BATALIN-VILKOVISKY STRUCTURES ON Ext AND Tor

NIELS KOWALZIG AND ULRICH KRAHMER

ABSTRACT. This article studies the algebraic structure of homology theories defined by
a left Hopf algebroid U over a possibly noncommutative base algebra A, such as for ex-
ample Hochschild, Lie algebroid (in particular Lie algebra and Poisson), or group and
étale groupoid (co)homology. Explicit formulae for the canonical Gerstenhaber algebra
structure on Exty (A, A) are given. The main technical result constructs a Lie deriv-
ative satisfying a generalised Cartan-Rinehart homotopy formula whose essence is that
TorY (M, A) becomes for suitable right U-modules M a Batalin-Vilkovisky module over
Exty (A, A), or in the words of Nest, Tamarkin, Tsygan and others, that Extyr (A, A)
and TorV (M, A) form a differential calculus. As an illustration, we show how the well-
known operators from differential geometry in the classical Cartan homotopy formula can
be obtained. Another application consists in generalising Ginzburg’s result that the coho-
mology ring of a Calabi-Yau algebra is a Batalin-Vilkovisky algebra to twisted Calabi-Yau

algebras.
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1. INTRODUCTION

1.1. Differential calculi. By its definition in terms of (co)chain complexes or derived
functors, the cohomology or homology of a mathematical object is typically only a graded
module over some base ring. Thus an obvious task is to exhibit its full algebraic structure,
and to understand which features of the original object this structure reflects.

For the (co)homology of associative algebras, this has been studied, amongst others, by
Rinehart [Ril], Gerstenhaber [Gel], Goodwillie [Gol, Getzler [Getl] and Nest, Tamarkin and
Tsygan, see e.g. [NTs3| [Ts]. The ultimate answer is that Hochschild coho-
mology and homology form what Nest, Tamarkin and Tsygan call a differential calculus:

Definition 1.1. Let & be a commutative ring.
(i) A Gerstenhaber algebra over k is a graded commutative k-algebra (V, <)

V=PV a-B=(-1)"BwaecVP aecVP BeVI,

peZ
with a graded Lie bracket {-, -} : VP11 ®, VIl — VPTa+1 on the desuspension
V[]:=Pvr!
peZ

of V for which all operators {~, -} satisfy the graded Leibniz rule
{ya= By ={r,al v B+ (=DMa~ {y,8}, eVl aeV™
(ii) A Gerstenhaber module over V is a graded (V, —)-module (€2, ~),
Q= @Qn, a~nz€eQ, p, acVP zxeQ,,

nez

with a representation of the graded Lie algebra (V[1],{-,-})
L:VPH R0, — Qep, a®pz— Lox),

which satisfies for o € VP*! 5 e V4, z € ) the mixed Leibniz rule
B~ La(z) ={Ba} ~z+ (=1)PLa(B ~ 3).

(iii) Such a module is Batalin-Vilkovisky if there is a k-linear differential

B:Q, - Q,.1, BB=0,
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such that £, is for « € V? given by the homotopy formula
Lo(z) =Bla ~x) — (—-1)Pa ~ B(z).

(iv) A pair (V, Q) of a Gerstenhaber algebra and of a Batalin-Vilkovisky module over
it is also called a differential calculus.

Be aware that the term “Gerstenhaber module” is used in several different ways in the
literature. The above one is based on the requirement that the operators

g i=a~-:0—>0Q
form a Gerstenhaber algebra quotient of V' with bracket

{La, Lﬁ} = [LOH ﬁﬂ]
and agrees (up to slightly different sign conventions) with the one used in [DeHeKall. One
will often additionally find that the mixed Leibniz rule

Locs=Latsg+ (=1)1aLs, a€V' BeV, (1.1)

is demanded. This is necessary for V @ (2 to become naturally a (square zero) extension of
V" as a Gerstenhaber algebra. For Batalin-Vilkovisky modules, Equation (I.1)) is satisfied
automatically, so the definition of these is essentially unequivocal.

The definition of a Gerstenhaber algebra itself also admits a modification in which the
operators {-, v}, rather than {~, -}, are assumed to satisfy the graded Leibniz rule. This had
been the convention in Gerstenhaber’s original paper [Ge]], cf. Remark [3.19) below.

1.2. Aims and objectives. The main aim of this paper is to further highlight the ubiquity
of such Batalin-Vilkovisky structures by giving conditions for

V := Exty(A, A), Q:=TorV (M, A)

to form a differential calculus when U is a left Hopf algebroid (a x ,-Hopf algebra) over
a possibly noncommutative k-algebra A; we will recall some background on left Hopf al-
gebroids in §2] below. Here we only remind the reader that the rings governing most parts
of classical homological algebra all carry this structure, so that our results apply for exam-
ple to Hochschild and Lie-Rinehart (in particular Lie algebra, de Rham, Lie algebroid and
Poisson) (co)homology as well as to that of any Hopf algebra (e.g. group (co)homology).

Besides for the case of Hochschild (co)homology with canonical coefficients M =
A that has been referred to above, our results are also already known for Lie-Rinehart
(co)homology due to the work of Rinehart and of Huebschmann [Ri, [Huel]]. However, the
Hopf algebroid generalisation is, in our opinion, not only interesting because of new special
cases to which it applies, but also leads to conceptually clearer statements and proofs, for
instance because of the manifest distinction of homology and cohomology coefficients
(right respectively left U-modules). Hence we hope that the paper is of interest also to
people working in different but analogous settings in algebra, geometry and topology, see
e.g. [BeFa, |GiTr, IMell Me2, [DoShV]| and the references therein.

1.3. The Gerstenhaber algebra. The Gerstenhaber algebra structure that we consider
can be viewed as a special case of Menichi’s operadic construction [Mel] that, in turn,
closely follows Gerstenhaber’s original work on Hochschild cohomology [Gel], or of
Shoikhet’s generalisation [Sho|] of Schwede’s homotopy theory approach to the Hochschild
case [Schw|. Both imply that the derived endomorphisms Ext¢ (1, 1) of the unit object 1
of a mildly restricted abelian monoidal category C carry a natural Gerstenhaber algebra
structure. So, morally speaking, it is a monoidal structure on the category of coefficients
that is reflected by a Gerstenhaber algebra structure on cohomology.

The aim of §3|below is to compute for C = U-Mod (where U is any bialgebroid)
explicit formulae for — and {-, -} in terms of the canonical cochain complex

§: C*(U, A) := Hom 4op (U®B2"*, A) — C*TH(U, A)
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that arises from the bar resolution of A. We refer to the main text for the notation used here
and below, but decided to copy all formulae into the introduction.
On the level of cochains ¢ € CP(U, A), 4 € C(U, A) the cup product turns out to be

(oY) (ul,. .. ,uPt?) = ga(ul, couP T (P uPT ) u”). (1.2)
We then define along the classical lines Gerstenhaber products o; by
(poi ) (ul, .., uPTi)

= ul,.. . uiTh D¢(ui, ooty i gpraTly)
fort =1,...,p, where the operator
D, : U®2? - U, (ul,...,uP) > go(u%l), . ,ul(jl)) >u%2) - _u1(72)

replaces the classical insertion operations used by Gerstenhaber. The o; are used to con-
struct the Gerstenhaber bracket as usual as

{, ¥} == poyp — (—1)Pllalyse (1.3)
with

P
pou o= (D) S (=l o; 4, nfi=n —1.
i=1
In §3| we will prove:

Theorem 1.2. If U is a bialgebroid over A, then the maps (I.2)) and (I.3) induce a Ger-
stenhaber algebra structure on H*(U, A) := H*(C*(U, A), 9).

When U is a left Hopf algebroid and U, € A°°-Mod is projective, the bar resolution is
a projective resolution, so H*(U, A) ~ Exty(A, A) and the above result yields Gersten-
haber brackets on various Ext-algebras. Even for Hopf algebras (i.e., for A = k) this has
been discussed still fairly recently, see e.g. [EFSo, [Tai, Me2].

1.4. The Gerstenhaber module. In [KoKr2]] we have studied the fact that for a left Hopf
algebroid U a left U-comodule structure on a right U-module M induces a para-cyclic
k-module structure on the canonical chain complex

CU,M) := M Qo0 (,Us)®4*

that computes Tor” (M, A) when U is a right A-projective.

The question whether this leads to a Batalin-Vilkovisky module structure on the sim-
plicial homology H, (U, M) of this para-cyclic object hinges on the compatibility between
the left U-comodule and the right U-module structure on M. In full generality, we define
for ¢ € CP(U, A) the cap product

Lw(m,ul, coou™) = (myut, . ,u”*pfl,gp(u"*lp‘,...,u") »u P, (1.4)

and the Lie derivative (see the main text for all necessary details)

n—|p| P
‘CLP — Z (_1)9;‘Ptn—\p|—i D:o gitp + Z(_l)éf\?tn—m D:p ti, (1.5)
i=1 =1

where 6 and £ are sign functions, D{, is D, applied on the last p components of an element
in C,, (U, M), and t is the cyclic operator of the para-cyclic module C, (U, M) as in (2.15).

In general, these do not induce a Gerstenhaber module structure on H, (U, M), but
only on the homology HM (U) of the universal cyclic quotient C<¥*(U, M), see 2.4 A
sufficient condition for the two to coincide is that M is a stable anti Yetter-Drinfel’d module
in which case the para-cyclic k-module is cyclic, see again §2.4]and §4.2]below. However,
a more general case that is ubiquitous in examples is the following:

Definition 1.3. A para-cyclic k-module (C,,d.,s.,t.) is quasi-cyclic if we have
C, =ker (id — t: ™) @im (id — 2.
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We refer to for the detailed explanation of this condition and of its consequences.
In complete generality, we introduce for any module-comodule M (see Definition[2.3) the
set C3,(U) < C*(U, A) consisting of those cochains for which the operators ¢, and L,
descend to C'e¥*(U, M). This turns out to be a subcomplex whose cohomology will be
denoted by H3,(U). Then we prove:

Theorem 1.4. For all modules-comodules M over a left Hopf algebroid U, ([.2) and
(1.3) induce a Gerstenhaber algebra structure on Hj;(U), and (1.4) and (1.5) induce a
H},(U)-Gerstenhaber module structure on HM (U).

1.5. The Batalin-Vilkovisky module. Once this is established, we introduce the operator

1
i~

J
L 7},7}1) o , Fie|i
S = > D (=11 ts,_p t" P DL el

where 7 is again a sign function, and prove that for ¢ € C},(U) the Cartan-Rinehart
homotopy formula

ﬁtp = [B -I-b,S@ +L¢] — lsp —S(;Sp
is satisfied. Here b and B are the simplicial resp. cyclic differentials on C*(U, M) and &
is the cosimplicial differential on C},(U). This implies our main result:

Theorem 1.5. For all module-comodules M over a left Hopf algebroid U, the pair
(H3,(U), HM(U)) carries a canonical structure of a differential calculus.

In the simplest case where A is an SaYD module, we already mentioned that
Ce¥¢(U, M) coincides with C, (U, M), and therefore we obtain:

Corollary 1.6. If M is a stable anti Yetter-Drinfel’d module over a left Hopf algebroid U
and if Uy € A°P-Mod is projective, then the pair (Exty (A, A), Tor? (M, A)) carries a
canonical structure of a differential calculus.

For the special case of commutative associative algebras, the earliest account of the set
of operators b, B, ¢, £, and S is due to Rinehart [Ril], where these operators are called (in
the same order) A, d, ¢, 6, and £, respectively. About twenty years later, the commutativ-
ity assumption was dropped and the Lie derivative appeared for 1-cocycles in [[Col p. 124],
where it is denoted by 6*, and in [Goll, where additionally the operators ¢ and S are intro-
duced, denoted by e and F, respectively. Finally, these operators were generalised from
1-cocycles to arbitrary cochains both in [Get], where they are denoted by b and B, as well
as in [GDTs, INTs3l INTs2, [Tsl], the notation of which we take over.

1.6. Applications. A prominent example that forces one to go beyond SaYD modules
is that of the Hochschild homology of an algebra A with coefficients in M = A, for
some automorphism o of A, that is, M is A as a k-module with A-bimodule structure
given by a » b « ¢ := abo(c). Whenever o is semisimple, the resulting para-cyclic k-
module is quasi-cyclic, and in the final section of the paper we prove that this implies
the following generalisation of a result of Ginzburg [Gil] from Calabi-Yau algebras (which
form the case in which o is inner) to twisted Calabi- Yau algebras (see Definition[7.5)), such
as the standard quantum groups [BrZhl], Koszul algebras whose Koszul dual is Frobenius
as, for example, Manin’s quantum plane [VdB1], or the Podle§ quantum 2-sphere [Ki]:

Theorem 1.7. If A is a twisted Calabi-Yau algebra with semisimple modular automor-
phism, then the Hochschild cohomology H*(A, A) of A is a Batalin-Vilkovisky algebra.

Besides this application, we also explain in the penultimate section of the paper how
one can use our formulae to obtain the classical operators in Cartan’s magic formula in
differential geometry, i.e., the Lie derivative, the insertion operator, and the de Rham
differential in the setting of Lie-Rinehart algebras (or Lie algebroids, and in particular the
tangent bundle of a smooth manifold) by taking for U the jet space JL, which is the dual
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of the universal enveloping algebra VL of a Lie-Rinehart algebra (A, L).

Acknowledgements. It is our pleasure to thank Ryszard Nest, Boris Shoikhet, and
Boris Tsygan for inspiring discussions and explaining to us some aspects of their work.
N.K. acknowledges funding by the Excellence Network of the University of Granada
(GENIL) and would like to thank the University of Glasgow for hospitality and support.
U.K. furthermore acknowledges funding by the Polish Government Grant N201 1770
33, the Marie Curie PIRSES-GA-2008-230836 network and the Royal Society - Russian
Foundation for Basic Research Grant of Misha Feigin and Dima Vasiliev, and thanks ITEP
Moscow for hospitality.

2. PRELIMINARIES

In this section we recall preliminaries on bialgebroids, Hopf algebroids, and cyclic ho-
mology, mainly from our two papers [KoKrl, [KoKr2] as we use therein the same notation
and conventions as here. For more detailed information on bialgebroids and Hopf alge-
broids and references to the original sources, we recommend Béhm’s survey [B].

2.1. Bialgebroids. Throughout this paper, A and U are (unital associative) k-algebras,
and we assume that there is a fixed k-algebra map

n:A® = ARy A® - U.
This induces forgetful functors
U-Mod — A°-Mod, U°-Mod — A°-Mod
that turn left U-modules NV respectively right U-modules M into A-bimodules with actions
arn<ab:=na®rbn, arm«b:=mnb®;a), abe A neNme M.

In particular, left and right multiplication in U defines A-bimodule structures of both these
types on U itself. Unless explicitly stated otherwise, we a priori consider U as an A-
bimodule using the actions », < arising from left multiplication in U. For example, in (2.1))
below the actions », < are used to define U ®, U, and later we will require U to be right
A-projective meaning that U, € A°°-Mod is projective.

