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Abstract. We introduce a notion of wave maps with target in the sub-

Riemannian Heisenberg group and study their relation with Riemannian wave
maps with range in Lagrangian submanifolds. As an application we establish

existence and eventually ill-posedness of the corresponding Cauchy problem.

1. Introduction.

In the last two decades there have been many contributions to the study of wave
maps (see [15] and references therein). In general, well posedness for the Cauchy
problem holds under the condition that the target manifold has bounded geometry.
In the present paper we study a simple, explicit model of singular target space,
the Heisenberg group endowed with a Carnot-Carathéodory metric. In this setting
there are no bounds (even local) on the geometry but there is a rich and interesting
geometric structure which arise in many applications ranging from biology, control
theory and physics to several complex variables and PDE.
The geometric setting. The Heisenberg group Hk is a simply connected,
analytic Lie group, whose Lie algebra h = Ck × R, is endowed with the bracket
relation [Xi, Yj ] = −4δijT and [Xi, T ] = [Yi, T ] = 0 for any i, j = 1, ..., k, here the
set {Xi, Yi, i = 1, ..., k and T} is a vector basis of h. Using exponential coordinates
and the Baker-Campbell-Hausdorff formula (see [4]) one can define the group law
on Hk as (z, t)(z′, t′) = (z + z′, t + t′ + 2 Im(zz̄′)), for any (z, t), (z′, t′) ∈ Hk.
Here z, z′ ∈ Ck, z = (z1, ..., zk), z′ = (ξ1, ...ξk), zz̄′ =

∑k
j=1 z

j ξ̄j , and t, t′ ∈ R.
The vectors Xi, Yi, and T can be represented in exponential coordinates as the left
invariant vector fields Xi = ∂xi + 2yi∂t, Yj = ∂yj − 2xj∂t, and T = ∂t, where we
denote (z, t) = (x1, ..., xk; y1, ..., yk; t). For a more detailed study of the Heisenberg
group see [8], and [12]. The contact form λ = dt−2

∑m
i=1(y

idxi−xidyi). on Ck×R,
gives rise to a non-integrable hyperplane distribution

(1.1) H(z, t) = Kernel (λ(z, t)) = Span[X1, ..., Xk, Y1, ..., Yk],

the so-called horizontal structure (see [1]). In view of the non-integrability every two
points in Hk can be joined by a smooth curve γ : I → Hk such that γ′(s) ∈ H(γ(s))
for any s ∈ I, and I an interval (such curves are called horizontal curves). The
Carnot-Carathéodory (CC) metric (see [11]) is defined as follows: For any δ > 0,
and P,Q ∈ Hk we define the set A(δ) that includes all absolutely continuous curves
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γ : [0, δ] → Hk such that γ(0) = P , γ(δ) = Q, and γ′ =
∑k

i=1(aiXi + biYi) ∈
H(γ(s)) for almost every 0 ≤ s ≤ δ, and |ai|, |bi| ≤ 1. The CC distance between P
and Q is defined to be dC(P,Q) = inf{δ > 0 | A(δ) 6= ∅}. The length of a horizontal
curve γ : [0, 1] → Hk (in the metric space sense) is given by

∫ 1

0

∑k
i=1 |Πzi(γ′)|ds,

where Πzi : Hk → C denotes the orthogonal projection along the zi = (xi, yi)
variable.
Riemannian approximation. Following Koranýı [12] and Gromov [11], we
recall that as a metric space (Hk, dC) is the Gromov-Hausdorff limit of (R2k+1, dL)
as L → ∞, where dL denotes the distance function associated to a sequence of
Riemannian metrics gL. To be more specific: Let L > 1 and define the metric gL

on R2k+1, so that the left invariant basis of Hk given by Xi, Yi, i = 1, ..., k, and
T = L−

1
2 ∂t is orthonormal. If u = (x, y, t) : R1+l → Hk then for i = 0, 1, ..., l

u∗ei =
∑k

j=1(∂ix
j)Xj +(∂iy

j)Yj +u∗λ(ei)T, where u∗λ(ei) = ∂it− 2(y∂ix−x∂iy),
and {ei} is the canonical basis of R1+l. Consequently one has

(1.2)
l∑

i=0

||u∗ei||2gL
=

l∑
i=0

〈gLu∗ei, u∗ei〉 = |∇R1+lz|2 + L|∂it− 2(y∂ix− x∂iy)|2.

