
UNIMODALITY VIA KRONECKER PRODUCTS

IGOR PAK? AND GRETA PANOVA?

Abstract. We present new proofs and generalizations of unimodality of the q-binomial coef-
ficients

(
n
k

)
q

as polynomials in q. We use an algebraic approach by interpreting the differences

between numbers of certain partitions as Kronecker coefficients of representations of Sn. Other
applications of this approach include strict unimodality of the diagonal q-binomial coefficients
and unimodality of certain partition statistics.

1. Introduction

A sequence (a1, a2, . . . , an) is called unimodal, if for some k we have

a1 ≤ a2 ≤ . . . ≤ ak ≥ ak+1 ≥ . . . ≥ an .

The study of unimodality of combinatorial sequences is a classical subject going back to Newton,
and has intensified in recent decades. There is a remarkable diversity of applicable tools, ranging
from analytic to topological, and from representation theory to probabilistic analysis. The
results have a number of application, but are also important in their own right. We refer
to [B1, B2, S3] for a broad overview of the subject.

In this paper we present two extensions of the following classical unimodality result. The
q-binomial (Gaussian) coefficients are defined as:(

m+ `

m

)
q

=
(qm+1 − 1) · · · (qm+` − 1)

(q − 1) · · · (q` − 1)
=

`m∑
n=0

pn(`,m) qn .

The unimodality of a sequence

p0(`,m), p1(`,m), . . . , p`m(`,m)

is a celebrated result first conjectured by Cayley in 1856, and proved by Sylvester in 1878 [Syl]
(see also [S1]). Historically, it has been a starting point of many investigations and various
generalizations, both of combinatorial and algebraic nature, and the problem remains very
difficult. We refer to Section 7 for discussion of various proofs, connections with the Sperner
property, historical remarks and references.

Recall that pn(`,m) = #Pn(`,m), where Pn(`,m) is the set of partitions λ ` n, such that
λ1 ≤ m and λ′1 ≤ `. Denote by v(λ) the number of distinct part sizes in the partition λ. The
sequence (a1, . . . , an) is called symmetric if ai = an+1−i, for all i ≤ i ≤ n.

Theorem 1.1. Let

pn(`,m, r) =
∑

λ∈Pn(`,m)

(
v(λ)

r

)
.

Then the sequence
pr(`,m, r), pr+1(`,m, r), . . . , p`m(`,m, r)

is symmetric and unimodal.
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Note that pn(`,m, r) = 0 for n <
(
r+1

2

)
or n > `m−

(
r
2

)
, and that v(λ) can be viewed as the

number of corners of the corresponding Young diagram [λ]. Moreover, pn(`,m, 0) = pn(`,m)
and therefore, for r = 0, Theorem 1.1 gives the unimodality of q-binomial coefficients. Our next
theorem is a different extension of this result in the diagonal case.

Theorem 1.2. Let an = pn(m,m). Then, for all m ≥ 7, we have:

a1 < a2 < . . . < abm2/2c = adm2/2e > . . . > am2−2 > am2−1 .

Of course, the new contributions of this theorem are the strict inequalities (see also Subsec-
tion 7.10). The idea behind the proof of Theorem 1.1 is to consider tensor products Sλ ⊗ Sν
of irreducible representations of Sn, where ν = (n − k, k) is a two-row partition. We study
the Kronecker coefficients g(λ, µ, ν), defined as the multiplicity of Sν in the tensor product
representation Sλ ⊗ Sν , namely

(1) Sλ ⊗ Sµ = ⊕
ν`n

g(λ, µ, ν)S ν

and interpret these coefficients combinatorially, as the difference in the number of certain
Littlewood–Richardson (LR) tableaux. We then prove that these tableaux are in bijection with
the desired partitions. The inequality g(λ, µ, ν) ≥ 0 then implies unimodality.

The proof of Theorem 1.2 is more intricate and uses further ingredients. We employ the main
lemma in [PPV] to show that g(λ, µ, ν) > 0 and thereby to reduce strict positivity of Kronecker
coefficients to strict unimodality of sufficiently large coefficients of a polynomial

Am(q) =

m∏
i=1

(
1 + q2i−1

)
, for all m ≥ 27.

To prove this result (Theorem 5.2), we strengthen Almkvist’s proof of (non-strict) unimodality

of Am(q) + q + qm
2−1, see [A1].