Generalising the standard result for bialgebras (which is the case A = k), Schauenburg
has proved [Schl that the monoidal structures on U-Mod for which the forgetful functor to
A°-Mod is strictly monoidal (where A°-Mod is monoidal via ®,) correspond to what is
known as (left) bialgebroid (or x ,-bialgebra) structures on U. We refer, e.g., to our earlier
paper [KoKrl] for a detailed definition (which is due to Takeuchi [Tak]). Let us only recall
that a bialgebroid has a coproduct and a counit

A:U->U®,U €:U—> A, 2.1

which turn U into a coalgebra in A°-Mod. One of the subtleties to keep in mind is that
unlike for A = k the counit ¢ is not necessarily a ring homomorphism but only yields a
left U-module structure on A with action of w € U on a € A given by ua := e(u « a).
Furthermore, A is required to corestrict to a map from U to the Sweedler-Takeuchi product
U x4 U, which is the A°-submodule of U ®, U whose elements » , u; ®. v; fulfil

Duaru @ v =2, U @y v;<a, Vae A, (2.2)

In the sequel, we will freely use Sweedler’s notation A(u) =: u(1) ®a u(2)-
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2.2. Hopf algebroids. In the same paper [Schl], Schauenburg generalised the notion of a
Hopf algebra to the bialgebroid setting. What he called x ,-Hopf algebras will be called
left Hopf algebroids here. Again, we refer to [KoKrl] for the definition, examples and more
background information, and only recall that the crucial piece of structure (in addition to a
bialgebroid one) is the so-called translation map

U— U@ Ud, (2.3)
for which we use the Sweedler-type notation
U= Ugp & p0p U_.
Example 2.1. For a Hopf algebra over A = k, the translation map is given by
u > Uy ®r S(u2y),

where S is the antipode, and its relevance is already discussed in great detail by Cartan and
Eilenberg [CE].

We will make permanent use of the following identities that hold for the map (2.3), see
[Schi Proposition 3.7]:

Proposition 2.2. Let U be a left Hopf algebroid over A. For all u,v € U, a,b € A one has

Uy Quop . € U X400 U, 2.4)

Up() ®atgyu— = u®41€Us®4:U, (2.5)

Uy Oaor U)_Uzy = UQqor 1€ ,U Qqo0 Ug, (2.6)

Uy (1) ®a Ug(2) Qaor U = U1y Aa U2)4 Qacr U2)_, 2.7

Up Qacr U—(1) @aU—(2) = Utq Quor U— Q4 Ug—, (2.8)
(u0) ®uor (V) = ULV} Ruop V_U_, (2.9)

uru— = s(e(u)), (2.10)

e(u)rupr = w, (2.11)

(s(a)t(b))+ ®acr (s(a)t(b))- = s(a)@aer s(b), (2.12)

where in (2.4) we mean the Sweedler-Takeuchi product
U Xaop U := {3, U ®uor 0 € U @00 Ua | D, Ui < @ @uop v; = D, Us @uor 4 >V},

which is an algebra by factorwise multiplication, but with opposite multiplication on the
second factor, and where in and we use the source and target maps

s;t: A->U, s(a):=nla®i1), tb):=n(l®bd). (2.13)

For us, the relevance of the translation map stems mostly from the fact that it turns
the category U°P-Mod of right U-modules into a module category over the monoidal
category U-Mod. Explicitly, the product of N € U-Mod with M € U°P-Mod is the
tensor product of the underlying A-bimodules with right action given by

(n@®sm)u:=u_n®, muy, uwelUmeMmneN.

2.3. Module-comodules and anti Yetter-Drinfel’d modules. Throughout this paper, M
will denote a right U-module, and in fact one which is simultaneously a comodule:

Definition 2.3. By a module-comodule (with compatible induced left A-action) over a
bialgebroid U we shall mean a right U-module M € U°P-Mod for which the underlying
left A-module , M is also equipped with a left U-coaction

Ay M->U®, M, mw— m—1) ®a m)y-
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Recall, e.g. from [BI], that A, is then an A°-module morphism M — U, x 4 , M, where
U, x, ,M is the A°-submodule of U, ®, ,M whose elements Zi u; ® 4 m; fulfil

Duaru;@am; =, u;®am;<a, Yae A (2.14)

The following particular class of module-comodules was introduced in [HKhRS] for
Hopf algebras and in [BS] for left Hopf algebroids:

Definition 2.4. A module-comodule over a left Hopf algebroid is called an anti Yetter-
Drinfel’d module (aYD) if the full A°-module structure , M, of the module coincides with
that underlying the comodule, and if one has

() -1y ®a (M) (o) = w11+ (1) ®a M(0) U (2)
for all m € M,u € U. A module-comodule is called stable (SaYD) if one has
Mo)yM(—1) = m.
2.4. The (para-)cyclic k-modules C, (U, M) and C<(U, M). The Batalin-Vilkovisky

modules that we are going to study in this paper are obtained as the simplicial homology
of para-cyclic k-modules of the following form [KoKr2]:

Proposition 2.5. For every right module M over a bialgebroid U there is a well-defined
simplicial k-module structure on

CU,M) := M @,ov (,Uy)®4*

whose face and degeneracy maps are given by

(myut,. .. e(u™) »u™ 1), ifi=0,
di(m,z) =13 (m,..., " " w®)  if1<i<n—1,

(mut,u?, ... u") ifi=n,

(m,ut,... ,u", 1) if j=0, (2.15)
sj(m,z) =< (m,...,u" 9, Lu" It un)if1<j<n—1,

(m, 1,ut, ... u™) ifji=n,

Here and in what follows, we denote the elementary tensors in C,(U, M) by
(m,z) := (m,u*,...,u"), meMu', .. u"el.

For a module-comodule M over a left Hopf algebroid U, the k-module C, (U, M) becomes
a para-cyclic k-module via

th(m,x) = (m(o)ui, ui, coulul - ~ul (—1))- (2.16)

This para-cyclic k-module is cyclic if M is a stable anti Yetter-Drinfel’d module.

Recall that this means that the operators (d;, s;, t,,) satisfy all the defining relations of
a cyclic k-module in the sense of Connes (see e.g. [Co] or [L] for the definition of a cyclic
k-module), except for the one that requires that

T, = tﬁ“

equals the identity (we do not even require it to be an isomorphism) which, as mentioned
in the proposition, is only satisfied when M is an SaYD module.

The relations between the operators (d;,s;,t,) imply that T,, commutes with all of
them, so they descend to well-defined operators on the coinvariants

Cee(U,M) :=C,(U,M)/im (id —T,),
and hence this becomes a cyclic k-module.

In this paper, we will not study the cyclic homology of this object, but rather the sim-
plicial homology of both C, (U, M) and C**(U, M):
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Definition 2.6. For any bialgebroid U and any M € U°P-Mod, we denote the simplicial
homology of C, (U, M), that is, the homology with respect to the boundary map
n
b := Z(—l)idi, (2.17)
i=0
by H, (U, M) and call it the homology of U with coefficients in M. For a module-comodule
over a left Hopf algebroid, we denote the simplicial homology of C<¥*(U, M) by HM (U).

In general, H, (U, M) differs from HM (U), see [HaKr2]] for an example. However, if
C.(U, M) is quasi-cyclic in the sense of Definition we can apply [HaKrll, Proposi-
tion 2.1]:

Proposition 2.7. If C, is a quasi-cyclic k-module, then the canonical quotient map
C, — C,/im(id — t:1)

is a quasi-isomorphism of the chain complexes that are defined by the underlying simplicial
k-module structures of C, and C, /im(id — t:T1), respectively.

This means that if C, (U, M) happens to be quasi-cyclic, then classes in H (U) can be
represented by cycles in C, (U, M) that are invariant under T,.

Mostly, we will now work on the reduced (normalised) complexes of C, (U, M) resp. of
C=¥(U, M) by the subcomplex spanned by the images of the degeneracy maps of these
simplicial k-modules. Being slightly sloppy, we will denote operators that descend from
the original complexes to these quotients by the same symbols if no confusion can arise.
Furthermore, we shall drop in all what follows the subscript on t and T indicating the
degree of the element on which it acts.

2.5. The operators N,s_; and B. On every para-cyclic k-module, one defines the norm
operator, the extra degeneracy, and the cyclic differential
n
N:= Z(—1)mt", S_1 = tsp, B =(id —t)s_1 N. (2.18)
i=0
Recall that B coincides on the reduced complex C,(U, M) with the map (induced by)
s_1 N, so we are also slightly sloppy about this and denote the latter by B as well, as we,
in fact, will only consider the induced map on the reduced complex.
It follows from the para-cyclic relations that one has

B2 = (id— T)(id — t)s_15 1N, bB+Bb=id—T, (2.19)

so in general B does not turn H,(U, M), but only HM (U), into a cochain complex.
In the case of an SaYD module M one can give a compact expression for B: one first

computes directly with the help of 2.3)), (2.6), (2.7), and (2.8) the powers of t:

Lemma 2.8. If M is an SaYD module, the i*™ power for 1 < i < n of the cyclic operator
t can be expressed as

i _ IR R S | noom 1 1 i1
t(m,x)—(m(o)u+(2) uligyuly,ul s ul ul u_m(,l),u+(1),...,u+(1)),
where we abbreviated here, as elsewhere, (m,z) = (m,ul, ..., u").

Then a further direct computation gives:

Lemma 2.9. If M is an SaYD module, the action of B = s_1N on C,(U, M) can be
expressed as

Sle(m, (E) = (—1)m(m(0)u}|_(2) T ui—(Q)’ 'Uzi,+17

0 (2.20)

n n 1 1 %
...,u+,u7---ufm(_1)7u+(1)7...,u+(1)).

n

3
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Example 2.10. For n = 1, the above expression reduces to

s_1N(m, u) = (mo), us, u—m(_1)) — (M(0) Uy (2), U—T(—1), U (1))-

In particular, for a Hopf algebra over A = k this reads

s_iN(m,u) = (moy, u(ry, S(u))m—1y) — (meoyu(z), S(us))me1y, u)).-

3. THE GERSTENHABER ALGEBRA

Unless stated explicitly otherwise, U is throughout this section an arbitrary left A-
bialgebroid. We will first give explicit formulae for a canonical DG coalgebra structure
A* on the chain complex (P,b’) that is obtained when applying the bar construction for
the comonad U ® 4o» - to the unit object A € U-Mod. Applying Homy (, A) to P yields
a cochain complex (C*(U, A), ). On the underlying graded vector space we define the
structure of a (nonsymmetric) operad with multiplication. This, in particular, defines a DG
algebra structure (C*(U, A), -, ¢) and a Gerstenhaber algebra structure on its cohomology
H*(U, A). The fact that this DG algebra coincides with the one obtained by dualising the
DG coalgebra structure on P proves that as long as U is a right A-projective left Hopf
algebroid, H*(U, A) is the cohomology ring Exty (A, A) that we studied in [KoKrl].

We will throughout use the convention in which DG algebras are cochain complexes
while DG coalgebras and DG modules over DG algebras are chain complexes.

3.1. The bar resolution P. The bar construction for U ® 4ev - applied to A € U-Mod
yields the chain complex (P,, b’) of left U-modules, where

Pn = (>U<)®Aopn+1

is a U-module via left multiplication in the first tensor component, and b’ is given by

n—1
b'(u®,...,u") = Z (=D, ... utuh ™)
i=0
+ (=)™, .. u" e (u) »uTh).

Note that the tensor product over A°P is chosen in such a way that

(W, .. arut uth L u) =

0 i i+t )
holds, which is necessary for b’ to be well-defined. We recall [KoKr1l Lemma 2]:

Lemma 3.1. If U is a left Hopf algebroid and U, € A°P-Mod is projective, then (P,,b’)
is a projective resolution of A € U-Mod.

3.2. The DG coalgebra structure on P. As U-Mod is monoidal, so is the category of
chain complexes of U-modules and our aim is to turn P into a coalgebra in this category.

Definition 3.2. We define

ni

A?:P—>P®,P, A", ... ,u" :=ZAP (W®,...,u"),
i=0

where for¢ = 0,...,n the maps A?, : P, —» P; ®4 P,,_; are given by
(..., u") — (u?l), . ,uél)) ®a (u(()2) - -uéz),u”l, coou”).
We verify by direct computation:

Lemma 3.3. AF is coassociative.
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Proof. For j =0,...,1, we have
(A5 ®aidp,_) An)(u’,... u")
= (u?l),...,uzl))(@,; (uo2 ---u{Q), z$1’~"7“21))
@1 (! vy 1P ),
and for j =0,...,n — 1, we have
((idp, @4 AL ”)Aﬁi)(uo,...7u”)

=(u(()1),... u 1)) ®a (u02 uz Vuéff,...,uﬁf)
®. (ulyy = usyuig) - uggy ).

So for AF to be coassociative, we need

i Z ) ®a (Ul Uy Uy s uiy)
R4 (u(3 g3) g)l---ub),u”l,...,u")
= 3 S ) B oy )
r=0s= ®. (U?3) ) (3)u’(”+)1 _ug)s’ WL,

which is seen to be correct by some basic substitution in the indices, writing first
n 1 n o n
IPILDIPH
i=0j=0 j=0i=j
and then substituting j by r and ¢ by s = 7 — j. U

Proposition 3.4. If we define
ef=e:Ph=U— A
and e”|p, = 0 forn > 0, then (P,b', A" &) is a differential graded coalgebra.
Proof. Both the counit property and the Leibniz rule
APb = (b ®, idp +idp @, b') A7 3.1)

are easily verified. We only remark that the above Equation (3.1)) is meant to be interpreted
using the Koszul sign convention, meaning that we have forall ce P,,d € F,

(idp ®4 b')(c®4 d) = (—1)Pc®. b'(d),
but (b’ ®, idp)(c®. d) = b’(¢c) ®, d, as idp is of degree 0. O

3.3. Comparison of P and P ®, P. Recall that so far it is sufficient to assume U to be a
left A-bialgebroid which is the algebraic underpinning of the fact that U-Mod is monoidal
with unit object A. Using, for example, the standard spectral sequence of the bicomplex
P, ®, P,, one easily verifies that the tensor product P ®, P has homology A ®, A ~ A;
SO it is, hke P, a resolution of A. However, only when U is a left Hopf algebroid, P
and P ®, P are necessarily quasi-isomorphic since in this case the tensor product of two
projectives in U-Mod is projective [KoKrl| Theorem 5]. Proposition [3.4]tells us that

A" :P>P®,P, idp®,ef:PR,P—P

are morphisms of chain complexes that are one-sided inverses of each other. In the left
Hopf algebroid case the following proposition provides a homotopy that shows that the
maps become in this situation quasi-inverse to each other. Note that this proposition is true
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for all left Hopf algebroids, assuming no projectivity of U over A (although, of course,
without that P is not necessarily a projective resolution).
Proposition 3.5. If U is a left Hopf algebroid over A, then the maps
hp @Pi®APj_’ (‘B P, ®. P

1+j=n k+l=n+1
given by
W, u) @a (00, 07)
i
— Z (—1)1(u3(1),...,u1(1)) ®a (uﬂ_@) ~--u:_(2),u’:rl, BN VA TSI ~~ugv0,v1,...,v7)
r=0

define a homotopy equivalence
A" (idp ®4 €”) ~ idpg , P,

so AP and idp ® 4 ¥ are mutual quasi-inverses and we have P ~ P ®, P as objects in
the derived category D~ (U).