The Riemannian curvature tensor corresponding to gL is unbounded (from above
and from below) as L→∞ (see [4] for details on the blow-up). In [12], A. Koranỳı
showed that length minimizing curves with respect to the Carnot-Caratheodory
metric on Hk can be obtained as limit of the geodesics in (Ck × R, gL). In this
paper we indirectly provide a different proof of this convergence.
Heisenberg wave maps and the Cauchy problem. Wave maps are critical
points of an action functional. Such action is modeled, roughly speaking, on the
energy corresponding to the metric on the manifold. The “energy” of a map with
target in (Hk, dC)can be defined adapting a construction in [13], where a notion
of energy is given for maps from a manifold to any metric space. In our case the
energy can be computed explicitly: If u = (z, t) : Rl → Hk is a weakly differentiable
map, then

E(u) =

{ ∫
Rl |∇z|2dp, if ti =

∑k
j=1 Im(zj z̄j

i ), i = 1, ..., l, a.e. in Rl

∞, otherwise

(see [5]). This definition is exactly what one would expect in view of (1.2), namely
finite energy maps are tangent a.e. to the horizontal hyperplane distribution H(p)
defined in (1.1). Equivalently, by Frobenius Theorem, we can say that u = (z, t) has
finite energy if and only if

∫
|∇z|2 <∞, and

∑k
l=1 Im(∂iz

l∂j z̄l) = 0, for any i, j =
1, ..., l. In other words, the map z : Rn → Ck is weakly anisotropic (if l = k then
the map is called Lagrangian).

The action functional corresponding to E(u) is defined for all finite energy maps
u = (x+ iy, t) = (z, t) : R1+l → Hk, as

(1.3) A(u) =
∫

Rl×R
|∂0z|2 −

n∑
j=1

|∂jz|2,
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Formally1, we can define Heisenberg wave maps as critical points of A(u), in
the space of maps which satisfy the Lagrangian constraints. The corresponding
Cauchy problem consists in finding those Heisenberg wave maps which satisfy the
initial conditions u|initial time = h, and ∂0u|initial time = g, where h : Rl → Hk is2 an
horizontal map, and g : Rl → R2k+1 is such that g ∈ H(h).

If we interpret the solution of the Cauchy problem for the critical points of
the action (1.3) as a vibrating “horizontal” membrane, then in our setting the
membrane is a subset of the Heisenberg group, “tangent” a.e. to the horizontal
hyperplanes H(p) and the vibrations have to occur along the horizontal directions.
Results and comments. The main results in this paper concern the construction
of Heisenberg wave maps and the corresponding Cauchy problem. The difficulties
stem from the non-linearity and the non-holonomic nature of the Legendrian (or
Lagrangian) constraints. We show that Riemannian wave maps with target in a
Lagrangian manifold, satisfying a suitable “rank condition” are Heisenberg wave
maps. This gives us a tool to construct Heisenberg wave maps and solve the Cauchy
problem. The new feature in these results is that in general the Cauchy problem is
not locally well posed, even for smooth initial data with arbitrarily small norm. In
fact, we construct examples of distinct Heisenberg wave maps satisfying the same
initial, smooth, conditions. In a certain sense (to be made precise later) these
initial data are “degenerate”. Such lack of uniqueness is not entirely surprising in
view of the well known corresponding phenomena for geodesics (see [12], and [11]).
Our examples can also be used to show the lack of global well-posedness, even for
non-degenerate initial data, in the 1 + 1 dimensional case.

The following is a “sample” result, following from our work.

