Modelling a Steel Mill Slab Design Problem

Alan M. Frisch, Ian Miguel, Toby Walsh
Artificial Intelligence Group
University of York
York, England
{frisch, ianm, tw}@Qcs.york.ac.uk

Abstract

We consider an industrial steel mill slab design
problem. This problem is an instance of a class
of difficult problems where the problem struc-
ture (in this case, the number and size of slabs)
is not fixed initially, but determined as part of
the solution process. Since a natural CSP en-
coding does not immediately suggest itself, the
choice of model for this type of problem may
be crucial in successfully solving it. This paper
develops three different models to tackle the
slab design problem. Model A uses a conser-
vatively large number of variables to represent
the slabs, some of which will typically be re-
dundant in an optimal solution. Model B oper-
ates in two phases, first solving an abstraction
of the original problem before solving further
sub-problems to provide a solution to the orig-
inal problem. The third model is a dual model
combining models A and B, allowing search and
propagation on both sets of variables.

1 Introduction

Many problems exhibit some flexibility in portions of
their structure (such as the number required of a certain
type of variable) which must be determined by the so-
lution procedure. Steel mill slab design, considered in
this paper, is an example of such a problem. Steel is
produced by casting molten iron into slabs, of which a
steel mill is capable of making a finite number of weights.
Given a set of orders with desired weights, the flexibil-
ity lies in the number and size of slabs chosen to fulfil
the orders. These choices specify a secondary problem of
assigning orders to slabs such that waste is minimised.
This paper develops three models, A, B, and a com-
bined model A/B, to solve the slab design problem.
Model A avoids the problem of an unknown number of
slabs by establishing an upper bound on the number of
slabs required and creating that number of slab variables.
This model has the advantage of simplicity and that it
provides a solution in a single step (as opposed to model
B below). However, since generally some of the slab vari-
ables are unnecessary, it can suffer the twin problems of

an overly large problem and the introduction of a lot of
symmetry.

Model B discards individual slab identifiers initially,
focusing instead on the abstraction of the original prob-
lem of assigning orders to a particular slab size. The
solution of the abstract problem dictates the structure
of a further set of sub-problems, each of which consists
of assigning a subset of the orders to a fixed number of
slabs with a common size. This model has the advan-
tage of compactness, since no redundant variables are
required. However, due to the abstract nature of the ini-
tial problem, one or more of the secondary sub-problems
may be inconsistent, necessitating a (potentially expen-
sive) cycle of repairs at the abstract level, followed by
the solution of further sub-problems.

Other problems have a similar nature, and therefore
present similar modelling problems to which the mod-
els developed in this paper should be adaptable. Con-
sider, for example, a warehouse location problem [van
Hentenryck, 1999] in which the number of warehouses is
unknown. The decision as to how many warehouses are
necessary has a direct effect on how their placement can
be optimised.

The remainder of this paper is structured as follows.
The next section introduces the steel mill slab design in
more detail, and provides an example problem. Models
A and B are introduced in sections 3 and 4 respectively,
and illustrated using the example problem. Model A/B
is discussed in section 5. Finally, section 6 concludes the
paper and points out future work.

2 A Steel Mill Slab Design Problem

A finite number, o, of slab sizes is available. Each of the
J input orders has two properties, a colour corresponding
to the route required through the steel mill and a weight.
An order cannot be split between slabs. The problem is
to pack orders onto slabs such that the total slab capacity
is minimised. There are two types of constraint:

1. Capacity constraints. The total weight of orders
assigned to a slab cannot exceed the slab capacity.

2. Colour constraints. FEach slab can contain at
most p of k total colours (p is usually 2). This con-
straint arises because it is expensive to cut the slabs

up in order to send them to different parts of the
mill.

Dawande et al [Dawande et al, 1998] describe an
asymptotic polynomial time approximation scheme for
this problem. They also present more practical 3-
approximation algorithms for realistic-sized instances.