Proof. In degree n = 0, the homotopy is
ho t u®a v uy (1) ®a (Up(2), u=v) = u(1) @ (U(2) 4, U2)-V)
and using the bialgebroid axioms as well as (2.4)-2.12), we get
((idy ®4 b") ho)(u @4 v) = u(1) ®a (U2)4u(2)—v — e(U2)_v) » U2)4)
= u(1) ®a e(u(z)) v v — u() @a e(e(v) »u2)=) »u2)4
= u(1) 9 &(u(2)) ®a v — ug) ®a e(u)-) » ugz)yy < £(v)
= U@ v — u) @4 uz) < (V)
= (ldyg. v — A” (idy ®. EP))(U ®4 V).
Analogously, one computes that one has also for n > 0
h,_1(b'®,idp +idp ®4 b') + (b’ ®, idp + idp ®, b') hy,
= idp — AP (idp ®, eh). O
This fact demonstrates, on the one hand, the homological difference between the bial-
gebroid and the left Hopf algebroid case, and it also illustrates, on the other hand, that the

cup and cap products we define below are indeed the derived versions of the composition
and contraction product that we dealt with abstractly in [KoKrl].

3.4. C*(U, N) and the cup product. We retain the assumption that U is an A-bialgebroid
and further denote by P the DG coalgebra defined in the previous sections.

Definition 3.6. We define for all N € U-Mod the cochain complex

C*(U,N) := Homy (P,,N)
with coboundary map 5= Homy (b, N), that is,

6:CP(UN) - CP*Y(U,N), 0¢:= @b
Furthermore, we define the cup product — : C*(U, A) @, C*(U, N) — C*(U, N) by
(@~ D)(e) == D(@(cqy) b e) = Pleq)) » lce),
where ¢(1) ®. c(2) is A”(c) in Sweedler notation.
Note that for N = A the cup product becomes simply the convolution product

(¢ = 9)(e) = pleq)dle), (32)

and that Proposition[3.4]implies:
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Corollary 3.7. (C*(U, A),b,<) isa differential graded algebra and (C*(U,N),6,~) is
a differential graded left module over C* (U, A).

By U-linearity of 1[) eC *(U, A) we obtain in a standard fashion the isomorphism
CP(U,N) =5 CP(U,N) := Hompep (U®4PP, N), tp > tp:=9(1,-).  (3.3)

The inverse map is given by

e {p: (U0, uP) > ulp(ul, .. uP) )
Under this isomorphism, the differential 4 is transformed into

§:C*(U,N) — C* (U, N)

given by
So(ut,...,uP™) = utp(u?, ... uPth)
P
+Z(—l)icp(ul,...,uiu”l,...,uPH) (3.4)
i=1
P () v )

Observe that by duality, C* (U, A) carries the structure of a cosimplicial k-module. This
will be used in Definition|5.5|when defining the associated reduced complex C* (U, A).
Finally, the cup product can be expressed on C* (U, A) as follows:

Lemma 3.8. The cup product assumes on p € CP(U, A), v € C1(U, A) the form
(o~ )(ut,... ,uPt9) = go(ul, oo uPT (P P T up). (3.5)

Proof. For U-linear ¢ : P, — A and 1[1 : P, — A, the explicit meaning of l) is on an

element P, 3 c:= (u°,...,u")

(6o 1/3)(0) _ c,f)(u(()l), .. ,ufl))w(u&) e uI(JQ), wPtL o u™) ifp+q=mn,
0 otherwise.

Using the U-linearity of the cochains, the Sweedler-Takeuchi property (2.2, the fact that
all A-actions on U commute, and the property of the tensor product in question, we obtain

@(U?I)a RS u;?]))'(z)(u%) e uz()z)v UP+1’ AR 7un)
= af)(u?l), ... ,ul()l))a(ugz) . -uf2) <1, uPtt 7u"))
= L,E)(u(()l) a g(u(()Z) “ E(ué) i a(uzgz)) .. '))’“%1)’ (et uPt ) . ul()l))
=l ul,. ., P (1, uPt L uPT) > uP).

Applying now the isomorphism (3.3) yields the claim. O

In the following, we will mostly be working with this alternative complex (C* (U, A), )
and small Greek letters will usually denote cochains therein.

3.5. The comp algebra structure on C* (U, A). For the construction of the Gerstenhaber
bracket, we associate to any p-cochain ¢ € CP(U, A) the operator

D, : U®ar? - U, (ul,...7up)ng(u%l),...,u’(’l)) l>u%2)---up2). (3.6)

For zero cochains, i.e., elements in A, this becomes the map A — U, a — s(a), where s is

the source map in (2.13).
These operators provide the correct substitute of the insertion operations used by Ger-

stenhaber to define what he called a pre-Lie system in [Gell and a (right) comp algebra in
[GeSchl. Indeed, we can now define, in analogy with [Gel, the Gerstenhaber products

o; : CP(U, A) @y, CU(U, A) - CPTI7H(U, A), i=1,...,p,
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by
(Lp Oj 1p)(u17 ey up+q—1)

= p(ut, . u T Dy (T T Pt G.7)
and for zero cochains we define a o; ¢ = 0 for all ¢ and all v, whereas
poja:=pu,. .., u" s(a),ul, ... uP™h).
These Gerstenhaber products satisfy the following associativity relations:
Lemma 3.9. For p € CP(U, A), vp € C1(U, A), and x € C"(U, A) we have
(pojX)Cirrat  ifj<i,
(poi)ojx=qwoi(Woj s1x) fi<j<q+i,
(Pojqrix) ot ifj=q+i.
Proof. Straightforward computation. (]

The structure of a right comp algebra is completed by adding the distinguished element
(analogously to [GeSchl p. 62])

w = emy € C(U, A), (3.8)
where m, is the multiplication map of U.
Remark 3.10. The associativity of m; implies p 01 pt = p oo p. Furthermore, one has
D, =my, (3.9
as will be used later.

Remark 3.11. Equivalently, this structure turns O(n) := C™(U, A) into a nonsymmet-
ric operad in the category of k-modules, see e.g. [LV] §5.8.13] or [MaShnSt, Mel]], with
composition
O(n) (9 O(ll) Rk - - Qk O(Zn) — O(’Ll + -+ Zn)

given by

» O ¢1 ®k -+ - Qk ’(/Jn = @(lel(')a Dwz(')v LR Dlﬁn('))'
Together with y, the operad O becomes an operad with multiplication whose unit is id, €
CO(U, A).

3.6. The Gerstenhaber algebra H* (U, A). Recall that |n| =n — 1.
Definition 3.12. For two cochains ¢ € C?(U, A), € C1(U, A) we define

P
ot = (—1)lelldl Z(_l)lq\lil(p o; 1 € CIPTal(U, A)
i=1

and their Gerstenhaber bracket by
{p, 9} := o) — (—1)lPllely5p, (3.10)
Furthermore, one verifies by straightforward computation:
Lemma 3.13. For p € CP(U, A) and + € C4(U, A), we have
o= (nor@)opr1 = (noz)or e

and

op = {p, ¢}. G.1D)

We can now state the main theorem of this section (cf. Theorem [I.2), which follows
from Gerstenhaber’s results. First, let us agree about notation:
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Definition 3.14. For a bialgebroid U and every N € U-Mod we denote the cohomology
of C*(U, N) by H*(U, N) and call this the cohomology of U with coefficients in N.

Remark 3.15. If U is a right A-projective left Hopf algebroid so that P is, in view
of Lemma a projective resolution of A € U-Mod, then we have H*(U,N) =~
Exty (A, N), but in general we use the symbol H* (U, N) for the cohomology of the ex-
plicit cochain complex C*(U, N).

Theorem 3.16. If U is a bialgebroid over A, then the maps (3.3) and induce a
Gerstenhaber algebra structure on H*(U, A).

Proof. 1t is a general fact that by using the above formulae for §, — as definitions, any right
comp algebra becomes a DG algebra on whose cohomology {:, -} induces a Gerstenhaber
algebra structure, see e.g. [GeSchl, McCSml] and the references therein. O

Remark 3.17. The fact that the cup product is graded commutative up to homotopy fol-
lows abstractly using the “Hilton-Eckmann trick”, see, e.g., [Sul] or [KoKrl, Theorem 3]
for the concrete bialgebroid incarnation. In Gerstenhaber’s approach it follows from

(=Dl pady — (=1)1916(po9) + 6oy = ¥ —  — (1)l < 1),

which means that § (o)) = (—1)‘1(1/1 —p—(=1)Pp 1/1) if ¢ and v are cocycles, so
their graded commutator is a coboundary.

Remark 3.18. If A is commutative and 7 factorises through the multiplication map of A,
that is, if the source and target maps of U coincide so that a > u = wu < a holds for all
a € A,u € U, then the tensor flip

T:UR@,U ->UR®,U, u®Q,v—v@®4u

is well defined. Consequently, it makes sense to then speak about cocommutative left Hopf
algebroids, meaning that 7 o A = A. For example, this holds for the example of the
universal enveloping algebra of a Lie-Rinehart algebra, see In this case an explicit
computation shows that the Gerstenhaber bracket {-,-} vanishes which is clear also for
abstract reasons, see [Tail.

Remark 3.19. Before moving on we also quickly remark that the reader may find formulae
for Gerstenhaber brackets in the literature that use a slightly different sign convention.
Some confusion that arises from this can be avoided by using the notion of the opposite
(V,~op, {"s ' }op) Of a Gerstenhaber algebra (V, -, {-,-}): this is defined by

Uop UVi=0—u, {u,vlop:=—{v,u},

and it is verified straightforwardly that this indeed is a Gerstenhaber algebra again. When
defining a Gerstenhaber algebra from a right comp algebra, the same changes can be made
on the level of the comp algebra itself. The differential then has to be rescaled on degree p
by a factor of (—1)? in order to obtain a DG algebra again.

4. THE GERSTENHABER MODULE

This section introduces the structures on homology that correspond to the cup prod-
uct and the Gerstenhaber bracket on H*(U, A): the cap product between H*(U, A) and
H,(U, M) and then a Hopf algebroid generalisation of the Lie derivative that has been
defined by Rinehart on Lie-Rinehart and Hochschild (co)homology. This, for module-
comodules M over a left Hopf algebroid U, will be defined only on H (U) rather than on
H,(U, M), and dually it will be necessary to replace H*(U, A) by a Gerstenhaber algebra
H;,(U) that is the cohomology of a suitable comp subalgebra C;,(U) € C*(U, A) .
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4.1. C,(U, M) and the cap product. The first steps in this section are completely dual
to those in the previous one. First of all, we define the homology of a bialgebroid with
coefficients in a right module. The following is the counterpart of Definition 3.6}

Definition 4.1. For any bialgebroid U and any M € U°P-Mod we define

C.(U,M):=M®yu P,,

which becomes a chain complex of k-modules with boundary map b:=idy ®u b Using
the coalgebra structure A of P, we furthermore introduce the cap product

~: CP(U, A) @ Co(U, M) — Cp_ (U, M)

b
’ P~ (Mm®u c) :=m®u 1) < P(c2))- 4.1)
Analogously to (3.3)), we have an isomorphism of k-modules
Co(U, M) =5 Cp(U, M) = M @00 UBaP" (4.2)
given by
mey (u,--- ,u") - (mu’,ut, ... u").

Here and in what follows, we are again using the notation
(m,ut, ..., u™) := Mm@ aop U @00 -+ @ 400 u"
to better distinguish the tensor product over A°P from that one over A.

Remark 4.2. As a straightforward computation shows, the simplicial differential b from
lb differs from the one induced by b only by a sign factor: if we suppress the isomor-
phism (4.2)), then we have on C,, (U, M)

b= (_1)n67
so the two boundary maps yield the same homology H, (U, M).

Remark 4.3. In analogy with Remark 3.13] if U is a right A-projective Hopf algebroid,
then we have H, (U, M) ~ Tor" (M, A).

Let us compute what happens to the cap product under the isomorphisms (3:3) and @#.2):
Lemma 4.4. The cap product of ¢ € CP(U, A) with (m,x) € C,, (U, M) is given by
o~ (m,x) = (m,u',. .. u"" P <,0(u”_|’"7 conu™) ru TP, (4.3)
where we again use the abbreviation (m,x) = (m,u', ... ,u") asin Proposition

Proof. For ¢ € CA’”(U7 A) (recall that these are the U-linear cochains), we have by a com-
putation similar to that in the proof of Lemma 3.§]

@~ (m®U (uo,...,u"))

= ‘»5(“(()2) e u?;)p, u P Mm@y (“[()1)7 . ,u?f)p)
= E(’LL?Q) .. u&jp < @(1,un7‘p|, CLu™))m ®u (u?l), e ,u?l_)p) 4.4)
=m®u (ufy) @ e(ulyy - ufy ), u P e L) s a7
=mQu (uo7 o ’un—p—17¢(17un—\p\7 Cu™) ,un—p)‘
The claim follows by applying the isomorphisms (3.3)) and (4.2). (]

In the sequel we will carry out extensive computations concerning algebraic relations
satisfied by the operators

tp =@~ :Cp(U M) — Cp_p(U M).
As a first illustration, we formulate the following analogue of Corollary [3.7]in this notation.

This could still be nicely written out using ~, but the computations in the subsequent
sections will be too complex for that.
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Proposition 4.5. (C,(U, M), b, ~) is a left DG module over (C*(U, A), d,~), i.e.,
bolby = lpogs 4.5)
[b,te] = tsp, (4.6)
where [-, -] denotes the graded commutator, that is, we explicitly have for ¢ € CP(U, A)
[b,tp] = biy — (—=1)Pe, b,
as Ly, is of degree p while b is of degree 1.

Proof. This follows instantly from the DG coalgebra axioms when using the original pre-
sentation (4.1)) for the cap product. O

Consequently, (H,(U, M), ~) is a left module over the ring (H* (U, A), ).

4.2. The comp module structure on C,(U, M). A finer analysis, parallel to the one car-
ried out for C*(U, A) in shows that C, (U, M) carries a structure that we will refer to
as that of a comp module over C*(U, A): fori = 1,...,n — |p| we define

o, : CP(U,A) @ Cn(U, M) — C,,_ (U, M)
by
oo (m,z) = (m,ut,...,u""" Dy(u',... LD i),
Observe that for zero cochains, i.e., for elements in A, this means that

ae;(m,x):=(m,ut,...,u" 1 s(a),u’,...,u"), i=1,...,n+1,

where s is the source map from (2.13).
These maps satisfy the following associativity conditions, as is verified by straightfor-
ward computation:

Lemma 4.6. Let o € CP(U,A), v € CYU, A), and (m,z) € Cp(U, M). Then, for
j=1,...n—|q| one has

e (¢ eiy)q (m,x)) ifj<i<n—|p|—lql,
poi (Vo;(mz)) =4 (poj_ip1¥)ei(mx)  ifj—Ipl <i<y, 4.7)
b i (¢ @i (m,x)) fl<i<j—lpl.
Of course, the middle line in (4.7) can also be read from right to left so as to get an idea
how an element ¢ o, ¢ acts on C, (U, M) via e;.

