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ABSTRACT. This article studies the algebraic structure of homology theories defined by
a left Hopf algebroid U over a possibly noncommutative base algebra A, such as for ex-
ample Hochschild, Lie algebroid (in particular Lie algebra and Poisson), or group and
étale groupoid (co)homology. Explicit formulae for the canonical Gerstenhaber algebra
structure on ExtU pA,Aq are given. The main technical result constructs a Lie deriv-
ative satisfying a generalised Cartan-Rinehart homotopy formula whose essence is that
TorU pM,Aq becomes for suitable right U -modulesM a Batalin-Vilkovisky module over
ExtU pA,Aq, or in the words of Nest, Tamarkin, Tsygan and others, that ExtU pA,Aq
and TorU pM,Aq form a differential calculus. As an illustration, we show how the well-
known operators from differential geometry in the classical Cartan homotopy formula can
be obtained. Another application consists in generalising Ginzburg’s result that the coho-
mology ring of a Calabi-Yau algebra is a Batalin-Vilkovisky algebra to twisted Calabi-Yau
algebras.
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1. INTRODUCTION

1.1. Differential calculi. By its definition in terms of (co)chain complexes or derived
functors, the cohomology or homology of a mathematical object is typically only a graded
module over some base ring. Thus an obvious task is to exhibit its full algebraic structure,
and to understand which features of the original object this structure reflects.

For the (co)homology of associative algebras, this has been studied, amongst others, by
Rinehart [Ri], Gerstenhaber [Ge], Goodwillie [Go], Getzler [Get] and Nest, Tamarkin and
Tsygan, see e.g. [NTs3, TaTs1, TaTs2, Ts]. The ultimate answer is that Hochschild coho-
mology and homology form what Nest, Tamarkin and Tsygan call a differential calculus:

Definition 1.1. Let k be a commutative ring.
(i ) A Gerstenhaber algebra over k is a graded commutative k-algebra pV,`q

V �
à
pPZ

V p, α ` β � p�1qpqβ ` α P V p�q, α P V p, β P V q,

with a graded Lie bracket t�, �u : V p�1bk V
q�1 Ñ V p�q�1 on the desuspension

V r1s :�
à
pPZ

V p�1

of V for which all operators tγ, �u satisfy the graded Leibniz rule

tγ, α ` βu � tγ, αu ` β � p�1qpqα ` tγ, βu, γ P V p�1, α P V q.

(ii ) A Gerstenhaber module over V is a graded pV,`q-module pΩ,aq,

Ω �
à
nPZ

Ωn, α a x P Ωn�p, α P V p, x P Ωn,

with a representation of the graded Lie algebra pV r1s, t�, �uq

L : V p�1 bk Ωn Ñ Ωn�p, αbk x ÞÑ Lαpxq,

which satisfies for α P V p�1, β P V q, x P Ω the mixed Leibniz rule

β a Lαpxq � tβ, αu a x� p�1qpqLαpβ a xq.

(iii ) Such a module is Batalin-Vilkovisky if there is a k-linear differential

B : Ωn Ñ Ωn�1, BB � 0,
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such that Lα is for α P V p given by the homotopy formula

Lαpxq � Bpα a xq � p�1qpα a Bpxq.

(iv ) A pair pV,Ωq of a Gerstenhaber algebra and of a Batalin-Vilkovisky module over
it is also called a differential calculus.

Be aware that the term “Gerstenhaber module” is used in several different ways in the
literature. The above one is based on the requirement that the operators

ια :� α a � : Ω Ñ Ω

form a Gerstenhaber algebra quotient of V with bracket

tια, ιβu :� rια,Lβs
and agrees (up to slightly different sign conventions) with the one used in [DeHeKa]. One
will often additionally find that the mixed Leibniz rule

Lα`β � Lαιβ � p�1qiιαLβ , α P V i, β P V, (1.1)

is demanded. This is necessary for V `Ω to become naturally a (square zero) extension of
V as a Gerstenhaber algebra. For Batalin-Vilkovisky modules, Equation (1.1) is satisfied
automatically, so the definition of these is essentially unequivocal.

The definition of a Gerstenhaber algebra itself also admits a modification in which the
operators t�, γu, rather than tγ, �u, are assumed to satisfy the graded Leibniz rule. This had
been the convention in Gerstenhaber’s original paper [Ge], cf. Remark 3.19 below.

1.2. Aims and objectives. The main aim of this paper is to further highlight the ubiquity
of such Batalin-Vilkovisky structures by giving conditions for

V :� ExtU pA,Aq, Ω :� TorU pM,Aq

to form a differential calculus when U is a left Hopf algebroid (a �A-Hopf algebra) over
a possibly noncommutative k-algebra A; we will recall some background on left Hopf al-
gebroids in §2 below. Here we only remind the reader that the rings governing most parts
of classical homological algebra all carry this structure, so that our results apply for exam-
ple to Hochschild and Lie-Rinehart (in particular Lie algebra, de Rham, Lie algebroid and
Poisson) (co)homology as well as to that of any Hopf algebra (e.g. group (co)homology).

Besides for the case of Hochschild (co)homology with canonical coefficients M �
A that has been referred to above, our results are also already known for Lie-Rinehart
(co)homology due to the work of Rinehart and of Huebschmann [Ri, Hue1]. However, the
Hopf algebroid generalisation is, in our opinion, not only interesting because of new special
cases to which it applies, but also leads to conceptually clearer statements and proofs, for
instance because of the manifest distinction of homology and cohomology coefficients
(right respectively left U -modules). Hence we hope that the paper is of interest also to
people working in different but analogous settings in algebra, geometry and topology, see
e.g. [BeFa, GiTr, Me1, Me2, DoShV] and the references therein.

1.3. The Gerstenhaber algebra. The Gerstenhaber algebra structure that we consider
can be viewed as a special case of Menichi’s operadic construction [Me1] that, in turn,
closely follows Gerstenhaber’s original work on Hochschild cohomology [Ge], or of
Shoikhet’s generalisation [Sho] of Schwede’s homotopy theory approach to the Hochschild
case [Schw]. Both imply that the derived endomorphisms ExtCp1,1q of the unit object 1
of a mildly restricted abelian monoidal category C carry a natural Gerstenhaber algebra
structure. So, morally speaking, it is a monoidal structure on the category of coefficients
that is reflected by a Gerstenhaber algebra structure on cohomology.

The aim of §3 below is to compute for C � U -Mod (where U is any bialgebroid)
explicit formulae for ` and t�, �u in terms of the canonical cochain complex

δ : C
pU,Aq :� HomAoppUbAop

�, Aq Ñ C
�1pU,Aq
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that arises from the bar resolution ofA. We refer to the main text for the notation used here
and below, but decided to copy all formulae into the introduction.

On the level of cochains ϕ P CppU,Aq, ψ P CqpU,Aq the cup product turns out to be

pϕ ` ψqpu1, . . . , up�qq � ϕ
�
u1, . . . , up�1, ψpup�1, . . . , up�qq � up

�
. (1.2)

We then define along the classical lines Gerstenhaber products �i by

pϕ �i ψqpu
1, . . . , up�q�1q

:� ϕpu1, . . . , ui�1,Dψpu
i, . . . , ui�q�1q, ui�q, . . . , up�q�1q,

for i � 1, . . . , p, where the operator

Dϕ : UbAopp Ñ U, pu1, . . . , upq ÞÑ ϕpu1
p1q, . . . , u

p
p1qq � u

1
p2q � � �u

p
p2q

replaces the classical insertion operations used by Gerstenhaber. The �i are used to con-
struct the Gerstenhaber bracket as usual as

tϕ,ψu :� ϕ�̄ψ � p�1q|p||q|ψ�̄ϕ (1.3)

with

ϕ�̄ψ :� p�1q|p||q|
p̧

i�1

p�1q|q||i|ϕ �i ψ, |n| :� n� 1.

In §3 we will prove:

Theorem 1.2. If U is a bialgebroid over A, then the maps (1.2) and (1.3) induce a Ger-
stenhaber algebra structure on H
pU,Aq :� H
pC
pU,Aq, δq.

When U is a left Hopf algebroid and U� P A
op-Mod is projective, the bar resolution is

a projective resolution, so H
pU,Aq � ExtU pA,Aq and the above result yields Gersten-
haber brackets on various Ext-algebras. Even for Hopf algebras (i.e., for A � k) this has
been discussed still fairly recently, see e.g. [FSo, Tai, Me2].

1.4. The Gerstenhaber module. In [KoKr2] we have studied the fact that for a left Hopf
algebroid U a left U -comodule structure on a right U -module M induces a para-cyclic
k-module structure on the canonical chain complex

C
pU,Mq :�M bAop p�U�q
bAop


that computes TorU pM,Aq when U is a right A-projective.
The question whether this leads to a Batalin-Vilkovisky module structure on the sim-

plicial homology H
pU,Mq of this para-cyclic object hinges on the compatibility between
the left U -comodule and the right U -module structure on M . In full generality, we define
for ϕ P CppU,Aq the cap product

ιϕpm,u
1, . . . , unq � pm,u1, . . . , un�p�1, ϕpun�|p|, . . . , unq � un�pq, (1.4)

and the Lie derivative (see the main text for all necessary details)

Lϕ :�

n�|p|¸
i�1

p�1qθ
n,p
i tn�|p|�iD1

ϕ t
i�p �

p̧

i�1

p�1qξ
n,p
i tn�|p|D1

ϕ t
i, (1.5)

where θ and ξ are sign functions, D1
ϕ is Dϕ applied on the last p components of an element

in CnpU,Mq, and t is the cyclic operator of the para-cyclic module C
pU,Mq as in (2.15).
In general, these do not induce a Gerstenhaber module structure on H
pU,Mq, but

only on the homology HM


pUq of the universal cyclic quotient Ccyc



pU,Mq, see §2.4. A

sufficient condition for the two to coincide is thatM is a stable anti Yetter-Drinfel’d module
in which case the para-cyclic k-module is cyclic, see again §2.4 and §4.2 below. However,
a more general case that is ubiquitous in examples is the following:

Definition 1.3. A para-cyclic k-module pC
, d
, s
, t
q is quasi-cyclic if we have

C
 � ker pid� t
�1



q ` im pid� t
�1



q.
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We refer to §2.4 for the detailed explanation of this condition and of its consequences.
In complete generality, we introduce for any module-comodule M (see Definition 2.3) the
set C


M pUq�C

pU,Aq consisting of those cochains for which the operators ιϕ and Lϕ

descend to Ccyc


pU,Mq. This turns out to be a subcomplex whose cohomology will be

denoted by H


M pUq. Then we prove:

Theorem 1.4. For all modules-comodules M over a left Hopf algebroid U , (1.2) and
(1.3) induce a Gerstenhaber algebra structure on H


M pUq, and (1.4) and (1.5) induce a
H


M pUq-Gerstenhaber module structure on HM


pUq.

1.5. The Batalin-Vilkovisky module. Once this is established, we introduce the operator

Sϕ :�
n�p̧

j�0

j̧

i�0

p�1qη
n,p
j,i tsn�|p| t

n�p�iD1
ϕ t

n�i�|j|,

where η is again a sign function, and prove that for ϕ P C


M pUq the Cartan-Rinehart
homotopy formula

Lϕ � rB� b,Sϕ � ιϕs � ιδϕ � Sδϕ
is satisfied. Here b and B are the simplicial resp. cyclic differentials on Ccyc



pU,Mq and δ

is the cosimplicial differential on C


M pUq. This implies our main result:

Theorem 1.5. For all module-comodules M over a left Hopf algebroid U , the pair
pH


M pUq, H
M


pUqq carries a canonical structure of a differential calculus.

In the simplest case where M is an SaYD module, we already mentioned that
Ccyc


pU,Mq coincides with C
pU,Mq, and therefore we obtain:

Corollary 1.6. If M is a stable anti Yetter-Drinfel’d module over a left Hopf algebroid U
and if U� P A

op-Mod is projective, then the pair
�
ExtU pA,Aq,TorU pM,Aq

�
carries a

canonical structure of a differential calculus.

For the special case of commutative associative algebras, the earliest account of the set
of operators b,B, ι,L, and S is due to Rinehart [Ri], where these operators are called (in
the same order) ∆, d̄, c, θ, and f , respectively. About twenty years later, the commutativ-
ity assumption was dropped and the Lie derivative appeared for 1-cocycles in [Co, p. 124],
where it is denoted by δ�, and in [Go], where additionally the operators ι and S are intro-
duced, denoted by e and E, respectively. Finally, these operators were generalised from
1-cocycles to arbitrary cochains both in [Get], where they are denoted by b and B, as well
as in [GDTs, NTs3, NTs2, Ts], the notation of which we take over.

1.6. Applications. A prominent example that forces one to go beyond SaYD modules
is that of the Hochschild homology of an algebra A with coefficients in M � Aσ for
some automorphism σ of A, that is, M is A as a k-module with A-bimodule structure
given by a � b � c :� abσpcq. Whenever σ is semisimple, the resulting para-cyclic k-
module is quasi-cyclic, and in the final section of the paper we prove that this implies
the following generalisation of a result of Ginzburg [Gi] from Calabi-Yau algebras (which
form the case in which σ is inner) to twisted Calabi-Yau algebras (see Definition 7.5), such
as the standard quantum groups [BrZh], Koszul algebras whose Koszul dual is Frobenius
as, for example, Manin’s quantum plane [VdB1], or the Podleś quantum 2-sphere [Kr]:

Theorem 1.7. If A is a twisted Calabi-Yau algebra with semisimple modular automor-
phism, then the Hochschild cohomology H
pA,Aq of A is a Batalin-Vilkovisky algebra.

Besides this application, we also explain in the penultimate section of the paper how
one can use our formulae to obtain the classical operators in Cartan’s magic formula in
differential geometry, i.e., the Lie derivative, the insertion operator, and the de Rham
differential in the setting of Lie-Rinehart algebras (or Lie algebroids, and in particular the
tangent bundle of a smooth manifold) by taking for U the jet space JL, which is the dual
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of the universal enveloping algebra VL of a Lie-Rinehart algebra pA,Lq.
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2. PRELIMINARIES

In this section we recall preliminaries on bialgebroids, Hopf algebroids, and cyclic ho-
mology, mainly from our two papers [KoKr1, KoKr2] as we use therein the same notation
and conventions as here. For more detailed information on bialgebroids and Hopf alge-
broids and references to the original sources, we recommend Böhm’s survey [B].

2.1. Bialgebroids. Throughout this paper, A and U are (unital associative) k-algebras,
and we assume that there is a fixed k-algebra map

η : Ae :� Abk A
op Ñ U.

This induces forgetful functors

U -ModÑ Ae-Mod, Uop-ModÑ Ae-Mod

that turn leftU -modulesN respectively rightU -modulesM intoA-bimodules with actions

a � n � b :� ηpabk bqn, a �m � b :� mηpbbk aq, a, b P A,n P N,m PM.

In particular, left and right multiplication in U defines A-bimodule structures of both these
types on U itself. Unless explicitly stated otherwise, we a priori consider U as an A-
bimodule using the actions �, � arising from left multiplication in U . For example, in (2.1)
below the actions �, � are used to define U bA U , and later we will require U to be right
A-projective meaning that U� P A

op-Mod is projective.
Generalising the standard result for bialgebras (which is the case A � k), Schauenburg

has proved [Sch] that the monoidal structures on U -Mod for which the forgetful functor to
Ae-Mod is strictly monoidal (where Ae-Mod is monoidal via bA) correspond to what is
known as (left) bialgebroid (or �A-bialgebra) structures on U . We refer, e.g., to our earlier
paper [KoKr1] for a detailed definition (which is due to Takeuchi [Tak]). Let us only recall
that a bialgebroid has a coproduct and a counit

∆ : U Ñ U bA U, ε : U Ñ A, (2.1)

which turn U into a coalgebra in Ae-Mod. One of the subtleties to keep in mind is that
unlike for A � k the counit ε is not necessarily a ring homomorphism but only yields a
left U -module structure on A with action of u P U on a P A given by ua :� εpu � aq.
Furthermore, ∆ is required to corestrict to a map from U to the Sweedler-Takeuchi product
U �A U , which is the Ae-submodule of U bA U whose elements

°
i ui bA vi fulfil°

i a � ui bA vi �
°
i ui bA vi � a, @a P A. (2.2)

In the sequel, we will freely use Sweedler’s notation ∆puq �: up1q bA up2q.
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2.2. Hopf algebroids. In the same paper [Sch], Schauenburg generalised the notion of a
Hopf algebra to the bialgebroid setting. What he called �A-Hopf algebras will be called
left Hopf algebroids here. Again, we refer to [KoKr1] for the definition, examples and more
background information, and only recall that the crucial piece of structure (in addition to a
bialgebroid one) is the so-called translation map

U Ñ �U bAop U�, (2.3)

for which we use the Sweedler-type notation

u ÞÑ u� bAop u�.

Example 2.1. For a Hopf algebra over A � k, the translation map is given by

u ÞÑ up1q bk Spup2qq,

where S is the antipode, and its relevance is already discussed in great detail by Cartan and
Eilenberg [CE].

We will make permanent use of the following identities that hold for the map (2.3), see
[Sch, Proposition 3.7]:

Proposition 2.2. Let U be a left Hopf algebroid over A. For all u, v P U , a, b P A one has

u� bAop u� P U �Aop U, (2.4)
u�p1q bA u�p2qu� � ubA 1 P U� bA �U, (2.5)

up1q� bAop up1q�up2q � ubAop 1 P �U bAop U�, (2.6)
u�p1q bA u�p2q bAop u� � up1q bA up2q� bAop up2q�, (2.7)
u� bAop u�p1q bA u�p2q � u�� bAop u� bA u��, (2.8)

puvq� bAop puvq� � u�v� bAop v�u�, (2.9)
u�u� � spεpuqq, (2.10)

εpu�q � u� � u, (2.11)
pspaqtpbqq� bAop pspaqtpbqq� � spaq bAop spbq, (2.12)

where in (2.4) we mean the Sweedler-Takeuchi product

U �Aop U :� t
°
i ui bAop vi P �U bAop U� |

°
i ui � abAop vi �

°
i ui bAop a � viu ,

which is an algebra by factorwise multiplication, but with opposite multiplication on the
second factor, and where in (2.10) and (2.12) we use the source and target maps

s, t : AÑ U, spaq :� ηpabk 1q, tpbq :� ηp1bk bq. (2.13)

For us, the relevance of the translation map stems mostly from the fact that it turns
the category Uop-Mod of right U -modules into a module category over the monoidal
category U -Mod. Explicitly, the product of N P U -Mod with M P Uop-Mod is the
tensor product of the underlying A-bimodules with right action given by

pnbA mqu :� u�nbA mu�, u P U,m PM,n P N.