2.1 An Example
There follows a small illustrative example problem which
will be used throughout the paper. For this problem,
p=2.
e Slab sizes available (¢ = 3): {1, 3, 4}
e Colours (k = 5): {Red, Green, Blue, Orange,
Brown}

Table 1 presents the input orders to this problem and
table 2 presents an example solution.

Order | Weight | Colour
1 2 Red

2 3 Green
3 1 Green
4 1 Blue

5 1 Orange
6 1 Orange
7 1 Orange
8 2 Brown
9 1 Brown

Table 1: Input Orders for the Example Problem

Slab | Size | Orders Assigned
1 4 1,8

2 3 2

3 1 3

4 1 4

5 3 56,7

6 1 9

Table 2: A Solution to the Example Problem

3 Model A - Redundant Variables

Given an input set of orders with known weights and
colours, the orders seem to be good candidates for being
variables. Hence, j input orders are modelled by a list,
O, of order variables {o1, ..., 0;} with domains consisting
of identifiers for a particular slab.

The number of slabs is not fixed, although if it is as-
sumed that the weight of each order does not exceed
the maximum possible slab size, the maximum number
of slabs required is j. One possibility, therefore, is to
have a list, S, of slab variables, {s1,...,s;}, each with
a domain consisting of the possible slab sizes. The cost
function for calculating the quality of a solution is then
simply the sum of the assignments to each s;. Gener-
ally, a subset of the slab variables will be redundant, i.e.

an optimal solution does not assign any orders to these
slabs. In order to cater for this, an extra element, 0, is
added to the domain of each slab variable such that, if
slab s; is not necessary to solve the problem, s; = 0 in
the solution.

Since the slab variables are indistinguishable, model
A in its current form is likely to suffer from symmetry
problems: the slab sizes assigned to the variables in S
may be permuted without affecting the solution (assum-
ing order assignments are updated appropriately). This
can be counteracted effectively through the use of bi-
nary symmetry-breaking constraints of the form s; > s1,
S9 > S3, etc.

3.1 Model A of the Example Problem

For the example problem, o1, ...,09 and s, ..., Sg are re-
quired, as presented in table 3. The former have identi-
cal initial domains {1, ..., 9}, denoting the available slabs.
The latter also have identical domains {0, 1,3,4} denot-
ing the available slab sizes, and with 0 indicating that
the slab is not used.

Order Domain Slab Domain
Variable Variable

01 {1, ceey 9} S1 {0,]., 3, 4}
02 {1, ceey 9} Sa {0,]., 3, 4}
03 {1, ceey 9} S3 {0,]., 3, 4}
04 {]., ceey 9} S4 {0,]., 3, 4}
O5 {1, ceey 9} S5 {0,]., 3, 4}
Og {]., ey 9} Sg {0,]., 3, 4}
or {]., ceey 9} S7 {0,]., 3, 4}
Og {1, ceey 9} S8 {0,]., 3, 4}
09 {1,..,9} || so {0, 1, 3, 4}

Table 3: Variables for Model A of the Example Problem

For reference, table 4 presents one possible solution
to model A of the example problem. This is a ‘perfect’
solution since the total weight of the slabs used (4 + 2 x
3 + 3 x 1 =13) is equal to the total weight of the orders.

Order Variables | Slab Variables
01 = 1 S = 4
02 = 2 SS9 = 3
03 = 3 83 = 1
04 = 4 S4 = 1
05 = 5 S5 = 3
Og = 5 S¢ = 1
o7 = 5 S7 = 0
0og = 1 58 = 0
09 = 6 SS9 = 0

Table 4: Solution: Model A of the Example Problem

3.2 Constraints

Weight constraints express that the combined weight of
the orders assigned to a particular slab cannot exceed
the size assigned to that slab. For example, if size 3

is assigned to s;, orders 2 and 3 cannot be assigned to
slab 1, since their combined weight is 4. A total of j
‘weighted occurrence’ constraints of arity j + 1 are used
to achieve this, each ranging over the entire set of or-
der variables and one of the slab variables. A weighted
occurrence constraint is simply an occurrence constraint
[Régin, 1996] that takes into account the weight of each
variable (in this case, an order variable) that is assigned
the target value (the identifier of the slab variable).

