implementation of IIR filters
IIR filters implemented in the form given by equation (1) are known as
direct form IIR filters. Direct form implementations are usually sensitive 
errors due to the number of bits used to represent the values of the 
coefficients (quantization error) and to the precision used in performing
computations. In addition, a filter designed to be stable can become uns
when the number of coefficients (that is, the order of the filter) is increased. 

A less sensitive implementation is obtained by breaking up the high
order direct form implementation into an implementation that has 
several cascaded filter stages, but where each filter in the cascade
a lower order, as shown in the figure below:

a0y i[ ] a1– y i 1–[ ]= a2– y i 2–[ ] ...– aNy 1–– y i Ny 1–( )–[ ]
b0x i[ ] b1x i 1–[ ] b2x i 2–[ ] ... bNx 1– x i Nx 1–( )–[ ]

+ +
+ + + +

y i[ ] 1
a0
------ a j[ ]y i j–[ ]

j 1=

Ny 1–

∑– b k[ ]x i k–[ ]

k 0=

Nx 1–

∑+
 
 
 
 

=

stage 1 stage 2 stage Ns

stage 1

x[i] y[i]

y[i]x[i]

(a) Direct Form (of higher order)

(b) Cascaded Direct Form Filter Stages (each filter is of lower order than the filter in (a)
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Typically, each lower order filter stage in the cascade form is a 
second-order stage. Each second-order stage can be implemented 
direct form, where you must maintain two past inputs (x[i-1] and x[i-2
and two past outputs (y[i-1] and y[i-2]). The output of the filter is 
calculated using the equation

y[i] = b0x[i] + b1x[i-1] + b2x[i-2] - a1y[i-1] - a2y[i-2] (2)

The implementation can also be done in the more efficient direct form II, 
where you maintain two internal states (s[i-1] and s[i-2]). The output
the filter is then calculated as follows:

s[i] = x[i] - a1s[i-1] - a2s[i-2] (3)

y[i] = b0s[i] + b1s[i-1] + b2s[i-2]

The direct form II is a more efficient structure because it uses less 
memory. It needs to store only two past internal states (s[i-1] and s[i-
whereas the direct form structure needs to store four past values (x[i-1
x[i-2], y[i-1] and y[i-2]).

IIR Filter Designs

Depending on whether the ripple in the filter’s frequency response 
in the passband and/or the stopband, IIR filters are classified as foll

• Butterworth: no ripple in either the passband nor the stopband.

• Chebyshev: ripples only in the passband

• Inverse Chebyshev: ripples only in the stopband.

• Elliptic: ripples in both the passband and the stopband.

The advantage of using Butterworth filters is for applications where y
want a smooth filter response and no ripples. However, a higher or
Butterworth filter (as compared to Chebyshev, Inverse Chebyshev, 
Elliptic) is generally required for the same filter specifications. This 
increases the processing time for Butterworth filters.

The advantage of Chebyshev and Inverse Chebyshev filters over 
Butterworth filters is their sharper transition band for the same orde
filter. On deciding which of these two types of filters to use, the 
advantage of Inverse Chebyshev filters over Chebyshev filters is th
they distribute the ripples in the stopband instead of in the passban

Because elliptic filters distribute the ripples in both the passband and
stopband, they can usually be implemented with the smallest order
the same filter specifications. Hence, they have faster execution sp
than either of the other filters.
LabVIEW Signal Processing Course Manual 10-10 © National Instruments Corporation
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Applications of IIR Filters
The advantage of IIR filters over FIR filters is that IIR filters usually requ
fewer filter coefficients to perform similar filtering operations. Thus, the
execute much faster and do not require extra memory, because they ex
in place. 

The disadvantage of IIR filters is that they have nonlinear phase 
characteristics. Hence, if your application requires a linear phase 
response, then you should use an FIR filter instead. However, for 
applications where phase information is not necessary, such as in si
signal monitoring, then IIR filters can be used. Thus, the bandpass fil
in real time octave analyzers are commonly IIR filters, because of th
faster speed and also because it is necessary to determine the distrib
of sound power over several frequency bands, but there is no need
determine the phase of the signal. The applications of such octave 
analyzers where phase information is not important are vibration tes
aircraft and submarines, testing of appliances, etc. 
© National Instruments Corporation 10-11 LabVIEW Signal Processing Course Manual
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Exercise 10-1
Objective: To design an IIR bandpass filter for use in an octave analyzer.

1. Launch the Digital Filter Design Toolkit  application. The Main 
Menu panel opens as shown.

2. In the Main Menu, select Classical IIR Design and click on the Open 
button. The design panel of the Classical IIR Design opens as sh

On the left, a plot shows the Magnitude vs. Frequency response
characteristic of the filter you design. The specifications for your
LabVIEW Signal Processing Course Manual 10-12 © National Instruments Corporation
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filter can be entered in the text entry portion at the upper right s
of the design panel.

The passband response is the minimum gain allowed in the 
passband. This is represented by the horizontal blue cursor line in
Magnitude vs. Frequency plot. With the reference at 0 dB, it is also
the same as the passband ripple.

The passband frequencies determine the frequency edges of the 
passband. For lowpass and highpass filters, you have only one 
frequency edge. For bandpass and bandstop filters, you will hav
two. These frequencies are represented by the vertical blue line
the Magnitude vs. Frequency plot.

The stopband attenuation is the minimum attenuation in the 
stopband. The horizontal red cursor line represents this attenua
in the Magnitude vs. Frequency plot.

The stopband frequencies determine the frequency edges of the 
stopband. For lowpass and highpass filters, you have only one 
frequency edge. For bandpass and bandstop filters, you will hav
two. These frequencies are represented by the vertical red lines i
Magnitude vs. Frequency plot.

The sampling rate control specifies the sampling rate in samples p
second (Hz). 

The type control specifies one of the four classical filter types:

• Lowpass

• Highpass

• Bandpass

• Bandstop

The design control specifies one of the four classical filter design
algorithms:

• Butterworth

• Chebyshev
© National Instruments Corporation 10-13 LabVIEW Signal Processing Course Manual
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• Inverse Chebyshev

• Elliptic

Below the text entry portion is an indicator showing the order of t
IIR filter.

The DFD application automatically estimates the filter order to b
the lowest possible order that meets or exceeds the desired filte
specifications.

At the bottom left of the Classical IIR Design panel is the message 
window where error messages are displayed.

You will use the Classical IIR Design panel to design an IIR bandpa
filter that can be used in an octave analyzer. Octave analyzers (see
lesson on the Third-Octave Analyzer Toolkit) are used in applicatio
where you need to determine how the signal power is distributed ov
particular frequency range. These applications include the fields of 
architectural acoustics, noise and vibration tests in aircraft and 
submarines, testing of household appliances, etc. 

An octave analyzer uses bandpass filters to separate the signal pow
into several frequency bands. The American National Standards Inst
requires that these filters adhere to certain specifications. Some 
specifications for one of these filters are:

fp1 = 890.90 Hz

fp2 = 1122.46 Hz

maximum passband ripple ð 50 millibels

fs1 = 120.48

fs2 = 8300

stopband attenuation Š 65 dB

Because the purpose of the bandpass filter is to determine the leve
sound power in a particular frequency band, and the phase informa
in the signal is not being used, it is not necessary for the filter to be lin
phase. Hence, you can choose an IIR filter for this application. You w
use the DFD toolkit to design the IIR filter to meet these specificatio
LabVIEW Signal Processing Course Manual 10-14 © National Instruments Corporation
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3. Change the type control in the text entry box to bandpass.

The explanation of the controls in the text entry box is the same as
before, except note that because you have selected a bandpass filt
there are two controls for the passband frequencies and the stopband 
frequencies. They are denoted by fp1, fp2, fs1, and fs2, as shown in 
following figure, and bear the following relationship:

fs1 < fp1 < fp2 < fs2

4. Looking at the specifications in step 2, enter the following values
the controls in the text entry box

passband response -0.5

passband frequencies 890.90 and 1122.46

stopband attenuation -65 

stopband frequencies 120.48 and 8300

sampling rate 25600

type bandpass

design elliptic

Note that 50 millibels =  Bels =  deciBels = 0.5 dB. That

why you entered the passband response as -0.5 dB.

fs1

fs2

fp1

fp2

fp1 fp2fs1 fs2

passband and stopband frequencies for a bandpass filter

50
1000
------------

50
100
---------
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5. On the Magnitude Vs. Frequency graph is a tracking square curso
that you can move around. The frequency and the correspondin
magnitude of the point where the cursor is placed, is displayed on
frequency and magnitude indicators below the graph. Move the 
square cursor to the passband region and verify that the attenua
in the passband is never below -0.5 dB, as was specified in the 
passband response control.

6. The default filter design is Elliptic. Change the filter design one 
one to Butterworth, Chebyshev, and Inverse Chebyshev. Note th
order of the filter. For the same filter order, which of the four filte
designs has the sharpest transition region?

7. You can save the specifications of the filter in a file for later use
From the DFD menu, select Save Spec... When asked for the name
of the file in which to save the filter specifications, type in 
bandpass.iir . In Exercise 10-3, you will load this file and 
analyze the characteristics of the filter that you have just design

tracking square cursor
LabVIEW Signal Processing Course Manual 10-16 © National Instruments Corporation
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8. You can also save the designed filter coefficients in a file for lat
use with the DFD toolkit, or with other programs. From the DFD 
menu, select Save Coeff.... When asked for the name of the file in
which to save the filter coefficients, type bpiir.txt . Save the file 
as a text file. The appendix gives the format of the text file in whic
the coefficients are stored.

9. Now that you have saved the filter specifications, and the filter 
coefficients, you can close the application. Select File » Close to 
close the Classical IIR Design panel. Then select Quit  in the Main 
Menu to exit the DFD Toolkit.

End of Exercise 10-1
© National Instruments Corporation 10-17 LabVIEW Signal Processing Course Manual
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D.Designing FIR Filters
As opposed to IIR filters, whose output depends on both its inputs and
outputs, the output of an FIR filter depends only on its inputs. Because
current output is independent of past outputs, its impulse response is o
finite length. The output of a general FIR filter is given by

y[i] = b0x[i] + b1x[i-1] + b2x[i-2] + ........ + bNx[i-N] (4)

where N is the order of the filter and b0, b1, .... bN, are its coefficients.

FIR filters have certain advantages as compared to IIR filters. 

• They can achieve linear phase response, and hence they can p
signal without phase distortion.

• They are always stable. During filter design or development, you
not need to worry about stability concerns.

• FIR filters are simpler and easier to implement. 

Applications of FIR filters
Many applications require the filters to be linear phase. In this case, yo
should use FIR filters. However, FIR filters generally need to be of a 
higher order than IIR filters, to achieve the same magnitude response 
characteristics. So, if linear phase is not necessary, but speed is an imp
consideration, you can use IIR filters instead. 

In applications where a signal needs to be reconstructed after it has 
split up into several frequency bands, it is important that the filter is
linear phase. In the reconstruction process, the loss of phase could r
in the reconstructed signal being quite different from the original on
An example of such an application is in the Wavelet and Filter Bank
Design toolkit, where you reconstruct the original signal (either a 1D
waveform or a 2D image) from the wavelet coefficients. The filters 
used are FIR filters. The applications are in areas where phase 
information is an important consideration, such as noise removal, d
compression, etc. 
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Classical FIR Design and Arbitrary FIR Design
Using the DFD Toolkit, you can design FIR filters in the Classical FIR 
Design panel (shown below) which is very similar to the Classical IIR 
Design panel that you have seen.

The panel includes a graphical interface with the Magnitude vs. 
Frequency graph and cursors on the left side, and a text-based interf
with digital controls on the right side. The differences are the absenc
the design control in the text entry box and the addition of the minimiz
filter order control below the text entry box.

This button controls whether the DFD application minimizes the 
estimated filter order. If this button is OFF, the DFD application use
fast formula to estimate the filter order to meet or exceed the desire
filter specifications. If this button is ON, the DFD application iterative
adjusts the filter order until it finds the minimum order that meets or
exceeds the filter specifications.

The FIR filters that are designed use the Parks-McClellan equiripple 
filter design algorithm and include the lowpass, highpass, bandpass
bandstop types. The Parks-McClellan algorithm minimizes the 
difference between the desired and actual filter response across th
entire frequency range.
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You can also design FIR filters with an arbitrary frequency response
selecting Arbitrary FIR Design in the Main Menu.

“Arbitrary” means that you can specify exactly what the magnitude of t
filter response should be at specific frequencies. In the next exercise, 
will design an FIR filter by specifying an arbitrary frequency response.
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Exercise 10-2
Objective: To design an FIR filter which filters the data according to A-weighting.

The human sense of hearing responds differently to different frequenc
and does not perceive sound equally. Certain filters are used to filter th
sound applied at their input such that they mimic the human hearing 
response to audio signals. An application of this is in third-octave analyz
where, to mimic the response of the human ear, the analyzer output is
weighted according to the table shown below:

This type of weighting is known as A-weighting.

Frequency (Hz) Weighting (dB) Frequency (Hz) Weighting (dB)

10 -70.4 500 -3.2

12.5 -63.4 630 -1.9

16 -56.7 800 -0.8

20 -50.5 1000 0

25 -44.7 1250 +0.6

31.5 -39.4 1600 +1.0

40 -34.6 2000 +1.2

50 -30.3 2500 +1.3

63 -26.2 3150 +1.2

80 -22.5 4000 +1.0

100 -19.1 5000 +0.5

125 -16.1 6300 -0.1

160 -13.4 8000 -1.1

200 -10.9 10000 -2.5

250 -8.6 12500 -4.3

315 -6.6

400 -4.8
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1. Launch the DFD Toolkit.

2. Select Arbitrary FIR Design  in the Main Menu . You will access 
the following design panel:

The panel includes a graphical interface with the Magnitude vs. 
Frequency graph on the left side and a text-based interface with dig
controls on the right side. In the array on the right hand side, you c
enter or modify the array magnitude response points (frequency an
magnitude). From these points, the DFD application forms a desire
magnitude response that covers the entire frequency range from 0.
half the sampling rate. The DFD application then takes this desired
response, along with the filter order, and uses the Parks-McClellan
algorithm to design an optimal equiripple FIR filter.
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The graph below plots the desired and actual magnitude response o
designed FIR filter.

The y-axis is in linear or decibel units, depending on how you set th
button in the upper left corner of the graph. The x-axis is in Hertz. T
full scale ranges from 0.0 to Nyquist (sampling rate/2).

The dB button controls the display units (linear or decibel) of all the
magnitude controls and displays. These controls and displays includ
Magnitude vs. Frequency graph (y-axis) and the magnitudes in the arra
of frequency-magnitude points.

The following array is the array of frequency-magnitude points the D
application uses to construct the desired filter magnitude response.
DFD application forms the desired filter response by interpolating 
between these points.

Figure 10-1.  Desired and Actual Magnitude Response

dB
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The frequency of each point is in Hertz and the magnitude is in linea
decibel units of gain, depending on the setting of the button in the up
left corner of the Arbitrary Magnitude Response graph.

You can select points in this array by clicking in the circle to the right
each point. You can then delete the selected points by clicking on t
delete button, or move them by clicking on the desired direction 
diamond in the lower right corner of the Arbitrary Magnitude Response 
graph.

The # points control specifies the total number of frequency-magnitu
points the DFD application uses to create the desired filter magnitu
response.

Reducing this number deletes points from the end of the 
frequency-magnitude array, while increasing this number, inserts th
additional number of points to the right of the selected point.

If you want to select more than one frequency-magnitude point on t
response graph, you should set the multiple selection button to ON

10

# points
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Clicking on a point you already selected removes that point from th
selection list.

The interpolation control selects the type of interpolation the DFD 
application uses to generate the desired response from the array o
frequency-magnitude points.

Choose linear interpolation to create “flat” filters (lowpass, highpass
bandpass, and bandstop). Choose spline interpolation to create 
smoothly-varying filters.

 To insert a frequency-magnitude point between the selected point 
the next point, click on the ins button.

If the selected point is the last point in the frequency-magnitude arr
the DFD application inserts the new point between the last two point
the array.

The DFD application inserts new points at halfway along the line 
connecting the two outer points.

To delete the selected frequency-magnitude points, click on the del 
button. The DFD application deletes all selected points.

These points are the selected frequency-magnitude points. You can
select points on the Arbitrary Magnitude Response graph by clicking on 
the point, or directly from the frequency-magnitude array shown at 
right by clicking on the circle to the right of each point.

linear interpolation

ins

del
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The filter order control specifies the total number of coefficients in t
digital FIR filter. 

The ripple indicator displays the largest absolute error (linear) betw
the desired and actual filter responses.

The message window displays errors that occurred during the FIR de
procedure.

The locked frequencies box allows you to lock the present frequenc
values of the frequency-magnitude points. If you click in this box, yo
can alter only the magnitude or y-value of the frequency-magnitude
points.

The uniform spacing box is used to space the frequency values of t
frequency-magnitude points. If you click in this box, the DFD 
application spaces the frequency-magnitude points uniformly from 0
to sampling rate/2, inclusive.

Clicking in the sort by frequency box tells the DFD application to so
the frequency-magnitude points in both the response graph and the 
according to ascending frequency. The value of each frequency- 
magnitude point remains unchanged; however, the point order may
change.

Clicking on import from file enables you to import frequency-magnitu
points from a text file.

1.3709E-2ripple

message
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The sampling rate control specifies the sampling rate in samples pe
second (Hertz).

3. The filter specifications shown in the table on page 10-21 have b
saved in the Dfd\Aweight.fir  file. Load these specifications by
selecting DFD Menu » Load Spec... and choosing the 
Aweight.fir  file.

4. You could also have entered these values directly on the front p
and then saved them by selecting Save Specs... from the DFD Menu.

When prompted for a file name, type Aweight.fir .

5. With the multiple selection control set to OFF, move some of the
points on the Arbitrary Magnitude Response graph. To do this, 
move your cursor close to a point till the cursor changes shape,
shown below:

Hold down the left mouse button and move the point. Observe h
the response of the filter changes as the point is moved.

6. Choose locked frequencies and try to do the same as in the previou
step. Now you should be able to change the magnitude of the sele
point, but not its frequency.

8000.00sampling rate
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7. Change the methods of interpolation between linear interpolation and 
spline interpolation. Observe the difference in the shape of the filt
response. Linear interpolation is used to create “flat” filters, such
lowpass, highpass, bandpass, and bandstop filters. Spline 
interpolation is used to create smoothly-varying filters. 

8. Close the Arbitrary FIR Design panel by selecting Close from the 
File menu.

9.  Quit the application by selecting Quit from the Main Menu.

End of Exercise 10-2
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E. Analyzing your Filter Design
After designing your IIR or FIR filter, you can analyze your design in 
several ways. For example, you can see the effect that the filter has on
amplitude and phase of input signals at different frequencies by obser
its magnitude and phase responses. Several types of analysis method
available in the Digital Filter Design Toolkit. These are explained below
You will first look at the response of the filter to special kinds of input 
signals. 

Impulse Response
The output of the filter when the input is an impulse is known as the impulse 
response of the filter. An impulse in the digital world has an amplitude of
at index 0 and an amplitude of 0 for all other indices. An impulse and t
impulse response are shown in the figures below. 

The impulse response has a very special meaning in the case of FI
filters. The impulse response of an FIR filter gives the coefficients o
that filter. Thus, the impulse response is a useful method for determin
the coefficients of an FIR filter. Furthermore, the number of nonzero
terms in the impulse response gives the number of coefficients in th
filter. (For an IIR filter, the relationship is much more complicated, a
the above discussion does not apply.)

Another use of the impulse response is that, for both FIR and IIR filte
the output of the filter is given by the convolution of the input signal a
the impulse response of the filter.

Step Response
The output of the filter when the input is a unit step is known as the step 
response of the filter. A unit step in the digital world has an amplitude of
© National Instruments Corporation 10-29 LabVIEW Signal Processing Course Manual
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for all negative indices, and an amplitude of 1 at index zero and for all 
positive indices. A unit step and the step response are shown in the fig
below.

The step response is important if you will use the filter in a control 
system. You can then see how the parameters of the control system 
as the rise time, overshoot, etc.) are affected by the filter. The step
response also shows you how long the filter will take to respond to 
sudden change in the input.

Frequency Response (Magnitude Response and Phase Response)
The frequency response in useful in that it shows the effect that the filte
on the amplitude and phase of input signals at different frequencies. 
Because the filter can affect both the magnitude and the phase of the 
signal, the frequency response consists of two parts—the magnitude 
response and the phase response. An example of these responses is 
below. The x-axis units are normalized in terms of the sampling freque

0.10 0.20 0.30 0.400.00 0.50

0.20

0.40

0.60

0.80

1.00

0.00
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Not only does the frequency response enlighten you as to the effect
the filter has on signals of specific frequencies, it also allows you to
determine what happens to arbitrary signals as they pass through t
filter. Because most signals can be expressed as a sum of exponen
(sines and cosines), you can break a signal down into its individual
components and determine the effect of the filter on those compone

The Z-Domain: Transfer Function H(z) and the Pole-Zero Plot
The transfer function, H(z), of a digital filter can be expressed as a ratio 
polynomials,

where N(z) is a numerator polynomial, and D(z) is the denominator
polynomial. (For an FIR filter, D(z) = 1.) H(z) is also known as the 
z-transform of the filter. 

The values of z at which N(z) is equal to zero are known as the zeros of 
the filter, because for these values, H(z) is also equal to zero. The va
of z at which D(z) is equal to zero are known as the poles of the filter, 
because at these values, H(z) is equal to infinity. A plot of the poles 
zeros of the filter is known as the pole-zero plot. Because z is a complex 
number, the pole-zero plot is shown in terms of the real part of z on the 
x-axis and the imaginary part of z on the y-axis. 