Remark 4.7. Despite the similarity, the above associativity relations are quite different
from those that hold for the o; in a comp algebra. For example, there seems to be no
way to express the cap product ~ in terms of i and e; by a formula analogous to the one
given in Lemma [3.13] for the cup product . However, Lemma .17 below will provide a
counterpart of the second part of Lemma [3.13]

For later use, let us also note down the following relations:

Lemma 4.8. Let ¢ € CP(U,A), v € CUU,A), and (m,x) € Cp(U,M). Fori =
1,...,n —|p+ q| one has
((P ~ ’(/}) ®; (m7 .’IJ) e (SO ®; (1/} ®it+p (m7 1‘))), 4.8)
pei (¥~ (m,x)) Y~ (poi (m,x)). 4.9)
Proof. Eq. {.8) is easily proven by means of the Sweedler-Takeuchi property (2.2) and

(3.9). Eq. (&.9) follows from the fact that the coproduct of U is an A°-module homomor-
phism. (]
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Similar as for the cap product with a fixed cochain, we introduce a new notation for the
operator ¢ o, -, where ¢ € CP(U, A), in order to keep the presentation of our computations
below as compact as possible: whenever p < n and fori = 1,...,n — |p|, we define

D:;h Cn(U7M) _’Cnf\p|(U7M)7 (m,x) = Qe (m,x)
In particular, we will make frequent use of the short hand notation
/. D-lpbt
D, := Db,
For example, in this notation we have:

Lemma 4.9. For any ¢ € C?(U, A), for 0 < p < n we have on C,,(U, M)

doD, = g, (4.10)
d;D, = Dl diyp; for i=2,...,n—|pl, 4.11)
siD,, = D st for j=1,...,n—|pl (4.12)

Proof. Using 2.15), (#.3), and with D, as in (3.6), Eq. (4.10) follows directly from the
identity

eD, = o,
which we prove now: one verifies in a straightforward manner that
A UBAP — (UDA7P) @, .U, (uls. o uP) = (ufyy,. b)) @ ulyy - by

defines a right U-comodule structure on (U®4°?P),. Using source and target maps from
(2.13) and denoting by m,, the multiplication in U, we can then write

eDy, = emy (s ®id)A = emy (sp @ se) A = (¢ Q@ €)A = pmyor (Id @ te) A = ¢,

which holds by A-linearity of a bialgebroid counit, the right A-linearity of ¢ and the fact
that A is a coaction.

Eqgs. @I1) and @.12) follow by straightforward computation, using the fact that the
involved face and degeneracy maps can be written as

di(m,z) = pe,_;(m,zx) o
’ T fori,j=1,...,n—1,
sj(m,a) = (elu) op—py (m,2), ’
where (m, x) € C,(U, M), and then applying the properties (4.7). O

4.3. The comp algebra C,(U). When U is a left Hopf algebroid (not just a bialgebroid
as before) and M is a module-comodule, the para-cyclic structure on C, (U, M) given in
Proposition 2.3 relates the products e; to each other:

Lemma 4.10. For any ¢ € C?(U, A), we have for 0 < p < nand (m,x) € C,(U, M)
t i , ,=1,...,n—p,
oo (t(m,z)) = (o1 (m,z)) forz. n—p @4.13)
t(tps_1(m,z)) fori=n-—|p.

Proof. The case for 1 < i < n — pis a simple computation using (2.7) and 2.12):

pe; (t(m,ul,...,u"))
= (m(o)u}r,ui,...,ui,Dga(ufl,...,u”p),ufpﬂ,...,ui,u’l---ul_m(,l))
= (m(o)u}‘_,uf_,...,(Dw(ui+1,...,ui+p))+,...

o u s (D (Ut L ut TP e ulmyy)
= t((p 01 (myul,. .. ,u"))

As for the case i = n — |p|, one first observes that no aYD condition (i.e., compatibility
of U-action and U-coaction) is needed for the explicit computation, which we leave to the
reader. O
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The comp module structure of C,(U, M) does not descend, for general module-
comodules M over left Hopf algebroids, to the universal cyclic quotient C=<(U, M ). Since
we will have to work from some point on on the latter, we define:

Definition 4.11. If U is a left Hopf algebroid and M is a module-comodule, we define
Cy(U) :={peC*(U,A) | DL (im(id — T)) Sim(id — T)Vi}.

Obviously, one has C4,(U) = C*(U, A) whenever M is an SaYD module. Observe
furthermore that the middle relation in (4.7) immediately implies:

Lemma 4.12. C3,(U) < C*(U, A) is a comp subalgebra.
In particular, it is a DG subalgebra, so it makes sense to talk about its cohomology:
Definition 4.13. The cohomology of C,(U) will be denoted by H;,(U).

Applying Eq. (4.13) repeatedly, one obtains that on C**(U, M) all operators D" can be
expressed in terms of Dlw and the cyclic operator. More precisely, Lemmarespectively

Eq. @9) imply:
Lemma 4.14. If M is a module-comodule over a left Hopf algebroid U, then for any
0 e CV(U) and ) € C1,(U) we have

Dy = " PITiDL gt i=1,....,n—|p, (4.14)

and _ ‘ _ _
Pl iD e, = g PITID) e (4.15)
as operators on C&<(U, M).
We conclude this subsection with another technical lemma:
Lemma 4.15. Let M be a module-comodule over a left Hopf algebroid U and p € C%,(U)
as well as 1 € C3,(U).

(i) If is a cocycle, then the equation
q
1D, = > (=1)""ID}d; + (—1)7dtD)t" (4.16)
i=1
holds for 0 < ¢ < non C*(U, M).
(ii) For 0 < p < n, the identities
D, =ti,s_1t" 4.17)
and
Lps—1 =t""1PID] ¢ (4.18)
hold on C&<(U, M).

Proof. All statements are either obvious or follow by a straightforward computation. For

example, (.16) is proven with the help of (#.14) and (3.4). Egs. and (@.I8) follow
directly from (4.13) as we have id — T = 0 on C*(U, M). O

4.4. The Lie derivative. Now we define a Hopf algebroid generalisation of the Lie de-
rivative that will subsequently be shown to define a Gerstenhaber module structure on
HM(U). Throughout, U is a left Hopf algebroid and M is a module-comodule.
Definition 4.16. For ¢ € C?(U, A), we define

Ego 1 Cp(U, M) — n—\p|(U7 M)
in degree n with p < n + 1to be

n—|p| o ‘ ) P o _
L= Y (=1 nlel=ipy pite o N (—)ETeliD e (4.19)

i=1 1=1
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where the signs are given by
;" :=Ipl(n—1il), &P =mnli+pl.
Incasep =n + 1, we set
Ly = (—l)lp‘bw B,
and for p > n + 1, we define £, := 0.

We will speak of the first block in the Lie derivative as of the untwisted part and of the
second block as of the rwisted part, a terminology which will become vivid in

Clearly, L, descends for ¢ € C3,(U) to a well-defined operator on C¢**(U, M). In
particular, this applies to the distinguished element y from (3.8)). For this specific cochain,
we obtain the following counterpart to the second half of Lemma[3.13}

Lemma 4.17. The differential of Ce¥<(U, M) is given by
b=-L,. (4.20)
Proof. Using li one obtains D;L = d; and correspondingly for the Lie derivative by the

relations of a para-cyclic module:

n—1 2

E,u _ Z (_1)n7i+1tn717i d, git2 + Z(—l)n(i71)+1tn71 dy ti,
i=1 =1
n—1

— (_1)n_i+1dn—i tn+1 _ dn t" 4 (_1)n+1dntn+1

3 -
_

= Z (—1)7*1d; 7+ — dg t" ! 4 (—1)" 1, 1" = —b
j=1

on the quotient C¥*(U, M). O
4.5. The case of 1-cochains. For the reader’s convenience, we treat some special cases in
detail that will help understanding the general formula for £, and how it has been derived.

First of all, consider a 1-cochain ¢ € C*(U, A). By extending scalars from k to the ring
k[r] of formal power series in an indeterminate r, we define for any k[r]-linear map

D : Cp (U, M)[r] — C.(U, M)|r]
the operators
tP:=Dt, TP:= (tP)"*L
We apply this with D being the exponential series
1 Y
exp(re) = Z E(TD‘P) .
i=0
Thinking of a 1-cocycle ¢ as of a generalised vector field, of exp(r¢) as of its flow, and of
Q, = id — TP
as of a curvature along an integral curve motivates the fact that a short computation yields
Ly = %QMT:O

for n > 0, which in this case is explicitly given by

n n
L= "Dttt =Y DLt 41" D)t

=0 i=1
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Next, let us study L, in greater detail on C:¥*(U, M ). Note first that, when descending
to the quotient C:¥<(U, M), the untwisted part in (4.19) can be written as follows:

n—|p| n—|p|

D (=D D e () = Y (—1)% D (m, )
i=1 i=1
n—|p| -
= Y ()% e (m, ).
=1

If we now introduce the operator
E,:U—-U, uw~ ¢(u_)»ruy,
then £, can be further rewritten as follows:
Proposition 4.18. For every module-comodule M over a left Hopf algebroid U, the Lie
derivative L, for p € C},;(U) assumes on C&*(U, M) the form

n
Lo(m,z) = m,u',...,Dy(u'),...,u"
. ;1( . ) @2
+ (m(o),ui_,...,ui_l,gﬁ(u_ : --ul_m(,l)) »ui)

This can be alternatively written as

n
Lo(m,z) = (e(m—y)mey,u's...,u™) + Y (mul,...,De(u’),...,u")

1=1
n
+ 3 (mout, L Ep(ud), L u) 4.22)
j=1
n
= > (moy ks w5 Sp(uE  uE T m ) ek R ).

e
1
-

Proof. The explicit form for the untwisted part of £, i.e., the first summand in #.21)) was
explained above, whereas the twisted part follows by a straightforward computation using
the powers of t in Lemma[2:8] Eq. (#@:22) follows by using Eq. (3:4) for p = 1 as well as

@4 and 1), O

Example 4.19. In degree n = 1, the above reads
Ly(m,u) = (p(m_1))m),u) + (m, p(uy) »uz)) + (m, (u-) »uy)
- (m(()) ) 6@(“—7 m(fl)) > u+)a

and in degree n = 2 it becomes
Lo(mu,v) = (p(m1))m)usv) + (m(u)) »ug),v) + (myu, @0(va) > v)

T (map(us) s ) + (mu (o) v o)

- (m(0)7 5@(“*7 m(—l)) > Uy, U) - (m(0)7 U, 580(11*) ufm(—l)) > U+) :
Example 4.20. In case @ is a 1-cocycle, one has the cocycle condition

p(uv) = e(go(v) > u) + cp(s(v) > u)7 (4.23)

which implies (1) = 0. The Lie derivative in degree zero then reads, as before

L,(m) = @(m_1))m@y = e(m_1)) » m),
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whereas in degree n reduces to

Ly(m,x) = (e(m_1))my, u', o u”)

2 . e 424

In particular, in degree one this reads

Ly (m,u) = (e(m—1y)my, u) + (m, e(uy) »ugy) + (m,e(u) »u).

Observe that in (#.24) the single summands where the E,, appear are not well-defined but
only their sum is (a similar comment applies to (#.22))). To exemplify this, consider in
degree 2 the map

(u,v) = (Eu(u),v) + (u, Ex(v)).
Using (#.23) and (2.12), one has
(ar»u,v) > (Ex(u),vaa) + (u,v<p(s(a)) + (a»u,Es(v)),
and it is easy to see that (u, v < a) has the same image.

4.6. The case of an SaYD module. In the case of stable anti Yetter-Drinfel’d modules,
one can find an expression for L, on C:**(U, M) analogous to the one given in (4.21) for
the special case of 1-cochains. This is achieved by the following result:

Proposition 4.21. If M is an SaYD module and ¢ € C%,(U), one has on C*(U, M)

Lo(m,x) =
n—|p| np ) )
(71)91‘ (m,u17 oDt ,u”lpl)7 . 7u")

i=1

Ip| nop ) ) )
+ 2, (SD5H (gl o) -y gy uf W T

i=0

ga(ui_lp|+i+1, cooulul ~u1,m(,1),ui_(1), RN “:-(1)) > ui_‘p‘+i).

Proof. Straightforward computation using Lemma [2.8] as well as Schauenburg’s relations
(2.4)—@2.12), the fact that the two A°-module structures originating from the U-action and
U-coaction coincide for SaYD modules, and the Sweedler-Takeuchi condition (2.14) for
comodules. O

Example 4.22. For p = 2 and n = 3, this reads:
Lo(m,u,v,w) = —(m, Dy (u, v)7w) + (m,u, Dg,(v,w))
— (mo), ur, p(wy, w_v_u_me_y)) »vy)
+ (m(o)u+(2),v+,<p(w,v,u,m(_1),u+(1)) >w+).

4.7. The DG Lie algebra module structure. We now prove that the Lie derivative £
defines a DG Lie algebra representation of (C,(U)[1],{.,.}):

Theorem 4.23. For any two cochains ¢ € C%,(U) and ¢ € C§,(U), we have on the
quotient C*(U, M)

[Los Ly] = Ligyys (4.25)
where the bracket on the right hand side is the Gerstenhaber bracket (3.10). Furthermore,
we have

[b, £,] + Ls, = 0. (4.26)
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Proof. The proof relies on Eqs. @.12), @.18), and (@.14): assume that 1 < ¢ < p and
P+ q < n—+ 1, as the proof for zero cochains and the case ¢ = 0, p = n + 1 can be carried
out by similar, but easier computations. Recall that throughout we consider the operators
induced on C&°(U, M) and hence may identify T and id.

Using (@.19), we explicitly compute the expressions for £,Ly, and Ly, L. The under-
braced terms will afterwards be computed and compared one by one. One has

n—|p|—lq| n—|ql

n—lql,p  gn.q J =3 .
- 0; +0; " gr—lpl=lal—ip! yn—ladtpti=ip! 4ita
Loty = Z Z (—1)% it D,t Dyt
i=1 Jj=1
(1)
p_n—ldl en1alP L™ gl lal
nolahP gl jp|— LgnTladrisipy pit
+Z (—1)% R S S
i=1 j=1
(2)
n—|pl—lq| ¢ gn—lalip L enia |pl—lql lal
i Pre™ 9 n—|pl—lgl—ipn/ wn—lgl+p+ip/ 43
+ Z(—l) R D R D
i=1  j=1
(3)
$ 1P pl gl yn—laltipy 4
£ 3 Y e oo,
i=1 j=1
(4)
along with

n—|p|—|lq| n—|p|
n1q L gTD . _ . .
_(_1)\17|I<1\Ew£({J _ Z Z (_1)9j +0; Y +1n—lql=p| JD;,tn Ipl+aq+i ZDZPth
j=1 i=1

)
L g mIPhaonlabP 1y jgl—lply/ n—lpl+i—iqy/ it
+ )Y (-1 i t Dyt Dt
j=1 i=1

(6)

n—|ql—|p| p
ey _ o
+ 2 Z(_l)f’j +&;77 + 1 n—lql=Ipl| ]D;btn IpI+q+JDZPt1

j=1 i=1

RS
O N &P e P L pllal el el y g Pl 4
+ 3 Y (=D i t D/t D t".
j=1i=1

(8)

Furthermore, it follows from (@.7) and (@.13)) that, fori = 1, ..., p, we have the identities

!