The paper is structured as follows. We start with definitions and notations in Section 2. We
then present the Main Lemma on unimodality of certain products of LR coefficients (Section 3).
In sections 4 and 5, we apply the Main Lemma to derive all theorem 1.1 and 1.2, respectively. In
the following Section 6, we present a dual version of the Main Lemma and derive algebraically
a weak version of Almkvist’s theorem. We conclude with final remarks and open problems in
Section 7.

2. Definitions, notation and examples

We refer the reader to [Mac, S4] for the background on symmetric functions and combinatorics
of Young tableaux. Here we set the notations, recall the LR rule, and include an example of
Theorem 1.1.

2.1. Partitions and Young diagrams. For any integer partition π = (π1, . . . , πk) let π′

denote its conjugate, i.e. the partition whose Young diagram [π′] is the transpose of the Young
diagram of π, or algebraically π′i = #{j : πj ≥ i}. Let (ab) = (a, . . . , a), b times, denote the

partition whose shape is a b × a rectangle. Assuming there is a fixed rectangle (ab) in the
context, we denote by π̄ the complement of π within this rectangle, i.e. π̄i = a − πb+1−i. For
example, if π = (5, 5, 3, 2), then π′ = (4, 4, 3, 2, 2), the complement of π within the (64) rectangle
is π̄ = (4, 3, 1, 1) (we assume that πj = 0 for j > k).
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2.2. Symmetric functions and the Kronecker product. Following [Mac, S4], we use ek
and hk to denote elementary and homogeneous symmetric functions, respectively, and let sλ
be the Schur functions. We use “∗” to denote the Kronecker product in the ring of symmetric
functions, so

sλ ∗ sµ =
∑
ν`n

g(λ, µ, ν) sν .

Here g(λ, µ, ν) are the Kronecker coefficients as defined by (1) in §1. Unlike the Littlewood-
Richardson coefficients, explained in §2.3, which have many nice properties like an easy com-
binatorial interpretation, no such properties are present for the Kronecker coefficients in the
general case. The best current result along these lines is the combinatorial interpretation of
Blasiak [Bla] in the case when one of the partitions λ, µ, ν is a hook.

2.3. The LR rule. The LR coefficients cλµν are originally defined as the multiplicity of the
irreducible representation Vλ of GL(N,C) within the tensor product Vµ⊗Vν . For our purposes we
will recall their original combinatorial interpretation in terms of semi-standard Young tableaux
(SSYT).

The reading word of a semi-standard Young tableaux T is the sequence obtained by succes-
sively recording the numbers appearing in T starting from the top row to the bottom row and
reading each row from right to left. A lattice permutation (ballot sequence) is a sequence of
positive integers w = w1w2 . . . wn, such that, for every k and i, among the first k letters of w
there are at least as many i’s as (i+ 1)’s, or formally

#{j : wj = i, j ≤ k} ≥ #{j : wj = i+ 1, j ≤ k} for all 1 ≤ k ≤ n, i ≥ 1.

We say that a sequence or a tableau is of type β if it has βi numbers equal to i.
The Littlewood–Richardson rule states that cλµν is equal to the number of SSYT’s of shape λ/µ,

of type ν, and whose reading word is a lattice permutation. We call such tableaux the Littlewood–
Richardson (LR) tableaux.

For example, if λ = (5, 5, 3, 2), µ = (2, 1) and ν = (4, 4, 3, 1), then the semi-standard
tableauX below is an LR tableau of shape λ/µ, type ν, and whose reading word is 111222133243.

X =

1 1 1
1 2 2 2

2 3 3
3 4

2.4. Partitions in a rectangle. Let ` = m = 3. Then Pn = Pn(3, 3) are as follows (here, for
brevity and aesthetics, we use a concise notation for the partitions, e.g. instead of (3, 2, 2) we
write 322):

P0 = ∅, P1 = {1}, P2 = {2, 12}, P3 = {3, 21, 13}, P4 = {31, 22, 212},

P5 = {32, 221, 312}, P6 = {32, 321, 23}, P7 = {321, 322}, P8 = {322}, P9 = {33}.
Therefore,(

6

3

)
q

=
∑
n

pn(3, 3) qn = 1 + q + 2q2 + 3q3 + 3q4 + 3q5 + 3q6 + 2q7 + q8 + q9

and ∑
n

pn(3, 3, 1) qn = q + 2q2 + 4q3 + 5q4 + 6q5 + 5q6 + 4q7 + 2q8 + q9.
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Note that even the symmetry of the last polynomial is not obvious. For example, term 2q2

comes from two partitions each with one corner, while 2q8 comes from one partition with two
corners (cf. §7.4).