Theorem 1.1. The Cauchy problem for legendrian wave maps u : R1+k → Hk is
locally well-posed in the space

C([0, T ),Hs(Rn))× C([0, T ),Hs−1(Rn)), with s >
k

2
+ 1,

and for rank k initial position. The time T > 0 depends on the initial data (not
only on their Sobolev norm).

The relatively high regularity requested of the initial data (in comparison with
the Riemannian setting) is due to the nature of the Euler-Lagrange equations. The
latter reduces to a coupled system of quasilinear hyperbolic equations and transport
equations, whose coefficients depend on the solutions of the hyperbolic equations.
Transport equations with rough coefficients have been studied (see for instance
the papers of DiPerna-Lions [7], Bahouri-Chemin [3] and Ambrosio [2]). How-
ever, unless special structure conditions are present, in order to have existence and
uniqueness results one needs at least L1([0, T ), L∞) regularity for the coefficients
and their derivatives. To achieve such regularity we have to restrict our hypothesis
to rather smooth initial data. This situation has an analogue in the study of the
Vlasov-Maxwell system (see [9], and [10]), where coupled systems of wave equations
and transport equations appear as well.

Since neither smoothness, nor small norm of initial data grants well-posedness,
we chose not to put any emphasis on the question of sharpest regularity assumption.

1At the end of Section 2 we define Heisenberg wave maps to be solutions of the Euler-Lagrange

system
2we refer to h as initial position
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In conclusion we remark that the action functional corresponding to the Riemann-
ian metrics gL can be easily computed and is essentially (1.3) with an additional
penalization term which measures the “size” of the non-horizontal compoent of the
differential of the map. It is then natural to conjecture that critical points of the
penalized action (i.e. the gL−wave maps) converge to Heisenberg wave maps. We
think that such convergence does not hold because of the presence of rapidly os-
cillating contributions due to non-horizontal terms, however we are unable to find
a counter-example and this remains a challengin open problem. In this regard we
want to emphasize the similarities between our problem and the work of Zeng and
one of us in [16], in which the Riemannian wave map are obtained by adding an
order zero penalization term3 to the action functional. In [16] it is shown that
the free “penalized” system converges to the (constrained) Riemannian wave map
system. The approach in [16] fails in our setting because the constraints (i.e. our
penalization term) are of order one (that is, they involve first order derivatives of
the map).
Notation As usual, when considering partial derivatives in the Minkowski space
R1+l, we will denote by ∂0 the time derivative, and by ∂1, ..., ∂l the space derivatives.
The time variable is denoted by either s0 or τ , while the space variables are denoted
by s1, ..., sl. Whenever z, z′ ∈ Cm we will let zz′ =

∑m
i=1 z

i(z′)i.

2. Euler-Lagrange equations.

In this section derive the Euler-Lagrange equations for the Heisenberg wave
maps. We will use the method of Lagrange multipliers. Let ~φ = (φ0, ..., φl) ∈
C∞(Rl+1,Rl+1) be a vector-valued parameter function and consider the expression,

k∑
j=1

∫
Rl×R

1
2

(
|∂0z

j |2 −
l∑

i=1

|∂iz
j |2

)
dsdv

+
l∑

i=0

∫
Rl×R

φi(v, s)
[
∂it− 2

k∑
j=1

Im (zj ∂iz̄
j)

]
dvds(2.1)

Taking variations of (2.1) in the variables t, and in zj , j = 1, ..., k yields variable
we obtain

−(∂2
0z

j −∆zj) + 4i
l∑

i=0

(
φi∂iz

j + ∂iφ
izj

)
= 0, and

l∑
i=1

∂iφ
i + ∂0φ

0 = 0.

where ∆ =
∑l

i=1 ∂
2
i is the space-Laplacian. Combining the two expressions above

we obtain the Euler-Lagrange PDE for Legendrian wave maps: for i = 0, ..., l,

(2.2) ∂it− 2
m∑

j=1

Im (zj∂iz̄
j) = 0, and

{
�~z − 4i

∑l
l=0 φ

i∂i~z = 0,
div ~φ = 0,

Clearly, the equations should be interpreted in a weak sense. This is a system of
2k+l+2 partial differential equations, with 2k+l+2 unknowns (z1, ..., zk, t, φ