Lory = D,Di" = DLt ~lI=FD t5F9  where k=n—|p|—|q|,...,n —|q].
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Hence

Loy = (_1)\p||q|n % . nz‘:q‘ (=)0 Hallk—ntpallgn—lpl—lal iy pien i+l
i=1  k=n—|p|—|q|
Ip+al n—|q| o lptal ‘
+ (_1)\pH¢II Z Z (_1)§i +\q\lk*n+\p+ql\tn*\p\*\q\D;Dithtl+lp+q\
i=1 k=n—|p|—|q|
n—|p|—|ql| n—|q| np | omi ) )
_ (_1)91' +0; +\Q\(Ikl—n)tn—\PI—I4I—2D:atn—\q\—kD;btk+q+z+\p+ql
i=1  k=n—|p|—lq|
[p+4| n—|q| o lpral _
+ Z Z (_1)5,; +\ql(lk\—n)tn—\pl—lqlDfptn—lql—kDiptk+q+z
i=1 k=n—|p|—|ql
n—|p|—lq| |p|+i o
= Z Z (_1)9;“”+9;““+|q|(l+i+\pl)tn—\pl—lql—z‘D;t|p|+i—ltn—|q\+1D;}tl+q

i=1 =1

(9)
Ip+a4l n+1
+3 Y (-
i=1 l=n—|p|+1

nlptal fgnia 0 ’ NI
€Ol n—tpl=lalpy gy (14

(10)

where we substituted [ := k — n + |p| + |g| + ¢ in the first summand of the last equation,
l := k + ¢ in the second summand, and used the fact that we descend to the quotient
C&e(U, M). Now it is easy to see that

n—|p|=lq| |p|+i
© = X (-pfTrertripgoy,
i=1 =i

Likewise,
n—lq|—=|p| lg|+i

09407 i
_(_1)|PHQ|£¢6W — Z Z (=1)% +96, +1D$thPth
=1 =i

(11)
lg+rl ntl n,la+p| | gn,p ;
YY) (e e ey Wy i

Jj=1 l=n—|q|+1

_

(12)
We can now write on the quotient C&*(U, M)
n—|p|—la| n—|al gr=lalo , gnia
n P o™ (ithsth
(1) = 2, (=D 7 DL"Dy
i=1 =1
n—p—|q| n—|p|—lq| gri—lal.p , gnoa n—lal j—p gr—lal.p , gnaa
_ : P o™ 9 Nithsth ! P o™ Nith~sth
= (-1) SO+ ) Y (D) 7 Dg"Dy
j=1  i=j+1 j=p+1 i=1
(13) (14)

n—lpl—lal Ip|+i n—lalp  omeq
6. 40, ithIlth
T T e
i=1 l=1

(15)
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and
n—lal=lp| n—|p| nd s amp
(5) _ (_1)9j +0; +1D$hD:;h
j=1 =1
n—q—lpl n—lal=Ipl| na omp n=lpl i—q nd s amp
_ 6% 4+0." " +1 jthrith 0% 4+60."" +1 Njthith
- (D)% FTHDI DS 4 YT Y (=% T DDy
i=1 j=i+1 i=q+1 j=1

(16) (17)

n—|ql=|pl lal+J .
0 0, 1sth Lth
+ (—1)% DI D"

j=1  i=j

as)
We directly see that (9) = (15), along with (11) = (18). Furthermore, by a simple

observation one sees that
n—q—|p| n—|q|—|p|

(=1)

j=1 i=j+1

n—laql,p_ gn,q . .
0, 407 jth~(i+]g])th
(13) i DD

n—q—|p| n—|p|

n=—lal, .
(_1)6k ‘g‘ P+9 DZ;thgh = (19)7
G=1  k=j+q
where in the second step we substituted k := i + |¢|. Reordering the double sums in (19),

—lpl n—|p| n—|p| k—q
i1 kSi4q k=gl j=1
and by 6, |;7“ P = 6;"P, we conclude that (13) = (19) = —(17). Analogously, one proves

that (14) = (16).
After a tedious, but straightforward re-ordering of summands one furthermore has

p—2 p—lq|—i

@)=Y D (sl pipy

i=0 k=q+1
p i—1
& P +lal il n—|p|—lql n—|k|
+ 0 D (—1)k t DL t'Dyt
i=1 k=0
n—|q| i—2 enop
+ (-1 St Tlallign=lpl=lalpy ¢ip! ¢n =k,
i=p+1 k=i—p—1
whereas
|p| p+lgl—i p+lql o
(10) = Z Z (- 1)€k+1+IqH lgn=lpl=lal Lt D tf + Z t"_‘pl_‘qlD:,,Diptk
i=1 k=0 k=1
lp| i—2
+Z Z(_l ‘H_HH(IH il n— Ipl=lal Lt D ek
i=2 k=0

From these expressions one obtains after equally tedious but straightforward computations

q

M'@

(2) Z 1)§k+1+|QH i n— \p\—\q\D/ n D/
=0 k=1
(20)
n—lq|
+ Z (—yskitilalliln—pl—lalpy pipy, eIkl
i=p k=i—p

(21)

and one verifies directly that (20) = (4).
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So far all terms in the expressions for £,L, and L5y cancelled, except

n—|p|—lq|l q nlalp | ama
0 > A —|p|—|q|—i/ — i 47
i +&57 " gn—lpl=ldl ZDwt"+P IqIHDth’

®B) =

M

1=1

Jj=
(21) = Z Z 1)Ei Hallilgn=lpl=lalpy gipy en- Ik

1

Repeating the same type of arguments that led to (21) analogously cancels all terms in
_(_1)‘1’7”(I|£wﬁip and _(_l)lp‘|Q‘£¢5¢’ except

n—lgl—Ipl p
7 = Z(_l) "q+§"p+1 —lal—Ipl— JD - IPHJD t
j=1  i=1
n—|p| i-1
(22) = Z (- 1)§k+7+|p|(\l\+\t1\)tn lgl— \PlD tD gkl
i=q k=i—q
Using (#.15), @.18)), and (@.12)), and the relations of a cyclic k-module we see that
n—|p|—lal nlalp | ang ) ) ]
(3) = Z Z(_l)% +¢] t”*\P|*|lI|*ZDiptp+lb¢tsnt171
i=1 =1
n—|p|—lal

q
n—lql,p  ¢n,q il 14 . .
Z (_1)91' +¢&5 Lpt” Ipl IZID:ptIPHlSOtJ

Substitution of I := n — |p| — |¢| and subsequently of k := [ — j produces

(23) = S Zq: (_1)5?"’+\p\(|l|+lql)tn*|p\*\q\DiptlsztnfllHj
I—q j=1
n=|p| 1-1 "
_ ( 1)6“;%+Ipl(\l\+\ql)tn7\pI*IQIDg/)tlD:Otn*\kl’
l=q k=

-
and this is directly seen to be (2 ) Likewise, one shows that (7) = (21).
For Eq. (#26)), simply use (#.20) to express b, then apply (@.23) to the case where
¢ := 11 and finally make use of (3.11)):

{bv/:«p} = _{Euaﬁw} = _'C{wp} = —Lsp. u

4.8. The Gerstenhaber module H (U). By the identities (4.6) and (4.26} - both opera-
tors ¢, and L, descend to well defined operators on the Hochschlld homology HM (U),
provided that ¢ is a cocycle. In this case, the following theorem together with Proposi-
tion m proves that ¢ and £ turn HM (U) into a module over the Gerstenhaber algebra
H3,(U), cf. Def. [L1](i):

Theorem 4.24. If M is a module-comodule over a left Hopf algebroid U, then for any two
cocycles p € C,(U), ¢ € C{,(U), the induced maps
L,: HMU) — HM\ |(U)a
we HMU) — HX,/(U)
satisfy
[ty Lol = Ly oy (4.27)
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Proof. Throughout we use relations that we have shown above to hold for operators on
C¥(U, M), but as we now consider the induced operators on homology, we will also as-
sume tacitly that the operators only act on cycles and that we compute modulo boundaries.

Assume p + g < n + 1 (otherwise both sides in are zero). Without restriction we
may assume that 0 < ¢ < p, the case of p = ¢ and that of zero cochains being skipped as
the proof is similar, but somewhat simpler. We now have

n—|p|—q np ) ) n—|pl np ] ]
who= Y (DIl e S (1) e Rl
i=1 i=n—|p|—|ql
L n,p .
+ Y (-5 gt IPID
i=1
n—|p+q| np ) _ g P n,p ;
= Z (-1)%" Lwt"_‘p‘_‘D;t”p + 2 (—1)“7‘("1|+|k|)b¢okw + Z(—l)fi tplps—1t T,
i=1 k=1 i=1

(1) (2) (3)

using (3.7) and (@.14) for the second term and (4.I8) for the third term. Observe that
already

(2) = tyse-
On the other hand, we see that
n—g—|p| P _
_(_1)q\p|£¢Lw — Z (—1)9?’p“t”*qflppinpt”pr + Z(_l)glﬁ q"q‘lp‘t"*q*‘P‘D{pt%w.
i=1 i=1

(4) (5)

By Equation (4.9), one immediately observes that (1) = —(4), hence we are left to prove
that

P

(3) 4 (5) = =(=1)lW 1y = = 3 (~1)lH (428)
i=1
or, in our former terminology, only the “twisted” parts in the Lie derivative still matter.
By (@.18), we see that
P n—q,|q||p| ; rl n—q,|q||p| ; n—q,|q||p|
(5)= Y (-1 bps 1t Tl = 3 (-1 T s Lps 1t ey,
i=1 i=1

(7)

(6)

and we continue with

p—1 p—1
n—a,lqllp| i—1 n—a,lqllp| i—1
6) = Y (—=1)% Lps—1t' T TdoDly = Y (—1)% Lpdis 1t 71D,
i=1 i=1
p—1 n—q+2
n—qlallp| |, )
= (—1)§i @iy +‘371‘L¢dj5_1t171D{¢,
=1 j=0
‘ i
p—1 n—|q|
Inl=q,lallpl - i1
= D (=D& ti,djs 1t D),
oo
‘ J7#1

(8)

p=1 p=1 _ )
Inl=a,lallp] . Inl—a;lqllpl )
T e A=
i=1 i=1

(9)

where in the third line we used (#.6) together with the fact that ¢ is a cocycle, and that we
deal here with the induced maps on HM (U), i.e., bt, = 0 = ¢,,b. Observe now that

(9) = (—1)‘qu|+1L¢D;} + (_1)nlp\wtlpl% = (_1)IQHP\+1L¢0W + (—1)"‘P|L<Pt‘P|ng.

(10) (11)
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Furthermore,

p—3 n—|q| n—a,lallpl | . ) n—|q|—|pl| Inlq , .
®=> 3 (1 Tl siitid;Dl + ) (—)Sel s 1tP%d; D)),
i=0 j=1 j=1
(12) (13)

where by (4.16) and @.1T)) we have

p—3 n n—q,qp , | . ) p=3 g n—q,qp | |; .
a2)=Y 3 (—nfi e epd + Y Y (=nf TPl s D! d;

i=0 j=q+1 i=0 j=1

p_3 n—q,lql|p| )
+ 3 (1)) Tl s it D)
1=0

p—3 n—gq,qp p—3 n—gq,qp
&, P i/ & D pl i ’
= (= Lps—1t'Dlydo + ) (— 1)1 Lps_1t'd1tD] ",
1=0 1=0
(14) (15)

where in the second line we used that the representatives in H (U) are cycles. By a
similar argument we get, still with (4.16)),
n—|q|—|p| §|n“q+,
(13)y= Y (=17l Vigs 1tP72d;D], + (—D)IMPugs 1tPT2d D]t
j=2

Inl,151

q
+ (=Dl ups 1tPT2D)d;
j=1

L |nl,d
= (=D)I"Prs P 72ditD " + ), (—=1)%pl 15 1tP72D)d;
Y j=n—|p|+1
(7
+ (71)‘n‘p+1L¢S_1tp72D2¢jd0.
(18)
We now see that
(14) + (18) + (15) + (16)
P2 n—q,qp . P2 n—q,qp )
= DT st Ddo + ) (1) TP s tidy D)
=0 =0
p=2 n—gq,qp . p=2 n—q,qp )
= DT P s i, g Dt Y (1) TPl s 1tid D)t
i=0 i=0

pP=2 n—q,qp ]
SN (=% P s iti(do — di)tDlt" =: (19).
=0

Let us come back to the other half and compute (3): to this end, consider first

Lyl (m, ul, ... ,u™)
= (m,u17 ceey ¢(un—\p+q\’ ceey (P(un_‘m, L. ,un) > un_p) > u"-l’—q)
= (m7U1, cee ,€(§D(un_|p‘, conu™)e Dw(u”—lprql7 o 7un—p)) . un_p_q)
- (m7u17 sy ¢(Dw(un7|p+q|’ . ,unfp)un7|p\7 R u") » u’ﬂ*P*q)
n—1
+ Z (—1)i—n+1) (ﬂz,ul7 e @(Dw(un—\p+q\7 L umTPY, uiui'H, o u") . u"_p_q)
i=n—|p|
+ (71)17 (m, ’U,l, T SO(Dw(’u’nilp+ql7 sy unip)v - »E(Un) 4 unil) 4 unipfq)z

which is true since ¢ is a cocycle; that is, with the help of (#.14),

P

Lyply = Z (—1)i+pL¢,d¢tpD;)t"7|p‘ .
i=0



BATALIN-VILKOVISKY STRUCTURES ON Ext AND Tor 29

Hence, by (.11) and (.12,

P

(3) = (=15 tprpst !
j=1

(_1)'5]', L¢d1571t‘p‘Diptn_‘pl+j

Il
D=
D=

j=1i=0
-l o2 g . P n,i
= M(=1)% " rpdis 1 tPIDL TIPS 4 N (—1)5 u dis 4t 71D,

(20) (21)

where we continue with
n—|q|

(21) = (_1)n\p\+1%t\pID20+ Z (—1)‘""’_“IHkLsos,ltp_QdkDip—i-(—l)‘"“p'wdps,lt'p‘Dip,
k=n—|q|—|p|+1

and these three terms are precisely, by (4.11) and (4.10) again, the terms —(11), —(16),
and —(7), respectively. We furthermore have

p—1l P n,i R . .
20) = 3 D15 rpdis_tPTIDL TP N ()il et pnlel+d

j=1i=1 j=1
(22) (23)
where

p—1 ) )

(23) = D (=)l p D Pl o iD) et
j=2 |

(25)
(29)

and we observe that (25) = tgo, .
For better orientation let us state were we are at this point: we are left with the equations

p—1

(19) = (=1)& P (dy — digr)s_1t DYt", (4.29)
=1
pil P n,i .

(22) = D15 1pdis 1 P DI, (4.30)
j=1i=1
p—1 . )

(24) = (—1)rblL = tDl grlelts (4.31)
j=2

and we are also missing the terms, cf. @.28),

p—1

=N (=l

=2

The proof proceeds now in recursive steps, which at each step reproduce formally the
Equations (4.29)-(@.3T), but with lower degrees, and one of the t.,.,,,. We only give the
next step: start wit

p=2 p i . L n,i
22) = 3 Y (=15 pdis_ 1t DL TIPS £ N (1) T s tP T,
j=1 i=1 i=1

(26) (27)
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where
p—2 n—|q| n,i
(26) = ). 3 (=131 TP, sy tPm2d, Dl eIl
J=1 i=n—lal-lpl+1
(28)
p—3 n,p )
+ Z (1% tps_1tP2dgtDl P 4 (—1)lellpl sy 42— 2dy D) e
=t (30)
(20)
Then
n—2 n—j n,li| )
@)= Y X (D) Hls 2D,
j=n—p+2 i=0
(31a)

n—2 j—n+p—2 n, i) ]
+ ) S (1) s 1tP 2Dt d
j=n—p+2 =0

(31b)

+ (fl)lnllp‘Lvs_ltp_Qszt"_l(do —di).