3. Main Lemma

For every two partitions, λ and µ, of size n, define

ak(λ, µ) =
∑

α`k, β`n−k
cλαβ c

µ
αβ ,

where cνπθ are the Littlewood–Richardson coefficients.

Lemma 3.1 (Main Lemma). For any two partitions λ, µ ` n, the sequence

a0(λ, µ), . . . , an(λ, µ)

is symmetric and unimodal.

We refer the reader to §7.8 for additional references on this result.

Proof. We start with Littlewood’s identity :

(◦) sλ ∗ (sπ sθ) =
∑

α`k , β`n−k
cλαβ(sα ∗ sπ)(sβ ∗ sθ) ,

where λ ` n, π ` k and θ ` n− k (see [Lit]).
If a is a positive integer, then s(a) corresponds to the trivial representation. So we have

sν ∗ s(a) = sν , for all ν ` a. For π = (k) and θ = (n− k), we obtain:

sλ ∗ (s(k)s(n−k)) =
∑

α`k, β`n−k
cλαβ sαsβ =

∑
α`k, β`n−k, ν`n

cλαβ c
ν
αβ sν .

Now let τ = (n− k, k), where k ≤ n/2. By the Jacobi–Trudi formula, we have:

sτ = sk sn−k − sk−1sn−k+1 .

We obtain:

sλ ∗ sτ = sλ ∗ (sk sn−k) − sλ ∗ (sk−1sn−k+1) =
∑
ν`n

(ak(λ, ν)sν − ak−1(λ, ν)sν ).

Therefore, the Kronecker coefficient g(λ, µ, τ) , which is equal to the coefficient at sµ in the
expansion of sλ ∗ sτ in terms of Schur functions, is given by:

g(λ, µ, τ) = ak(λ, µ) − ak−1(λ, µ).

Since g(λ, µ, τ) ≥ 0, the unimodality follows. The symmetry is clear from the definition and the
symmetry of the LR coefficients, i.e. the fact that cταβ = cτβα for any τ, α, β. �

4. Special cases of the Main Lemma

We begin with a few special cases which are obtained as corollaries to the Main Lemma when
the LR coefficients are either 0 or 1. We present them in increasing order of complexity. This
is done to simplify and streamline the exposition.
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4.1. q-binomial coefficients. We first obtain the special case r = 0 in Theorem 1.1. In
other words, we prove unimodality of the coefficients of qn in

(
m+`
m

)
q
. See Section 7 for other

generalizations, and §4.3 below for another approach.

Corollary 4.1. Let pn(`,m) be the number of partitions of n which fit in the `×m rectangle.
Then the sequence p0(`,m), . . . , p`m(`,m) is symmetric and unimodal.

Proof. Let λ = µ = (m`). Recall that c
(m`)
αβ = 1 if β is the complementary partition of α within

the (m`) rectangle, and is 0 otherwise. This can be seen combinatorially as follows. The SSYT
and lattice permutation property enforce that the first i rows of any skew LR tableau contains
only the first i numbers. Since the rows in (m`)/α are right-justified, filling them from top to
bottom and right to left, we see by induction that the rightmost numbers in row i must be equal
to i, and while the SSYT property forces them to be at least as many as the (i− 1)’s above, the
lattice permutation property requires them to be exactly as many, and hence sitting straight
below the (i− 1)’s. Continuing this way, the SSYT property enforces at least as many (i− 1)’s
in the i-th row as (i− 2)’s above them, and the lattice permutation enforces them to be equally
many, etc. This way we get a unique tableau, as in the example below, where m = 6, ` = 4 and
α = (4, 3, 1).

1 1
1 2 2

1 1 2 3 3
1 2 2 3 4 4

Therefore, for any α ⊂ (m`), there is a unique β giving a nonzero LR coefficient. This
coefficient is equal to 1, so

an((m`), (m`)) =
∑

α`n, α⊂(m`)

1 = pn(`,m).

Now Lemma 3.1 implies the result. �

4.2. Proof of Theorem 1.1. We proceed as in the case of the q-binomial coefficients. We
choose shapes λ and µ such that the LR coefficients cλαβ and cµαβ equal 1 exactly when β differs

from the complement of α within (m`) by r corners, and otherwise at least one of them is 0.
Let λ = (m`, 1r) and µ = (m + r,m`−1), i.e. a rectangle with a column of length r attached

below and the same rectangle with a row of length r attached on its right. In order for both
cλαβ and cµαβ to be nonzero we must have α, β ⊂ λ ∩ µ = (m`).