The pole-zero plot is useful in determining the stability of the filter. A
long as all the poles of the filter have a magnitude less than one, the 
is stable. If any of the poles of the filter have a magnitude greater th
one, the filter will be unstable. That means that the output of the filt
will continue to grow indefinitely even if the input is no longer applie
The values of z for which its magnitude is equal to one is drawn on th
pole-zero plot as a circle having its center at the origin and having ra
equal to one. Thus, so long as the poles of the filter lie inside the cir
the filter will be stable. If even one of the poles lie outside the circle, 
filter will be unstable.

0.10 0.20 0.30 0.400.00 0.50
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The Digital Filter Design Toolkit gives you both the transfer function 
the filter and its corresponding pole-zero plot. The figures below sh
the pole-zero plots for both a stable and an unstable filter. Each o depicts 
a zero and each x depicts a pole. 
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Exercise 10-3
Objective: To analyze the design of an IIR filter.

You will load the filter specifications you saved in Exercise 10-1 in the f
bandpass.iir  and see its impulse and step responses, and the pole-
plot of its transfer function.

1. Open the DFD application.

2. Choose the Classical IIR Design panel.

3. When the Classical IIR Design panel opens, select Load Spec... from 
the DFD Menu.

When prompted for the filename, select bandpass.iir .

4. From the DFD menu, select Analysis.

The Analysis of Filter Design window opens, as shown below.
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In this panel, you can view the filter magnitude response, phase 
response, impulse response, step response, and pole-zero plot of t
filter you designed in the first exercise. You can also view and print
full-screen plots of each response. From the full-screen views, you 
save the analysis results to text files. 

If you select DFD Menu » Analysis from a filter design panel, the 
Analysis of Filter Design panel uses that particular filter design to 
compute the various filter responses. You can also analyze any of t
four filter designs from the Design Analyzed ring selector; the Analysis 
of Filter Design panel uses the filter parameters from the selected f
design.

The DFD Menu can be used to load filter designs from previous wo
open the DAQ and Filter panel, go to the selected filter design pane
return to the Filter Design Main Menu. 
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The Design Analyzed control selects which filter control to analyze. If
you continue to modify the same filter design that is presently being
analyzed, the DFD will recompute all filter responses. 

Analysis Displays

Each of the five filter plots has a zoom box in the upper right corner
Clicking in this box brings up a full-screen version of that plot. In th
full-screen versions of these plots, you can change the units from lin
to decibel (magnitude response), from radians to degrees (phase 
response) or from seconds to samples (impulse and step response
From each full-screen view, you can save the response data to text

Magnitude Response
5. The magnitude response is the magnitude of the filter’s respons

H(f) as frequency varies from zero to half the sampling rate. Look
the magnitude response of the designed filter. You can see that
indeed a bandpass filter.

Phase Response
6. The phase response is the phase of the filter’s response H(f) as

frequency varies from zero to the sampling rate. The following figu
illustrates the phase response of the selected filter design. Note
the phase is displayed in radians. You can obtain a display in deg
by clicking on the zoom box of the Phase Response plot. A new
window will appear, which will give you the option of choosing 
between the appropriate display units.

zoom
box
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Impulse Response
7. The impulse response of a digital filter is the filter’s output when 

input is a unit sample sequence (1, 0, 0, ...). The input before th
unity sample is also zero. The following figure shows the impuls
response of the selected filter design.

Observe that although it is an IIR filter, the impulse response dec
toward zero after a finite amount of time.

Step Response
8. The step response of a digital filter is the filter’s output when the

input is a unit step sequence (1, 1, 1, ...). The input samples bef
the step sequence are defined as zero. The following figure show
step response of the designed filter.

Z-Plane Plot
9. The following figure illustrates the z-plane plot of the filter poles a

zeros.

Each pole is represented by a red x. Each zero is represented by a 
blue o. Compare this with the Magnitude Response of the filter and 
observe that the zeros are at 0 and π, which correspond to frequencies
0 and Nyquist (fs/2). The location of the poles is about 1000 Hz,
which is why there is a peak in the magnitude response around 
1000 Hz.
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H(z) for IIR Filters
10. H(z) is the z-transform of the designed digital filter.

Previously, you saw that the IIR filters are implemented as cascade
second-order stages. For an IIR filter, H(z) can be represented by a
product of fractions of second-order z polynomials.

Nk(z) = numerator for stage k

Dk(z) = denominator for stage k

Ns = number of second-order stages

You can view the N(z) and D(z) polynomials for other stages by 
incrementing the index shown in the upper left corner of the H(z) 
display. 

11. Close the panel by selecting Close from the File menu. Quit the DFD 
application.

End of Exercise 10-3

H z( )
Nk z( )
Dk z( )
--------------

k 1=

Ns

∏=
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F. Format of Filter Coefficient Text Files
When you save your filter coefficients to a text file, the DFD application
generates a readable text file containing all the information you need t
implement the designed FIR or IIR digital filter. This section details the
format for both FIR and IIR filter coefficient files.

FIR Coefficient File Format
The following table gives an example FIR coefficient text file and 
description:

coefficient file example description

FIR Filter Coefficients type of file

Sampling Rate sampling rate label

8.000000E+3 sampling rate in Hz

N filter order label

22 filter order

h[0..21] coefficients label

6.350871E-3 1st coefficient, h[0]

-8.833535E-3 2nd coefficient, h[1]

-2.847674E-2 .

4.626607E-2 .

4.103986E-2 .

-1.114579E-1

-1.412791E-2

1.810791E-1

-5.984635E-2

-2.002337E-1

1.516199E-1

1.516199E-1

-2.002337E-1

-5.984635E-2

1.810791E-1
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You can implement the FIR filter using equation (4) directly.

IIR Coefficient File Format
IIR coefficient files are slightly more complex than FIR coefficient files. II
filters are usually described by two sets of coefficients, a and b coefficients. 
There are a total of M * S a coefficients and (M+1)*S b coefficients, where 
M is the stage order (usually 2) and S is the number of stages. An IIR f
with three second-order stages has two a coefficients per stage for a total o
six a coefficients, and three b coefficients per stage for a total of nine b 
coefficients.

The following table gives an example IIR coefficient text file and 
description:

-1.412791E-2

-1.114579E-1

4.103986E-2

4.626607E-2 .

-2.847674E-2 .

-8.833535E-3 .

6.350871E-3 last coefficient, h[N-1]

coefficient file example description

IIR Filter Coefficients coefficient type

Sampling Rate sampling rate label

8.000000E+3 sampling rate in Hz

Stage Order stage order label

2 order of each stage

Number of Stages number of stages label

3 number of stages

a Coefficients a coefficients label

6 number of a coefficients

3.801467E-1 a1 for stage 1

coefficient file example description
© National Instruments Corporation 10-39 LabVIEW Signal Processing Course Manual
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You can implement the IIR filter in cascade stages by using equation
(maintaining two past inputs and two past outputs for each stage), o
using the direct form II equations (maintaining two past internal state
as in equation (3).

8.754090E-1 a2 for stage 1

-1.021050E-1 a1 for stage 2

9.492741E-1 a2 for stage 2

8.460304E-1 a1 for stage 3

9.540986E-1 a2 for stage 3

b Coefficients b coefficients label

9 number of b coefficients

1.514603E-2 b0 for stage 1

0.000000E+0 b1 for stage 1

1.514603E-2 b2 for stage 1

1.000000E+0 b0 for stage 2

6.618322E-1 b1 for stage 2

1.000000E+0 b2 for stage 2

1.000000E+0 b0 for stage 3

1.276187E+0 b1 for stage 3

1.000000E+0 b2 for stage 3

coefficient file example description
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Summary
You have learned that FIR filters are used for applications where you n
a linear phase response, such as for applications that require reconstru
the original waveform after filtering, noise removal, and data compress
For applications where phase is not an important consideration (such a
simple signal monitoring) and where faster speeds are necessary, you
use IIR filters.

You saw that the DFD toolkit allows you to interactively design both
FIR and IIR filters. The design could be done either by specifying th
filter parameters (classical IIR design and classical FIR design), 
deciding the location of the poles and zeros in the z-plane (pole-ze
placement), or arbitrarily specifying the magnitude response 
characteristics (arbitrary FIR design) of the filter.

After the filter has been designed, you can analyze your filter in term
of its magnitude and phase responses, impulse and step responses
the pole-zero plot. You can also save the filter coefficients for use i
other applications.
© National Instruments Corporation 10-41 LabVIEW Signal Processing Course Manual



Lesson 10 Digital Filter Design Toolkit
Notes
LabVIEW Signal Processing Course Manual 10-42 © National Instruments Corporation



Lesson 11
G Math Toolkit
s, 

ns. 

t 

lems 

f 

rse 
Introduction
The G Math Toolkit offers a new paradigm for mathematics, numerical 
recipes in G, with hundreds of math VIs for solving differential equation
optimization, root finding, and so on. All VIs in the G Math Toolkit are 
written in G, so you can quickly modify them for your custom applicatio
A main feature of the G Math Toolkit is that it adds to LabVIEW and 
BridgeVIEW the ability to enter complex formulas directly onto the fron
panel of a VI.

This toolkit is intended for use by scientists, engineers, and 
mathematicians, and by anyone needing to solve mathematical prob
in a simple, quick, and efficient manner. It can also be used as an 
educational aid by those interested in expanding their knowledge o
mathematics.

You Will Learn:

A. About the organization of the G Math Toolkit.

B. About the different types of parser VIs and how to use them to pa
formulas entered directly on the front panel.

C. About solving differential equations using the differential 
equation VIs.
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A.Organization of the G Math Toolkit
The G Math Toolkit consists of nine libraries, each specifically suited t
solve problems in a particular area of mathematics. These libraries are

Parser.llb : Consists of the VIs that act as an interface 
between the end user and the programming system. These V
parse the user-given formula and convert it to a form that can
used for evaluating the results.

Visualiz.llb : These are the Data Visualization VIs for 
plotting and visualizing data in both 2D and 3D. They include 
advanced methods such as animation, contour plots, and 
surface cuts.

Ode.llb : The VIs in this library solve ordinary differential 
equations VIs, both numerically and symbolically.

Zero.llb : Used for finding the zeros of 1D or nD, linear or 
nonlinear functions (or system of functions).

Opti.llb : The optimization VIs that determine local minima
and maxima of real 1D or nD functions. You can choose betwee
optimization algorithms based on derivatives of the function a
others working without these derivatives.

1Dexplo.llb : Contains VIs that allow the study of real-value
1D functions, with and without additional parameters, given in
symbolic form. 

2Dexplo.llb : A collection of VIs that deliver information 
about 2D functions given in symbolic form, where 
parameterization is allowed. Extrema (minima and maxima) a
partial derivatives can be numerically calculated.

Function.llb : These VIs evaluate some common 
mathematical functions.

Trans.llb : A group of VIs that implement some transform
commonly used in mathematics and signal processing.

The G Math libraries consist of more than 100 VIs you can use for 
solving your mathematics problems. In the next section, you will 
concentrate on learning more about the parser VIs and use some of 
to build a simple arbitrary waveform generator. The importance of t
VIs in the parser library is in enabling users to enter formulas direct
on the front panel. Thus, the user can enter a formula on the front 
panel and the arbitrary waveform generator will generate and plot t
corresponding signal.
LabVIEW Signal Processing Course Manual 11-2 © National Instruments Corporation
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B.Parser VIs
The VIs in the Parser library act as the interface between the user and
VIs in the other libraries. The formulas entered on the front panel can h
any number of variables. The formulas are first parsed to determine th
variables and the values to be assigned to them. They are then evalua
a number by substituting numeric values for the variables.

Direct and Indirect Forms
Because there are basically two steps involved in this process (parsing
then evaluation), there are two forms of parser VIs—the direct form and the 
indirect form. In the direct form, both the parsing and evaluation are do
in the same VI. In the indirect form, the parsing and evaluation are don
separate VIs. 

As an example, the direct version of the Eval Formula Node VI  can be 
represented as in the following block diagram.

On the other hand, the indirect forms split the VI in two subVIs, as 
shown in the following illustration. You can use the indirect form in 
larger applications, where a two-step process (parsing and then 
evaluating) is more efficient.
© National Instruments Corporation 11-3 LabVIEW Signal Processing Course Manual
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The following table summarizes the different types of parser VIs.

Note: The front panel of each parser VI has an example that shows how to en
values in the control inputs.

Direct Form (Parsing and evaluation done in one VI) Example

No Variables Eval Formula String Evaluates RHS of a formula 
without variables.

sin(1.2) + 5

Single Variable Eval Single-Variable 
Scalar

Evaluates RHS of a formula of 
one variable at one specified 
point.

cos(x) at x = 3.142

Eval Single-Variable 
Array

Evaluates RHS of a formula of 
one variable at several specified 
points.

cos(x) at 
x = 0, 0.1, 0.2, ...

Many Variables Eval Formula Node Evaluates both sides of 
formula(s) with several variables.

x = a + b at a = 1, b = 2

Eval Multi-Variable 
Scalar

Evaluates RHS of a formula with 
several variables at one specified 
point.

sin(x) + cos(y) + z
at x = 1.0, y = 2.5, 
z = 3.1

Eval Multi-Variable 
Array

Evaluates RHS of a formula with 
several variables at several 
specified points.

sin(x) + cos(y) + z
at x = 1, y = 2, z = 3 and 
x = 3, y = 10, z = 1 and 
x = 0.1, y = -2, z = 0.0

Indirect Form (Parsing and evaluation in separate VIs)

Many Variables (The 
combination evaluates 
the RHS of a formula of 
several variables at the 
specified point.)

Parse Formula String Parses the RHS of a formula to 
determine input variables and the 
operations performed on them.

x = sin(z) + 7 * y

Eval Parsed Formula 
String

Evaluates the parsed formula 
with the specified values for the 
input variables.

Many Variables (The 
combination evaluates 
both sides of formula(s) 
of several variables at 
the specified point.)

Parse Formula Node Parses both sides of the 
formula(s) to determine the input 
and output variables and the 
operations to be performed on 
them.

x = a + b
y = a * b

Eval Parsed Formula 
Node

Evaluates the parsed formula(s) 
with the specified values for the 
input variables.

Others

Substitute Variables Substitutes specified formulas for 
variables in the main formula.
LabVIEW Signal Processing Course Manual 11-4 © National Instruments Corporation
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The direct form of parser VIs are more widely used than the indirec
form. The following flowchart guides you through the selection of a 
specific parser VI of the direct form. 

Comparison with Formula Node
A parser VI scans an input string and interprets this string as a collectio
formulas. Then, the parser VI replaces the formulas with numeric 
calculations and outputs the results.The parser VI routines deal only w
real numbers. There are some differences between the parser in the G
Toolkit and the Formula Node found in the original LabVIEW (or 
BridgeVIEW) package. The following table outlines these differences. 

Meaning Formula Node Parser VI Routines 
(G Math Toolkit)

Variables No restrictions Only a, a0, ..., a9, ...

z, z0, ..., z9, are valid

Select one of
the indirect form
Parser VIs

Eval
Formula Node

Parsing and Evaluation
in the same VI?

How many
variables?

Evaluate both
sides of formula?

Evaluation
at single or

multiple points?

Y

N

manyone

multiple

Eval Multi-Variable Array

single

Eval Multi-Variable Scalar

Evaluation
at single or

multiple points?

multiple

Eval Single-Variable Array

single

Eval Single-Variable Scalar

Y

N
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The precedence of operators is the same for the G Math Toolkit pa
VIs as those of the formula nodes in LabVIEW and BridgeVIEW.

Error Structure
The parser VIs use the following error handling structure. This structur
consists of a Boolean status button, a signed 32-bit integer numeric code 
indicator, and a string source indicator. These error handler components a
explained below:

status is TRUE if an error occurred. If status is TRUE, this VI does not 
perform any operations.

code is the error code number identifying the error.

source explains the error in more detail.

The default status of the error in  structure is FALSE (no error), 
indicated by an error code of 0.

With this structure, an application can programmatically decide the 
accuracy of formulas and control the data flow in case of errors. Th
application uses the source field of the error handling structure as a 
storage for a wrong formula input. This field displays limited error 

Binary functions Max, min, mod, rem Not available

More complex math 
functions

Not available Gamma, ci, si, spike, step, 
square

Assignment = Not available

Logical, conditional, 
inequality, equality

?:, ||, &&, !=, ==, <, >, <=, 
>=

Not available

pi

Meaning Formula Node Parser VI Routines 
(G Math Toolkit)

π pi 1( ) π pi 2( ) 2π=,=
LabVIEW Signal Processing Course Manual 11-6 © National Instruments Corporation
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descriptions if an error is detected in your program. See the Error Codes 
appendix for the error codes and the messages of the parser VI rou

Functions Available for Use with Parser VIs
Most of the functions that you can use in the formula node can also be 
in the parser VIs. However, there are some differences. For a complet
of functions that you can use with the parser VIs, refer to the appendix

The parser VIs are extremely powerful and can be used in a wide va
of applications. The first few exercises in this lesson cover building
arbitrary waveform generator that uses several of the parser routines
to understand their functionality.
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Exercise 11-1
Objective: To build an arbitrary waveform generator using the Eval Single-Variable Array VI.

In this exercise, you will build an arbitrary waveform generator using th
parser VIs. You will enter the formula for the waveform on the front pa
and see the output waveform on a graph indicator.

Selection of Direct or Indirect Form Parser VI
First, you must decide whether to use the direct or the indirect form of 
parser VIs. Because you are interested only in displaying the result of 
evaluation on a graph, and are not concerned about the results of pars
you will use the direct form of the parser VIs.

Selection of Parser VI
Looking at the table on page 11-4, depending on the number of variabl
your formula, you need to choose the appropriate VI from several avail
choices of VIs of the direct form. Because you will plot a 1D function, y
need a VI that can handle functions of at least one variable. And becaus
want to evaluate that function at more than one point, choose the Eval 
Single-Variable Array VI (G Math » Parser subpalette). The inputs and
outputs of this VI are shown below.

formula:  a control for specifying your mathematical formula consistin
of one variable.
X Values: values of the variable at which the formula is evaluated.
Y Values: numeric results of the evaluation of the formula in formula at the 
values specified in X Values.

You need to specify at least the inputs formula  and X Values. For the 
formula  input, you will enter a control on the front panel. On this 
control, you can type in your input formula. For the X Values, you will 
build a For Loop on the block diagram that will generate 1000 points
which to evaluate the equation you will type in the formula control. T
corresponding front panel and block diagram are shown below. Note
the For Loop generates X Values from 0 to 10 in increments of 0.01.
LabVIEW Signal Processing Course Manual 11-8 © National Instruments Corporation
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1. Build the VI front panel and block diagram shown below.

Front Panel

The formula string control is where you enter your formula. 

The Y Values indicator shows the result of the calculation of the form
at specified discrete points.

The Waveform graph shows you a plot of the function you typed in 
formula control.

Block Diagram

Eval Single-Variable Array VI (G Math » Parser subpalette) 
evaluates a function of a single variable at multiple points.

The For Loop generates the discrete set of points at which the form
in the formula control will be evaluated. These points range from 0 
9.99 in increments of 0.01.

2. After building the above VI, return to the front panel.

3. Type in the equation sin(x) in the formula control and run the VI. Se
the result displayed on the graph indicator.
© National Instruments Corporation 11-9 LabVIEW Signal Processing Course Manual
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Note that sin(x) has only one variable, called x. You could also call 
the variable y or z or anything else. The appendix lists the rules fo
variable names.

4. Change the equation to sin(x) + cos(x/2) and run the VI. 

5. Change the equation to step(y-1) + sinc(y-2) + sin(y*10) and run the 
VI. Note that now you have changed the variable to y. 

6. Type in any other equation in the formula control and run the VI. T
appendix contains a list of available functions you can use in the
equation. 

Note: If you get an error, refer to the appendix for a list of error codes.

7. Save the VI as EvalSVA.vi in the library Lvspcex.llb .

8. Close the VI.

You have now seen how easy it is to build the waveform generator w
the user can specify the formula for an arbitrary waveform on the fr
panel. In the next exercise, you will modify this waveform generator
have the functionality of easily specifying even more complex 
waveforms.

End of Exercise 11-1
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Exercise 11-2
Objective: To generate even more complex waveforms by incorporating the Substitute 

Variables VI in the function generator.
Another useful VI in the parser library is the Substitute Variables VI (G 
Math » Parser subpalette). The connections to this VI are shown in the
figure below. It is used to substitute formulas for parameters that are alr
defined in formulas.

original formula : the main formula you type in.

Substitution Rules: specify the substitutions to be made for the paramet
in original formula .

formula after substitution : the resulting formula after the parameter 
substitutions specified in Substitution Rules.

You will now modify the waveform generator you built in the previou
exercise to use the Substitute Variables VI. Suppose you want to 
generate a “generic” waveform that is of the form sin(A) + cos(B), where 
A and B can themselves be functions like sin(x), cos(x), square(x), 
sinc(x), ln(x), etc. But you want to use different functions for A and B 
each time you run the VI. This is accomplished as shown in the fron
panel and block diagrams below.
© National Instruments Corporation 11-11 LabVIEW Signal Processing Course Manual
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Substitute Variables VI (G Math » Parser subpalette) 
substitutes for parameters defined in formulas. The substitut
is done according to the rules specified in the Substitution 
Rules cluster array.

Eval Single-Variable Array VI  (G Math » Parser subpalette) 
evaluates a function of one variable at specified multiple poin

The For Loop generates a thousand points, ranging from 0 to 9.99 
steps of 0.01, at which to evaluate the user-specified formula.

The original formula  string control is where you enter your formula o
one variable. The formula may have one or more parameters.

Each element (cluster) in the Substitution Rules array specifies a 
parameter and its corresponding substitution.

Y Values is an array digital indicator that shows the result of calculat
the formula at specified points. 

