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ABSTRACT

This study demonstrates a method for satellite remote
sensing of surface soil moisture and the automated
segmentation of the acquired imagery. The remote
sensing method exploits the relationship between surface
radiant temperature, vegetation cover, and surface soil
moisture. The segmentation process employs a watershed
algorithm applied within a morphological image
pyramid. This multi-resolution approach compares
favorably to fixed-resolution techniques both in
computational cost and feature scalability. Applications
of both the remote sensing method and image
segmentation technique are demonstrated for a Landsat
TM image of southwestern Oklahoma.

1. INTRODUCTION

The potential for soil moisture (SM) measurement by
satellite has been recognized for the past two decades [5].
Only recently, however, have techniques been developed
for standardizing the conversion of satellite spectral
measurements to surface SM. Specifically, the “triangle
method” [4] uses the relationship between the surface
radiant temperature and the vegetation index in
estimating surface SM. In our study, we have attempted
to automate the segmentation of the raw SM image using
a multi-resolution watershed pyramid.

II. REMOTE SENSING OF SOIL MOISTURE
A. Satellite Data

For our investigation, we have selected a 185x170 km
region of southwest Oklahoma, one of the world’s best
instrumented and most studied areas for SM, hydrology,
and meteorology. The region contains the ARS Micronet
(in the Little Washita basin) and several Oklahoma
Mesonet sites, which constantly measure meteorological
and surface parameters, including (recently) soil

This work was supported by the National Aeronautics and
Space Administration under EPSCOR grant NCC5-171.

0-7803-4876-1/98/$10.00 © 1998 IEEE 70

moisture. This selection allows the greatest potential for
ground truth measurements and comparison with other
studies.

The satellite data used in the example provided in this
paper was acquired from the Landsat TM on a nearly
cloudless summer day (July 25, 1997). Red, near-
infrared, and thermal infrared spectral bands were used in
determining vegetation index and surface radiant
temperature. These spectral bands have a spatial
resolution of 30 meters, with the exception of the thermal
band, which has a resolution of 120 meters.

B. The Triangle Method

The triangle method assumes that surface radiant
temperature depends primarily on vegetation cover and
SM. During the daytime, bare soil is heated by solar
radiation by an amount dependent upon SM (diurnal heat
capacity). Thus, the radiant temperature of the soil is a
measure of the (surface) SM content. In contrast,
vegetation has the ability to regulate temperature (by
transpiration) and therefore mask any information about
the SM underneath, unless the vegetation experiences
water stress {2]. Thus, in the absence of water stress, the
surface radiant temperature is affected by the amount of
bare soil and its SM content.

The quantity of bare soil within a given pixel is
indicated by the Normalized Differential Vegetation
Index (NDVD), defined in terms of Landsat TM spectral
reflectance data (R) as

NDVI= R nearinfrared- R red ' W
R nearinfrared+ R red
The NDVI ranges between near 0.8 for completely
vegetated areas to 0.05 for completely bare soil, and near
—0.5 for bodies of water,

Surface radiant temperature (SRT) is determined by
the thermal infrared band of Landsat TM (wavelength
10.4-12.5 um). In contrast to NDVI, the local range of
SRT varies significantly within the 185x170 km image,
due to surface and meteorological conditions (air
temperature, humidity, solar radiation, wind, etc.). It is
possible to estimate corrections for many of these factors




using additional meteorological data and models.
However, in our study we have attempted to avoid
meteorological inhomogeneity by analyzing smaller
regions of 12x12 km, within which only the relative SRT
is used in determining SM.

The “triangle method” derives its name from the
shape of the “scatterplot” showing the occurrence of SRT
on the horizontal axis and NDVI on the vertical axis. The
scatterplot for the 12x12 km subimage used in this paper
is shown in Fig. 1.
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Fig. 1 Scatterplot of NDVI vs. SRT

The triangular shape of the scatterplot can be
interpreted as follows: The more vegetated an area
(higher NDVI), the lower the temperature. However,
there is some spread in temperature due to differing
quantities of soil moisture. Therefore, for a given NDVI,
relatively high temperatures correspond to low amounts
of soil moisture. The triangle method assumes that soil
moisture varies from completely dry (right edge of the
triangle) to completely saturated with moisture (left
edge).

In theory, the apex of the triangle corresponds to total
vegetation (no bare soil), at which point no variation in
temperature should be observed. In practice, the apex is
chosen at total vegetation and at the temperature that
includes the most pixels within the triangle. The base of
the triangle corresponds to bare soil, and can easily be
distinguished by its low NDVI.

Within the triangle, lines of equal SM, called
“isopleths,” can be calculated by a boundary layer model
using surface and meteorological parameters. With the
goal of automating the process, we have instead chosen
the isopleths to be linear and equally spaced in slope.
(Pixels outside the triangle were assigned the value of the
nearest isopleth.) Fig. 2 shows the NDVI of a 12x12 km
area, and Fig. 3 shows the SRT image. The lighter pixels
in Figs. 2 and 3 represent higher values of NDVI and
lower SRT, respectively. The soil moisture image
obtained by the triangle method is shown in Fig. 4, with
darker pixels representing higher SM.
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C. Assessment of the Triangle Method

Research is ongoing regarding the existence of a
“universal triangle” with isopleths that correspond to
absolute values of surface soil moisture [4]. In our
present research, we are attempting to incorporate meso-
scale ground measurements into the identification of
absolute soil moisture isopleths.

As a consequence of using optical remote sensing, the
SM data obtained by the triangle method allow
measurement at a thin surface layer (less than 5 mm in
depth). During rapid drying, this surface layer becomes
decoupled with deeper soil layers [1]. Therefore, the
triangle method alone cannot give an accurate measure of
the vertical SM profile. However, in conjunction with
microwave SM techniques, the method may aid the
measurement of important surface soil properties and/or
vegetation water stress.