0, ..., φl),
and it generalizes the geodesics equations in Hk (which can be recovered from (2.2)

3the penalization term does not involve derivatives of the map, it is in fact the distance function
from the manifold multiplied by L.
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by imposing constant initial data and no dependence on v). By differentiating the
Legendrian constraint in (2.2) (with no additional regularity requirements, see [5])
one obtains a different formulation of the constraints in terms of the Lagrangian
conditions:

(2.3)
k∑

j=1

Im (∂iz
j∂lz̄

j) = 0, i, l = 0, ..., l.

What makes our problem difficult and makes the equations degenerate is the non-
linear nature of the derivative constraints in (2.2) and (2.3).

The equations derived through the Lagrange multipliers method can be rigor-
ously interpreted as Euler-Lagrange equations of the variational problem only if the
map is at least C2 smooth. This can be verified with a simple computation of the
differential of the action and with standard functional analysis techniques.
Euler-Lagrange equations in the Riemannian approximation. We derive
the Euler Lagrange equations for the approximating metrics gL. The structure of
such equations bears a striking resemblance to the structure of the system (2.2),
suggesting that the latter may also hold with relaxed smoothness hypothesis.

Using (1.2), we can compute the action functional for the metrics gL, associated
to maps u : R1+l → Hk,

(2.4) AL(u) =
∫

R1+l

|∂0z|2 − |∇Rlz|2dp

+ L

∫
R1+l

[
(∂0t− 2 Im(z∂0z̄))2 −

l∑
i=1

(
∂it− 2 Im(z ∂iz̄)

)2

dp

]
.

Next we take variations in z of (2.4), obtaining

(2.5)
∫

R1+l

{
∂0z · ∂0ψ −

l∑
i=1

∂iz · ∂iψ

− 2L
[
λ0(i∂0z · φ− (iz) · ∂0φ)−

l∑
i=1

λi(i∂iz · φ− (iz) · ∂iφ)
]}
dp,

where we have let λi = ∂it− 2Im(z∂iz̄), for i = 0, 1, ..., l. The variation in t yields
the equation

∫
R1+l

(
λ0∂0ψ −

l∑
i=1

λi∂iψ

)
dp = 0.

Integrating by parts and using the latter equality in (2.5) we obtain the system
of 2k + 1 equations in 2k + 1 unknowns (z, t),

(2.6)

�~z − 4iL

(
λ0∂0~z −

∑l
i=1 λ

i∂i~z

)
= 0,

∂0λ
0 −

∑l
i=1 ∂iλ

i = 0.
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Comparing (2.2) and (2.6) we see that both systems are of the form �~z equal the
inner product of a divergence free vector field and a gradient. Let us sketch how,
using standard energy methods (see [15] and [14]), one can verify that solutions zL

to (2.6) converge weakly in H1 to a Legendrian map: Let uL = (z, t) be a solution
of (2.6). Since uL is a Riemannian wave map, then it satisfies the standard energy
identity (see [15, page 82])

EL(uL(τ)) =
1
2
||DuL(τ)||2L2(Rl) =

1
2
||DuL(0)||2L2(Rl), for any time τ > 0,

here, the energy density is given by (1.2),

(2.7) |DuL(τ)| =
2k+1∑
a,b=1

l∑
0=1

(
gL

)
ab

[
∂iu

a∂iu
b

]

=
[
|∇Rl+1z|2 + L

l∑
i=1

(
∂it− 2 Im(z ∂iz̄)

)2]
If we choose initial data of the form

uL|τ=0 = h ∈ C2(Rl,R2k+1) horizontal map, and ∂0u|τ=0 = g +
c

L
T,

where g ∈ C1(Rl,R2k+1) ∩ L2 satisfies g(s) ∈ H(h(s)), for s ∈ R, and c ∈
C1(Rl,R) ∩ L2, then the energy at time τ = 0 will be