1. Build the VI as shown in the figures above. The formula after 
substitution output of the Substitute Variables VI  goes to the 
formula  input of the Eval Single-Variable Array VI.

Hint: Build the block diagram first, pop up to create the controls and
indicators, and then add the waveform graph.

2. In the original formula  control, type in the formula sin(A) + cos(B). 
This will be the “generic” formula. In the Substitution Rules control, 
you will provide the user with the capability of specifying the 
functions to be substituted for A and B.
LabVIEW Signal Processing Course Manual 11-12 © National Instruments Corporation
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3. In element 0 of the Substitution Rules control, type in

parameter name: A

parameter content: sin(x)

In element 1, type in

parameter name: B

parameter content: cos(x)

Note that this is the same as if you had typed sin(sin(x)) + cos(cos(x)) 
in the formula control in Exercise 11-1.

4. Run the VI and see the waveform on the graph display.

5. Change the values in the Substitution Rules control to

element 0 parameter name: A

parameter content: sin(x)

element 1 parameter name: B

parameter content: square(x)

Run the VI. The resulting equation is the same as if you had typ
sin(sin(x)) + cos(square(x)) in the formula control in Exercise 1-1.

6. Now change the control to

element 0 parameter name: A

parameter content: step(x-5)

element 1 parameter name: B

parameter content: square(x)

Run the VI.

With this simple VI that you have built, you now can generate an
type of waveform that you so desire, with the functions given in t
appendix.

7. Save the VI as ESVA_SV.vi in the library Lvspcex.llb .

8. Close the VI.

End of Exercise 11-2
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C.Solving Differential Equations
You can use G Math to solve both ordinary or partial, linear or nonline
and either first or higher order differential equations. G Math has seven
for solving various types of differential equations. These VIs are listed 
below, classified according to the order of the differential equation they
solve. 

Note: The order of a differential equation is the order of the highest derivative i
the differential equation.

The first five VIs can solve a set (one or more) of first-order differentia
equations. The next two VIs are for solving higher order differential 
equations. Note that you can convert a higher order differential equatio
into a set of first-order differential equations (later in this lesson, you w
see an example of how to do this). 

VIs for solving a set (one or more) of first-order differential equation

ODE Cash Karp 5th order for solving differential equations 
using the Cash Karp method.

ODE Euler Method for solving differential equations using the
Euler method.

ODE Runge Kutta 4th order for solving differential equations 
using the Runge Kutta method.

ODE Linear System Numeric for numerical solution of a linear
system of differential equations.

ODE Linear System Symbolic for symbolic solution of a linear 
system of differential equations.

Out of these, the first three are for solving nonhomogeneous 
(right side ¦ 0) differential equations, whereas the last two are for 
homogeneous (right side = 0) differential equations. 

VIs for solving higher order differential equations:

ODE Linear  nth order Numeric for numeric solution of a linear 
system of nth order differential equations. 

ODE Linear nth order Symbolic for symbolic solution of a 
linear system of nth order differential equations.

Both these VIs are for solving homogeneous differential equations.
LabVIEW Signal Processing Course Manual 11-14 © National Instruments Corporation
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Solving Nonhomogeneous Differential Equations
From the previous discussion, you see that there are three VIs availab
solving nonhomogeneous differential equations. They are

• ODE Cash Karp 5th order VI

• ODE Euler Method VI

• ODE Runge Kutta 4th order VI

Each VI employs a different method for solving the differential 
equations. Each method uses a parameter known as the step size 
(denoted by h) that determines the spacing between points at which 
solution is evaluated. This step size is a constant for the last two V
(which employ the Euler and Runge-Kutta methods), whereas it is 
variable (it automatically adapts itself to the solution) for the first VI
(which employs the Cash Karp method). The Euler method is the 
simplest method, but the Runge-Kutta method gives a more accura
solution.

The question arises as to which of these three VIs you should choos
your application. The general guidelines are:

• Select the ODE Euler Method VI for very simple ODEs.

• For all other cases, choose the ODE Runge-Kutta 4th Order VI or 
the ODE Cash Karp 5th Order VI.

– If you need equidistant points (that is, constant h—for example, 
for robot control applications), choose the ODE Runge-Kutta 
4th Order  VI.

– If you are interested in a global solution and fast computation
choose the ODE Cash Karp 5th Order VI.

A General Class of Second-Order Differential Equations
As an example, a general class of second-order differential equations 
described by the following initial value problem

(1)

with  and 

where y(0) is the value of y at t = 0, dy(0)/dt is the value of dy/dt at y=0, 
and g(t) is known as the forcing function. y(0) and dy(0)/dt are known as 
the initial conditions (ICs). Note that because the right side of equati
(1) is not equal to zero, it is a nonhomogeneous differential equation. In 
the absence of a forcing function (g(t) = 0), it would be a homogeneous 
differential equation.

a
d2y
dt
-------- b

dy
dt
------ cy g t( )=+ +

y 0( ) y0=
dy 0( )

dt
--------------

dy0

dt
--------=
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Some of the practical applications of this class of differential equatio
are for modeling:

1. The motion of a mass on a vibrating spring

where m is the mass, c is the damping coefficient, k is the spring 
constant, and F(t) is the applied force.

2. Flow of an electrical current in a series circuit

where R, L and C are the resistance, inductance, and capacitance
respectively, in the circuit, Q is the charge flowing in the series 
circuit, and E(t) is the applied voltage.

3. The motion of an oscillating pendulum

where m is the mass of the pendulum, l is the length of the rod, g is 
the acceleration due to gravity, and θ is the angle between the rod an
a vertical line passing through the point where the rod is fixed (t
is, the equilibrium position).

To solve equations of the type of eqn (1) using the ODE Euler Method 
VI, the ODE Runge-Kutta 4th Order VI, or the ODE Cash Karp 5th 
Order VI, you first need to convert them into a set of first-order 
differential equations. This is achieved by making the substitution 
x1 = y and x2 = dy/dt . Substituting these in equation (1), you get

Thus, now you have converted the second-order differential equatio
given by (1) to the following equivalent set of first order differential 
equations

(2)

(3)

You will use G Math to solve this set of equations in the next exerc

md2y

dt2
-------------

cdy
dt

--------- ky F t( )=+ +

L
d2Q

dt2
---------- R

dQ
dt
-------

Q
C
---- dE t( )

dt
-------------=+ +

d2θ
dt2
--------

c
ml
------

dθ
dt
------

g
l
--- θ( ) 0=sin+ +

a
dx2

dx
-------- bx2 cx1 g t( )=+ +

dx2

dt
--------

g t( ) cx1– bx2–

a
--------------------------------------=

dx1

dt
-------- x2=

dx2

dt
--------

g t( ) cx1– bx2–

a
--------------------------------------=
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Exercise 11-3
Objective: To build a general G Math VI for applications whose solutions are second-order 

differential equations.
In this exercise, you will build a VI that will solve the general second-or
differential equation of the type given in equation (1). This equation is a
given below:

with  and 

You will see how incorporation of the Substitute Variables VI enables 
you to solve problems related to a wide variety of applications.

Because you want to solve the above equation, which is a 
nonhomogeneous equation, you are faced with three choices of VIs

• ODE Cash Karp 5th Order

• ODE Euler Method

• ODE Runge Kutta 4th Order

Because this is a simple second-order differential equation, you can
actually select any of these VIs. Choose the ODE Euler Method VI, 
which has the following inputs and outputs:

X: an array of strings listing the dependent variables

time start: the point in time at which to start the calculations

time end: the point in time at which to end the calculations

h: time increment (step rate) at which to perform the calculation

X0: the initial conditions (I.C.). There is a one-to-one relationshi
between the components of X and that of X0. That is, the first value 
in X0 is the I.C. of the first variable listed in X, the second value in 
X0 is the I.C. of the second variable listed in X, and so on.

time: a string that defines what the independent variable is, usu
time (t).

a
d2y

dt2
--------

bdy
dt

--------- cy g t( )=+ +

y 0( ) y0=
dy 0( )

dt
--------------

dy0

dt
--------=
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F(X,t) : the right sides of the set of first-order differential equation
There is a one-to-one relationship between the elements of F(X,t)  
and X. This will be explained in more detail later. 

Note: F(X,t) requires its input as a set of first-order differential equations. 
Therefore, to solve equation (1) with this VI, you need to use the equivale
form given by equations (2) and (3).

ticks: is the time in milliseconds required for the calculations

Times: the time instants at which the solution of the differential 
equations are evaluated. For the ODE Euler Method VI and the 
ODE Runge Kutta 4th Order VI, these instants begin at time start 
with increments of h, until time end. 

XValues: contains the solution for each of the dependent variabl
of the differential equations at each time instant in Times. The first 
column is the solution for the first variable in X, the second column 
is the solution for the second variable in X, and so on.

error : contains an error code in case of any error. Refer to the 
appendix for the list of errors and the corresponding error codes

1. Build the VI whose front panel and block diagram are shown bel

Hint: An easy way to build the VI is to build the block diagram first, po
up on the terminals of the ODE Euler Method VI , and select Create 
Control  for the inputs and Create Indicator for the outputs. The 
controls and indicators automatically appear in the correct form on 
front panel. Finally, you can add the Waveform graph.
LabVIEW Signal Processing Course Manual 11-18 © National Instruments Corporation
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Front Panel

The time start and the time end controls contain the starting and 
ending time instants.

The differential equations are typed in the F(x,t) control.

The dependent variables are entered into the X control.

The independent variable is entered into the time control.

X0 contains the initial values (initial conditions) of the dependen
variables.

h contains the step size.

Substitution Rules contains the parameters and the correspondin
substitution.

Note: There is a one-to-one correspondence between the elements of X, X0, 
F(x,t). The first element in X0 corresponds to the initial value of the firs
element in X, the second element in X0 corresponds to the initial value
the second element in X, and so on. Also, the first element in F(x,t) 
corresponds to the derivative of the first element in X, the second elem
in F(x,t) corresponds to the derivative of the first element in X, and so o
© National Instruments Corporation 11-19 LabVIEW Signal Processing Course Manual
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Block Diagram

ODE Euler Method VI (G Math » Ordinary Differential 
Equations) solves a set of differential equations using the Eu
method.

Substitute Variables VI (G Math » Parser) substitutes the 
specified values for the corresponding parameters.

2. Enter the right side of equations (2) and (3), respectively, in the f
two elements of F(X,t) . Thus, you will enter x2 and (g - b*x2 -c*x1)/a. 

Equation (2) in the second element of F(X,t)  contains the variables 
a, b, c, and g. The values of these variables will change dependin
on the application. Hence, in the block diagram, you use the 
Substitute Variables VI to assign different values to these variable
You can enter these values in the Substitution Rules control on the 
front panel.

3. X contains the names of the dependent variables, which in this c
are entered as x1 and x2.

4. time contains the name of the independent variable, which in thi
case is t.

X0 will contain the initial conditions for x1 and x2. The first value 
entered in X0 will correspond to the first variable entered in X. The 
second value entered in X0 will correspond to the second variable 
entered in X. The values of the ICs will vary depending on the 
application.
LabVIEW Signal Processing Course Manual 11-20 © National Instruments Corporation
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5. Save the VI as ODE_2nd.vi in the library Lvspcex.llb .

Now you have a VI ready for solving any second-order 
nonhomogeneous differential equation. All that remains is to ent
the corresponding values of a, b, c, and g in the Substitution Rules 
control, and the initial conditions of the variables X0 control. Then 
you can specify the time interval (between time start and time end, 
in increments of h) for which you want the solution and run the VI
Out pops the answer. You will continue this procedure in the ne
exercise.

End of Exercise 11-3
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Exercise 11-4
Objective: To design the suspension system of an automobile.

You will now use the VI you built in the previous exercise to solve a
typical mechanical modeling problem. In particular, you will design t
suspension system of an automobile to have a suitable response whe
automobile goes over a pothole, a speed bump, and so on.

You can model the suspension system by the nonhomogeneous 
differential equation given in equation (1) (reproduced below),

with  and 

where

y(t) is the position of the automobile. y(t) = 0 indicates that the 
vehicle is in a balanced or a stable position.

dy/dt is the up and down speed of the automobile.

c is the coil constant of the spring used in the suspension system
is proportional to the displacement of the spring from its equilibriu
position. A larger value of c indicates a strong spring coil and thus 
tough suspension system. c is known as the spring constant.

b is a resistance coefficient that is proportional to the up and do
speed of the automobile. A larger value of b indicates a stronger 
resistance to the up and down movement of the automobile, and 
a smoother suspension system. b is known as the shock constant.

a is the weight of the vehicle.

g(t) is the external force that causes the suspension system of th
automobile to deviate from its equilibrium position. Some possib
causes may include a speed bump, a pothole, or a stone in the m
of the road.

1. Using the VI developed in the previous exercise, enter the follow
values in the controls on the front panel:

time start: 0

time end: 100

h: 0.1

Substitution Rules

parameter name: a b c g

parameter content: 1000 125 1000 0

X0: 0 0

a
d2y

dt2
-------- bdy

dt
--------- cy g t( )=+ +

y 0( ) y0=
dy 0( )

dt
--------------

dy0

dt
--------=
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The initial conditions of 0 specified in X0 indicate that the vehicle
initially in a stable equilibrium position. g = 0, means that there is no
disturbing force.

2. Run the VI and note the waveforms on the XY graph. What do y
see? Explain the results.

3. Now assume that after driving for 10 seconds, the driver of the 
automobile drove on to the sidewalk. This action can be modeled
substituting a step function for g. In the Substitution Rules control, 
change the value of g from 0 to 100*step(t-10) and run the VI.

Notice that until t = 10, the values of x and dx/dt are equal to zero 
because no force (g) has been applied until then. At t = 0, a step 
function of magnitude 100 is applied and both the position and t
up and down speed of the automobile change. However, as time
passes, the oscillations subside and both values tend to settle d
to an equilibrium position. You can verify this by entering 400 in t
time end control and running the VI.

4. A speed bump can be approximately modeled by the following va
for g:

10*sin(t)*(step(t) - step(t-3.142))

The multiplying constant (in this case 10) controls the height of t
speed bump, while the remaining term models one “bump.” 

How the above formula corresponds to a speed bump is shown in
figure below. The upper plot is a plot of one cycle of sin(t). The 
middle plot is a plot of step(t) - step(t-3.142), whereas the lower p
is the multiplication of the top two plots resulting in sin(t)*(step(t)
step((t-3.142)).
© National Instruments Corporation 11-23 LabVIEW Signal Processing Course Manual
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Enter the above value of g and run the VI.

What do you see? Explain the results.

5. A pothole can be modeled in a similar fashion, but with the oppo
sign: -10*sin(t)*(step(t) - step(t-3.142))

Enter the above value of g and run the VI. What change do you no
as compared with the results of step (4)?

6. Experiment with the value of c so that the oscillations reduce to zer
in less than 80 seconds. 

Hint:  reduce the value of c to a lower value (for example, 250)

7. Keeping the value of c at 1000, change the value of b so that the 
oscillations reduce to zero in less than 80 seconds.

Hint:  increase the value of b to a higher value (for example, 175)

Thus, you see that by proper selection of b and/or c, you can design the 
suspension system of an automobile to behave in a certain way (tha
to have a certain response). The selection of b and/or c could correspond 
to a particular choice of material to be used in building the suspens
system.

8. Close the VI when you are finished.

End of Exercise 11-4
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Exercise 11-5
Objective: To see some of the capabilities of the G Math Toolkit for 1D functions.

1. Launch the 1D Explorer Example VI from the 
Labview/Examples/Gmath/Math.llb  folder. This VI shows 
a good overview of some of the mathematical functionalities of G
Math.

2. The default formula in the formula control is 
sinc(c)+sin(2*c)+sin(3*c)+sin(2*c*c). Choose the following 
options by holding down <Shift> and clicking the left mouse butto
on the following selections

• Modified Function Graph

• Integration Graph

• Roots

• Maxima

3. Run the VI and click the Start button on the bottom right of the 
panel. Plots of the above selections are displayed. Note that you
enter the start and end points directly on the front panel through
start and end controls. Also, note that LabVIEW returned the gra
quickly because LabVIEW runs compiled. (Other math packages
not compiled.) 
© National Instruments Corporation 11-25 LabVIEW Signal Processing Course Manual
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4. Line up the cursor on a maxima and see its value.

5. Enter a new formula sin(exp(x)) in the formula control and click on
the Start button.

6. Zoom in on a maxima using the graph zoom option.

7. Experiment by typing in other formulas in the formula control.

8. When you finish, you can stop the VI by clicking on the STOP 
button at the bottom right of the panel.

End of Exercise 11-5
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Exercise 11-6 (Optional)
Objective: To simulate the tank flow problem. 

This exercise is a practical application that combines entering formula
the front panel, solving an ordinary differential equation, and visualizin
process to simulate a tank inflow and outflow process. 

Consider a cylindrical tank of constant cross section A cm2. Water is 
pumped into the tank from the top at a constant rate fi(t) cm3/s. Water 
flows out of the bottom of the tank by a valve of area a(t) cm2. Note that 
both the input and output flow rates are functions of time. You will 
observe how the height of the water, h(t), in the tank varies with time.

The solution to this problem is a first-order differential equation 
given by

where g is the acceleration due to gravity, equal to 980 cm/s2.

The input flow rate to the tank, as well as the area of the outflow va
can be modeled as equations on the front panel. Select the followin
equations for these values: 

Input flow, fi(t): 340*square(t)

Area of valve, a(t), for the outflow: sin(t) + 1

dh t( )
dt

------------- 2gh t( )–
a t( )
A

---------–
fi t( )
A

---------+=
© National Instruments Corporation 11-27 LabVIEW Signal Processing Course Manual



Lesson 11 G Math Toolkit

d 
1. Open the Process Control Explorer Example VI, in the 
Labview/Examples/Gmath/Misc.llb  folder. The 
explanation of the front panel is as already described above.

Note: In this example, all variables in the differential equation can be controlle
from the front panel.

2. Run the VI and select the Calculation button. This button will flash 
while the calculation is in progress.

3. Once the calculation is over, select the Simulation button. The 
simulated system is then graphed.

4. Change the input flow rate and area of tank to:

fi(t), input flow rate: 340*sin(t)

a(t), area of valve: 0.01

5. Select the Calculation button and then the Simulation button. Notice 
that the tank is now gradually emptying. 

6. Select the STOP button.

End of Exercise 11-6
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Exercise 11-7 (Optional)
Objective: To see an example of the G Math Toolkit for data visualization.

1. In the Labview/Examples/Gmath/Graphics.llb  folder, 
open and run the Representation Function Graph 2D VI. 

Note: The default function value is sin(3*x)*cos(5*y). This is a function of two
variables, x and y. The range of values to be plotted is indicated on the S
and End controls on the front panel. The default values are 0.0 and 1.0 f
both the x and y variables.

When the interactive subVI comes up, you can look at the plot fr
different viewpoints by controlling the values of psi, phi, and r with 
the help of the slider controls. Psi and phi control the angles with 
respect to the xz and xy planes, respectively, where r controls the 
© National Instruments Corporation 11-29 LabVIEW Signal Processing Course Manual
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distance from the origin. How these controls correspond to differ
viewpoints is shown in the figure below: 

2. Change the psi value on the slider control. Note what happens.

3. Change the phi value on the slider control. Note what happens.

4. To return to the main VI, select the stop button on the front pane

5. When you are done, close the VI.

End of Exercise 11-7

x

z

y
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Summary
In this lesson, you saw the basic components of the G Math Toolkit and 
to use it for solving problems in engineering, math, and education. In 
particular, you built a simple arbitrary waveform generator using the VI
the parser library, and you also designed the suspension system of an
automobile by making use of the differential equation VIs. Finally, you 
experimented with other VIs that showed some of the more advanced 
capabilities of G Math.
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Introduction

A third-octave analyzer measures the spectral energy contained in 
specific set of third-octave bands and provides a standardized 
narrowband spectral analysis. It consists of a set of bandpass filter
connected in parallel. It is widely used in the field of acoustics and au
signal processing to measure sound or acoustic intensity in various
frequency bands. Its applications lie in the fields of vibration tests o
machines, architectural acoustics, power measurements, etc. In thi
lesson, you will learn about the specifics of the bandpass filters use
third-octave analyzers, their applications, and how to use the 
Third-Octave Analyzer Toolkit.

You Will Learn:

A. About filter banks.

B. About how an octave analyzer is a special type of filter bank.

C. About third-octave analyzers.

D. About the applications of octave and third-octave analyzers.

E. About the features of the Third-Octave Analyzer Toolkit.
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A.Filter Banks
A filter bank is a group of bandpass filters connected in parallel. Each f
is tuned to a different frequency range. A simple filter bank consisting 
five filters is shown in the figure below. The center frequencies of each
bandpass filter are denoted by f1, f2, f3, f4, and f5, whereas their bandwidths
are denoted by B1, B2, B3, B4, and B5, respectively. There is a special nam
given to the center frequencies. For the mth filter, let the center frequency be
fm. Then fm is known as the center frequency, the midband frequency, or 
the geometric mean frequency.1 Note that in the figure, the bandwidths o
all the filters are the same. That is, B1 = B2 = B3 = B4 = B5. 

One of the properties of bandpass filters is their quality factor, Q. The 
quality factor is a measure of how selective the filter is in passing 
frequencies around the center frequency and attenuating unwanted
frequencies. It is defined as the ratio of the center frequency of the f
to its bandwidth. 

Q = fm/Bm

Thus, for a fixed center frequency, the larger the bandwidth, the sma
the quality factor, and vice versa. In the figure above, because the 
bandwidths of all the filters are the same, but the center frequencies
different, the quality factor is different for each filter.