Fig. 2 NDVI

Fig. 3 Surface Radiant Temperature



Fig. 4 Original Soil Moisture Image

III. IMAGE SEGMENTATION
A. The Watershed Algorithm

Image segmentation is the process of dividing an

image into homogeneous sub-regions. Our objective is to
provide an unsupervised segmentation of the SM image.
There are a variety of edge detection methods useful for
segmentation. In this study, we focus on the watershed
technique as applied to the segmentation of our SM
-image [3]. The watershed algorithm is advantageous
because the resulting edges are thin and continuous, and
the boundaries are closed. First, we explain the fixed-
resolution watershed algorithm and then we extend the
concept to the multi-resolution watershed pyramid.

The concept of the watershed comes from
topography. The gradient magnitude of the image is
considered as a topographic surface, where low gradient
values are represented as “catchment basins.” High
gradient values are ‘“ridges,” forming the watershed
boundaries that correspond to edges in the actual image.

A "minimum-following" algorithm can be utilized to
link each pixel location to the location of the catchment
basin into which it drains, Because each pixel location
must have a unique local minimum in gradient
magnitude, the gradient magnitude image is slightly
blurred by a Gaussian kernel:

B =G «|VI| )
where I is original image, G is the Gaussian kernel and
V1 is gradient of I. The next step is to find the local
minima of B. These local minima represent the
catchment basins of the gradient magnitude image, and
they are each labeled by a unique number for the
identification.
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The last step is to group catchment basins of the same

label together. This process is defined as

W=WS(B). 3)
After all of the watersheds have been labeled, the edge
map is computed by locating the boundaries between
watersheds.

Unfortunately, the above process gives a heavily
over-segmented image. Typically, a region combination
technique is applied in an attempt to reduce the number
of regions in the segmentation.

B. The Watershed Pyramid

Despite the addition of the region combination
technique to the fixed-resolution watershed, the image
remains over-segmented. This difficulty can be avoided
(and computation time greatly reduced) by utilizing the
scalable segmentation produced by a morphological
image pyramid [3]. In this technique, the watershed
algorithm is applied to a coarse level of the image
pyramid, then the edges are propagated down to the finer
layers of the pyramid.

The pyramid is created by a succession of filtering
and sub-sampling as follow. Level L is given as

L=[I.,oK)s K]l 2 L=0,1,...,n (4)

Here, I is the original image and [.] | 2 represents . down
sampling by a factor of two. I, is referred to as the
“parent” level of I ,, the “child”. With one-of-two down-
sampling in both dimensions, each parent has four
children. (o K) and (I® K) represent the morphological
opening and closing by structuring element K,
respectively. In this process, the open-close operation
was chosen because it produces reduced grayscale bias as
compared to the individual open or close operation-[6].
The morphological filter is superior to linear filters (as
used in the Gaussian pyramid) in terms of edge
localization and feature preservation.

The watershed algorithm is applied on a coarse level
gradient magnitude image [|VI,, and the resultant
segmentation is denoted by W,. The gradient values of
the child level W, are created by linking each pixel to
one in the parent level W,. Hence,

WG i IYWLGHI=0
wL~1(’07]o)={ . .,
undefined if \VW (i, )1>0
where (i,j,) is a child pixel at level L-1 for parent
element (i) at level L.

In (5), if IVW.(i, /)l = 0, the label of the children of
pixel (7, j) is assigned to be that of the parent. The final
step in linking level L-1 to level L is the application of
the (fixed-resolution) watershed algorithm on the pixels
of W, (i, j) with undefined links (for children which
have edge pixels as parents).
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The linking process continues level by level,
terminating with the level corresponding to the original
image resolution.

C. Results

Fig. 4 depicts the result of applying the fixed-
resolution watershed segmentation to the raw soil
moisture image, and Fig. 5 gives the resultant edge map.
Although connected and thin contours are provided, the
image is clearly over-segmented. The segmentation
regions and edge maps from the multi-resolution
watershed technique are shown in Figs. 6 through 11.
The root level was varied from 2 to 4 in this example in
order to demonstrate the scalability of the segmentation.
Table summarizes the results of computation time and
the number of segmented regions produced by varying
the root level.

For our 512x512 image, the fixed-resolution method
took more than 16 minutes to process, while the multi-
resolution watershed approach required only 15 seconds
on a Sun Ultra 1/170 workstation. Through the selection
of different root levels, the multi-resolution watershed
pyramid produced a scalable segmentation, varying from
coarse to fine. This scalability gives the multi-resolution
approach a distinct advantage over the fixed-resolution
approach.

From these results it is clear that the multi-resolution
watershed pyramid is capable of providing an
appropriately scaled segmentation with over an order of
magnitude improvement in computation time over the
fixed-resolution watershed method.

Fig. 4 Fixed-Resolution Image
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Table Root |Computation| Number
Level Time of Regions
Fixed-Resolution 0 16.5 min 1075
Multi-Resolution 2 15 sec 413
Multi-Resolution 3 15 sec 109
Multi-Resolution 4 15 sec 31
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Fig. 5 Fixed-Resolution Edge Map



Fig. 6 Multi-Resolution Image (Root = 2) Fig. 7 Multi-Resolution Edge Map (Root = 2)
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Fig. 8 ulti-Rsolution Image (Root=3) Fig. 9 Multi-Resolution Edge Map (Root = 3)

ig. 10 MltiResolution Image (Root=4) Fig. 11 Multi-Resolution Edge Map (Root = 4)
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