To compute cλαβ, note that the first ` rows of LR tableaux in λ/α are uniquely determined,
by the same argument as in the proof of Corollary 4.1. The number of i’s in the first ` rows of
the LR tableaux λ/α is m− α`+1−i = ᾱi, where ᾱ is the complement of α within (m`).

The remaining r rows in λ must be filled with r distinct numbers to preserve the SSYT
property. Let these numbers be i1, . . . , ir. The lattice permutation property is preserved up to
row (` + j) if and only if 1 + ᾱij ≤ ᾱij−1 if ij−1 6= ij − 1 and j > 1, and 1 + ᾱij ≤ 1 + ᾱij−1

otherwise. The type β of the tableau should satisfy βi = ᾱi if i 6= i1, . . . , ir, and βi = ᾱi + 1
otherwise. This is equivalent to saying that the type β of the LR tableaux is obtained from ᾱ
by adding a vertical strip of length r to it. As long as β ⊂ (m`), we have cλαβ = 1 in this case.

For all other β, we have cλαβ = 0.
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Y =

1 1 1
1 1 2 2 2
2 2 3 3 3

1 3 3 4 4 4
i1
i2

For example, for the LR tableau Y in the figure above, we have α = (3, 1, 1), m = 6, ` = 4,
r = 2, and the reading word of Y is 1112221133322444331i1 i2. In order for it to be a lattice
permutation, we can have i1 = 2 and i2 = 4 or i1 = 2 and i2 = 3, so β = (6, 6, 5, 4) or
β = (6, 6, 6, 3) and while ᾱ = (6, 5, 5, 3) the vertical strip added to β consists of a box in row 2
and 4 in the first case, or in rows 2 and 3 in the second case.

Now let µ = (m+ r,m`−1). It is well known and easy to see that for any µ, α and β, we have

cµαβ = cµ
′

α′β′ (see e.g. [HS]). Note that µ′ = (`m, 1r) has shape similar to λ, a rectangle plus a

column at the bottom. The same argument as above applies and gives that β′ = α′, where now
α′ is the complement of α′ within (`m), plus a vertical strip of size r. Note, however, that α′

is the conjugate of ᾱ, so applying the argument above we conclude that β′ is ᾱ′ plus a vertical
strip of size r. Conjugating again, this means that β is ᾱ plus a horizontal strip of size r.

It follows that in order for both cλαβ 6= 0 and cµαβ 6= 0 to hold, β should be ᾱ plus a horizontal

strip of size r, and at the same time ᾱ plus a vertical strip of size r. This is possible if and only
if the strips added are individual squares at distinct rows and columns. In other words, β is
obtained from ᾱ by adding r distinct corners of α and for each such β the LR coefficients are 1.
Thus, fixing α and summing over all possible partitions β, we have∑

β

cλαβ c
µ
αβ =

(
v(α)

r

)
,

the number of ways to select r distinct corners of α. Now Lemma 3.1 with λ = (m`, 1r) and
µ = (m+ r,m`−1) implies the result. �

4.3. Partitions into distinct parts. Here we present yet another proof of Corollary 4.1, which
we state in a different, but equivalent form (see Remark 4.3 below). The details of the proof
are different, however.

Corollary 4.2. Let m > `, and let dn(`,m) be the number of partitions of n into ` distinct
parts ≤ m. Then the sequence

d`(`,m), d`+1(`,m), . . . , dmn(`,m)

is symmetric and unimodal.

Proof. Let λ = (m`, `) and µ = (m + 1)`. In order to have both LR coefficients cλαβ 6= 0 and

cµαβ 6= 0, the rectangular shape µ forces β to be the complementary of α within µ, denoted ᾱ.

Then, βi = m+ 1− α`+1−i, 1 ≤ i ≤ `. In this case cµαβ = 1. Moreover, for both LR coefficients

to be nonzero, we must have α ⊂ λ ∩ µ = (m`).
To compute cλαβ, we construct an LR tableau of shape λ/α and type β. As in the previous

arguments, the first ` rows in λ/α are uniquely determined. It is easy to see that, for i ≤ `, row i
of this LR tableau has αi−r −αi−r+1 numbers equal to r for r = 1, . . . , i, where we set α0 = m.
Hence, in the first ` rows we have a total m − α`+1−r numbers equal to r. As established in
the previous paragraph, since the LR tableau of shape λ/αmust have type β, it follows that the
numbers m+ 1− α`+1−r are equal to r.
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1 1
1 1 2 2