1.  Note that the actual term used depends on the relationship between fm and the upper and lower passband 
frequency (fU and fL, respectively). This will be discussed in more detail later.

frequency

B1 B2 B3 B4 B5

f1 f2 f3 f4 f5
LabVIEW Signal Processing Course Manual 12-2 © National Instruments Corporation
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A practical application of a bandpass filter is in a radio or television
receiver. Radio and television channels all occupy different frequen
ranges. The antenna picks up signals of all the frequencies of all th
channels. However, inside the radio or television receiver, the signa
passed through a bandpass filter used to select a particular channe
one that you want to hear or see) and reject the other channels. Whe
change the tuning knob on your radio, or the channel selector knob
your TV, you are actually changing the center frequency of this 
bandpass filter. It is desirable for the bandpass filter to pass the sele
channel and reject the unwanted channels. Hence, the bandpass fi
needs to have a high Q so that you do not hear (or see) two or mor
channels at the same time.
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B.Octave Analyzers
Now consider the filter bank shown in the figure below. It consists of fo
bandpass filters each with a different center frequency and different 
bandwidths. The center frequencies are denoted by f1, f2, f3, and f4, whereas 
the bandwidths are denoted by B1, B2, B3, and B4. The filters with higher 
center frequencies have larger bandwidths, and filters with lower cente
frequencies have lower bandwidths. 

The special feature of this filter bank is that the center frequency of 
of the filters is exactly twice (one octave higher) that of the center 
frequency of the filter just below it and exactly 1/2 (one octave lowe
that of the center frequency of the filter just above it.

That is,         and       

This same relationship holds true for the bandwidths of any two adjac
filters—the bandwidth of any filter is exactly twice that of the bandwid
of the filter just below it and exactly 1/2 that of the bandwidth of the
filter just above it.

That is,         and       

Note that the quality factor = Q = fm/Bm is now the same for all filters, 
because both fm and the bandwidth of adjacent filters increase (or 
decrease) by the same amount. Therefore, these bandpass filters a
known as constant Q bandpass filters.

Such a filter bank, where the ratios of center frequencies and bandwi
of adjacent filters are powers of 2 (21 = one octave), is known as an 

fm

fm 1–
----------- 2=

fm

fm 1+
-----------

1
2
---=

frequency

B1 B2 B3 B4

f1 f2 f3 f4

Bm

Bm 1–
------------- 2=

Bm

Bm 1+
-------------

1
2
---=
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octave analyzer. Both the center frequencies and bandwidths increas
logarithmically, and all the bandpass filters have the same value of
The bandwidth of each filter covers a frequency range of one octav

For each bandpass filter, let fm denote the center frequency, and fU and 
fL denote the upper and lower passband frequencies, respectively. 
is shown in the figure below. 

The relationship between them is that fm is the geometric mean of fU and 
fL

and hence fm is also known as the geometric mean frequency.

fL fm fU

fm fufL=
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C.1/3-Octave Analyzer or Third-Octave Analyzer
Now you can probably make a good guess as to what is a 1/3-octave 
analyzer, also known as a third-octave analyzer (TOA). It is very simila
an octave analyzer but with a different ratio of center frequencies and 
bandwidths of adjacent filters. It consists of a set of bandpass filters 
connected in parallel, where the ratio of center frequencies and bandw
of adjacent filters is 21/3.

        and       

        and       

Because the ratio is now 21/3 (approximately = 1.26) it requires three o
these filters to cover a frequency range of one octave. The net effe
this is that three filters of a 1/3-octave analyzer cover the same 
frequency range as one filter of an octave analyzer. This is shown in
figure below for one filter of the octave analyzer.

Note: In general, you can have a 1/n-octave analyzer where the ratio of cente
frequencies and bandwidths of adjacent bandpass filters is 21/n. In 
practice, the most popular ones are 21, 21/3, and 21/12. These correspond to 
ratios with numeric values of 2, 1.26, and 1.06, respectively.

For 1/3-octave analyzers also, there is  where fm is called the 
geometric mean frequency.

The filters in both octave and third-octave analyzers are also known
constant percentage bandwidth filters. That is, the bandwidth of the 
filters are a constant percentage of the center frequency. For an oc
filter, the ratio of f2/f1 = 2, and its bandwidth is 1/  = 71% of the cente
frequency. For a 1/3-octave filter, the ratio f2/f1 = , and its bandwidth 
is 21/6 - 2-1/6 = 23% of the center frequency. 

fm

fm 1–
----------- 21 3⁄=

fm

fm 1+
----------- 2 1– 3⁄=

Bm

Bm 1–
------------- 21 3⁄=

Bm

Bm 1+
------------- 2 1– 3⁄=

freq

One filter of an octave analyzer

Three filters of a 1/3 octave analyzer (dotted lines)

f 2f
one octave

(solid line) 

fm fUfL=

2

23
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D.Applications
The applications of 1/n-octave analyzers are mainly in the fields of acoust
and audio signal processing. Basically, you want to measure the soun
acoustic intensity in various frequency bands. A specific example is in
aviation industry, where measurement of noise emissions from an airc
are necessary for it to get airworthiness certification. Federal aviation 
regulations require the use of real-time 1/3-octave analyzers for data 
analysis. Manufacturers of appliances and office equipment also tend 
specify sound power levels in their product documentation so that 
customers can compare their products and choose the quieter one. By
measuring sound power levels in a room or other enclosure such as a co
hall, acoustic engineers determine the proper material and design for t
enclosure.

Other applications are in

• Vibration tests in aircraft and submarines

• Sound power determination

• Acoustic intensity measurement

• Audio equalization

• Architectural acoustics

• Appliance testing

The information obtained from a TOA can be used to reduce vibrati
in aircraft and submarines, to reduce noise in aircraft, submarines, 
household appliances, and to make sound (for example, music) mo
pleasant to hear (for example, equalizers and architectural acoustic
© National Instruments Corporation 12-7 LabVIEW Signal Processing Course Manual
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E. The Third-Octave Analyzer Toolkit
You saw that the applications of 1/n-octave analyzers are in those field
where there is a need to measure sound power in different frequency b
To compare different measurements with each other, measurements a
performed according to certain standards. The American National 
Standards Institute (ANSI) has specified the standards for the design o
octave and third-octave filters. This information is found in the ANSI S1
(1986) specifications for octave-band and fractional-octave-band 
analog and digital filters. The National Instruments Third-Octave 
Analyzer Toolkit conforms to these specifications. The center frequenc
of the BPFs of the third-octave analyzer, as given in the ANSI S1.11 (19
specifications, are shown in the following table. Also shown is the 
frequency range corresponding to the passband of the filters. There 
are a total of 30 specified center frequencies spanning a range from 25
20 KHz. However, in the National Instruments 1/3-octave analyzer, an
additional BPF with a center frequency of 10 Hz has been added to the l
frequency range, giving a total of 31 BPFs.

Center freq. (Hz) Passband (Hz) Center freq. (Hz) Passband (Hz) Center freq. (Hz) Passband (Hz)

25 22.4 - 28.2 400 355 - 447 6300 5620 - 7080

31.5 28.2 - 35.5 500 447 - 562 8000 7080 - 8910

40 33.5 - 44.7 630 562 - 708 10000 8910 - 11200

50 44.7 - 56.2 800 708 - 891 12500 11200 - 14100

63 56.2 - 70.8 1000 891 - 1120 16000 14100 - 17800

80 70.8 - 89.1 1250 1120 - 1410 20000 17800 - 22400

100 89.1 - 112 1600 1410 - 1780

125 112 - 141 2000 1780 - 2240

160 141 - 178 2500 2240 - 2820

200 178 - 224 3150 2820 - 3550

250 224 - 282 4000 3550 - 4470

315 282 - 355 5000 4470 - 5620
LabVIEW Signal Processing Course Manual 12-8 © National Instruments Corporation
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The Third-Octave Analyzer Toolkit can be used as a stand-alone 
application, an add-on toolkit for LabVIEW or BridgeVIEW, or with 
LabWindows/CVI. It can analyze the frequency of the signal in 31 
frequency bands.

The figure below shows the front panel of the TOA stand-alone 
application. It can analyze up to four channels of data. Depending on
number of channels you choose, you could get either one, two, thre
four graphs on the front panel. In this particular figure, you see four
graphs. The x-axis of each graph is the frequency scale and the y-ax
each graph is the power amplitude (in decibel) scale. Each graph als
a cursor that you can move to see the power value in each frequen
band. This cursor is shown by the vertical line with an “x” through it
The value of the center frequency (in hertz) in the frequency band a
the corresponding power value (in decibel) is displayed at the top of e
graph.

On the front panel above, Acquire retrieves and analyzes a block of dat
The analyzer does not start acquiring data until you click on this but

The data can be acquired in single or continuous mode. The mode can be
chosen by clicking on the up or down arrows on the control to the lef
the Acquire button. When you select single, every time that you click the
Acquire button, the analyzer acquires and analyzes a new block of d
and displays the result on the corresponding graph. When you choo
continuous, the analyzer starts to acquire and analyze data when yo
click the Acquire button. After it has displayed the data on the 
corresponding graph, it acquires the next block of data and analyzes
displays it. This continues until you click on the Stop Acquire button. 
© National Instruments Corporation 12-9 LabVIEW Signal Processing Course Manual



Lesson 12 Third-Octave Analyzers

es 

here 
nel.

 and 

he 
ars 
ny 

sical 
er 
(The Acquire button becomes the Stop Acquire button during an 
acquisition.)

Amplitude Table shows a table with all 31 bands of output power valu
for each channel.

Save saves the 31 bands of power values in a spreadsheet format w
each column represents 31 bands of the power value for each chan

This button saves the power amplitude as well as some status 
information, such as channel numbers, window type, average type,
weighting value. We will discuss this status information later.

Quit  stops the analyzer.

Setup opens the Setup panel shown below. The setup panel selects t
parameters that you want to customize for your application. It appe
when you first run the TOA. However, you can always access it at a
time by clicking on the Setup button.

device specifies the identification number for your DAQ board. 

In Windows, you can assign this number to your device through 
software. For the Macintosh, the device parameter indicates the phy
slot number into which you insert your device. You can find this numb
by opening NI-DAQ in the control panels folder.
LabVIEW Signal Processing Course Manual 12-10 © National Instruments Corporation
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sampling rate determines the rate at which the signal is sampled, an
thus the frequency range being analyzed (this is because as you ha
already seen, the sampling frequency must be at least twice the 
maximum frequency of the signal). Three choices of sampling rates
available: 12.8 KHz, 25.6 KHz, and 51.2 KHz. The corresponding 
frequency ranges being analyzed are: 5 Hz - 5 KHz, 10 Hz - 10 KHz, 
20 Hz - 20 KHz. These sampling rates were chosen because they a
software selectable with the National Instruments dynamic signal 
acquisition boards (AT-A2150, NB-A2150F, and AT-DSP2200), whic
you can use with the TOA. The sample rate of 51.2 KHz conforms to
“Extended” range ANSI specifications.

Channel # indicates the channels from which to acquire the data and
display it. Up to four channels can be chosen (and the channel num
can also be the same in every control). Each channel has a box wit
cross in it. If you do not need to use a channel, click inside the box u
the cross disappears. This will disable all the parameters associated
that particular channel.

Window Type selects one of four commonly used windows 
(Rectangular, Hamming, Hanning, and Blackman) for each channel. 
Window Type parameter defaults to the Hanning window.

Next, you will complete an exercise which uses the third-octave analy
and highlights more of its features.
© National Instruments Corporation 12-11 LabVIEW Signal Processing Course Manual
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Exercise 12-1
Objective: To analyze a signal consisting of a sine wave with harmonics and added white 

noise.

Note: This exercise requires a modified library of the actual third-octave 
analyzer toolkit. If the file TOA\Octave.llb does not exist on your hard 
drive, you cannot do this exercise. In that case, you may read this exerc
to become familiar with the front panel controls and indicators, and then
move on to the next section.

1. Open the Third-Octave Analyzer VI from the folder 
Toa\Octave.llb . You will see the following front panel:

Front Panel

You see four graphs on the screen. This is because you can ana
signals coming from up to four channels. The number of graphs
displayed on the screen depends on the number of channels yo
analyzing.

The two controls (Frequency and Amplitude ) on the right side of the 
front panel have been added only for the purpose of this exercis
They do not exist in the actual Third-Octave Analyzer Toolkit. Th
adjust the amplitude and frequency of a sine wave (with harmon
that has been corrupted by white noise. On the front panel of the
TOA, use the Frequency dial to control the frequency of the 
fundamental component of the sine wave between 0 - 10 KHz. U
the Amplitude  slider control to adjust the amplitude of the 
fundamental between 0 - 20.
LabVIEW Signal Processing Course Manual 12-12 © National Instruments Corporation
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Although you do not need to be concerned about this for now, fo
those who are interested, the block diagram of the VI (Signal.vi) used 
to generate this simulated signal is shown below:

The above VI also adds to the fundamental its 3rd and 7th harmo
of amplitudes 1/5th and 1/15th, respectively. The addition of 
harmonics is simulated by the lower two Sine Wave VIs. 

Setup Window
2. With the Amplitude  and Frequency controls both set to 0.00, run 

the VI.
© National Instruments Corporation 12-13 LabVIEW Signal Processing Course Manual
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A new window called Setup appears.

The Setup window gives you control over the number of channels
sample, the sampling rate, FFT size, and much more. For now, 
will leave the following controls at their default values:

device 1

sampling rate 25.6 K Hz

data blocks to average 1

FFT size 512

Internal Data Averaging no averaging

3. In the Setup window, click on the white box to the left of the label
ChB, ChC, and ChD. When you click on the white boxes, the 
crosses in them disappear, and the selections for those channe
grayed out.
LabVIEW Signal Processing Course Manual 12-14 © National Instruments Corporation
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4. Now, because only the white box to the left of ChA has a cross in it, 
you will use only ChA to acquire the signal.

The device control corresponds to the number of the DAQ board
your computer. You can obtain the correct device number for yo
DAQ board by using the NI-DAQ Configuration Utility. For the 
purpose of this exercise, leave device set to 1.

The Channel # control determines the particular channel on the DA
board from which you will acquire the sampled signal. (A DAQ 
board usually has more than one channel—typically 8 or 16.) Le
this set to 0.

The Window Type control determines the type of window you wan
to apply to the data samples. 

5. Click on the Done button. The Setup window will disappear, and you
will return to the main panel of the TOA. You can bring up the Setup 
window at any time to change the configuration parameters by 
clicking on the Setup button on the bottom left of the main panel o
the TOA. Note that only one graph is displayed, because you ha
selected only 1 channel in the Setup window.

Single and Continuous Acquisition
6. The Single button (just next to the Setup button) is a menu ring 

control that determines how the samples of the data are collecte
When set to Single mode, only one block of data is acquired wh
© National Instruments Corporation 12-15 LabVIEW Signal Processing Course Manual
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the Acquire button is pressed. However, when set to Continuous
mode, blocks of data are acquired one after the other when the 
Acquire button is pressed. While in the continuous mode of 
operation, the Acquire button changes to the Stop Acquire button. 
To stop the continuous data acquisition, you must press the Stop 
Acquire button.

7. With the menu ring control on Single, click the Acquire button.

After a short time interval during which the data is obtained and 
calculations for the power output are being done, a histogram 
appears on the graph. This is the histogram of white noise only (th
is no signal because the amplitude of the sine wave has been se
0.0 on the slider control). Each rectangle of the histogram gives 
power in the frequency band of the corresponding BPF. Note that
power increases as you go toward higher frequencies. Why do y
think that is so?

Hint:  White noise has a flat frequency spectrum (that is, the sam
average power at all frequencies). The filters used in the TOA h
increasing bandwidths as the center frequency increases.

8. Click on the Acquire button again. Once again, after the data is 
obtained and the calculations are over, the display changes. The
is obtained, the calculations done, and the display updated each
you click on the Acquire button. However, if you do not click the
Acquire button, nothing happens. This is the operation of the Sin
acquisition mode.

9. Click on the arrows of the Single button and change it to Continuou
mode. Click on the Acquire button to start the acquisition.

Now the operation of obtaining data, calculating the power outpu
of the BPFs, and updating the data is done continuously. Note t
the Acquire button has changed to the Stop Acquire button. You 
must click on the Stop Acquire button if you want to stop the 
continuous data acquisition.

Changing the FFT Size
10. You will notice a time delay between successive updating of the

display. This is because the default size of the FFT has been se
512 data points. It takes a certain amount of time to acquire the 
points, perform the necessary calculations, and display the resu
To decrease this time, you can choose a smaller FFT size. 

Click on the Setup button. The Setup window comes up. Set FFT 
size to 256 and click on the Done button. Now notice that the display
is much faster.
LabVIEW Signal Processing Course Manual 12-16 © National Instruments Corporation
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Adding a Signal to the White Noise
11. Set the Frequency control to 100 Hz and the Amplitude  control to 

10. The display will show you three peaks. The highest peak is fr
the output of the BPF that covers the frequency range in which t
fundamental sine wave of frequency 100 Hz falls. The other two
peaks are from the outputs of the BPFs whose frequency bands
include the 3rd and 7th harmonics (that is, 300 Hz and 700 Hz).

Cursor Control
12. Move the cursor around the display. On the top left, you can see

power output (in dB) and the corresponding center frequency (in 
of the BPF corresponding to the rectangle on which you place th
cursor.

The Amplitude Table
13. Another way to see the power in each of the different frequency

bands is to click on the Amplitude Table button. A new window 
comes up with a table showing the center frequencies and the 
corresponding power output (in dB) of each of the BPFs. To clos
this window, click on the Ok button.

Multiple Channels and Weighting
14. You will now acquire and display data from more than one chan

Click on the Setup button to bring up the Setup window. In the 
Setup window, click on the white box to the left of the label ChB and 
change its Channel # to 0 (the same as for ChA). Change the 
Weighting of ChB to A-weighting. 

You have just sampled the same signal on both channels A and
However, the signal obtained on ChA is displayed with no 
weighting, whereas the signal obtained on ChB is displayed with 
A-weighting. Weighting is done because the human ear respond
differently to different frequencies. By using A-weighting, the 
analyzer mimics the human hearing response to audio signals. 
Internally, the analyzer accomplishes this by adding a specified 
weighting value (in dB) to the calculated power before displaying
Other weighting selections that are available are none (no weight
and custom (user defined).
© National Instruments Corporation 12-17 LabVIEW Signal Processing Course Manual
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15. In the Setup window, click on the View Weighting bar to see a table
showing the weighting values for each frequency band for each 
channel. Click on the OK  button to close the window showing the 
table.

16. In the Setup window, click on the Done button.

17. Now you are back to the main front panel of the TOA. The top gra
shows the display from ChA (with no weighting) and the bottom 
graph shows the display from ChB (with A-weighting). You can thus 
compare the outputs from different channels. 

18. Click on the Stop Acquire button to stop the data acquisition.

19. Click on the Quit  button to stop the VI.

20. Close the VI. Do not save any changes.

End of Exercise 12-1
LabVIEW Signal Processing Course Manual 12-18 © National Instruments Corporation
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F. Calibration Using the Third-Octave Analyzer
You can also use the TOA in applications involving calibration. For this
purpose, the first step is to apply to the TOA a reference signal from a hi
accurate source. The result obtained is then saved (by clicking on the Save 
button) as a reference for future use. This previously recorded signal ca
loaded later for use as a reference by clicking on the Reference button. You 
can compare this reference signal with the current signal you are obtai
because the analyzer plots both signals on the same graph.

The following three exercises outline the steps on how to use the TOA
calibration. In the next exercise, you will generate a reference signal. In
exercise following that, you will save the results of third-octave analysis
this reference signal. In the final exercise, you will compare these resu
with those obtained from another source. 

The reference signal is obtained from the function generator on a DAQ
Signal Accessory. Some of the connections on the box are as shown b

You will use this box to generate a sinusoidal signal of frequency 200 
and peak amplitude of 1 V. This will be your reference signal.

DAQ
Signal Accessory

Analog
Out

Analog
In

Function
Generator

Ch   0      1      1      2

A   B

Frequency
Adjust

Frequency
Range

DAQ Signal Accessory Box
© National Instruments Corporation 12-19 LabVIEW Signal Processing Course Manual
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Exercise 12-2
Objective: To generate a sinusoidal reference signal of frequency 200 Hz and peak amplitude 

of 1.0 V.
1. Make the following connections between the DAQ Signal Access

and data acquisition board on your computer.

Connect the sine wave output of the Function Generator to Analo
channel 1. Thus the sine wave will be available at channel # 1 of
DAQ board.

Set the Frequency Range slider control to 100Hz-10kHz. 

Connect the DAQ Signal Accessory cable connection through a
ribbon cable to the DAQ board on your computer.

2. Bring up LabVIEW (or BridgeVIEW) and load the Examples » 
Analysis » measure » daqmeas.llb » Simple Spectrum Analyzer VI. 
You will use this VI to measure the exact amplitude and frequen

ribbon cable

DAQ
Signal Accessory

Analog
Out

Analog
In

Function
Generator

wire
connectionCh   0      1      1      2

A   B

Frequency
Adjust

13 kHz – 1 MHz

1 kHz – 100 kHz

100 Hz – 10 kHz

Frequency
Range
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of the sinusoidal signal from the Function Generator output of th
DAQ Signal Accessory.

3. Make the following changes to the default settings on the Simple 
Spectrum Analyzer VI:

Enter a value of 1 in the channel(0) string control.

Change number of samples to 1000.

Select None (Uniform) window in the Window control. 

Leave all the other settings at their default values.

Note: With a sampling rate of 20000 and number of samples selected as 1000,
frequency spacing is 20000/1000 = 20 Hz. The FFT lines will thus fall o
frequency values of 0, 20, 40, 60, and so on. The signal of 200 Hz will 
therefore fall exactly on the eleventh FFT line. 

4. Run the VI. In the Est Power Peak and the Est Frequency Peak 
indicators on the top, you will see the estimate of the power and
frequency of the highest peak in the spectrum.