2.3. Module-comodules and anti Yetter-Drinfel’d modules. Throughout this paper, M
will denote a right U -module, and in fact one which is simultaneously a comodule:

Definition 2.3. By a module-comodule (with compatible induced left A-action) over a
bialgebroid U we shall mean a right U -module M P Uop-Mod for which the underlying
left A-module �M is also equipped with a left U -coaction

∆M : M Ñ U� bA �M, m ÞÑ mp�1q bA mp0q.
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Recall, e.g. from [B], that ∆M is then anAe-module morphismM Ñ U��A �M,where
U� �A �M is the Ae-submodule of U� bA �M whose elements

°
i ui bA mi fulfil°

i a � ui bA mi �
°
i ui bA mi � a, @a P A. (2.14)

The following particular class of module-comodules was introduced in [HKhRS] for
Hopf algebras and in [BŞ] for left Hopf algebroids:

Definition 2.4. A module-comodule over a left Hopf algebroid is called an anti Yetter-
Drinfel’d module (aYD) if the full Ae-module structure �M� of the module coincides with
that underlying the comodule, and if one has

pmuqp�1q bA pmuqp0q � u�mp�1qu�p1q bA mp0qu�p2q

for all m PM,u P U . A module-comodule is called stable (SaYD) if one has

mp0qmp�1q � m.

2.4. The (para-)cyclic k-modules C
pU,Mq and Ccyc


pU,Mq. The Batalin-Vilkovisky

modules that we are going to study in this paper are obtained as the simplicial homology
of para-cyclic k-modules of the following form [KoKr2]:

Proposition 2.5. For every right module M over a bialgebroid U there is a well-defined
simplicial k-module structure on

C
pU,Mq :�M bAop p�U�q
bAop


whose face and degeneracy maps are given by

dipm,xq�

$&
%
pm,u1, . . . , εpunq � un�1q,
pm, . . . , un�iun�i�1, . . . , unq
pmu1, u2, . . . , unq

if i�0,
if 1¤ i¤n� 1,
if i�n,

sjpm,xq�

$&
%
pm,u1, . . . , un, 1q
pm, . . . , un�j , 1, un�j�1, . . . , unq
pm, 1, u1, . . . , unq

if j�0,
if 1¤j¤n� 1,
if j�n,

(2.15)

Here and in what follows, we denote the elementary tensors in C
pU,Mq by

pm,xq :� pm,u1, . . . , unq, m PM,u1, . . . , un P U.

For a module-comoduleM over a left Hopf algebroid U , the k-module C
pU,Mq becomes
a para-cyclic k-module via

tnpm,xq � pmp0qu
1
�, u

2
�, . . . , u

n
�, u

n
� � � �u

1
�mp�1qq. (2.16)

This para-cyclic k-module is cyclic if M is a stable anti Yetter-Drinfel’d module.

Recall that this means that the operators pdi, sj , tnq satisfy all the defining relations of
a cyclic k-module in the sense of Connes (see e.g. [Co] or [L] for the definition of a cyclic
k-module), except for the one that requires that

Tn :� tn�1
n

equals the identity (we do not even require it to be an isomorphism) which, as mentioned
in the proposition, is only satisfied when M is an SaYD module.

The relations between the operators pdi, sj , tnq imply that Tn commutes with all of
them, so they descend to well-defined operators on the coinvariants

Ccyc



pU,Mq :� C
pU,Mq{im pid� T
q,

and hence this becomes a cyclic k-module.
In this paper, we will not study the cyclic homology of this object, but rather the sim-

plicial homology of both C
pU,Mq and Ccyc


pU,Mq:
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Definition 2.6. For any bialgebroid U and any M P Uop-Mod, we denote the simplicial
homology of C
pU,Mq, that is, the homology with respect to the boundary map

b :�
ņ

i�0

p�1qidi, (2.17)

byH
pU,Mq and call it the homology of U with coefficients inM . For a module-comodule
over a left Hopf algebroid, we denote the simplicial homology of Ccyc



pU,Mq by HM



pUq.

In general, H
pU,Mq differs from HM


pUq, see [HaKr2] for an example. However, if

C
pU,Mq is quasi-cyclic in the sense of Definition 1.3, we can apply [HaKr1, Proposi-
tion 2.1]:

Proposition 2.7. If C
 is a quasi-cyclic k-module, then the canonical quotient map

C
 Ñ C
{impid� t
�1



q

is a quasi-isomorphism of the chain complexes that are defined by the underlying simplicial
k-module structures of C
 and C
{impid� t
�1



q, respectively.

This means that if C
pU,Mq happens to be quasi-cyclic, then classes in HM


pUq can be

represented by cycles in C
pU,Mq that are invariant under T
.
Mostly, we will now work on the reduced (normalised) complexes of C
pU,Mq resp. of

Ccyc


pU,Mq by the subcomplex spanned by the images of the degeneracy maps of these

simplicial k-modules. Being slightly sloppy, we will denote operators that descend from
the original complexes to these quotients by the same symbols if no confusion can arise.
Furthermore, we shall drop in all what follows the subscript on t and T indicating the
degree of the element on which it acts.

2.5. The operators N, s�1 and B. On every para-cyclic k-module, one defines the norm
operator, the extra degeneracy, and the cyclic differential

N :�
ņ

i�0

p�1qinti, s�1 :� t sn, B � pid� tq s�1 N. (2.18)

Recall that B coincides on the reduced complex C̄
pU,Mq with the map (induced by)
s�1 N, so we are also slightly sloppy about this and denote the latter by B as well, as we,
in fact, will only consider the induced map on the reduced complex.

It follows from the para-cyclic relations that one has

B2 � pid� Tqpid� tqs�1s�1N, bB� Bb � id� T, (2.19)

so in general B does not turn H
pU,Mq, but only HM


pUq, into a cochain complex.

In the case of an SaYD module M one can give a compact expression for B: one first
computes directly with the help of (2.5), (2.6), (2.7), and (2.8) the powers of t:

Lemma 2.8. If M is an SaYD module, the ith power for 1 ¤ i ¤ n of the cyclic operator
t can be expressed as

tipm,xq� pmp0qu
1
�p2q � � �u

i�1
�p2qu

i
�, u

i�1
� , . . . , un�, u

n
� � � �u

1
�mp�1q, u

1
�p1q, . . . , u

i�1
�p1qq,

where we abbreviated here, as elsewhere, pm,xq � pm,u1, . . . , unq.

Then a further direct computation gives:

Lemma 2.9. If M is an SaYD module, the action of B � s�1N on C̄
pU,Mq can be
expressed as

s�1Npm,xq �
ņ

i�0

p�1qinpmp0qu
1
�p2q � � �u

i
�p2q, u

i�1
� ,

. . . , un�, u
n
� � � �u

1
�mp�1q, u

1
�p1q, . . . , u

i
�p1qq.

(2.20)
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Example 2.10. For n � 1, the above expression reduces to

s�1Npm,uq � pmp0q, u�, u�mp�1qq � pmp0qu�p2q, u�mp�1q, u�p1qq.

In particular, for a Hopf algebra over A � k this reads

s�1Npm,uq � pmp0q, up1q, Spup2qqmp�1qq � pmp0qup2q, Spup3qqmp�1q, up1qq.

3. THE GERSTENHABER ALGEBRA

Unless stated explicitly otherwise, U is throughout this section an arbitrary left A-
bialgebroid. We will first give explicit formulae for a canonical DG coalgebra structure
∆P on the chain complex pP, b1q that is obtained when applying the bar construction for
the comonad U bAop � to the unit object A P U -Mod. Applying HomU p�, Aq to P yields
a cochain complex pC
pU,Aq, δq. On the underlying graded vector space we define the
structure of a (nonsymmetric) operad with multiplication. This, in particular, defines a DG
algebra structure pC
pU,Aq,`, δq and a Gerstenhaber algebra structure on its cohomology
H
pU,Aq. The fact that this DG algebra coincides with the one obtained by dualising the
DG coalgebra structure on P proves that as long as U is a right A-projective left Hopf
algebroid, H
pU,Aq is the cohomology ring ExtU pA,Aq that we studied in [KoKr1].

We will throughout use the convention in which DG algebras are cochain complexes
while DG coalgebras and DG modules over DG algebras are chain complexes.

3.1. The bar resolution P . The bar construction for U bAop � applied to A P U -Mod
yields the chain complex pP
, b1q of left U -modules, where

Pn :� p�U�q
bAopn�1

is a U -module via left multiplication in the first tensor component, and b1 is given by

b1pu0, . . . , unq :�
n�1̧

i�0

p�1qipu0, . . . , uiui�1, . . . , unq

� p�1qnpu0, . . . , un�2, εpunq � un�1q.

Note that the tensor product over Aop is chosen in such a way that

pu0, . . . , a � ui, ui�1, . . . , unq � pu0, . . . , ui, ui�1
� a, . . . , unq

holds, which is necessary for b1 to be well-defined. We recall [KoKr1, Lemma 2]:

Lemma 3.1. If U is a left Hopf algebroid and U� P A
op-Mod is projective, then pP
, b1q

is a projective resolution of A P U -Mod.

3.2. The DG coalgebra structure on P . As U -Mod is monoidal, so is the category of
chain complexes of U -modules and our aim is to turn P into a coalgebra in this category.

Definition 3.2. We define

∆P : P Ñ P bA P, ∆P pu0, . . . , unq :�
ņ

i�0

∆P

nipu
0, . . . , unq,

where for i � 0, . . . , n the maps ∆P
ni : Pn Ñ Pi bA Pn�i are given by

pu0, . . . , unq ÞÑ pu0
p1q, . . . , u

i
p1qq bA pu

0
p2q � � �u

i
p2q, u

i�1, . . . , unq.

We verify by direct computation:

Lemma 3.3. ∆P is coassociative.



BATALIN-VILKOVISKY STRUCTURES ON Ext AND Tor 11

Proof. For j � 0, . . . , i, we have

pp∆P

ij bA idPn�iq∆P

niqpu
0, . . . , unq

� pu0
p1q, . . . , u

j
p1qq bA pu

0
p2q � � �u

j
p2q, u

j�1
p1q , . . . , u

i
p1qq

bA pu
0
p3q � � �u

j
p3qu

j�1
p2q � � �u

i
p2q, u

i�1, . . . , unq,

and for j � 0, . . . , n� i, we have

ppidPi bA ∆P

n�ijq∆P

niqpu
0, . . . , unq

� pu0
p1q, . . . , u

i
p1qq bA pu

0
p2q � � �u

i
p2q, u

i�1
p1q , . . . , u

i�j
p1q q

bA pu
0
p3q � � �u

i
p3qu

i�1
p2q � � �u

i�j
p2q , u

i�j�1, . . . , unq.

So for ∆P to be coassociative, we need
ņ

i�0

i̧

j�0

pu0
p1q, . . . , u

j
p1qq bA pu

0
p2q � � �u

j
p2q, u

j�1
p1q , . . . , u

i
p1qq

bA pu
0
p3q � � �u

j
p3qu

j�1
p2q � � �u

i
p2q, u

i�1, . . . , unq

�
ņ

r�0

n�ŗ

s�0

pu0
p1q, . . . , u

r
p1qq bA pu

0
p2q � � �u

r
p2q, u

r�1
p1q , . . . , u

r�s
p1q q

bA pu
0
p3q � � �u

r
p3qu

r�1
p2q � � �u

r�s
p2q , u

r�s�1, . . . , unq,

which is seen to be correct by some basic substitution in the indices, writing first
ņ

i�0

i̧

j�0

�
ņ

j�0

ņ

i�j

,

and then substituting j by r and i by s � i� j. �

Proposition 3.4. If we define

εP :� ε : P0 � U Ñ A

and εP |Pn � 0 for n ¡ 0, then pP, b1,∆P , εP q is a differential graded coalgebra.

Proof. Both the counit property and the Leibniz rule

∆P b1 � pb1 bA idP � idP bA b1q∆P (3.1)

are easily verified. We only remark that the above Equation (3.1) is meant to be interpreted
using the Koszul sign convention, meaning that we have for all c P Pp, d P Pq

pidP bA b1qpcbA dq � p�1qpcbA b1pdq,

but pb1 bA idP qpcbA dq � b1pcq bA d, as idP is of degree 0. �

3.3. Comparison of P and P bA P . Recall that so far it is sufficient to assume U to be a
leftA-bialgebroid which is the algebraic underpinning of the fact that U -Mod is monoidal
with unit object A. Using, for example, the standard spectral sequence of the bicomplex
P
 bA P
, one easily verifies that the tensor product P bA P has homology AbA A � A;
so it is, like P , a resolution of A. However, only when U is a left Hopf algebroid, P
and P bA P are necessarily quasi-isomorphic since in this case the tensor product of two
projectives in U -Mod is projective [KoKr1, Theorem 5]. Proposition 3.4 tells us that

∆P : P Ñ P bA P, idP bA ε
P : P bA P Ñ P

are morphisms of chain complexes that are one-sided inverses of each other. In the left
Hopf algebroid case the following proposition provides a homotopy that shows that the
maps become in this situation quasi-inverse to each other. Note that this proposition is true
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for all left Hopf algebroids, assuming no projectivity of U over A (although, of course,
without that P is not necessarily a projective resolution).

Proposition 3.5. If U is a left Hopf algebroid over A, then the maps

hn :
à

i�j�n

Pi bA Pj Ñ
à

k�l�n�1

Pk bA Pl

given by
pu0, . . . , uiq bA pv

0, . . . , vjq

ÞÑ
i̧

r�0

p�1qipu0
�p1q, . . . , u

r
�p1qq bA pu

0
�p2q � � �u

r
�p2q, u

r�1
� , . . . , ui�, u

i
� � � �u

0
�v

0, v1, . . . , vjq

define a homotopy equivalence

∆P pidP bA ε
P q � idPbAP ,

so ∆P and idP bA ε
P are mutual quasi-inverses and we have P � P bA P as objects in

the derived category D�pUq.

Proof. In degree n � 0, the homotopy is

h0 : ubA v ÞÑ u�p1q bA pu�p2q, u�vq � up1q bA pup2q�, up2q�vq

and using the bialgebroid axioms as well as (2.4)–(2.12), we get

ppidU bA b1q h0qpubA vq � up1q bA pup2q�up2q�v � εpup2q�vq � up2q�q

� up1q bA εpup2qq � v � up1q bA εpεpvq � up2q�q � up2q�

� up1q � εpup2qq bA v � up1q bA εpup2q�q � up2q� � εpvq

� ubA v � up1q bA up2q � εpvq

� pidUbAU �∆P pidU bA ε
P qqpubA vq.

Analogously, one computes that one has also for n ¡ 0

hn�1 pb
1 bA idP � idP bA b1q � pb1 bA idP � idP bA b1q hn

� idP �∆P pidP bA ε
P q. �

This fact demonstrates, on the one hand, the homological difference between the bial-
gebroid and the left Hopf algebroid case, and it also illustrates, on the other hand, that the
cup and cap products we define below are indeed the derived versions of the composition
and contraction product that we dealt with abstractly in [KoKr1].

3.4. C
pU,Nq and the cup product. We retain the assumption that U is anA-bialgebroid
and further denote by P the DG coalgebra defined in the previous sections.

Definition 3.6. We define for all N P U -Mod the cochain complex

Ĉ
pU,Nq :� HomU pP
, Nq

with coboundary map δ̂ :� HomU pb
1, Nq, that is,

δ̂ : ĈppU,Nq Ñ Ĉp�1pU,Nq, δ̂ϕ̂ :� ϕ̂b1.

Furthermore, we define the cup product ` : Ĉ
pU,Aq bk Ĉ

pU,Nq Ñ Ĉ
pU,Nq by

pϕ̂ ` ψ̂qpcq :� ψ̂pϕ̂pcp1qq � cp2qq � ϕ̂pcp1qq � ψ̂pcp2qq,

where cp1q bA cp2q is ∆P pcq in Sweedler notation.

Note that for N � A the cup product becomes simply the convolution product

pϕ̂ ` ψ̂qpcq � ϕ̂pcp1qqψ̂pcp2qq, (3.2)

and that Proposition 3.4 implies:
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Corollary 3.7. pĈ
pU,Aq, δ̂,`q is a differential graded algebra and pĈ
pU,Nq, δ̂,`q is
a differential graded left module over Ĉ
pU,Aq.

By U -linearity of ψ̂ P Ĉ
pU,Aq we obtain in a standard fashion the isomorphism

ĈppU,Nq
�
ÝÑ CppU,Nq :� HomAoppUbAopp

�, Nq, ψ̂ ÞÑ ψ :� ψ̂p1, �q. (3.3)

The inverse map is given by

ϕ ÞÑ
 
ϕ̂ : pu0, . . . , upq ÞÑ u0ϕpu1, . . . , upq

(
.

Under this isomorphism, the differential δ̂ is transformed into

δ : C
pU,Nq Ñ C
�1pU,Nq

given by

δϕpu1, . . . , up�1q :� u1ϕpu2, . . . , up�1q

�
p̧

i�1

p�1qiϕpu1, . . . , uiui�1, . . . , up�1q

� p�1qp�1ϕpu1, . . . , εpup�1q � upq.

(3.4)

Observe that by duality, C
pU,Aq carries the structure of a cosimplicial k-module. This
will be used in Definition 5.5 when defining the associated reduced complex C̄
pU,Aq.

Finally, the cup product can be expressed on C
pU,Aq as follows:

Lemma 3.8. The cup product (3.2) assumes on ϕ P CppU,Aq, ψ P CqpU,Aq the form

pϕ ` ψqpu1, . . . , up�qq � ϕ
�
u1, . . . , up�1, ψpup�1, . . . , up�qq � up

�
. (3.5)

Proof. For U -linear ϕ̂ : Pp Ñ A and ψ̂ : Pq Ñ A, the explicit meaning of (3.2) is on an
element Pn Q c :� pu0, . . . , unq

pϕ̂ ` ψ̂qpcq �

#
ϕ̂pu0

p1q, . . . , u
p
p1qqψ̂pu

0
p2q � � �u

p
p2q, u

p�1, . . . , unq if p� q � n,

0 otherwise.

Using the U -linearity of the cochains, the Sweedler-Takeuchi property (2.2), the fact that
all A-actions on U commute, and the property of the tensor product in question, we obtain

ϕ̂pu0
p1q, . . . , u

p
p1qqψ̂pu

0
p2q � � �u

p
p2q, u

p�1, . . . , unq

� ϕ̂pu0
p1q, . . . , u

p
p1qqε

�
u0
p2q � � �u

p
p2q � ψ̂p1, u

p�1, . . . , unq
�

� ϕ̂
�
u0
p1q � ε

�
u0
p2q � εpu

1
p2q � � � � � εpu

p
p2qq . . .q

�
, u1

p1q, . . . , ψ̂p1, u
p�1, . . . , up�qq � upp1q

�
� ϕ̂

�
u0, u1, . . . , up�1, ψ̂p1, up�1, . . . , up�qq � up

�
.

Applying now the isomorphism (3.3) yields the claim. �

In the following, we will mostly be working with this alternative complex pC
pU,Aq, δq
and small Greek letters will usually denote cochains therein.