1 2 2 3 3
1 2 3

Thus the last, (`+ 1)-st row of λ/α (shaded in the figure above), must be exactly 1, 2, . . . , `.
In order to preserve the SSYT property the number in row ` and column r must be less than r,
which is equivalent to α`−r+1 ≥ r for each r. In order for the final reading word to be a ballot
sequence, the part of the tableaux that lies in (m`)/α must have strictly more r’s than (r+1)’s,
for r = 1, . . . , ` − 1, which is equivalent to βr − 1 > βr+1 − 1, i.e. that α has distinct parts.
Finally, note that together with αi > `−i, these constraints are equivalent to α having ` nonzero
distinct parts. Now Lemma 3.1 implies the result. �

Remark 4.3. Corollaries 4.2 and 4.1 are in fact equivalent, as can be shown by a natural
bijection ν ↔ α+ (`, `− 1, . . . , 1). We omit the easy details.

5. Strict unimodality

5.1. The result. Consider a symmetric sequence (a1, a2, . . . , an). We say that it is strictly
unimodal, if

a1 < a2 < . . . < ak = ak+1 > . . . > an , for n = 2k

a1 < a2 < . . . < ak > ak+1 > . . . > an , for n = 2k − 1

(cf. [Med]). Strict unimodality of various partition functions was used in [PPV, §6] to establish
strict positivity of Kronecker coefficients in a similar context.1 Of course, the Main Lemma
(Lemma 3.1) does not imply strict unimodality.

In this section, we apply methods in [PPV] and reverse the logic of the Main Lemma to obtain
Theorem 1.2 strict unimodality of the diagonal q-binomial coefficients:(

2m

m

)
q

=

m2∑
n=0

pn(m,m)qn

Remark 5.1. A direct computation shows that strict unimodality easily fails for m = 3, 4 and 6
(see e.g. 2.1), but holds for m = 2 and 5. This implies that the bound m ≥ 7 in Theorem 1.2 is
tight.

5.2. Partitions into distinct odd parts. We start with the following extension of Almkvist’s
theorem.

Theorem 5.2. Consider the following product

Am(q) =
m∏
i=1

(
1 + q2i−1

)
=

m2∑
n=0

anq
n .

Then, for all m ≥ 27, the sequence (a26, . . . , am2−26) is symmetric and strictly unimodal.

Proof. Fix m ≥ 27. The symmetry is clear. It suffices to show that

an < an+1 for all 26 ≤ n <
m2 − 1

2
.

We consider three special cases of n. First, for n ≥ 2m+ 1, this was shown in [A1, p. 122].

1In fact, this paper grew out of our efforts to extend [PPV].
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Denote by Qn the set of partitions of n into distinct odd parts, and let q(n) = |Qn|. Observe
that for n ≤ 2m, we have an = q(n). We define an injection ϕ : Qn → Qn+1 as follows. For
ν = (ν1, . . . , ν`) ∈ Qn, n ≥ 3, let

ϕ(ν) =

{
(ν1, . . . , ν`, 1) if ν` > 1,

(ν1 + 2, ν2, . . . , ν`−1) if ν` = 1.

This shows that q(n + 1) ≥ q(n). Moreover, we have ν ∈ Qn+1 r ϕ(Qn) for all partitions, s.t.
ν1 − ν2 = 2 and the last part is at least 3, i.e. of the form ν = (2i + 1, 2i − 1, . . . , j) ` n + 1,
j ≥ 3. For n+1 > 26, such a partition can be taken of the form (2i+1, 2i−1), (2i+1, 2i−1, 5),
(2i+ 1, 2i−1, 7, 3), (2i+ 1, 2i−1, 3), depending on the residue of n modulo 4. This implies that
q(n+ 1) > q(n) for all n ≥ 26.

Now, observe that an = q(n) for all n ≤ 2m, which implies that an+1 > an for all 26 ≤ n ≤
2m − 1. The remaining inequality a2m+1 > a2m follows from a2m+1 = q(2m + 1) − 1, and the
additional partition

(2i+ 1, 2i− 1, 9) or (2i+ 1, 2i− 1, 7) ∈ Q2m+1 r ϕ(Q2m).

We omit the easy details. �

Remark 5.3. Note that q(25) = q(26) = 12 (see e.g. [Slo]), so for m ≥ 13, we have a25 = a26 =
12. This implies that the constant 26 in the theorem cannot be improved.

5.3. Proof of Theorem 1.2. We follow the approach in the proof of Corollary 6.2 in [PPV],
whose notation we adopt. Note that for k ≤ m we have pk(m,m) = π(k) is the number of
partitions of k. Since π(k)− π(k − 1) is equal to the number of partitions with no parts 1 (see
e.g. [Pak]), we have

p1(m,m) < p2(m,m) < . . . < pm(m,m).