5. Adjust the Frequency Adjust control on the DAQ Signal Accessory
to get an Est Frequency Peak of 200 Hz (or as close to it as possible
(You will need to run the VI each time after you change the 
Frequency Adjust control.)

6. Once you obtain a frequency of 200 Hz, note the value in the Est 
Power Peak indicator. This value is in units of V2rms. You can 
© National Instruments Corporation 12-21 LabVIEW Signal Processing Course Manual
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convert this to a peak voltage (Vpeak) reading by using the following 
formula:

You should obtain a value near 1.0 V.

7. Make a note of the frequency and the corresponding voltage Vpeak. Be 
sure not to change the settings on the DAQ Signal Accessory.

8. When you are done, close the VI. Do not save any changes. 

End of Exercise 12-2

You will use the sinusoidal signal of the frequency and amplitude th
you have noted in the previous exercise, as the reference signal ag
which we can compare other signals. This reference signal has a 
frequency of 200 Hz and a peak amplitude of 1.0 V.

Note: The method you have used in the previous exercise to generate the 
reference signal is just to illustrate the principles involved in calibration o
the TOA. In practice, the reference signal should be obtained from a mo
accurate and reliable source.

Vpeak 2 Vrms
2=
LabVIEW Signal Processing Course Manual 12-22 © National Instruments Corporation
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Exercise 12-3
Objective: To save the results obtained from the TOA for a standard reference signal.

In this exercise, you will use the same connections (between the DAQ
Signal Accessory box and your computer) as those you had before in 
previous exercise.

1. Run the Third-Octave Analyzer from the Start » Programs menu.

2. In the Setup panel, make sure only ChA is selected. This is done by
clicking in the white box to the left of ChB, ChC, and ChD, so that 
the white box does not have a cross in it, and also that the selec
for these channels are grayed out.

3. Change the Channel # setting to 1. Leave the other settings at the
default values as shown:

device: 1 sampling rate: 51.2KHz

data blocks to average: 1 Window Type: Hanning

Average Type: linear Weighting: no weighting

FFT size: 512 Internal Data no 
Averaging: averaging

4. When you are finished, click on the Done button at the bottom right.

5. On the TOA front panel, press the Acquire button. The VI has now 
obtained samples of the sinusoidal signal of frequency 200 Hz a
© National Instruments Corporation 12-23 LabVIEW Signal Processing Course Manual
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peak amplitude of 1 V and is showing the results of third-octave
analysis on this signal.

Move the cursor so that it aligns with the band corresponding to 
largest peak in the display. The frequency reading on the top of 
display should read 200 Hz. The amplitude reading should be ne
-3.0 dB (which corresponds to a peak amplitude of 1.0 V).

You will now save these results as a reference that can be comp
with other signals.

6. Click on the Save button. When prompted for the filename, type in
standard.ref . You could use any filename, but it is 
recommended that you use one with a .ref  extension if you plan to 
use it as a reference file. 

The file standard.ref  now contains the results of third-octave
analysis on the reference signal.

7. Exit the VI by clicking on the Quit  button at the bottom right.

End of Exercise 12-3
LabVIEW Signal Processing Course Manual 12-24 © National Instruments Corporation
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Exercise 12-4
Objective: To compare the results of third-octave analysis on a given signal with that obtained 

from a standard reference signal.

In the previous exercise, you had saved the results of third-octave 
analysis on our standard reference signal. In this exercise, you will 
compare these results with those obtained from another source.

Exchange your DAQ Signal Accessory with someone else in the cla
and make the connections as you had done in the previous two exerc
Assume that your previous DAQ Signal Accessory was well calibra
and of high enough quality to generate the standard reference sign
You will now compare those results with those obtained using the o
DAQ Signal Accessory. 

Note:  Do not change the settings on the other DAQ Signal Accessory. 

1. Open the Third-Octave Analyzer from the Start » Programs menu. 

2. In the Setup panel, make the selection as you had done in the 
previous exercise. That is, select only ChA, with a corresponding 
Channel # of 1. The other controls have the following values:

device: 1 sampling rate: 51.2KHz

data blocks to average: 1 Window Type: Hanning

Average Type: linear Weighting: no weighting

FFT size: 512 Internal Data no averaging
Averaging:

3. After verifying the above settings, click on the Done button.

4. On the front panel, click on the Reference button. A new window 
comes up from which you can select the file standard.ref  that 
you had saved in the previous exercise. 

This file contains the results of third-octave analysis on a refere
signal of 200 Hz having a peak amplitude of 1 V. The results sto
in the file will be plotted in white. 

5. Click on the Acquire button to obtain a single block of data. The 
results will be overlaid on the same plot as that of the reference
signal. 
© National Instruments Corporation 12-25 LabVIEW Signal Processing Course Manual
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6. Move the cursor around the plot. For the band on which the curso
placed, the top left of the display shows you the center frequency
dB levels of the two plots, and the difference in dB levels of the t
plots. The figure below shows the display for the band with the 
200 Hz center frequency.

 

7. To calibrate the new DAQ Signal Accessory that you obtained, y
need to adjust the amplitude and frequency on the new box so t
the difference in power reading in the band with a center freque
of 200 Hz is zero. That will mean that both the DAQ Signal 
Accessory boxes are producing signals with exactly the same 
frequency and amplitude. 

8.  When you finish, exit the VI by clicking on the Quit  button.

End of Exercise 12-4

center frequency

reference power value
current power value

difference of current power value
with reference power value
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Summary
In this lesson, you learned the basic theory behind the operation of oc
analyzers. You have seen that they consist of a set of bandpass filters
ratio of the center frequencies and bandwidths of adjacent bandpass f
is equal to 2 for an octave analyzer and 21/3 (approximately 1.26) for a TOA.
That means that as you go higher in frequency, the center frequency a
bandwidth of one BPF is twice that of the adjacent lower frequency BPF
the octave analyzer (or 1.26 times that of the adjacent lower frequency
for a third-octave analyzer).

You used the TOA on a signal consisting of a sine wave (and its 
harmonics) with added white noise. Specifically, you learned:

• How to select the number of channels.

• The difference between single and continuous modes of operati

• How to change the FFT size.

• About weighting the power output of the BPFs.

• How to see the power output and center frequency values by us
the cursor or the Amplitude Table control.

Finally, you saw how to use the TOA to compare the power levels 
between two signals, one of which is a reference signal.
© National Instruments Corporation 12-27 LabVIEW Signal Processing Course Manual
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Introduction

In this lesson, you will learn the basic theory behind joint time-frequen
analysis (JTFA) and how to use the JTFA Toolkit in a variety of 
applications.

You Will Learn:

A. Why you need joint time-frequency analysis.

B. About joint time-frequency analysis.

C. About the JTFA Toolkit and its applications.
© National Instruments Corporation 13-1 LabVIEW Signal Processing Course Manual
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A.Why Do You Need Joint Time-Frequency Analysis?
A signal can be represented in a number of different ways. You want t
representation that most accentuates the qualities of the signal in which
are interested. You may be very familiar with the representation of a si
as a function of time. This representation shows how the signal magni
changes over time. Alternately, you can also represent the signal as a
function of frequency by performing a Fourier transform. The figure bel
shows the time representation of a sine wave and its Fourier transform

Traditionally, signals are studied as a function of time or frequency, 
not both. However, a number of signals encountered in real-world 
applications have time-dependent frequency representations. One 
example is signals representing the tones of music that vary with tim
Therefore, in many practical applications, it is very useful to 
characterize the signal in time and frequency domains simultaneou
LabVIEW Signal Processing Course Manual 13-2 © National Instruments Corporation
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The figure above shows the time-frequency plot of a bird sound. The 
on the right is the standard Fourier spectrum. From this spectrum al
you cannot tell how the frequencies have changed over time. Beneat
time-frequency plot is a plot of the time waveform of the bird sound
This shows you only how the sound level changes as a function of ti
The advantage of having a time frequency plot is that not only can 
tell what the range of frequencies were, but also how these frequen
changed as a function of time. For this bird sound, you can see that a
beginning, the bird was making a sound at higher frequency, which t
changed as a function of time, as indicated on the graph. Furthermor
the time-frequency plot, not only can you see how the frequency 
changed in time, but you can see the intensity of the frequency, indic
by the relative brightness levels of the plot. 

f

t
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The figure above shows graphs of a speech signal. The plot at the bo
of the figure is the time waveform of such a signal. This plot shows h
the magnitude of this signal changes as a function of time. The plot
the upper right corner is the frequency representation of the same si
This representation reveals four prominent frequency tones in the 
spectrum. However, from the spectrum alone, you cannot tell how th
frequencies evolve over time. This is where joint time-frequency 
analysis comes into the picture. The 2-D contour plot in the figure ab
is the result of such an analysis. This plot is the time-dependent 
spectrum, a function of both time and frequency, and reveals how 
different frequency tones evolved as a function of time. From this, n
only can you see how the frequency changed, but you can also see
intensity of the frequencies, as shown by the relative brightness leve
the plot. Consequently, by using JTFA, you can better understand t
mechanism of human speech.

From these two examples, you have seen that time-frequency anal
offers a better understanding of the nature of the signal. Several ot
applications in this lesson illustrate this point.

time
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B.Joint Time-Frequency Analysis
This section briefly introduces different techniques for joint time-frequen
analysis and outlines the algorithms associated with each technique. R
to Joint Time-Frequency Analysis: Methods and Applications by Shie 
Qian and Dapang Chen, Prentice Hall, 1996 for a detailed discussion 
these algorithms.

There are two types of joint time-frequency representations, namely
linear and the bilinear (quadratic). All linear transformations are 
achieved by comparing the signal to be analyzed with a set of prude
selected elementary functions, known as the analysis function. As a
example, consider the Fourier transform  of a signal f(t).

 

In this case,  is the analysis function. The elementary functions
selected in the inverse transformation are called synthesis functions
example, in the inverse Fourier transform,

 is the synthesis function. The short-time Fourier transform (STF
and the wavelet transform are two widely used methods to obtain a li
representation. Wavelets are discussed in detail in the next lesson.

Short-Time Fourier Transform (STFT)
Similar to the example seen above, for the continuous-time STFT, the
analysis function and the synthesis function have the same form. In th
case, the inverse problem—that is, recovering the original time function
is very simple.

For digital signal processing applications, it is necessary to extend 
STFT framework to discrete-time signals. For a given discrete

signal , the following equation defines the STFT for  :

 

where g[m] is an analysis signal.
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The STFT is also called a sliding-window fast Fourier transform (FF
because a window function breaks the signal into several time slice
The FFT computes the frequency spectrum for each slice of window
data, and then you take the square magnitude of each FFT. The res
this operation for each time slice is associated with the time index in
middle of that particular slice of windowed data. For example, the re
of the operation for time-slice1 is associated with the time index t4, 
that for time-slice3 is associated with the index t18. To establish a 
complete three-dimensional spectrogram, you can slide the window
the right one or more points at a time and compute a new spectrog

Consider one classical example. A signal known as the frequency ho
signal is widely used in digital communication: 

Assume that two bits are being transmitted simultaneously over two
transmission lines. Let the frequency corresponding to the combina

time-slice 1 time-slice 2 time-slice 3

t4
t11

t18

FFT FFT FFT

Square
Magnitude

Square
Magnitude

Square
Magnitude

t4
t11

t18

time

time

t0

Digital
Transmitter

input stream

b0

b1
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00 be f1, the frequency corresponding to 01 be f2, to 10 be f3, and t
be f3. Then, depending on which combination is being transmitted, 
signal hops between these four frequencies, hence the name frequ
hopper.

The figure below shows the time waveform of a frequency hopper 
signal, the corresponding spectrum as calculated by FFT, and the S
distribution of this signal. From the time waveform, you cannot see a
frequency information. From the spectrum, you can see that there a
four distinct frequency components but cannot tell when those 
components occurred in time. The STFT representation provides bo
the time and frequency information in the same plot. From this 
spectrogram, not only can you distinctly see the four frequency leve
but you can also see when these frequencies changed in time.

Wigner-Ville Distribution
There are different ways to obtain bilinear1 joint time-frequency 
representations. The first is the Wigner-Ville distribution. This technique
very simple and it better characterizes the signal’s time-dependent spe
than the STFT spectrogram. Also, this distribution possesses many 
properties useful for signal analysis. 

1.  Called bilinear because the signal x(t) appears twice in the equations for each representation. For more information, 
refer to Joint Time-Frequency Analysis: Methods and Applications by Shie Qian and Dapang Chen, Prentice Hall, 
NJ, 1996.
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The figure above shows the time waveform of a frequency hopper sig
the corresponding spectrum as calculated by FFT, and the Wigner-V
distribution of this signal. From the time waveform, you cannot see 
frequency information. From the spectrum, you can see four distinc
frequency components but cannot tell when those components occu
in time. The Wigner-Ville distribution provides both the time and 
frequency information in the same plot. However, as you can see fr
the plot, the main deficiency of this distribution is the cross-term 
interference. This cross-term interference occurs at frequencies mid
between the two main frequencies. If there are four main frequencies
in the example above), there are six terms due to cross interference
However, a good characteristic of these cross-term interferences is
they highly oscillate between positive and negative values. These 
positive and negative parts cancel out each other on averaging. To d
you can apply a low-pass filter to retain the low frequency compone
and remove the high frequency parts. Because the discarded 
high-frequency parts have small averages, the lowpass filtered 
Wigner-Ville distribution presumably preserves the useful propertie
with reduced cross-term interference.

There are two types of lowpass filters, namely the linear type and the 
nonlinear type. There are different types of linear filters. It is interesting
note that all these linear representations can be written in a general form
was introduced by L. Cohen1.

1.  Interested readers should refer to “Generalized Phase-Space Distribution Functions,” L. Cohen, in the
Journal of Mathematical Physics, vol. 7, pp. 781-806, 1966.
LabVIEW Signal Processing Course Manual 13-8 © National Instruments Corporation
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Cohen’s Class
Linear filters fall into a general category known as Cohen’s class of filte
With no filtering, the Cohen’s class distribution is the same as the 
Wigner-Ville Distribution. In the JTFA Toolkit, two of the most commonl
used linear filters are implemented below. They are the cone-shaped 
distribution and the Choi-Williams distribution.

Cone-Shaped Distribution 

When the lowpass filter has a cone shape as shown above, the Co
class distribution is known as the cone-shaped distribution. The figu
below shows the cone-shaped distribution of the frequency hopper 
signal. 

frequency

time
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Choi-Williams Distribution 

When the lowpass filter has an exponential shape, as shown above
Cohen’s class distribution is known as the Choi-Williams distributio
(CWD). The figure below shows the Choi-Williams distribution of th
frequency hopper signal.

frequency

time
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Both these linear filters give reduced cross-term interference at the
expense of poor resolution. When you select one of these two algorit
using the JTFA selector control on the toolkit front panel (discussed
detail in the next section), you are asked to set the value of a param
This parameter allows you to balance the cross-term interference a
resolution. The bigger this parameter is, the less the interference; 
however , the lower interference is at the cost of smeared resolutio
Start with a value of 0.5 for the parameter. The desired value for th
parameter is application dependent; however, it is always desirable
choose this value so that less interference occurs.

Gabor Spectrogram
This section discusses the nonlinear type of low-pass filters described b
time-frequency distribution series, also known as the Gabor Spectrogr1. 
The advantage of the nonlinear type of filters is that it gives both good
resolution and small cross-term interference. The Gabor spectrogram 
decomposes the Wigner-Ville distribution as DC plus a group of oscilla
time-frequency functions.

1.  The Gabor spectrogram was invented by researchers at National Instruments and is a National 
Instruments patent. It has won several technological awards. For more information on how to construc
such a filter, refer to S.Qian and D.Chen, “Discrete Gabor Transform,” IEEE Transactions on Signal 
Processing, vol. 41, no. 7, July 1993, pp. 2429-2439
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When you select the Gabor spectrogram using the JTFA selector on
toolkit front panel, you are asked to choose the order of the filter. T
lower order Gabor spectrogram has less cross-term interference bu
lower resolution. The higher order Gabor spectrogram has better 
resolution but more cross-term interference. For order = 0, the Gab
spectrogram is similar to the STFT when using Gaussian window 
function. As the order gets larger, the Gabor spectrogram converge
the Wigner-Ville distribution. However, it is computationally more 
expensive. The best choice is usually order three to four. In this case
Gabor spectrogram not only has better resolution than the STFT, but
possesses much less cross-term interference than the Choi-Williams
Wigner-Ville distributions. You can choose the Gabor basis to be 
wideband, mediumband or narrowband. The matching indicator tell
you how closely the basis function approximates your input signal. T
larger the value, the closer the match. The figure on the following p
shows the third-order Gabor Spectrogram of the Frequency Hopper
signal.
LabVIEW Signal Processing Course Manual 13-12 © National Instruments Corporation
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To summarize, you have examined different algorithms commonly u
for obtaining a joint time-frequency representation. There has been
minimal mathematical description of these algorithms. However, if y
have understood the discussion above, you are ready to use the JT
toolkit for different practical applications, as you will see in the next
section.
© National Instruments Corporation 13-13 LabVIEW Signal Processing Course Manual
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C.The JTFA Toolkit and Its Applications
With the JTFA Toolkit, you can use any of the aforementioned algorith
to analyze stored data files and view the resulting spectrogram on an 
intensity plot. It is a stand-alone application that you can use in real-wo
applications such as radar and economic data analysis, where you ne
analyze a signal in the time and frequency domain simultaneously. The
of such applications is endless. This section discusses simple applicat
These applications may seem rather specific, but the ideas and 
methodologies behind them are of general interest to all JTFA users. T
figure below shows the front panel of the JTFA analyzer.

Acquiring Data
When you start the JTFA application, it prompts you to adjust the 
parameters and then press Process. You first read in the signal to be 
analyzed. This signal can be stored in an existing file, which must be e
a datalog format file (an internal file format used by LabVIEW) or an ASC
text file. If your file is text, JTFA converts it to datalog format when you
click on the Read file button. You must convert the file to datalog, but yo
can save the converted file under a new name to preserve your origina
After conversion, the JTFA analyzer opens your file as a datalog file. On
front panel, you see two more buttons labeled Set DAQ and Read DAQ
your computer is equipped with a National Instruments DAQ board, cli
LabVIEW Signal Processing Course Manual 13-14 © National Instruments Corporation
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on the Read DAQ button; the JTFA analyzer starts collecting data from t
DAQ board and stores it a specified data file. When you first click on th
Read DAQ button, it prompts you to set the DAQ parameters. The 
application then uses these parameters until you exit. You can use theSet 
DAQ button to change the DAQ parameters. After you select the file to
analyze, the toolkit reads a block of data or frame of samples from the

Analyzing Data
You can select one of the different algorithms discussed in the previou
section to analyze your data using the JTFA selector control. Each control 
has a different set of parameters. The default is set to the short-time Fo
transform (STFT) algorithm. In this case, the parameters to be selecte
the window selector control and the window length control. The other f
choices are the Gabor Spectrogram, the Choi-Williams distribution, the
cone-shaped distribution, the Wigner-Ville distribution, and the Adaptiv
Spectrogram1. The application then analyzes the samples and displays
resultant spectrogram using an intensity plot. It also displays the traditi
spectrum to the right and the time-waveform below the two-dimension
spectrogram. 

The parameters start at and block length control the time range of the
analyzed signal. While the former determines the start time, the latt
determines the length of one frame of the analyzed signal. If the len
of the signal is less than start at + block length, the JTFA analyzer 
processes whatever is available. Because of memory limitations, if 
length of the signal is too long, JTFA displays the longest time durat
allowed in a status indicator dialog box and stops processing.

The parameters start freq. and bandwidth control the frequency range
of the analyzed signal. start freq  determines the lower boundary of the
frequency. The selection of the bandwidth is limited to 2-k * Nyquist 
frequency, . If start freq. + bandwidth is greater than the 
Nyquist frequency, the JTFA ignores the setting of start freq. and 
automatically sets the lower boundary of the frequency to zero (def
value).

By clicking on the subband button, you can select the preemphasis 
control. You can use the preemphasis filter to reduce the influence o
DC component and enhance the high-frequency component. The de
of preemphasis is controlled by the preemphasis parameter. When 
value is equal to zero (default), there is no preemphasis. When this v
is equal to one, JTFA completely removes the DC component, and 

1.  For a detailed discussion on the Adaptive Spectrogram, refer to Joint Time-Frequency Analysis: Meth-
ods and Applications, by Shie Qian and Dapang Chen, Prentice Hall, NJ, 1996.

0 k 5≤ ≤
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frequency components in the vicinity of the Nyquist frequency are 
approximately doubled. 

On a final note, if you change the JTFA selector, subband, or any of 
the parameters, you must recompute the spectrogram to see the eff
the changes. To recompute the spectrogram, click on the Process button. 
The JTFA computes the spectrogram using the values in the contro
the time you click on the Process button.

Post Analysis of Data
After you have analyzed the data using the JTFA toolkit, you might wan
save the data plots to a file for later use. You can save the time wavef
spectrum, and spectrogram as spreadsheet files. Select the plots that 
want to save (using the selector to the right of the Save button) and th
click on the Save button. You can then process the next frame of samples
clicking on the Next button. After you finish analyzing one file, you may
close the current file and open a new one. To open a new file, click on
Read file button and indicate the file that you want to open. The progra
closes the original file automatically. 

The following exercises will help you further understand how to use 
JTFA Toolkit.
LabVIEW Signal Processing Course Manual 13-16 © National Instruments Corporation



Lesson 13 Joint Time-Frequency Analysis

 

of 

he 

 

on 
e 
Exercise 13-1
Objective: To use the JTFA Toolkit to analyze a doppler signal

In this exercise, you will familiarize yourself with different controls in the JTFA
Toolkit. You will analyze a doppler signal and see the advantages of a JTFA 
spectrogram over a normal frequency spectrum.