A simple method of implementing the colour con-
straints is to create a set of ‘not-all-same’ constraints
of arity p+ 1 (recall that p denotes the maximum num-
ber of colours allowed on one slab) over order variables
with different colours. An example of such a constraint
is ¢(01,09,04): since the colours of orders 1, 2 and 4 are
red, green and blue respectively they cannot be assigned
to the same slab. For this problem, 51 such ternary con-
straints are required. In general, the number of colour
constraints is bounded above by Cj41', when each or-
der has one of j unique colours.

The Model A Colour Daemon

The problem with this initial scheme is the number
of colour constraints required. Real slab design prob-
lems typically have hundreds or thousands of orders and
colours, producing far too many colour constraints to
deal with. A remedy for this is to replace the large set
of constraints with a single ‘daemon’ (i.e. a large non-
binary constraint, defined intensionally) that ranges over
the entire set of order variables. The description below
is with respect to performing forward checking following
an order variable assignment, but the daemon could be
extended to maintain generalised arc consistency.

Two definitions are required to describe the daemon:

e colourSet;. As the order variables are assigned to
slab s;, the colour daemon maintains a record of
the set of colours assigned to it in colourSet;.

e saturation. Once a slab has orders with p different
colours assigned to it, it is said to be saturated.

Once s; is saturated, propagation on the remaining
order variables can take place. The daemon iterates
through those order variables that are not yet instanti-
ated and, for those whose associated colour is not present
in colourSet;, the domain element ¢ (if present) may be
pruned. Instantiating such an order variable to s; would
violate the colour constraint of allowing only p colours
per slab.

The extra space requirement for the model A colour
daemon is in terms of the colour sets associated with
each slab. The maximum space required for these is
O(jp), much less than that required by /C, 1 individ-
ual constraints with arity p + 1. The time required by
the propagation process is O(j2), since j order variables
must be examined, each with a maximum of j domain
elements.

InC, denotes the number of ways of selecting r of n objects

and is defined: #lr),

3.3 Implied Constraints for Model A

The combined weight of the input orders provides a
unary implied constraint on the lower bound of the opti-
misation variable: the total slab weight must be at least
this value. In addition, a lower bound on the number of
slabs required can be found by simply dividing the total
weight of orders by the largest available slab size (13 and
4 in the example, so at least 4 slabs are required). This
lower bound decomposes into unary constraints on the
slab variables, allowing the removal of 0 from the do-
main of the first ¢ variables, if 4 is the minimum number
of slabs required.

4 Model B - Abstraction

Model B consists of two phases. In the first phase, an
abstraction of the original problem is constructed and
solved (hopefully quickly). Phase 2 consists of a set of
independent sub-problems, each centred around assign-
ing a set of orders to a number of slabs of a particular
size, as defined by the solution of phase 1. Solving the
phase 2 sub-problems either provides a solution to the
original problem, or, if any of the sub-problems are over-
constrained, new constraints which restrict the set of so-
lutions at phase 1. Phase 1 must then be solved again
with respect to the new constraints, producing a new set
of sub-problems at phase 2, and so on.

4.1 Phase 1 Variables

Model B considers the different slab sizes as variables,
21, %2, ... with domains {0, ..., j} denoting the number
of slabs of the corresponding size used. For clarity, the
index of the z variable indicates the size it represents.
Since the number of slab sizes is typically far less than
the number of orders, this leads to a more compact rep-
resentation than model A. The cost function for model
B sums the number of slabs of each size used with each
term multiplied by the slab size.