(32)

Since the representatives of the elements we consider are in ker b, we conclude

p=3 n—j ni )
(31a) + (316) = )] (71)5\j+p|st_ltP—QD;tn—lpHJdi
Jj=11i=p—j
p_3 nlpl 7 li+p| .
= (—=1)% Lps_1tP 2D dit" TP = (33).
j=1 1i=1
Now, again by (4.16)), we have
p—3 n—|q|—I|p| i
n,li+p+q| )
BH+H=> Y (-1% Lps—1tPT2d; Dt TP H2E
j=1  i=1
p—3 n—|q| enoita X ,
= _1)E o tP—2D! {n—P+2+]
- s
Z Z (—1)> tpdis—1tP 7Dyt
j=1 1i=p
p=3p_l1 n,lit+ql
- N ) p—2p n—p+2+j
- s /
Z (—1)~4 tpdis_1tP 7Dt
j=1 i=0
+ D1 (1) 1pdn g yos 1tP 2D TP
j=1
PURSY gmalital 5 i Y, el oy .
= Z —1)% Lpdis_1tP 72Dt TP 4 Z (-1)% 1t 2D PR
j=1 i=1 j=1
(34) (35)
p—3
+ 2 ()M uptP Dy PR
j=1
(36)

where in the third equation we used one more time b., = 0 = ¢,b, which holds in our
situation. One furthermore has
(35) = 3 (1) tPm2D! TP HI 4 (L 1)9,tP 2D RS,
j=3

(38)

(37)
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and we see that (38) = —(—1)"1 | Loy, that is, the second summand in lb Moreover,

p=2 _ ] p=2 )
@7 +(19) = Y (1) ", (dy — dit1)s 1t Dy t" + > (=1)"P il dis 1 tP 7D,
i=1 i=1

(39) (40)
where
e n].]i+q] = ,
(40) = D (—1)ép ps_1tP 2Dt = Y (—D)MIPIE s P m2D) ¢ ;.
i=n—[q/—|p|+1 i=n—p+3
(41)
Furthermore, we obtain
n—p+2
(41) 4+ (32) = Z (—-1)¢ st,ltp—"’%t"—ldi
q n—p| )
= Z( ninliel+i, s = D), dit" + Z 1)‘”‘|P|+1L¢s,1tp—2D’wdit"
i=1 i=q+1
n—|q|—|pl|
= (71)|"|‘P‘“st_ltP*letD%t"*l + Z (,1)Inllp\+\q+iIst_1tp*2diD;}tn
=2

(42)

(43)

where for the first term in the last line we used (4.16). By bt, = 0 = ¢,,b again, one has

n—lq|
(43) = (_1)\71\\PI+Z+p+qL¢dis_1tp—2D;btn

Lo
o

P
. _92 —2 —1
(71)n\p|+z+qudis_1tp Dgptn + (71)n|p‘+qmptp Dg’btn + (71)angptp Dil)t”.

1=1

(45) (46)

(44)

Finally, we see that (42) = —(30), that (36) + (46) = —(24), and that

—1 p—1
(34) + (44) = Z S (=) ds g tP 2D IR = (47),
Jj=2 i=1
as well as
p—1
(37) + (45) = Y (—1)"I T, 172Dt~ IPIFT = (48).
j=3
We are now left with the three terms
p—2
(39) = (1) P (di — digr)sit DT, (4.32)
i=1
p—1p— n,li|
(47) = Z 1)%51 T, dis_ tPT2D) P (4.33)
Jj=2 i=1
p—1
(48) = Z 1)+, tp=2D) Pl (4.34)

and these correspond (with alternatlng signs) to the Eqs. (4.29)—@.31)), but with one sum-
mand less and p lowered by one, respectively. Also, we obtained to,y, S€€ (38), on the
way. Repeating the same steps as above another p — 3 times yields the missing terms

p—1

— Z 1)lall? \L o) = — Z (—1)‘(1”"LgptpﬂD;bt”ﬂp‘“,

i=3
in (4.28), and cancels the rest. Observe that in (4.33)) and (#.34] - ) the factor (—1)7 appears
in contrast to (4.30) and (4.31)), but in correspondence to the sign rule in @. 28 O
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5. THE BATALIN-VILKOVISKY MODULE

This section contains the both conceptually and computationally most involved aspect
of our paper, which is a Hopf algebroid generalisation of the Cartan-Rinehart homotopy
formula. This is a relation on the (co)chain level which implies on (co)homology the
Batalin-Vilkovisky relation that expresses £, as the graded commutator of B and ¢,. In
other words, establishing this formula will complete the proof that H3,(U) and HM (U)
form a differential calculus.

5.1. The operators S,. We begin by defining the generalisation of the operator denoted
by S in the work Nest, Tsygan and Tamarkin [NTs3| [Ts| [TaTs1| [TaTs2], by B in Getzler’s
work [Get], and by f in Rinehart’s paper [Ri]. This operator may be considered as a
generalisation of the cap product for the cyclic bicomplex. Throughout this section, U
is assumed to be a left Hopf algebroid and M is a module-comodule (not necessarily an
SaYD module).

Definition 5.1. Given p € CP(U, A), we define
Sy 1 Cr(U, M) = Cp_pia(U, M)
for p < n by

P n,p . . .
Z(_l)nj,i st P D:o tnﬂflj\’
0 i=0

Sy = Z
j=

where the sign is given by
np . ; ;
n;i = mngj + |pli.
For p > n, we put
S, :=0.

Remark 5.2. Observe that the extra degeneracy (2.18) is given here as s_1 = ts,,_,.

In general, inserting the explicit formula for t, Dfp and s_ results in truly unpleasant ex-
pressions. However, in case M is an SaYD module and hence C, (U, M) a cyclic module,
these can be at least somewhat simplified:

Proposition 5.3. If M is an SaYD module over a left Hopf algebroid U, then S, for
p € CP(U, A), p < n, assumes the following form:

n—p n—|p|
S,(m,x) = Z Z (_1)n(1+|p\)+\p|(3+1+1)(m(o)u}r(z)...ul(z)’ufl,m,
i=0 j=i+1
j j+ n o ,n i
Dy (v, ... u |p‘),...,u+,u7 . --u{m(_l),ui(l), .. ,u+(1)).
Proof. Direct computation. (]

Example 5.4. Forn = 1, p = 1, the above means:
S (m, u) = (mo), p(u+(1)) > Us(2), u—m(-1)),
while it becomes forn = 2,p = 1:
S (m, u,v) = (Mo, p(Uy(1)) > Uy(2), Vi, V-U—M (1))
+ (Myoys Ut (V4 (1)) » V1 (2), v-u—m(_1))
+ (myur(2), P(V+1)) P V), VU 1), U (1))
Forn = 3 and p = 2, we get
S (m,u, v, w) = —(myo), (U (1), V(1)) » U (2) V- (2), W, W-V_U—_TN(_1))
+ (m0), s PV (1), W (1)) > Vs ()Wt (2), W-V-U- (1))

+ (10)p 2), PV (1), Wer (1)) # Vo (2) W (2, WV U= (1), U (1))
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5.2. The relation [B,S,] = 0. Our first result is that S, commutes with B. As this sim-
plifies the formula for B, we will from now on be working on the reduced chain complex

C.(U, M) resp. C=v*(U, M), which dually requires passing also to the reduced cochain
complex:

Definition 5.5. We denote by C* (U, A) respectively C;,(U) the intersection of the kernels
of the codegeneracies in the cosimplicial k-modules C* (U, A) respectively C',(U).

Proposition 5.6. For any ¢ € CP(U, A) the identity
[B,S,] =0 (5.1)
holds on the reduced chain complex C,(U, M).
Proof. Explicitly, the graded commutator reads on the reduced complex
[B,S,] =tsn—ps2 NS, — (—1)P2S, ts, N.

If p > n + 1, the entire expression is already zero. Hence assume that p < n 4 1 and first
consider the second summand: it suffices to show that the image of S, ts,, on elements of
degree n is degenerate, and this can be seen as follows:

n—p+1 j
n,p . . .
S,ts, = 2 Z (—1)57 s, pyp t"TPTILD T 2 g
j=0 =0
n—p+1 j
_ Z Z(_l)nj’i tSn_pi2 fn—p—itl D:a tn+zfj+1 ot
j=0 =0
n—p+1 j
np i o
= 2 Z(_l)n“ tSnps2t" P DL s (o T
j=0 =0
n—p+1 j
i —p—i+1 i—j+2
= D D) st sy e DL
j=0 =0
n—p+1 j
np , L o
= 3 S () s P s, i gt
j=0 =0
n—p+1 j
n,p . .. . .
= Z Z (=1)Ti ts,_pyat" P I sot! " D:D A
j=0 =0
using the simplicial and cyclic relations as well as (4.12)) in the third line, along with the
factthat j —¢ = 0,...,n — p + 1. Now we distinguish the following cases: we have on
Coe(U, 3)
tSn—piat" PT3sg = ts,_prosn_piat” PT3 if j=n—p+1,
i tSn—p+2S if j=n-—p,
tSp—p+2tso if j=n—p—1,
t5n7p+25n7p7jtn7p7j if ] S n—p— 21

and a quick computation reveals that in all these cases one produces degenerate elements.
That the first summand ts,,_,. oNS,, is also degenerate follows by a similar argument,
and this finishes the proof. O

5.3. The Cartan-Rinehart homotopy formula. We are now in a position to state:

Theorem 5.7. If M is a module-comodule over a left Hopf algebroid U, then for any
cochain ¢ € C3,(U) the homotopy formula

‘CLP = [B + b, Stp + LL,O] — lsp — S(Sgo (5.2)
holds on C¥*(U, M).
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Remark 5.8. Observe that using (5.1)) and (4.3), this can be rewritten as
[’4/7 = [Ba LLP] + [b7 St,a] - Séga- (5.3)

Remark 5.9. Apart from the obvious classical Cartan homotopy [C], this formula has
been given in the context of associative algebras, i.e., in the classical cyclic homology
of algebras, in [Ril] for the commutative case, in [NTs3| |Get] for the noncommutative
situation, and in more restricted settings such as for 1-cocycles in [[Gol [Col X2].

Proof of Theorem[5.7} We stress that throughout we work on C'¢(U, M ). Rewrite first
[B, ] + [b,Sy] — Ssp = Biy — (=1)P1,B + bS, — (—1)P72S, b — S,
= Buy + (=)l ,B +bS, + (=1)IPIS_b — S,

Observe then that the statement in the cases p > n+1 and p = n + 1 follows by definition.
For p < n + 1, let us write down (@.19):

n—|p| P
L= ) (=) n=lel=ipl e 4 N ()& liD) g
i=1 i=1

" "

& ©)
and also write with (4.10) and (4.18)) on C¥*(U, M)

n—p
Bi, = > (—1F"Ps_it*doDl, =: (3),
k=0
(—1)|p‘L¢B = (—1)lplHnken \pID/ k+1
k=0

= (_1)\p|+n|k|tn*\p|D;}tk + (=1)lPlgn el D.,.
k=1 —_—

- (5)

~"

(4)

A lengthy computation using the simplicial and cyclic relations yields

ESER WP n—pminy nticlil L NS Tt nepmig py gntielil
bSe = D, D (~1)%it Dt + ) DD s gt doDl,t
j=0 i=0 7=0 i=0

n—|p| k=1 n—|p|

S S bt ererig, oot

k=2 i=1 j=1

(6)
n—p n—p

2P . . .
+ Z Z Z( 1) g +kn—|pl—ig ltn—p—zdefptnﬂ—\]\
k=1 j=k i=k

(7)

n—p n,p ) n—p=1 j n,p _ ) o
+ Z (71)7’1_]’,0 +n—Ptn7\p\DZDtn7\j| + Z Z (71)n|j|,‘i|+n ptnfpszZptn+zf\]\
j=o =0 i=0

(8) (9)

—p—1 3 n—|p|
Z Z( 1)”7J ¥ n—p— zD/ grti=lil o Z (—1)"m— P li ilgn—Ipl— zD/ tpti
j=0 i=0 i=1
(10) (11)
n—p j—1 n,|pl
+ Z 2( 1)”]|]| ‘,|+ s_1t"P~ 1d DI gnti— 171 + Z ”7‘,| |1\+ 11:"_p_id0Dip
j=1 i=0

(12) (13)

+(6) + (7) + (8) + (9).
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Observe that by (—1)MilJa P
, we see that (11) =

(~1)™ i = (~1)%”
)Pl

obtains (—1)k("_p) = (—1)"\ illil, and hence (13) =
by substitution of ¢ := n —

= (=1)"*! one has (9) =

—(3). Finally, (2)

in (8) We continue computing

(6) = Z Z Z )”m Pirkdl  pner id, Dt
k=2 i=1 j—i
n—|p| k—1 1ol et ) )
+ ( 1)/”7L7P$|i‘+ + S_ltn_p_ldeiptp-PL
k=2 i=1
n—p k=1 n—p mlpl L pq ) o
_ ( 1)7]‘].|,|7."+ + Siltn—p—zdefptn#—z—\g\
k=2 i=1 j=1
(14)
n—pk—1 n,lpl k4l B )
+ (_1)7]71’_1)1“"4» + Sf1tn7p7zdeZPtp+l
k=2 i=1
(15)
n J
2 "m T+ntrg_ 1P, DL
j=1 i=1
(16)
kSl Pl ity n—p—i 1 pti
+ Z( 1) n—p,li| st dn,met .
i=1
am7)
With (4.11)) one sees
nl k=p nlp|
& o )
T3 () s prerin gy = (1),
k=p+1i=1

and we also simplify

n—p—1
16)= Y
j=1
(19)
Furthermore,

:ni nj i 1)”u| Tty
k=2 j=k i=k

n,|p|

i=1

—(10).
(1). By substitution k :=

35

Likewise, by
n —p — 1, one
(4) +(5) + (8)

d P! n—p—i fonting L NV ne; n—p—i ’
D(=1)Nali syt P, DLt 4 Y (=1) T s gt P, ), D
i=1

(20)

n—p—i 7 in+i—|j|
s_1t de¢t

(21)
n

+
J

|
]

Mu.

n,|p|

14

1

(_l)nu"‘“Siltn—p—idlDfpt7l+i—|j|.