1. Open the front panel of the JTFA Toolkit as shown above. 

2. You will analyze data in the file c:\jtfa\data\doppler.log . 
Click on the Read file button and choose this data file. The name 
the data file can now be seen in the current file box. 

3. Adjust some of the parameters. Change the bandwidth to 1/4 band. 
You will experiment with all the different algorithms that can be 
selected using the JTFA selector. First, select the STFT algorithm. 
You will use the Hamming window and window length = 64. Use t
default values for all the other parameters. 

4. After setting all parameters, click on the Process button. 

Note: Remember that the application will not start computing until you click on
the Process button.

5. After the computation is complete, three waveforms will appear 
the JTFA window. You will now analyze these waveforms. The tim
© National Instruments Corporation 13-17 LabVIEW Signal Processing Course Manual
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waveform of the doppler signal can be seen in the bottom left par
the figure. The standard Fourier spectrum can be seen on the top
part. From this plot, you can see the range of frequencies prese
the spectrum. But the plot does not tell how these frequencies 
evolved as a function of time. The larger plot in the upper left cor
is the time-dependent spectrum, a function of both time and 
frequency. From it, not only can you see how the frequency chan
with time, but you also can see the intensity of the frequencies a
shown by the relative brightness levels of the plot.

6. You can now select different algorithms in the JTFA selector control 
and see how the time-frequency spectrogram looks in each case

End of Exercise 13-1
LabVIEW Signal Processing Course Manual 13-18 © National Instruments Corporation
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Exercise 13-2
Objective: To study the application of detecting impulse signals in low-orbit satellites 

using JTFA.
In this exercise, you will examine a very interesting application for join
time-frequency analysis. This application involves the detection of impu
signals by low-orbit satellites. 

Consider an impulse signal generated at some location on Earth. Su
impulse may be caused by nuclear weapons testing, and hence the
detection and estimation of this signal is an important national secu
issue. But the detection of this signal is not very easy. As this signa
passes through the dispersive media surrounding the Earth (for exam
the ionosphere), the signal becomes a nonlinear chirp signal. 
Furthermore, it is severely corrupted by random noise from the 
ionosphere, and hence the detection of this signal via standard Fou
transform techniques is not possible. However, as you will see in th
example, JTFA helps to detect this signal properly.

Earth

ionosphere

test
site

non-linear
chirp

satellite
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1. Open the front panel of the JTFA Toolkit as shown above, if it is n
already open from the previous exercise.

2. You will analyze data in the file c:\jtfa\data\impulse.log . 
Click on the Read file button and choose this data file. The name 
the data file can now be seen in the current file  box. 

3. Adjust some of the parameters. Change the panel color to gray u
the front panel switch. You will experiment with all the available 
algorithms using the JTFA selector. First, select the Gabor 
spectrogram. Use the default values for all the other parameters.

4. After setting all parameters, click on the Process button. Remember 
that the application will not start computing until you have done th

5. After the computation is complete, three waveforms will appear 
the JTFA front panel. The time waveform of the ionized impulse
signal can be seen in the bottom left part of the figure. As explain
earlier, after passing through dispersive media, such as the 
ionosphere, the impulse signal becomes a nonlinear chirp signal 
added random noise. Because of the low signal-to-noise ratio, y
can hardly see this chirp signal in the time waveform. It is 
completely hidden by the noise signal. The standard Fourier 
spectrum can be seen on the top right part. From this plot, you c
see the range of frequencies that are present in the spectrum. T
LabVIEW Signal Processing Course Manual 13-20 © National Instruments Corporation
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larger plot in the upper left corner is the time-dependent spectrum
function of both time and frequency. From this plot, you can 
immediately identify the presence of the chirp-type signal archin
across the joint time-frequency domain. Using such a representa
you can do extensive postprocessing using the Analysis Library 
and mask the desired signal, as shown in figure below. You can t
apply the inverse transformation to recover the original time 
waveform. The figure below compares the noisy signal and the 
reconstructed signal.

6. You can now select different algorithms and see how the 
time-frequency spectrogram looks in each case.

7. Exit the JTFA analyzer by pressing the Quit  button.

End of Exercise 13-2
© National Instruments Corporation 13-21 LabVIEW Signal Processing Course Manual
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Summary:

• The need to analyze a signal in time and frequency domains 
simultaneously has led to the popularity of joint time-frequency 
analysis.

• The JTFA toolkit is an excellent tool to learn this technique and u
it in many real-world applications.

• Short time-frequency transform, Gabor spectrogram, Wigner-Vil
distribution, Choi-Williams distribution, Cone-Shaped distribution
and adaptive spectrogram are some of the algorithms used for j
time-frequency analysis. The choice of algorithm depends on yo
application. 

• Some of the interesting applications for JTFA are in radar, medi
imaging, and economic data analysis. In Exercise 13-2, you and
scientists at the Los Alamos National Laboratory made substant
progress in detecting a radio frequency (RF) nonlinear chirp-typ
signal in a noisy environment.
LabVIEW Signal Processing Course Manual 13-22 © National Instruments Corporation
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Introduction
Wavelets are being applied in a diverse range of applications for the ana
of nonstationary signals. These applications include removing noise fr
signals, detecting abrupt discontinuities, and compressing large amoun
data. The design of wavelets is closely related to the design of filters. 
Wavelet and Filter Banks Designer provides you with the flexibility to 
interactively design the filters, and hence wavelets, for your specific 
application.

You Will Learn:

A. About signal representation through transforms: the Fourier 
transform and the short-time Fourier transform (STFT).

B. About the wavelet transform.

C. About the applications where wavelet analysis is useful.

D. About the relationship between wavelets and filter banks.

E. How to use the Wavelet and Filter Banks Designer (WFBD) Tool
on both a 1D signal (an electrocardiogram) and a 2D signal (an 
image of a fingerprint).
© National Instruments Corporation 14-1 LabVIEW Signal Processing Course Manual
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A.Signal Representation
Before learning about the wavelet transform and its applications, you f
need to understand some basic concepts from linear algebra. In partic
you need to be familiar with inner products and basis vectors. 

Inner Product
The inner product of two vectors is a mathematical operation that 
determines the similarity of these vectors with respect to each other. F
example, given the vectors x = (x1, x2), and y = (y1, y2), their inner 
product is

<x,y> = x1*y 1 + x2*y 2

The inner product determines the similarity by calculating the projection 
(or component) of one vector in the direction of the other. For examp
if you have two vectors, say v and x, the projection (denoted by p) of v 
on x is given by

where ||x|| is the magnitude of the vector x. If x is a unit vector, 
||x|| = 1, and the projection of v on x is simply

p = <v,x>

The magnitude of the projection |p| is the length of the orthogonal 
projection of v on a straight line having the same direction as the un
vector x. The projection p itself could be either positive, negative, or 
zero. This is illustrated in the figure below: 

The larger the value of |p|, the more similar the vectors are to one 
another, and vice versa. When the inner product is equal to zero, the
vectors are perpendicular to each other. Another way to say this is 
the two vectors are orthogonal when their inner product is equal to zer

Basis Vectors
Consider a vector in 2D. Any such vector can be written as the weight
sum of two other unit vectors, i = (1,0) and j = (0,1). For example, the vector

p
<v,x>

x
--------------=

x

v

p > 0

x

v

p = 0
x

v

p < 0
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v = (4,1) can be written as v = 4*i + 1*j. This is shown graphically in the 
figure below: 

The vectors i and j are known as the basis vectors in 2D. Every other 
vector in 2D can be written as a combination of these two basis vec
An important property of basis vectors is that they are perpendicula
(orthogonal) to each other. That corresponds to their inner product b
equal to zero. Also, their magnitudes are equal to one. For the basi
vectors i and j in 2D,

<i, j> = < (1,0), (0,1) > = 1*0 + 0*1 = 0

In other words, this means that they are linearly independent (see Le
8, Linear Algebra) and you cannot express one of them in terms of t
other. 

For the vector v = (4,1), you can take its inner product with respect to t
unit vectors i and j:

<v,i> = 4*1 + 1*0 = 4 and

<v,j> = 4*0 + 1*1 = 1

This gives the projection of v on the unit vectors. Because <v,i> is 
greater than <v,j>, you can say that the vector v is more similar to i than 
to j. This is readily apparent from the figure above, where v is more 
horizontal than vertical. (Note that because i and j are unit vectors, their 
magnitude is equal to 1.0. Thus, in the above equations, we did not
specifically normalize by the magnitude.)

If you know the values of the inner product of v with the basis vectors i 
and j, you can obtain v from the basis vectors by multiplying them with
the values of the corresponding inner products and adding up the res
For the example given, 

 4*i + 1*j = 4*(1,0) + 1*(0,1) = (4,0) + (0,1) = (4,1) = v.

The important points to remember from the above discussion are:

• Basis vectors are chosen to be orthogonal to each other. 

0
1 2 3 4i

j
v

1
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• Any vector v can be broken down as the sum of weighted basis 
vectors. This is achieved by taking the inner product of the vecto
with each of the basis vectors.

• The larger the value of the inner product, the greater the similarity
the given vector with respect to that particular basis vector.

• You can reconstruct the vector v by knowing the values of its inner
product with each of the basis vectors. The reconstruction is 
achieved by multiplying the inner product with the corresponding
basis vector and adding the results.

Fourier Transform

Just as you can break up any vector in 2D in terms of a set of basis
vectors i and j, you can also break up a time signal s(t) in terms of a set 
of basis functions. A well known popular example of basis functions
signal analysis are the sines and cosines of the Fourier transform. T
sines and cosines are harmonically related to each other, which means
that their frequencies are all integer multiples of a fundamental 
frequency. In addition, the sines and cosines are orthogonal (if you take 
their inner product, the result is zero).

When you take the Fourier transform of a time signal s(t), you are 
actually taking the inner product of the signal with each of the basis
functions. So you actually are seeing the similarity of the signal to e
of the sines and cosines of different frequencies. If you get a large v
of the inner product with a basis function at a particular frequency, 
means that quite a bit of that frequency is present in the signal. If th
inner product happens to be zero, it means that frequency is not pre
in s(t).

Although the Fourier transform is a useful tool in obtaining informati
about the frequency content of a signal, its disadvantage is that it is
unable to tell us when in time a particular frequency occurs. For 
example, consider the two chirp signals shown in the top two plots of
figure on the next page. The frequency of the top signal is increasin
whereas that of the bottom signal is decreasing. However, both hav
exactly the same magnitude of the Fourier transform, as shown in t
lowermost figure. 
LabVIEW Signal Processing Course Manual 14-4 © National Instruments Corporation
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Looking at the Fourier transform of a signal, you cannot tell how its
frequency changes with time. All that you observe is the frequency 
content of the sampled signal in the given time interval. The drawba
of this form of traditional Fourier transform analysis is that it is only
useful for the analysis of stationary signals (that is, signals whose 
frequency content does not vary with time).
© National Instruments Corporation 14-5 LabVIEW Signal Processing Course Manual
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Windowed Fourier Transform or Short-Time Fourier Transform (STFT)
One method of obtaining time information (in addition to the frequency
information) with the Fourier transform is to break up the signal into sm
time intervals before taking the Fourier transform. For example, suppo
you have 1000 samples of a signal collected over a period of 10 second
the sampling frequency is 100 Hz). You could take the Fourier transform
the entire 1000 samples, as shown below: 

The result is a two-dimensional spectrum where the x-axis is the 
frequency and the y-axis is the amplitude. The frequency resolution in
this case is ∆f = fs/1000, where fs is the sampling frequency. For the
same sampling rate, to increase the frequency resolution (that is, re
∆f ), you need to increase the number of samples to more than 100

0 1 2 3 4 5 6 7 8 9 10
0 200 400 600 800 1000

1000 samples of a signal

time
(secs)

Fourier
Transform

amplitude

frequency

signal spectrum

∆f
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However, you can also divide the signal into five equal time intervals
two seconds each, and analyze the frequency content of each inter
separately. In each of these time intervals, you will have 200 sample
the signal. You can then take the Fourier transform of successive 
2-second time intervals, as shown below. 

The result is a 3D spectrum, where the x-axis represents time, the y-axis 
represents frequency, and the z-axis (out of the page) represents the 
amplitude of the frequencies during the time for which the transform w
taken. The z-axis can be in color or gray scale to represent the amplitu
values. This method of dividing the signal into smaller time intervals a
then taking the Fourier transform of successive intervals is known as
short-time Fourier transform (STFT).

Note that each spectrum is obtained over a time interval of 2 secon
So, you know that any frequency component indicated in the spectr
occurred somewhere within those 2 seconds. Thus this method prov
you with better time resolution than the first case, where you had a
interval of 10 seconds, somewhere during which a frequency shown
the spectrum could have occurred. However, note that the frequenc

0 1 2 3 4 5 6 7 8 9 10
0 200 400 600 800 1000

1000 samples of a signal

200 samples

Fourier
Transform

200 samples

Fourier
Transform

200 samples

Fourier
Transform

200 samples

Fourier
Transform

200 samples

Fourier
Transform

time
(secs)

0 1 2 3 4 5 6 7 8 9 10

spectra centered at 1, 3, 5, 7, and 9 seconds

color or grayscale
corresponds to

amplitude

time

freq
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resolution is now ∆f = fs/200, and is now five times larger than in the firs
case.

Good time resolution is necessary for the rapidly changing 
(high-frequency) parts of a signal, whereas good frequency resolutio
necessary for the smoothly varying (low frequency) parts of a signal.
improve the frequency resolution, you can (for a given sampling 
frequency) increase the size of the time interval during which you ob
the samples, but then the time resolution is affected. If you improve
time resolution by decreasing the time interval, the frequency resolu
is affected, because now you have fewer samples, so ∆f is larger. Hence, 
there is a trade-off between the time resolution and the frequency 
resolution when using the STFT.
LabVIEW Signal Processing Course Manual 14-8 © National Instruments Corporation
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B.The Wavelet Transform
The wavelet transform is another form of analysis where you can mea
the similarity of a signal to a set of basis functions. For the Fourier 
transform, these basis functions were limited to being sines and cosine
different frequencies. Also, they existed for all time. However, for the 
wavelet transform, there are many possibilities of different shapes of b
functions. In addition, the functions are time limited (they are nonzero o
within a finite time interval) and are usually irregular, with an average va
of zero. These basis functions used in the wavelet transform are called
wavelets. An example of a basis function for the Fourier transform and 
wavelet transform are as shown:

Using the wavelet basis functions, you can obtain both good time 
resolution and good frequency resolution. You first select (or design
prototype wavelet known as a mother wavelet. This wavelet is then 
either “stretched” or “compressed” in time to obtain other wavelets 
the basis. The wavelet obtained by “stretching” has a longer time 
duration than the mother wavelet and is good for extracting the 
low-frequency information of the signal. The wavelet obtained by 
“compressing” has a shorter time duration than the mother wavelet 
is good for extracting the high-frequency information of the signal. 
Thus, it is useful for temporal analysis. The scale change (compres
or stretching) is done in powers of two. The figure below shows a mo
wavelet and two other wavelets obtained from it:

Basis 
for 
Fourier
transform

function

Basis function 
for 
wavelet
transform
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An important step in wavelet analysis is the choice of wavelets for t
basis functions. As discussed, you want to see the similarity of the si
under consideration to the basis functions. So depending on the sig
(that is, application), a particular shape of a wavelet may be a bette
representation for the signal than another shape. Unlike the Fourie
transform, where the shapes of the basis functions are restricted to b
sines and cosines, in the wavelet transform you can have a large nu
of possibilities. However, some restrictions do apply (such as the b
functions being orthogonal to each other), but these are handled 
automatically by the Wavelet and Filter Banks Designer (WFBD) 
toolkit, and you, as the user, need not worry about them. The figure
below shows examples of some other wavelets.

compress to 1/2 stretch by 2

mother wavelet
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There are several wavelet packages available on the market today.
Whereas other wavelet packages have a fixed selection of wavelets 
which you can choose, the National instruments WFBD lets you des
your own wavelets to best suit your particular application. By 
experimenting with the parameters on the Design Panel of the WFBD, 
you can design different wavelets. Unlike the Fourier transform, 
wavelets are specifically suited for the analysis of nonstationary signals 
(signals whose frequency contents vary with time). 

The National Instruments WFBD is an interactive design package. I
enables you to design wavelets for both 1D signals and 2D images.
signal or image can be loaded from a file or acquired by using DAQ
IMAQ hardware.

Comparison of the Wavelet Transform and Fourier Transform
There are several important differences between the wavelet and Fou
transforms. The following table summarizes these differences.

Fourier Transform Wavelet Transform

Basis functions Sines and cosines Wavelets

Assumption Basis functions exist for all time Basis functions are time 
limited

Type of signal Stationary Nonstationary

Analysis Same resolution at all 
frequencies

Multiresolution
© National Instruments Corporation 14-11 LabVIEW Signal Processing Course Manual
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C.Applications of Wavelets
The wavelet transform is useful for the analysis of nonstationary signa
whose frequency contents vary with time. Examples of nonstationary 
signals are biomedical (for example, electrocardiogram), music, turbule
seismic, sound, and vibration data that change slowly or abruptly. For 
signals like these, information about when the changes occur can ofte
very important.

You have seen that you can use the wavelet transform to have both 
time and good frequency resolution simultaneously. Wavelets with 
short time duration are good for extracting high-frequency informati
(such as discontinuities and abrupt changes) from a signal, wherea
wavelets with a longer time duration are useful for low-frequency 
analysis. Thus, it is possible to see both the forest and the trees. 
Wavelets have been used in diverse fields covering a wide variety o
applications. Some of the practical uses of wavelets are:

• Removing noise from a signal.

• Feature extraction for use in pattern recognition and classificatio

• Detection of discontinuities.

• Data compression (for example, images) that can be used to sp
image processing, implement faster modems, speed transfers o
Internet, video conferencing, satellite image transmission, and 
telecommunications.

Wavelets vs. Joint Time-Frequency Analysis
Both the WFBD and the JTFA toolkit are useful in analyzing nonstation
signals. But when would you choose one over the other? The answer li
what you hope to achieve. The general rule is that if you are interested
applications that require reconstruction, you should use wavelet analy
Examples of such applications are noise removal and data compressio
noise removal, you want to reconstruct the original signal from a signa
containing both additive noise and the original signal. In data compress
you want to reconstruct the original signal from a compressed version o
signal. However, if you are more interested in obtaining insight into the
frequency contents of a signal, or in understanding the physical nature o
process that generated the signal, the JTFA toolkit may be better for s
cases.
LabVIEW Signal Processing Course Manual 14-12 © National Instruments Corporation
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D.Wavelets and Filter Banks
It turns out that the design of wavelets is closely related to the design of 
banks. But what is a filter bank? It consists of a set of filters that break
signal into different frequency ranges. Consider two filters: a lowpass fil
G0, and a highpass filter, G1. You will use these filters to split a signal 
different frequency bands, as shown in the figure below:

The input signal, s[n], consists of frequencies in the range of 0 - 20 KH
It is first lowpass filtered by G0 and highpass filtered by G1 around 
frequency of 10 KHz. The output of the highpass filter is s3[n] and 
occupies a frequency range of 10 KHz - 20 KHz. The output of the 
lowpass filter is in the range 0 - 10 kHz and is once again filtered, t
time around 5 KHz, by both a highpass filter and a lowpass filter, to
give the signals s2[n] and s3[n]. S2[n] occupies a frequency range of 
5 KHz - 10 KHz, and s1[n] occupies a range of 0 - 5 KHz. In the figure
the downward pointing arrow with a 2 next to it shows the process o
downsampling (decimation) by a factor of two. Because the frequen
span of the filtered signal has been reduced by half, you can safely
decimate and use only half the number of samples.

So, now the original signal s[n] has been broken down into three signal
each occupying different frequency ranges shown below:

G0

G1

2

2
G0

G1

2

2
20 kHz

s[n]

10 kHz

10 kHz

s3[n]

5 kHz
s1[n]

s2[n]
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In practice, you do not need to stop after only two stages of filtering. Y
could continue to split the lowpass filtered signal into even more 
frequency bands, as shown below:

Note: Although the process of decimation has not been explicitly shown, it is 
assumed.

The design of the filters is such that the outputs of each highpass filter
approximations of the wavelet transform. The wavelet obtained from th
highpass filter corresponding to the lowest frequency band has the lon
time duration and could be the mother wavelet. It is thus able to extract 
low-frequency information from the signal. As you go toward the highe
frequencies, the impulse response (that is, wavelets) from the highpas
filters are the compressed versions of the mother wavelet and have 
correspondingly shorter time durations. Thus, they are more suitable f
extracting the high-frequency information (for example, discontinuities
from the signal. All these wavelets together form the set of basis funct
to represent a signal. 

The process of highpass filtering is equivalent to taking the inner 
product of the signal with respect to the wavelet basis functions. Th

s(t)  0 – 20 kHz

s2[n]  5 – 10 kHzs1[n]  0 – 5 kHz s3[n]  10 – 20 kHz

G1

G0 G1

G0 G1

G0 G1

G0

s[n]
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output of each highpass filter is the value of the inner product of the
signal with one of the wavelets. This value is the wavelet coefficient a
indicates the similarity of the signal with respect to the correspondi
wavelet. 

If the filters that make up the filter bank satisfy certain conditions, it
possible to reconstruct the original signal s[n] from s1[n], s2[n], 
and s3[n]. 