Modelling the order variables then becomes more dif-
ficult, however. Since model B does not identify indi-
vidual slabs, the domains of the order variables can no
longer consist of the slab to which the order is currently
assigned to. Instead, the domain of an order variable
contains the size of the slab to which this order is as-
signed.

4.2 Model B, Phase 1, of the Example
Problem

Using this model, the example problem requires variables
01,.--,09, all with the domain {1, 3, 4}, and 21, 23, 24,
all with the domain {0, ..., 9} (see table 5). This is
fewer variables than are required by model A, and also
eliminates the symmetry on the slab variables.

Table 6 presents a solution to the example problem
represented using model B. This is a ‘perfect’ (though
ambiguous) solution since the total weight of the slabs
used (3 x 3 + 1 x4 = 13) is equal to the total weight of
the orders.

Order Domain || Slab Size | Domain
Variable Variable

01 {1, 3, 4} 21 {0, veey 9}
02 {1, 3, 4} zZ3 {0, veey 9}
03 {1, 3, 4} Z4 {0, ceey 9}
04 {1, 3, 4}

O5 {1, 3, 4}

O6 {17 37 4}

oy {1, 3, 4}

08 {17 37 4}

Og {17 3, 4}

Table 5: Variables for Model B of the Example Problem,
Phase 1

Order Variables | Slab Size Variables
o1 = 21 =0

02 = 3 3 = 3

03 =3 24 =1

04 =

05 = 3

Og = 3

o7 = 4

0og = 4

09 = 4

Table 6: Solution: Model B of the Example Problem,
Phase 1

4.3 Phase 1 Constraints

Weight constraints range over the entire set of order vari-
ables o1, ...,0; and one slab size variable, z;. They ex-
press that there must be a sufficient number of slabs of
size ¢ to accommodate the total weight of orders assigned
to size i slabs. This can be implemented via a weighted
occurrence constraint. The example problem requires 3
such constraints. In general, the number of weight con-
straints required by model B, phase 1 is o.

As per model A, colour constraints can be stated in-
dividually. In this case, each is an occurrence constraint
with arity k£ + 1, ranging over a subset of the order vari-
ables with all different colours and a slab size variable,
z;- They express that pz; > w, where w is the number
of orders assigned to the slab size ¢. That is, the assign-
ment to z; must be sufficient to accommodate the total
number of orders assigned to slab size ¢ with respect to
their colours. One such colour constraint for the example
problem is ¢(o1, 02,04, 05,08,21). This problem requires
36 such constraints in total. In general, the number of
colour constraints for model B, phase 1 is bounded above
by Cro when each order has one of j unique colours.

Hence, model B specified in this way would also suffer
from a crippling number of colour constraints. Again, a
daemon can be used to remedy this problem, in this case
ranging over both the order variables and the size vari-
ables. The model B colour daemon maintains a record of
the set of colours assigned to each slab size as the order
variables are instantiated, requiring space O(ok). This
information is used to trigger propagation on both the

order variables and the slab size variables. Taking the
latter case first, the lower bound of z; (assuming integer
division) is:
|colourSet;]
— +1

As |colourSet;| increases, this propagation is triggered
whenever |colourSet;| (mod p) = 1. This type of prop-
agation simply requires the re-calculation of the lower
bound of z; which can be done in constant time.
Propagation involving the order variables is based on
the colour-saturation of a slab size variable in much the
same way as for the model A colour daemon. When a

. . . : lourSet;
slab size variable, z; say, is instantiated and |C°°”+e’| =

z; (exactly) then ¢ can be removed from the domains of
all orders that contain it and whose associated colour is
not in colourSet;. This propagation takes time O(jok),
since j orders must be examined, each with maximum
domain size ¢ and their associated colours must be
searched for in colourSet;, with maximum size k.

4.4 TImplied Constraints for Model B,
Phase 1

As per model A, a unary implied constraint exists on
the optimisation variable such that its lower bound is
the combined weight of all the input orders. In addition,
the lower bound on the number of slabs required, as
described in section 3.3, can be enforced on the sum of
the assignments to the z variables.