(22)
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On the other hand, we have

n—p |

(—)Ms b = 3 (m1y i bl prrmipy g,
i=1
(23)
Rt Ilp i : o
+ ) (= 1)t HRreI el pnmpipy g il
k=0 j=1 i=1
29)
n—p—1 n-—1 Inl,p ) ) )
+ Z (-1) \n—p\,ul*’“*lllsAt"’p’lDfpdktp“,
i=1 k=p+i

(25)

and we directly observe that (23) = —(20) and (25) = —(18), whereas

n-p J n,|pl ) o
24) = 3 3 N (1)l iDL dyg

k=1 j=1 i=1

(26)

J n,|pl ;. . . .
+ N (=1)its s D dy ]

(27)
n=p J n.lpl g ) L
+ 30 Y (=1l s P TID L dot"
j=1 i=1

_

(28)

where by the cyclic relations

n,|p

J n,
NEIRLE

() . . TP n,|pl ) )
st PTID dpt T 1 N (1) PP D] P

i=1

(29) (30)
By means of (4.11)), one now sees that (14) + (21) = —(27) and that (29) = —(19), along

with (30) = —(17).
To conclude the proof, we need to show that S, equals the only remaining terms (12),

(22), and (26). Note first that from (.6), (.11, @.10), as well as from the cyclic and

simplicial relations follows for the (p + 1)-cochain d¢p:

D:SLP = t5ps—1t" = thrys_1t™ + (—1)‘P|u¢bs_1t"

n—|p|+1 n+1
> (=D)*itdodiDls 1t™ + Y (1) PltdoD dis 1 t"
k=1 k=0

p
tdodlDZpsfltn + Z (71)k+‘p|td0DfpdkS,1tn
k=0

P
= tdorps—1t™ + (—1)PltdoDLt" + Y (—1)FHPlegs gdi_ gt
k=1

p
=" P D), + (—D)lPldoDLt" + ) (1) Pl HID 4y
k=1
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Hence we have for the (p + 1)-cochain d:

n—(p+1) j n,|p| . . .
S&p _ Z Z(il)nj’i s_ltnfpf(hLl)dlDfptn+zf|j|
j=0 =0
p n—(p+l) j n,|p| b . . .
+ Z Z(_l)n” + +|P|siltn—p—(z+l)Dipdktn-%—z—m
k=1 j=0 i=0
no(pHl) g n.pl . o
+ Z( )iji +‘p‘S,1tn_p_7’d0D£ptn+7’_J
7j=0 =0
n-p J n,|p| . o
= M (=1)"llils_ytnP=idy D]+l
j=1 i=1
p n-p J n,|p| . o
+ Z(_1)”|j|,|u*'“*“"s,lt"—P—lD;dkt”’““f‘
k=1 j=1 i=1
n—(p+1) j n,1pl
A 1 i i
+ M (1)l sy P idg Dt
j=0 =0

and these summands are exactly the terms (22), (26), and (12), which concludes the proof

of (5.3) and hence of (5.2). O

With the help of the homotopy formula, we can easily prove:
Corollary 5.10. For any cochain ¢ € C5,(U), we have on C=<(U, M)
[£,,B] =0. (5.4)
Proof. Using (5.3), @.3), and (2.19), we see by the graded Jacobi identity that
[£Le,B] = [[B; te], B] + [[b, S¢], B] — [Sser, BI

= [B, [, B]] = (=1)"[14, [B, B]] + [b, [S¢, B]] = (=1)"?[S,, [b, B]]
=0,

where the fact that [B, [¢,,, B]] = 0 directly follows from the graded Jacobi identity. ~ [

Remark 5.11. With some more effort, it can be shown that (5.4) even holds on the non-
reduced complex, but we do not need this.

5.4. Proof of Theorem If ¢ € C4,(U) is a cocycle, then for the induced maps
Lo HYU) = HY (U)o HYNU) — HE(U),
the Rinehart homotopy formula (5.2)) simplifies to
L, =[B, ]
Using this and (#.3) one has
Corollary 5.12. For cocycles p,v) € C3,(U), the induced maps on HM (U) obey
Loy = Loty + (—1)18¢1 L.

Proof. This is now only one line:

Lo = [Bytgos] = [Brigley + (1590, [B,1y] = Loty + (~1)*590,L,. O

We now sum up the results of Theorems 23] .24] and[5.7] and state the main theorem
(cf. Theorem [T.3)) of this paper:

Theorem 5.13. If U is a left Hopf algebroid over A, and M is a module-comodule, then
v given in (4.3) and the Lie derivative L given in (4.19) turn HM (U) into a Batalin-
Vilkovisky module over the Gerstenhaber algebra H},(U) defined by Theorem
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6. LIE-RINEHART ALGEBRAS AND JET SPACES

This section contains a brief sketch of how to generalise the above results to complete
left Hopf algebroids (the Hopf algebroid generalisation of complete Hopf algebras, see
e.g. [Ql), and how this allows one to obtain the well-known calculus for Lie-Rinehart
algebras (Lie algebroids) given by the Lie derivative, insertion operator, and the de Rham
differential (cf. the original reference [Ri] and also, for example, [Huel, |GrUr, [Hue2! [Kos
X1]), and in particular the classical Cartan calculus from differential geometry that arises
as the special case of the tangent Lie algebroid (see [C]]).

In § we introduce the jet space JL of a Lie-Rinehart algebra ([KoP], see also
[CaRoVdBI), and explain its complete Hopf algebroid structure. Then we sketch in §[6.2]
how to adapt the constructions of this paper to this setting. Finally, in the last two sec-
tions we recall the definition of the generalised Hochschild-Kostant-Rosenberg morphisms
and use them to relate the differential calculus of Theorem to the standard one on the
exterior algebras of L respectively L* that gives rise to Lie-Rinehart cohomology.

6.1. Universal enveloping algebras and jet spaces. Let (A, L) be a Lie-Rinehart algebra
over a commutative k-algebra A with anchor map L — Dery(A4), X — {a +— X(a)}, and
VL be its universal enveloping algebra (see [Ril] for details). This is naturally a left Hopf
algebroid, see e.g. [KoKrl]); as therein, we denote by the same symbols elements a € A
and X € L and the corresponding generators in VL. The source and target maps s = t are
equal to the canonical injection A — VL. The coproduct and the counit are given by

AX) = X®@,1+1®4X, e(X) = 0, ©6.1)
Aa) = a®a,1, ela) = a, ’
whereas the inverse of the Hopf-Galois map is
X+ ®A0p X_ = X®A0p 1—1®A0p X, ay ®A0p a_ = (1®A0p ]., (62)

where we retain the notation ® 4o» for the tensor product ,VL ®,op VL, although A is
commutative. By universality, these maps can be extended to VL.

Definition 6.1. The A-linear dual JL := Hom , (VL, A) is called the jet space of (A, L).

By duality, JL carries a commutative A°®-algebra structure with product

(fg)(u) = fluy)g(uey), f.9€JL, ue VL, (6.3)
unit given by the counit € of VL, and source and target maps given by
s(a)(u) := ae(u) = e(au), t(a)(u) := e(ua), a€ A,ue VL. (6.4)

Observe that these do not coincide although A is commutative.

The A°-algebra JL is complete with respect to the (topology defined by the) decreasing
filtration whose degree p part consists of those functionals that vanish on the A-linear span
(VL)<p € VL of all monomials in up to p elements of L. For finitely generated projective
L, Rinehart’s generalised PBW theorem [R1i] identifies JL with the completed symmetric
algebra of the A-module L* = Hom (L, A).

Example 6.2. The simplest example beyond Lie algebras is A = k[z], L = Dery(A), in
which case L is generated as an A-module by p := %. Then VL is isomorphic to the first
Weyl algebra. In particular, there is an A-algebra isomorphism JL ~ A[h] under which
h' corresponds to the A-linear functional on A[p] that maps p’ to §;; € A. Here JL is
considered as A-algebra via the source map s which becomes under the isomorphism the
standard unit map of AJh]. However, the target map ¢ maps a polynomial @ € A to the
power series given by its jet

d d?
ta)=a+ Lhy TRz 4.
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The filtration of JL induces one of JL ®, JL and if we denote by JL®, JL the com-
pletion, then the product of VL yields a coproduct A : JL — JL® ,.JL determined by

f(uv) =2 A(f)(u@aer v) = fr1y(ufiz)(v)), (6.5)

see Lemma 3.16 in [KoP, §3.4]. This is part of a complete Hopf algebroid structure on JL.
We refer to [QL Appendix A] for complete Hopf algebras, the Hopf algebroid generalisation
is straightforward. The counit of JL is given by f — f(1,,), and the antipode is

(SHu) :=e(ug f(u)), ue VL, fe JL, (6.6)

which for v € L < VL is known under the name Grothendieck connection. A short
computation gives S? = id. The translation map (2.3) is

F+®uor f— = [1)@aor S(f(2))- (6.7

Note that JL is not only a left but a full complete Hopf algebroid in the sense of Bohm
and Szlachényi [Bl]. Over noncommutative base algebras this would generally require two
bialgebroid structures that coincide here. In particular, JL is also a Hopf algebroid over a
commutative base ring in the more narrow sense studied already for decades [Hovl, Ral.

6.2. C*(JL,A) and C,(JL, A). For complete Hopf algebroids such as JL, the theory
developed in this paper needs to be modified as follows, in order for the structure maps
(e.g. the cyclic operator t) to be well-defined: in P, and in the chain complex C,(JL, M),
the completed tensor products have to be used. Similarly, in the definition of a module-
comodule and of an SaYD module the coaction might be given by maps M — JL® M.

Dually, C*(JL, A) has to be defined as Hom 22 (JL® 4P+, A), where cont means that
the cochains have to be continuous (A being discrete), as only the operators assigned to
these cochains will be well-defined on the completed tensor products.

Unlike for general left Hopf algebroids, we have for JL canonical homology coeffi-
cients: using that JL is commutative, one easily verifies that A carries a natural structure
of an SaYD module over JL whose action and coaction are given by

A®JL — A, (a,f) — ac(f),

A - JL@AA, a S(a)®A 1a, ©8)

where s is the source map from (6.4). Hence Theorem [I.3]yields a canonical differential
calculus (H*(JL, A), H,(JL, A)) associated to any Lie-Rinehart algebra (A, L) that we
want to discuss in more detail as an illustration of the abstract theory.

6.3. Lie-Rinehart (co)homology. In order to do so, recall that the space Hom , (/\", L, A)
of alternating A-multilinear forms is a cochain complex of k-modules with respect to

d: Hom,(A"L, A) —» Hom,(A""'L, 4)

given by (where the terms X are omitted)

dw(X0,.. . X7) o= > (1) X (w(XO,. ., X X))
i=0 (6.9)
+ (-1

(
Y W([XE X, X0 X XX,

1<j

In case (A, L) arises from a Lie algebroid E, the above is the complex of E-differential
forms (see, for example, [CanWel), and in case F is the tangent bundle of a smooth mani-
fold, these are the conventional differential forms that appear in differential geometry.

Definition 6.3. H*(Hom, (/A ,L, A),d) is called the Lie-Rinehart cohomology of L.
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From [KoP, Theorem 3.21] we gather that there is a morphism of chain complexes
F: (C.(JL,A),b) - (Hom, (AL, A),0) (6.10)
given in degree n by
F(f'Y o XA A X = (D)™ (S A A S)(XY, LX),

Here Sf* A--- A Sf™ is the wedge product of alternating multilinear forms. As C, (JL, A)
is defined via completed tensor products, we have

Cn(JL, A) = lim Hom, ((VL®4")g,, A), (6.11)

where (VL®4™) g, is the degree p part of the filtration induced by that of VL. The an-
tipodes appear above as this isomorphism (6.11])) is given by

(fY . M@t . um) = S (ut) - SE (u™). (6.12)

That F is well-defined on the reduced complex C, (JL, A) follows since degenerate chains
vanish under F' as (2.11)) gives for X € L

(X3 1u(X1)) = e(Xae(X)) = £(X) = 0. (6.13)

When L is finitely generated projective over A, the wedge product of multilinear forms
provides an isomorphism

AL L* — Hom, (A" L, A)

that we suppress in the sequel. Furthermore, the pairing (6.12) yields an isomorphism
(ct. [CaRoVdB| Eq. (4.10)])

C"(JL,A) ~ VL®4, (6.14)

Finally, if we denote by pr : VL — L the projection on L resulting from Rinehart’s PBW
theorem, we have:

Proposition 6.4. Assume that L is finitely generated projective over A and define

F'(a' A na™) = Z (—1)‘7(pr*o¢‘7(1)7 o ,pr*a”(”))

oceSy,
forat,...,a™ € L*. Then we have
FF' =n! idpn .
In particular, if Q € k, then the morphism F has a right inverse.
Proof. This follows by straightforward computation, using that (6.2) yields
S(pr*a) = —pr*a (6.15)
for every 1-form o« € L*. O
Dual to (6.10), one has a morphism

F* . (/\;L,O) — (C*(JL, A),9) (6.16)

of cochain complexes explicitly given as

XEA A X" s (Y ) = (R Y (FD)TSYXT) (S (X))

oeS,
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6.4. The calculus structure for Lie-Rinehart algebras. Our main aim is to use now
F,F*, and F’ to compare the calculus structure on (H*(JL,A), H,(JL,A)) result-
ing from (the topological version of) Theorem with the well-known calculus on
( AL, /\AL*) given by the exterior differential, the insertion operator, the Lie de-
rivative for differential forms, along with the classical Cartan homotopy formula (see
[Ril [Huell [Hue2], or [[CanWe, |[Kos| X1]] for the case of Lie algebroids and in particular
the original reference [C] for the tangent bundle of a smooth manifold). First, recall that
these operators, besides d from (6.9), are given by

ix : A"L* - A"'L* we (..., X),
Ly : ABL* — AML*, Lyw(Y', ... Y") = X(w(Y!,..., Y, ..., Y")
— Y wYh XY, Y.

i=1

where Y',...,Y" e L.
Let us then consider the Gerstenhaber bracket on C*(JL, A) ~ VL®4*. Now, VL®4"
carries a canonical comp algebra structure given by

(u1 Q- @4 uP) ot (vl @4 @4 09)

‘ ) . : 6.17)
= (ul R4 w1l ®. uEl)vl Qu- P u%q)vq R ittt R4 Qa4 u?,

fori =1,...,p, and where AY(u) = U1y ®a - ®a Ug) is the iterated coproduct (where
A := ¢ and A' := id). This is a slight generalisation to bialgebroids from a statement in
[GeSch. p. 65], and the expression is well defined with (2.2).

In the first part of the following proposition we state that corresponds to our gen-
eral expression of the Gerstenhaber products by means of the isomorphism (6.14)), and
in particular that the resulting Gerstenhaber bracket corresponds to the classical Schouten-
Nijenhuis bracket on the exterior algebra /" L. In the second part, we show how the
relevant operators from the two mentioned calculi are connected to each other; for the sake
of simplicity we restrict to the case where one acts with an element X € L = /\ZL:

Proposition 6.5. If L is finitely generated projective over A, then for 1 < i < p one has
(ul Q4 - Qa Up) 04 (Ul (PRI Uq) = (ul (CPIEERN I Up) Ozens ('Ul Q4 - Qa Uq),

where the left hand side is the Gerstenhaber product from (3.7). In particular, if QS k,
then the Gerstenhaber bracket from corresponds to the classical Schouten-Nijenhuis
bracket by means of the map %F * from .