Assume 2 ≤ k ≤ n/2. By Lemma 3.1 and Corollary 4.1, we have

pk(m,m)− pk−1(m,m) = g(mm,mm, τk), where τk = (n− k, k), 2 ≤ k ≤ m2/2.

Therefore, reversing the logic of the proof, it suffices to show that

g(mm,mm, τk) ≥ 1, for τk = (n− k, k), m ≤ k ≤ m2/2.

We prove this for m ≥ 27. By Lemma 1.3 in [PPV], we have g(mm,mm, τk) ≥ 1whenever the
character value

χτk [2m− 1, . . . , 3, 1] 6= 0.

Following the logic of the proof of Lemma 6.1 in [PPV], this character is equal to the difference
of partitions numbers:

χτk [2m− 1, . . . , 3, 1] = ak − ak−1 ,

where ak is as in Theorem 5.2. By the theorem, for k ≥ 27, we have ak−ak−1 > 0. In summary,
for m ≥ 27 we obtain the strict unimodality both for k ≤ m and k > m, as desired. Finally, for
7 ≤ m ≤ 26, we check the result by a direct computation. �

6. Dual version

In this section, we apply our general approach of using Kronecker coefficients to prove uni-
modality. Here, we use hooks instead of two-row Young diagrams, and then apply the results
to partitions which fit the rectangle.
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6.1. New unimodality result. We prove the following version of Almkvist’s theorem.

Theorem 6.1. Consider a polynomial

Bm(q) =
(
1 + q2 + q4 + . . . + qN

)
Am(q) ,

where N = m2 − 1 if m is odd, and N = m2 if m is even. Then the coefficients of Bm(q) are
symmetric and unimodal.

6.2. Dual version of the Main Lemma. For partitions λ, µ ` n let

bk(λ, µ) =
∑

α`k, β`n−k
cλαβ c

µ
α′β and Bk(λ, µ) =

bk/2c∑
i=0

bk−2i(λ, µ).

Lemma 6.2. For any two partitions λ, µ ` n the sequence

B0(λ, µ), B1(λ, µ), . . . , Bn(λ, µ)

is weakly increasing.

Proof. We use again Littlewood’s identity (◦) from the proof of the Main Lemma, and apply it
with π = (1k) and θ = (n− k) to obtain

sλ ∗ (s1ksn−k) =
∑

α`k, β`n−k
cλαβ (s1k ∗ sα)(sn−k ∗ sβ).

Recall that sm ∗ sπ = sπ if π ` m, we have s1k ∗ sπ = sπ′ , where π′ is the conjugate partition.
So the above identity translates as

sλ ∗
(
s1ksn−k

)
=

∑
α`k, β`n−k

cλαβ sα′ sβ =
∑

ν`n, α`k, β`n−k
cλαβ c

ν
α′β sν =

∑
ν`n

bk(λ, ν)sν .

By Pieri’s rule, we have

s1k sn−k = ekhn−k = s(n−k,1k) + s(n−k+1,1k−1) .

Using induction on k, we can express the Schur function for a hook as an alternating sum:

s(n−k,1k) = ekhn−k − ek−1hn−k+1 + ek−2hn−k+2 − . . . + (−1)ke0hn .

Thus, we have

sλ ∗ s(n−k,1k) =
∑
ν`n

k∑
r=0

(−1)r bk−r(λ, ν)sν =
∑
ν`n

(
Bk(λ, ν) − Bk−1(λ, ν)

)
sν .

We conclude

Bk(λ, µ) − Bk−1(λ, µ) = g
(
λ, µ, (n− k, 1k)

)
≥ 0,

as desired. �
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6.3. Proof of Theorem 6.1. We start with the following combinatorial result which follows
from Lemma 6.2.

Corollary 6.3. Let wn(m) be the number of self-conjugate partitions of size (n− 2i), for some
i, which fit in the m×m square. Then the sequence

w0(m), w1(m), . . . , wm2(m)

is weakly increasing.