This can be achieved by using another set of lowpass filters, H0, an
highpass filter, H1, and adding their outputs together, as shown bel

G1

G0 G1

G0 G1

G0 G1

G0

s[n] wavelet coefficient

wavelet coefficient

wavelet coefficient

mother wavelet)

wavelet coefficient
(impulse response
could be

s[n]   0 - 20 KHz

s1[n]   0 - 5 KHz s2[n]   5 - 10 KHz s3[n]   10 - 20 KHz
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This process of filtering is now equivalent to reconstructing the origin
signal from the wavelet basis functions. (The upward pointing arrow
with a 2 next to it shows the process of upsampling by a factor of tw

A special characteristic about these filter banks as compared to the
traditional filter banks is that the outputs of these filter banks can be u
to reconstruct the original signal s(t). The filter banks are said to ha
perfect reconstruction. From the traditional filter banks, it is not alway
possible to reconstruct the original signal. For reconstruction, the filt
being used need to satisfy certain conditions, and thus a special 
relationship exists between the filters G0, G1, H0, and H1. Because
this relationship, it becomes necessary only to design the lowpass fil
G0 and H0. Knowing G0 and H0, the highpass filters G1 and H1 ar
automatically designed by the software. 

In the next section, you will see how designing wavelets with the help
the WFBD involves designing the lowpass filters G0 and H0.

H0

H1

2

2

+
H0

H1

2

2

+

5 kHz 10 kHz

20 kHz

10 kHz

s1[n]

s2[n]

s3[n]

s[n]
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E. Using the Wavelet and Filter Banks Designer
Using the WFBD package, there are three important steps involved in 
design of wavelets. Because of the relationship between wavelets and
banks, these steps basically boil down to selecting and designing the f
for the filter banks.

Selecting the Type of Filter Bank
The first step consists of selecting a particular type of filter bank. There
two types of filter banks that you can choose from, orthogonal and 
biorthogonal. The orthogonal filter bank is a special case of a biorthogo
filter bank. The main difference between the orthogonal and biorthogo
filter banks is that the biorthogonal filters can be linear phase, but the 
orthogonal filters cannot. So, if your application requires linear phase, t
you should not use the orthogonal filter banks. (Linear phase is import
for images, because the eye is very sensitive to changes in phase.)

Selecting the Type of Filter
The next step deals with designing the lowpass filters G0 and H0, and
to do with designing a filter P0 which is the cascade of the two filters G
and H0. The filter P0 is illustrated as shown:

The final step involves splitting the filter P0 into G0 and H0. These th
steps are outlined below:

Step 1: Select the type of filter bank. The available choices are:

• Orthogonal

• Biorthogonal

Step 2: Select the type of filter for P0. The available choices are:

• Maxflat

• Positive equiripple

• General equiripple

Any of the three types of filters mentioned in step 2 can be used wi
biorthogonal filter banks. However, with orthogonal filter banks, you
can have only maxflat or positive equiripple filters, but not general 
equiripple. 

P0 G0 H0
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There is no hard and fast rule, or even general guidelines, as to wh
type of filter you should choose for any specific application. You wil
need to experiment with the different choices to select a suitable on

Step 3: Select the type of lowpass filter G0 and separate P0 into G0 
H0. This step consists of assigning the zeros of P0 to the lowpass fi
G0 and H0. The user decides which zeros to assign to G0 and whic
assign to H0. 

Which Type of Filter or Filter Bank Is a Good Choice?
Different selections in steps 1, 2, and 3 will result in different wavelets.
Although some guidelines have been given as to which choice is prefer
over the other, in general there is no hard and fast rule for a particular ch
of filter or filter bank. The choice of a suitable wavelet for a particular 
application is usually done by a trial and error process. Thus, you will n
to experiment with the different combinations of available choices to ob
the best wavelet for your particular application.
LabVIEW Signal Processing Course Manual 14-18 © National Instruments Corporation
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The Design Panel
When you bring up the WFBD application from the Programs menu, you 
get the following front panel.

An explanation of the plots and controls is provided in the above figu
The figure also shows you the sequence of steps that you need to fo
while designing your wavelet. 

In the following exercises, you will see how this panel is used for 
analyzing an ECG signal (a 1D signal) and for data compression of
fingerprints (a 2D image).

Step 1:

Step 2:

Step 3:

select type of
filter banks

select type of 
lowpass filter G0

select type 
of filter P0

frequency
response of
lowpass filter G0
and highpass 
filter G1

distribution of zeros
of lowpass filters
G0 and H0
x: G0
o: H0

(P0 is the
cascade of
the lowpass
filters G0 and H0)
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Exercise 14-1
Objective: To design a wavelet that captures the important features of an ECG signal, but with 

less than half the number of data points. 
1. Launch the WFBD from the Programs menu.

2. The Design Panel appears. It gives you the power of designing 
arbitrary wavelets for your particular application. The Design Pa
is shown below:

You have seen that the wavelet transform can be implemented a
bank of filters that decompose a signal into multiple frequency 
bands. It separates and retains the signal features in one or a fe
these subbands. Thus, one of the biggest advantages of using t
wavelet transform is that signal features can be easily extracted
Because of their ability to effectively extract signal features, wave
transforms find many applications in the fields of data compressi
pattern recognition, edge detection, echo detection, speech 
recognition, and texture analysis.
LabVIEW Signal Processing Course Manual 14-20 © National Instruments Corporation
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The key to creating a successful wavelet application is to select
appropriate wavelet, which is equivalent to selecting a good set 
filters in the filter bank. You saw that there are three major steps
involved in the design of the filters and filter banks. These steps
repeated below.

Step 1: Select the type of filter bank. The available choices are 
orthogonal or biorthogonal. 

Step 2: Select the type of filter for P0. The available choices are 
maxflat, positive equiripple, or general equiripple. Remember th
the general equiripple option is not available with orthogonal filte
banks.

Step 3: Select the type of lowpass filter G0 and separate P0 into 
and H0. The separation is achieved by deciding which zeros to as
to G0 and which to assign to H0. 

The wavelet that you design will depend on the choices that you
select in steps 1, 2, and 3. Thus, you can experiment with the 
different combinations to obtain the best wavelet for your particu
application.

3. In the Design Panel, select Menu » 1D Data Test. A new window 
(1D_Test) will appear. In this window, you will load a 1D signal (fo
this example, you will use an ECG signal) having 3600 data poin
(samples) and see how it can be represented with a smaller num
of samples.

4. In the new window, select Data » Read from File » txt file. Choose 
the file Ecg.txt .

5. You will now see four plots on the screen. In the topmost plot, y
see the original ECG signal. It consists of 3600 data points 
(samples). You want to preserve the main features of this signa
using a minimum number of data points. 

Note that the original ECG signal has been decomposed into thr
parts by several stages of lowpass and highpass filtering. This i
shown in the plots labeled path1, path 2, and path 3. A 0 indicates a 
stage of lowpass filtering, and a 1 indicates a stage of highpass
filtering. Referring back to the explanation in section D, the figur
in the plots labeled path1, path 2, and path 3 correspond to s3[n], 
s2[n], and s1[n], respectively. The lowermost plot, obtained after tw
stages of lowpass filtering, contains the main features of the orig
ECG, but has only about 900 data points. Its size is therefore ab
one-fourth of that of the original data. The other two plots basica
consist of only higher frequency noise and can be ignored. 
© National Instruments Corporation 14-21 LabVIEW Signal Processing Course Manual
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Therefore, the plot in path 3 can be used to represent the original 
ECG, but with fewer data points.

6. Switch to the Design Panel. Experiment with the controls on the
design panel so as to change the wavelet being used, and note 
corresponding changes in the plots on the 1D_Test window.

7. In particular, change the type of filter from maxflat to positive 
equiripple. Note that some features of the original signal appear
the “noise” channels also. Now the plot labeled path 2 also contains 
some feature of the original ECG. Thus, this is not a good design
the wavelet, because now to represent the original signal, you ca
use only the 900 sample points of the lowermost plot, because it d
not contain all the “information” of the original ECG signal. Som
of this information is also present in the plot labeled path 2.

8. To see the wavelet, select Menu » Wavelet and Filters in the Design 
Panel. For more details, refer to the WFBD reference manual.

End of Exercise 14-1
LabVIEW Signal Processing Course Manual 14-22 © National Instruments Corporation



Lesson 14 Wavelet and Filter Banks Designer

rm 

, 

t 
eed 
 a 
 to 
d to 

ata 

ata 
ol. 
nts 
hat 
e 
Exercise 14-2
Objective: To design a wavelet for reconstructing a fingerprint.

1. Open the WFBD Toolkit from the Programs menu, if it is not already 
open from the previous exercise.

2. In the Design Panel, select MENU » 2D Data Test. A new window 
will appear with the title 2D_Test. In this window, you can load 
two-dimensional signals (for example, images) on which to perfo
wavelet analysis. 

3. From the control in the lower right corner of the 2D_Test window
select Data » text and choose the file Finger.txt .

You will see two fingerprints on the upper half of the 2D_Test 
window. On the top left figure, you will see an original fingerprin
consisting of 150x150 pixels. Law enforcement agencies have a n
to keep millions of fingerprints on file. This can obviously occupy
lot of disk space. In addition, it would take an extremely long time
transmit so much data over the network. So, wavelets can be use
reduce the amount of data to represent the fingerprint. By an 
appropriate choice of wavelets, you can reduce the number of d
points by over 50 percent.

The figure on the top right shows the image that has been 
reconstructed by using the wavelet transform. The ratio of the 
number of data points used for reconstruction to the number of d
points of the original image is shown in the Remaining Data contr
In the example shown, only 50 percent of the total number of poi
(150x150) are used to reconstruct the original fingerprint. Note t
there is hardly any difference between the original image and th
reconstructed image.
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The lowermost figures show the images obtained after the proces
lowpass and highpass filtering (refer to section D). To recapitula
if the input image is s[n], then the resulting images after filtering ar 
s1[n], s2[n], s3[n], and s4[n], as shown below.

Thus, s1[n] is obtained after two stages of lowpass filtering, s4[n] is 
obtained after two stages of highpass filtering, and so on. If H 
denotes the result of highpass filtering, and L denotes a result o

G1

G0

s[n]

G1

G0

G1

G0

s4[n]

s3[n]

s2[n]

s1[n]
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lowpass filtering, then their relationship with the images on the 
figure of the bottom half of the 2D_Test window is shown below

4. Increase Data Used from 50 percent to 75 percent. Note that there
not much improvement in the reconstructed image. 

5. Decrease Data Used to 25 percent. Is there a difference between t
original and the reconstructed image? Experiment on the design
panel to get a good reconstructed image with Data Used set at 
25 percent.

6. When you are done, exit the WFBD by selecting Menu » Quit in the 
Design Panel.

End of Exercise 14-2

s1[n] s2[n]

s3[n] s4[n]

LL LH

HL HH
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Summary
You have seen that the basis functions for the wavelet transform are kn
as wavelets and are compressed and stretched versions of one another,
a finite time duration. Wavelets with a short time duration are good for
high-frequency analysis, whereas those with a longer time duration are 
for low-frequency analysis. Using wavelets, it is possible to simultaneou
get good time as well as frequency resolution. Depending on your 
application, a particular wavelet may be more suitable than another wav
Hence, designing an appropriate wavelet is an important part of wavel
analysis. The design of wavelets is closely related to the design of filte
banks. Using the Wavelet and Filter Banks Designer, you can interacti
design the filters in the filter bank and simultaneously monitor the effec
they have on the signal. Because of their ability for effective feature 
extraction, wavelets are widely used for data compression.
LabVIEW Signal Processing Course Manual 14-26 © National Instruments Corporation
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Analysis Error Codes
Table A-1.  Analysis Error Codes

Code Name Description

0 NoErr No error; the call was successful.

–20001 OutOfMemErr There is not enough memory left to perform
the specified routine. 

–20002 EqSamplesErr The input sequences must be the same siz

–20003 SamplesGTZeroErr The number of samples must be greater tha
zero.

–20004 SamplesGEZeroErr The number of samples must be greater tha
or equal to zero.

–20005 SamplesGEOneErr The number of samples must be greater tha
or equal to one.

–20006 SamplesGETwoErr The number of samples must be greater tha
or equal to two.

–20007 SamplesGEThreeErr The number of samples must be greater tha
or equal to three.

–20008 ArraySizeErr The input arrays do not contain the correct 
number of data values for this VI.

–20009 PowerOfTwoErr The size of the input array must be a powe
of two: 
size = 2m, 0 < m < 23.

–20010 MaxXformSizeErr The maximum transform size has been 
exceeded.

–20011 DutyCycleErr The duty cycle must meet the condition:
 0 ≤ duty cycle≤ 100.
© National Instruments Corporation A-1 LabVIEW Signal Processing Course Manual
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–20012 CyclesErr The number of cycles must be greater than
zero and less than or equal to the number o
samples.

–20013 WidthLTSamplesErr The width must meet the condition: 
0 < width < samples.

–20014 DelayWidthErr The delay must meet the condition: 
0 ≤ (delay + width) < samples.

–20015 DtGEZeroErr dt must be greater than or equal to zero.

–20016 DtGTZeroErr dt must be greater than zero.

–20017 IndexLTSamplesErr The index must meet the condition: 
0 ≤ index < samples.

–20018 IndexLengthErr The index must meet the condition: 
0 ≤ (index + length) < samples.

–20019 UpperGELowerErr The upper value must be greater than or 
equal to the lower value.

–20020 NyquistErr The cutoff frequency, fc, must meet the 
condition:

–20021 OrderGTZeroErr The order must be greater than zero.

–20022 DecFactErr The decimating factor must meet the 
condition: 0 < decimating≤ samples.

–20023 BandSpecErr The band specifications must meet the 
condition:

–20024 RippleGTZeroErr The ripple amplitude must be greater than 
zero.

–20025 AttenGTZeroErr The attenuation must be greater than zero.

–20026 WidthGTZeroErr The width must be greater than zero.

–20027 FinalGTZeroErr The final value must be greater than zero.

–20028 AttenGTRippleErr The attenuation must be greater than the 
ripple amplitude.

–20029 StepSizeErr The step-size, µ, must meet the condition: 
0 ≤ µ ≤ 0.1.

Table A-1.  Analysis Error Codes (Continued)

Code Name Description

0 fc
fs
2
---≤ ≤

0 ff low fhigh

fs
2
---≤ ≤ ≤
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–20030 LeakErr The leakage coefficient must meet the 
condition: 
0 ≤ leak≤ µ.

–20031 EqRplDesignErr The filter cannot be designed with the 
specified input values.

–20032 RankErr The rank of the filter must meet the 
condition:
1 ≤ (2 rank+ 1) ≤ size.

–20033 EvenSizeErr The number of coefficients must be odd for
this filter.

–20034 OddSizeErr The number of coefficients must be even fo
this filter.

–20035 StdDevErr The standard deviation must be greater tha
zero for normalization.

–20036 MixedSignErr The elements of the Y Values array must be 
nonzero and either all positive or all 
negative.

–20037 SizeGTOrderErr The number of data points in the Y Values 
array must be greater than two.

–20038 IntervalsErr The number of intervals must be greater tha
zero.

–20039 MatrixMulErr The number of columns in the first matrix is
not equal to the number of rows in the 
second matrix or vector.

–20040 SquareMatrixErr The input matrix must be a square matrix.

–20041 SingularMatrixErr The system of equations cannot be solved 
because the input matrix is singular.

–20042 LevelsErr The number of levels is out of range. 

–20043 FactorErr The level of factors is out of range for some
data. 

–20044 ObservationsErr Zero observations were made at some leve
of a factor. 

–20045 DataErr The total number of data points must be 
equal to the product of the levels for each 
factor and the observations per cell. 

Table A-1.  Analysis Error Codes (Continued)

Code Name Description
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–20046 OverflowErr There is an overflow in the calculated 
F-value. 

–20047 BalanceErr The data is unbalanced. All cells must 
contain the same number of observations. 

–20048 ModelErr The Random Effect model was requested 
when the Fixed Effect model was required. 

–20049 DistinctErr The x values must be distinct. 

–20050 PoleErr The interpolating function has a pole at the
requested value. 

–20051 ColumnErr All values in the first column in the X matrix 
must be one. 

–20052 FreedomErr The degrees of freedom must be one or mor

–20053 ProbabilityErr The probability must be between zero and 
one. 

–20054 InvProbErr The probability must be greater than or equa
to zero and less than one.

–20055 CategoryErr The number of categories or samples must b
greater than one. 

–20056 TableErr The contingency table must not contain a 
negative number. 

–20061 InvSelectionErr One of the input selections is invalid. 

–20062 MaxIterErr The maximum iterations have been 
exceeded.

–20063 PolyErr The polynomial coefficients are invalid.

–20064 InitStateErr This VI has not been initialized correctly.

–20065 ZeroVectorErr The vector cannot be zero.

Table A-1.  Analysis Error Codes (Continued)

Code Name Description
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Table A-2.     G Math Toolkit Error Codes

Error Code 
Number

Error Code Description

0 No error

–23001 Syntax error of parser

–23002 Discrepancy between function, variables and 
coordinates

–23003 Number of contours out of range

–23004 Number of color palettes out of range

–23005 Negative distance

–23006 Not a valid path

–23007 Not a graphs file

–23008 Wrong input, Euler method

–23009 Wrong input, Runge Kutta method

–23010 Wrong input, Cash Karp method

–23011 Nonpositive step rate

–23012 Nonpositive accuracy

–23013 Matrix vector conflict

–23014 A and X0 have different dimensions

–23015 Empty X0

–23016 Singular eigenvector matrix

–23017 Multiple roots

–23018 Left point is a root

–23019 Right point is a root

–23020 Left point greater than right point

–23021 Both function values have the same sign

–23022 Nonpositive accuracy or nonpositive delta x(h)

–23023 Wrong dimension of start

–23024 No root found
© National Instruments Corporation A-5 LabVIEW Signal Processing Course Manual
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–23025 Nonvalid triplet (a,b,c)

–23026 No optimum found

–23027 Not exactly one variable

–23028 Wrong model equation

–23029 Levenberg Marquardt has failed

–23030 m >= n >= 0 is violated or the matrix of derivatives has 
the wrong dimension 

–23031 No valid point

–23032 Maximum does not exist

–23033 Vectors have different dimensions or empty vectors

–23034 Ill conditioned system

–23035 Nonpositive number

–23036 Different parameters

–23037 Not exactly two functions

–23038 No variables in expression

–23039 Parameter problem

–23040 Derivative out of range

–23041 Not exactly two variables

–23042 Negative argument

–23043 Argument out of range (0,1]

–23044 Argument out of range [0,1]

–23045 n<k

–23046 Empty array

–23047 Argument out of range [0,100]

–23048 Invalid time increment

–23049 Invalid window length

–23050 Signal length not a multiple of number

Table A-2.     G Math Toolkit Error Codes (Continued)

Error Code 
Number

Error Code Description
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–23051 Signal length not a power of two

–23052 Signal length not a prime and 

–23053 Signal length not a power of two and 

–23054 Non–unique variables

Table A-3.  Functions for Use with G Math Toolkit Parser VIs

 Function Corresponding G Math 
Function name

Description 

abs(x) Absolute Value Returns the absolute value of x.

acos(x) Inverse Cosine Computes the inverse cosine of x.

acosh(x) Inverse Hyperbolic Cosine Computes the inverse hyperbolic 
cosine of x in radians.

asin(x) Inverse Sine Computes the inverse sine of x in 
radians.

asinh(x) Inverse Hyperbolic Sine computes the inverse hyperbolic 
sine of x in radians.

atan(x) Inverse Tangent Computes the inverse tangent of 
x in radians. 

atanh(x) Inverse Hyperbolic Tangent Computes the inverse hyperbolic 
tangent of x in radians.

ci(x) Cosine Integral Computes the cosine integral of 
x where x is any real number.

ceil(x) Round to +Infinity Rounds x to the next higher 
integer (smallest integer  x.)

cos(x) Cosine Computes the cosine of x in 
radians.

cosh(x) Hyperbolic Cosine Computes the hyperbolic cosine 
of x in radians.

cot(x) Cotangent Computes the cotangent of x in 
radians (1/tan(x)).

csc(x) Cosecant Computes the cosecant of x in 
radians (1/sin(x)).

Table A-2.     G Math Toolkit Error Codes (Continued)

Error Code 
Number

Error Code Description

5≥

4≥

≥
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exp(x) Exponential Computes the value of e raised to 
the power x.

expm1(x) Exponential(Arg)–1 Computes the value of e raised to 
the power of x – 1 ( )

floor(x) Round to –Infinity Truncates x to the next lower 
integer (Largest integer  x)

gamma(x) Gamma Function  for all natural 
numbers n.

getexp(x) Mantissa and exponent Returns the exponent of x.

getman(x) Mantissa and exponent Returns the mantissa of x.

int(x) Round to nearest integer Rounds its argument to the neares
even integer.

intrz Round toward zero Rounds x to the nearest integer 
between x and zero.

ln(x) Natural Logarithm Computes the natural logarithm 
of x (to the base e).

lnpl(x) Natural Logarithm 
(Arg + 1)

Computes the natural logarithm 
of (x + 1).

log(x) Logarithm Base 10 Computes the logarithm of x 
(to the base 10).

log2(x) Logarithm Base 2 Computes the logarithm of x 
(to the base 2).

pi(x) Represents the value 
π = 3.14159...

pi(x) = x*π
pi(1) = π
pi(2.4) = 2.4*π

rand( ) Random Number (0–1) Produces a floating-point number 
between 0 and 1.

sec(x) Secant Computes the secant of x 
(1/cos(x)).

si(x) Sine Integral Computes the sine integral of x 
where x is any real number.

sign(x) Sign Returns 1 if x is greater than 0.
Returns 0 if x is equal to 0.
Returns –1 if x is less than 0.