3.5. The comp algebra structure on C
pU,Aq. For the construction of the Gerstenhaber
bracket, we associate to any p-cochain ϕ P CppU,Aq the operator

Dϕ : UbAopp Ñ U, pu1, . . . , upq ÞÑ ϕpu1
p1q, . . . , u

p
p1qq � u

1
p2q � � �u

p
p2q. (3.6)

For zero cochains, i.e., elements in A, this becomes the map AÑ U, a ÞÑ spaq, where s is
the source map in (2.13).

These operators provide the correct substitute of the insertion operations used by Ger-
stenhaber to define what he called a pre-Lie system in [Ge] and a (right) comp algebra in
[GeSch]. Indeed, we can now define, in analogy with [Ge], the Gerstenhaber products

�i : CppU,Aq bk C
qpU,Aq Ñ Cp�q�1pU,Aq, i � 1, . . . , p,
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by

pϕ �i ψqpu
1, . . . , up�q�1q

:� ϕpu1, . . . , ui�1,Dψpu
i, . . . , ui�q�1q, ui�q, . . . , up�q�1q,

(3.7)

and for zero cochains we define a �i ψ � 0 for all i and all ψ, whereas

ϕ �i a :� ϕpu1, . . . , ui�1, spaq, ui, . . . , up�1q.

These Gerstenhaber products satisfy the following associativity relations:

Lemma 3.9. For ϕ P CppU,Aq, ψ P CqpU,Aq, and χ P CrpU,Aq we have

pϕ �i ψq �j χ �

$'&
'%
pϕ �j χq �i�r�1 ψ if j   i,

ϕ �i pψ �j�i�1 χq if i ¤ j   q � i,

pϕ �j�q�1 χq �i ψ if j ¥ q � i.
.

Proof. Straightforward computation. �

The structure of a right comp algebra is completed by adding the distinguished element
(analogously to [GeSch, p. 62])

µ :� εmU P C
2pU,Aq, (3.8)

where mU is the multiplication map of U .

Remark 3.10. The associativity of mU implies µ �1 µ � µ �2 µ. Furthermore, one has

Dµ � mU , (3.9)

as will be used later.

Remark 3.11. Equivalently, this structure turns Opnq :� CnpU,Aq into a nonsymmet-
ric operad in the category of k-modules, see e.g. [LV, §5.8.13] or [MaShnSt, Me1], with
composition

Opnq bk Opi1q bk � � � bk Opinq Ñ Opi1 � � � � � inq

given by
ϕbk ψ1 bk � � � bk ψn ÞÑ ϕ

�
Dψ1p�q,Dψ2p�q, . . . ,Dψnp�q

�
.

Together with µ, the operad O becomes an operad with multiplication whose unit is idA P
C0pU,Aq.

3.6. The Gerstenhaber algebra H
pU,Aq. Recall that |n| � n� 1.

Definition 3.12. For two cochains ϕ P CppU,Aq, ψ P CqpU,Aq we define

ϕ�̄ψ :� p�1q|p||q|
p̧

i�1

p�1q|q||i|ϕ �i ψ P C |p�q|pU,Aq

and their Gerstenhaber bracket by

tϕ,ψu :� ϕ�̄ψ � p�1q|p||q|ψ�̄ϕ. (3.10)

Furthermore, one verifies by straightforward computation:

Lemma 3.13. For ϕ P CppU,Aq and ψ P CqpU,Aq, we have

ϕ ` ψ � pµ �1 ϕq �p�1 ψ � pµ �2 ψq �1 ϕ

and
δϕ � tµ, ϕu. (3.11)

We can now state the main theorem of this section (cf. Theorem 1.2), which follows
from Gerstenhaber’s results. First, let us agree about notation:
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Definition 3.14. For a bialgebroid U and every N P U -Mod we denote the cohomology
of C
pU,Nq by H
pU,Nq and call this the cohomology of U with coefficients in N .

Remark 3.15. If U is a right A-projective left Hopf algebroid so that P is, in view
of Lemma 3.1, a projective resolution of A P U -Mod, then we have H
pU,Nq �
ExtU pA,Nq, but in general we use the symbol H
pU,Nq for the cohomology of the ex-
plicit cochain complex C
pU,Nq.

Theorem 3.16. If U is a bialgebroid over A, then the maps (3.5) and (3.10) induce a
Gerstenhaber algebra structure on H
pU,Aq.

Proof. It is a general fact that by using the above formulae for δ,` as definitions, any right
comp algebra becomes a DG algebra on whose cohomology t�, �u induces a Gerstenhaber
algebra structure, see e.g. [GeSch, McCSm] and the references therein. �

Remark 3.17. The fact that the cup product is graded commutative up to homotopy fol-
lows abstractly using the “Hilton-Eckmann trick”, see, e.g., [Su] or [KoKr1, Theorem 3]
for the concrete bialgebroid incarnation. In Gerstenhaber’s approach it follows from

p�1q|q|ϕ�̄δψ � p�1q|q|δpϕ�̄ψq � δϕ�̄ψ � ψ ` ϕ� p�1qpqϕ ` ψ,

which means that δpϕ�̄ψq � p�1qq
�
ψ ` ϕ � p�1qpqϕ ` ψ

�
if ϕ and ψ are cocycles, so

their graded commutator is a coboundary.

Remark 3.18. If A is commutative and η factorises through the multiplication map of A,
that is, if the source and target maps of U coincide so that a � u � u � a holds for all
a P A, u P U , then the tensor flip

τ : U bA U Ñ U bA U, ubA v ÞÑ v bA u

is well defined. Consequently, it makes sense to then speak about cocommutative left Hopf
algebroids, meaning that τ � ∆ � ∆. For example, this holds for the example of the
universal enveloping algebra of a Lie-Rinehart algebra, see §6. In this case an explicit
computation shows that the Gerstenhaber bracket t�, �u vanishes which is clear also for
abstract reasons, see [Tai].

Remark 3.19. Before moving on we also quickly remark that the reader may find formulae
for Gerstenhaber brackets in the literature that use a slightly different sign convention.
Some confusion that arises from this can be avoided by using the notion of the opposite
pV,`op, t�, �uopq of a Gerstenhaber algebra pV,`, t�, �uq: this is defined by

u `op v :� v ` u, tu, vuop :� �tv, uu,

and it is verified straightforwardly that this indeed is a Gerstenhaber algebra again. When
defining a Gerstenhaber algebra from a right comp algebra, the same changes can be made
on the level of the comp algebra itself. The differential then has to be rescaled on degree p
by a factor of p�1qp in order to obtain a DG algebra again.

4. THE GERSTENHABER MODULE

This section introduces the structures on homology that correspond to the cup prod-
uct and the Gerstenhaber bracket on H
pU,Aq: the cap product between H
pU,Aq and
H
pU,Mq and then a Hopf algebroid generalisation of the Lie derivative that has been
defined by Rinehart on Lie-Rinehart and Hochschild (co)homology. This, for module-
comodulesM over a left Hopf algebroid U , will be defined only onHM



pUq rather than on

H
pU,Mq , and dually it will be necessary to replace H
pU,Aq by a Gerstenhaber algebra
H


M pUq that is the cohomology of a suitable comp subalgebra C


M pUq�C

pU,Aq .
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4.1. C
pU,Mq and the cap product. The first steps in this section are completely dual
to those in the previous one. First of all, we define the homology of a bialgebroid with
coefficients in a right module. The following is the counterpart of Definition 3.6:

Definition 4.1. For any bialgebroid U and any M P Uop-Mod we define

Ĉ
pU,Mq :�M bU P
,

which becomes a chain complex of k-modules with boundary map b̂ :� idM bU b1. Using
the coalgebra structure ∆P of P , we furthermore introduce the cap product

a : ĈppU,Aq bk ĈnpU,Mq Ñ Ĉn�ppU,Mq

by
ϕ̂ a pmbU cq :� mbU cp1q � ϕ̂pcp2qq. (4.1)

Analogously to (3.3), we have an isomorphism of k-modules

ĈnpU,Mq
�
ÝÑ CnpU,Mq �M bAop UbAopn, (4.2)

given by
mbU pu

0, � � � , unq ÞÑ pmu0, u1, . . . , unq.

Here and in what follows, we are again using the notation

pm,u1, . . . , unq :� mbAop u1 bAop � � � bAop un

to better distinguish the tensor product over Aop from that one over A.

Remark 4.2. As a straightforward computation shows, the simplicial differential b from
(2.17) differs from the one induced by b̂ only by a sign factor: if we suppress the isomor-
phism (4.2), then we have on CnpU,Mq

b � p�1qnb̂,

so the two boundary maps yield the same homology H
pU,Mq.

Remark 4.3. In analogy with Remark 3.15, if U is a right A-projective Hopf algebroid,
then we have H
pU,Mq � TorU pM,Aq.

Let us compute what happens to the cap product under the isomorphisms (3.3) and (4.2):

Lemma 4.4. The cap product of ϕ P CppU,Aq with pm,xq P CnpU,Mq is given by

ϕ a pm,xq � pm,u1, . . . , un�p�1, ϕpun�|p|, . . . , unq � un�pq, (4.3)

where we again use the abbreviation pm,xq � pm,u1, . . . , unq as in Proposition 2.5.

Proof. For ϕ̂ P ĈppU,Aq (recall that these are the U -linear cochains), we have by a com-
putation similar to that in the proof of Lemma 3.8

ϕ̂ a
�
mbU pu

0, . . . , unq
�

� ϕ̂pu0
p2q � � �u

n�p
p2q

, un�|p|, . . . , unqmbU pu
0
p1q, . . . , u

n�p
p1q

q

� ε
�
u0
p2q � � �u

n�p
p2q

� ϕ̂p1, un�|p|, . . . , unq
�
mbU

�
u0
p1q, . . . , u

n�p
p1q

�

� mbU
�
u0
p1q � εpu

0
p2q � � �u

n�p
p2q

q, . . . , un�p�1
p1q

, ϕ̂p1, un�|p|, . . . , unq � un�p
p1q

�

� mbU
�
u0, . . . , un�p�1, ϕ̂p1, un�|p|, . . . , unq � un�p

�
.

(4.4)

The claim follows by applying the isomorphisms (3.3) and (4.2). �

In the sequel we will carry out extensive computations concerning algebraic relations
satisfied by the operators

ιϕ :� ϕ a � : CnpU,Mq Ñ Cn�ppU,Mq.

As a first illustration, we formulate the following analogue of Corollary 3.7 in this notation.
This could still be nicely written out using a, but the computations in the subsequent
sections will be too complex for that.
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Proposition 4.5. pC
pU,Mq, b,aq is a left DG module over pC
pU,Aq, δ,`q, i.e.,

ιϕ ιψ � ιϕ`ψ, (4.5)
rb, ιϕs � ιδϕ, (4.6)

where r�, �s denotes the graded commutator, that is, we explicitly have for ϕ P CppU,Aq

rb, ιϕs � b ιϕ � p�1qpιϕ b,

as ιϕ is of degree p while b is of degree 1.

Proof. This follows instantly from the DG coalgebra axioms when using the original pre-
sentation (4.1) for the cap product. �

Consequently, pH
pU,Mq,aq is a left module over the ring pH
pU,Aq,`q.

4.2. The comp module structure on C
pU,Mq. A finer analysis, parallel to the one car-
ried out for C
pU,Aq in §3.5, shows that C
pU,Mq carries a structure that we will refer to
as that of a comp module over C
pU,Aq: for i � 1, . . . , n� |p| we define


i : CppU,Aq bk CnpU,Mq Ñ Cn�|p|pU,Mq

by
ϕ 
i pm,xq :� pm,u1, . . . , ui�1,Dϕpu

i, . . . , ui�|p|q, ui�p, . . . , unq.

Observe that for zero cochains, i.e., for elements in A, this means that

a 
i pm,xq :� pm,u1, . . . , ui�1, spaq, ui, . . . , unq, i � 1, . . . , n� 1,

where s is the source map from (2.13).
These maps satisfy the following associativity conditions, as is verified by straightfor-

ward computation:

Lemma 4.6. Let ϕ P CppU,Aq, ψ P CqpU,Aq, and pm,xq P CnpU,Mq. Then, for
j � 1, . . . n� |q|, one has

ϕ 
i
�
ψ 
j pm,xq

�
�

$'&
'%
ψ 
j

�
ϕ 
i�|q| pm,xq

�
if j   i ¤ n� |p| � |q|,

pϕ �j�i�1 ψq 
i pm,xq if j � |p| ¤ i ¤ j,

ψ 
j�|p|
�
ϕ 
i pm,xq

�
if 1 ¤ i   j � |p|.

(4.7)

Of course, the middle line in (4.7) can also be read from right to left so as to get an idea
how an element ϕ �i ψ acts on C
pU,Mq via 
i.

Remark 4.7. Despite the similarity, the above associativity relations are quite different
from those that hold for the �i in a comp algebra. For example, there seems to be no
way to express the cap product a in terms of µ and 
i by a formula analogous to the one
given in Lemma 3.13 for the cup product `. However, Lemma 4.17 below will provide a
counterpart of the second part of Lemma 3.13.

For later use, let us also note down the following relations:

Lemma 4.8. Let ϕ P CppU,Aq, ψ P CqpU,Aq, and pm,xq P CnpU,Mq. For i �
1, . . . , n� |p� q| one has

pϕ ` ψq 
i pm,xq � µ 
i
�
ϕ 
i pψ 
i�p pm,xqq

�
, (4.8)

ϕ 
i
�
ψ a pm,xq

�
� ψ a

�
ϕ 
i pm,xq

�
. (4.9)

Proof. Eq. (4.8) is easily proven by means of the Sweedler-Takeuchi property (2.2) and
(3.9). Eq. (4.9) follows from the fact that the coproduct of U is an Ae-module homomor-
phism. �



18 NIELS KOWALZIG AND ULRICH KRÄHMER

Similar as for the cap product with a fixed cochain, we introduce a new notation for the
operator ϕ 
i �, where ϕ P CppU,Aq, in order to keep the presentation of our computations
below as compact as possible: whenever p ¤ n and for i � 1, . . . , n� |p|, we define

Dith

ϕ : CnpU,Mq Ñ Cn�|p|pU,Mq, pm,xq ÞÑ ϕ 
i pm,xq.

In particular, we will make frequent use of the short hand notation

D1
ϕ :� Dpn�|p|qth

ϕ .

For example, in this notation we have:

Lemma 4.9. For any ϕ P CppU,Aq, for 0 ¤ p   n we have on CnpU,Mq

d0 D
1
ϕ � ιϕ, (4.10)

diD
1
ϕ � D1

ϕ di�|p|, for i � 2, . . . , n� |p|, (4.11)

sj D
1
ϕ � D1

ϕ sj�|p|, for j � 1, . . . , n� |p|. (4.12)

Proof. Using (2.15), (4.3), and with Dϕ as in (3.6), Eq. (4.10) follows directly from the
identity

εDϕ � ϕ,

which we prove now: one verifies in a straightforward manner that

∆̄ : UbAopp Ñ pUbAoppq� bA �U , pu1, . . . , upq ÞÑ pu1
p1q, . . . , u

p
p1qq bA u

1
p2q � � �u

p
p2q

defines a right U -comodule structure on pUbAoppq�. Using source and target maps from
(2.13) and denoting by mU the multiplication in U , we can then write

εDϕ � εmU

�
sϕb id

�
∆̄ � εmU

�
sϕb sε

�
∆̄ � pϕb εq∆̄ � ϕmUoppidb tεq∆̄ � ϕ,

which holds by A-linearity of a bialgebroid counit, the right A-linearity of ϕ and the fact
that ∆̄ is a coaction.

Eqs. (4.11) and (4.12) follow by straightforward computation, using the fact that the
involved face and degeneracy maps can be written as

dipm,xq � µ 
n�i pm,xq,
sjpm,xq � pε1Uq 
n�|i| pm,xq,

for i, j � 1, . . . , n� 1,

where pm,xq P C
pU,Mq, and then applying the properties (4.7). �

4.3. The comp algebra C


M pUq. When U is a left Hopf algebroid (not just a bialgebroid
as before) and M is a module-comodule, the para-cyclic structure on C
pU,Mq given in
Proposition 2.5 relates the products 
i to each other:

Lemma 4.10. For any ϕ P CppU,Aq, we have for 0 ¤ p ¤ n and pm,xq P C
pU,Mq

ϕ 
i
�
tpm,xq

�
�

#
t
�
ϕ 
i�1 pm,xq

�
for i � 1, . . . , n� p,

t
�
ιϕ s�1pm,xq

�
for i � n� |p|.

(4.13)

Proof. The case for 1 ¤ i ¤ n� p is a simple computation using (2.7) and (2.12):

ϕ 
i
�
tpm,u1, . . . , unq

�
�
�
mp0qu

1
�, u

2
�, . . . , u

i
�,Dϕpu

i�1
� , . . . , ui�pq, ui�p�1

� , . . . , un�, u
n
� � � �u

1
�mp�1q

�
�
�
mp0qu

1
�, u

2
�, . . . ,

�
Dϕpu

i�1, . . . , ui�pq
�
�
, . . .

. . . , un�, u
n
� � � �

�
Dϕpu

i�1, . . . , ui�pq
�
�
� � �u1

�mp�1q

�
� t

�
ϕ 
i�1 pm,u

1, . . . , unq
�
.

As for the case i � n � |p|, one first observes that no aYD condition (i.e., compatibility
of U -action and U -coaction) is needed for the explicit computation, which we leave to the
reader. �
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The comp module structure of C
pU,Mq does not descend, for general module-
comodulesM over left Hopf algebroids, to the universal cyclic quotientCcyc



pU,Mq. Since

we will have to work from some point on on the latter, we define:

Definition 4.11. If U is a left Hopf algebroid and M is a module-comodule, we define

C


M pUq :�
 
ϕ P C
pU,Aq | Dith

ϕ pimpid� Tqq� impid� Tq@i
(
.

Obviously, one has C


M pUq � C
pU,Aq whenever M is an SaYD module. Observe
furthermore that the middle relation in (4.7) immediately implies:

Lemma 4.12. C


M pUq�C

pU,Aq is a comp subalgebra.

In particular, it is a DG subalgebra, so it makes sense to talk about its cohomology:

Definition 4.13. The cohomology of C


M pUq will be denoted by H


M pUq.

Applying Eq. (4.13) repeatedly, one obtains that onCcyc


pU,Mq all operators Dith

ϕ can be
expressed in terms of D1

ϕ and the cyclic operator. More precisely, Lemma 4.6 respectively
Eq. (4.9) imply:

Lemma 4.14. If M is a module-comodule over a left Hopf algebroid U , then for any
ϕ P CpM pUq and ψ P CqM pUq we have

Dith

ϕ � tn�|p|�iD1
ϕt
i�p, i � 1, . . . , n� |p|, (4.14)

and
tn�|p�q|�iD1

ϕt
i�pιψ � ιψt

n�|p|�iD1
ϕt
i�p (4.15)

as operators on Ccyc


pU,Mq.