Proof. We apply Lemma 6.2 with λ = µ = (mm). As noted in the the proof of Corollary 4.1,

the LR coefficient c
(mm)
αβ = 1 if β is the complementary partition of α within the m×m square,

and 0 otherwise. In order for c
(mm)
αβ c

(mm)
α′β 6= 0 we must have that the complements of α and α′

within m×m are equal, which is equivalent to α = α′. Since for each self-conjugate α there is

a unique complementary β = ᾱ for which c
(mm)
αβ 6= 0, we have

wn(m) =

bn/2c∑
i=1

∑
α`n−2i, α=α′, α⊂(mm)

1 =

bn/2c∑
i=1

∑
α`n−2i

c
(mm)
αᾱ c

(mm)
α′ᾱ

=

bn/2c∑
i=1

∑
α`n−2i, β`m2−n+2i

c
(mm)
αβ c

(mm)
α′β = Bn(mm,mm).

Now the result follows from Lemma 6.2. �

Self-conjugate partitions of n with largest part ≤ m are in a classical bijection with parti-
tions of n into distinct odd parts ≤ 2m − 1, (see e.g. [Pak]). Therefore, the Corollary implies
unimodality of the following polynomials:(

1 + q2 + q4 + · · ·+ qm
2) m∏

r=1

(1 + q2r−1) =
m2∑
n=0

wn(m)qn +
m2∑
n=1

wm2−n(m)qn+m2

for even m, and(
1 + q2 + q4 + · · ·+ qm

2−1
) m∏
r=1

(1 + q2r−1) =

m2∑
n=0

wn(m)qn +

m2−1∑
n=1

wm2−n(m)qn+m2

for odd m. This implies Theorem 6.1. �

7. Final remarks

7.1. A combinatorial proof of unimodality of q-binomial coefficients is given by O’Hara in [O’H]
(see also [SZ, Zei]). It would be interesting to see if Theorem 1.1 can be proved by a direct
combinatorial argument. Unfortunately, O’Hara’s chain construction argument does not seem
to imply the theorem even in the case r = 1 (cf. §2.4). Indeed, the value of v(α) is not unimodal
on the chains. For example, the fourth chain on p. 50 in [O’H] is

(22)→ (32)→ (42)→ (43)→ (43)→ (42)→ (421)→ (422)→ (423)→ (43),

and the number of corners dips in the middle.2 Note also that O’Hara’s construction does not
give a symmetric chain decomposition of the poset L(`,m) of partitions which fit the ` × m
rectangle (in other words, the difference between successive partitions is not always a corner).
Existence of such decompositions remains an open problem (see e.g. [S2, Wen] and references
therein).

2Note that in [O’H], the author use subsets in place of partitions; the bijection is straightforward.
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7.2. The fact that strict unimodality of q-binomial coefficients was open until now is perhaps
a reflection on the lack of analytic proof of Sylvester’s theorem, as all known proofs are either
algebraic or combinatorial (see [Pro, S3]). At the same time, our Theorem 1.1 is rather mysteri-
ous; it would be nice to see a truly conceptual explanation of this result. While on the subject,
we are curious if there is a p-reduction of this result as discussed in [A2].

7.3. Theorem 6.1 is somewhat weak, of course, and can be viewed as both a variation on
Almkvist’s result as well as a statement that the coefficients an in An(q) behave rather smoothly.
Given the sharp asymptotic results by Almkvist, it can be derived by other means, as only uni-
modality of the first two and the middle coefficients does not follow from unimodality of An(q).
We present it here as a partial triumph of algebraic methods, as until now the analytic proof
was the only result of this kind.

We should note here that it may be too much to expect an algebraic proof of Almkvist’s

theorem, since An(q) is not fully unimodal, while An(q) + q + qm
2−1 is not combinatorially

elegant. This makes it very different from Hughes theorem on unimodality of

H(t) =

m∏
i=1

(
1 + qi

)
,

which has both algebraic proofs [Hug, S1] and an analytic proof [OR]. In fact, Almkvist’s proof
is modeled on the Odlyzko–Richmond proof in [OR].

7.4. In Theorem 1.1, the symmetry

pn(`,m, r) = p`m−n+r(`,m, r)

can be proved directly as follows. Simply note that pn(`,m, r) is the number of pairs of partitions
(α, π) such that π ⊂ α ⊂ (m`), α ` n, and α/π consists of r squares which are all (inner) corners
of α. They are then outer corners of π. By taking complementary partitions and reversing the
order, we obtain pairs (π, α) counting p`m−n+r(`,m, r).

7.5. An important generalization of q-binomial coefficients is given by sλ(1, q, . . . , qm), which
are also known to be unimodal [Mac, p. 137] (see also [Kir, GOS]). The proof goes back to
Dynkin (see [S3, p. 518]). When λ = (`) or (1`), we get q-binomial coefficients back again.