E(uL(0)) = ||g +
c

L
||2L2(Rl) + ||∇h||2L2(Rl) + ||c||2L2(Rl) ≤ C(g, c, h),

note that C does not depend on L. Hence the energy identity yields a uniform H1

bound on uL, hence the weak convergence to a Legendrian map. If l = 1, then one
has actually pointwise bounds on the energy density and its derivatives (see [14]),
and consequently the convergence is uniform.

Both for l = 1 and in higher dimensions, the weak form of convergence we are
able to obtain is not sufficient to pass to the limit and conclude that (2.2) is the
Euler-Lagrange system for our problem.
Heisenberg wave maps. In the rest of the paper, we will call Heisenberg wave
map any map z : R1+l → Ck for which we can find φ : R1+l → R1+l so that (2.2)
and the constraints (2.3) are satisfied (in a weak sense).

Once we have the z component for wave maps in the Heisenberg groups, then
we can construct the whole map by means of a Legendrian lift. The Legendrian
lift of a map z : R1+1 → C, is a map (z, t) : R1+1 → H1, which is Legendrian and
which projects to z. Such lift is obtained by “lifting”, for each s ∈ R, the curve
τ → z(τ, s), with end-point along the initial data z(0, s) (see for instance [11], and
[4]). Analogue considerations hold in higher dimensions.

3. Comparing Riemannian and Heisenberg wave maps.

In this section we study the link between Riemannian and the Heisenberg wave
maps. We start by giving a characterization for any smooth map to be an Heisen-
berg wave map.
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Proposition 3.1. Let z : Rl+1 → Ck be a smooth map, and let M denote the
range of z. For any p = z(τ, s) ∈ M set TpM to be the range of d(τ,s)z, TM is
the corresponding bundle and m = m(p) is the dimension of TpM . If the following
conditions hold:

(i) �z ∈ iTM in a neighborhood of p,

(ii) M is a manifold in a neighborhood of p, and m ≤ l

(iii) iTM ⊥ TM

(3.1)

then z is an Heisenberg wave map in a neighborhood of p.

Proof. Condition (ii) grants the existence of linearly independent, smooth vector
fields {∂l1z, ..., ∂lmz}, which generate TM in a neighborhood of p. Since m ≤ l,
at least one idex is missing from this list, and we will denote its corresponding
direction by ∂α0z ∈ TM . We can find smooth functions cb, such that

(3.2) ∂α0z −
m∑

b=1

cb∂lbz = 0,

in a neighborhood of p.
On the other hand, (i) guarantees the existence of smooth functions ψb such

that �z − 4i
∑m

b=1 ψb∂lbz = 0. Hence, for any smooth function λ we have �z −
4i

∑m
b=1 ψb∂lbz−4i(∂α0z−

∑m
b=1 cb∂lbz) = 0. The latter suggests an obvious choice

for φ. To conclude, we only need to choose λ to be a solution λof the transport
equation

(3.3) ∂α0λ+
m∑

b=1

(ψb − cbλ) = 0.

�

Theorem 3.2. Let z : Rl+1 → Ck be a smooth map. Define M , TM , and m as in
Proposition 3.1. If we assume that M is a Lagrangian manifold and m ≤ l, then z
is an Heisenberg wave map if and only if it is a Riemannian wave map into M .

Proof. If z : R1+l → M is a smooth Riemannian wave map, then �~z ⊥ TM .
Consequently, since M is Lagrangian, both (i) and (iii) in Proposition 3.1 hold,
and z is an Heisenberg wave map. Viceversa, if z : Rl+1 → Ck is a smooth
Heisenberg map, then �~z ∈ span{i∂α~z | α = 0, ..., l}. In case M is lagrangian then
this implies �~z ⊥ TM , hence z is a Riemannian wave map. �

Several remarks are in order:
- Theorem 3.2 extends immediately to C1 maps. The only substantial difference

is in solving (3.3), because the coefficients of this transport equation now will not
be smooth. If z is a C1 Riemannian wave map into M , then the components of
~c in (3.2) are Lipschitz. The existence of the solution of transport equations with
Lipschitz coefficients is standard (see for instance [7, Proposition II.1]).