We conclude this subsection with another technical lemma:

Lemma 4.15. LetM be a module-comodule over a left Hopf algebroid U and ϕ P CpM pUq
as well as ψ P CqM pUq.

(i ) If ψ is a cocycle, then the equation

d1D
1
ψ �

q̧

i�1

p�1qi�qD1
ψdi � p�1qqd1tD

1
ψt
n (4.16)

holds for 0   q   n on Ccyc
n pU,Mq.

(ii ) For 0 ¤ p ¤ n, the identities

D1
ϕ � t ιϕ s�1 t

n (4.17)

and
ιϕ s�1 � tn�|p|D1

ϕ t (4.18)
hold on Ccyc



pU,Mq.

Proof. All statements are either obvious or follow by a straightforward computation. For
example, (4.16) is proven with the help of (4.14) and (3.4). Eqs. (4.17) and (4.18) follow
directly from (4.13) as we have id� T � 0 on Ccyc



pU,Mq. �

4.4. The Lie derivative. Now we define a Hopf algebroid generalisation of the Lie de-
rivative that will subsequently be shown to define a Gerstenhaber module structure on
HM



pUq. Throughout, U is a left Hopf algebroid and M is a module-comodule.

Definition 4.16. For ϕ P CppU,Aq, we define

Lϕ : CnpU,Mq Ñ Cn�|p|pU,Mq

in degree n with p   n� 1 to be

Lϕ :�

n�|p|¸
i�1

p�1qθ
n,p
i tn�|p|�iD1

ϕ t
i�p �

p̧

i�1

p�1qξ
n,p
i tn�|p| D1

ϕ t
i, (4.19)
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where the signs are given by

θn,pi :� |p|pn� |i|q, ξn,pi :� n|i| � |p|.

In case p � n� 1, we set

Lϕ :� p�1q|p|ιϕ B,

and for p ¡ n� 1, we define Lϕ :� 0.

We will speak of the first block in the Lie derivative as of the untwisted part and of the
second block as of the twisted part, a terminology which will become vivid in §4.5.

Clearly, Lϕ descends for ϕ P C


M pUq to a well-defined operator on Ccyc


pU,Mq. In

particular, this applies to the distinguished element µ from (3.8). For this specific cochain,
we obtain the following counterpart to the second half of Lemma 3.13:

Lemma 4.17. The differential of Ccyc


pU,Mq is given by

b � �Lµ. (4.20)

Proof. Using (3.9), one obtains D1
µ � d1 and correspondingly for the Lie derivative by the

relations of a para-cyclic module:

Lµ �
n�1̧

i�1

p�1qn�i�1tn�1�i d1 t
i�2 �

2̧

i�1

p�1qnpi�1q�1tn�1 d1 t
i,

�
n�1̧

i�1

p�1qn�i�1dn�i t
n�1 � dn t

n � p�1qn�1dnt
n�1

�
n�1̧

j�1

p�1qj�1dj t
n�1 � d0 t

n�1 � p�1qn�1dnt
n�1 � �b

on the quotient Ccyc


pU,Mq. �

4.5. The case of 1-cochains. For the reader’s convenience, we treat some special cases in
detail that will help understanding the general formula for Lϕ and how it has been derived.

First of all, consider a 1-cochain ϕ P C1pU,Aq. By extending scalars from k to the ring
k[r] of formal power series in an indeterminate r, we define for any k[r]-linear map

D : CnpU,Mq[r]Ñ CnpU,Mq[r]

the operators
tD :� D t, TD :� ptDqn�1.

We apply this with D being the exponential series

expprϕq :�
¸
i¥0

1

i!
prD1

ϕq
i.

Thinking of a 1-cocycle ϕ as of a generalised vector field, of expprϕq as of its flow, and of

Ωϕ :� id� Texpprϕq

as of a curvature along an integral curve motivates the fact that a short computation yields

Lϕ � d
drΩϕ|r�0

for n ¡ 0, which in this case is explicitly given by

Lϕ �
ņ

i�0

tn�iD1
ϕ t

i�1 �
ņ

i�1

tn�iD1
ϕ t

i�1 � tn D1
ϕ t.
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Next, let us study Lϕ in greater detail on Ccyc


pU,Mq. Note first that, when descending

to the quotient Ccyc
n pU,Mq, the untwisted part in (4.19) can be written as follows:

n�|p|¸
i�1

p�1qθ
n,p
i tn�|p|�iD1

ϕ t
i�ppm,xq �

n�|p|¸
i�1

p�1qθ
n,p
i Dith

ϕ pm,xq

�

n�|p|¸
i�1

p�1qθ
n,p
i ϕ 
i pm,xq.

If we now introduce the operator

Eϕ : U Ñ U, u ÞÑ ϕpu�q � u�,

then Lϕ can be further rewritten as follows:

Proposition 4.18. For every module-comodule M over a left Hopf algebroid U , the Lie
derivative Lϕ for ϕ P C1

M pUq assumes on Ccyc
n pU,Mq the form

Lϕpm,xq �
ņ

i�1

�
m,u1, . . . ,Dϕpu

iq, . . . , un
�

�
�
mp0q, u

1
�, . . . , u

n�1
� , ϕpun� � � �u

1
�mp�1qq � u

n
�

�
.

(4.21)

This can be alternatively written as

Lϕpm,xq �
�
ϕpmp�1qqmp0q, u

1, . . . , un
�
�

ņ

i�1

�
m,u1, . . . ,Dϕpu

iq, . . . , un
�

�
ņ

j�1

�
m,u1, . . . ,Eϕpu

jq, . . . , un
�

�
ņ

k�1

�
mp0q, u

1
�, . . . , u

k�1
� , δϕpuk�, u

k�1
� � � �u1

�mp�1qq � u
k
�, u

k�1, . . . , un
�
.

(4.22)

Proof. The explicit form for the untwisted part of L, i.e., the first summand in (4.21) was
explained above, whereas the twisted part follows by a straightforward computation using
the powers of t in Lemma 2.8. Eq. (4.22) follows by using Eq. (3.4) for p � 1 as well as
(2.4) and (2.11). �

Example 4.19. In degree n � 1, the above reads

Lϕpm,uq �
�
ϕpmp�1qqmp0q, u

�
�
�
m,ϕpup1qq � up2q

�
�
�
m,ϕpu�q � u�

�
�
�
mp0q, δϕpu�,mp�1qq � u�

�
,

and in degree n � 2 it becomes

Lϕpm,u, vq �
�
ϕpmp�1qqmp0q, u, v

�
�
�
m,ϕpup1qq � up2q, v

�
�
�
m,u, ϕpvp1qq � vp2q

�
�
�
m,ϕpu�q � u�, v

�
�
�
m,u, ϕpv�q � v�

�
�
�
mp0q, δϕpu�,mp�1qq � u�, v

�
�
�
mp0q, u�, δϕpv�, u�mp�1qq � v�

�
.

Example 4.20. In case ϕ is a 1-cocycle, one has the cocycle condition

ϕpuvq � ε
�
ϕpvq � u

�
� ϕ

�
εpvq � u

�
, (4.23)

which implies ϕp1q � 0. The Lie derivative in degree zero then reads, as before

Lϕpmq � ϕpmp�1qqmp0q � ϕpmp�1qq �mp0q,
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whereas in degree n reduces to

Lϕpm,xq �
�
ϕpmp�1qqmp0q, u

1, . . . , un
�

�
ņ

i�1

�
m,u1, . . . ,Dϕpu

iq, . . . , un
�

�
ņ

j�1

�
m,u1, . . . ,Eϕpu

jq, . . . , un
�
.

(4.24)

In particular, in degree one this reads

Lϕpm,uq �
�
ϕpmp�1qqmp0q, u

�
�
�
m,ϕpup1qq � up2q

�
�
�
m,ϕpu�q � u�

�
.

Observe that in (4.24) the single summands where the Eϕ appear are not well-defined but
only their sum is (a similar comment applies to (4.22)). To exemplify this, consider in
degree 2 the map

pu, vq ÞÑ
�
Eϕpuq, v

�
�
�
u,Eϕpvq

�
.

Using (4.23) and (2.12), one has

pa � u, vq ÞÑ
�
Eϕpuq, v � a

�
�
�
u, v � ϕpspaqq

�
�
�
a � u,Eϕpvq

�
,

and it is easy to see that pu, v � aq has the same image.

4.6. The case of an SaYD module. In the case of stable anti Yetter-Drinfel’d modules,
one can find an expression for Lϕ on Ccyc



pU,Mq analogous to the one given in (4.21) for

the special case of 1-cochains. This is achieved by the following result:

Proposition 4.21. If M is an SaYD module and ϕ P CpM pUq, one has on Ccyc


pU,Mq

Lϕpm,xq �
n�|p|¸
i�1

p�1qθ
n,p
i

�
m,u1, . . . ,Dϕpu

i, . . . , ui�|p|q, . . . , un
�

�

|p|̧

i�0

p�1q
ξ
n,p
i�1

�
mp0qu

1
�p2q � � �u

i
�p2q, u

i�1
� , . . . , un�p�i� ,

ϕpu
n�|p|�i�1
� , . . . , un�, u

n
� � � �u

1
�mp�1q, u

1
�p1q, . . . , u

i
�p1qq � u

n�|p|�i
�

�
.

Proof. Straightforward computation using Lemma 2.8 as well as Schauenburg’s relations
(2.4)–(2.12), the fact that the two Ae-module structures originating from the U -action and
U -coaction coincide for SaYD modules, and the Sweedler-Takeuchi condition (2.14) for
comodules. �

Example 4.22. For p � 2 and n � 3, this reads:

Lϕpm,u, v, wq � �
�
m,Dϕpu, vq, w

�
�
�
m,u,Dϕpv, wq

�
�
�
mp0q, u�, ϕpw�, w�v�u�mp�1qq � v�

�
�
�
mp0qu�p2q, v�, ϕpw�v�u�mp�1q, u�p1qq � w�

�
.

4.7. The DG Lie algebra module structure. We now prove that the Lie derivative L
defines a DG Lie algebra representation of pC


M pUqr1s, t., .uq:

Theorem 4.23. For any two cochains ϕ P CpM pUq and ψ P CqM pUq, we have on the
quotient Ccyc



pU,Mq

rLϕ,Lψs � Ltϕ,ψu, (4.25)

where the bracket on the right hand side is the Gerstenhaber bracket (3.10). Furthermore,
we have

rb,Lϕs � Lδϕ � 0. (4.26)
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Proof. The proof relies on Eqs. (4.12), (4.18), and (4.14): assume that 1 ¤ q ¤ p and
p� q ¤ n� 1, as the proof for zero cochains and the case q � 0, p � n� 1 can be carried
out by similar, but easier computations. Recall that throughout we consider the operators
induced on Ccyc



pU,Mq and hence may identify T and id.

Using (4.19), we explicitly compute the expressions for LϕLψ and LψLϕ. The under-
braced terms will afterwards be computed and compared one by one. One has

LϕLψ �
n�|p|�|q|¸

i�1

n�|q|¸
j�1

p�1qθ
n�|q|,p
i �θ

n,q
j tn�|p|�|q|�iD1

ϕt
n�|q|�p�i�jD1

ψt
j�q

loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon
p1q

�

p̧

i�1

n�|q|¸
j�1

p�1qξ
n�|q|,p
i �θ

n,q
j tn�|p|�|q|D1

ϕt
n�|q|�i�jD1

ψt
j�q

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon
p2q

�

n�|p|�|q|¸
i�1

q̧

j�1

p�1qθ
n�|q|,p
i �ξ

n,q
j tn�|p|�|q|�iD1

ϕt
n�|q|�p�iD1

ψt
j

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon
p3q

�

p̧

i�1

q̧

j�1

p�1qξ
n�|q|,p
i �ξ

n,q
j tn�|p|�|q|D1

ϕt
n�|q|�iD1

ψt
j

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon
p4q

,

along with

�p�1q|p||q|LψLϕ �
n�|p|�|q|¸
j�1

n�|p|¸
i�1

p�1qθ
n,q
j �θ

n,p
i �1tn�|q|�|p|�jD1

ψt
n�|p|�q�j�iD1

ϕt
i�p

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon
p5q

�

q̧

j�1

n�|p|¸
i�1

p�1qξ
n�|p|,q
j �θ

n�|q|,p
i �1tn�|q|�|p|D1

ψt
n�|p|�j�iD1

ϕt
i�p

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon
p6q

�

n�|q|�|p|¸
j�1

p̧

i�1

p�1qθ
n,q
j �ξ

n,p
i �1tn�|q|�|p|�jD1

ψt
n�|p|�q�jD1

ϕt
i

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon
p7q

�

q̧

j�1

p̧

i�1

p�1qξ
n�|p|,q
j �ξ

n,p
i �1�|p||q|tn�|q|�|p|D1

ψt
n�|p|�jD1

ϕt
i

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon
p8q

.

Furthermore, it follows from (4.7) and (4.15) that, for i � 1, . . . , p, we have the identities

D1
ϕ�iψ � D1

ϕD
kth

ψ � D1
ϕt
n�|q|�kD1

ψt
k�q, where k � n� |p| � |q|, . . . , n� |q|.
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Hence

Lϕ�̄ψ � p�1q|p||q|
n�|p|�|q|¸

i�1

n�|q|¸
k�n�|p|�|q|

p�1qθ
n,|p�q|
i �|q||k�n�|p�q||tn�|p|�|q|�iD1

ϕD
kth
ψ ti�|p�q|

� p�1q|p||q|
|p�q|¸
i�1

n�|q|¸
k�n�|p|�|q|

p�1qξ
n,|p�q|
i �|q||k�n�|p�q||tn�|p|�|q|D1

ϕD
kth
ψ ti�|p�q|

�

n�|p|�|q|¸
i�1

n�|q|¸
k�n�|p|�|q|

p�1qθ
n,p
i �θ

n,q
i �|q|p|k|�nqtn�|p|�|q|�iD1

ϕt
n�|q|�kD1

ψt
k�q�i�|p�q|

�

|p�q|¸
i�1

n�|q|¸
k�n�|p|�|q|

p�1qξ
n,|p�q|
i �|q|p|k|�nqtn�|p|�|q|D1

ϕt
n�|q|�kD1

ψt
k�q�i

�

n�|p|�|q|¸
i�1

|p|�i¸
l�i

p�1qθ
n,p
i �θ

n,q
i �|q|pl�i�|p|qtn�|p|�|q|�iD1

ϕt
|p|�i�ltn�|q|�1D1

ψt
l�q

looooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooon
p9q

�

|p�q|¸
i�1

n�1̧

l�n�|p|�1

p�1qξ
n,|p�q|
i �θ

n,q
l tn�|p|�|q|D1

ϕt
n�|l|D1

ψt
l�i

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon
p10q

,

where we substituted l :� k � n� |p| � |q| � i in the first summand of the last equation,
l :� k � q in the second summand, and used the fact that we descend to the quotient
Ccyc


pU,Mq. Now it is easy to see that

p9q �

n�|p|�|q|¸
i�1

|p|�i¸
l�i

p�1qθ
n,p
i �θn,ql �|q||p|Dith

ϕ Dlth

ψ .

Likewise,

�p�1q|p||q|Lψ�̄ϕ �
n�|q|�|p|¸
j�1

|q|�i¸
l�i

p�1qθ
n,q
j �θ

n,p
l

�1Djthψ Dlthϕ
loooooooooooooooooooooooomoooooooooooooooooooooooon

p11q

�

|q�p|¸
j�1

n�1̧

l�n�|q|�1

p�1qξ
n,|q�p|
j �θ

n,p
l

�|p||q|�1tn�|q|�|p|D1
ψt
n�|l|D1

ϕt
l�j

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon
p12q

.

We can now write on the quotient Ccyc


pU,Mq

p1q �

n�|p|�|q|¸
i�1

n�|q|¸
j�1

p�1qθ
n�|q|,p
i �θ

n,q
j Dithϕ Djthψ

�

n�p�|q|¸
j�1

n�|p|�|q|¸
i�j�1

p�1qθ
n�|q|,p
i �θ

n,q
j Dithϕ Djthψ

looooooooooooooooooooooooooomooooooooooooooooooooooooooon
p13q

�

n�|q|¸
j�p�1

j�p̧

i�1

p�1qθ
n�|q|,p
i �θ

n,q
j Dithϕ Djthψ

looooooooooooooooooooooomooooooooooooooooooooooon
p14q

�

n�|p|�|q|¸
i�1

|p|�i¸
l�i

p�1qθ
n�|q|,p
i �θ

n,q
l Dithϕ Dlthψ

looooooooooooooooooooooooomooooooooooooooooooooooooon
p15q
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and

p5q �

n�|q|�|p|¸
j�1

n�|p|¸
i�1

p�1qθ
n,q
j �θ

n,p
i �1Djthψ Dithϕ

�

n�q�|p|¸
i�1

n�|q|�|p|¸
j�i�1

p�1qθ
n,q
j �θ

n,p
i �1Djthψ Dithϕ

looooooooooooooooooooooooooomooooooooooooooooooooooooooon
p16q

�

n�|p|¸
i�q�1

i�q̧

j�1

p�1qθ
n,q
j �θ

n,p
i �1Djthψ Dithϕ

loooooooooooooooooooooomoooooooooooooooooooooon
p17q

�

n�|q|�|p|¸
j�1

|q|�j¸
l�j

p�1qθ
n,q
j �θ

n,p
l

�1Djthψ Dlthϕ

looooooooooooooooooooooooomooooooooooooooooooooooooon
p18q

.

We directly see that p9q � p15q, along with p11q � p18q. Furthermore, by a simple
observation one sees that

p13q �

n�q�|p|¸
j�1

n�|q|�|p|¸
i�j�1

p�1qθ
n�|q|,p
i �θ

n,q
j Djthψ Dpi�|q|qth

ϕ

�

n�q�|p|¸
j�1

n�|p|¸
k�j�q

p�1q
θ
n�|q|,p
k�|q|

�θ
n,q
j Djthψ Dkthϕ �: p19q,

where in the second step we substituted k :� i� |q|. Reordering the double sums in p19q,
n�q�|p|¸
j�1

n�|p|¸
k�j�q

�

n�|p|¸
k�q�1

k�q̧

j�1

,

and by θn�|q|,pk�|q| � θn,pk , we conclude that p13q � p19q � �p17q. Analogously, one proves
that p14q � p16q.

After a tedious, but straightforward re-ordering of summands one furthermore has

p2q �
p�2̧

i�0

p�|q|�i¸
k�q�1

p�1qξ
n,p
k�i

�|q||i|tn�|p|�|q|D1
ϕt
iD1

ψt
k

�

p̧

i�1

i�1̧

k�0

p�1qξ
n,p
k�i

�|q||i|tn�|p|�|q|D1
ϕt
iD1

ψt
n�|k|

�

n�|q|¸
i�p�1

i�2̧

k�i�p�1

p�1q
ξ
n,p
|k|�i

�|q||i|
tn�|p|�|q|D1

ϕt
iD1

ψt
n�k,

whereas

p10q �

|p|̧

i�1

p�|q|�i¸
k�0

p�1qξ
n,p
k�i

�|q||i|tn�|p|�|q|D1
ϕt
iD1

ψt
k �

p�|q|¸
k�1

p�1qξ
n,p
k tn�|p|�|q|D1

ϕD
1
ψt
k

�

|p|̧

i�2

i�2̧

k�0

p�1q
ξ
n,p
|k|�i

�|q||i|
tn�|p|�|q|D1

ϕt
iD1

ψt
n�k.