A unary constraint on the domain of each order vari-
able can be derived by considering the weight of an order
in relation to the available slab sizes. The lower bound
on the domain of an order variable is the smallest slab
size that is greater than the weight of the associated or-
der.

4.5 Model B, Phase 2

As noted above, without an explicit representation of in-
dividual slabs, model B phase 1 is ambiguous: a solution
to the problem modelled in this way does not provide
the orders-to-slabs assignments required by the original
problem statement. On the other hand, a solution to a
model B phase 1 solution does provide the number and
sizes of the slabs required, the size of slab each order is
assigned to and the quality of the final solution.

The phase 1 solution presented in table 6 is used to
construct a much simplified phase 2 problem (see table
7). Since the number and size of the slabs is known, slab
variables are not required. In addition, the domain of
an order variable now contains identifiers for particular
slabs of the size specified in the solution to the phase
1 problem. Indeed, since only those orders assigned to
the same slab size interact, this second problem may
be decomposed into a number of sub-problems, each of
which considers packing the slabs of a particular size.

Constraints are restricted to combinations of order
variables with identical domains - i.e. those that were
assigned to a common slab size in phase 1. Under this
restriction, colour constraints for phase 2 are stated as

Sub-problem | Slab | Slab Size || Order Variable | Domain | Colour | Weight
1 T 3 o1 11,2 3] [Red |2
2 3 02 {1,2,3} | Green | 3
3 3 03 {1,2,3} | Green |1
04 {1, 2, 3} | Blue 1
05 {1, 2, 3} | Orange | 1
06 {1, 2,3} | Orange | 1
2 4 4 o7 {4} Orange | 1
08 {4} Brown | 2
09 {4} Brown |1

Table 7: Model B of the Example Problem, Phase 2

per model A. Weight constraints are stated similarly,
disallowing order combinations that exceed the slab size
chosen.

Table 8 presents a solution to the problem constructed
for phase 2 of model B of the example problem. It rep-
resents an alternative solution to the original problem to
that given in table 4.

Slab | Slab Size || Order Variables
1 3 01 = 1
2 3 09 = 2
3 3 03 = 1
4 4 04 = 3
05 = 3
Og = 3
o7 = 4
0og = 4
Og = 4

Table 8: Solution: Model B of the Example Problem,
Phase 2

4.6 The Price of Ambiguity

Given the ambiguity of model B phase 1, it is possi-
ble that one or more of the sub-problems constructed in
phase 2 might be over-constrained. Table 9 presents a
simple problem that demonstrates this. Given that the
only slab size available is size 4, the weight constraints
require there to be two such slabs to accommodate the
combined weight of the orders. Similarly, if p = 1 the
colour constraints require that there are two slabs since
there are two colours.

Order | Domain || Weight | Colour || Slab | Domain
Size

o1 {4} 3 Red 24 {0,...,4}

02 {4} 3 Red

03 {4} 1 Blue

04 {4} 1 Blue

Table 9: Problem for which Model B Produces an In-
consistent Phase 2 Problem, when p =1

However, when the phase two problem is constructed,
as presented in table 10, it is inconsistent. Consider that

colour constraints prevent o; from being on the same
slab as either o3 or 04 and a weight constraint prevents o,
from being on the same slab as 0,. Hence, 0; must be on
a slab by itself, leaving one slab for the remaining three
orders. Due to weight and colour constraints amongst
02, 03 and o4, the problem is therefore inconsistent.