It would be nice to find a common generalization of this result and Theorem 1.1. Note that
the most straightforward generalizations ak(λ) = the number or partitions ν ` k which fit in the
diagram [λ], is not unimodal in general [Sta].

7.6. Theorem 1.1 suggests the following generalization. For z ≥ 1, denote

Ak(`,m, z) =
∑

α∈Pk(`,m)

Γ(v(α) + z)

Γ(v(α) + 1)Γ(z)
,

where Γ(z) is the Gamma function. We conjecture that An(m, `, z) is unimodal. Note that for
z ∈ N, we have Ak(m, `, z) = ak(m, `, z − 1) and the claim follows from the theorem. See [SW]
for a different one-parametric generalization of Corollary 4.1.

7.7. Although there are several natural combinatorial interpretations of LR coefficients cλµν
(see e.g. [Mac, S4]), it is unlikely that Lemma 3.1 can be proved directly in full generality,
by an explicit surjection. Indeed, this would give a combinatorial interpretation of Kronecker
coefficients of g(λ, µ, ν) for ν = (n− k, k), an important open problem whose solution is known
only in a few special cases (see [BO1, BO2, RW, Ros]).
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7.8. After the paper was written, we learned that the formulas in the proof of the Main Lemma
have independently appeared in a draft version of [Val], since then revised and updated. The
idea to apply these formulas to the present unimodality results, however, is new.

Most recently, Blasiak found a combinatorial interpretation of the Kronecker coefficients
g(λ, µ, ν), where ν = (n−k, 1k) is a hook. This immediately gives a combinatorial interpretation
of the difference Bk(λ, µ) − Bk−1(λ, µ), as in Lemma 6.2. We use and extend this approach
in [PP2].

7.9. There is yet another way to derive unimodality of q-binomial coefficients (see Corollary 4.1).
Recall that the Kronecker product is related to the notion of plethysm, defined as a composition
of two polynomial representations

φ : GL(V )→ GL(W ) and ψ : GL(W )→ GL(U),

giving a representation ψφ : GL(V ) → GL(U), see e.g. [S4, App. 2]. If the character of φ,

denoted by f , is expressed as a sum of monomials via f(x) =
∑

θi x
θi and the character of ψ

is g, then the character of ψφ is given by the plethysm g[f ] = g(xθ
1
, xθ

2
, . . .). Since ψφ is a

representation and thus decomposes into a direct sum of irreducible representations of GL(V ),
it follows that g[f ] is a nonnegative sum of Schur functions whenever f and g are themselves
nonnegative sums of Schur functions.3

In particular, this gives the following recipe for producing unimodal sequences. Let g =
s(n−k,k), and let f be any symmetric function that is a nonnegative sum of Schur functions.
Let pln(λ, f, k) be the coefficient of sλ(x) in the expansion of hn−k[f ]hk[f ] in terms of Schur
functions, i.e.

hn−k[f ] · hk[f ] =
∑
λ

pln(λ, f, k)sλ .

Observe that for k ≤ n/2, we have δk = pln(λ, f, k)− pln(λ, f, k − 1) is equal to the coefficient
of sλ in the expansion s(n−k,k)[f ]. This implies that δn ≥ 0, and thus the sequence

pln(λ, f, 0) , . . . , pln(λ, f, n)

is symmetric and unimodal for any λ ` n.
For example, when f = s(1,1) and λ = (m2`) this approach gives Corollary 4.1 again. We

omit the details which are technical and somewhat involved.

7.10. In [PP1], we generalize Theorem 1.2 to all all large enough q-binomial coefficients.
Namely, we prove that

p1(`,m) < . . . < pb`m/2c = pd`m/2e > . . . > p`m−1(`,m).

for all `,m ≥ 8. We use a completely different approach, based on algebraic properties of
Kronecker coefficients.

Most recently, Shareshian found another proof of our Theorem 1.1, which uses combinatorics
of flags over Fq and reduces the result to Sylvester’s theorem.4

7.11. The log-concavity is a stronger property than unimodality, which appears in many appli-
cations. A sequence a1, . . . , aN is called log-concave if a2

n ≥ an−1an+1 for all 2 ≤ n ≤ N − 1.
This property fails for q-binomial coefficients, but does hold in several related contexts. Let us
single out [But] for q-log-concavity of a sequence(

n

0

)
q

,

(
n

1

)
q

, . . . ,

(
n

n

)
q

3Another standard notation for plethysm is g ◦ f , see e.g. [Mac, §1.8].
4Personal communication.
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viewed as polynomials, and [Ok] for log-concavity properties of certain LR coefficients. See [B2,
S3] for the surveys.
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