Furthermore, for the operations d, ix, and Lx of differential, insertion, and Lie deriv-
ative of (generalised) forms along a (generalised) vector field X € L, one has on ', L*

(n+1)d = FBF/, (6.18)
(n—l)ix = FLF*XFI, (619)
nlx = FLpxxF’. (6.20)
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s

Proof. For the general Gerstenhaber product (3.7) one computes with the commutativity
of JL, (6:3)— @;%D , and using the isomorphism

((ul ®a - QauP)o; (1}1®A"'®A’Uq))(fl7,“,fp+‘q‘)
= (W' ®a - @aw?) (1 ST Dy g gua (F o, SN, piH L prElal)
= S ST T (S (s(S Sy W) - S T WD) ) - f;;)"”))( M
Sfita(yitly. .. gpptlalyp)

= SF ) ST W ey e (0} iy L)) Fly () ) -

E(Uéq)JrE( (zl+)\q\( ))f(2)lq\(u(q> ))Sf“’q(u“'l)-~-Sfp+“1|(up)
=SS (u ifl)g(u(l)_'_v_'_f (vt u(l) ERE

(u() y+fl+‘q‘(v uq ))sz+q(u +1) Sfp+\q\(up)
=Sty .. st (wiT1) S5t (u(l)v Yoo fZH‘I\(u(q)UQ)Sf1+Q(ui+1)...Sf?ﬂﬂ(up)
- ((ul ®a - Qa uP) ofens (V' ®a - ®Avq))(f1,... ,fp+|z1l)

for f* € JL and u’,v* € VL. The fact that the Gerstenhaber bracket resulting from
(6.17) corresponds to the (generalised) Schouten-Nijenhuis bracket on A°, L by means of
the (generalised) Hochschild-Kostant-Rosenberg map was already shown in [Ca, Theo-
rem 1.4]. Hence, observing that the map %F * is the mentioned HKR morphism followed
by (6.14), the first claim is proven.
Concerning the identity (6.18), as stated in (6.13), the degenerate elements of B vanish
under F, whereas the operator (2.20) assumes the form

saN(f L f7) =2 AR U LCPPR A S 9
for an element (f!,..., f*) € C,(JL, A), as is quickly revealed by a direct computation
using s , and the commutativity of JL. Hence, since S is an involution and with
©.7), , , and (6.3)-(6.6) one has
(FBF'(al ;o™ (X O/\-n/\X")
- 7( 2( D" 3 (=17 (@ Vpr)s, .., (@@ Mpr)y,
g€Sp

(a®™pr)_ - (a®Dpr)_, (av(l)pr)+7,,.7(ad(i)pr)+)) (XO Ao A Xn)
= (n+1) 2 (=178 (('pr))) (X7H) - S((a"pr) 1)) (X))

oESnH
((a™pr)2) -+ (el pr)z)) (X7@)
n+1) Y (-1)7e(XS P (@ pr)(x TV X)) - (X T (@mpr)(x T X))

oESn

—(n+1) Zn: Z (*l)vs(Xi(l)(alpr)(Xi(l))) ... E(Xi(i)(aipr)(Xi(i)XU(O)))

i=10€S,
.. 5(xi(")(anpr)(xi(n)))

S (1"t 2 (-1)7al (x7D) . X7 (i (7)) ... an (x7)
=1

oESH
(- Z(,1)0(11()(0(1))...(aipr)(xa(i)XJ(O))...an(xv(n))]
oES,

=+ 1d(a! A ---a™)(Xo,. .., Xn),

where the last line follows from the fact that the vector fields are derivations on A and that



BATALIN-VILKOVISKY STRUCTURES ON Ext AND Tor 43

As for the insertion operator, we compute with (6.13), (6.3)—(6.6), and St = s:
(Fepsxn F'(ab . a™) (X Ao A X071

= Z (71)0F<pr *av(l)’ ...,pr *acr(n—Q)’ ((pr *ao(n))(F*Xn)) » pr *acr(n—l))
g€Sn
(Xl R /\X"_l)
= (71)7171(” -1 Z (,1)U(S(alpr))(XU(l)) . (S(Oén72pr))(xo<n72))

o€Sn
(S((a””pr Jt(a™pr (F*XU(“))))) (Xo(nﬂ))

_ (n o 1) Z (71)(’&1 (Xo'(l)) .. an—Q(Xo'(n—2))S(an(Xo'(n)))(Xé()n—l))(an—lpr)(Xé()n—l))

cESR
=(n=1) Y (-1)7al(x°M).an i (xe D)o (x o)
oESH
=(n— 1)(ixn(a1 NEREIN a”))(Xl,...,X"_l),
hence is proven.
In a similar way, one proves (6.20) the details of which we omit since the computation
is similar to those of the two preceding identities. ]

7. HOCHSCHILD (CO)HOMOLOGY AND TWISTED CALABI-YAU ALGEBRAS

In this final section we discuss as an example the action of the Hochschild cohomology
H*(A, A) of an associative algebra A on the Hochschild homology H,(A, M) with co-
efficients in suitable A-bimodules M. In particular, the differential calculus discussed in
[N'Ts3] is generalised towards nontrivial coefficients which are not even SaYD modules,
and this is used to prove Theorem|1.7

7.1. The Hopf algebroid A° and the coefficients A,. As said in the introduction, all the
main results of this paper were historically first obtained for the Hochschild cohomology
H*(A, A) and homology H, (A, A) of an associative k-algebra A. This arises as the special
case in which U is the enveloping algebra A® of A, with ) = id 4 and coproduct and counit
given by

A:U->UR U, a®ib— (a®k 1) ®4 (1®rd), €:U — A, a®x b+ ab.
One then has
U @aov Us = U @y, U/spany{(a ®x cb) @ (' @i V') — (a @ b) @ (a' @y V'c)},
where cb and ' c is understood to be the product in A, and one easily verifies that
(a®p b) 1 ®uor (a®kD)— := (a®k 1) ®aor (D@ 1)

yields an inverse of the Galois map as was originally pointed out by Schauenburg. For sim-
plicity, we shall assume throughout this section that & is a field which implies in particular
that U = A° is A-projective (in fact free) with respect to all four actions >, <, », «.

Like JL in the previous section, U = A° is an example of a full Hopf algebroid in the
sense of Bohm and Szlachdnyi whose antipode S(a ®y, b) := b ® a is an involution. We
use this to identify left and right U-modules. Obviously, U-modules can also be identified
with A-bimodules with symmetric action of &, and in the sequel M is such a bimodule that
will be viewed freely as left or right U-module as necessary.

In particular, any algebra endomorphism o : A — A defines an A-bimodule A, which

is A as k-vector space with the A-bimodule respectively right A°-module structure
brm<a=m(a®yb):=bxo(a), a,me A be A°P.

These bimodules are prototypical examples of the homology coefficients we are interested
in. They carry a left A°-comodule structure given by

AO'_)A6®AAO') mH(m®k 1)®A 1a
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for which the induced left A-module structure is , A. However, in general A, is not a stable
anti Yetter-Drinfel’d module, see [KoKr2| for a discussion of this fact.

Up to isomorphism, A, only depends on the class of ¢ in the outer automorphism
group Out(A) of A, and o — A, yields an embedding of the latter into the Picard group
of U-Mod that appears to have been considered in detail for the first time by Frohlich [Fr.
The study of the (co)homology of A with coefficients in these bimodules has many motiva-
tions. Nest and Tsygan suggested to view the Hochschild cohomology groups H* (A, A,)
as defining a quantum analogue of the Fukaya category [N'Ts3l INTs2]] while Kustermans,
Murphy and Tuset related H, (A, A,) to Woronowicz’s concept of covariant differential
calculi over compact quantum groups [KuMuTul]. Moreover, they arise naturally in the
description of the Hochschild (co)homology of the crossed product A x, Z, see [Getl].

7.2. The Hochschild (co)chain complex. In this situation, the chain complex
C,(U, M) = M ® 400 U®4°"* is isomorphic to the standard Hochschild chain complex

C.(A, M) := M ®;, A®+
by means of the map
m @ or (a1 @ b1) @acr == @aor (an ®p by) > by -+ - b1m @ a1 @y, - - ®k an-

For M = A,, the para-cyclic structure on C, (U, A,) from Proposition becomes
under this isomorphism

anm®k ay ®k ®k; Ap—1 leZO,
di(m®ky) =3 M ®% - @k An—in_i+1 Ok - ifl<i<n—1,

mo(a1) @ a2 @k -+ @k an ifi=n,

m®x a1 Q-+ Qk an Bk 1 if1=0,
Si(M®ry) =3 M®k Ok Ui Ok 1k i1 -+ if 1<i<n — 1,

Mm@k 1Rk a1+ ®k an if i=n,

th(m @ y) =0(a1) @k a2 Qk - - - Ak an @k M,
where m € A and where we abbreviate y := a1 ®j - - - ® a,,. In particular, one has
T=0Q%  Qro,

so C, (A, A,) is cyclic if and only if o = id (in which case A, is an SaYD module).
Likewise, there is an isomorphism of cochain complexes of k-vector spaces

C*(U,A) — C*(A, A) := Homy, (A®*  A), ¢ p,
where the latter is the standard Hochschild cochain complex [Hol] and ¢ is defined by
P(a1 @+ Ok an) 1= ¢((a1 @k 1) ®aor -+ ®aor (ar, @y 1))
so that

©((a1 @k b1) @acr -+ - @ aor (an Qb)) = Glar Qp -+ @y @y )by -+ - by.
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The resulting operators involved in the calculus structure are given by
B(m®y) = Z (=)™ ®%, ait1 R - Ok an Qp Mm@ 0(a1) Qg - - - Ak (a;),
1=0

L‘(m Rk y) = ¢(an—\p\ v 7an)m ®k a1 ®k -+ ®k an—p,

(ML y) = Z Z 1)7];'7"?1 ®r 0(an_|p|—j) Rk - R @(U(an_\pHi_J‘) ®k  Qk o(anti—jy))

7j=01i=
Qk - ®k o(an) ® o(m) Ry 02(‘11)®k"'®k ‘72(an—p—j)
n—|p|
Le(m@ry) = Z (—1)% Ypo'(m)®k"'®k @(o(ai) ® - - ®k 7 (aiyp|)) ®k -+ - ®k o(an)
i=1

+2( 1 U( Plan—|p|+i Ok - ®kan®km®k0(a1)®k"'®k0(ai—1)))

®ko—(az) ®k ®k U(anfpnti)v

Here we again work with the reduced complexes, so ¢ € CP(A, A) and (m ®; y)
represents a class in C, (A, A, ). For o = id these operators appeared in [Ril NTs3| [Get].

7.3. The case of semisimple 0. A particularly well-behaved case is when the automor-
phism o is semisimple (diagonalisable), that is, if there is a subset X € k\{0} and a decom-
position of k-vector spaces
A=P A\, Ax={acA|o(a)=Aa}.
AEX

Note that we have 1 € ¥ because (1) = 1, and also that an algebra A equipped with
such an automorphism is exactly the same as a G-graded algebra, where G is a submonoid
of the multiplicative group k\{0}, as o(ab) = o(a)o(b) implies AyA, S Ay, (thus the
monoid G € k\{0} resulting from o € Aut(A) is the one generated by X).

This grading yields decompositions of C*(A, A) and C,(A, A,). The chain complex
C.(A, A,) becomes G-graded by the total degree of a tensor,

C.(A, A(T) = @ C-(Aa Ad))\a CH(A7AO')>\ - @ Ako ®k ®k A)w,,?

AeG 05 s An€G
>\0 An=A

which is a decomposition of chain complexes of k-vector spaces. This coincides with the
decomposition into eigenspaces of T, and in particular we have
ker(id — T) = C.(4,4,)1, im(id—T)= P C.(4, A)x.
AeGA\{1}
It is also immediately seen that this decomposition is in fact one of para-cyclic k-vector
spaces, so we have:

Lemma 7.1. If A is an algebra over a field k and o € Aut(A) is a semisimple automor-
phism, then the para-cyclic k-vector space C,(A, Ay) is quasi-cyclic.

Unless G is finite, the decomposition of the cochain complex C*(A, A) is slightly more
subtle. Given a cochain ¢ € CP(A, A), we denote by ¢ its homogeneous component of
degree \ € k\{0}. That is, $) : A®*? — A is given on the homogeneous component

(A®kp)u = @ Ay @k @k Ay
IR “I’ff

of elements of A®*P of total degree i € G by
@r 1= Tau 0@ (ABP), — Ay,
where 7, : A — A, is the projection onto the degree v part of A. If we denote by
CP(A, A)x = {p e CP(A, A) | p((A®+P),) € Ay}
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the set of all \-homogeneous p-cochains, then @ = {Px}rex\ (0} defines an embedding

Cr(A,A) - ] C(4,A)
AER\{0}
of cochain complexes of k-vector spaces which is, however, not a quasi-isomorphism in
general. Still, we can split off the homogeneous part of degree 1,

Cr(A,A) = (A4, A @ (C (a4 n T] C(4,4)),
Aek\{0,1}
and C* (A, A); consists precisely of those cochains ¢ for which D); commutes with T.
Note that C*(A, A); is not equal to C'y (A, A) in general. We rather have:

Lemma 7.2. With the assumptions and notation as above, we have
Ch (A, A) = {peCP(AA) [YAe k\{0,1}Vue G : ¢A|(A®kp)rlfl = 0}.

Proof. This follows from the fact that the operator D:Z7A maps a chain z @, y €
Cryp(A, Ag) -1 Cim(id — T) to z @ PA(y) € Cry1(4, As)1 Sker(id — T). O

From this it is clear that the projections onto the homogeneous parts leave
Cy, (A, A) S C*(A, A) invariant, so C3 (A, A) splits as well as a direct sum of cochain
complexes into C*(A, A); and C (A, A) 0[], C*(A, A)x. We therefore obtain:

Lemma 7.3. If A is an algebra over a field k and o € Aut(A) is a semisimple automor-
phism, then C* (A, A)y is a comp subalgebra of Cy_(A, A), and the induced morphisms

H*(C(A,A)1) » Hy _(AA), H(C(A A)) - H*(A,A)
are injective and split as maps of H*(C(A, A)1)-modules.

Example 7.4. Let k be any field, A be the polynomial ring k[z], and o be specified by
o(z) = qx for some fixed ¢ € k\{0} which is assumed to be not a root of unity. Then we
have ¥ = {¢" | n € N} = G ~ N, and ker(id — T) consists only of the (degenerate)
multiples of 1 ®j, - -- ® 1. Then CP(A, A); ~ k for all p while C?) (A, A) consists of
all cochains that do not decrease the degree (where “decrease” refers to the ordering of
G ~ N). In particular, C°(A, A); ~ k while C (A, A) ~ A, and as A is commutative,
we also have HY (A, A) ~ A while H°(C(A, A)1) ~ k.

7.4. Twisted Calabi-Yau algebras. More recently, the Hochschild homology groups with
coefficients in A, have been studied intensively for the fact that large classes of algebras
have been recognised to be what is nowadays called a twisted Calabi-Yau algebra:

Definition 7.5. An algebra A is a twisted Calabi-Yau algebra with modular automorphism
o € Aut(A) if the A°-module A has (as an A°-module) a finitely generated projective
resolution of finite length and there exists d € N and isomorphisms of right A°-modules

0 i#d,

Extgc(A,Ae):{ A ied

The number d is then necessarily the dimension of A in the sense of [CE], that is, the
projective dimension of A € A°-Mod, and the Ischebeck spectral sequence [[] leads to a
Poincaré-type duality

H*(AA) ~ Hy (A, A,). (7.1)

We refer to [BerSo\, IBrZh, G1, Ke, Kt [LiW,, VdB1,[VdB2,|[VdBdTdV] and the references
therein for more information and background, and in particular plenty of examples.

It had been our aim in [KoKrl] to understand the duality in the wider context of
Hopf algebroids and to observe that is an isomorphism of graded H*(A, A)-modules.
From that point of view, the essence of the present paper is that is even compatible
with the Gerstenhaber structure which implies Theorem For ¢ = id this theorem has
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been proven by Ginzburg in [Gil] and just as therein, the fact is more or less immediate
once the full differential calculus structure is established:

Proof of Theorem|I.7] First we need to observe that in the case of a twisted Calabi-Yau
algebra, we have H*(A, A) ~ H*(C(A, A)1). Indeed, we know already that the duality
isomorphism is an isomorphism of H*(A, A)-modules, see, for instance, Theorem 1
in [KoKrI]. By Lemma [7.] we know that the homology is in fact concentrated in degree
1 with respect to the G-grading. Hence the cohomology is also concentrated in degree 1,
that is, the embedding C*(A, A); — C*(A, A) is a quasi-isomorphism.

Now Theorem [I.5] states in combination with Theorem 1 in [KoKrlI]] precisely that
H*(A, A) and H,(A, A,) form for a twisted Calabi-Yau algebra with semisimple modular
automorphism o what Lambre calls a differential calculus with duality [La, Définition 1.2].
Hence [Lal Corollaire 1.6] directly implies Theorem[I.7] O
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