- Let z : Rl+1 → Ck be a smooth map. Define M , TM , and m as in Proposition
3.1. If M is Lagrangian, and (i), (ii) hold, then z is both an Heisenberg wave map
and a Riemannian wave map into M .

-Let z : Rl+1 → Ck be a smooth map. Define M , TM , and m as in Proposition
3.1, and assume that (i), and (ii) hold. For any smooth manifold N ⊂ Ck, such
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that M ⊂ N , and iTpM ⊥ TpN , for all p ∈M , one has that z is both an Heisenberg
wave map and a Riemannian wave map into N .

-As a converse to the previous remark: Consider a smooth Heisenberg wave map
z : Rl+1 → Ck, and define M , TM , and m as in Proposition 3.1. For any smooth
manifold N ⊂ Ck, such that M ⊂ N , and for every p ∈M , iTpM ⊥ TpN , one has
that z is a Riemannian wave map into N .

-The relation between Riemannian wave maps and Heisenberg wave maps de-
pends upon finding a manifold N that satisfies the hypothesis described above. In
general there is not a unique choice of such N and this accounts in part for the lack
of uniqueness in the Cauchy problem for Heisenberg wave maps.

As a corollary of Theorem 3.2 we can prove Theorem 1.1.

Proof. Since the initial data for z is given by a Lagrangian manifold M we con-
sider the unique Riemannian wave map z with the prescribed initial data. In
view of Theorem 3.2, z will also be an Heisenberg map. Short time uniqueness
and Hs estimates follow from standard hyperbolic PDE theory (see for instance
[15]). Note that if the rank of the map drops below l, then there may be more
than one Lagrangian manifold along which the flow will continue, resulting in non-
uniqueness. �

4. Non-uniqueness of the Heisenberg wave map flow.

The maximum rank hypothesis in Theorem 1.1 is necessary. In this section we
exhibit examples where this hypothesis fails and one has non-uniquenss for the
solutions of the Cauchy problem. This phenomena is reminiscent of the well known
lack of uniqueness in the Cauchy problem for geodesics (see [12]). In the first
example we actually show that even the maximum rank hypothesis is not enough
to guarantee global well posedness, regardless of the smoothness or the size of the
initial data. In fact, solutions for smooth initial data exist in a unique fashion for
a short period of time and then they may branch off into infinitely many solutions.
This phenomenon does not occur for geodesics, but holds in the 1 + l dimensional
case for l ≥ 1.
A) We construct infinitely distinct Heisenberg wave maps z : R1+1 → C, with same
initial data. Consider the rank-zero initial data

(4.1)

{
z(0, s) = z0 ∈ C, for any s ∈ R
∂0z(0, s) = sη0, for a fixed η0 ∈ C, and for any s ∈ R.

Let γ : [0,∞) → C be a C2 curve, parametrized by arc length satisfying
γ(0) = z0, and γ′(0) = η0. Denote by k = |γ′′| the curvature of γ. We want to
construct Heisenberg wave maps, hence we need to construct maps z : R1+1 → C
and divergence free vector fields ~φ = (φ0, φ1) satisfying (2.2) and (2.3). Since any
curve in C is a Lagrangian curve, the constraint (2.3) is always trivially satisfied.
To simplify the computations we will let φ0 = ∂1f , and φ1 = −∂0f for some choice
of a smooth function f . If we set z = γ(u), with u : R1+1 → R, in (2.2), we
obtain �u = 0 and (∂0u