From these expressions one obtains after equally tedious but straightforward computations

p2q � p10q �

|p|̧

i�0

q̧

k�1

p�1q
ξ
n,p
k�i

�|q||i|
tn�|p|�|q|D1

ϕt
iD1
ψt
k

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
p20q

�

n�|q|¸
i�p

i�1̧

k�i�p

p�1q
ξ
n,p
k�i

�|q||i|
tn�|p|�|q|D1

ϕt
iD1
ψt
n�|k|

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon
p21q

,

and one verifies directly that p20q � p4q.
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So far all terms in the expressions for LϕLψ and Lϕ�̄ψ cancelled, except

p3q �

n�|p|�|q|¸
i�1

q̧

j�1

p�1qθ
n�|q|,p
i �ξ

n,q
j tn�|p|�|q|�iD1

ϕt
n�p�|q|�iD1

ψt
j ,

p21q �

n�|q|¸
i�p

i�1̧

k�i�p

p�1qξ
n,p
k�i

�|q||i|tn�|p|�|q|D1
ϕt
iD1

ψt
n�|k|.

Repeating the same type of arguments that led to p21q analogously cancels all terms in
�p�1q|p||q|LψLϕ and �p�1q|p||q|Lψ�̄ϕ, except

p7q �

n�|q|�|p|¸
j�1

p̧

i�1

p�1qθ
n,q
j �ξ

n,p
i �1tn�|q|�|p|�jD1

ψt
n�q�|p|�jD1

ϕt
i,

p22q :�

n�|p|¸
i�q

i�1̧

k�i�q

p�1qξ
n,q
k�i

�|p|p|i|�|q|qtn�|q|�|p|D1
ψt
iD1

ϕt
n�|k|.

Using (4.15), (4.18), and (4.12), and the relations of a cyclic k-module we see that

p3q �

n�|p|�|q|¸
i�1

q̧

j�1

p�1qθ
n�|q|,p
i �ξ

n,q
j tn�|p|�|q|�iD1

ϕt
p�iιψtsnt

j�1

�

n�|p|�|q|¸
i�1

q̧

j�1

p�1qθ
n�|q|,p
i �ξ

n,q
j ιψt

n�|p|�|i|D1
ϕt

|p|�is0t
j

�

n�|p|�|q|¸
i�1

q̧

j�1

p�1qθ
n�|q|,p
i �ξ

n,q
j ιψtsn�p�1t

n�|p|�|i|D1
ϕt

|p|�i�j

�

n�|p|�|q|¸
i�1

q̧

j�1

p�1qθ
n�|q|,p
i �ξ

n,q
j tn�|p|�|q|D1

ψt
n�|p|�|i|D1

ϕt
|p|�i�j �: p23q.

Substitution of l :� n� |p| � |i| and subsequently of k :� l � j produces

p23q �

n�|p|¸
l�q

q̧

j�1

p�1qξ
n,q
j �|p|p|l|�|q|qtn�|p|�|q|D1

ψt
lD1
ϕt
n�|l|�j

�

n�|p|¸
l�q

l�1̧

k�l�q

p�1qξ
n,q
l�k

�|p|p|l|�|q|qtn�|p|�|q|D1
ψt
lD1
ϕt
n�|k|,

and this is directly seen to be p22q. Likewise, one shows that p7q � p21q.
For Eq. (4.26), simply use (4.20) to express b, then apply (4.25) to the case where

ϕ :� µ and finally make use of (3.11):

tb,Lϕu � �tLµ,Lϕu � �Ltµ,ϕu � �Lδϕ. �

4.8. The Gerstenhaber module HM


pUq. By the identities (4.6) and (4.26), both opera-

tors ιϕ and Lϕ descend to well defined operators on the Hochschild homology HM


pUq,

provided that ϕ is a cocycle. In this case, the following theorem together with Proposi-
tion 4.23 proves that ι and L turn HM



pUq into a module over the Gerstenhaber algebra

H


M pUq, cf. Def. 1.1 (ii):

Theorem 4.24. If M is a module-comodule over a left Hopf algebroid U , then for any two
cocycles ϕ P CpM pUq, ψ P CqM pUq, the induced maps

Lϕ : HM


pUq Ñ HM


�|p|pUq,

ιψ : HM


pUq Ñ HM


�qpUq

satisfy
rιψ,Lϕs � ιtψ,ϕu. (4.27)
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Proof. Throughout we use relations that we have shown above to hold for operators on
Ccyc


pU,Mq, but as we now consider the induced operators on homology, we will also as-

sume tacitly that the operators only act on cycles and that we compute modulo boundaries.
Assume p� q ¤ n� 1 (otherwise both sides in (4.27) are zero). Without restriction we

may assume that 0   q   p, the case of p � q and that of zero cochains being skipped as
the proof is similar, but somewhat simpler. We now have

ιψLϕ �
n�|p|�q¸
i�1

p�1qθ
n,p
i ιψt

n�|p|�iD1
ϕt
i�p �

n�|p|¸
i�n�|p|�|q|

p�1qθ
n,p
i ιψt

n�|p|�iD1
ϕt
i�p

�
p̧

i�1

p�1qξ
n,p
i ιψt

n�|p|D1
ϕt
i

�

n�|p�q|¸
i�1

p�1qθ
n,p
i ιψt

n�|p|�iD1
ϕt
i�p

looooooooooooooooooooooomooooooooooooooooooooooon
p1q

�
q̧

k�1

p�1q|p|p|q|�|k|qιψ�kϕ
loooooooooooooooomoooooooooooooooon

p2q

�
p̧

i�1

p�1qξ
n,p
i ιψιϕs�1t

i�1

loooooooooooooooomoooooooooooooooon
p3q

,

using (3.7) and (4.14) for the second term and (4.18) for the third term. Observe that
already

p2q � ιψ�̄ϕ.

On the other hand, we see that

�p�1qq|p|Lϕιψ �
n�q�|p|¸
i�1

p�1qθ
n,p
i �1tn�q�|p|�iD1

ϕt
i�pιψ

looooooooooooooooooooooooooomooooooooooooooooooooooooooon
p4q

�
p̧

i�1

p�1qξ
n�q,|q||p|
i tn�q�|p|D1

ϕt
iιψ

looooooooooooooooooooooomooooooooooooooooooooooon
p5q

.

By Equation (4.9), one immediately observes that p1q � �p4q, hence we are left to prove
that

p3q � p5q � �p�1q|q||p|ιϕ�̄ψ � �
p̧

i�1

p�1q|q||i|ιϕ�iψ, (4.28)

or, in our former terminology, only the “twisted” parts in the Lie derivative still matter.
By (4.18), we see that

p5q �
p̧

i�1

p�1qξ
n�q,|q||p|
i ιϕs�1t

i�1ιψ �
p�1̧

i�1

p�1qξ
n�q,|q||p|
i ιϕs�1t

i�1ιψ
loooooooooooooooooooomoooooooooooooooooooon

p6q

�p�1qξ
n�q,|q||p|
p ιϕs�1t

p�1ιψloooooooooooooooooomoooooooooooooooooon
p7q

,

and we continue with

p6q �
p�1̧

i�1

p�1qξ
n�q,|q||p|
i ιϕs�1t

i�1d0D
1
ψ �

p�1̧

i�1

p�1qξ
n�q,|q||p|
i ιϕdis�1t

i�1D1
ψ

�
p�1̧

i�1

n�q�2¸
j�0
j�i

p�1qξ
n�q,|q||p|
i �|j�i|ιϕdjs�1t

i�1D1
ψ

�
p�1̧

i�1

n�|q|¸
j�1
j�i

p�1qξ
|n|�q,|q||p|
i �jιϕdjs�1t

i�1D1
ψ

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
p8q

�
p�1̧

i�1

p�1qξ
|n|�q,|q||p|
i ιϕt

i�1D1
ψ �

p�1̧

i�1

p�1q
ξ
|n|�q,|q||p|
|i|

�1
ιϕt

iD1
ψ

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon
p9q

,

where in the third line we used (4.6) together with the fact that ϕ is a cocycle, and that we
deal here with the induced maps on HM



pUq, i.e., bιϕ � 0 � ιϕb. Observe now that

p9q � p�1q|q||p|�1ιϕD
1
ψ � p�1qn|p|ιϕt

|p|D1
ψ � p�1q|q||p|�1ιϕ�pψlooooooooooomooooooooooon

p10q

� p�1qn|p|ιϕt
|p|D1

ψloooooooooomoooooooooon
p11q

.
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Furthermore,

p8q �
p�3̧

i�0

n�|q|¸
j�1

p�1q
ξ
n�q,|q||p|
|i|

�|j|
ιϕs�1t

idjD
1
ψ

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
p12q

�

n�|q|�|p|¸
j�1

p�1q
ξ
|n|,q
|p|

�j
ιϕs�1t

p�2djD
1
ψ

looooooooooooooooooooooooomooooooooooooooooooooooooon
p13q

,

where by (4.16) and (4.11) we have

p12q �
p�3̧

i�0

ņ

j�q�1

p�1q
ξ
n�q,qp
|i|

�|j�p|
ιϕs�1t

iD1
ψdj �

p�3̧

i�0

q̧

j�1

p�1q
ξ
n�q,qp
|i|

�|j�p|
ιϕs�1t

iD1
ψdj

�
p�3̧

i�0

p�1qq
ξ
n�q,|q||p|
|i|

�|q|
ιϕs�1t

id1tD
1
ψt
n

�
p�3̧

i�0

p�1q
ξ
n�q,qp
|i|

�p
ιϕs�1t

iD1
ψd0

looooooooooooooooooooomooooooooooooooooooooon
p14q

�
p�3̧

i�0

p�1q
ξ
n�q,qp
|i|

�|p|
ιϕs�1t

id1tD
1
ψt
n

loooooooooooooooooooooooomoooooooooooooooooooooooon
p15q

,

where in the second line we used that the representatives in HM


pUq are cycles. By a

similar argument we get, still with (4.16),

p13q �

n�|q|�|p|¸
j�2

p�1q
ξ
|n|,q
|p|

�j
ιϕs�1t

p�2djD
1
ψ � p�1q|n|pιϕs�1t

p�2d1tD
1
ψt
n

�
q̧

j�1

p�1q
ξ
|n|,|j|
|p| ιϕs�1t

p�2D1
ψdj

� p�1q|n|pιϕs�1t
p�2d1tD

1
ψt
n

loooooooooooooooooomoooooooooooooooooon
p16q

�
ņ

j�n�|p|�1

p�1q
ξ
|n|,j
|p| ιϕs�1t

p�2D1
ψdj

loooooooooooooooooooooooomoooooooooooooooooooooooon
p17q

� p�1q|n|p�1ιϕs�1t
p�2D1

ψd0loooooooooooooooooomoooooooooooooooooon
p18q

.

We now see that
p14q � p18q � p15q � p16q

�
p�2̧

i�0

p�1q
ξ
n�q,qp
|i|

�p
ιϕs�1t

iD1
ψd0 �

p�2̧

i�0

p�1q
ξ
n�q,qp
|i|

�|p|
ιϕs�1t

id1tD
1
ψt
n

�
p�2̧

i�0

p�1q
ξ
n�q,qp
|i|

�p
ιϕs�1t

idn�|q|D
1
ψt
n �

p�2̧

i�0

p�1q
ξ
n�q,qp
|i|

�|p|
ιϕs�1t

id1tD
1
ψt
n

�
p�2̧

i�0

p�1q
ξ
n�q,qp
|i|

�p
ιϕs�1t

ipd0 � d1qtD
1
ψt
n �: p19q.

Let us come back to the other half and compute (3): to this end, consider first

ιψιϕpm,u
1, . . . , unq

�
�
m,u1, . . . , ψpun�|p�q|, . . . , ϕpun�|p|, . . . , unq � un�pq � un�p�q

�

�
�
m,u1, . . . , ε

�
ϕpun�|p|, . . . , unq � Dψpu

n�|p�q|, . . . , un�pq
�
� un�p�q

�

�
�
m,u1, . . . , ϕpDψpu

n�|p�q|, . . . , un�pqun�|p|, . . . , unq � un�p�q
�

�
n�1̧

i�n�|p|

p�1qi�n�p
�
m,u1, . . . , ϕ

�
Dψpu

n�|p�q|, . . . , un�pq, . . . , uiui�1, . . . , un
�
� un�p�q

	

� p�1qp
�
m,u1, . . . , ϕ

�
Dψpu

n�|p�q|, . . . , un�pq, . . . , εpunq � un�1
�
� un�p�q

	
,

which is true since ϕ is a cocycle; that is, with the help of (4.14),

ιψιϕ �
p̧

i�0

p�1qi�pιϕdit
pD1

ψt
n�|p|.
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Hence, by (4.11) and (4.12),

p3q �
p̧

j�1

p�1q
ξ
n,p
j ιψιϕs�1t

j�1

�
p̧

j�1

p̧

i�0

p�1q
ξ
n,i
j ιϕdis�1t

|p|D1
ψt
n�|p|�j

�
p�1̧

j�1

p̧

i�0

p�1q
ξ
n,i
j ιϕdis�1t

|p|D1
ψt
n�|p|�j

looooooooooooooooooooooooooomooooooooooooooooooooooooooon
p20q

�
p̧

i�0

p�1qξ
n,i
p ιϕdis�1t

|p|D1
ψ

looooooooooooooooomooooooooooooooooon
p21q

,

where we continue with

p21q � p�1qn|p|�1ιϕt
|p|D1

ψ�

n�|q|¸
k�n�|q|�|p|�1

p�1q|n|p�|q|�kιϕs�1t
p�2dkD

1
ψ�p�1q|n||p|ιϕdps�1t

|p|D1
ψ ,

and these three terms are precisely, by (4.11) and (4.10) again, the terms �p11q, �p16q,
and �p7q, respectively. We furthermore have

p20q �
p�1̧

j�1

p̧

i�1

p�1q
ξ
n,i
j ιϕdis�1t

p�1D1
ψt
n�|p|�j

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
p22q

�
p�1̧

j�1

p�1qn|j|�1ιϕt
p�1D1

ψt
n�|p|�j

loooooooooooooooooooooomoooooooooooooooooooooon
p23q

,

where

p23q �
p�1̧

j�2

p�1qn|j|�1ιϕt
p�1D1

ψt
n�|p|�j

loooooooooooooooooooooomoooooooooooooooooooooon
p24q

� ιϕt
p�1D1

ψt
n�p�2

loooooooooomoooooooooon
p25q

,

and we observe that p25q � ιϕ�1ψ .
For better orientation let us state were we are at this point: we are left with the equations

p19q �
p�1̧

i�1

p�1qξ
n�q,qp
i �pιϕpdi � di�1qs�1t

iD1
ψt
n, (4.29)

p22q �
p�1̧

j�1

p̧

i�1

p�1qξ
n,i
j ιϕdis�1t

p�1D1
ψt
n�|p|�j , (4.30)

p24q �
p�1̧

j�2

p�1qn|j|�1ιϕt
p�1D1

ψt
n�|p|�j , (4.31)

and we are also missing the terms, cf. (4.28),

�
p�1̧

i�2

p�1q|q||i|ιϕ�iψ.

The proof proceeds now in recursive steps, which at each step reproduce formally the
Equations (4.29)–(4.31), but with lower degrees, and one of the ιϕ�iψ . We only give the
next step: start with

p22q �
p�2̧

j�1

p̧

i�1

p�1q
ξ
n,i
j ιϕdis�1t

p�1D1
ψt
n�|p|�j

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
p26q

�
p̧

i�1

p�1q
ξ
n,i
|p| ιϕdis�1t

p�1D1
ψt
n

loooooooooooooooooooomoooooooooooooooooooon
p27q

,
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where

p26q �
p�2̧

j�1

n�|q|¸
i�n�|q|�|p|�1

p�1q
ξ
n,i
|j|

�q�p
ιϕs�1t

p�2diD
1
ψt
n�|p|�j

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon
p28q

�
p�3̧

j�1

p�1q
ξ
n,p
j ιϕs�1t

p�2d1tD
1
ψt
n�|p|�j

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
p29q

� p�1q|n||p|ιϕs�1t
p�2d1tD

1
ψt
n�1

looooooooooooooooooooomooooooooooooooooooooon
p30q

.

Then

p28q �
n�2̧

j�n�p�2

n�j̧

i�0

p�1q
ξ
n,|i|
|p�j| ιϕs�1t

p�2D1
ψt
jdi

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
p31aq

�
n�2̧

j�n�p�2

j�n�p�2¸
i�0

p�1q
ξ
n,|i|
p�j ιϕs�1t

p�2D1
ψt
jdn�i

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
p31bq

� p�1q|n||p|ιϕs�1t
p�2D1

ψt
n�1pd0 � d1qloooooooooooooooooooooooooomoooooooooooooooooooooooooon

p32q

.

Since the representatives of the elements we consider are in ker b, we conclude

p31aq � p31bq �
p�3̧

j�1

n�j̧

i�p�j

p�1q
ξ
n,i
|j�p| ιϕs�1t

p�2D1
ψt
n�|p|�jdi

�
p�3̧

j�1

n�|p|¸
i�1

p�1q
ξ
n,|i�p|
j ιϕs�1t

p�2D1
ψdit

n�|p|�1�j �: p33q.

Now, again by (4.16), we have

p33q � p29q �
p�3̧

j�1

n�|q|�|p|¸
i�1

p�1q
ξ
n,|i�p�q|
j ιϕs�1t

p�2diD
1
ψt
n�p�2�j

�
p�3̧

j�1

n�|q|¸
i�p

p�1q
ξ
n,i�q
j ιϕdis�1t

p�2D1
ψt
n�p�2�j

�
p�3̧

j�1

p�1̧

i�0

p�1q
ξ
n,|i�q|
j ιϕdis�1t

p�2D1
ψt
n�p�2�j

�
p�3̧

j�1

p�1qnjιϕdn�q�2s�1t
p�2D1

ψt
n�p�2�j

�
p�3̧

j�1

p�1̧

i�1

p�1q
ξ
n,|i�q|
j ιϕdis�1t

p�2D1
ψt
n�p�2�j

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon
p34q

�
p�3̧

j�1

p�1q
ξ
n,|q|
j ιϕt

p�2D1
ψt
n�p�2�j

looooooooooooooooooooooomooooooooooooooooooooooon
p35q

�
p�3̧

j�1

p�1qnjιϕt
p�1D1

ψt
n�p�2�j

loooooooooooooooooooomoooooooooooooooooooon
p36q

,

where in the third equation we used one more time bιϕ � 0 � ιϕb, which holds in our
situation. One furthermore has

p35q �
p�2̧

j�3

p�1qnj�qιϕt
p�2D1

ψt
n�p�1�j

loooooooooooooooooooooomoooooooooooooooooooooon
p37q

� p�1qqιϕt
p�2D1

ψt
n�p�3

looooooooooooooomooooooooooooooon
p38q

,
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and we see that p38q � �p�1q|q|ιϕ�2ψ , that is, the second summand in (4.28). Moreover,

p27q � p19q �
p�2̧

i�1

p�1qξ
n�q,qp
i �pιϕpdi � di�1qs�1t

iD1
ψt
n

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
p39q

�
p�2̧

i�1

p�1qnp�|i|ιϕdis�1t
p�1D1

ψt
n

loooooooooooooooooooooomoooooooooooooooooooooon
p40q

,

where

p40q �
n�q̧

i�n�|q|�|p|�1

p�1qξ
|n|,|i�q|
p ιϕs�1t

p�2diD
1
ψt
n �

ņ

i�n�p�3

p�1q|n||p|�iιϕs�1t
p�2D1

ψt
n�1di

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
p41q

.