Slab | Size || Order | Domain | Colour | Weight
1 4 o1 {1,2} Red 3
2 4 02 {1,2} Red 3

03 {1,2} Blue 1

04 {1,2} Blue 1

Table 10: Inconsistent Model B, Phase 2 Problem

Conflict Recording

From the above example, it might be inferred that phase
1 simply underestimates the value of the optimisation
variable or the number of a particular slab size. How-
ever, this is not necessarily the case: the value of the
optimisation variable may be correct, but with respect
to a different combination of slab sizes. Or, the combina-
tion of slab sizes may be correct, but not the assignment
of orders to sizes. The question, therefore, is how to
isolate the reasons for failure at phase 2 and post appro-
priate constraints at phase 1 to prevent the failure from
re-occurring.

The sub-division of phase 2 into independent sub-
problems aids this process. When a phase 2 sub-problem
is over-constrained, the arity of the phase 1 constraint
implied by this failure is (at most) one more than the
number of variables in the sub-problem. In the example
shown in tables 9 and 10 above, the following constraint
can be posted at phase 1:

01 =4N03s =4N03 =4N0og =4 — 24 >2

If the phase 1 problem is now solved again, the same
inconsistent sub-problem cannot re-occur and a different
sub-problem (or sub-problems in the general case) will
be generated for phase 2.

Generally, it is possible that a cycle of several such
failures followed by the addition of new constraints may
be necessary before a final solution is found. Therefore,
it is important to maximise the efficiency of this process.

Order (A) | Domain || Slab (A) | Domain || Order (B) | Domain || Slab Size (B) | Domain
OA1 {1,,9} S1 {0,1,3,4} OB1 {1,3,4} 21 {0,,9}
0A2 {1,,9} 89 {0,1,3,4} 0B2 {1,3,4} z3 {0,,9}
043 {1,...,9} || s3 {0,1,3,4} || oB3 {1,3,4} || 24 {0,...,9}
044 {1,...,9} || s4 {0,1,3,4} || oBa {1,3,4}
0OAs5 {1,,9} S5 {0,1,3,4} OB5 {1,3,4}
OAg {1,,9} S6 {0,1,3,4} OB6 {1,3,4}
oa7 {1,...,9} || s7 {0,1,3,4} || oB7r {1,3,4}
048 {1,,9} S8 {0,1,3,4} OBs {1,3,4}
049 {1,-...,9} || s9 {0,1,3,4} || oBg {1,3,4}

Table 11: Variables for Dual Model A/B of the Example Problem

Firstly, since the constraints added at phase 1 are not di-
rectly implied by the phase 1 representation, this process
can be viewed as constraint restriction in the sense of
restriction/relaxation-based dynamic CSP [Dechter and
Dechter, 1988]. Efficient dynamic CSP algorithms can
be employed to solve this evolving problem without re-
doing much of the work from scratch as is naively the
case.

A second improvement is in the arity of the constraints
recorded. It is likely that, in general, only a subset of
the variables in an over-constrained phase 2 sub-problem
are in conflict. If smaller conflicts can be identified, the
resulting phase 1 constraints will also be smaller, leading
to more pruning and therefore more quickly to a solution.

5 Model A/B: A Dual Model

A Dual model can also be considered, combining model
A and phase 1 of model B. This approach removes the
need for the cyclical repair strategy described in section
4.6 while retaining the power of model B to avoid sym-
metry problems.

5.1 Variables

As table 11 shows, model A /B contains both explicit slab
variables (s;) and slab-size variables (z;). Both order
variables with domains referring to explicit slabs (04;)
and domains referring just to slab sizes (op;) are also
included.

5.2 Channelling Constraints

The constraints required for the individual models are
as specified in sections 3.2 and 4.3. In order to maintain
consistency and to aid pruning between the two mod-
els, additional channelling constraints are required. For
example, channelling constraints between the s and z
variables state that the number of occurrences of assign-
ment ¢ in sy, ..., s; must be equal to the assignment of z;.
This ensures consistency in the number of each size of
slab. Such constraints (of which model A /B requires o in
general) are again easily implemented by an occurrence
constraint.