Table A-3.  Functions for Use with G Math Toolkit Parser VIs (Continued)

 Function Corresponding G Math 
Function name

Description 

e
x

1–

≤

Γ n 1+( ) n!=
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sin(x) Sine Computes the sine of x in radians.

sinc(x) Sinc Computes the sine of x divided 
by x in radians (sin(x)/x).

sinh(x) Hyperbolic Sine Computes the hyperbolic sine 
of x in radians. 

spike(x) Spike function spike(x) returns:
1 if  
0 for any other value of x.

sqrt(x) Square Root Computes the square root of x.

square(x) Square function square (x) returns:
1 if  
0 if 
where x is any real number and 
n is any integer. 

step(x) Step function step(x) returns:
0 if x < 0
1 if any other condition obtains.

tan(x) Tangent Computes the tangent of x in 
radians.

tanh(x) Hyperbolic Tangent Computes the hyperbolic tangent 
of x in radians. 

Table A-4.     G Math Toolkit Parser Error Codes

Error 
Code 

Number

Error Code Description Error Example

0 No error sin(x)

1 Bracket problem at the 
beginning

1+x)

2 Incomplete function 
expression

sin(x)+

3 Bracket problem ()

4 Bracket problem at the end (1+x

Table A-3.  Functions for Use with G Math Toolkit Parser VIs (Continued)

 Function Corresponding G Math 
Function name

Description 

0 x 1≤ ≤

2n x 2n 1+( )≤ ≤
2n 1+ x 2n 2+( )≤ ≤
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5 Wrong decimal point 1,2 (US)

6 Wrong number format 1e–3 instead of 1E–3

7 Wrong function call sin()

8 Not a valid function sins(x)

9 Incomplete expression x+

10 Wrong variable name a11

11 Wrong letter sin(X)

12 Too many decimal points 1.23.45

21 Contains more than one 
variable

1+x+y4

22 Inconsistency in variables 
or numbers

Depends on application

23 Contains variables Depends on application

24 Variables output problem Depends on application

Table A-4.     G Math Toolkit Parser Error Codes (Continued)
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Background
1. Can the antialias filter be a hybrid filter?

When going from the analog to the digital domain, the antialias 
filter must be an analog filter. In general, when going from a dom
P to a domain Q, the filter should be in domain P to avoid the 
problem of aliasing in the domain Q. Thus, when sampling to go
from an analog to a digital signal, the filter should be an analog filt
However, when performing decimation to reduce the sampling ra
you are going from the digital domain (with a higher sampling ra
to the digital domain (with a lower sampling rate). In this case, t
filter before the decimation is performed will be a digital filter.

Signal Generation
1. Why are there Pattern VIs, when the Wave VIs will do all that the 

pattern VIs can and more?

The historical reason is that Pattern VIs were created first. Also,
Pattern VIs are meant to be used to generate a block of data at a 
whereas the Wave VIs can be called iteratively in a loop.

2. Why do I need normalized frequency? Why not just use the 
common frequency unit of Hertz in the input controls and have the 
VI automatically convert it internally into normalized frequency if 
necessary? 

Because some people think in terms of Hertz (cycles per second)
some think in terms of cycles. Normalized frequency handles bo

3. What does it mean that the Wave VIs are “reentrant”?

You can have several of them on the same block diagram, and e
one will have its own code. They will all work independently of ea
other.
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Signal Processing
1. What are the limits/problems of zero padding? Does it introduce 

harmonics? Does it affect the frequency content of a signal in any 
way?

Zero padding performs interpolation in the frequency domain. No
does not introduce harmonics. In addition to improving (that is, 
lowering) the frequency resolution, faster algorithms (using the F
instead of the DFT) are possible.

2. What is the physical meaning of the cross power spectrum?

It is a measure of the similarity of two signals in the frequency 
domain. It is the frequency-domain equivalent of the 
cross-covariance function. It shows the joint presence of energy
the two signals.

Windows
1. Why do different toolkits provide only some specific window 

choices? Why not all window choices?

One reason is that the windows chosen are the most common 
windows for that particular application. The other is that several
the windows give very similar results, so there is no point in 
including all of them.

Digital Filters
1. What is meant by linear phase?

Linear phase in digital filters means that the phase distortion is 
nothing more than a digital delay. All input samples will be shifte
by some constant number of samples, so this phase change can
easily “fixed” and/or modeled.

Nonlinear phase means that the individual sine waves that make
the input signal get shifted in time by different amounts. This sort
phase change is very difficult to work around. Some signals (like 
square wave) are very sensitive to this sort of phase distortion.

2. What does it mean when the IIR filters “execute in place”?

In place means that the input array space (memory locations) ar
being reused as the output array space. In place usually implies lo
demands on memory. 

3. Do the FIR filters have only zeros?

FIR filters do have zeros, but they also have poles at the origin. If 
take the Z-transform of an FIR filter, and rewrite it as the product
factored terms, you will find that in addition to zeros, they also ha
poles at the origin.
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Curve Fitting
1. What is the limit in LabVIEW and BridgeVIEW on the number of 

parameters used for curve fitting?

There is no limit. However, keep in mind that the memory 
requirements, as well as the time required to find the solution, w
increase with increasing number of parameters.

2. Some curve fitting algorithms allow you to give weight to certain 
data points. Can I do that in the VIs from the advanced analysis 
library of LabVIEW and BridgeVIEW?

No, it is not possible.

3. In performing a fit, is there any rule of thumb as to how many data 
points to use?

Normally, you need at least one more than the number of parame
for which you are trying to solve. But there is no such rule as to 
whether you should use at least five times more, 10 times more,
As an example, in performing a polynomial fit, the number of da
points to be used to obtain a “good” fit may be correlated to how
close the data is to the underlying polynomial (that is, how much
noise). It depends.

4. In the Levenberg-Marquardt VI, why is the derivative information 
needed?

The information is needed to calculate the Jacobian, which is nee
in the algorithm to solve for the coefficients that you are trying to
determine. See the Analysis VI Reference Manual for details.

Digital Filter Design Toolkit
1. Is a demo version of the toolkit available?

Yes. In addition to being a separate toolkit, the DFD also ships w
the Signal Processing Suite (SPS). The entire SPS is available 
demo form also. 

2. Is there a UNIX version of the DFD Toolkit?

No, it has not been released on UNIX.

3. In the Arbitrary FIR Design panel, if I select “import from file” and 
then “cancel” the operation, I get an error, “Error 43 occurred...”. 
Why is that?

This is due to a bug that will be fixed in the next release.

Wavelets
1. When I do the decimation (by 2), what options do I have? Can I 

throw away every even sample, every odd sample, the first half, the
second half, etc? 
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As long as you filter the data before performing the decimation, 
does not matter whether you throw away every odd sample or ev
even sample. However, you must be consistent. You cannot thro
away the odd samples at the beginning and then the even samp
later, or vice versa. Similarly, you cannot throw away every seve
sample in the beginning, and then every fourth sample later. It is
proper to remove the first half samples, or the next half samples
Normally, just the odd or even samples are removed.

2. When I do the upsampling (by 2), what options do I have? 

In upsampling by 2, you need to insert zeros so as to double the
number of samples. The zeros to be inserted could be in either 
odd samples position or the even samples position. Depending on
manner in which downsampling was done, you would insert zero
the same place. So, if you removed the odd-numbered samples
during downsampling, you would insert them in the odd-number
places during upsampling. However, if you removed the 
even-numbered samples during downsampling, you would inser
them in the even-numbered places.

3. In Wavelets » 1D Data Test » ekg.txt » save the 2nd plot, if I see th
text file, all the numbers are zero because they were very small and
were not saved with a sufficiently high precision. So, how can I 
change the format of saving the text file?

If you are using the wavelets executable, you cannot change the
format in which the text file is being saved. However, if you are 
using the LabVIEW wavelet VI libraries, you can go into the bloc
diagram to change the format.
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Numbers/Symbols

1D One-dimensional.

2D Two-dimensional.

× Infinity.

¼ Pi.

ý Delta. Difference. ýx denotes the value by which x changes from 
one index to the next.

A

AC Alternating current.

ADC Analog to digital convertor, the hardware that converts an anal
signal into a digital signal.

analog signal A signal whose values are continuous and are defined at eac
every instant of time.

Prefix Meaning Value

M- mega- 106

K- kilo- 103

m- milli- 10-3

µ- micro- 10-6

n- nano- 10-9
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ANSI American National Standards Institute.

antialias filter An analog lowpass filter used to limit the frequency of the ana
signal, before sampling, to less than the Nyquist frequency. Th
prevents aliasing in the digital domain.

array Ordered, indexed set of data elements of the same type.

B

bandpass filter A filter that passes signals within a certain band of frequencie

bandstop filter A filter that attenuates signals within a certain band of frequen

BPF Bandpass filter.

BSF Bandstop filter.

Butterworth filter A filter characterized by a smooth response at all frequencies,
the absence of ripples in both the passband and the stopband.
to the absence of ripples, it is also known as a maximally flat fil

C

Chebyshev filter A filter characterized by ripples in the passband, but a smooth
response in the stopband.

Chebyshev II filter See Inverse Chebyshev Filter.

coherent gain (CG) The coherent gain is the zero frequency gain (or DC gain) of 
window. The rectangular (or uniform) window has the highest C

complex conjugate A matrix operation consisting of taking the complex conjugate
transpose each element of the matrix and then transposing the resulting

matrix.

complex matrix A matrix with at least one element that is a complex number.

condition number A measure of how close the matrix is to being singular. The 
condition number of a square nonsingular matrix is defined as

 

where p corresponds to the pth norm of the matrix. The condition 
number can vary between 1 and infinity. A matrix with a large 
condition number is nearly singular, while a matrix with a 
condition number close to 1 is far from being singular.

cond A( ) A p A 1–
p⋅=
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curve fitting Technique for extracting a set of curve parameters or coefficie
from a data set to obtain a functional description of the data se

D

DAQ Data acquisition.

data acquisition Process of acquiring data, typically from A/D or digital input 
plug-in boards.

dB Decibels.

DC Direct current.

decibel A logarithmic scale used to compress large amplitudes and exp
small amplitudes. It is given by

one dB = 10 log10 (Power Ratio) = 20 log10 (Voltage Ratio)

DFT Discrete Fourier transform, the algorithm used to transform 
samples of the data from the time domain into the frequency 
domain.

difference equations Equations that describe the operation of a system (for examp
filter) in the discrete time domain.

digital signal A signal that can take on only specific amplitude values that a
defined at discrete points in time.

discrete-time signal A signal whose values are continuous in amplitude, but which
defined only at discrete points in time.

DSP Digital signal processing.

E

elliptic filter A filter characterized by ripples in both the passband and the 
stopband.

equivalent noise The equivalent noise bandwidth of a window is the width of a
bandwidth (ENBW) ideal rectangular response that will pass the same amount of 

power as the frequency response of the window. The rectangu
(or uniform) window has the smallest ENBW.
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F

FFT Fast Fourier transform. A fast method for calculating the discre
Fourier transform. It is used when the number of samples is a po
of two.

filter bank A set of filters connected in parallel. Each filter may be tuned t
different frequency range. The filters in the filter bank may or m
not have the same bandwidth.

FIR filter Finite impulse response filter. A type of filter whose output 
depends only on the current and past inputs. It is also known a
nonrecursive filter.

forward coefficients Forward coefficients are those that multiply inputs.

frequency response The Fourier transform of the impulse response. It consists o
parts, the magnitude response and the phase response. The 
magnitude response is a plot of the magnitude of the frequenc
response at different frequencies, whereas the phase respons
plot of the phase of the frequency response at different frequenc
(see Impulse Response) 

G

Gaussian probability A density function that is completely characterized by its mea
density function standard deviation and is given by

where µ is the mean and σ is the standard deviation. It is also 
known as the normal probability density function.

H

harmonic distortion The distortion inherent in a nonlinear system that results in 
generation of frequencies at its output that are harmonics of th
input frequency. The more the degree of nonlinearity of the syst
the higher the frequencies of the harmonics.

Hermitian matrix A complex matrix whose complex conjugate transpose is equa
the matrix itself. See also complex conjugate transpose.

highpass filter A filter that passes frequencies above a certain cut-off freque
It passes high frequencies, but attenuates low frequencies.

f x( ) 1

σ 2π
--------------

1
2
---

x µ–
σ

------------ 
  2

–exp=
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HPF Highpass filter.

Hz Hertz, or cycles per second.

I

IEEE Institute of Electrical and Electronics Engineers.

IIR filter Infinite impulse response filter. A type of filter whose output 
depends not only on the current and past inputs, but also on p
outputs. It is also known as a recursive filter.

IMAQ Image acquisition.

impulse A signal that has a value of one at a particular time instant and 
everywhere else.

impulse response The response of a system to an input that is an impulse.

inf Digital display value for a floating-point representation of infinit

in place In place means that the input array space (memory locations)
being reused as the output array space. In place usually implie
lower demands on memory. 

inverse Chebyshev filter A filter characterized by a smooth response in the passband
with ripples in the stopband.

I/O Input/output. The transfer of data to or from a computer system
involving communications channels, operator input devices, and
data acquisition and control interfaces.

J

joint time-frequency A method of analysis that simultaneously provides both time a
analysis (JTFA) frequency information. It shows how the frequency spectrum 

signal varies with time. 

K

Levenberg-Marquardt A general curve fitting algorithm used to estimate the coeffici
of a curve to fit a set of samples. It can be used for both linear 
nonlinear relationships, but is almost always used to fit a nonlin
curve. This is because the general linear fit method is better su
to linear curve fitting. The Levenberg-Marquardt method does n
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always guarantee a correct result, so it is absolutely necessary
verify the results.

L

linear phase Linear phase in digital filters means that the phase distortion 
nothing more than a digital delay. All input samples will be shifte
by some constant number of samples, so this phase change ca
easily “fixed” and/or modeled. Nonlinear phase means that the 
individual sine waves that make up the input signal get shifted
time by different amounts. This sort of phase change is very 
difficult to work around. Some signals (like the square wave) a
very sensitive to this sort of phase distortion.

lower triangular matrix A matrix whose elements above the main diagonal are all zer

lowpass filter A filter that passes frequencies below a certain cut-off frequen
It passes low frequencies, but attenuates high frequencies.

LPF Lowpass filter.

LU decomposition A method that factors a matrix as a product of an upper and a l
triangular matrix.

M

matrix Two-dimensional array.

MB Megabytes of memory.

mother wavelet A prototype wavelet, which is compressed or expanded in tim
derive other wavelets.

MSE Mean squared error. The MSE is a relative measure of the resid
between the expected curve values and the actual observed va

N

NaN Digital display value for a floating-point representation of not a 
number, typically the result of an undefined operation, such as 
log(-1).

norm The norm of a vector or matrix is a measure of the magnitude of
vector or matrix. There are different ways to compute the norm
a matrix. These include the 2-norm (Euclidean norm), the 1-norm, 
the Frobenius norm (F-norm), and the Infinity norm (inf-norm). 
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Each norm has its own physical interpretation. The 
LabVIEW/BridgeVIEW Matrix Norm  VI can be used to compute
the norm of a matrix.

normal probability See Gaussian probability density function.
density function

nonlinear phase See linear phase.

nonrecursive filter See FIR filter.

nonsingular matrix Matrix in which no row or column is a linear combination of an
other row or column, respectively.

normalized frequency A frequency (in Hertz) that is specified as a ratio with respect t
sampling frequency (in samples/second). Its units are in 
cycles/sample. However, if the frequency is given in terms of 
cycles, then it is divided by the number of samples to convert it
the normalized frequency.

Nyquist frequency (fN) Half the sampling frequency, fN = fs/2, where fs is the sampling 
frequency.

Nyquist theorem A theorem stating that to recover an analog signal from its sam
the sampling frequency should be at least twice the highest 
frequency in the signal.

O

observation matrix (H) A matrix used as an input to the General LS Linear Fit VI. If there 
are N data points, and k coefficients (a0, a1, ...ak-1) for which to 
solve, H will be an N-by-k matrix with N rows and k columns. Thus, 
the number of rows of H is equal to the number of data points,
whereas the number of columns of H is equal to the number of
coefficients for which we are trying to solve.

octave A doubling in frequency.

one-sided transform A representation consisting of only the positive frequency (an
DC) components.

P

passband The range of frequencies that are passed by a filter with a ga
almost one (0 dB).
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passband ripple The amount of variation of the passband gain from unity (0 dB
is usually specified in dB. It is given by 

ripple 

where Ai(f) and Ao(f) are the amplitudes of a particular frequenc
before and after the filtering, respectively.

pattern VIs These are signal generation VIs that do not keep track of the p
of the signal that they generate each time they are called. The Chirp 
Pattern VI is the only pattern VI that requires its frequency inpu
in terms of normalized frequency. 

pole-zero plot A plot showing the positions of the poles and zeros of a system
pole-zero plot is useful in determining the stability of the system

power spectrum The power spectrum of a signal gives you the power in each 
frequency components. It can be calculated by squaring the 
magnitude of the Fourier transform (DFT or FFT) of the signal.

Q

quality factor (Q) A measure of how selective a bandpass filter is in passing freque
around the center frequency and attenuating unwanted frequencie
is defined as the ratio of the center frequency of the filter to its 
bandwidth. 

Q = fm/Bm

where fm is the center frequency, and Bm is the bandwidth of the 
filter. Thus, for a fixed center frequency, the larger the bandwid
the smaller the quality factor, and vice versa. 

R

rank The rank of a matrix A, denoted by ρ(A), is the maximum number 
of linearly independent columns in A. The number of linearly 
independent columns of a matrix is equal to the number of 
independent rows. So, the rank can never be greater than the 
smaller dimension of the matrix. Consequently, if A is an  
matrix, then 

where min denotes the minimum of the two numbers. The rank o
square matrix pertains to the highest order nonsingular matrix t
can be formed from it. So, the rank pertains to the highest orde
matrix that we can obtain whose determinant is not zero. A squ

(dB) 20log10

Ao f( )
Ai f( )
------------=

n m×

ρ A( ) min n m,( )≤
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matrix is said to have full rank if and only if its determinant is 
different from zero. 

recursive filter See IIR filter.

regression analysis See curve fitting.

reverse coefficients The reverse coefficients are those that multiply the outputs.

RHS Right hand side.

ripple A measure of the deviation of a filter from the ideal filter 
specifications.

RMS Root mean square.

S

sampling frequency The number of samples acquired per second. Its units are 
samples/second.

short-time Fourier The term for taking a Fourier transform of shorter time interva
transform (STFT) of samples of a signal, rather on of the entire set of samples. 

known as the windowed Fourier transform.

singular value A method that decomposes a matrix into the product of three
decomposition (SVD) matrices , where U and V are orthogonal matrices, and

S is a diagonal matrix. SVD is useful for solving analysis problem
such as computing the rank, norm, condition number, and 
pseudoinverse of matrices.

spectral leakage A phenomenon where it appears as if energy has leaked out
one frequency into another. It occurs because of the discontinu
introduced when the sampled waveform is repeated periodicall
time. The larger the discontinuity, the more the leakage. Leaka
can be reduced by reducing the amplitude of the discontinuitie
The reduction is achieved by use of multiplying the time domai
waveform by a window function. Note that if there are an integ
number of cycles in the sampled waveform, there is no leakag

step response The response of a system to a step input.

stopband The range of frequencies that are attenuated by the filter.

A USVT=
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stopband attenuation The amount of attenuation in the stopband of a filter, usually
specified in dB. It is given by

where Ai(f) and Ao(f) are the amplitudes of a particular frequenc
before and after the filtering, respectively.

SVD Singular value decomposition.

symmetric matrix A matrix whose transpose is equal to the matrix itself.

T

total harmonic distortion A relative measure of the amplitudes of the fundamental to the 
amplitudes of the harmonics. If the amplitude of the fundamenta
A1, and the amplitudes of the harmonics are A2 (2nd harmonic), A3 
(3rd harmonic), A4 (4th harmonic), ...AN (Nth harmonic), then the 
total harmonic distortion (THD) is given by

THD = 

When the THD is expressed as a percentage, it is known as th
percentage total harmonic distortion (%THD) and is given by 

% THD =  

transient response The transient that initially appears at the output of a filter whe
VI is run. The time duration of the transient depends on the ord
of the filter. It can be eliminated by setting the init/cont control 
the VI to TRUE.

transition region The region between the passband and the stopband where th
of the filter varies from one (0 dB) or almost one (in the passba
to a very small value (in the stopband).

transpose A matrix operation that consists of interchanging the rows and
columns of a matrix.

two-sided transform A representation consisting of both the positive and negative
DC) frequency components.

U

upper triangular matrix A matrix whose elements below the main diagonal are all zer

A(dB) 20log10

Ao f( )
Ai f( )
------------=

A1
2 A2

2 A3
2 ... AN

2+ + + +

A1
--------------------------------------------------------------------

100 A1
2 A2

2 A3
2 ... AN

2+ + + +×
A1

-----------------------------------------------------------------------------------
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vector One-dimensional array.

W

wavelets The time-limited basis functions of the wavelet transform.

wavelet transform The transform whose basis functions are time limited and are
known as wavelets. Using the wavelet transform, it is possible to
have both good time and good frequency resolution 
simultaneously. The selection of a suitable wavelet is an import
consideration in the use of the wavelet transform.

wave VIs Signal generation VIs that keep track of the phase of the signal
they generate each time they are called. They require their 
frequency input to be in terms of normalized frequency.

Wigner-Ville distribution A method of joint time-frequency analysis. A drawback of this 
method is the presence of unwanted cross-terms between actu
signal frequency components. These cross-terms can be remo
by averaging.

window A smoothing function applied to a time domain waveform, befo
it is transformed into the frequency domain, so as to minimize 
spectral leakage.

windowed Fourier See short-time Fourier transform (STFT).
transform

Z

zero padding Addition of zeros to the end of a sequence so that the total nu
of samples is equal to the next higher power of two. When zero
padding is applied to a set of samples in the time domain, fast
computation is possible by using the FFT instead of the DFT. I
addition, the frequency resolution (∆f) is improved (made smaller)
because ∆f = fs/N, where fs is the sampling frequency and N is th
total number of samples.
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