Furthermore, we obtain

p41q � p32q �
n�p�2¸
i�2

p�1qξ
|n|,i
p ιϕs�1t

p�2D1
ψt
n�1di

�
q̧

i�1

p�1q|n||p|�iιϕs�1t
p�2D1

ψdit
n �

n�|p|¸
i�q�1

p�1q|n||p|�iιϕs�1t
p�2D1

ψdit
n

� p�1q|n||p|�1ιϕs�1t
p�2d1tD

1
ψt
n�1

looooooooooooooooooooooomooooooooooooooooooooooon
p42q

�

n�|q|�|p|¸
i�2

p�1q|n||p|�|q�i|ιϕs�1t
p�2diD

1
ψt
n

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
p43q

,

where for the first term in the last line we used (4.16). By bιϕ � 0 � ιϕb again, one has

p43q �

n�|q|¸
i�p

p�1q|n||p|�i�p�qιϕdis�1t
p�2D1

ψt
n

�
p�1̧

i�1

p�1qn|p|�i�qιϕdis�1t
p�2D1

ψt
n

loooooooooooooooooooooooomoooooooooooooooooooooooon
p44q

� p�1qn|p|�qιϕt
p�2D1

ψt
n

looooooooooooooomooooooooooooooon
p45q

� p�1qnpιϕt
p�1D1

ψt
n

loooooooooooomoooooooooooon
p46q

.

Finally, we see that p42q � �p30q, that p36q � p46q � �p24q, and that

p34q � p44q �
p�1̧

j�2

p�1̧

i�1

p�1qnj�i�qιϕdis�1t
p�2D1

ψt
n�|p|�j �: p47q,

as well as

p37q � p45q �
p�1̧

j�3

p�1qnj�qιϕt
p�2D1

ψt
n�|p|�j �: p48q.

We are now left with the three terms

p39q �
p�2̧

i�1

p�1qξ
n�q,qp
i �pιϕpdi � di�1qs�1t

iD1
ψt
n, (4.32)

p47q �
p�1̧

j�2

p�1̧

i�1

p�1qξ
n,|i|

|j|
�qιϕdis�1t

p�2D1
ψt
n�|p|�j , (4.33)

p48q �
p�1̧

j�3

p�1qnj�qιϕt
p�2D1

ψt
n�|p|�j , (4.34)

and these correspond (with alternating signs) to the Eqs. (4.29)–(4.31), but with one sum-
mand less and p lowered by one, respectively. Also, we obtained ιϕ�2ψ , see p38q, on the
way. Repeating the same steps as above another p� 3 times yields the missing terms

�
p�1̧

i�3

p�1q|q||i|ιϕ�iψ � �
p�1̧

i�3

p�1q|q||i|ιϕt
p�iD1

ψt
n�|p|�i,

in (4.28), and cancels the rest. Observe that in (4.33) and (4.34) the factor p�1qq appears
in contrast to (4.30) and (4.31), but in correspondence to the sign rule in (4.28). �
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5. THE BATALIN-VILKOVISKY MODULE

This section contains the both conceptually and computationally most involved aspect
of our paper, which is a Hopf algebroid generalisation of the Cartan-Rinehart homotopy
formula. This is a relation on the (co)chain level which implies on (co)homology the
Batalin-Vilkovisky relation that expresses Lϕ as the graded commutator of B and ιϕ. In
other words, establishing this formula will complete the proof that H


M pUq and HM


pUq

form a differential calculus.

5.1. The operators Sϕ. We begin by defining the generalisation of the operator denoted
by S in the work Nest, Tsygan and Tamarkin [NTs3, Ts, TaTs1, TaTs2], by B in Getzler’s
work [Get], and by f in Rinehart’s paper [Ri]. This operator may be considered as a
generalisation of the cap product for the cyclic bicomplex. Throughout this section, U
is assumed to be a left Hopf algebroid and M is a module-comodule (not necessarily an
SaYD module).

Definition 5.1. Given ϕ P CppU,Aq, we define

Sϕ : CnpU,Mq Ñ Cn�p�2pU,Mq

for p ¤ n by

Sϕ :�
n�p̧

j�0

j̧

i�0

p�1qη
n,p
j,i s�1 t

n�p�iD1
ϕ t

n�i�|j|,

where the sign is given by
ηn,pj,i :� nj � |p|i.

For p ¡ n, we put
Sϕ :� 0.

Remark 5.2. Observe that the extra degeneracy (2.18) is given here as s�1 � t sn�|p|.

In general, inserting the explicit formula for t,D1
ϕ and s�1 results in truly unpleasant ex-

pressions. However, in case M is an SaYD module and hence C
pU,Mq a cyclic module,
these can be at least somewhat simplified:

Proposition 5.3. If M is an SaYD module over a left Hopf algebroid U , then Sϕ, for
ϕ P CppU,Aq, p ¤ n, assumes the following form:

Sϕpm,xq �
n�p̧

i�0

n�|p|¸
j�i�1

p�1qnpi�|p|q�|p|pj�i�1q
�
mp0qu

1
�p2q � � �u

i
�p2q, u

i�1
� , . . . ,

Dϕpu
j
�, . . . , u

j�|p|
� q, . . . , un�, u

n
� � � �u

1
�mp�1q, u

1
�p1q, . . . , u

i
�p1q

�
.

Proof. Direct computation. �

Example 5.4. For n � 1, p � 1, the above means:

Sϕpm,uq � pmp0q, ϕpu�p1qq � u�p2q, u�mp�1qq,

while it becomes for n � 2, p � 1:
Sϕpm,u, vq � pmp0q, ϕpu�p1qq � u�p2q, v�, v�u�mp�1qq

� pmp0q, u�, ϕpv�p1qq � v�p2q, v�u�mp�1qq

� pmp0qu�p2q, ϕpv�p1qq � v�p2q, v�u�mp�1q, u�p1qq.

For n � 3 and p � 2, we get

Sϕpm,u, v, wq � �pmp0q, ϕpu�p1q, v�p1qq � u�p2qv�p2q, w�, w�v�u�mp�1qq

� pmp0q, u�, ϕpv�p1q, w�p1qq � v�p2qw�p2q, w�v�u�mp�1qq

� pmp0qu�p2q, ϕpv�p1q, w�p1qq � v�p2qw�p2q, w�v�u�mp�1q, u�p1qq.
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5.2. The relation rB,Sϕs � 0. Our first result is that Sϕ commutes with B. As this sim-
plifies the formula for B, we will from now on be working on the reduced chain complex
C̄
pU,Mq resp. C̄cyc



pU,Mq, which dually requires passing also to the reduced cochain

complex:

Definition 5.5. We denote by C̄
pU,Aq respectively C̄


M pUq the intersection of the kernels
of the codegeneracies in the cosimplicial k-modules C
pU,Aq respectively C


M pUq.

Proposition 5.6. For any ϕ P C̄ppU,Aq the identity

rB,Sϕs � 0 (5.1)

holds on the reduced chain complex C̄
pU,Mq.

Proof. Explicitly, the graded commutator reads on the reduced complex

rB,Sϕs � t sn�p�2 NSϕ � p�1qp�2 Sϕ t sn N.

If p ¡ n� 1, the entire expression is already zero. Hence assume that p ¤ n� 1 and first
consider the second summand: it suffices to show that the image of Sϕ t sn on elements of
degree n is degenerate, and this can be seen as follows:

Sϕ t sn �
n�p�1¸
j�0

j̧

i�0

p�1qη
n,p
j,i t sn�p�2 t

n�p�i�1 D1
ϕ t

n�i�j�2 t sn

�
n�p�1¸
j�0

j̧

i�0

p�1qη
n,p
j,i t sn�p�2 t

n�p�i�1 D1
ϕ t

n�i�j�1 s0 t

�
n�p�1¸
j�0

j̧

i�0

p�1qη
n,p
j,i t sn�p�2 t

n�p�i�1 D1
ϕ sn�pj�iq�1 t

n�i�j�2

�
n�p�1¸
j�0

j̧

i�0

p�1qη
n,p
j,i t sn�p�2 t

n�p�i�1sn�pj�iq�p�2 D
1
ϕ t

n�i�j�2

�
n�p�1¸
j�0

j̧

i�0

p�1qη
n,p
j,i t sn�p�2 t

n�p�j�2 sn�p�1 t
j�i�1 D1

ϕ t
n�i�j�2

�
n�p�1¸
j�0

j̧

i�0

p�1qη
n,p
j,i t sn�p�2 t

n�p�j s0 t
j�iD1

ϕ t
n�i�j�2,

using the simplicial and cyclic relations as well as (4.12) in the third line, along with the
fact that j � i � 0, . . . , n � p � 1. Now we distinguish the following cases: we have on
C̄cyc


pU,Mq

tsn�p�2t
n�p�js0 �

$'''&
'''%

tsn�p�2t
n�p�3s0 � tsn�p�2sn�p�3t

n�p�3 if j � n� p� 1,

tsn�p�2s0 if j � n� p,

tsn�p�2ts0 if j � n� p� 1,

tsn�p�2sn�p�jt
n�p�j if j ¤ n� p� 2,

and a quick computation reveals that in all these cases one produces degenerate elements.
That the first summand tsn�p�2NSϕ is also degenerate follows by a similar argument,

and this finishes the proof. �

5.3. The Cartan-Rinehart homotopy formula. We are now in a position to state:

Theorem 5.7. If M is a module-comodule over a left Hopf algebroid U , then for any
cochain ϕ P C̄


M pUq the homotopy formula

Lϕ � rB� b,Sϕ � ιϕs � ιδϕ � Sδϕ (5.2)

holds on C̄cyc


pU,Mq.
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Remark 5.8. Observe that using (5.1) and (4.3), this can be rewritten as

Lϕ � rB, ιϕs � rb,Sϕs � Sδϕ. (5.3)

Remark 5.9. Apart from the obvious classical Cartan homotopy [C], this formula has
been given in the context of associative algebras, i.e., in the classical cyclic homology
of algebras, in [Ri] for the commutative case, in [NTs3, Get] for the noncommutative
situation, and in more restricted settings such as for 1-cocycles in [Go, Co, X2].

Proof of Theorem 5.7. We stress that throughout we work on C̄cyc


pU,Mq. Rewrite first

rB, ιϕs � rb,Sϕs � Sδϕ � Bιϕ � p�1qpιϕB� bSϕ � p�1qp�2Sϕb� Sδϕ

� Bιϕ � p�1q|p|ιϕB� bSϕ � p�1q|p|Sϕb� Sδϕ.

Observe then that the statement in the cases p ¡ n�1 and p � n�1 follows by definition.
For p   n� 1, let us write down (4.19):

Lϕ �
n�|p|¸
i�1

p�1qθ
n,p
i tn�|p|�iD1

ϕt
i�p

looooooooooooooooomooooooooooooooooon
p1q

�
p̧

i�1

p�1qξ
n,p
i tn�|p|D1

ϕt
i

loooooooooooomoooooooooooon
p2q

,

and also write with (4.10) and (4.18) on C̄cyc


pU,Mq

Bιϕ �
n�p̧

k�0

p�1qkpn�pqs�1t
kd0D

1
ϕ �: p3q,

p�1q|p|ιϕB �
ņ

k�0

p�1q|p|�nktn�|p|D1
ϕt
k�1

�
ņ

k�1

p�1q|p|�n|k|tn�|p|D1
ϕt
k

looooooooooooooomooooooooooooooon
p4q

� p�1q|p|tn�|p|D1
ϕloooooooomoooooooon

p5q

.

A lengthy computation using the simplicial and cyclic relations yields

bSϕ �
n�p̧

j�0

j̧

i�0

p�1q
η
n,p
j,i tn�p�iD1

ϕt
n�i�|j| �

n�p̧

j�0

j̧

i�0

p�1q
η
n,|p|
|j|,|i|

�1
s�1t

n�p�id0D
1
ϕt
n�i�|j|

�

n�|p|¸
k�2

k�1̧

i�1

n�|p|¸
j�i

p�1q
η
n,p
|j|,|i|

�k�i
s�1t

n�p�idkD
1
ϕt
n�i�|j|

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon
p6q

�
n�p̧

k�1

n�p̧

j�k

j̧

i�k

p�1q
η
n,p
j,i �k�n�|p|�i

s�1t
n�p�idkD

1
ϕt
n�i�|j|

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon
p7q

�
n�p̧

j�0

p�1q
η
n,p
j,0 �n�p

tn�|p|D1
ϕt
n�|j|

loooooooooooooooooooooomoooooooooooooooooooooon
p8q

�
n�p�1¸
j�0

j̧

i�0

p�1q
η
n,p
|j|,|i|

�n�p
tn�p�iD1

ϕt
n�i�|j|

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon
p9q

�
n�p�1¸
j�0

j̧

i�0

p�1q
η
n,p
j,i tn�p�iD1

ϕt
n�i�|j|

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
p10q

�

n�|p|¸
i�1

p�1q
η
n,p
n�p,|i| tn�|p|�iD1

ϕt
p�i

loooooooooooooooooooooomoooooooooooooooooooooon
p11q

�
n�p̧

j�1

j�1̧

i�0

p�1q
η
n,|p|
|j|,|i|

�1
s�1t

n�p�id0D
1
ϕt
n�i�|j|

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon
p12q

�
n�p̧

i�0

p�1q
η
n,|p|
|i|,|i|

�1
s�1t

n�p�id0D
1
ϕ

loooooooooooooooooooooomoooooooooooooooooooooon
p13q

� p6q � p7q � p8q � p9q.
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Observe that by p�1qη
n,p
|j|,|i|

�n�p � p�1qη
n,p
j,i �1 one has p9q � �p10q. Likewise, by

p�1qη
n,p
n�p,|i| � p�1qθ

n,p
i , we see that p11q � p1q. By substitution k :� n � p � i, one

obtains p�1qkpn�pq � p�1qη
n,|p|

|i|,|i| , and hence p13q � �p3q. Finally, p2q � p4q � p5q � p8q
by substitution of i :� n� |j| in p8q. We continue computing

p6q �

n�|p|¸
k�2

k�1̧

i�1

n�p̧

j�i

p�1q
η
n,|p|
|j|,|i|

�k�1
s�1t

n�p�idkD
1
ϕt
n�i�|j|

�

n�|p|¸
k�2

k�1̧

i�1

p�1q
η
n,|p|
n�p,|i|

�k�1
s�1t

n�p�idkD
1
ϕt
p�i

�

n�p̧

k�2

k�1̧

i�1

n�p̧

j�i

p�1q
η
n,|p|
|j|,|i|

�k�1
s�1t

n�p�idkD
1
ϕt
n�i�|j|

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
p14q

�

n�p̧

k�2

k�1̧

i�1

p�1q
η
n,|p|
n�p,|i|

�k�1
s�1t

n�p�idkD
1
ϕt
p�i

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
p15q

�

n�p̧

j�1

j̧

i�1

p�1q
η
n,|p|
|j|,|i|

�n�p
s�1t

n�p�idn�|p|D
1
ϕt
n�i�|j|

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon
p16q

�

n�p̧

i�1

p�1q
η
n,|p|
n�p,|i|

�n�p
s�1t

n�p�idn�|p|D
1
ϕt
p�i

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
p17q

.

With (4.11) one sees

p15q �
n�1̧

k�p�1

k�p̧

i�1

p�1qη
n,|p|

|p|,i
�ks�1t

n�p�iD1
ϕdkt

p�i �: p18q,

and we also simplify

p16q �
n�p�1¸
j�1

j̧

i�1

p�1q
η
n,|p|
|j|,i s�1t

n�p�idn�|p|D
1
ϕt
n�i�j

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon
p19q

�
n�p̧

i�1

p�1q
η
n,|p|
i,i s�1t

n�p�idn�|p|D
1
ϕ

looooooooooooooooooooooomooooooooooooooooooooooon
p20q

.

Furthermore,

p7q �
n�p̧

k�2

n�p̧

j�k

j̧

i�k

p�1q
η
n,|p|
|j|,|i|

�k�1
s�1t

n�p�idkD
1
ϕt
n�i�|j|

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon
p21q

�
n�p̧

j�1

j̧

i�1

p�1q
η
n,|p|
|j|,|i| s�1t

n�p�id1D
1
ϕt
n�i�|j|

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
p22q

.
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On the other hand, we have

p�1q|p|Sϕb �
n�p̧

i�1

p�1q
η
|n|,p
|i|,|i|

�n�|p|
s�1t

n�p�iD1
ϕdn

looooooooooooooooooooooomooooooooooooooooooooooon
p23q

�
n�1̧

k�0

n�p̧

j�1

j̧

i�1

p�1q
η
|n|,p
|j|,|i|

�k�i�j�|p|
s�1t

n�p�iD1
ϕdkt

n�i�|j|

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon
p24q

�

n�p�1¸
i�1

n�1̧

k�p�i

p�1q
η
|n|,p
|n�p|,|i|

�k�|i|
s�1t

n�p�iD1
ϕdkt

p�i

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
p25q

,

and we directly observe that p23q � �p20q and p25q � �p18q, whereas

p24q �
p̧

k�1

n�p̧

j�1

j̧

i�1

p�1q
η
n,|p|
|j|,i

�k�1
s�1t

n�p�iD1
ϕdkt

n�i�|j|

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon
p26q

�
n�1̧

k�p�1

n�p̧

j�1

j̧

i�1

p�1q
η
n,|p|
|j|,i

�k�1
s�1t

n�p�iD1
ϕdkt

n�i�|j|

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon
p27q

�

n�p̧

j�1

j̧

i�1

p�1q
η
n,|p|
|j|,i

�1
s�1t

n�p�iD1
ϕd0t

n�i�|j|

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
p28q

,

where by the cyclic relations

p28q �
n�p�1¸
j�1

j̧

i�1

p�1q
η
n,|p|
|j|,i

�1
s�1t

n�p�iD1
ϕdnt

n�i�j

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon
p29q

�
n�p̧

i�1

p�1q
η
n,|p|
p,i �1

s�1t
n�p�iD1

ϕdnt
p�i

looooooooooooooooooooooooomooooooooooooooooooooooooon
p30q

.