2−∂1u
2)k = 4(∂1f∂0u−∂0f∂1u). The latter is satisfied by

u(τ, s) = sτ, once we choose f(τ, s) = k(sτ)(s2 + τ2).
Since the curve γ was chosen arbitrarily, among those satisfying the same initial

conditions, we have that there are infinitely many solutions to this Cauchy problem
for Heisenberg wave maps.
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When evaluated at time τ = −1, the solution z(−1, s) to the Cauchy problem
for the initial conditions (4.1) is simply z(−1, s) = γ(−s). Its transversal velocity
is ∂0z(−1, s) = −sγ′(−s). Hence, if we start the flow at time τ = −1 with the
whole curve γ, then at time τ = 0 the solution will become degenerate (reduced to
the point γ(0)) and the subsequent evolution is not unique. In fact it can continue
along any other curve γ1 which is tangent to γ and has the same curvature at the
point of degeneracy. It is easy to verify that the map z(τ, s) = γ(τs) if τ ≤ 0 and
z(τ, s) = γ1(τs) if τ ≥ 0 obtained by gluing at time τ = 0 the two Heisenberg wave
map flows, continue to solve the system (2.2). As a consequence of this construction
the Cauchy problem for the Heisenberg wave maps cannot be globally well posed
in dimension 1 + 1, even for initial data with maximum rank.

This example is in fact typical of how smooth local solutions can continue in a
non unique fashion. We can generalize the above example to

Theorem 4.1. Let Σ1, and Σ2, be two smooth Lagrangian submanifolds of Ck,
such that Σ1 and Σ2 are tangent of degree two on a k− 1 dimensional manifold S.
Given two Riemannian wave maps

zi : R1+k → Σi, Rank(dzi) = k, for i = 1, 2

with the same smooth initial data on S, then

(4.2) z(τ, s) =

{
z1(τ, s) for τ ≤ 0,
z2(τ, s) for τ ≥ 0,

is a Heisenberg wave map.

Proof. By Theorem 1.1, both z1 and z2 are Heisenberg wave maps from a neigh-
borhood of Rk × {0} into Σ1 and Σ2 respectively. Thus we only need to show that
we can glue the two solutions z1 and z2 together and still solve the system (2.2).
We first observe that since z1 and z2 are smooth then dz1 = dz2 and ∂idz1 = ∂idz2,
i = 1, ..., k on S. Moreover, using the wave map equation

∂2
0za −∆za + Γa(dza, dza) = 0, a = 1, 2

we observe that ∂2
oz1 = ∂2

0z2 on S since by hypothesis the Christoffell symbols of
Σ1 and Σ2 agree on S. Thus the map z(τ, s) defined in (4.2) is C2 across τ = 0
and smooth elsewhere.

Since z1, and z2 are Riemannian wave maps then

(4.3) �za =
k∑

b=1

λb
an

b
a

where {na
b} is a basis of the normal bundle for Σa, a = 1, or a = 2, depending on the

sign of τ . Since rank(dz1) =rank(dz2) = k then there exists k linearly independent
vectors {∂l1z, ..., ∂lkz} that span the normal bundle in a neighborhood of τ = 0.
One index is missing from this list, and we will denote the corresponding vector by
∂α0z. There exist C1 functions c1, ..., ck such that

(4.4) ∂α0z =
k∑

b=1

cb∂lbz.
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Equation (4.3) can then be rewritten as

(4.5) �z − 4i
k∑

b=1

ψlb∂lbz = 0.

We need to find a divergence free vector field φ such that �z−4i
∑k

α=0 φ
α∂αz =

0. In view of (4.4) and (4.5), for any function λ we have that �z−4i
∑k

b=1 ψ
lb∂lbz−

4iλ(∂α0z −
∑k

b=1 cb∂lbz) = 0, which yields an obvious choice for φ. The only
condition left to verify is that ∂α0λ+

∑k
b=1 ∂lb(ψ

lb + λcb) = 0. Since this is a non-
degenerate transport PDE with C1 coefficients we can solve it and find λ. In this
way we obtain φ, completing the proof of the theorem. �
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