Channelling constraints are also necessary between the
order variables. These constraints express the implica-
tion o4; = j — oB; = s;, i.e. that the size of the of slab
referred to by the model A order variable must match

that assigned to the the model B order variable. Note
that this constraint is not of the form ‘iff’, because of
the ambiguity inherent to model B: the size assigned to
op; might match that of several model A slab variables.

5.3 Search Strategy

When attempting to solve a model A/B problem, the
variable instantiation order has a marked effect on the
benefit derivable from maintaining both basic models. If,
for example, the model A variables are instantiated first,
the channelling constraints will ensure that all model B
variables are also instantiated. This process is analogous
to simply solving the pure model A problem, and will
therefore not provide any further pruning of the search
tree.

The opposite strategy is to search initially with the
model B variables, then attempt to instantiate the model
A variables. Since model B is ambiguous, the chan-
nelling constraints do not force the instantiation of the
model A variables as the model B variables are assigned.
Model B variable assignments do, however, constrain the
model A variables. Hence, when the search continues on
to the model A variables, failures are identified more
quickly than by considering model A alone. This pro-
cess is analogous to the 2-phase pure model B approach,
with dead ends uncovered during the search on the model
A variables corresponding to inconsistent phase 2 sub-
problems.

Other search strategies specific to model A/B could
also be considered, interleaving the instantiation of the
variables from the two basic models to obtain the most
efficient pruning of the search space.

6 Conclusion

The models described here have thus far been tested only
on small problem instances created from subsets of real
industrial data. Since, for these problems, the number of
sizes available is relatively close to the number of orders,
model A performs the most strongly - sometimes solving
the problem more quickly even than model B phase 1.
This trait is not expected to scale to larger problems:
as the ratio of orders to available slab sizes increases, so
will the ratio of the size (in terms of number of variables)
of model A to model B and model B phase 1 should be
easier to solve.

The next step, therefore, is to develop further the
models described and apply them to more realistic prob-
lem instances. The use of colour daemons as opposed
to many individual colour constraints should enable the
models to scale effectively. A more realistic and more
detailed comparison will allow a better judgement of the
relative merits of models A, B and A/B and the identi-
fication of circumstances in which we can expect one to
perform better than the others.

It would also be interesting to model the problem us-
ing set variables, with each variable representing a slab,
and its domain being the set of orders assigned to it.
Partition constraints on the set variables would then en-
capsulate the occurrence constraints used in the current
models. A model C might also be considered, utilising
activity-based dynamic CSP [Mittal and Falkenhainer,
1990]. Here, model A slab variables would be used, but
only ‘activated’ as needed, according to the remaining
capacity of the activated slabs. This approach would
avoid the existence of a large number of redundant vari-
ables and constraints.

Acknowledgements

The authors are grateful to Andrew Davenport and
Jayant Kalagnanam for information about the problem
and instances, and to our anonymous reviewer for use-
ful comments. The authors are supported by EPSRC
Grant GR/N16129%. The third author is supported by
an EPSRC advanced research fellowship.

References

[Dawande et al., 1998] M. Dawande, J. Kalagnanm, and
J. Sethurmana. Variable sized bin packing with color
constraints. tr 21350, IBM T J Watson Research Cen-
ter, 1998.

[Dechter and Dechter, 1988] R. Dechter and A. Dechter.
Belief maintenance in dynamic constraint networks.
Proceedings of the Ninth National Conference on Ar-
tificial Intelligence, pages 37-42, 1988.

[Mittal and Falkenhainer, 1990] S. Mittal and
B. Falkenhainer. Dynamic constraint satisfac-
tion problems. Proceedings of the Fighth National
Conference on Artificial Intelligence, pages 25-32,
1990.

[Régin, 1996] J-C. Régin. Generalized arc consistency
for global cardinality constraints. Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence, pages 209-215, 1996.

[van Hentenryck, 1999] P. van Hentenryck. The OPL
Optimization Programming Language. MIT Press,
1999.

2h‘l:tp ://wwu.cs.york.ac.uk/aig/projects/implied/index.html