By means of (4.11), one now sees that p14q�p21q � �p27q and that p29q � �p19q, along
with p30q � �p17q.

To conclude the proof, we need to show that Sδϕ equals the only remaining terms p12q,
p22q, and p26q. Note first that from (4.6), (4.11), (4.10), as well as from the cyclic and
simplicial relations follows for the pp� 1q-cochain δϕ:

D1
δϕ � tιδϕs�1t

n � tbιϕs�1t
n � p�1q|p|tιϕbs�1t

n

�

n�|p|�1¸
k�1

p�1q|k|td0dkD
1
ϕs�1t

n �
n�1̧

k�0

p�1qk�|p|td0D
1
ϕdks�1t

n

� td0d1D
1
ϕs�1t

n �
p̧

k�0

p�1qk�|p|td0D
1
ϕdks�1t

n

� td0ιϕs�1t
n � p�1q|p|td0D

1
ϕt
n �

p̧

k�1

p�1qk�|p|tιϕs�1dk�1t
n

� tn�p�1d1D
1
ϕ � p�1q|p|td0D

1
ϕt
n �

p̧

k�1

p�1qk�|p|tn�p�1D1
ϕdk.



BATALIN-VILKOVISKY STRUCTURES ON Ext AND Tor 37

Hence we have for the pp� 1q-cochain δϕ:

Sδϕ �

n�pp�1q¸
j�0

j̧

i�0

p�1q
η
n,|p|
j,i s�1t

n�p�pi�1qd1D
1
ϕt
n�i�|j|

�
p̧

k�1

n�pp�1q¸
j�0

j̧

i�0

p�1q
η
n,|p|
j,i �k�|p|

s�1t
n�p�pi�1qD1

ϕdkt
n�i�|j|

�

n�pp�1q¸
j�0

j̧

i�0

p�1q
η
n,|p|
j,i �|p|

s�1t
n�p�id0D

1
ϕt
n�i�j

�
n�p̧

j�1

j̧

i�1

p�1q
η
n,|p|
|j|,|i| s�1t

n�p�id1D
1
ϕt
n�i�|j|

�
p̧

k�1

n�p̧

j�1

j̧

i�1

p�1q
η
n,|p|
|j|,|i|

�k�|p|
s�1t

n�p�iD1
ϕdkt

n�i�|j|

�

n�pp�1q¸
j�0

j̧

i�0

p�1q
η
n,|p|
j,|i|

�1
s�1t

n�p�id0D
1
ϕt
n�i�j ,

and these summands are exactly the terms p22q, p26q, and p12q, which concludes the proof
of (5.3) and hence of (5.2). �

With the help of the homotopy formula, we can easily prove:

Corollary 5.10. For any cochain ϕ P C̄


M pUq, we have on C̄cyc


pU,Mq

rLϕ,Bs � 0. (5.4)

Proof. Using (5.3), (4.3), and (2.19), we see by the graded Jacobi identity that

rLϕ,Bs � rrB, ιϕs,Bs � rrb,Sϕs,Bs � rSδϕ,Bs

� rB, rιϕ,Bss � p�1qprιϕ, rB,Bss � rb, rSϕ,Bss � p�1qp�2rSϕ, rb,Bss

� 0,

where the fact that rB, rιϕ,Bss � 0 directly follows from the graded Jacobi identity. �

Remark 5.11. With some more effort, it can be shown that (5.4) even holds on the non-
reduced complex, but we do not need this.

5.4. Proof of Theorem 1.5. If ϕ P C̄


M pUq is a cocycle, then for the induced maps

Lϕ : HM


pUq Ñ HM


�|p|pUq, ιϕ : HM


pUq Ñ HM


�ppUq,

the Rinehart homotopy formula (5.2) simplifies to

Lϕ � rB, ιϕs.

Using this and (4.5) one has

Corollary 5.12. For cocycles ϕ,ψ P C̄


M pUq, the induced maps on HM


pUq obey

Lϕ`ψ � Lϕιψ � p�1qdegϕιϕLψ.

Proof. This is now only one line:

Lϕ`ψ � rB, ιϕ`ψs � rB, ιϕsιψ � p�1qdegϕιϕrB, ιψs � Lϕιψ � p�1qdegϕιϕLψ. �

We now sum up the results of Theorems 4.23, 4.24, and 5.7, and state the main theorem
(cf. Theorem 1.5) of this paper:

Theorem 5.13. If U is a left Hopf algebroid over A, and M is a module-comodule, then
ι given in (4.3) and the Lie derivative L given in (4.19) turn HM



pUq into a Batalin-

Vilkovisky module over the Gerstenhaber algebra H


M pUq defined by Theorem 3.16.
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6. LIE-RINEHART ALGEBRAS AND JET SPACES

This section contains a brief sketch of how to generalise the above results to complete
left Hopf algebroids (the Hopf algebroid generalisation of complete Hopf algebras, see
e.g. [Q]), and how this allows one to obtain the well-known calculus for Lie-Rinehart
algebras (Lie algebroids) given by the Lie derivative, insertion operator, and the de Rham
differential (cf. the original reference [Ri] and also, for example, [Hue1, GrUr, Hue2, Kos,
X1]), and in particular the classical Cartan calculus from differential geometry that arises
as the special case of the tangent Lie algebroid (see [C]).

In § 6.1 we introduce the jet space JL of a Lie-Rinehart algebra ([KoP], see also
[CaRoVdB]), and explain its complete Hopf algebroid structure. Then we sketch in § 6.2
how to adapt the constructions of this paper to this setting. Finally, in the last two sec-
tions we recall the definition of the generalised Hochschild-Kostant-Rosenberg morphisms
and use them to relate the differential calculus of Theorem 1.5 to the standard one on the
exterior algebras of L respectively L� that gives rise to Lie-Rinehart cohomology.

6.1. Universal enveloping algebras and jet spaces. Let pA,Lq be a Lie-Rinehart algebra
over a commutative k-algebra A with anchor map LÑ DerkpAq, X ÞÑ ta ÞÑ Xpaqu, and
VL be its universal enveloping algebra (see [Ri] for details). This is naturally a left Hopf
algebroid, see e.g. [KoKr1]; as therein, we denote by the same symbols elements a P A
and X P L and the corresponding generators in VL. The source and target maps s � t are
equal to the canonical injection AÑ VL. The coproduct and the counit are given by

∆pXq :� X bA 1� 1bA X, εpXq :� 0,
∆paq :� abA 1, εpaq :� a,

(6.1)

whereas the inverse of the Hopf-Galois map is

X� bAop X� :� X bAop 1� 1bAop X, a� bAop a� :� abAop 1, (6.2)

where we retain the notation bAop for the tensor product �VL bAop VL� although A is
commutative. By universality, these maps can be extended to VL.

Definition 6.1. The A-linear dual JL :� HomApVL,Aq is called the jet space of pA,Lq.

By duality, JL carries a commutative Ae-algebra structure with product

pfgqpuq � fpup1qqgpup2qq, f, g P JL, u P VL, (6.3)

unit given by the counit ε of VL, and source and target maps given by

spaqpuq :� aεpuq � εpauq, tpaqpuq :� εpuaq, a P A, u P VL. (6.4)

Observe that these do not coincide although A is commutative.
The Ae-algebra JL is complete with respect to the (topology defined by the) decreasing

filtration whose degree p part consists of those functionals that vanish on the A-linear span
pVLq¤p�VL of all monomials in up to p elements of L. For finitely generated projective
L, Rinehart’s generalised PBW theorem [Ri] identifies JL with the completed symmetric
algebra of the A-module L� � HomApL,Aq.

Example 6.2. The simplest example beyond Lie algebras is A � krxs, L � DerkpAq, in
which case L is generated as an A-module by p :� d

dx . Then VL is isomorphic to the first
Weyl algebra. In particular, there is an A-algebra isomorphism JL � A[h] under which
hi corresponds to the A-linear functional on Arps that maps pj to δij P A. Here JL is
considered as A-algebra via the source map s which becomes under the isomorphism the
standard unit map of A[h]. However, the target map t maps a polynomial a P A to the
power series given by its jet

tpaq � a�
da

dx
h�

d2a

dx2
h2 � � � � .
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The filtration of JL induces one of JL bA JL and if we denote by JLb̂AJL the com-
pletion, then the product of VL yields a coproduct ∆ : JLÑ JLb̂AJL determined by

fpuvq �: ∆pfqpubAop vq � fp1qpufp2qpvqq, (6.5)

see Lemma 3.16 in [KoP, §3.4]. This is part of a complete Hopf algebroid structure on JL.
We refer to [Q, Appendix A] for complete Hopf algebras, the Hopf algebroid generalisation
is straightforward. The counit of JL is given by f ÞÑ fp1VLq, and the antipode is

pSfqpuq :� εpu�fpu�qq, u P VL, f P JL, (6.6)

which for u P L � VL is known under the name Grothendieck connection. A short
computation gives S2 � id. The translation map (2.3) is

f�b̂Aopf� :� fp1qb̂AopSpfp2qq. (6.7)

Note that JL is not only a left but a full complete Hopf algebroid in the sense of Böhm
and Szlachányi [B]. Over noncommutative base algebras this would generally require two
bialgebroid structures that coincide here. In particular, JL is also a Hopf algebroid over a
commutative base ring in the more narrow sense studied already for decades [Hov, Ra].

6.2. C
pJL,Aq and C
pJL,Aq. For complete Hopf algebroids such as JL, the theory
developed in this paper needs to be modified as follows, in order for the structure maps
(e.g. the cyclic operator t) to be well-defined: in P
 and in the chain complex C
pJL,Mq,
the completed tensor products have to be used. Similarly, in the definition of a module-
comodule and of an SaYD module the coaction might be given by maps M Ñ JLb̂AM .

Dually, C
pJL,Aq has to be defined as Homcont
Aop pJLb̂Aop


�, Aq, where cont means that
the cochains have to be continuous (A being discrete), as only the operators assigned to
these cochains will be well-defined on the completed tensor products.

Unlike for general left Hopf algebroids, we have for JL canonical homology coeffi-
cients: using that JL is commutative, one easily verifies that A carries a natural structure
of an SaYD module over JL whose action and coaction are given by

Ab JL Ñ A, pa, fq ÞÑ aεpfq,
A Ñ JLbA A, a ÞÑ spaq bA 1A,

(6.8)

where s is the source map from (6.4). Hence Theorem 1.5 yields a canonical differential
calculus pH
pJL,Aq, H
pJL,Aqq associated to any Lie-Rinehart algebra pA,Lq that we
want to discuss in more detail as an illustration of the abstract theory.

6.3. Lie-Rinehart (co)homology. In order to do so, recall that the space HomAp
�




A
L,Aq

of alternating A-multilinear forms is a cochain complex of k-modules with respect to

d : HomAp
�n

A
L,Aq Ñ HomAp

�n�1
A

L,Aq

given by (where the terms X̂i are omitted)

dωpX0, . . . , Xnq :�
ņ

i�0

p�1qiXi
�
ωpX0, . . . , X̂i, . . . , Xnq

�
�

¸
i j

p�1qi�jωprXi, Xjs, X0, . . . , X̂i, . . . , X̂j , . . . , Xnq.
(6.9)

In case pA,Lq arises from a Lie algebroid E, the above is the complex of E-differential
forms (see, for example, [CanWe]), and in case E is the tangent bundle of a smooth mani-
fold, these are the conventional differential forms that appear in differential geometry.

Definition 6.3. H
pHomAp
�

A
L,Aq, dq is called the Lie-Rinehart cohomology of L.
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From [KoP, Theorem 3.21] we gather that there is a morphism of chain complexes

F :
�
C̄
pJL,Aq, b

�
Ñ

�
HomAp

�



A
L,Aq, 0

�
(6.10)

given in degree n by

F pf1, . . . , fnqpX1 ^ � � � ^Xnq :� p�1qn
�
Sf1 ^ � � � ^ Sfn

�
pX1, . . . , Xnq.

Here Sf1^� � �^Sfn is the wedge product of alternating multilinear forms. As C
pJL,Aq
is defined via completed tensor products, we have

CnpJL,Aq � limÐÝHomA

�
pVLbAnq¤p, A

�
, (6.11)

where pVLbAnq¤p is the degree p part of the filtration induced by that of VL. The an-
tipodes appear above as this isomorphism (6.11) is given by

pf1, . . . , fnqpu1, . . . , unq :� Sf1pu1q � � �Sfnpunq. (6.12)

That F is well-defined on the reduced complex C̄
pJL,Aq follows since degenerate chains
vanish under F as (2.11) gives for X P L

εpX�1JLpX�qq � εpX�εpX�qq � εpXq � 0. (6.13)

When L is finitely generated projective over A, the wedge product of multilinear forms
provides an isomorphism �




A
L� Ñ HomAp

�



A
L,Aq

that we suppress in the sequel. Furthermore, the pairing (6.12) yields an isomorphism
(cf. [CaRoVdB, Eq. (4.10)])

CnpJL,Aq � VLbA
. (6.14)

Finally, if we denote by pr : V LÑ L the projection on L resulting from Rinehart’s PBW
theorem, we have:

Proposition 6.4. Assume that L is finitely generated projective over A and define

F 1pα1 ^ � � � ^ αnq :�
¸
σPSn

p�1qσ
�
pr �ασp1q, . . . ,pr �ασpnq

�

for α1, . . . , αn P L�. Then we have

FF 1 � n! id�n
AL

� .

In particular, if Q� k, then the morphism F has a right inverse.

Proof. This follows by straightforward computation, using that (6.2) yields

Sppr �αq � �pr �α (6.15)

for every 1-form α P L�. �

Dual to (6.10), one has a morphism

F� :
��




A
L, 0

�
Ñ pC̄
pJL,Aq, δq (6.16)

of cochain complexes explicitly given as

X1 ^ � � � ^Xn ÞÑ
 
pf1, . . . , fnq ÞÑ p�1qn

¸
σPSn

p�1qσpSf1qpXσp1qq � � � pSfnqpXσpnqq
(
.
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6.4. The calculus structure for Lie-Rinehart algebras. Our main aim is to use now
F, F�, and F 1 to compare the calculus structure on

�
H
pJL,Aq, H
pJL,Aq

�
result-

ing from (the topological version of) Theorem 1.5 with the well-known calculus on��



A
L,

�



A
L�

�
given by the exterior differential, the insertion operator, the Lie de-

rivative for differential forms, along with the classical Cartan homotopy formula (see
[Ri, Hue1, Hue2], or [CanWe, Kos, X1] for the case of Lie algebroids and in particular
the original reference [C] for the tangent bundle of a smooth manifold). First, recall that
these operators, besides d from (6.9), are given by

iX :
�n

A
L� Ñ

�n�1
A

L�, ω ÞÑ ωp�, . . . , Xq,

LX :
�n

A
L� Ñ

�n
A
L�, LXωpY

1, . . . , Y nq :� X
�
ωpY 1, . . . , Ŷ i, . . . , Y nq

�
�

ņ

i�1

ωpY 1, . . . , rX,Y is, . . . , Y nq.

where Y 1, . . . , Y n P L.
Let us then consider the Gerstenhaber bracket on C
pJL,Aq � VLbA
. Now, VLbAn

carries a canonical comp algebra structure given by

pu1 bA � � � bA u
pq �tens

i pv1 bA � � � bA v
qq

:� pu1 bA � � � bA u
i�1 bA u

i
p1qv

1 bA � � � bA u
i
pqqv

q bA u
i�1 bA � � � bA u

p,
(6.17)

for i � 1, . . . , p, and where ∆qpuq � up1q bA � � � bA upqq is the iterated coproduct (where
∆0 :� ε and ∆1 :� id). This is a slight generalisation to bialgebroids from a statement in
[GeSch, p. 65], and the expression is well defined with (2.2).

In the first part of the following proposition we state that (6.17) corresponds to our gen-
eral expression (3.7) of the Gerstenhaber products by means of the isomorphism (6.14), and
in particular that the resulting Gerstenhaber bracket corresponds to the classical Schouten-
Nijenhuis bracket on the exterior algebra

�



A
L. In the second part, we show how the

relevant operators from the two mentioned calculi are connected to each other; for the sake
of simplicity we restrict to the case where one acts with an element X P L �

�1
A
L:

Proposition 6.5. If L is finitely generated projective over A, then for 1 ¤ i ¤ p one has

pu1 bA � � � bA u
pq �i pv

1 bA � � � bA v
qq � pu1 bA � � � bA u

pq �tens

i pv1 bA � � � bA v
qq,

where the left hand side is the Gerstenhaber product from (3.7). In particular, if Q� k,
then the Gerstenhaber bracket from (3.10) corresponds to the classical Schouten-Nijenhuis
bracket by means of the map 1

n!F
� from (6.16).

Furthermore, for the operations d, iX , and LX of differential, insertion, and Lie deriv-
ative of (generalised) forms along a (generalised) vector field X P L, one has on

�n
A
L�

pn� 1q d � FBF 1, (6.18)
pn� 1q iX � FιF�XF

1, (6.19)
n LX � FLF�XF 1. (6.20)
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Proof. For the general Gerstenhaber product (3.7) one computes with the commutativity
of JL, (6.3)–(6.5), (2.4), and using the isomorphism (6.14),
�
pu1 bA � � � bA u

pq �i pv
1bA � � � bAv

qq
��
f1, . . . , fp�|q|

�

�
�
u1 bA � � � bA u

p
��
f1, . . . , f i�1,Dv1bA���bAvq pf

i, . . . , f i�|q|q, f i�q , . . . , fp�|q|
�

� Sf1pu1q � � �Sf i�1pui�1q
�
S
�
spSf ip1qpv

1q � � �Sf
i�|q|
p1q

pvqqqf ip2q � � � f
i�|q|
p2q

���
ui
�

Sf i�qpui�1q � � �Sfp�|q|pupq

� Sf1pu1q � � �Sf i�1pui�1q ε
�
uip1q�εpv

1
�f

i
p1qpv

1
�qqf

i
p2qpu

i
p1q�q

�
� � �

ε
�
uipqq�εpv

q
�f

i�|q|
p1q

pvq�qqf
i�|q|
p2q

puipqq�q
�
Sf i�qpui�1q � � �Sfp�|q|pupq

� Sf1pu1q � � �Sf i�1pui�1q ε
�
uip1q�v

1
�f

ipv1
�u

i
p1q�q

�
� � �

ε
�
uipqq�v

q
�f

i�|q|pvq�u
i
pqq�q

�
Sf i�qpui�1q � � �Sfp�|q|pupq

� Sf1pu1q � � �Sf i�1pui�1qSf ipuip1qv
1q � � �Sf i�|q|puipqqv

qqSf i�qpui�1q � � �Sfp�|q|pupq

�
�
pu1 bA � � � bA u

pq �tens
i pv1bA � � � bAv

qq
��
f1, . . . , fp�|q|

�

for f i P JL and uj , vk P VL. The fact that the Gerstenhaber bracket resulting from
(6.17) corresponds to the (generalised) Schouten-Nijenhuis bracket on

�



A
L by means of

the (generalised) Hochschild-Kostant-Rosenberg map was already shown in [Ca, Theo-
rem 1.4]. Hence, observing that the map 1

n!F
� is the mentioned HKR morphism followed

by (6.14), the first claim is proven.
Concerning the identity (6.18), as stated in (6.13), the degenerate elements of B vanish

under F , whereas the operator (2.20) assumes the form

s�1Npf
1, . . . , fnq �

ņ

i�0

p�1qinpf i�1
� , . . . , fn�, f

n
� � � � f

1
�, f

1
�, . . . , f

i
�q

for an element pf1, . . . , fnq P CnpJL,Aq, as is quickly revealed by a direct computation
using (6.8), (2.2), and the commutativity of JL. Hence, since S is an involution and with
(6.7), (2.4), (6.1), and (6.3)–(6.6) one has

�
FBF 1pα1, . . . , αnq

��
X0 ^ � � � ^Xn

�

� F
� ņ

i�0

p�1qin
¸
σPSn

p�1qσ
�
pασpi�1qpr q�, . . . , pα

σpnqpr q�,

pασpnqpr q� � � � pα
σp1qpr q�, pα

σp1qpr q�, . . . , pα
σpiqpr q�

�	�
X0 ^ � � � ^Xn

	

� pn� 1q
¸
σPSn

p�1qσS
�
pα1pr qp1q

��
Xσp1q

�
� � �S

�
pαnpr qp1q

��
Xσpnq

�

�
�
pαnpr qp2q � � � pα

1pr qp2q
��
Xσp0q

�

� pn� 1q
¸
σPSn

p�1qσε
�
X
σp1q
� pα1pr qpX

σp1q
� X

σp0q
p1q

q
�
� � � ε

�
X
σpnq
� pαnpr qpX

σpnq
� X

σp0q
pnq

q
�

� pn� 1q
ņ

i�1

¸
σPSn

p�1qσε
�
X
σp1q
� pα1pr qpX

σp1q
� q

�
� � � ε

�
X
σpiq
� pαipr qpX

σpiq
� Xσp0qq

�

� � � ε
�
X
σpnq
� pαnpr qpX

σpnq
� q

�

� pn� 1q
ņ

i�1

�
p�1qn�1

¸
σPSn

p�1qσα1pXσp1qq � � �Xσpiq
�
αipXσp0qq

�
� � �αnpXσpnqq

� p�1qn
¸
σPSn

p�1qσα1pXσp1qq � � � pαipr qpXσpiqXσp0qq � � �αnpXσpnqq
�

� pn� 1q dpα1 ^ � � �αnqpX0, . . . , Xnq,

where the last line follows from the fact that the vector fields are derivations on A and that
pr pXY � Y Xq � pr prX,Y sq � rX,Y s.
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As for the insertion operator, we compute with (6.15), (6.3)–(6.6), and St � s:
�
FιF�XnF

1pα1, . . . , αnq
��
X1 ^ � � � ^Xn�1

�

�
¸
σPSn

p�1qσF
�
pr�ασp1q, . . . ,pr�ασpn�2q,

�
ppr�ασpnqqpF�Xnq

�
� pr�ασpn�1q

	

�
X1 ^ � � � ^Xn�1

	

� p�1qn�1pn� 1q
¸
σPSn

p�1qσpSpα1pr qqpXσp1qq � � � pSpαn�2pr qqpXσpn�2qq

�
S
�
pαn�1pr qtpαnpr pF�Xσpnqqq

�	�
Xσpn�1q

	

� pn� 1q
¸
σPSn

p�1qσα1pXσp1qq � � �αn�2pXσpn�2qqspαnpXσpnqqqpX
σpn�1q
p1q

qpαn�1pr qpX
σpn�1q
p2q

q

� pn� 1q
¸
σPSn

p�1qσα1pXσp1qq � � �αn�1pXσpn�1qqαnpXσpnqq

� pn� 1q
�
iXn pα

1 ^ � � � ^ αnq
��
X1, . . . , Xn�1

�
,

hence (6.19) is proven.
In a similar way, one proves (6.20) the details of which we omit since the computation

is similar to those of the two preceding identities. �

7. HOCHSCHILD (CO)HOMOLOGY AND TWISTED CALABI-YAU ALGEBRAS

In this final section we discuss as an example the action of the Hochschild cohomology
H
pA,Aq of an associative algebra A on the Hochschild homology H
pA,Mq with co-
efficients in suitable A-bimodules M . In particular, the differential calculus discussed in
[NTs3] is generalised towards nontrivial coefficients which are not even SaYD modules,
and this is used to prove Theorem 1.7.

7.1. The Hopf algebroid Ae and the coefficients Aσ . As said in the introduction, all the
main results of this paper were historically first obtained for the Hochschild cohomology
H
pA,Aq and homologyH
pA,Aq of an associative k-algebraA. This arises as the special
case in whichU is the enveloping algebraAe ofA, with η � idAe and coproduct and counit
given by

∆ : U Ñ U bA U, abk b ÞÑ pabk 1q bA p1bk bq, ε : U Ñ A, abk b ÞÑ ab.

One then has

�U bAop U� � U bk U{spanktpabk cbq bk pa
1 bk b

1q � pabk bq bk pa
1 bk b

1cqu,

where cb and b1c is understood to be the product in A, and one easily verifies that

pabk bq� bAop pabk bq� :� pabk 1q bAop pbbk 1q

yields an inverse of the Galois map as was originally pointed out by Schauenburg. For sim-
plicity, we shall assume throughout this section that k is a field which implies in particular
that U � Ae is A-projective (in fact free) with respect to all four actions �, �, �, �.

Like JL in the previous section, U � Ae is an example of a full Hopf algebroid in the
sense of Böhm and Szlachányi whose antipode Spa bk bq :� b bk a is an involution. We
use this to identify left and right U -modules. Obviously, U -modules can also be identified
withA-bimodules with symmetric action of k, and in the sequelM is such a bimodule that
will be viewed freely as left or right U -module as necessary.

In particular, any algebra endomorphism σ : AÑ A defines an A-bimodule Aσ which
is A as k-vector space with the A-bimodule respectively right Ae-module structure

b �m � a � mpabk bq :� bxσpaq, a,m P A, b P Aop.

These bimodules are prototypical examples of the homology coefficients we are interested
in. They carry a left Ae-comodule structure given by

Aσ Ñ Ae bA Aσ, m ÞÑ pmbk 1q bA 1,
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for which the induced leftA-module structure is �A. However, in generalAσ is not a stable
anti Yetter-Drinfel’d module, see [KoKr2] for a discussion of this fact.

Up to isomorphism, Aσ only depends on the class of σ in the outer automorphism
group OutpAq of A, and σ ÞÑ Aσ yields an embedding of the latter into the Picard group
of U -Mod that appears to have been considered in detail for the first time by Fröhlich [Fr].
The study of the (co)homology ofAwith coefficients in these bimodules has many motiva-
tions. Nest and Tsygan suggested to view the Hochschild cohomology groups H
pA,Aσq
as defining a quantum analogue of the Fukaya category [NTs3, NTs2] while Kustermans,
Murphy and Tuset related H
pA,Aσq to Woronowicz’s concept of covariant differential
calculi over compact quantum groups [KuMuTu]. Moreover, they arise naturally in the
description of the Hochschild (co)homology of the crossed product A�σ Z, see [GetJ].

7.2. The Hochschild (co)chain complex. In this situation, the chain complex
C
pU,Mq �M bAop UbAop
 is isomorphic to the standard Hochschild chain complex

C
pA,Mq :�M bk A
bk


by means of the map

mbAop pa1 bk b1q bAop � � � bAop pan bk bnq ÞÑ bn � � � b1mbk a1 bk � � � bk an.

For M � Aσ , the para-cyclic structure on C
pU,Aσq from Proposition 2.5 becomes
under this isomorphism

dipmbk yq�

$&
%
anmbk a1 bk � � � bk an�1

mbk � � � bk an�ian�i�1 bk � � �
mσpa1q bk a2 bk � � � bk an

if i�0,
if 1¤ i¤n� 1,
if i�n,

sipmbk yq�

$&
%
mbk a1 bk � � � bk an bk 1
mbk � � � bk an�i bk 1bk an�i�1 bk � � �
mbk 1bk a1 bk � � � bk an

if i�0,
if 1¤ i¤n� 1,
if i�n,

tnpmbk yq�σpa1q bk a2 bk � � � bk an bk m,

where m P A and where we abbreviate y :� a1 bk � � � bk an. In particular, one has

T � σ bk � � � bk σ,

so C
pA,Aσq is cyclic if and only if σ � id (in which case Aσ is an SaYD module).
Likewise, there is an isomorphism of cochain complexes of k-vector spaces

C
pU,Aq Ñ C
pA,Aq :� HomkpA
bk
, Aq, ϕ ÞÑ ϕ̃,

where the latter is the standard Hochschild cochain complex [Ho] and ϕ̃ is defined by

ϕ̃pa1 bk � � � bk anq :� ϕ
�
pa1 bk 1q bAop � � � bAop pan bk 1q

�
so that

ϕ
�
pa1 bk b1q bAop � � � bAop pan bk bnq

�
� ϕ̃pa1 bk � � � bk anqbn � � � b1.
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The resulting operators involved in the calculus structure are given by

Bpmbk yq �
ņ

i�0

p�1qin1bk ai�1 bk � � � bk an bk mbk σpa1q bk � � � bk σpaiq,

ιϕ̃pmbk yq � ϕ̃pan�|p|, . . . , anqmbk a1 bk � � � bk an�p,

Sϕ̃pmbk yq �
n�p̧

j�0

j̧

i�0

p�1q
η
n,p
j,i 1bk σpan�|p|�jq bk � � � bk ϕ̃

�
σpan�|p|�i�jq bk � � � bk σpan�i�jq

�

bk � � � bk σpanq bk σpmq bk σ
2pa1q bk � � � bk σ

2pan�p�jq

Lϕ̃pmbk yq �

n�|p|¸
i�1

p�1qθ
n,p
i σpmq bk � � � bk ϕ̃

�
σpaiq bk � � � bk σpai�|p|q

�
bk � � � bk σpanq

�
p̧

i�1

p�1qξ
n,p
i σ

�
ϕ̃
�
an�|p|�i bk � � � bk an bk mbk σpa1q bk � � � bk σpai�1q

�	

bkσpaiq bk � � � bk σpan�p�iq,

Here we again work with the reduced complexes, so ϕ̃ P C̄ppA,Aq and pm bk yq
represents a class in C̄
pA,Aσq. For σ � id these operators appeared in [Ri, NTs3, Get].

7.3. The case of semisimple σ. A particularly well-behaved case is when the automor-
phism σ is semisimple (diagonalisable), that is, if there is a subset Σ� kzt0u and a decom-
position of k-vector spaces

A �
à
λPΣ

Aλ, Aλ � ta P A | σpaq � λau.

Note that we have 1 P Σ because σp1q � 1, and also that an algebra A equipped with
such an automorphism is exactly the same as a G-graded algebra, where G is a submonoid
of the multiplicative group kzt0u, as σpabq � σpaqσpbq implies AλAµ�Aλµ (thus the
monoid G� kzt0u resulting from σ P AutpAq is the one generated by Σ).

This grading yields decompositions of C
pA,Aq and C
pA,Aσq. The chain complex
C
pA,Aσq becomes G-graded by the total degree of a tensor,

C
pA,Aσq �
à
λPG

C
pA,Aσqλ, CnpA,Aσqλ �
à

λ0,...,λnPG
λ0���λn�λ

Aλ0 bk � � � bk Aλn ,

which is a decomposition of chain complexes of k-vector spaces. This coincides with the
decomposition into eigenspaces of T, and in particular we have

kerpid� Tq � C
pA,Aσq1, impid� Tq �
à

λPGzt1u

C
pA,Aσqλ.

It is also immediately seen that this decomposition is in fact one of para-cyclic k-vector
spaces, so we have:

Lemma 7.1. If A is an algebra over a field k and σ P AutpAq is a semisimple automor-
phism, then the para-cyclic k-vector space C
pA,Aσq is quasi-cyclic.

Unless G is finite, the decomposition of the cochain complex C
pA,Aq is slightly more
subtle. Given a cochain ϕ̃ P CppA,Aq, we denote by ϕ̃λ its homogeneous component of
degree λ P kzt0u. That is, ϕ̃λ : Abkp Ñ A is given on the homogeneous component

pAbkpqµ :�
à

µ1,...,µpPG
µ1���µp�µ

Aµ1
bk � � � bk Aµp

of elements of Abkp of total degree µ P G by

ϕ̃λ :� πλµ � ϕ̃ : pAbkpqµ Ñ Aλµ,

where πν : AÑ Aν is the projection onto the degree ν part of A. If we denote by

CppA,Aqλ :� tϕ̃ P CppA,Aq | ϕ̃ppAbkpqµq�Aλµu
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the set of all λ-homogeneous p-cochains, then ϕ̃ ÞÑ tϕ̃λuλPkzt0u defines an embedding

C
pA,Aq Ñ
¹

λPkzt0u

C
pA,Aqλ

of cochain complexes of k-vector spaces which is, however, not a quasi-isomorphism in
general. Still, we can split off the homogeneous part of degree 1,

C
pA,Aq � C
pA,Aq1 `
�
C
pA,Aq X

¹
λPkzt0,1u

C
pA,Aqλ

	
,

and C
pA,Aq1 consists precisely of those cochains ϕ̃ for which D1
ϕ̃ commutes with T.

Note that C
pA,Aq1 is not equal to C


Aσ
pA,Aq in general. We rather have:

Lemma 7.2. With the assumptions and notation as above, we have

CpAσ pA,Aq �
 
ϕ̃ P CppA,Aq | @λ P kzt0, 1u@µ P G : ϕ̃λ|pAbkpqλ�1µ�1

� 0
(
.

Proof. This follows from the fact that the operator D1
ϕ̃λ

maps a chain x bk y P

Cn�ppA,Aσqλ�1 � impid� Tq to xbk ϕ̃λpyq P Cn�1pA,Aσq1 � kerpid� Tq. �

From this it is clear that the projections onto the homogeneous parts leave
C


Aσ
pA,Aq�C
pA,Aq invariant, so C


Aσ
pA,Aq splits as well as a direct sum of cochain

complexes into C
pA,Aq1 and C


Aσ
pA,Aq X

±
λ�1 C


pA,Aqλ. We therefore obtain:

Lemma 7.3. If A is an algebra over a field k and σ P AutpAq is a semisimple automor-
phism, then C
pA,Aq1 is a comp subalgebra of C


Aσ
pA,Aq, and the induced morphisms

H
pCpA,Aq1q Ñ H


Aσ pA,Aq, H
pCpA,Aq1q Ñ H
pA,Aq

are injective and split as maps of H
pCpA,Aq1q-modules.

Example 7.4. Let k be any field, A be the polynomial ring krxs, and σ be specified by
σpxq � qx for some fixed q P kzt0u which is assumed to be not a root of unity. Then we
have Σ � tqn | n P Nu � G � N, and kerpid � Tq consists only of the (degenerate)
multiples of 1 bk � � � bk 1. Then CppA,Aq1 � k for all p while C


Aσ
pA,Aq consists of

all cochains that do not decrease the degree (where “decrease” refers to the ordering of
G � N). In particular, C0pA,Aq1 � k while C0

Aσ
pA,Aq � A, and as A is commutative,

we also have H0
Aσ
pA,Aq � A while H0pCpA,Aq1q � k.

7.4. Twisted Calabi-Yau algebras. More recently, the Hochschild homology groups with
coefficients in Aσ have been studied intensively for the fact that large classes of algebras
have been recognised to be what is nowadays called a twisted Calabi-Yau algebra:

Definition 7.5. An algebraA is a twisted Calabi-Yau algebra with modular automorphism
σ P AutpAq if the Ae-module A has (as an Ae-module) a finitely generated projective
resolution of finite length and there exists d P N and isomorphisms of right Ae-modules

ExtiAepA,Aeq �

"
0 i � d,
Aσ i � d.

The number d is then necessarily the dimension of A in the sense of [CE], that is, the
projective dimension of A P Ae-Mod, and the Ischebeck spectral sequence [I] leads to a
Poincaré-type duality

H
pA,Aq � Hd�
pA,Aσq. (7.1)
We refer to [BerSo, BrZh, Gi, Ke, Kr, LiW, VdB1, VdB2, VdBdTdV] and the references

therein for more information and background, and in particular plenty of examples.
It had been our aim in [KoKr1] to understand the duality (7.1) in the wider context of

Hopf algebroids and to observe that (7.1) is an isomorphism of gradedH
pA,Aq-modules.
From that point of view, the essence of the present paper is that (7.1) is even compatible
with the Gerstenhaber structure which implies Theorem 1.7. For σ � id this theorem has



BATALIN-VILKOVISKY STRUCTURES ON Ext AND Tor 47

been proven by Ginzburg in [Gi] and just as therein, the fact is more or less immediate
once the full differential calculus structure is established:

Proof of Theorem 1.7. First we need to observe that in the case of a twisted Calabi-Yau
algebra, we have H
pA,Aq � H
pCpA,Aq1q. Indeed, we know already that the duality
isomorphism (7.1) is an isomorphism of H
pA,Aq-modules, see, for instance, Theorem 1
in [KoKr1]. By Lemma 7.1 we know that the homology is in fact concentrated in degree
1 with respect to the G-grading. Hence the cohomology is also concentrated in degree 1,
that is, the embedding C
pA,Aq1 Ñ C
pA,Aq is a quasi-isomorphism.

Now Theorem 1.5 states in combination with Theorem 1 in [KoKr1] precisely that
H
pA,Aq and H
pA,Aσq form for a twisted Calabi-Yau algebra with semisimple modular
automorphism σ what Lambre calls a differential calculus with duality [La, Définition 1.2].
Hence [La, Corollaire 1.6] directly implies Theorem 1.7. �

REFERENCES
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Conférence Moshé Flato 2000, Part II (Dijon).
[Ts] B. Tsygan, Cyclic homology, Cyclic homology in non-commutative geometry, Encyclopaedia Math. Sci.,

vol. 121, Springer, Berlin, 2004, pp. 73–113.
[VdB1] M. Van den Bergh, A relation between Hochschild homology and cohomology for Gorenstein rings, Proc.

Amer. Math. Soc. 126 (1998), no. 5, 1345–1348, Erratum: Proc. Amer. Math. Soc. 130, no. 9, 2809–2810
(electronic) (2002).

[VdB2] , Calabi-Yau algebras and superpotentials, (2010), preprint, arXiv:1008.0599.
[VdBdTdV] M. Van den Bergh and L. de Thanhoffer de Völcsey, Calabi-Yau deformations and negative cyclic
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